1 /*
2  * acenic.c: Linux driver for the Alteon AceNIC Gigabit Ethernet card
3  *           and other Tigon based cards.
4  *
5  * Copyright 1998-2002 by Jes Sorensen, <jes@trained-monkey.org>.
6  *
7  * Thanks to Alteon and 3Com for providing hardware and documentation
8  * enabling me to write this driver.
9  *
10  * A mailing list for discussing the use of this driver has been
11  * setup, please subscribe to the lists if you have any questions
12  * about the driver. Send mail to linux-acenic-help@sunsite.auc.dk to
13  * see how to subscribe.
14  *
15  * This program is free software; you can redistribute it and/or modify
16  * it under the terms of the GNU General Public License as published by
17  * the Free Software Foundation; either version 2 of the License, or
18  * (at your option) any later version.
19  *
20  * Additional credits:
21  *   Pete Wyckoff <wyckoff@ca.sandia.gov>: Initial Linux/Alpha and trace
22  *       dump support. The trace dump support has not been
23  *       integrated yet however.
24  *   Troy Benjegerdes: Big Endian (PPC) patches.
25  *   Nate Stahl: Better out of memory handling and stats support.
26  *   Aman Singla: Nasty race between interrupt handler and tx code dealing
27  *                with 'testing the tx_ret_csm and setting tx_full'
28  *   David S. Miller <davem@redhat.com>: conversion to new PCI dma mapping
29  *                                       infrastructure and Sparc support
30  *   Pierrick Pinasseau (CERN): For lending me an Ultra 5 to test the
31  *                              driver under Linux/Sparc64
32  *   Matt Domsch <Matt_Domsch@dell.com>: Detect Alteon 1000baseT cards
33  *                                       ETHTOOL_GDRVINFO support
34  *   Chip Salzenberg <chip@valinux.com>: Fix race condition between tx
35  *                                       handler and close() cleanup.
36  *   Ken Aaker <kdaaker@rchland.vnet.ibm.com>: Correct check for whether
37  *                                       memory mapped IO is enabled to
38  *                                       make the driver work on RS/6000.
39  *   Takayoshi Kouchi <kouchi@hpc.bs1.fc.nec.co.jp>: Identifying problem
40  *                                       where the driver would disable
41  *                                       bus master mode if it had to disable
42  *                                       write and invalidate.
43  *   Stephen Hack <stephen_hack@hp.com>: Fixed ace_set_mac_addr for little
44  *                                       endian systems.
45  *   Val Henson <vhenson@esscom.com>:    Reset Jumbo skb producer and
46  *                                       rx producer index when
47  *                                       flushing the Jumbo ring.
48  *   Hans Grobler <grobh@sun.ac.za>:     Memory leak fixes in the
49  *                                       driver init path.
50  *   Grant Grundler <grundler@cup.hp.com>: PCI write posting fixes.
51  */
52 
53 #include <linux/module.h>
54 #include <linux/moduleparam.h>
55 #include <linux/types.h>
56 #include <linux/errno.h>
57 #include <linux/ioport.h>
58 #include <linux/pci.h>
59 #include <linux/dma-mapping.h>
60 #include <linux/kernel.h>
61 #include <linux/netdevice.h>
62 #include <linux/etherdevice.h>
63 #include <linux/skbuff.h>
64 #include <linux/init.h>
65 #include <linux/delay.h>
66 #include <linux/mm.h>
67 #include <linux/highmem.h>
68 #include <linux/sockios.h>
69 #include <linux/firmware.h>
70 #include <linux/slab.h>
71 #include <linux/prefetch.h>
72 #include <linux/if_vlan.h>
73 
74 #ifdef SIOCETHTOOL
75 #include <linux/ethtool.h>
76 #endif
77 
78 #include <net/sock.h>
79 #include <net/ip.h>
80 
81 #include <asm/system.h>
82 #include <asm/io.h>
83 #include <asm/irq.h>
84 #include <asm/byteorder.h>
85 #include <asm/uaccess.h>
86 
87 
88 #define DRV_NAME "acenic"
89 
90 #undef INDEX_DEBUG
91 
92 #ifdef CONFIG_ACENIC_OMIT_TIGON_I
93 #define ACE_IS_TIGON_I(ap)	0
94 #define ACE_TX_RING_ENTRIES(ap)	MAX_TX_RING_ENTRIES
95 #else
96 #define ACE_IS_TIGON_I(ap)	(ap->version == 1)
97 #define ACE_TX_RING_ENTRIES(ap)	ap->tx_ring_entries
98 #endif
99 
100 #ifndef PCI_VENDOR_ID_ALTEON
101 #define PCI_VENDOR_ID_ALTEON		0x12ae
102 #endif
103 #ifndef PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE
104 #define PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE  0x0001
105 #define PCI_DEVICE_ID_ALTEON_ACENIC_COPPER 0x0002
106 #endif
107 #ifndef PCI_DEVICE_ID_3COM_3C985
108 #define PCI_DEVICE_ID_3COM_3C985	0x0001
109 #endif
110 #ifndef PCI_VENDOR_ID_NETGEAR
111 #define PCI_VENDOR_ID_NETGEAR		0x1385
112 #define PCI_DEVICE_ID_NETGEAR_GA620	0x620a
113 #endif
114 #ifndef PCI_DEVICE_ID_NETGEAR_GA620T
115 #define PCI_DEVICE_ID_NETGEAR_GA620T	0x630a
116 #endif
117 
118 
119 /*
120  * Farallon used the DEC vendor ID by mistake and they seem not
121  * to care - stinky!
122  */
123 #ifndef PCI_DEVICE_ID_FARALLON_PN9000SX
124 #define PCI_DEVICE_ID_FARALLON_PN9000SX	0x1a
125 #endif
126 #ifndef PCI_DEVICE_ID_FARALLON_PN9100T
127 #define PCI_DEVICE_ID_FARALLON_PN9100T  0xfa
128 #endif
129 #ifndef PCI_VENDOR_ID_SGI
130 #define PCI_VENDOR_ID_SGI		0x10a9
131 #endif
132 #ifndef PCI_DEVICE_ID_SGI_ACENIC
133 #define PCI_DEVICE_ID_SGI_ACENIC	0x0009
134 #endif
135 
136 static DEFINE_PCI_DEVICE_TABLE(acenic_pci_tbl) = {
137 	{ PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE,
138 	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
139 	{ PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_COPPER,
140 	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
141 	{ PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C985,
142 	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
143 	{ PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620,
144 	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
145 	{ PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620T,
146 	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
147 	/*
148 	 * Farallon used the DEC vendor ID on their cards incorrectly,
149 	 * then later Alteon's ID.
150 	 */
151 	{ PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_FARALLON_PN9000SX,
152 	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
153 	{ PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_FARALLON_PN9100T,
154 	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
155 	{ PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_ACENIC,
156 	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
157 	{ }
158 };
159 MODULE_DEVICE_TABLE(pci, acenic_pci_tbl);
160 
161 #define ace_sync_irq(irq)	synchronize_irq(irq)
162 
163 #ifndef offset_in_page
164 #define offset_in_page(ptr)	((unsigned long)(ptr) & ~PAGE_MASK)
165 #endif
166 
167 #define ACE_MAX_MOD_PARMS	8
168 #define BOARD_IDX_STATIC	0
169 #define BOARD_IDX_OVERFLOW	-1
170 
171 #include "acenic.h"
172 
173 /*
174  * These must be defined before the firmware is included.
175  */
176 #define MAX_TEXT_LEN	96*1024
177 #define MAX_RODATA_LEN	8*1024
178 #define MAX_DATA_LEN	2*1024
179 
180 #ifndef tigon2FwReleaseLocal
181 #define tigon2FwReleaseLocal 0
182 #endif
183 
184 /*
185  * This driver currently supports Tigon I and Tigon II based cards
186  * including the Alteon AceNIC, the 3Com 3C985[B] and NetGear
187  * GA620. The driver should also work on the SGI, DEC and Farallon
188  * versions of the card, however I have not been able to test that
189  * myself.
190  *
191  * This card is really neat, it supports receive hardware checksumming
192  * and jumbo frames (up to 9000 bytes) and does a lot of work in the
193  * firmware. Also the programming interface is quite neat, except for
194  * the parts dealing with the i2c eeprom on the card ;-)
195  *
196  * Using jumbo frames:
197  *
198  * To enable jumbo frames, simply specify an mtu between 1500 and 9000
199  * bytes to ifconfig. Jumbo frames can be enabled or disabled at any time
200  * by running `ifconfig eth<X> mtu <MTU>' with <X> being the Ethernet
201  * interface number and <MTU> being the MTU value.
202  *
203  * Module parameters:
204  *
205  * When compiled as a loadable module, the driver allows for a number
206  * of module parameters to be specified. The driver supports the
207  * following module parameters:
208  *
209  *  trace=<val> - Firmware trace level. This requires special traced
210  *                firmware to replace the firmware supplied with
211  *                the driver - for debugging purposes only.
212  *
213  *  link=<val>  - Link state. Normally you want to use the default link
214  *                parameters set by the driver. This can be used to
215  *                override these in case your switch doesn't negotiate
216  *                the link properly. Valid values are:
217  *         0x0001 - Force half duplex link.
218  *         0x0002 - Do not negotiate line speed with the other end.
219  *         0x0010 - 10Mbit/sec link.
220  *         0x0020 - 100Mbit/sec link.
221  *         0x0040 - 1000Mbit/sec link.
222  *         0x0100 - Do not negotiate flow control.
223  *         0x0200 - Enable RX flow control Y
224  *         0x0400 - Enable TX flow control Y (Tigon II NICs only).
225  *                Default value is 0x0270, ie. enable link+flow
226  *                control negotiation. Negotiating the highest
227  *                possible link speed with RX flow control enabled.
228  *
229  *                When disabling link speed negotiation, only one link
230  *                speed is allowed to be specified!
231  *
232  *  tx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
233  *                to wait for more packets to arive before
234  *                interrupting the host, from the time the first
235  *                packet arrives.
236  *
237  *  rx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
238  *                to wait for more packets to arive in the transmit ring,
239  *                before interrupting the host, after transmitting the
240  *                first packet in the ring.
241  *
242  *  max_tx_desc=<val> - maximum number of transmit descriptors
243  *                (packets) transmitted before interrupting the host.
244  *
245  *  max_rx_desc=<val> - maximum number of receive descriptors
246  *                (packets) received before interrupting the host.
247  *
248  *  tx_ratio=<val> - 7 bit value (0 - 63) specifying the split in 64th
249  *                increments of the NIC's on board memory to be used for
250  *                transmit and receive buffers. For the 1MB NIC app. 800KB
251  *                is available, on the 1/2MB NIC app. 300KB is available.
252  *                68KB will always be available as a minimum for both
253  *                directions. The default value is a 50/50 split.
254  *  dis_pci_mem_inval=<val> - disable PCI memory write and invalidate
255  *                operations, default (1) is to always disable this as
256  *                that is what Alteon does on NT. I have not been able
257  *                to measure any real performance differences with
258  *                this on my systems. Set <val>=0 if you want to
259  *                enable these operations.
260  *
261  * If you use more than one NIC, specify the parameters for the
262  * individual NICs with a comma, ie. trace=0,0x00001fff,0 you want to
263  * run tracing on NIC #2 but not on NIC #1 and #3.
264  *
265  * TODO:
266  *
267  * - Proper multicast support.
268  * - NIC dump support.
269  * - More tuning parameters.
270  *
271  * The mini ring is not used under Linux and I am not sure it makes sense
272  * to actually use it.
273  *
274  * New interrupt handler strategy:
275  *
276  * The old interrupt handler worked using the traditional method of
277  * replacing an skbuff with a new one when a packet arrives. However
278  * the rx rings do not need to contain a static number of buffer
279  * descriptors, thus it makes sense to move the memory allocation out
280  * of the main interrupt handler and do it in a bottom half handler
281  * and only allocate new buffers when the number of buffers in the
282  * ring is below a certain threshold. In order to avoid starving the
283  * NIC under heavy load it is however necessary to force allocation
284  * when hitting a minimum threshold. The strategy for alloction is as
285  * follows:
286  *
287  *     RX_LOW_BUF_THRES    - allocate buffers in the bottom half
288  *     RX_PANIC_LOW_THRES  - we are very low on buffers, allocate
289  *                           the buffers in the interrupt handler
290  *     RX_RING_THRES       - maximum number of buffers in the rx ring
291  *     RX_MINI_THRES       - maximum number of buffers in the mini ring
292  *     RX_JUMBO_THRES      - maximum number of buffers in the jumbo ring
293  *
294  * One advantagous side effect of this allocation approach is that the
295  * entire rx processing can be done without holding any spin lock
296  * since the rx rings and registers are totally independent of the tx
297  * ring and its registers.  This of course includes the kmalloc's of
298  * new skb's. Thus start_xmit can run in parallel with rx processing
299  * and the memory allocation on SMP systems.
300  *
301  * Note that running the skb reallocation in a bottom half opens up
302  * another can of races which needs to be handled properly. In
303  * particular it can happen that the interrupt handler tries to run
304  * the reallocation while the bottom half is either running on another
305  * CPU or was interrupted on the same CPU. To get around this the
306  * driver uses bitops to prevent the reallocation routines from being
307  * reentered.
308  *
309  * TX handling can also be done without holding any spin lock, wheee
310  * this is fun! since tx_ret_csm is only written to by the interrupt
311  * handler. The case to be aware of is when shutting down the device
312  * and cleaning up where it is necessary to make sure that
313  * start_xmit() is not running while this is happening. Well DaveM
314  * informs me that this case is already protected against ... bye bye
315  * Mr. Spin Lock, it was nice to know you.
316  *
317  * TX interrupts are now partly disabled so the NIC will only generate
318  * TX interrupts for the number of coal ticks, not for the number of
319  * TX packets in the queue. This should reduce the number of TX only,
320  * ie. when no RX processing is done, interrupts seen.
321  */
322 
323 /*
324  * Threshold values for RX buffer allocation - the low water marks for
325  * when to start refilling the rings are set to 75% of the ring
326  * sizes. It seems to make sense to refill the rings entirely from the
327  * intrrupt handler once it gets below the panic threshold, that way
328  * we don't risk that the refilling is moved to another CPU when the
329  * one running the interrupt handler just got the slab code hot in its
330  * cache.
331  */
332 #define RX_RING_SIZE		72
333 #define RX_MINI_SIZE		64
334 #define RX_JUMBO_SIZE		48
335 
336 #define RX_PANIC_STD_THRES	16
337 #define RX_PANIC_STD_REFILL	(3*RX_PANIC_STD_THRES)/2
338 #define RX_LOW_STD_THRES	(3*RX_RING_SIZE)/4
339 #define RX_PANIC_MINI_THRES	12
340 #define RX_PANIC_MINI_REFILL	(3*RX_PANIC_MINI_THRES)/2
341 #define RX_LOW_MINI_THRES	(3*RX_MINI_SIZE)/4
342 #define RX_PANIC_JUMBO_THRES	6
343 #define RX_PANIC_JUMBO_REFILL	(3*RX_PANIC_JUMBO_THRES)/2
344 #define RX_LOW_JUMBO_THRES	(3*RX_JUMBO_SIZE)/4
345 
346 
347 /*
348  * Size of the mini ring entries, basically these just should be big
349  * enough to take TCP ACKs
350  */
351 #define ACE_MINI_SIZE		100
352 
353 #define ACE_MINI_BUFSIZE	ACE_MINI_SIZE
354 #define ACE_STD_BUFSIZE		(ACE_STD_MTU + ETH_HLEN + 4)
355 #define ACE_JUMBO_BUFSIZE	(ACE_JUMBO_MTU + ETH_HLEN + 4)
356 
357 /*
358  * There seems to be a magic difference in the effect between 995 and 996
359  * but little difference between 900 and 995 ... no idea why.
360  *
361  * There is now a default set of tuning parameters which is set, depending
362  * on whether or not the user enables Jumbo frames. It's assumed that if
363  * Jumbo frames are enabled, the user wants optimal tuning for that case.
364  */
365 #define DEF_TX_COAL		400 /* 996 */
366 #define DEF_TX_MAX_DESC		60  /* was 40 */
367 #define DEF_RX_COAL		120 /* 1000 */
368 #define DEF_RX_MAX_DESC		25
369 #define DEF_TX_RATIO		21 /* 24 */
370 
371 #define DEF_JUMBO_TX_COAL	20
372 #define DEF_JUMBO_TX_MAX_DESC	60
373 #define DEF_JUMBO_RX_COAL	30
374 #define DEF_JUMBO_RX_MAX_DESC	6
375 #define DEF_JUMBO_TX_RATIO	21
376 
377 #if tigon2FwReleaseLocal < 20001118
378 /*
379  * Standard firmware and early modifications duplicate
380  * IRQ load without this flag (coal timer is never reset).
381  * Note that with this flag tx_coal should be less than
382  * time to xmit full tx ring.
383  * 400usec is not so bad for tx ring size of 128.
384  */
385 #define TX_COAL_INTS_ONLY	1	/* worth it */
386 #else
387 /*
388  * With modified firmware, this is not necessary, but still useful.
389  */
390 #define TX_COAL_INTS_ONLY	1
391 #endif
392 
393 #define DEF_TRACE		0
394 #define DEF_STAT		(2 * TICKS_PER_SEC)
395 
396 
397 static int link_state[ACE_MAX_MOD_PARMS];
398 static int trace[ACE_MAX_MOD_PARMS];
399 static int tx_coal_tick[ACE_MAX_MOD_PARMS];
400 static int rx_coal_tick[ACE_MAX_MOD_PARMS];
401 static int max_tx_desc[ACE_MAX_MOD_PARMS];
402 static int max_rx_desc[ACE_MAX_MOD_PARMS];
403 static int tx_ratio[ACE_MAX_MOD_PARMS];
404 static int dis_pci_mem_inval[ACE_MAX_MOD_PARMS] = {1, 1, 1, 1, 1, 1, 1, 1};
405 
406 MODULE_AUTHOR("Jes Sorensen <jes@trained-monkey.org>");
407 MODULE_LICENSE("GPL");
408 MODULE_DESCRIPTION("AceNIC/3C985/GA620 Gigabit Ethernet driver");
409 #ifndef CONFIG_ACENIC_OMIT_TIGON_I
410 MODULE_FIRMWARE("acenic/tg1.bin");
411 #endif
412 MODULE_FIRMWARE("acenic/tg2.bin");
413 
414 module_param_array_named(link, link_state, int, NULL, 0);
415 module_param_array(trace, int, NULL, 0);
416 module_param_array(tx_coal_tick, int, NULL, 0);
417 module_param_array(max_tx_desc, int, NULL, 0);
418 module_param_array(rx_coal_tick, int, NULL, 0);
419 module_param_array(max_rx_desc, int, NULL, 0);
420 module_param_array(tx_ratio, int, NULL, 0);
421 MODULE_PARM_DESC(link, "AceNIC/3C985/NetGear link state");
422 MODULE_PARM_DESC(trace, "AceNIC/3C985/NetGear firmware trace level");
423 MODULE_PARM_DESC(tx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first tx descriptor arrives");
424 MODULE_PARM_DESC(max_tx_desc, "AceNIC/3C985/GA620 max number of transmit descriptors to wait");
425 MODULE_PARM_DESC(rx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first rx descriptor arrives");
426 MODULE_PARM_DESC(max_rx_desc, "AceNIC/3C985/GA620 max number of receive descriptors to wait");
427 MODULE_PARM_DESC(tx_ratio, "AceNIC/3C985/GA620 ratio of NIC memory used for TX/RX descriptors (range 0-63)");
428 
429 
430 static const char version[] __devinitconst =
431   "acenic.c: v0.92 08/05/2002  Jes Sorensen, linux-acenic@SunSITE.dk\n"
432   "                            http://home.cern.ch/~jes/gige/acenic.html\n";
433 
434 static int ace_get_settings(struct net_device *, struct ethtool_cmd *);
435 static int ace_set_settings(struct net_device *, struct ethtool_cmd *);
436 static void ace_get_drvinfo(struct net_device *, struct ethtool_drvinfo *);
437 
438 static const struct ethtool_ops ace_ethtool_ops = {
439 	.get_settings = ace_get_settings,
440 	.set_settings = ace_set_settings,
441 	.get_drvinfo = ace_get_drvinfo,
442 };
443 
444 static void ace_watchdog(struct net_device *dev);
445 
446 static const struct net_device_ops ace_netdev_ops = {
447 	.ndo_open		= ace_open,
448 	.ndo_stop		= ace_close,
449 	.ndo_tx_timeout		= ace_watchdog,
450 	.ndo_get_stats		= ace_get_stats,
451 	.ndo_start_xmit		= ace_start_xmit,
452 	.ndo_set_rx_mode	= ace_set_multicast_list,
453 	.ndo_validate_addr	= eth_validate_addr,
454 	.ndo_set_mac_address	= ace_set_mac_addr,
455 	.ndo_change_mtu		= ace_change_mtu,
456 };
457 
458 static int __devinit acenic_probe_one(struct pci_dev *pdev,
459 		const struct pci_device_id *id)
460 {
461 	struct net_device *dev;
462 	struct ace_private *ap;
463 	static int boards_found;
464 
465 	dev = alloc_etherdev(sizeof(struct ace_private));
466 	if (dev == NULL) {
467 		printk(KERN_ERR "acenic: Unable to allocate "
468 		       "net_device structure!\n");
469 		return -ENOMEM;
470 	}
471 
472 	SET_NETDEV_DEV(dev, &pdev->dev);
473 
474 	ap = netdev_priv(dev);
475 	ap->pdev = pdev;
476 	ap->name = pci_name(pdev);
477 
478 	dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
479 	dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX;
480 
481 	dev->watchdog_timeo = 5*HZ;
482 
483 	dev->netdev_ops = &ace_netdev_ops;
484 	SET_ETHTOOL_OPS(dev, &ace_ethtool_ops);
485 
486 	/* we only display this string ONCE */
487 	if (!boards_found)
488 		printk(version);
489 
490 	if (pci_enable_device(pdev))
491 		goto fail_free_netdev;
492 
493 	/*
494 	 * Enable master mode before we start playing with the
495 	 * pci_command word since pci_set_master() will modify
496 	 * it.
497 	 */
498 	pci_set_master(pdev);
499 
500 	pci_read_config_word(pdev, PCI_COMMAND, &ap->pci_command);
501 
502 	/* OpenFirmware on Mac's does not set this - DOH.. */
503 	if (!(ap->pci_command & PCI_COMMAND_MEMORY)) {
504 		printk(KERN_INFO "%s: Enabling PCI Memory Mapped "
505 		       "access - was not enabled by BIOS/Firmware\n",
506 		       ap->name);
507 		ap->pci_command = ap->pci_command | PCI_COMMAND_MEMORY;
508 		pci_write_config_word(ap->pdev, PCI_COMMAND,
509 				      ap->pci_command);
510 		wmb();
511 	}
512 
513 	pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &ap->pci_latency);
514 	if (ap->pci_latency <= 0x40) {
515 		ap->pci_latency = 0x40;
516 		pci_write_config_byte(pdev, PCI_LATENCY_TIMER, ap->pci_latency);
517 	}
518 
519 	/*
520 	 * Remap the regs into kernel space - this is abuse of
521 	 * dev->base_addr since it was means for I/O port
522 	 * addresses but who gives a damn.
523 	 */
524 	dev->base_addr = pci_resource_start(pdev, 0);
525 	ap->regs = ioremap(dev->base_addr, 0x4000);
526 	if (!ap->regs) {
527 		printk(KERN_ERR "%s:  Unable to map I/O register, "
528 		       "AceNIC %i will be disabled.\n",
529 		       ap->name, boards_found);
530 		goto fail_free_netdev;
531 	}
532 
533 	switch(pdev->vendor) {
534 	case PCI_VENDOR_ID_ALTEON:
535 		if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9100T) {
536 			printk(KERN_INFO "%s: Farallon PN9100-T ",
537 			       ap->name);
538 		} else {
539 			printk(KERN_INFO "%s: Alteon AceNIC ",
540 			       ap->name);
541 		}
542 		break;
543 	case PCI_VENDOR_ID_3COM:
544 		printk(KERN_INFO "%s: 3Com 3C985 ", ap->name);
545 		break;
546 	case PCI_VENDOR_ID_NETGEAR:
547 		printk(KERN_INFO "%s: NetGear GA620 ", ap->name);
548 		break;
549 	case PCI_VENDOR_ID_DEC:
550 		if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9000SX) {
551 			printk(KERN_INFO "%s: Farallon PN9000-SX ",
552 			       ap->name);
553 			break;
554 		}
555 	case PCI_VENDOR_ID_SGI:
556 		printk(KERN_INFO "%s: SGI AceNIC ", ap->name);
557 		break;
558 	default:
559 		printk(KERN_INFO "%s: Unknown AceNIC ", ap->name);
560 		break;
561 	}
562 
563 	printk("Gigabit Ethernet at 0x%08lx, ", dev->base_addr);
564 	printk("irq %d\n", pdev->irq);
565 
566 #ifdef CONFIG_ACENIC_OMIT_TIGON_I
567 	if ((readl(&ap->regs->HostCtrl) >> 28) == 4) {
568 		printk(KERN_ERR "%s: Driver compiled without Tigon I"
569 		       " support - NIC disabled\n", dev->name);
570 		goto fail_uninit;
571 	}
572 #endif
573 
574 	if (ace_allocate_descriptors(dev))
575 		goto fail_free_netdev;
576 
577 #ifdef MODULE
578 	if (boards_found >= ACE_MAX_MOD_PARMS)
579 		ap->board_idx = BOARD_IDX_OVERFLOW;
580 	else
581 		ap->board_idx = boards_found;
582 #else
583 	ap->board_idx = BOARD_IDX_STATIC;
584 #endif
585 
586 	if (ace_init(dev))
587 		goto fail_free_netdev;
588 
589 	if (register_netdev(dev)) {
590 		printk(KERN_ERR "acenic: device registration failed\n");
591 		goto fail_uninit;
592 	}
593 	ap->name = dev->name;
594 
595 	if (ap->pci_using_dac)
596 		dev->features |= NETIF_F_HIGHDMA;
597 
598 	pci_set_drvdata(pdev, dev);
599 
600 	boards_found++;
601 	return 0;
602 
603  fail_uninit:
604 	ace_init_cleanup(dev);
605  fail_free_netdev:
606 	free_netdev(dev);
607 	return -ENODEV;
608 }
609 
610 static void __devexit acenic_remove_one(struct pci_dev *pdev)
611 {
612 	struct net_device *dev = pci_get_drvdata(pdev);
613 	struct ace_private *ap = netdev_priv(dev);
614 	struct ace_regs __iomem *regs = ap->regs;
615 	short i;
616 
617 	unregister_netdev(dev);
618 
619 	writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
620 	if (ap->version >= 2)
621 		writel(readl(&regs->CpuBCtrl) | CPU_HALT, &regs->CpuBCtrl);
622 
623 	/*
624 	 * This clears any pending interrupts
625 	 */
626 	writel(1, &regs->Mb0Lo);
627 	readl(&regs->CpuCtrl);	/* flush */
628 
629 	/*
630 	 * Make sure no other CPUs are processing interrupts
631 	 * on the card before the buffers are being released.
632 	 * Otherwise one might experience some `interesting'
633 	 * effects.
634 	 *
635 	 * Then release the RX buffers - jumbo buffers were
636 	 * already released in ace_close().
637 	 */
638 	ace_sync_irq(dev->irq);
639 
640 	for (i = 0; i < RX_STD_RING_ENTRIES; i++) {
641 		struct sk_buff *skb = ap->skb->rx_std_skbuff[i].skb;
642 
643 		if (skb) {
644 			struct ring_info *ringp;
645 			dma_addr_t mapping;
646 
647 			ringp = &ap->skb->rx_std_skbuff[i];
648 			mapping = dma_unmap_addr(ringp, mapping);
649 			pci_unmap_page(ap->pdev, mapping,
650 				       ACE_STD_BUFSIZE,
651 				       PCI_DMA_FROMDEVICE);
652 
653 			ap->rx_std_ring[i].size = 0;
654 			ap->skb->rx_std_skbuff[i].skb = NULL;
655 			dev_kfree_skb(skb);
656 		}
657 	}
658 
659 	if (ap->version >= 2) {
660 		for (i = 0; i < RX_MINI_RING_ENTRIES; i++) {
661 			struct sk_buff *skb = ap->skb->rx_mini_skbuff[i].skb;
662 
663 			if (skb) {
664 				struct ring_info *ringp;
665 				dma_addr_t mapping;
666 
667 				ringp = &ap->skb->rx_mini_skbuff[i];
668 				mapping = dma_unmap_addr(ringp,mapping);
669 				pci_unmap_page(ap->pdev, mapping,
670 					       ACE_MINI_BUFSIZE,
671 					       PCI_DMA_FROMDEVICE);
672 
673 				ap->rx_mini_ring[i].size = 0;
674 				ap->skb->rx_mini_skbuff[i].skb = NULL;
675 				dev_kfree_skb(skb);
676 			}
677 		}
678 	}
679 
680 	for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
681 		struct sk_buff *skb = ap->skb->rx_jumbo_skbuff[i].skb;
682 		if (skb) {
683 			struct ring_info *ringp;
684 			dma_addr_t mapping;
685 
686 			ringp = &ap->skb->rx_jumbo_skbuff[i];
687 			mapping = dma_unmap_addr(ringp, mapping);
688 			pci_unmap_page(ap->pdev, mapping,
689 				       ACE_JUMBO_BUFSIZE,
690 				       PCI_DMA_FROMDEVICE);
691 
692 			ap->rx_jumbo_ring[i].size = 0;
693 			ap->skb->rx_jumbo_skbuff[i].skb = NULL;
694 			dev_kfree_skb(skb);
695 		}
696 	}
697 
698 	ace_init_cleanup(dev);
699 	free_netdev(dev);
700 }
701 
702 static struct pci_driver acenic_pci_driver = {
703 	.name		= "acenic",
704 	.id_table	= acenic_pci_tbl,
705 	.probe		= acenic_probe_one,
706 	.remove		= __devexit_p(acenic_remove_one),
707 };
708 
709 static int __init acenic_init(void)
710 {
711 	return pci_register_driver(&acenic_pci_driver);
712 }
713 
714 static void __exit acenic_exit(void)
715 {
716 	pci_unregister_driver(&acenic_pci_driver);
717 }
718 
719 module_init(acenic_init);
720 module_exit(acenic_exit);
721 
722 static void ace_free_descriptors(struct net_device *dev)
723 {
724 	struct ace_private *ap = netdev_priv(dev);
725 	int size;
726 
727 	if (ap->rx_std_ring != NULL) {
728 		size = (sizeof(struct rx_desc) *
729 			(RX_STD_RING_ENTRIES +
730 			 RX_JUMBO_RING_ENTRIES +
731 			 RX_MINI_RING_ENTRIES +
732 			 RX_RETURN_RING_ENTRIES));
733 		pci_free_consistent(ap->pdev, size, ap->rx_std_ring,
734 				    ap->rx_ring_base_dma);
735 		ap->rx_std_ring = NULL;
736 		ap->rx_jumbo_ring = NULL;
737 		ap->rx_mini_ring = NULL;
738 		ap->rx_return_ring = NULL;
739 	}
740 	if (ap->evt_ring != NULL) {
741 		size = (sizeof(struct event) * EVT_RING_ENTRIES);
742 		pci_free_consistent(ap->pdev, size, ap->evt_ring,
743 				    ap->evt_ring_dma);
744 		ap->evt_ring = NULL;
745 	}
746 	if (ap->tx_ring != NULL && !ACE_IS_TIGON_I(ap)) {
747 		size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
748 		pci_free_consistent(ap->pdev, size, ap->tx_ring,
749 				    ap->tx_ring_dma);
750 	}
751 	ap->tx_ring = NULL;
752 
753 	if (ap->evt_prd != NULL) {
754 		pci_free_consistent(ap->pdev, sizeof(u32),
755 				    (void *)ap->evt_prd, ap->evt_prd_dma);
756 		ap->evt_prd = NULL;
757 	}
758 	if (ap->rx_ret_prd != NULL) {
759 		pci_free_consistent(ap->pdev, sizeof(u32),
760 				    (void *)ap->rx_ret_prd,
761 				    ap->rx_ret_prd_dma);
762 		ap->rx_ret_prd = NULL;
763 	}
764 	if (ap->tx_csm != NULL) {
765 		pci_free_consistent(ap->pdev, sizeof(u32),
766 				    (void *)ap->tx_csm, ap->tx_csm_dma);
767 		ap->tx_csm = NULL;
768 	}
769 }
770 
771 
772 static int ace_allocate_descriptors(struct net_device *dev)
773 {
774 	struct ace_private *ap = netdev_priv(dev);
775 	int size;
776 
777 	size = (sizeof(struct rx_desc) *
778 		(RX_STD_RING_ENTRIES +
779 		 RX_JUMBO_RING_ENTRIES +
780 		 RX_MINI_RING_ENTRIES +
781 		 RX_RETURN_RING_ENTRIES));
782 
783 	ap->rx_std_ring = pci_alloc_consistent(ap->pdev, size,
784 					       &ap->rx_ring_base_dma);
785 	if (ap->rx_std_ring == NULL)
786 		goto fail;
787 
788 	ap->rx_jumbo_ring = ap->rx_std_ring + RX_STD_RING_ENTRIES;
789 	ap->rx_mini_ring = ap->rx_jumbo_ring + RX_JUMBO_RING_ENTRIES;
790 	ap->rx_return_ring = ap->rx_mini_ring + RX_MINI_RING_ENTRIES;
791 
792 	size = (sizeof(struct event) * EVT_RING_ENTRIES);
793 
794 	ap->evt_ring = pci_alloc_consistent(ap->pdev, size, &ap->evt_ring_dma);
795 
796 	if (ap->evt_ring == NULL)
797 		goto fail;
798 
799 	/*
800 	 * Only allocate a host TX ring for the Tigon II, the Tigon I
801 	 * has to use PCI registers for this ;-(
802 	 */
803 	if (!ACE_IS_TIGON_I(ap)) {
804 		size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
805 
806 		ap->tx_ring = pci_alloc_consistent(ap->pdev, size,
807 						   &ap->tx_ring_dma);
808 
809 		if (ap->tx_ring == NULL)
810 			goto fail;
811 	}
812 
813 	ap->evt_prd = pci_alloc_consistent(ap->pdev, sizeof(u32),
814 					   &ap->evt_prd_dma);
815 	if (ap->evt_prd == NULL)
816 		goto fail;
817 
818 	ap->rx_ret_prd = pci_alloc_consistent(ap->pdev, sizeof(u32),
819 					      &ap->rx_ret_prd_dma);
820 	if (ap->rx_ret_prd == NULL)
821 		goto fail;
822 
823 	ap->tx_csm = pci_alloc_consistent(ap->pdev, sizeof(u32),
824 					  &ap->tx_csm_dma);
825 	if (ap->tx_csm == NULL)
826 		goto fail;
827 
828 	return 0;
829 
830 fail:
831 	/* Clean up. */
832 	ace_init_cleanup(dev);
833 	return 1;
834 }
835 
836 
837 /*
838  * Generic cleanup handling data allocated during init. Used when the
839  * module is unloaded or if an error occurs during initialization
840  */
841 static void ace_init_cleanup(struct net_device *dev)
842 {
843 	struct ace_private *ap;
844 
845 	ap = netdev_priv(dev);
846 
847 	ace_free_descriptors(dev);
848 
849 	if (ap->info)
850 		pci_free_consistent(ap->pdev, sizeof(struct ace_info),
851 				    ap->info, ap->info_dma);
852 	kfree(ap->skb);
853 	kfree(ap->trace_buf);
854 
855 	if (dev->irq)
856 		free_irq(dev->irq, dev);
857 
858 	iounmap(ap->regs);
859 }
860 
861 
862 /*
863  * Commands are considered to be slow.
864  */
865 static inline void ace_issue_cmd(struct ace_regs __iomem *regs, struct cmd *cmd)
866 {
867 	u32 idx;
868 
869 	idx = readl(&regs->CmdPrd);
870 
871 	writel(*(u32 *)(cmd), &regs->CmdRng[idx]);
872 	idx = (idx + 1) % CMD_RING_ENTRIES;
873 
874 	writel(idx, &regs->CmdPrd);
875 }
876 
877 
878 static int __devinit ace_init(struct net_device *dev)
879 {
880 	struct ace_private *ap;
881 	struct ace_regs __iomem *regs;
882 	struct ace_info *info = NULL;
883 	struct pci_dev *pdev;
884 	unsigned long myjif;
885 	u64 tmp_ptr;
886 	u32 tig_ver, mac1, mac2, tmp, pci_state;
887 	int board_idx, ecode = 0;
888 	short i;
889 	unsigned char cache_size;
890 
891 	ap = netdev_priv(dev);
892 	regs = ap->regs;
893 
894 	board_idx = ap->board_idx;
895 
896 	/*
897 	 * aman@sgi.com - its useful to do a NIC reset here to
898 	 * address the `Firmware not running' problem subsequent
899 	 * to any crashes involving the NIC
900 	 */
901 	writel(HW_RESET | (HW_RESET << 24), &regs->HostCtrl);
902 	readl(&regs->HostCtrl);		/* PCI write posting */
903 	udelay(5);
904 
905 	/*
906 	 * Don't access any other registers before this point!
907 	 */
908 #ifdef __BIG_ENDIAN
909 	/*
910 	 * This will most likely need BYTE_SWAP once we switch
911 	 * to using __raw_writel()
912 	 */
913 	writel((WORD_SWAP | CLR_INT | ((WORD_SWAP | CLR_INT) << 24)),
914 	       &regs->HostCtrl);
915 #else
916 	writel((CLR_INT | WORD_SWAP | ((CLR_INT | WORD_SWAP) << 24)),
917 	       &regs->HostCtrl);
918 #endif
919 	readl(&regs->HostCtrl);		/* PCI write posting */
920 
921 	/*
922 	 * Stop the NIC CPU and clear pending interrupts
923 	 */
924 	writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
925 	readl(&regs->CpuCtrl);		/* PCI write posting */
926 	writel(0, &regs->Mb0Lo);
927 
928 	tig_ver = readl(&regs->HostCtrl) >> 28;
929 
930 	switch(tig_ver){
931 #ifndef CONFIG_ACENIC_OMIT_TIGON_I
932 	case 4:
933 	case 5:
934 		printk(KERN_INFO "  Tigon I  (Rev. %i), Firmware: %i.%i.%i, ",
935 		       tig_ver, ap->firmware_major, ap->firmware_minor,
936 		       ap->firmware_fix);
937 		writel(0, &regs->LocalCtrl);
938 		ap->version = 1;
939 		ap->tx_ring_entries = TIGON_I_TX_RING_ENTRIES;
940 		break;
941 #endif
942 	case 6:
943 		printk(KERN_INFO "  Tigon II (Rev. %i), Firmware: %i.%i.%i, ",
944 		       tig_ver, ap->firmware_major, ap->firmware_minor,
945 		       ap->firmware_fix);
946 		writel(readl(&regs->CpuBCtrl) | CPU_HALT, &regs->CpuBCtrl);
947 		readl(&regs->CpuBCtrl);		/* PCI write posting */
948 		/*
949 		 * The SRAM bank size does _not_ indicate the amount
950 		 * of memory on the card, it controls the _bank_ size!
951 		 * Ie. a 1MB AceNIC will have two banks of 512KB.
952 		 */
953 		writel(SRAM_BANK_512K, &regs->LocalCtrl);
954 		writel(SYNC_SRAM_TIMING, &regs->MiscCfg);
955 		ap->version = 2;
956 		ap->tx_ring_entries = MAX_TX_RING_ENTRIES;
957 		break;
958 	default:
959 		printk(KERN_WARNING "  Unsupported Tigon version detected "
960 		       "(%i)\n", tig_ver);
961 		ecode = -ENODEV;
962 		goto init_error;
963 	}
964 
965 	/*
966 	 * ModeStat _must_ be set after the SRAM settings as this change
967 	 * seems to corrupt the ModeStat and possible other registers.
968 	 * The SRAM settings survive resets and setting it to the same
969 	 * value a second time works as well. This is what caused the
970 	 * `Firmware not running' problem on the Tigon II.
971 	 */
972 #ifdef __BIG_ENDIAN
973 	writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | ACE_BYTE_SWAP_BD |
974 	       ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, &regs->ModeStat);
975 #else
976 	writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL |
977 	       ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, &regs->ModeStat);
978 #endif
979 	readl(&regs->ModeStat);		/* PCI write posting */
980 
981 	mac1 = 0;
982 	for(i = 0; i < 4; i++) {
983 		int t;
984 
985 		mac1 = mac1 << 8;
986 		t = read_eeprom_byte(dev, 0x8c+i);
987 		if (t < 0) {
988 			ecode = -EIO;
989 			goto init_error;
990 		} else
991 			mac1 |= (t & 0xff);
992 	}
993 	mac2 = 0;
994 	for(i = 4; i < 8; i++) {
995 		int t;
996 
997 		mac2 = mac2 << 8;
998 		t = read_eeprom_byte(dev, 0x8c+i);
999 		if (t < 0) {
1000 			ecode = -EIO;
1001 			goto init_error;
1002 		} else
1003 			mac2 |= (t & 0xff);
1004 	}
1005 
1006 	writel(mac1, &regs->MacAddrHi);
1007 	writel(mac2, &regs->MacAddrLo);
1008 
1009 	dev->dev_addr[0] = (mac1 >> 8) & 0xff;
1010 	dev->dev_addr[1] = mac1 & 0xff;
1011 	dev->dev_addr[2] = (mac2 >> 24) & 0xff;
1012 	dev->dev_addr[3] = (mac2 >> 16) & 0xff;
1013 	dev->dev_addr[4] = (mac2 >> 8) & 0xff;
1014 	dev->dev_addr[5] = mac2 & 0xff;
1015 
1016 	printk("MAC: %pM\n", dev->dev_addr);
1017 
1018 	/*
1019 	 * Looks like this is necessary to deal with on all architectures,
1020 	 * even this %$#%$# N440BX Intel based thing doesn't get it right.
1021 	 * Ie. having two NICs in the machine, one will have the cache
1022 	 * line set at boot time, the other will not.
1023 	 */
1024 	pdev = ap->pdev;
1025 	pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache_size);
1026 	cache_size <<= 2;
1027 	if (cache_size != SMP_CACHE_BYTES) {
1028 		printk(KERN_INFO "  PCI cache line size set incorrectly "
1029 		       "(%i bytes) by BIOS/FW, ", cache_size);
1030 		if (cache_size > SMP_CACHE_BYTES)
1031 			printk("expecting %i\n", SMP_CACHE_BYTES);
1032 		else {
1033 			printk("correcting to %i\n", SMP_CACHE_BYTES);
1034 			pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
1035 					      SMP_CACHE_BYTES >> 2);
1036 		}
1037 	}
1038 
1039 	pci_state = readl(&regs->PciState);
1040 	printk(KERN_INFO "  PCI bus width: %i bits, speed: %iMHz, "
1041 	       "latency: %i clks\n",
1042 	       	(pci_state & PCI_32BIT) ? 32 : 64,
1043 		(pci_state & PCI_66MHZ) ? 66 : 33,
1044 		ap->pci_latency);
1045 
1046 	/*
1047 	 * Set the max DMA transfer size. Seems that for most systems
1048 	 * the performance is better when no MAX parameter is
1049 	 * set. However for systems enabling PCI write and invalidate,
1050 	 * DMA writes must be set to the L1 cache line size to get
1051 	 * optimal performance.
1052 	 *
1053 	 * The default is now to turn the PCI write and invalidate off
1054 	 * - that is what Alteon does for NT.
1055 	 */
1056 	tmp = READ_CMD_MEM | WRITE_CMD_MEM;
1057 	if (ap->version >= 2) {
1058 		tmp |= (MEM_READ_MULTIPLE | (pci_state & PCI_66MHZ));
1059 		/*
1060 		 * Tuning parameters only supported for 8 cards
1061 		 */
1062 		if (board_idx == BOARD_IDX_OVERFLOW ||
1063 		    dis_pci_mem_inval[board_idx]) {
1064 			if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
1065 				ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
1066 				pci_write_config_word(pdev, PCI_COMMAND,
1067 						      ap->pci_command);
1068 				printk(KERN_INFO "  Disabling PCI memory "
1069 				       "write and invalidate\n");
1070 			}
1071 		} else if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
1072 			printk(KERN_INFO "  PCI memory write & invalidate "
1073 			       "enabled by BIOS, enabling counter measures\n");
1074 
1075 			switch(SMP_CACHE_BYTES) {
1076 			case 16:
1077 				tmp |= DMA_WRITE_MAX_16;
1078 				break;
1079 			case 32:
1080 				tmp |= DMA_WRITE_MAX_32;
1081 				break;
1082 			case 64:
1083 				tmp |= DMA_WRITE_MAX_64;
1084 				break;
1085 			case 128:
1086 				tmp |= DMA_WRITE_MAX_128;
1087 				break;
1088 			default:
1089 				printk(KERN_INFO "  Cache line size %i not "
1090 				       "supported, PCI write and invalidate "
1091 				       "disabled\n", SMP_CACHE_BYTES);
1092 				ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
1093 				pci_write_config_word(pdev, PCI_COMMAND,
1094 						      ap->pci_command);
1095 			}
1096 		}
1097 	}
1098 
1099 #ifdef __sparc__
1100 	/*
1101 	 * On this platform, we know what the best dma settings
1102 	 * are.  We use 64-byte maximum bursts, because if we
1103 	 * burst larger than the cache line size (or even cross
1104 	 * a 64byte boundary in a single burst) the UltraSparc
1105 	 * PCI controller will disconnect at 64-byte multiples.
1106 	 *
1107 	 * Read-multiple will be properly enabled above, and when
1108 	 * set will give the PCI controller proper hints about
1109 	 * prefetching.
1110 	 */
1111 	tmp &= ~DMA_READ_WRITE_MASK;
1112 	tmp |= DMA_READ_MAX_64;
1113 	tmp |= DMA_WRITE_MAX_64;
1114 #endif
1115 #ifdef __alpha__
1116 	tmp &= ~DMA_READ_WRITE_MASK;
1117 	tmp |= DMA_READ_MAX_128;
1118 	/*
1119 	 * All the docs say MUST NOT. Well, I did.
1120 	 * Nothing terrible happens, if we load wrong size.
1121 	 * Bit w&i still works better!
1122 	 */
1123 	tmp |= DMA_WRITE_MAX_128;
1124 #endif
1125 	writel(tmp, &regs->PciState);
1126 
1127 #if 0
1128 	/*
1129 	 * The Host PCI bus controller driver has to set FBB.
1130 	 * If all devices on that PCI bus support FBB, then the controller
1131 	 * can enable FBB support in the Host PCI Bus controller (or on
1132 	 * the PCI-PCI bridge if that applies).
1133 	 * -ggg
1134 	 */
1135 	/*
1136 	 * I have received reports from people having problems when this
1137 	 * bit is enabled.
1138 	 */
1139 	if (!(ap->pci_command & PCI_COMMAND_FAST_BACK)) {
1140 		printk(KERN_INFO "  Enabling PCI Fast Back to Back\n");
1141 		ap->pci_command |= PCI_COMMAND_FAST_BACK;
1142 		pci_write_config_word(pdev, PCI_COMMAND, ap->pci_command);
1143 	}
1144 #endif
1145 
1146 	/*
1147 	 * Configure DMA attributes.
1148 	 */
1149 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
1150 		ap->pci_using_dac = 1;
1151 	} else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
1152 		ap->pci_using_dac = 0;
1153 	} else {
1154 		ecode = -ENODEV;
1155 		goto init_error;
1156 	}
1157 
1158 	/*
1159 	 * Initialize the generic info block and the command+event rings
1160 	 * and the control blocks for the transmit and receive rings
1161 	 * as they need to be setup once and for all.
1162 	 */
1163 	if (!(info = pci_alloc_consistent(ap->pdev, sizeof(struct ace_info),
1164 					  &ap->info_dma))) {
1165 		ecode = -EAGAIN;
1166 		goto init_error;
1167 	}
1168 	ap->info = info;
1169 
1170 	/*
1171 	 * Get the memory for the skb rings.
1172 	 */
1173 	if (!(ap->skb = kmalloc(sizeof(struct ace_skb), GFP_KERNEL))) {
1174 		ecode = -EAGAIN;
1175 		goto init_error;
1176 	}
1177 
1178 	ecode = request_irq(pdev->irq, ace_interrupt, IRQF_SHARED,
1179 			    DRV_NAME, dev);
1180 	if (ecode) {
1181 		printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1182 		       DRV_NAME, pdev->irq);
1183 		goto init_error;
1184 	} else
1185 		dev->irq = pdev->irq;
1186 
1187 #ifdef INDEX_DEBUG
1188 	spin_lock_init(&ap->debug_lock);
1189 	ap->last_tx = ACE_TX_RING_ENTRIES(ap) - 1;
1190 	ap->last_std_rx = 0;
1191 	ap->last_mini_rx = 0;
1192 #endif
1193 
1194 	memset(ap->info, 0, sizeof(struct ace_info));
1195 	memset(ap->skb, 0, sizeof(struct ace_skb));
1196 
1197 	ecode = ace_load_firmware(dev);
1198 	if (ecode)
1199 		goto init_error;
1200 
1201 	ap->fw_running = 0;
1202 
1203 	tmp_ptr = ap->info_dma;
1204 	writel(tmp_ptr >> 32, &regs->InfoPtrHi);
1205 	writel(tmp_ptr & 0xffffffff, &regs->InfoPtrLo);
1206 
1207 	memset(ap->evt_ring, 0, EVT_RING_ENTRIES * sizeof(struct event));
1208 
1209 	set_aceaddr(&info->evt_ctrl.rngptr, ap->evt_ring_dma);
1210 	info->evt_ctrl.flags = 0;
1211 
1212 	*(ap->evt_prd) = 0;
1213 	wmb();
1214 	set_aceaddr(&info->evt_prd_ptr, ap->evt_prd_dma);
1215 	writel(0, &regs->EvtCsm);
1216 
1217 	set_aceaddr(&info->cmd_ctrl.rngptr, 0x100);
1218 	info->cmd_ctrl.flags = 0;
1219 	info->cmd_ctrl.max_len = 0;
1220 
1221 	for (i = 0; i < CMD_RING_ENTRIES; i++)
1222 		writel(0, &regs->CmdRng[i]);
1223 
1224 	writel(0, &regs->CmdPrd);
1225 	writel(0, &regs->CmdCsm);
1226 
1227 	tmp_ptr = ap->info_dma;
1228 	tmp_ptr += (unsigned long) &(((struct ace_info *)0)->s.stats);
1229 	set_aceaddr(&info->stats2_ptr, (dma_addr_t) tmp_ptr);
1230 
1231 	set_aceaddr(&info->rx_std_ctrl.rngptr, ap->rx_ring_base_dma);
1232 	info->rx_std_ctrl.max_len = ACE_STD_BUFSIZE;
1233 	info->rx_std_ctrl.flags =
1234 	  RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST;
1235 
1236 	memset(ap->rx_std_ring, 0,
1237 	       RX_STD_RING_ENTRIES * sizeof(struct rx_desc));
1238 
1239 	for (i = 0; i < RX_STD_RING_ENTRIES; i++)
1240 		ap->rx_std_ring[i].flags = BD_FLG_TCP_UDP_SUM;
1241 
1242 	ap->rx_std_skbprd = 0;
1243 	atomic_set(&ap->cur_rx_bufs, 0);
1244 
1245 	set_aceaddr(&info->rx_jumbo_ctrl.rngptr,
1246 		    (ap->rx_ring_base_dma +
1247 		     (sizeof(struct rx_desc) * RX_STD_RING_ENTRIES)));
1248 	info->rx_jumbo_ctrl.max_len = 0;
1249 	info->rx_jumbo_ctrl.flags =
1250 	  RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST;
1251 
1252 	memset(ap->rx_jumbo_ring, 0,
1253 	       RX_JUMBO_RING_ENTRIES * sizeof(struct rx_desc));
1254 
1255 	for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++)
1256 		ap->rx_jumbo_ring[i].flags = BD_FLG_TCP_UDP_SUM | BD_FLG_JUMBO;
1257 
1258 	ap->rx_jumbo_skbprd = 0;
1259 	atomic_set(&ap->cur_jumbo_bufs, 0);
1260 
1261 	memset(ap->rx_mini_ring, 0,
1262 	       RX_MINI_RING_ENTRIES * sizeof(struct rx_desc));
1263 
1264 	if (ap->version >= 2) {
1265 		set_aceaddr(&info->rx_mini_ctrl.rngptr,
1266 			    (ap->rx_ring_base_dma +
1267 			     (sizeof(struct rx_desc) *
1268 			      (RX_STD_RING_ENTRIES +
1269 			       RX_JUMBO_RING_ENTRIES))));
1270 		info->rx_mini_ctrl.max_len = ACE_MINI_SIZE;
1271 		info->rx_mini_ctrl.flags =
1272 		  RCB_FLG_TCP_UDP_SUM|RCB_FLG_NO_PSEUDO_HDR|RCB_FLG_VLAN_ASSIST;
1273 
1274 		for (i = 0; i < RX_MINI_RING_ENTRIES; i++)
1275 			ap->rx_mini_ring[i].flags =
1276 				BD_FLG_TCP_UDP_SUM | BD_FLG_MINI;
1277 	} else {
1278 		set_aceaddr(&info->rx_mini_ctrl.rngptr, 0);
1279 		info->rx_mini_ctrl.flags = RCB_FLG_RNG_DISABLE;
1280 		info->rx_mini_ctrl.max_len = 0;
1281 	}
1282 
1283 	ap->rx_mini_skbprd = 0;
1284 	atomic_set(&ap->cur_mini_bufs, 0);
1285 
1286 	set_aceaddr(&info->rx_return_ctrl.rngptr,
1287 		    (ap->rx_ring_base_dma +
1288 		     (sizeof(struct rx_desc) *
1289 		      (RX_STD_RING_ENTRIES +
1290 		       RX_JUMBO_RING_ENTRIES +
1291 		       RX_MINI_RING_ENTRIES))));
1292 	info->rx_return_ctrl.flags = 0;
1293 	info->rx_return_ctrl.max_len = RX_RETURN_RING_ENTRIES;
1294 
1295 	memset(ap->rx_return_ring, 0,
1296 	       RX_RETURN_RING_ENTRIES * sizeof(struct rx_desc));
1297 
1298 	set_aceaddr(&info->rx_ret_prd_ptr, ap->rx_ret_prd_dma);
1299 	*(ap->rx_ret_prd) = 0;
1300 
1301 	writel(TX_RING_BASE, &regs->WinBase);
1302 
1303 	if (ACE_IS_TIGON_I(ap)) {
1304 		ap->tx_ring = (__force struct tx_desc *) regs->Window;
1305 		for (i = 0; i < (TIGON_I_TX_RING_ENTRIES
1306 				 * sizeof(struct tx_desc)) / sizeof(u32); i++)
1307 			writel(0, (__force void __iomem *)ap->tx_ring  + i * 4);
1308 
1309 		set_aceaddr(&info->tx_ctrl.rngptr, TX_RING_BASE);
1310 	} else {
1311 		memset(ap->tx_ring, 0,
1312 		       MAX_TX_RING_ENTRIES * sizeof(struct tx_desc));
1313 
1314 		set_aceaddr(&info->tx_ctrl.rngptr, ap->tx_ring_dma);
1315 	}
1316 
1317 	info->tx_ctrl.max_len = ACE_TX_RING_ENTRIES(ap);
1318 	tmp = RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST;
1319 
1320 	/*
1321 	 * The Tigon I does not like having the TX ring in host memory ;-(
1322 	 */
1323 	if (!ACE_IS_TIGON_I(ap))
1324 		tmp |= RCB_FLG_TX_HOST_RING;
1325 #if TX_COAL_INTS_ONLY
1326 	tmp |= RCB_FLG_COAL_INT_ONLY;
1327 #endif
1328 	info->tx_ctrl.flags = tmp;
1329 
1330 	set_aceaddr(&info->tx_csm_ptr, ap->tx_csm_dma);
1331 
1332 	/*
1333 	 * Potential item for tuning parameter
1334 	 */
1335 #if 0 /* NO */
1336 	writel(DMA_THRESH_16W, &regs->DmaReadCfg);
1337 	writel(DMA_THRESH_16W, &regs->DmaWriteCfg);
1338 #else
1339 	writel(DMA_THRESH_8W, &regs->DmaReadCfg);
1340 	writel(DMA_THRESH_8W, &regs->DmaWriteCfg);
1341 #endif
1342 
1343 	writel(0, &regs->MaskInt);
1344 	writel(1, &regs->IfIdx);
1345 #if 0
1346 	/*
1347 	 * McKinley boxes do not like us fiddling with AssistState
1348 	 * this early
1349 	 */
1350 	writel(1, &regs->AssistState);
1351 #endif
1352 
1353 	writel(DEF_STAT, &regs->TuneStatTicks);
1354 	writel(DEF_TRACE, &regs->TuneTrace);
1355 
1356 	ace_set_rxtx_parms(dev, 0);
1357 
1358 	if (board_idx == BOARD_IDX_OVERFLOW) {
1359 		printk(KERN_WARNING "%s: more than %i NICs detected, "
1360 		       "ignoring module parameters!\n",
1361 		       ap->name, ACE_MAX_MOD_PARMS);
1362 	} else if (board_idx >= 0) {
1363 		if (tx_coal_tick[board_idx])
1364 			writel(tx_coal_tick[board_idx],
1365 			       &regs->TuneTxCoalTicks);
1366 		if (max_tx_desc[board_idx])
1367 			writel(max_tx_desc[board_idx], &regs->TuneMaxTxDesc);
1368 
1369 		if (rx_coal_tick[board_idx])
1370 			writel(rx_coal_tick[board_idx],
1371 			       &regs->TuneRxCoalTicks);
1372 		if (max_rx_desc[board_idx])
1373 			writel(max_rx_desc[board_idx], &regs->TuneMaxRxDesc);
1374 
1375 		if (trace[board_idx])
1376 			writel(trace[board_idx], &regs->TuneTrace);
1377 
1378 		if ((tx_ratio[board_idx] > 0) && (tx_ratio[board_idx] < 64))
1379 			writel(tx_ratio[board_idx], &regs->TxBufRat);
1380 	}
1381 
1382 	/*
1383 	 * Default link parameters
1384 	 */
1385 	tmp = LNK_ENABLE | LNK_FULL_DUPLEX | LNK_1000MB | LNK_100MB |
1386 		LNK_10MB | LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL | LNK_NEGOTIATE;
1387 	if(ap->version >= 2)
1388 		tmp |= LNK_TX_FLOW_CTL_Y;
1389 
1390 	/*
1391 	 * Override link default parameters
1392 	 */
1393 	if ((board_idx >= 0) && link_state[board_idx]) {
1394 		int option = link_state[board_idx];
1395 
1396 		tmp = LNK_ENABLE;
1397 
1398 		if (option & 0x01) {
1399 			printk(KERN_INFO "%s: Setting half duplex link\n",
1400 			       ap->name);
1401 			tmp &= ~LNK_FULL_DUPLEX;
1402 		}
1403 		if (option & 0x02)
1404 			tmp &= ~LNK_NEGOTIATE;
1405 		if (option & 0x10)
1406 			tmp |= LNK_10MB;
1407 		if (option & 0x20)
1408 			tmp |= LNK_100MB;
1409 		if (option & 0x40)
1410 			tmp |= LNK_1000MB;
1411 		if ((option & 0x70) == 0) {
1412 			printk(KERN_WARNING "%s: No media speed specified, "
1413 			       "forcing auto negotiation\n", ap->name);
1414 			tmp |= LNK_NEGOTIATE | LNK_1000MB |
1415 				LNK_100MB | LNK_10MB;
1416 		}
1417 		if ((option & 0x100) == 0)
1418 			tmp |= LNK_NEG_FCTL;
1419 		else
1420 			printk(KERN_INFO "%s: Disabling flow control "
1421 			       "negotiation\n", ap->name);
1422 		if (option & 0x200)
1423 			tmp |= LNK_RX_FLOW_CTL_Y;
1424 		if ((option & 0x400) && (ap->version >= 2)) {
1425 			printk(KERN_INFO "%s: Enabling TX flow control\n",
1426 			       ap->name);
1427 			tmp |= LNK_TX_FLOW_CTL_Y;
1428 		}
1429 	}
1430 
1431 	ap->link = tmp;
1432 	writel(tmp, &regs->TuneLink);
1433 	if (ap->version >= 2)
1434 		writel(tmp, &regs->TuneFastLink);
1435 
1436 	writel(ap->firmware_start, &regs->Pc);
1437 
1438 	writel(0, &regs->Mb0Lo);
1439 
1440 	/*
1441 	 * Set tx_csm before we start receiving interrupts, otherwise
1442 	 * the interrupt handler might think it is supposed to process
1443 	 * tx ints before we are up and running, which may cause a null
1444 	 * pointer access in the int handler.
1445 	 */
1446 	ap->cur_rx = 0;
1447 	ap->tx_prd = *(ap->tx_csm) = ap->tx_ret_csm = 0;
1448 
1449 	wmb();
1450 	ace_set_txprd(regs, ap, 0);
1451 	writel(0, &regs->RxRetCsm);
1452 
1453        /*
1454 	* Enable DMA engine now.
1455 	* If we do this sooner, Mckinley box pukes.
1456 	* I assume it's because Tigon II DMA engine wants to check
1457 	* *something* even before the CPU is started.
1458 	*/
1459        writel(1, &regs->AssistState);  /* enable DMA */
1460 
1461 	/*
1462 	 * Start the NIC CPU
1463 	 */
1464 	writel(readl(&regs->CpuCtrl) & ~(CPU_HALT|CPU_TRACE), &regs->CpuCtrl);
1465 	readl(&regs->CpuCtrl);
1466 
1467 	/*
1468 	 * Wait for the firmware to spin up - max 3 seconds.
1469 	 */
1470 	myjif = jiffies + 3 * HZ;
1471 	while (time_before(jiffies, myjif) && !ap->fw_running)
1472 		cpu_relax();
1473 
1474 	if (!ap->fw_running) {
1475 		printk(KERN_ERR "%s: Firmware NOT running!\n", ap->name);
1476 
1477 		ace_dump_trace(ap);
1478 		writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
1479 		readl(&regs->CpuCtrl);
1480 
1481 		/* aman@sgi.com - account for badly behaving firmware/NIC:
1482 		 * - have observed that the NIC may continue to generate
1483 		 *   interrupts for some reason; attempt to stop it - halt
1484 		 *   second CPU for Tigon II cards, and also clear Mb0
1485 		 * - if we're a module, we'll fail to load if this was
1486 		 *   the only GbE card in the system => if the kernel does
1487 		 *   see an interrupt from the NIC, code to handle it is
1488 		 *   gone and OOps! - so free_irq also
1489 		 */
1490 		if (ap->version >= 2)
1491 			writel(readl(&regs->CpuBCtrl) | CPU_HALT,
1492 			       &regs->CpuBCtrl);
1493 		writel(0, &regs->Mb0Lo);
1494 		readl(&regs->Mb0Lo);
1495 
1496 		ecode = -EBUSY;
1497 		goto init_error;
1498 	}
1499 
1500 	/*
1501 	 * We load the ring here as there seem to be no way to tell the
1502 	 * firmware to wipe the ring without re-initializing it.
1503 	 */
1504 	if (!test_and_set_bit(0, &ap->std_refill_busy))
1505 		ace_load_std_rx_ring(dev, RX_RING_SIZE);
1506 	else
1507 		printk(KERN_ERR "%s: Someone is busy refilling the RX ring\n",
1508 		       ap->name);
1509 	if (ap->version >= 2) {
1510 		if (!test_and_set_bit(0, &ap->mini_refill_busy))
1511 			ace_load_mini_rx_ring(dev, RX_MINI_SIZE);
1512 		else
1513 			printk(KERN_ERR "%s: Someone is busy refilling "
1514 			       "the RX mini ring\n", ap->name);
1515 	}
1516 	return 0;
1517 
1518  init_error:
1519 	ace_init_cleanup(dev);
1520 	return ecode;
1521 }
1522 
1523 
1524 static void ace_set_rxtx_parms(struct net_device *dev, int jumbo)
1525 {
1526 	struct ace_private *ap = netdev_priv(dev);
1527 	struct ace_regs __iomem *regs = ap->regs;
1528 	int board_idx = ap->board_idx;
1529 
1530 	if (board_idx >= 0) {
1531 		if (!jumbo) {
1532 			if (!tx_coal_tick[board_idx])
1533 				writel(DEF_TX_COAL, &regs->TuneTxCoalTicks);
1534 			if (!max_tx_desc[board_idx])
1535 				writel(DEF_TX_MAX_DESC, &regs->TuneMaxTxDesc);
1536 			if (!rx_coal_tick[board_idx])
1537 				writel(DEF_RX_COAL, &regs->TuneRxCoalTicks);
1538 			if (!max_rx_desc[board_idx])
1539 				writel(DEF_RX_MAX_DESC, &regs->TuneMaxRxDesc);
1540 			if (!tx_ratio[board_idx])
1541 				writel(DEF_TX_RATIO, &regs->TxBufRat);
1542 		} else {
1543 			if (!tx_coal_tick[board_idx])
1544 				writel(DEF_JUMBO_TX_COAL,
1545 				       &regs->TuneTxCoalTicks);
1546 			if (!max_tx_desc[board_idx])
1547 				writel(DEF_JUMBO_TX_MAX_DESC,
1548 				       &regs->TuneMaxTxDesc);
1549 			if (!rx_coal_tick[board_idx])
1550 				writel(DEF_JUMBO_RX_COAL,
1551 				       &regs->TuneRxCoalTicks);
1552 			if (!max_rx_desc[board_idx])
1553 				writel(DEF_JUMBO_RX_MAX_DESC,
1554 				       &regs->TuneMaxRxDesc);
1555 			if (!tx_ratio[board_idx])
1556 				writel(DEF_JUMBO_TX_RATIO, &regs->TxBufRat);
1557 		}
1558 	}
1559 }
1560 
1561 
1562 static void ace_watchdog(struct net_device *data)
1563 {
1564 	struct net_device *dev = data;
1565 	struct ace_private *ap = netdev_priv(dev);
1566 	struct ace_regs __iomem *regs = ap->regs;
1567 
1568 	/*
1569 	 * We haven't received a stats update event for more than 2.5
1570 	 * seconds and there is data in the transmit queue, thus we
1571 	 * assume the card is stuck.
1572 	 */
1573 	if (*ap->tx_csm != ap->tx_ret_csm) {
1574 		printk(KERN_WARNING "%s: Transmitter is stuck, %08x\n",
1575 		       dev->name, (unsigned int)readl(&regs->HostCtrl));
1576 		/* This can happen due to ieee flow control. */
1577 	} else {
1578 		printk(KERN_DEBUG "%s: BUG... transmitter died. Kicking it.\n",
1579 		       dev->name);
1580 #if 0
1581 		netif_wake_queue(dev);
1582 #endif
1583 	}
1584 }
1585 
1586 
1587 static void ace_tasklet(unsigned long arg)
1588 {
1589 	struct net_device *dev = (struct net_device *) arg;
1590 	struct ace_private *ap = netdev_priv(dev);
1591 	int cur_size;
1592 
1593 	cur_size = atomic_read(&ap->cur_rx_bufs);
1594 	if ((cur_size < RX_LOW_STD_THRES) &&
1595 	    !test_and_set_bit(0, &ap->std_refill_busy)) {
1596 #ifdef DEBUG
1597 		printk("refilling buffers (current %i)\n", cur_size);
1598 #endif
1599 		ace_load_std_rx_ring(dev, RX_RING_SIZE - cur_size);
1600 	}
1601 
1602 	if (ap->version >= 2) {
1603 		cur_size = atomic_read(&ap->cur_mini_bufs);
1604 		if ((cur_size < RX_LOW_MINI_THRES) &&
1605 		    !test_and_set_bit(0, &ap->mini_refill_busy)) {
1606 #ifdef DEBUG
1607 			printk("refilling mini buffers (current %i)\n",
1608 			       cur_size);
1609 #endif
1610 			ace_load_mini_rx_ring(dev, RX_MINI_SIZE - cur_size);
1611 		}
1612 	}
1613 
1614 	cur_size = atomic_read(&ap->cur_jumbo_bufs);
1615 	if (ap->jumbo && (cur_size < RX_LOW_JUMBO_THRES) &&
1616 	    !test_and_set_bit(0, &ap->jumbo_refill_busy)) {
1617 #ifdef DEBUG
1618 		printk("refilling jumbo buffers (current %i)\n", cur_size);
1619 #endif
1620 		ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE - cur_size);
1621 	}
1622 	ap->tasklet_pending = 0;
1623 }
1624 
1625 
1626 /*
1627  * Copy the contents of the NIC's trace buffer to kernel memory.
1628  */
1629 static void ace_dump_trace(struct ace_private *ap)
1630 {
1631 #if 0
1632 	if (!ap->trace_buf)
1633 		if (!(ap->trace_buf = kmalloc(ACE_TRACE_SIZE, GFP_KERNEL)))
1634 		    return;
1635 #endif
1636 }
1637 
1638 
1639 /*
1640  * Load the standard rx ring.
1641  *
1642  * Loading rings is safe without holding the spin lock since this is
1643  * done only before the device is enabled, thus no interrupts are
1644  * generated and by the interrupt handler/tasklet handler.
1645  */
1646 static void ace_load_std_rx_ring(struct net_device *dev, int nr_bufs)
1647 {
1648 	struct ace_private *ap = netdev_priv(dev);
1649 	struct ace_regs __iomem *regs = ap->regs;
1650 	short i, idx;
1651 
1652 
1653 	prefetchw(&ap->cur_rx_bufs);
1654 
1655 	idx = ap->rx_std_skbprd;
1656 
1657 	for (i = 0; i < nr_bufs; i++) {
1658 		struct sk_buff *skb;
1659 		struct rx_desc *rd;
1660 		dma_addr_t mapping;
1661 
1662 		skb = netdev_alloc_skb_ip_align(dev, ACE_STD_BUFSIZE);
1663 		if (!skb)
1664 			break;
1665 
1666 		mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1667 				       offset_in_page(skb->data),
1668 				       ACE_STD_BUFSIZE,
1669 				       PCI_DMA_FROMDEVICE);
1670 		ap->skb->rx_std_skbuff[idx].skb = skb;
1671 		dma_unmap_addr_set(&ap->skb->rx_std_skbuff[idx],
1672 				   mapping, mapping);
1673 
1674 		rd = &ap->rx_std_ring[idx];
1675 		set_aceaddr(&rd->addr, mapping);
1676 		rd->size = ACE_STD_BUFSIZE;
1677 		rd->idx = idx;
1678 		idx = (idx + 1) % RX_STD_RING_ENTRIES;
1679 	}
1680 
1681 	if (!i)
1682 		goto error_out;
1683 
1684 	atomic_add(i, &ap->cur_rx_bufs);
1685 	ap->rx_std_skbprd = idx;
1686 
1687 	if (ACE_IS_TIGON_I(ap)) {
1688 		struct cmd cmd;
1689 		cmd.evt = C_SET_RX_PRD_IDX;
1690 		cmd.code = 0;
1691 		cmd.idx = ap->rx_std_skbprd;
1692 		ace_issue_cmd(regs, &cmd);
1693 	} else {
1694 		writel(idx, &regs->RxStdPrd);
1695 		wmb();
1696 	}
1697 
1698  out:
1699 	clear_bit(0, &ap->std_refill_busy);
1700 	return;
1701 
1702  error_out:
1703 	printk(KERN_INFO "Out of memory when allocating "
1704 	       "standard receive buffers\n");
1705 	goto out;
1706 }
1707 
1708 
1709 static void ace_load_mini_rx_ring(struct net_device *dev, int nr_bufs)
1710 {
1711 	struct ace_private *ap = netdev_priv(dev);
1712 	struct ace_regs __iomem *regs = ap->regs;
1713 	short i, idx;
1714 
1715 	prefetchw(&ap->cur_mini_bufs);
1716 
1717 	idx = ap->rx_mini_skbprd;
1718 	for (i = 0; i < nr_bufs; i++) {
1719 		struct sk_buff *skb;
1720 		struct rx_desc *rd;
1721 		dma_addr_t mapping;
1722 
1723 		skb = netdev_alloc_skb_ip_align(dev, ACE_MINI_BUFSIZE);
1724 		if (!skb)
1725 			break;
1726 
1727 		mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1728 				       offset_in_page(skb->data),
1729 				       ACE_MINI_BUFSIZE,
1730 				       PCI_DMA_FROMDEVICE);
1731 		ap->skb->rx_mini_skbuff[idx].skb = skb;
1732 		dma_unmap_addr_set(&ap->skb->rx_mini_skbuff[idx],
1733 				   mapping, mapping);
1734 
1735 		rd = &ap->rx_mini_ring[idx];
1736 		set_aceaddr(&rd->addr, mapping);
1737 		rd->size = ACE_MINI_BUFSIZE;
1738 		rd->idx = idx;
1739 		idx = (idx + 1) % RX_MINI_RING_ENTRIES;
1740 	}
1741 
1742 	if (!i)
1743 		goto error_out;
1744 
1745 	atomic_add(i, &ap->cur_mini_bufs);
1746 
1747 	ap->rx_mini_skbprd = idx;
1748 
1749 	writel(idx, &regs->RxMiniPrd);
1750 	wmb();
1751 
1752  out:
1753 	clear_bit(0, &ap->mini_refill_busy);
1754 	return;
1755  error_out:
1756 	printk(KERN_INFO "Out of memory when allocating "
1757 	       "mini receive buffers\n");
1758 	goto out;
1759 }
1760 
1761 
1762 /*
1763  * Load the jumbo rx ring, this may happen at any time if the MTU
1764  * is changed to a value > 1500.
1765  */
1766 static void ace_load_jumbo_rx_ring(struct net_device *dev, int nr_bufs)
1767 {
1768 	struct ace_private *ap = netdev_priv(dev);
1769 	struct ace_regs __iomem *regs = ap->regs;
1770 	short i, idx;
1771 
1772 	idx = ap->rx_jumbo_skbprd;
1773 
1774 	for (i = 0; i < nr_bufs; i++) {
1775 		struct sk_buff *skb;
1776 		struct rx_desc *rd;
1777 		dma_addr_t mapping;
1778 
1779 		skb = netdev_alloc_skb_ip_align(dev, ACE_JUMBO_BUFSIZE);
1780 		if (!skb)
1781 			break;
1782 
1783 		mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1784 				       offset_in_page(skb->data),
1785 				       ACE_JUMBO_BUFSIZE,
1786 				       PCI_DMA_FROMDEVICE);
1787 		ap->skb->rx_jumbo_skbuff[idx].skb = skb;
1788 		dma_unmap_addr_set(&ap->skb->rx_jumbo_skbuff[idx],
1789 				   mapping, mapping);
1790 
1791 		rd = &ap->rx_jumbo_ring[idx];
1792 		set_aceaddr(&rd->addr, mapping);
1793 		rd->size = ACE_JUMBO_BUFSIZE;
1794 		rd->idx = idx;
1795 		idx = (idx + 1) % RX_JUMBO_RING_ENTRIES;
1796 	}
1797 
1798 	if (!i)
1799 		goto error_out;
1800 
1801 	atomic_add(i, &ap->cur_jumbo_bufs);
1802 	ap->rx_jumbo_skbprd = idx;
1803 
1804 	if (ACE_IS_TIGON_I(ap)) {
1805 		struct cmd cmd;
1806 		cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
1807 		cmd.code = 0;
1808 		cmd.idx = ap->rx_jumbo_skbprd;
1809 		ace_issue_cmd(regs, &cmd);
1810 	} else {
1811 		writel(idx, &regs->RxJumboPrd);
1812 		wmb();
1813 	}
1814 
1815  out:
1816 	clear_bit(0, &ap->jumbo_refill_busy);
1817 	return;
1818  error_out:
1819 	if (net_ratelimit())
1820 		printk(KERN_INFO "Out of memory when allocating "
1821 		       "jumbo receive buffers\n");
1822 	goto out;
1823 }
1824 
1825 
1826 /*
1827  * All events are considered to be slow (RX/TX ints do not generate
1828  * events) and are handled here, outside the main interrupt handler,
1829  * to reduce the size of the handler.
1830  */
1831 static u32 ace_handle_event(struct net_device *dev, u32 evtcsm, u32 evtprd)
1832 {
1833 	struct ace_private *ap;
1834 
1835 	ap = netdev_priv(dev);
1836 
1837 	while (evtcsm != evtprd) {
1838 		switch (ap->evt_ring[evtcsm].evt) {
1839 		case E_FW_RUNNING:
1840 			printk(KERN_INFO "%s: Firmware up and running\n",
1841 			       ap->name);
1842 			ap->fw_running = 1;
1843 			wmb();
1844 			break;
1845 		case E_STATS_UPDATED:
1846 			break;
1847 		case E_LNK_STATE:
1848 		{
1849 			u16 code = ap->evt_ring[evtcsm].code;
1850 			switch (code) {
1851 			case E_C_LINK_UP:
1852 			{
1853 				u32 state = readl(&ap->regs->GigLnkState);
1854 				printk(KERN_WARNING "%s: Optical link UP "
1855 				       "(%s Duplex, Flow Control: %s%s)\n",
1856 				       ap->name,
1857 				       state & LNK_FULL_DUPLEX ? "Full":"Half",
1858 				       state & LNK_TX_FLOW_CTL_Y ? "TX " : "",
1859 				       state & LNK_RX_FLOW_CTL_Y ? "RX" : "");
1860 				break;
1861 			}
1862 			case E_C_LINK_DOWN:
1863 				printk(KERN_WARNING "%s: Optical link DOWN\n",
1864 				       ap->name);
1865 				break;
1866 			case E_C_LINK_10_100:
1867 				printk(KERN_WARNING "%s: 10/100BaseT link "
1868 				       "UP\n", ap->name);
1869 				break;
1870 			default:
1871 				printk(KERN_ERR "%s: Unknown optical link "
1872 				       "state %02x\n", ap->name, code);
1873 			}
1874 			break;
1875 		}
1876 		case E_ERROR:
1877 			switch(ap->evt_ring[evtcsm].code) {
1878 			case E_C_ERR_INVAL_CMD:
1879 				printk(KERN_ERR "%s: invalid command error\n",
1880 				       ap->name);
1881 				break;
1882 			case E_C_ERR_UNIMP_CMD:
1883 				printk(KERN_ERR "%s: unimplemented command "
1884 				       "error\n", ap->name);
1885 				break;
1886 			case E_C_ERR_BAD_CFG:
1887 				printk(KERN_ERR "%s: bad config error\n",
1888 				       ap->name);
1889 				break;
1890 			default:
1891 				printk(KERN_ERR "%s: unknown error %02x\n",
1892 				       ap->name, ap->evt_ring[evtcsm].code);
1893 			}
1894 			break;
1895 		case E_RESET_JUMBO_RNG:
1896 		{
1897 			int i;
1898 			for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
1899 				if (ap->skb->rx_jumbo_skbuff[i].skb) {
1900 					ap->rx_jumbo_ring[i].size = 0;
1901 					set_aceaddr(&ap->rx_jumbo_ring[i].addr, 0);
1902 					dev_kfree_skb(ap->skb->rx_jumbo_skbuff[i].skb);
1903 					ap->skb->rx_jumbo_skbuff[i].skb = NULL;
1904 				}
1905 			}
1906 
1907  			if (ACE_IS_TIGON_I(ap)) {
1908  				struct cmd cmd;
1909  				cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
1910  				cmd.code = 0;
1911  				cmd.idx = 0;
1912  				ace_issue_cmd(ap->regs, &cmd);
1913  			} else {
1914  				writel(0, &((ap->regs)->RxJumboPrd));
1915  				wmb();
1916  			}
1917 
1918 			ap->jumbo = 0;
1919 			ap->rx_jumbo_skbprd = 0;
1920 			printk(KERN_INFO "%s: Jumbo ring flushed\n",
1921 			       ap->name);
1922 			clear_bit(0, &ap->jumbo_refill_busy);
1923 			break;
1924 		}
1925 		default:
1926 			printk(KERN_ERR "%s: Unhandled event 0x%02x\n",
1927 			       ap->name, ap->evt_ring[evtcsm].evt);
1928 		}
1929 		evtcsm = (evtcsm + 1) % EVT_RING_ENTRIES;
1930 	}
1931 
1932 	return evtcsm;
1933 }
1934 
1935 
1936 static void ace_rx_int(struct net_device *dev, u32 rxretprd, u32 rxretcsm)
1937 {
1938 	struct ace_private *ap = netdev_priv(dev);
1939 	u32 idx;
1940 	int mini_count = 0, std_count = 0;
1941 
1942 	idx = rxretcsm;
1943 
1944 	prefetchw(&ap->cur_rx_bufs);
1945 	prefetchw(&ap->cur_mini_bufs);
1946 
1947 	while (idx != rxretprd) {
1948 		struct ring_info *rip;
1949 		struct sk_buff *skb;
1950 		struct rx_desc *rxdesc, *retdesc;
1951 		u32 skbidx;
1952 		int bd_flags, desc_type, mapsize;
1953 		u16 csum;
1954 
1955 
1956 		/* make sure the rx descriptor isn't read before rxretprd */
1957 		if (idx == rxretcsm)
1958 			rmb();
1959 
1960 		retdesc = &ap->rx_return_ring[idx];
1961 		skbidx = retdesc->idx;
1962 		bd_flags = retdesc->flags;
1963 		desc_type = bd_flags & (BD_FLG_JUMBO | BD_FLG_MINI);
1964 
1965 		switch(desc_type) {
1966 			/*
1967 			 * Normal frames do not have any flags set
1968 			 *
1969 			 * Mini and normal frames arrive frequently,
1970 			 * so use a local counter to avoid doing
1971 			 * atomic operations for each packet arriving.
1972 			 */
1973 		case 0:
1974 			rip = &ap->skb->rx_std_skbuff[skbidx];
1975 			mapsize = ACE_STD_BUFSIZE;
1976 			rxdesc = &ap->rx_std_ring[skbidx];
1977 			std_count++;
1978 			break;
1979 		case BD_FLG_JUMBO:
1980 			rip = &ap->skb->rx_jumbo_skbuff[skbidx];
1981 			mapsize = ACE_JUMBO_BUFSIZE;
1982 			rxdesc = &ap->rx_jumbo_ring[skbidx];
1983 			atomic_dec(&ap->cur_jumbo_bufs);
1984 			break;
1985 		case BD_FLG_MINI:
1986 			rip = &ap->skb->rx_mini_skbuff[skbidx];
1987 			mapsize = ACE_MINI_BUFSIZE;
1988 			rxdesc = &ap->rx_mini_ring[skbidx];
1989 			mini_count++;
1990 			break;
1991 		default:
1992 			printk(KERN_INFO "%s: unknown frame type (0x%02x) "
1993 			       "returned by NIC\n", dev->name,
1994 			       retdesc->flags);
1995 			goto error;
1996 		}
1997 
1998 		skb = rip->skb;
1999 		rip->skb = NULL;
2000 		pci_unmap_page(ap->pdev,
2001 			       dma_unmap_addr(rip, mapping),
2002 			       mapsize,
2003 			       PCI_DMA_FROMDEVICE);
2004 		skb_put(skb, retdesc->size);
2005 
2006 		/*
2007 		 * Fly baby, fly!
2008 		 */
2009 		csum = retdesc->tcp_udp_csum;
2010 
2011 		skb->protocol = eth_type_trans(skb, dev);
2012 
2013 		/*
2014 		 * Instead of forcing the poor tigon mips cpu to calculate
2015 		 * pseudo hdr checksum, we do this ourselves.
2016 		 */
2017 		if (bd_flags & BD_FLG_TCP_UDP_SUM) {
2018 			skb->csum = htons(csum);
2019 			skb->ip_summed = CHECKSUM_COMPLETE;
2020 		} else {
2021 			skb_checksum_none_assert(skb);
2022 		}
2023 
2024 		/* send it up */
2025 		if ((bd_flags & BD_FLG_VLAN_TAG))
2026 			__vlan_hwaccel_put_tag(skb, retdesc->vlan);
2027 		netif_rx(skb);
2028 
2029 		dev->stats.rx_packets++;
2030 		dev->stats.rx_bytes += retdesc->size;
2031 
2032 		idx = (idx + 1) % RX_RETURN_RING_ENTRIES;
2033 	}
2034 
2035 	atomic_sub(std_count, &ap->cur_rx_bufs);
2036 	if (!ACE_IS_TIGON_I(ap))
2037 		atomic_sub(mini_count, &ap->cur_mini_bufs);
2038 
2039  out:
2040 	/*
2041 	 * According to the documentation RxRetCsm is obsolete with
2042 	 * the 12.3.x Firmware - my Tigon I NICs seem to disagree!
2043 	 */
2044 	if (ACE_IS_TIGON_I(ap)) {
2045 		writel(idx, &ap->regs->RxRetCsm);
2046 	}
2047 	ap->cur_rx = idx;
2048 
2049 	return;
2050  error:
2051 	idx = rxretprd;
2052 	goto out;
2053 }
2054 
2055 
2056 static inline void ace_tx_int(struct net_device *dev,
2057 			      u32 txcsm, u32 idx)
2058 {
2059 	struct ace_private *ap = netdev_priv(dev);
2060 
2061 	do {
2062 		struct sk_buff *skb;
2063 		struct tx_ring_info *info;
2064 
2065 		info = ap->skb->tx_skbuff + idx;
2066 		skb = info->skb;
2067 
2068 		if (dma_unmap_len(info, maplen)) {
2069 			pci_unmap_page(ap->pdev, dma_unmap_addr(info, mapping),
2070 				       dma_unmap_len(info, maplen),
2071 				       PCI_DMA_TODEVICE);
2072 			dma_unmap_len_set(info, maplen, 0);
2073 		}
2074 
2075 		if (skb) {
2076 			dev->stats.tx_packets++;
2077 			dev->stats.tx_bytes += skb->len;
2078 			dev_kfree_skb_irq(skb);
2079 			info->skb = NULL;
2080 		}
2081 
2082 		idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2083 	} while (idx != txcsm);
2084 
2085 	if (netif_queue_stopped(dev))
2086 		netif_wake_queue(dev);
2087 
2088 	wmb();
2089 	ap->tx_ret_csm = txcsm;
2090 
2091 	/* So... tx_ret_csm is advanced _after_ check for device wakeup.
2092 	 *
2093 	 * We could try to make it before. In this case we would get
2094 	 * the following race condition: hard_start_xmit on other cpu
2095 	 * enters after we advanced tx_ret_csm and fills space,
2096 	 * which we have just freed, so that we make illegal device wakeup.
2097 	 * There is no good way to workaround this (at entry
2098 	 * to ace_start_xmit detects this condition and prevents
2099 	 * ring corruption, but it is not a good workaround.)
2100 	 *
2101 	 * When tx_ret_csm is advanced after, we wake up device _only_
2102 	 * if we really have some space in ring (though the core doing
2103 	 * hard_start_xmit can see full ring for some period and has to
2104 	 * synchronize.) Superb.
2105 	 * BUT! We get another subtle race condition. hard_start_xmit
2106 	 * may think that ring is full between wakeup and advancing
2107 	 * tx_ret_csm and will stop device instantly! It is not so bad.
2108 	 * We are guaranteed that there is something in ring, so that
2109 	 * the next irq will resume transmission. To speedup this we could
2110 	 * mark descriptor, which closes ring with BD_FLG_COAL_NOW
2111 	 * (see ace_start_xmit).
2112 	 *
2113 	 * Well, this dilemma exists in all lock-free devices.
2114 	 * We, following scheme used in drivers by Donald Becker,
2115 	 * select the least dangerous.
2116 	 *							--ANK
2117 	 */
2118 }
2119 
2120 
2121 static irqreturn_t ace_interrupt(int irq, void *dev_id)
2122 {
2123 	struct net_device *dev = (struct net_device *)dev_id;
2124 	struct ace_private *ap = netdev_priv(dev);
2125 	struct ace_regs __iomem *regs = ap->regs;
2126 	u32 idx;
2127 	u32 txcsm, rxretcsm, rxretprd;
2128 	u32 evtcsm, evtprd;
2129 
2130 	/*
2131 	 * In case of PCI shared interrupts or spurious interrupts,
2132 	 * we want to make sure it is actually our interrupt before
2133 	 * spending any time in here.
2134 	 */
2135 	if (!(readl(&regs->HostCtrl) & IN_INT))
2136 		return IRQ_NONE;
2137 
2138 	/*
2139 	 * ACK intr now. Otherwise we will lose updates to rx_ret_prd,
2140 	 * which happened _after_ rxretprd = *ap->rx_ret_prd; but before
2141 	 * writel(0, &regs->Mb0Lo).
2142 	 *
2143 	 * "IRQ avoidance" recommended in docs applies to IRQs served
2144 	 * threads and it is wrong even for that case.
2145 	 */
2146 	writel(0, &regs->Mb0Lo);
2147 	readl(&regs->Mb0Lo);
2148 
2149 	/*
2150 	 * There is no conflict between transmit handling in
2151 	 * start_xmit and receive processing, thus there is no reason
2152 	 * to take a spin lock for RX handling. Wait until we start
2153 	 * working on the other stuff - hey we don't need a spin lock
2154 	 * anymore.
2155 	 */
2156 	rxretprd = *ap->rx_ret_prd;
2157 	rxretcsm = ap->cur_rx;
2158 
2159 	if (rxretprd != rxretcsm)
2160 		ace_rx_int(dev, rxretprd, rxretcsm);
2161 
2162 	txcsm = *ap->tx_csm;
2163 	idx = ap->tx_ret_csm;
2164 
2165 	if (txcsm != idx) {
2166 		/*
2167 		 * If each skb takes only one descriptor this check degenerates
2168 		 * to identity, because new space has just been opened.
2169 		 * But if skbs are fragmented we must check that this index
2170 		 * update releases enough of space, otherwise we just
2171 		 * wait for device to make more work.
2172 		 */
2173 		if (!tx_ring_full(ap, txcsm, ap->tx_prd))
2174 			ace_tx_int(dev, txcsm, idx);
2175 	}
2176 
2177 	evtcsm = readl(&regs->EvtCsm);
2178 	evtprd = *ap->evt_prd;
2179 
2180 	if (evtcsm != evtprd) {
2181 		evtcsm = ace_handle_event(dev, evtcsm, evtprd);
2182 		writel(evtcsm, &regs->EvtCsm);
2183 	}
2184 
2185 	/*
2186 	 * This has to go last in the interrupt handler and run with
2187 	 * the spin lock released ... what lock?
2188 	 */
2189 	if (netif_running(dev)) {
2190 		int cur_size;
2191 		int run_tasklet = 0;
2192 
2193 		cur_size = atomic_read(&ap->cur_rx_bufs);
2194 		if (cur_size < RX_LOW_STD_THRES) {
2195 			if ((cur_size < RX_PANIC_STD_THRES) &&
2196 			    !test_and_set_bit(0, &ap->std_refill_busy)) {
2197 #ifdef DEBUG
2198 				printk("low on std buffers %i\n", cur_size);
2199 #endif
2200 				ace_load_std_rx_ring(dev,
2201 						     RX_RING_SIZE - cur_size);
2202 			} else
2203 				run_tasklet = 1;
2204 		}
2205 
2206 		if (!ACE_IS_TIGON_I(ap)) {
2207 			cur_size = atomic_read(&ap->cur_mini_bufs);
2208 			if (cur_size < RX_LOW_MINI_THRES) {
2209 				if ((cur_size < RX_PANIC_MINI_THRES) &&
2210 				    !test_and_set_bit(0,
2211 						      &ap->mini_refill_busy)) {
2212 #ifdef DEBUG
2213 					printk("low on mini buffers %i\n",
2214 					       cur_size);
2215 #endif
2216 					ace_load_mini_rx_ring(dev,
2217 							      RX_MINI_SIZE - cur_size);
2218 				} else
2219 					run_tasklet = 1;
2220 			}
2221 		}
2222 
2223 		if (ap->jumbo) {
2224 			cur_size = atomic_read(&ap->cur_jumbo_bufs);
2225 			if (cur_size < RX_LOW_JUMBO_THRES) {
2226 				if ((cur_size < RX_PANIC_JUMBO_THRES) &&
2227 				    !test_and_set_bit(0,
2228 						      &ap->jumbo_refill_busy)){
2229 #ifdef DEBUG
2230 					printk("low on jumbo buffers %i\n",
2231 					       cur_size);
2232 #endif
2233 					ace_load_jumbo_rx_ring(dev,
2234 							       RX_JUMBO_SIZE - cur_size);
2235 				} else
2236 					run_tasklet = 1;
2237 			}
2238 		}
2239 		if (run_tasklet && !ap->tasklet_pending) {
2240 			ap->tasklet_pending = 1;
2241 			tasklet_schedule(&ap->ace_tasklet);
2242 		}
2243 	}
2244 
2245 	return IRQ_HANDLED;
2246 }
2247 
2248 static int ace_open(struct net_device *dev)
2249 {
2250 	struct ace_private *ap = netdev_priv(dev);
2251 	struct ace_regs __iomem *regs = ap->regs;
2252 	struct cmd cmd;
2253 
2254 	if (!(ap->fw_running)) {
2255 		printk(KERN_WARNING "%s: Firmware not running!\n", dev->name);
2256 		return -EBUSY;
2257 	}
2258 
2259 	writel(dev->mtu + ETH_HLEN + 4, &regs->IfMtu);
2260 
2261 	cmd.evt = C_CLEAR_STATS;
2262 	cmd.code = 0;
2263 	cmd.idx = 0;
2264 	ace_issue_cmd(regs, &cmd);
2265 
2266 	cmd.evt = C_HOST_STATE;
2267 	cmd.code = C_C_STACK_UP;
2268 	cmd.idx = 0;
2269 	ace_issue_cmd(regs, &cmd);
2270 
2271 	if (ap->jumbo &&
2272 	    !test_and_set_bit(0, &ap->jumbo_refill_busy))
2273 		ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE);
2274 
2275 	if (dev->flags & IFF_PROMISC) {
2276 		cmd.evt = C_SET_PROMISC_MODE;
2277 		cmd.code = C_C_PROMISC_ENABLE;
2278 		cmd.idx = 0;
2279 		ace_issue_cmd(regs, &cmd);
2280 
2281 		ap->promisc = 1;
2282 	}else
2283 		ap->promisc = 0;
2284 	ap->mcast_all = 0;
2285 
2286 #if 0
2287 	cmd.evt = C_LNK_NEGOTIATION;
2288 	cmd.code = 0;
2289 	cmd.idx = 0;
2290 	ace_issue_cmd(regs, &cmd);
2291 #endif
2292 
2293 	netif_start_queue(dev);
2294 
2295 	/*
2296 	 * Setup the bottom half rx ring refill handler
2297 	 */
2298 	tasklet_init(&ap->ace_tasklet, ace_tasklet, (unsigned long)dev);
2299 	return 0;
2300 }
2301 
2302 
2303 static int ace_close(struct net_device *dev)
2304 {
2305 	struct ace_private *ap = netdev_priv(dev);
2306 	struct ace_regs __iomem *regs = ap->regs;
2307 	struct cmd cmd;
2308 	unsigned long flags;
2309 	short i;
2310 
2311 	/*
2312 	 * Without (or before) releasing irq and stopping hardware, this
2313 	 * is an absolute non-sense, by the way. It will be reset instantly
2314 	 * by the first irq.
2315 	 */
2316 	netif_stop_queue(dev);
2317 
2318 
2319 	if (ap->promisc) {
2320 		cmd.evt = C_SET_PROMISC_MODE;
2321 		cmd.code = C_C_PROMISC_DISABLE;
2322 		cmd.idx = 0;
2323 		ace_issue_cmd(regs, &cmd);
2324 		ap->promisc = 0;
2325 	}
2326 
2327 	cmd.evt = C_HOST_STATE;
2328 	cmd.code = C_C_STACK_DOWN;
2329 	cmd.idx = 0;
2330 	ace_issue_cmd(regs, &cmd);
2331 
2332 	tasklet_kill(&ap->ace_tasklet);
2333 
2334 	/*
2335 	 * Make sure one CPU is not processing packets while
2336 	 * buffers are being released by another.
2337 	 */
2338 
2339 	local_irq_save(flags);
2340 	ace_mask_irq(dev);
2341 
2342 	for (i = 0; i < ACE_TX_RING_ENTRIES(ap); i++) {
2343 		struct sk_buff *skb;
2344 		struct tx_ring_info *info;
2345 
2346 		info = ap->skb->tx_skbuff + i;
2347 		skb = info->skb;
2348 
2349 		if (dma_unmap_len(info, maplen)) {
2350 			if (ACE_IS_TIGON_I(ap)) {
2351 				/* NB: TIGON_1 is special, tx_ring is in io space */
2352 				struct tx_desc __iomem *tx;
2353 				tx = (__force struct tx_desc __iomem *) &ap->tx_ring[i];
2354 				writel(0, &tx->addr.addrhi);
2355 				writel(0, &tx->addr.addrlo);
2356 				writel(0, &tx->flagsize);
2357 			} else
2358 				memset(ap->tx_ring + i, 0,
2359 				       sizeof(struct tx_desc));
2360 			pci_unmap_page(ap->pdev, dma_unmap_addr(info, mapping),
2361 				       dma_unmap_len(info, maplen),
2362 				       PCI_DMA_TODEVICE);
2363 			dma_unmap_len_set(info, maplen, 0);
2364 		}
2365 		if (skb) {
2366 			dev_kfree_skb(skb);
2367 			info->skb = NULL;
2368 		}
2369 	}
2370 
2371 	if (ap->jumbo) {
2372 		cmd.evt = C_RESET_JUMBO_RNG;
2373 		cmd.code = 0;
2374 		cmd.idx = 0;
2375 		ace_issue_cmd(regs, &cmd);
2376 	}
2377 
2378 	ace_unmask_irq(dev);
2379 	local_irq_restore(flags);
2380 
2381 	return 0;
2382 }
2383 
2384 
2385 static inline dma_addr_t
2386 ace_map_tx_skb(struct ace_private *ap, struct sk_buff *skb,
2387 	       struct sk_buff *tail, u32 idx)
2388 {
2389 	dma_addr_t mapping;
2390 	struct tx_ring_info *info;
2391 
2392 	mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
2393 			       offset_in_page(skb->data),
2394 			       skb->len, PCI_DMA_TODEVICE);
2395 
2396 	info = ap->skb->tx_skbuff + idx;
2397 	info->skb = tail;
2398 	dma_unmap_addr_set(info, mapping, mapping);
2399 	dma_unmap_len_set(info, maplen, skb->len);
2400 	return mapping;
2401 }
2402 
2403 
2404 static inline void
2405 ace_load_tx_bd(struct ace_private *ap, struct tx_desc *desc, u64 addr,
2406 	       u32 flagsize, u32 vlan_tag)
2407 {
2408 #if !USE_TX_COAL_NOW
2409 	flagsize &= ~BD_FLG_COAL_NOW;
2410 #endif
2411 
2412 	if (ACE_IS_TIGON_I(ap)) {
2413 		struct tx_desc __iomem *io = (__force struct tx_desc __iomem *) desc;
2414 		writel(addr >> 32, &io->addr.addrhi);
2415 		writel(addr & 0xffffffff, &io->addr.addrlo);
2416 		writel(flagsize, &io->flagsize);
2417 		writel(vlan_tag, &io->vlanres);
2418 	} else {
2419 		desc->addr.addrhi = addr >> 32;
2420 		desc->addr.addrlo = addr;
2421 		desc->flagsize = flagsize;
2422 		desc->vlanres = vlan_tag;
2423 	}
2424 }
2425 
2426 
2427 static netdev_tx_t ace_start_xmit(struct sk_buff *skb,
2428 				  struct net_device *dev)
2429 {
2430 	struct ace_private *ap = netdev_priv(dev);
2431 	struct ace_regs __iomem *regs = ap->regs;
2432 	struct tx_desc *desc;
2433 	u32 idx, flagsize;
2434 	unsigned long maxjiff = jiffies + 3*HZ;
2435 
2436 restart:
2437 	idx = ap->tx_prd;
2438 
2439 	if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2440 		goto overflow;
2441 
2442 	if (!skb_shinfo(skb)->nr_frags)	{
2443 		dma_addr_t mapping;
2444 		u32 vlan_tag = 0;
2445 
2446 		mapping = ace_map_tx_skb(ap, skb, skb, idx);
2447 		flagsize = (skb->len << 16) | (BD_FLG_END);
2448 		if (skb->ip_summed == CHECKSUM_PARTIAL)
2449 			flagsize |= BD_FLG_TCP_UDP_SUM;
2450 		if (vlan_tx_tag_present(skb)) {
2451 			flagsize |= BD_FLG_VLAN_TAG;
2452 			vlan_tag = vlan_tx_tag_get(skb);
2453 		}
2454 		desc = ap->tx_ring + idx;
2455 		idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2456 
2457 		/* Look at ace_tx_int for explanations. */
2458 		if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2459 			flagsize |= BD_FLG_COAL_NOW;
2460 
2461 		ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
2462 	} else {
2463 		dma_addr_t mapping;
2464 		u32 vlan_tag = 0;
2465 		int i, len = 0;
2466 
2467 		mapping = ace_map_tx_skb(ap, skb, NULL, idx);
2468 		flagsize = (skb_headlen(skb) << 16);
2469 		if (skb->ip_summed == CHECKSUM_PARTIAL)
2470 			flagsize |= BD_FLG_TCP_UDP_SUM;
2471 		if (vlan_tx_tag_present(skb)) {
2472 			flagsize |= BD_FLG_VLAN_TAG;
2473 			vlan_tag = vlan_tx_tag_get(skb);
2474 		}
2475 
2476 		ace_load_tx_bd(ap, ap->tx_ring + idx, mapping, flagsize, vlan_tag);
2477 
2478 		idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2479 
2480 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2481 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2482 			struct tx_ring_info *info;
2483 
2484 			len += frag->size;
2485 			info = ap->skb->tx_skbuff + idx;
2486 			desc = ap->tx_ring + idx;
2487 
2488 			mapping = skb_frag_dma_map(&ap->pdev->dev, frag, 0,
2489 						   frag->size,
2490 						   PCI_DMA_TODEVICE);
2491 
2492 			flagsize = (frag->size << 16);
2493 			if (skb->ip_summed == CHECKSUM_PARTIAL)
2494 				flagsize |= BD_FLG_TCP_UDP_SUM;
2495 			idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2496 
2497 			if (i == skb_shinfo(skb)->nr_frags - 1) {
2498 				flagsize |= BD_FLG_END;
2499 				if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2500 					flagsize |= BD_FLG_COAL_NOW;
2501 
2502 				/*
2503 				 * Only the last fragment frees
2504 				 * the skb!
2505 				 */
2506 				info->skb = skb;
2507 			} else {
2508 				info->skb = NULL;
2509 			}
2510 			dma_unmap_addr_set(info, mapping, mapping);
2511 			dma_unmap_len_set(info, maplen, frag->size);
2512 			ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
2513 		}
2514 	}
2515 
2516  	wmb();
2517  	ap->tx_prd = idx;
2518  	ace_set_txprd(regs, ap, idx);
2519 
2520 	if (flagsize & BD_FLG_COAL_NOW) {
2521 		netif_stop_queue(dev);
2522 
2523 		/*
2524 		 * A TX-descriptor producer (an IRQ) might have gotten
2525 		 * between, making the ring free again. Since xmit is
2526 		 * serialized, this is the only situation we have to
2527 		 * re-test.
2528 		 */
2529 		if (!tx_ring_full(ap, ap->tx_ret_csm, idx))
2530 			netif_wake_queue(dev);
2531 	}
2532 
2533 	return NETDEV_TX_OK;
2534 
2535 overflow:
2536 	/*
2537 	 * This race condition is unavoidable with lock-free drivers.
2538 	 * We wake up the queue _before_ tx_prd is advanced, so that we can
2539 	 * enter hard_start_xmit too early, while tx ring still looks closed.
2540 	 * This happens ~1-4 times per 100000 packets, so that we can allow
2541 	 * to loop syncing to other CPU. Probably, we need an additional
2542 	 * wmb() in ace_tx_intr as well.
2543 	 *
2544 	 * Note that this race is relieved by reserving one more entry
2545 	 * in tx ring than it is necessary (see original non-SG driver).
2546 	 * However, with SG we need to reserve 2*MAX_SKB_FRAGS+1, which
2547 	 * is already overkill.
2548 	 *
2549 	 * Alternative is to return with 1 not throttling queue. In this
2550 	 * case loop becomes longer, no more useful effects.
2551 	 */
2552 	if (time_before(jiffies, maxjiff)) {
2553 		barrier();
2554 		cpu_relax();
2555 		goto restart;
2556 	}
2557 
2558 	/* The ring is stuck full. */
2559 	printk(KERN_WARNING "%s: Transmit ring stuck full\n", dev->name);
2560 	return NETDEV_TX_BUSY;
2561 }
2562 
2563 
2564 static int ace_change_mtu(struct net_device *dev, int new_mtu)
2565 {
2566 	struct ace_private *ap = netdev_priv(dev);
2567 	struct ace_regs __iomem *regs = ap->regs;
2568 
2569 	if (new_mtu > ACE_JUMBO_MTU)
2570 		return -EINVAL;
2571 
2572 	writel(new_mtu + ETH_HLEN + 4, &regs->IfMtu);
2573 	dev->mtu = new_mtu;
2574 
2575 	if (new_mtu > ACE_STD_MTU) {
2576 		if (!(ap->jumbo)) {
2577 			printk(KERN_INFO "%s: Enabling Jumbo frame "
2578 			       "support\n", dev->name);
2579 			ap->jumbo = 1;
2580 			if (!test_and_set_bit(0, &ap->jumbo_refill_busy))
2581 				ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE);
2582 			ace_set_rxtx_parms(dev, 1);
2583 		}
2584 	} else {
2585 		while (test_and_set_bit(0, &ap->jumbo_refill_busy));
2586 		ace_sync_irq(dev->irq);
2587 		ace_set_rxtx_parms(dev, 0);
2588 		if (ap->jumbo) {
2589 			struct cmd cmd;
2590 
2591 			cmd.evt = C_RESET_JUMBO_RNG;
2592 			cmd.code = 0;
2593 			cmd.idx = 0;
2594 			ace_issue_cmd(regs, &cmd);
2595 		}
2596 	}
2597 
2598 	return 0;
2599 }
2600 
2601 static int ace_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2602 {
2603 	struct ace_private *ap = netdev_priv(dev);
2604 	struct ace_regs __iomem *regs = ap->regs;
2605 	u32 link;
2606 
2607 	memset(ecmd, 0, sizeof(struct ethtool_cmd));
2608 	ecmd->supported =
2609 		(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2610 		 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2611 		 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full |
2612 		 SUPPORTED_Autoneg | SUPPORTED_FIBRE);
2613 
2614 	ecmd->port = PORT_FIBRE;
2615 	ecmd->transceiver = XCVR_INTERNAL;
2616 
2617 	link = readl(&regs->GigLnkState);
2618 	if (link & LNK_1000MB)
2619 		ethtool_cmd_speed_set(ecmd, SPEED_1000);
2620 	else {
2621 		link = readl(&regs->FastLnkState);
2622 		if (link & LNK_100MB)
2623 			ethtool_cmd_speed_set(ecmd, SPEED_100);
2624 		else if (link & LNK_10MB)
2625 			ethtool_cmd_speed_set(ecmd, SPEED_10);
2626 		else
2627 			ethtool_cmd_speed_set(ecmd, 0);
2628 	}
2629 	if (link & LNK_FULL_DUPLEX)
2630 		ecmd->duplex = DUPLEX_FULL;
2631 	else
2632 		ecmd->duplex = DUPLEX_HALF;
2633 
2634 	if (link & LNK_NEGOTIATE)
2635 		ecmd->autoneg = AUTONEG_ENABLE;
2636 	else
2637 		ecmd->autoneg = AUTONEG_DISABLE;
2638 
2639 #if 0
2640 	/*
2641 	 * Current struct ethtool_cmd is insufficient
2642 	 */
2643 	ecmd->trace = readl(&regs->TuneTrace);
2644 
2645 	ecmd->txcoal = readl(&regs->TuneTxCoalTicks);
2646 	ecmd->rxcoal = readl(&regs->TuneRxCoalTicks);
2647 #endif
2648 	ecmd->maxtxpkt = readl(&regs->TuneMaxTxDesc);
2649 	ecmd->maxrxpkt = readl(&regs->TuneMaxRxDesc);
2650 
2651 	return 0;
2652 }
2653 
2654 static int ace_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2655 {
2656 	struct ace_private *ap = netdev_priv(dev);
2657 	struct ace_regs __iomem *regs = ap->regs;
2658 	u32 link, speed;
2659 
2660 	link = readl(&regs->GigLnkState);
2661 	if (link & LNK_1000MB)
2662 		speed = SPEED_1000;
2663 	else {
2664 		link = readl(&regs->FastLnkState);
2665 		if (link & LNK_100MB)
2666 			speed = SPEED_100;
2667 		else if (link & LNK_10MB)
2668 			speed = SPEED_10;
2669 		else
2670 			speed = SPEED_100;
2671 	}
2672 
2673 	link = LNK_ENABLE | LNK_1000MB | LNK_100MB | LNK_10MB |
2674 		LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL;
2675 	if (!ACE_IS_TIGON_I(ap))
2676 		link |= LNK_TX_FLOW_CTL_Y;
2677 	if (ecmd->autoneg == AUTONEG_ENABLE)
2678 		link |= LNK_NEGOTIATE;
2679 	if (ethtool_cmd_speed(ecmd) != speed) {
2680 		link &= ~(LNK_1000MB | LNK_100MB | LNK_10MB);
2681 		switch (ethtool_cmd_speed(ecmd)) {
2682 		case SPEED_1000:
2683 			link |= LNK_1000MB;
2684 			break;
2685 		case SPEED_100:
2686 			link |= LNK_100MB;
2687 			break;
2688 		case SPEED_10:
2689 			link |= LNK_10MB;
2690 			break;
2691 		}
2692 	}
2693 
2694 	if (ecmd->duplex == DUPLEX_FULL)
2695 		link |= LNK_FULL_DUPLEX;
2696 
2697 	if (link != ap->link) {
2698 		struct cmd cmd;
2699 		printk(KERN_INFO "%s: Renegotiating link state\n",
2700 		       dev->name);
2701 
2702 		ap->link = link;
2703 		writel(link, &regs->TuneLink);
2704 		if (!ACE_IS_TIGON_I(ap))
2705 			writel(link, &regs->TuneFastLink);
2706 		wmb();
2707 
2708 		cmd.evt = C_LNK_NEGOTIATION;
2709 		cmd.code = 0;
2710 		cmd.idx = 0;
2711 		ace_issue_cmd(regs, &cmd);
2712 	}
2713 	return 0;
2714 }
2715 
2716 static void ace_get_drvinfo(struct net_device *dev,
2717 			    struct ethtool_drvinfo *info)
2718 {
2719 	struct ace_private *ap = netdev_priv(dev);
2720 
2721 	strlcpy(info->driver, "acenic", sizeof(info->driver));
2722 	snprintf(info->version, sizeof(info->version), "%i.%i.%i",
2723 		 ap->firmware_major, ap->firmware_minor,
2724 		 ap->firmware_fix);
2725 
2726 	if (ap->pdev)
2727 		strlcpy(info->bus_info, pci_name(ap->pdev),
2728 			sizeof(info->bus_info));
2729 
2730 }
2731 
2732 /*
2733  * Set the hardware MAC address.
2734  */
2735 static int ace_set_mac_addr(struct net_device *dev, void *p)
2736 {
2737 	struct ace_private *ap = netdev_priv(dev);
2738 	struct ace_regs __iomem *regs = ap->regs;
2739 	struct sockaddr *addr=p;
2740 	u8 *da;
2741 	struct cmd cmd;
2742 
2743 	if(netif_running(dev))
2744 		return -EBUSY;
2745 
2746 	memcpy(dev->dev_addr, addr->sa_data,dev->addr_len);
2747 
2748 	da = (u8 *)dev->dev_addr;
2749 
2750 	writel(da[0] << 8 | da[1], &regs->MacAddrHi);
2751 	writel((da[2] << 24) | (da[3] << 16) | (da[4] << 8) | da[5],
2752 	       &regs->MacAddrLo);
2753 
2754 	cmd.evt = C_SET_MAC_ADDR;
2755 	cmd.code = 0;
2756 	cmd.idx = 0;
2757 	ace_issue_cmd(regs, &cmd);
2758 
2759 	return 0;
2760 }
2761 
2762 
2763 static void ace_set_multicast_list(struct net_device *dev)
2764 {
2765 	struct ace_private *ap = netdev_priv(dev);
2766 	struct ace_regs __iomem *regs = ap->regs;
2767 	struct cmd cmd;
2768 
2769 	if ((dev->flags & IFF_ALLMULTI) && !(ap->mcast_all)) {
2770 		cmd.evt = C_SET_MULTICAST_MODE;
2771 		cmd.code = C_C_MCAST_ENABLE;
2772 		cmd.idx = 0;
2773 		ace_issue_cmd(regs, &cmd);
2774 		ap->mcast_all = 1;
2775 	} else if (ap->mcast_all) {
2776 		cmd.evt = C_SET_MULTICAST_MODE;
2777 		cmd.code = C_C_MCAST_DISABLE;
2778 		cmd.idx = 0;
2779 		ace_issue_cmd(regs, &cmd);
2780 		ap->mcast_all = 0;
2781 	}
2782 
2783 	if ((dev->flags & IFF_PROMISC) && !(ap->promisc)) {
2784 		cmd.evt = C_SET_PROMISC_MODE;
2785 		cmd.code = C_C_PROMISC_ENABLE;
2786 		cmd.idx = 0;
2787 		ace_issue_cmd(regs, &cmd);
2788 		ap->promisc = 1;
2789 	}else if (!(dev->flags & IFF_PROMISC) && (ap->promisc)) {
2790 		cmd.evt = C_SET_PROMISC_MODE;
2791 		cmd.code = C_C_PROMISC_DISABLE;
2792 		cmd.idx = 0;
2793 		ace_issue_cmd(regs, &cmd);
2794 		ap->promisc = 0;
2795 	}
2796 
2797 	/*
2798 	 * For the time being multicast relies on the upper layers
2799 	 * filtering it properly. The Firmware does not allow one to
2800 	 * set the entire multicast list at a time and keeping track of
2801 	 * it here is going to be messy.
2802 	 */
2803 	if (!netdev_mc_empty(dev) && !ap->mcast_all) {
2804 		cmd.evt = C_SET_MULTICAST_MODE;
2805 		cmd.code = C_C_MCAST_ENABLE;
2806 		cmd.idx = 0;
2807 		ace_issue_cmd(regs, &cmd);
2808 	}else if (!ap->mcast_all) {
2809 		cmd.evt = C_SET_MULTICAST_MODE;
2810 		cmd.code = C_C_MCAST_DISABLE;
2811 		cmd.idx = 0;
2812 		ace_issue_cmd(regs, &cmd);
2813 	}
2814 }
2815 
2816 
2817 static struct net_device_stats *ace_get_stats(struct net_device *dev)
2818 {
2819 	struct ace_private *ap = netdev_priv(dev);
2820 	struct ace_mac_stats __iomem *mac_stats =
2821 		(struct ace_mac_stats __iomem *)ap->regs->Stats;
2822 
2823 	dev->stats.rx_missed_errors = readl(&mac_stats->drop_space);
2824 	dev->stats.multicast = readl(&mac_stats->kept_mc);
2825 	dev->stats.collisions = readl(&mac_stats->coll);
2826 
2827 	return &dev->stats;
2828 }
2829 
2830 
2831 static void __devinit ace_copy(struct ace_regs __iomem *regs, const __be32 *src,
2832 			       u32 dest, int size)
2833 {
2834 	void __iomem *tdest;
2835 	short tsize, i;
2836 
2837 	if (size <= 0)
2838 		return;
2839 
2840 	while (size > 0) {
2841 		tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
2842 			    min_t(u32, size, ACE_WINDOW_SIZE));
2843 		tdest = (void __iomem *) &regs->Window +
2844 			(dest & (ACE_WINDOW_SIZE - 1));
2845 		writel(dest & ~(ACE_WINDOW_SIZE - 1), &regs->WinBase);
2846 		for (i = 0; i < (tsize / 4); i++) {
2847 			/* Firmware is big-endian */
2848 			writel(be32_to_cpup(src), tdest);
2849 			src++;
2850 			tdest += 4;
2851 			dest += 4;
2852 			size -= 4;
2853 		}
2854 	}
2855 }
2856 
2857 
2858 static void __devinit ace_clear(struct ace_regs __iomem *regs, u32 dest, int size)
2859 {
2860 	void __iomem *tdest;
2861 	short tsize = 0, i;
2862 
2863 	if (size <= 0)
2864 		return;
2865 
2866 	while (size > 0) {
2867 		tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
2868 				min_t(u32, size, ACE_WINDOW_SIZE));
2869 		tdest = (void __iomem *) &regs->Window +
2870 			(dest & (ACE_WINDOW_SIZE - 1));
2871 		writel(dest & ~(ACE_WINDOW_SIZE - 1), &regs->WinBase);
2872 
2873 		for (i = 0; i < (tsize / 4); i++) {
2874 			writel(0, tdest + i*4);
2875 		}
2876 
2877 		dest += tsize;
2878 		size -= tsize;
2879 	}
2880 }
2881 
2882 
2883 /*
2884  * Download the firmware into the SRAM on the NIC
2885  *
2886  * This operation requires the NIC to be halted and is performed with
2887  * interrupts disabled and with the spinlock hold.
2888  */
2889 static int __devinit ace_load_firmware(struct net_device *dev)
2890 {
2891 	const struct firmware *fw;
2892 	const char *fw_name = "acenic/tg2.bin";
2893 	struct ace_private *ap = netdev_priv(dev);
2894 	struct ace_regs __iomem *regs = ap->regs;
2895 	const __be32 *fw_data;
2896 	u32 load_addr;
2897 	int ret;
2898 
2899 	if (!(readl(&regs->CpuCtrl) & CPU_HALTED)) {
2900 		printk(KERN_ERR "%s: trying to download firmware while the "
2901 		       "CPU is running!\n", ap->name);
2902 		return -EFAULT;
2903 	}
2904 
2905 	if (ACE_IS_TIGON_I(ap))
2906 		fw_name = "acenic/tg1.bin";
2907 
2908 	ret = request_firmware(&fw, fw_name, &ap->pdev->dev);
2909 	if (ret) {
2910 		printk(KERN_ERR "%s: Failed to load firmware \"%s\"\n",
2911 		       ap->name, fw_name);
2912 		return ret;
2913 	}
2914 
2915 	fw_data = (void *)fw->data;
2916 
2917 	/* Firmware blob starts with version numbers, followed by
2918 	   load and start address. Remainder is the blob to be loaded
2919 	   contiguously from load address. We don't bother to represent
2920 	   the BSS/SBSS sections any more, since we were clearing the
2921 	   whole thing anyway. */
2922 	ap->firmware_major = fw->data[0];
2923 	ap->firmware_minor = fw->data[1];
2924 	ap->firmware_fix = fw->data[2];
2925 
2926 	ap->firmware_start = be32_to_cpu(fw_data[1]);
2927 	if (ap->firmware_start < 0x4000 || ap->firmware_start >= 0x80000) {
2928 		printk(KERN_ERR "%s: bogus load address %08x in \"%s\"\n",
2929 		       ap->name, ap->firmware_start, fw_name);
2930 		ret = -EINVAL;
2931 		goto out;
2932 	}
2933 
2934 	load_addr = be32_to_cpu(fw_data[2]);
2935 	if (load_addr < 0x4000 || load_addr >= 0x80000) {
2936 		printk(KERN_ERR "%s: bogus load address %08x in \"%s\"\n",
2937 		       ap->name, load_addr, fw_name);
2938 		ret = -EINVAL;
2939 		goto out;
2940 	}
2941 
2942 	/*
2943 	 * Do not try to clear more than 512KiB or we end up seeing
2944 	 * funny things on NICs with only 512KiB SRAM
2945 	 */
2946 	ace_clear(regs, 0x2000, 0x80000-0x2000);
2947 	ace_copy(regs, &fw_data[3], load_addr, fw->size-12);
2948  out:
2949 	release_firmware(fw);
2950 	return ret;
2951 }
2952 
2953 
2954 /*
2955  * The eeprom on the AceNIC is an Atmel i2c EEPROM.
2956  *
2957  * Accessing the EEPROM is `interesting' to say the least - don't read
2958  * this code right after dinner.
2959  *
2960  * This is all about black magic and bit-banging the device .... I
2961  * wonder in what hospital they have put the guy who designed the i2c
2962  * specs.
2963  *
2964  * Oh yes, this is only the beginning!
2965  *
2966  * Thanks to Stevarino Webinski for helping tracking down the bugs in the
2967  * code i2c readout code by beta testing all my hacks.
2968  */
2969 static void __devinit eeprom_start(struct ace_regs __iomem *regs)
2970 {
2971 	u32 local;
2972 
2973 	readl(&regs->LocalCtrl);
2974 	udelay(ACE_SHORT_DELAY);
2975 	local = readl(&regs->LocalCtrl);
2976 	local |= EEPROM_DATA_OUT | EEPROM_WRITE_ENABLE;
2977 	writel(local, &regs->LocalCtrl);
2978 	readl(&regs->LocalCtrl);
2979 	mb();
2980 	udelay(ACE_SHORT_DELAY);
2981 	local |= EEPROM_CLK_OUT;
2982 	writel(local, &regs->LocalCtrl);
2983 	readl(&regs->LocalCtrl);
2984 	mb();
2985 	udelay(ACE_SHORT_DELAY);
2986 	local &= ~EEPROM_DATA_OUT;
2987 	writel(local, &regs->LocalCtrl);
2988 	readl(&regs->LocalCtrl);
2989 	mb();
2990 	udelay(ACE_SHORT_DELAY);
2991 	local &= ~EEPROM_CLK_OUT;
2992 	writel(local, &regs->LocalCtrl);
2993 	readl(&regs->LocalCtrl);
2994 	mb();
2995 }
2996 
2997 
2998 static void __devinit eeprom_prep(struct ace_regs __iomem *regs, u8 magic)
2999 {
3000 	short i;
3001 	u32 local;
3002 
3003 	udelay(ACE_SHORT_DELAY);
3004 	local = readl(&regs->LocalCtrl);
3005 	local &= ~EEPROM_DATA_OUT;
3006 	local |= EEPROM_WRITE_ENABLE;
3007 	writel(local, &regs->LocalCtrl);
3008 	readl(&regs->LocalCtrl);
3009 	mb();
3010 
3011 	for (i = 0; i < 8; i++, magic <<= 1) {
3012 		udelay(ACE_SHORT_DELAY);
3013 		if (magic & 0x80)
3014 			local |= EEPROM_DATA_OUT;
3015 		else
3016 			local &= ~EEPROM_DATA_OUT;
3017 		writel(local, &regs->LocalCtrl);
3018 		readl(&regs->LocalCtrl);
3019 		mb();
3020 
3021 		udelay(ACE_SHORT_DELAY);
3022 		local |= EEPROM_CLK_OUT;
3023 		writel(local, &regs->LocalCtrl);
3024 		readl(&regs->LocalCtrl);
3025 		mb();
3026 		udelay(ACE_SHORT_DELAY);
3027 		local &= ~(EEPROM_CLK_OUT | EEPROM_DATA_OUT);
3028 		writel(local, &regs->LocalCtrl);
3029 		readl(&regs->LocalCtrl);
3030 		mb();
3031 	}
3032 }
3033 
3034 
3035 static int __devinit eeprom_check_ack(struct ace_regs __iomem *regs)
3036 {
3037 	int state;
3038 	u32 local;
3039 
3040 	local = readl(&regs->LocalCtrl);
3041 	local &= ~EEPROM_WRITE_ENABLE;
3042 	writel(local, &regs->LocalCtrl);
3043 	readl(&regs->LocalCtrl);
3044 	mb();
3045 	udelay(ACE_LONG_DELAY);
3046 	local |= EEPROM_CLK_OUT;
3047 	writel(local, &regs->LocalCtrl);
3048 	readl(&regs->LocalCtrl);
3049 	mb();
3050 	udelay(ACE_SHORT_DELAY);
3051 	/* sample data in middle of high clk */
3052 	state = (readl(&regs->LocalCtrl) & EEPROM_DATA_IN) != 0;
3053 	udelay(ACE_SHORT_DELAY);
3054 	mb();
3055 	writel(readl(&regs->LocalCtrl) & ~EEPROM_CLK_OUT, &regs->LocalCtrl);
3056 	readl(&regs->LocalCtrl);
3057 	mb();
3058 
3059 	return state;
3060 }
3061 
3062 
3063 static void __devinit eeprom_stop(struct ace_regs __iomem *regs)
3064 {
3065 	u32 local;
3066 
3067 	udelay(ACE_SHORT_DELAY);
3068 	local = readl(&regs->LocalCtrl);
3069 	local |= EEPROM_WRITE_ENABLE;
3070 	writel(local, &regs->LocalCtrl);
3071 	readl(&regs->LocalCtrl);
3072 	mb();
3073 	udelay(ACE_SHORT_DELAY);
3074 	local &= ~EEPROM_DATA_OUT;
3075 	writel(local, &regs->LocalCtrl);
3076 	readl(&regs->LocalCtrl);
3077 	mb();
3078 	udelay(ACE_SHORT_DELAY);
3079 	local |= EEPROM_CLK_OUT;
3080 	writel(local, &regs->LocalCtrl);
3081 	readl(&regs->LocalCtrl);
3082 	mb();
3083 	udelay(ACE_SHORT_DELAY);
3084 	local |= EEPROM_DATA_OUT;
3085 	writel(local, &regs->LocalCtrl);
3086 	readl(&regs->LocalCtrl);
3087 	mb();
3088 	udelay(ACE_LONG_DELAY);
3089 	local &= ~EEPROM_CLK_OUT;
3090 	writel(local, &regs->LocalCtrl);
3091 	mb();
3092 }
3093 
3094 
3095 /*
3096  * Read a whole byte from the EEPROM.
3097  */
3098 static int __devinit read_eeprom_byte(struct net_device *dev,
3099 				   unsigned long offset)
3100 {
3101 	struct ace_private *ap = netdev_priv(dev);
3102 	struct ace_regs __iomem *regs = ap->regs;
3103 	unsigned long flags;
3104 	u32 local;
3105 	int result = 0;
3106 	short i;
3107 
3108 	/*
3109 	 * Don't take interrupts on this CPU will bit banging
3110 	 * the %#%#@$ I2C device
3111 	 */
3112 	local_irq_save(flags);
3113 
3114 	eeprom_start(regs);
3115 
3116 	eeprom_prep(regs, EEPROM_WRITE_SELECT);
3117 	if (eeprom_check_ack(regs)) {
3118 		local_irq_restore(flags);
3119 		printk(KERN_ERR "%s: Unable to sync eeprom\n", ap->name);
3120 		result = -EIO;
3121 		goto eeprom_read_error;
3122 	}
3123 
3124 	eeprom_prep(regs, (offset >> 8) & 0xff);
3125 	if (eeprom_check_ack(regs)) {
3126 		local_irq_restore(flags);
3127 		printk(KERN_ERR "%s: Unable to set address byte 0\n",
3128 		       ap->name);
3129 		result = -EIO;
3130 		goto eeprom_read_error;
3131 	}
3132 
3133 	eeprom_prep(regs, offset & 0xff);
3134 	if (eeprom_check_ack(regs)) {
3135 		local_irq_restore(flags);
3136 		printk(KERN_ERR "%s: Unable to set address byte 1\n",
3137 		       ap->name);
3138 		result = -EIO;
3139 		goto eeprom_read_error;
3140 	}
3141 
3142 	eeprom_start(regs);
3143 	eeprom_prep(regs, EEPROM_READ_SELECT);
3144 	if (eeprom_check_ack(regs)) {
3145 		local_irq_restore(flags);
3146 		printk(KERN_ERR "%s: Unable to set READ_SELECT\n",
3147 		       ap->name);
3148 		result = -EIO;
3149 		goto eeprom_read_error;
3150 	}
3151 
3152 	for (i = 0; i < 8; i++) {
3153 		local = readl(&regs->LocalCtrl);
3154 		local &= ~EEPROM_WRITE_ENABLE;
3155 		writel(local, &regs->LocalCtrl);
3156 		readl(&regs->LocalCtrl);
3157 		udelay(ACE_LONG_DELAY);
3158 		mb();
3159 		local |= EEPROM_CLK_OUT;
3160 		writel(local, &regs->LocalCtrl);
3161 		readl(&regs->LocalCtrl);
3162 		mb();
3163 		udelay(ACE_SHORT_DELAY);
3164 		/* sample data mid high clk */
3165 		result = (result << 1) |
3166 			((readl(&regs->LocalCtrl) & EEPROM_DATA_IN) != 0);
3167 		udelay(ACE_SHORT_DELAY);
3168 		mb();
3169 		local = readl(&regs->LocalCtrl);
3170 		local &= ~EEPROM_CLK_OUT;
3171 		writel(local, &regs->LocalCtrl);
3172 		readl(&regs->LocalCtrl);
3173 		udelay(ACE_SHORT_DELAY);
3174 		mb();
3175 		if (i == 7) {
3176 			local |= EEPROM_WRITE_ENABLE;
3177 			writel(local, &regs->LocalCtrl);
3178 			readl(&regs->LocalCtrl);
3179 			mb();
3180 			udelay(ACE_SHORT_DELAY);
3181 		}
3182 	}
3183 
3184 	local |= EEPROM_DATA_OUT;
3185 	writel(local, &regs->LocalCtrl);
3186 	readl(&regs->LocalCtrl);
3187 	mb();
3188 	udelay(ACE_SHORT_DELAY);
3189 	writel(readl(&regs->LocalCtrl) | EEPROM_CLK_OUT, &regs->LocalCtrl);
3190 	readl(&regs->LocalCtrl);
3191 	udelay(ACE_LONG_DELAY);
3192 	writel(readl(&regs->LocalCtrl) & ~EEPROM_CLK_OUT, &regs->LocalCtrl);
3193 	readl(&regs->LocalCtrl);
3194 	mb();
3195 	udelay(ACE_SHORT_DELAY);
3196 	eeprom_stop(regs);
3197 
3198 	local_irq_restore(flags);
3199  out:
3200 	return result;
3201 
3202  eeprom_read_error:
3203 	printk(KERN_ERR "%s: Unable to read eeprom byte 0x%02lx\n",
3204 	       ap->name, offset);
3205 	goto out;
3206 }
3207