1 /* 2 * acenic.c: Linux driver for the Alteon AceNIC Gigabit Ethernet card 3 * and other Tigon based cards. 4 * 5 * Copyright 1998-2002 by Jes Sorensen, <jes@trained-monkey.org>. 6 * 7 * Thanks to Alteon and 3Com for providing hardware and documentation 8 * enabling me to write this driver. 9 * 10 * A mailing list for discussing the use of this driver has been 11 * setup, please subscribe to the lists if you have any questions 12 * about the driver. Send mail to linux-acenic-help@sunsite.auc.dk to 13 * see how to subscribe. 14 * 15 * This program is free software; you can redistribute it and/or modify 16 * it under the terms of the GNU General Public License as published by 17 * the Free Software Foundation; either version 2 of the License, or 18 * (at your option) any later version. 19 * 20 * Additional credits: 21 * Pete Wyckoff <wyckoff@ca.sandia.gov>: Initial Linux/Alpha and trace 22 * dump support. The trace dump support has not been 23 * integrated yet however. 24 * Troy Benjegerdes: Big Endian (PPC) patches. 25 * Nate Stahl: Better out of memory handling and stats support. 26 * Aman Singla: Nasty race between interrupt handler and tx code dealing 27 * with 'testing the tx_ret_csm and setting tx_full' 28 * David S. Miller <davem@redhat.com>: conversion to new PCI dma mapping 29 * infrastructure and Sparc support 30 * Pierrick Pinasseau (CERN): For lending me an Ultra 5 to test the 31 * driver under Linux/Sparc64 32 * Matt Domsch <Matt_Domsch@dell.com>: Detect Alteon 1000baseT cards 33 * ETHTOOL_GDRVINFO support 34 * Chip Salzenberg <chip@valinux.com>: Fix race condition between tx 35 * handler and close() cleanup. 36 * Ken Aaker <kdaaker@rchland.vnet.ibm.com>: Correct check for whether 37 * memory mapped IO is enabled to 38 * make the driver work on RS/6000. 39 * Takayoshi Kouchi <kouchi@hpc.bs1.fc.nec.co.jp>: Identifying problem 40 * where the driver would disable 41 * bus master mode if it had to disable 42 * write and invalidate. 43 * Stephen Hack <stephen_hack@hp.com>: Fixed ace_set_mac_addr for little 44 * endian systems. 45 * Val Henson <vhenson@esscom.com>: Reset Jumbo skb producer and 46 * rx producer index when 47 * flushing the Jumbo ring. 48 * Hans Grobler <grobh@sun.ac.za>: Memory leak fixes in the 49 * driver init path. 50 * Grant Grundler <grundler@cup.hp.com>: PCI write posting fixes. 51 */ 52 53 #include <linux/module.h> 54 #include <linux/moduleparam.h> 55 #include <linux/types.h> 56 #include <linux/errno.h> 57 #include <linux/ioport.h> 58 #include <linux/pci.h> 59 #include <linux/dma-mapping.h> 60 #include <linux/kernel.h> 61 #include <linux/netdevice.h> 62 #include <linux/etherdevice.h> 63 #include <linux/skbuff.h> 64 #include <linux/init.h> 65 #include <linux/delay.h> 66 #include <linux/mm.h> 67 #include <linux/highmem.h> 68 #include <linux/sockios.h> 69 #include <linux/firmware.h> 70 #include <linux/slab.h> 71 #include <linux/prefetch.h> 72 #include <linux/if_vlan.h> 73 74 #ifdef SIOCETHTOOL 75 #include <linux/ethtool.h> 76 #endif 77 78 #include <net/sock.h> 79 #include <net/ip.h> 80 81 #include <asm/system.h> 82 #include <asm/io.h> 83 #include <asm/irq.h> 84 #include <asm/byteorder.h> 85 #include <asm/uaccess.h> 86 87 88 #define DRV_NAME "acenic" 89 90 #undef INDEX_DEBUG 91 92 #ifdef CONFIG_ACENIC_OMIT_TIGON_I 93 #define ACE_IS_TIGON_I(ap) 0 94 #define ACE_TX_RING_ENTRIES(ap) MAX_TX_RING_ENTRIES 95 #else 96 #define ACE_IS_TIGON_I(ap) (ap->version == 1) 97 #define ACE_TX_RING_ENTRIES(ap) ap->tx_ring_entries 98 #endif 99 100 #ifndef PCI_VENDOR_ID_ALTEON 101 #define PCI_VENDOR_ID_ALTEON 0x12ae 102 #endif 103 #ifndef PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE 104 #define PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE 0x0001 105 #define PCI_DEVICE_ID_ALTEON_ACENIC_COPPER 0x0002 106 #endif 107 #ifndef PCI_DEVICE_ID_3COM_3C985 108 #define PCI_DEVICE_ID_3COM_3C985 0x0001 109 #endif 110 #ifndef PCI_VENDOR_ID_NETGEAR 111 #define PCI_VENDOR_ID_NETGEAR 0x1385 112 #define PCI_DEVICE_ID_NETGEAR_GA620 0x620a 113 #endif 114 #ifndef PCI_DEVICE_ID_NETGEAR_GA620T 115 #define PCI_DEVICE_ID_NETGEAR_GA620T 0x630a 116 #endif 117 118 119 /* 120 * Farallon used the DEC vendor ID by mistake and they seem not 121 * to care - stinky! 122 */ 123 #ifndef PCI_DEVICE_ID_FARALLON_PN9000SX 124 #define PCI_DEVICE_ID_FARALLON_PN9000SX 0x1a 125 #endif 126 #ifndef PCI_DEVICE_ID_FARALLON_PN9100T 127 #define PCI_DEVICE_ID_FARALLON_PN9100T 0xfa 128 #endif 129 #ifndef PCI_VENDOR_ID_SGI 130 #define PCI_VENDOR_ID_SGI 0x10a9 131 #endif 132 #ifndef PCI_DEVICE_ID_SGI_ACENIC 133 #define PCI_DEVICE_ID_SGI_ACENIC 0x0009 134 #endif 135 136 static DEFINE_PCI_DEVICE_TABLE(acenic_pci_tbl) = { 137 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE, 138 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, 139 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_COPPER, 140 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, 141 { PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C985, 142 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, 143 { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620, 144 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, 145 { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620T, 146 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, 147 /* 148 * Farallon used the DEC vendor ID on their cards incorrectly, 149 * then later Alteon's ID. 150 */ 151 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_FARALLON_PN9000SX, 152 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, 153 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_FARALLON_PN9100T, 154 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, 155 { PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_ACENIC, 156 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, 157 { } 158 }; 159 MODULE_DEVICE_TABLE(pci, acenic_pci_tbl); 160 161 #define ace_sync_irq(irq) synchronize_irq(irq) 162 163 #ifndef offset_in_page 164 #define offset_in_page(ptr) ((unsigned long)(ptr) & ~PAGE_MASK) 165 #endif 166 167 #define ACE_MAX_MOD_PARMS 8 168 #define BOARD_IDX_STATIC 0 169 #define BOARD_IDX_OVERFLOW -1 170 171 #include "acenic.h" 172 173 /* 174 * These must be defined before the firmware is included. 175 */ 176 #define MAX_TEXT_LEN 96*1024 177 #define MAX_RODATA_LEN 8*1024 178 #define MAX_DATA_LEN 2*1024 179 180 #ifndef tigon2FwReleaseLocal 181 #define tigon2FwReleaseLocal 0 182 #endif 183 184 /* 185 * This driver currently supports Tigon I and Tigon II based cards 186 * including the Alteon AceNIC, the 3Com 3C985[B] and NetGear 187 * GA620. The driver should also work on the SGI, DEC and Farallon 188 * versions of the card, however I have not been able to test that 189 * myself. 190 * 191 * This card is really neat, it supports receive hardware checksumming 192 * and jumbo frames (up to 9000 bytes) and does a lot of work in the 193 * firmware. Also the programming interface is quite neat, except for 194 * the parts dealing with the i2c eeprom on the card ;-) 195 * 196 * Using jumbo frames: 197 * 198 * To enable jumbo frames, simply specify an mtu between 1500 and 9000 199 * bytes to ifconfig. Jumbo frames can be enabled or disabled at any time 200 * by running `ifconfig eth<X> mtu <MTU>' with <X> being the Ethernet 201 * interface number and <MTU> being the MTU value. 202 * 203 * Module parameters: 204 * 205 * When compiled as a loadable module, the driver allows for a number 206 * of module parameters to be specified. The driver supports the 207 * following module parameters: 208 * 209 * trace=<val> - Firmware trace level. This requires special traced 210 * firmware to replace the firmware supplied with 211 * the driver - for debugging purposes only. 212 * 213 * link=<val> - Link state. Normally you want to use the default link 214 * parameters set by the driver. This can be used to 215 * override these in case your switch doesn't negotiate 216 * the link properly. Valid values are: 217 * 0x0001 - Force half duplex link. 218 * 0x0002 - Do not negotiate line speed with the other end. 219 * 0x0010 - 10Mbit/sec link. 220 * 0x0020 - 100Mbit/sec link. 221 * 0x0040 - 1000Mbit/sec link. 222 * 0x0100 - Do not negotiate flow control. 223 * 0x0200 - Enable RX flow control Y 224 * 0x0400 - Enable TX flow control Y (Tigon II NICs only). 225 * Default value is 0x0270, ie. enable link+flow 226 * control negotiation. Negotiating the highest 227 * possible link speed with RX flow control enabled. 228 * 229 * When disabling link speed negotiation, only one link 230 * speed is allowed to be specified! 231 * 232 * tx_coal_tick=<val> - number of coalescing clock ticks (us) allowed 233 * to wait for more packets to arive before 234 * interrupting the host, from the time the first 235 * packet arrives. 236 * 237 * rx_coal_tick=<val> - number of coalescing clock ticks (us) allowed 238 * to wait for more packets to arive in the transmit ring, 239 * before interrupting the host, after transmitting the 240 * first packet in the ring. 241 * 242 * max_tx_desc=<val> - maximum number of transmit descriptors 243 * (packets) transmitted before interrupting the host. 244 * 245 * max_rx_desc=<val> - maximum number of receive descriptors 246 * (packets) received before interrupting the host. 247 * 248 * tx_ratio=<val> - 7 bit value (0 - 63) specifying the split in 64th 249 * increments of the NIC's on board memory to be used for 250 * transmit and receive buffers. For the 1MB NIC app. 800KB 251 * is available, on the 1/2MB NIC app. 300KB is available. 252 * 68KB will always be available as a minimum for both 253 * directions. The default value is a 50/50 split. 254 * dis_pci_mem_inval=<val> - disable PCI memory write and invalidate 255 * operations, default (1) is to always disable this as 256 * that is what Alteon does on NT. I have not been able 257 * to measure any real performance differences with 258 * this on my systems. Set <val>=0 if you want to 259 * enable these operations. 260 * 261 * If you use more than one NIC, specify the parameters for the 262 * individual NICs with a comma, ie. trace=0,0x00001fff,0 you want to 263 * run tracing on NIC #2 but not on NIC #1 and #3. 264 * 265 * TODO: 266 * 267 * - Proper multicast support. 268 * - NIC dump support. 269 * - More tuning parameters. 270 * 271 * The mini ring is not used under Linux and I am not sure it makes sense 272 * to actually use it. 273 * 274 * New interrupt handler strategy: 275 * 276 * The old interrupt handler worked using the traditional method of 277 * replacing an skbuff with a new one when a packet arrives. However 278 * the rx rings do not need to contain a static number of buffer 279 * descriptors, thus it makes sense to move the memory allocation out 280 * of the main interrupt handler and do it in a bottom half handler 281 * and only allocate new buffers when the number of buffers in the 282 * ring is below a certain threshold. In order to avoid starving the 283 * NIC under heavy load it is however necessary to force allocation 284 * when hitting a minimum threshold. The strategy for alloction is as 285 * follows: 286 * 287 * RX_LOW_BUF_THRES - allocate buffers in the bottom half 288 * RX_PANIC_LOW_THRES - we are very low on buffers, allocate 289 * the buffers in the interrupt handler 290 * RX_RING_THRES - maximum number of buffers in the rx ring 291 * RX_MINI_THRES - maximum number of buffers in the mini ring 292 * RX_JUMBO_THRES - maximum number of buffers in the jumbo ring 293 * 294 * One advantagous side effect of this allocation approach is that the 295 * entire rx processing can be done without holding any spin lock 296 * since the rx rings and registers are totally independent of the tx 297 * ring and its registers. This of course includes the kmalloc's of 298 * new skb's. Thus start_xmit can run in parallel with rx processing 299 * and the memory allocation on SMP systems. 300 * 301 * Note that running the skb reallocation in a bottom half opens up 302 * another can of races which needs to be handled properly. In 303 * particular it can happen that the interrupt handler tries to run 304 * the reallocation while the bottom half is either running on another 305 * CPU or was interrupted on the same CPU. To get around this the 306 * driver uses bitops to prevent the reallocation routines from being 307 * reentered. 308 * 309 * TX handling can also be done without holding any spin lock, wheee 310 * this is fun! since tx_ret_csm is only written to by the interrupt 311 * handler. The case to be aware of is when shutting down the device 312 * and cleaning up where it is necessary to make sure that 313 * start_xmit() is not running while this is happening. Well DaveM 314 * informs me that this case is already protected against ... bye bye 315 * Mr. Spin Lock, it was nice to know you. 316 * 317 * TX interrupts are now partly disabled so the NIC will only generate 318 * TX interrupts for the number of coal ticks, not for the number of 319 * TX packets in the queue. This should reduce the number of TX only, 320 * ie. when no RX processing is done, interrupts seen. 321 */ 322 323 /* 324 * Threshold values for RX buffer allocation - the low water marks for 325 * when to start refilling the rings are set to 75% of the ring 326 * sizes. It seems to make sense to refill the rings entirely from the 327 * intrrupt handler once it gets below the panic threshold, that way 328 * we don't risk that the refilling is moved to another CPU when the 329 * one running the interrupt handler just got the slab code hot in its 330 * cache. 331 */ 332 #define RX_RING_SIZE 72 333 #define RX_MINI_SIZE 64 334 #define RX_JUMBO_SIZE 48 335 336 #define RX_PANIC_STD_THRES 16 337 #define RX_PANIC_STD_REFILL (3*RX_PANIC_STD_THRES)/2 338 #define RX_LOW_STD_THRES (3*RX_RING_SIZE)/4 339 #define RX_PANIC_MINI_THRES 12 340 #define RX_PANIC_MINI_REFILL (3*RX_PANIC_MINI_THRES)/2 341 #define RX_LOW_MINI_THRES (3*RX_MINI_SIZE)/4 342 #define RX_PANIC_JUMBO_THRES 6 343 #define RX_PANIC_JUMBO_REFILL (3*RX_PANIC_JUMBO_THRES)/2 344 #define RX_LOW_JUMBO_THRES (3*RX_JUMBO_SIZE)/4 345 346 347 /* 348 * Size of the mini ring entries, basically these just should be big 349 * enough to take TCP ACKs 350 */ 351 #define ACE_MINI_SIZE 100 352 353 #define ACE_MINI_BUFSIZE ACE_MINI_SIZE 354 #define ACE_STD_BUFSIZE (ACE_STD_MTU + ETH_HLEN + 4) 355 #define ACE_JUMBO_BUFSIZE (ACE_JUMBO_MTU + ETH_HLEN + 4) 356 357 /* 358 * There seems to be a magic difference in the effect between 995 and 996 359 * but little difference between 900 and 995 ... no idea why. 360 * 361 * There is now a default set of tuning parameters which is set, depending 362 * on whether or not the user enables Jumbo frames. It's assumed that if 363 * Jumbo frames are enabled, the user wants optimal tuning for that case. 364 */ 365 #define DEF_TX_COAL 400 /* 996 */ 366 #define DEF_TX_MAX_DESC 60 /* was 40 */ 367 #define DEF_RX_COAL 120 /* 1000 */ 368 #define DEF_RX_MAX_DESC 25 369 #define DEF_TX_RATIO 21 /* 24 */ 370 371 #define DEF_JUMBO_TX_COAL 20 372 #define DEF_JUMBO_TX_MAX_DESC 60 373 #define DEF_JUMBO_RX_COAL 30 374 #define DEF_JUMBO_RX_MAX_DESC 6 375 #define DEF_JUMBO_TX_RATIO 21 376 377 #if tigon2FwReleaseLocal < 20001118 378 /* 379 * Standard firmware and early modifications duplicate 380 * IRQ load without this flag (coal timer is never reset). 381 * Note that with this flag tx_coal should be less than 382 * time to xmit full tx ring. 383 * 400usec is not so bad for tx ring size of 128. 384 */ 385 #define TX_COAL_INTS_ONLY 1 /* worth it */ 386 #else 387 /* 388 * With modified firmware, this is not necessary, but still useful. 389 */ 390 #define TX_COAL_INTS_ONLY 1 391 #endif 392 393 #define DEF_TRACE 0 394 #define DEF_STAT (2 * TICKS_PER_SEC) 395 396 397 static int link_state[ACE_MAX_MOD_PARMS]; 398 static int trace[ACE_MAX_MOD_PARMS]; 399 static int tx_coal_tick[ACE_MAX_MOD_PARMS]; 400 static int rx_coal_tick[ACE_MAX_MOD_PARMS]; 401 static int max_tx_desc[ACE_MAX_MOD_PARMS]; 402 static int max_rx_desc[ACE_MAX_MOD_PARMS]; 403 static int tx_ratio[ACE_MAX_MOD_PARMS]; 404 static int dis_pci_mem_inval[ACE_MAX_MOD_PARMS] = {1, 1, 1, 1, 1, 1, 1, 1}; 405 406 MODULE_AUTHOR("Jes Sorensen <jes@trained-monkey.org>"); 407 MODULE_LICENSE("GPL"); 408 MODULE_DESCRIPTION("AceNIC/3C985/GA620 Gigabit Ethernet driver"); 409 #ifndef CONFIG_ACENIC_OMIT_TIGON_I 410 MODULE_FIRMWARE("acenic/tg1.bin"); 411 #endif 412 MODULE_FIRMWARE("acenic/tg2.bin"); 413 414 module_param_array_named(link, link_state, int, NULL, 0); 415 module_param_array(trace, int, NULL, 0); 416 module_param_array(tx_coal_tick, int, NULL, 0); 417 module_param_array(max_tx_desc, int, NULL, 0); 418 module_param_array(rx_coal_tick, int, NULL, 0); 419 module_param_array(max_rx_desc, int, NULL, 0); 420 module_param_array(tx_ratio, int, NULL, 0); 421 MODULE_PARM_DESC(link, "AceNIC/3C985/NetGear link state"); 422 MODULE_PARM_DESC(trace, "AceNIC/3C985/NetGear firmware trace level"); 423 MODULE_PARM_DESC(tx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first tx descriptor arrives"); 424 MODULE_PARM_DESC(max_tx_desc, "AceNIC/3C985/GA620 max number of transmit descriptors to wait"); 425 MODULE_PARM_DESC(rx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first rx descriptor arrives"); 426 MODULE_PARM_DESC(max_rx_desc, "AceNIC/3C985/GA620 max number of receive descriptors to wait"); 427 MODULE_PARM_DESC(tx_ratio, "AceNIC/3C985/GA620 ratio of NIC memory used for TX/RX descriptors (range 0-63)"); 428 429 430 static const char version[] __devinitconst = 431 "acenic.c: v0.92 08/05/2002 Jes Sorensen, linux-acenic@SunSITE.dk\n" 432 " http://home.cern.ch/~jes/gige/acenic.html\n"; 433 434 static int ace_get_settings(struct net_device *, struct ethtool_cmd *); 435 static int ace_set_settings(struct net_device *, struct ethtool_cmd *); 436 static void ace_get_drvinfo(struct net_device *, struct ethtool_drvinfo *); 437 438 static const struct ethtool_ops ace_ethtool_ops = { 439 .get_settings = ace_get_settings, 440 .set_settings = ace_set_settings, 441 .get_drvinfo = ace_get_drvinfo, 442 }; 443 444 static void ace_watchdog(struct net_device *dev); 445 446 static const struct net_device_ops ace_netdev_ops = { 447 .ndo_open = ace_open, 448 .ndo_stop = ace_close, 449 .ndo_tx_timeout = ace_watchdog, 450 .ndo_get_stats = ace_get_stats, 451 .ndo_start_xmit = ace_start_xmit, 452 .ndo_set_rx_mode = ace_set_multicast_list, 453 .ndo_validate_addr = eth_validate_addr, 454 .ndo_set_mac_address = ace_set_mac_addr, 455 .ndo_change_mtu = ace_change_mtu, 456 }; 457 458 static int __devinit acenic_probe_one(struct pci_dev *pdev, 459 const struct pci_device_id *id) 460 { 461 struct net_device *dev; 462 struct ace_private *ap; 463 static int boards_found; 464 465 dev = alloc_etherdev(sizeof(struct ace_private)); 466 if (dev == NULL) { 467 printk(KERN_ERR "acenic: Unable to allocate " 468 "net_device structure!\n"); 469 return -ENOMEM; 470 } 471 472 SET_NETDEV_DEV(dev, &pdev->dev); 473 474 ap = netdev_priv(dev); 475 ap->pdev = pdev; 476 ap->name = pci_name(pdev); 477 478 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM; 479 dev->features |= NETIF_F_HW_VLAN_TX | NETIF_F_HW_VLAN_RX; 480 481 dev->watchdog_timeo = 5*HZ; 482 483 dev->netdev_ops = &ace_netdev_ops; 484 SET_ETHTOOL_OPS(dev, &ace_ethtool_ops); 485 486 /* we only display this string ONCE */ 487 if (!boards_found) 488 printk(version); 489 490 if (pci_enable_device(pdev)) 491 goto fail_free_netdev; 492 493 /* 494 * Enable master mode before we start playing with the 495 * pci_command word since pci_set_master() will modify 496 * it. 497 */ 498 pci_set_master(pdev); 499 500 pci_read_config_word(pdev, PCI_COMMAND, &ap->pci_command); 501 502 /* OpenFirmware on Mac's does not set this - DOH.. */ 503 if (!(ap->pci_command & PCI_COMMAND_MEMORY)) { 504 printk(KERN_INFO "%s: Enabling PCI Memory Mapped " 505 "access - was not enabled by BIOS/Firmware\n", 506 ap->name); 507 ap->pci_command = ap->pci_command | PCI_COMMAND_MEMORY; 508 pci_write_config_word(ap->pdev, PCI_COMMAND, 509 ap->pci_command); 510 wmb(); 511 } 512 513 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &ap->pci_latency); 514 if (ap->pci_latency <= 0x40) { 515 ap->pci_latency = 0x40; 516 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, ap->pci_latency); 517 } 518 519 /* 520 * Remap the regs into kernel space - this is abuse of 521 * dev->base_addr since it was means for I/O port 522 * addresses but who gives a damn. 523 */ 524 dev->base_addr = pci_resource_start(pdev, 0); 525 ap->regs = ioremap(dev->base_addr, 0x4000); 526 if (!ap->regs) { 527 printk(KERN_ERR "%s: Unable to map I/O register, " 528 "AceNIC %i will be disabled.\n", 529 ap->name, boards_found); 530 goto fail_free_netdev; 531 } 532 533 switch(pdev->vendor) { 534 case PCI_VENDOR_ID_ALTEON: 535 if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9100T) { 536 printk(KERN_INFO "%s: Farallon PN9100-T ", 537 ap->name); 538 } else { 539 printk(KERN_INFO "%s: Alteon AceNIC ", 540 ap->name); 541 } 542 break; 543 case PCI_VENDOR_ID_3COM: 544 printk(KERN_INFO "%s: 3Com 3C985 ", ap->name); 545 break; 546 case PCI_VENDOR_ID_NETGEAR: 547 printk(KERN_INFO "%s: NetGear GA620 ", ap->name); 548 break; 549 case PCI_VENDOR_ID_DEC: 550 if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9000SX) { 551 printk(KERN_INFO "%s: Farallon PN9000-SX ", 552 ap->name); 553 break; 554 } 555 case PCI_VENDOR_ID_SGI: 556 printk(KERN_INFO "%s: SGI AceNIC ", ap->name); 557 break; 558 default: 559 printk(KERN_INFO "%s: Unknown AceNIC ", ap->name); 560 break; 561 } 562 563 printk("Gigabit Ethernet at 0x%08lx, ", dev->base_addr); 564 printk("irq %d\n", pdev->irq); 565 566 #ifdef CONFIG_ACENIC_OMIT_TIGON_I 567 if ((readl(&ap->regs->HostCtrl) >> 28) == 4) { 568 printk(KERN_ERR "%s: Driver compiled without Tigon I" 569 " support - NIC disabled\n", dev->name); 570 goto fail_uninit; 571 } 572 #endif 573 574 if (ace_allocate_descriptors(dev)) 575 goto fail_free_netdev; 576 577 #ifdef MODULE 578 if (boards_found >= ACE_MAX_MOD_PARMS) 579 ap->board_idx = BOARD_IDX_OVERFLOW; 580 else 581 ap->board_idx = boards_found; 582 #else 583 ap->board_idx = BOARD_IDX_STATIC; 584 #endif 585 586 if (ace_init(dev)) 587 goto fail_free_netdev; 588 589 if (register_netdev(dev)) { 590 printk(KERN_ERR "acenic: device registration failed\n"); 591 goto fail_uninit; 592 } 593 ap->name = dev->name; 594 595 if (ap->pci_using_dac) 596 dev->features |= NETIF_F_HIGHDMA; 597 598 pci_set_drvdata(pdev, dev); 599 600 boards_found++; 601 return 0; 602 603 fail_uninit: 604 ace_init_cleanup(dev); 605 fail_free_netdev: 606 free_netdev(dev); 607 return -ENODEV; 608 } 609 610 static void __devexit acenic_remove_one(struct pci_dev *pdev) 611 { 612 struct net_device *dev = pci_get_drvdata(pdev); 613 struct ace_private *ap = netdev_priv(dev); 614 struct ace_regs __iomem *regs = ap->regs; 615 short i; 616 617 unregister_netdev(dev); 618 619 writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl); 620 if (ap->version >= 2) 621 writel(readl(®s->CpuBCtrl) | CPU_HALT, ®s->CpuBCtrl); 622 623 /* 624 * This clears any pending interrupts 625 */ 626 writel(1, ®s->Mb0Lo); 627 readl(®s->CpuCtrl); /* flush */ 628 629 /* 630 * Make sure no other CPUs are processing interrupts 631 * on the card before the buffers are being released. 632 * Otherwise one might experience some `interesting' 633 * effects. 634 * 635 * Then release the RX buffers - jumbo buffers were 636 * already released in ace_close(). 637 */ 638 ace_sync_irq(dev->irq); 639 640 for (i = 0; i < RX_STD_RING_ENTRIES; i++) { 641 struct sk_buff *skb = ap->skb->rx_std_skbuff[i].skb; 642 643 if (skb) { 644 struct ring_info *ringp; 645 dma_addr_t mapping; 646 647 ringp = &ap->skb->rx_std_skbuff[i]; 648 mapping = dma_unmap_addr(ringp, mapping); 649 pci_unmap_page(ap->pdev, mapping, 650 ACE_STD_BUFSIZE, 651 PCI_DMA_FROMDEVICE); 652 653 ap->rx_std_ring[i].size = 0; 654 ap->skb->rx_std_skbuff[i].skb = NULL; 655 dev_kfree_skb(skb); 656 } 657 } 658 659 if (ap->version >= 2) { 660 for (i = 0; i < RX_MINI_RING_ENTRIES; i++) { 661 struct sk_buff *skb = ap->skb->rx_mini_skbuff[i].skb; 662 663 if (skb) { 664 struct ring_info *ringp; 665 dma_addr_t mapping; 666 667 ringp = &ap->skb->rx_mini_skbuff[i]; 668 mapping = dma_unmap_addr(ringp,mapping); 669 pci_unmap_page(ap->pdev, mapping, 670 ACE_MINI_BUFSIZE, 671 PCI_DMA_FROMDEVICE); 672 673 ap->rx_mini_ring[i].size = 0; 674 ap->skb->rx_mini_skbuff[i].skb = NULL; 675 dev_kfree_skb(skb); 676 } 677 } 678 } 679 680 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) { 681 struct sk_buff *skb = ap->skb->rx_jumbo_skbuff[i].skb; 682 if (skb) { 683 struct ring_info *ringp; 684 dma_addr_t mapping; 685 686 ringp = &ap->skb->rx_jumbo_skbuff[i]; 687 mapping = dma_unmap_addr(ringp, mapping); 688 pci_unmap_page(ap->pdev, mapping, 689 ACE_JUMBO_BUFSIZE, 690 PCI_DMA_FROMDEVICE); 691 692 ap->rx_jumbo_ring[i].size = 0; 693 ap->skb->rx_jumbo_skbuff[i].skb = NULL; 694 dev_kfree_skb(skb); 695 } 696 } 697 698 ace_init_cleanup(dev); 699 free_netdev(dev); 700 } 701 702 static struct pci_driver acenic_pci_driver = { 703 .name = "acenic", 704 .id_table = acenic_pci_tbl, 705 .probe = acenic_probe_one, 706 .remove = __devexit_p(acenic_remove_one), 707 }; 708 709 static int __init acenic_init(void) 710 { 711 return pci_register_driver(&acenic_pci_driver); 712 } 713 714 static void __exit acenic_exit(void) 715 { 716 pci_unregister_driver(&acenic_pci_driver); 717 } 718 719 module_init(acenic_init); 720 module_exit(acenic_exit); 721 722 static void ace_free_descriptors(struct net_device *dev) 723 { 724 struct ace_private *ap = netdev_priv(dev); 725 int size; 726 727 if (ap->rx_std_ring != NULL) { 728 size = (sizeof(struct rx_desc) * 729 (RX_STD_RING_ENTRIES + 730 RX_JUMBO_RING_ENTRIES + 731 RX_MINI_RING_ENTRIES + 732 RX_RETURN_RING_ENTRIES)); 733 pci_free_consistent(ap->pdev, size, ap->rx_std_ring, 734 ap->rx_ring_base_dma); 735 ap->rx_std_ring = NULL; 736 ap->rx_jumbo_ring = NULL; 737 ap->rx_mini_ring = NULL; 738 ap->rx_return_ring = NULL; 739 } 740 if (ap->evt_ring != NULL) { 741 size = (sizeof(struct event) * EVT_RING_ENTRIES); 742 pci_free_consistent(ap->pdev, size, ap->evt_ring, 743 ap->evt_ring_dma); 744 ap->evt_ring = NULL; 745 } 746 if (ap->tx_ring != NULL && !ACE_IS_TIGON_I(ap)) { 747 size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES); 748 pci_free_consistent(ap->pdev, size, ap->tx_ring, 749 ap->tx_ring_dma); 750 } 751 ap->tx_ring = NULL; 752 753 if (ap->evt_prd != NULL) { 754 pci_free_consistent(ap->pdev, sizeof(u32), 755 (void *)ap->evt_prd, ap->evt_prd_dma); 756 ap->evt_prd = NULL; 757 } 758 if (ap->rx_ret_prd != NULL) { 759 pci_free_consistent(ap->pdev, sizeof(u32), 760 (void *)ap->rx_ret_prd, 761 ap->rx_ret_prd_dma); 762 ap->rx_ret_prd = NULL; 763 } 764 if (ap->tx_csm != NULL) { 765 pci_free_consistent(ap->pdev, sizeof(u32), 766 (void *)ap->tx_csm, ap->tx_csm_dma); 767 ap->tx_csm = NULL; 768 } 769 } 770 771 772 static int ace_allocate_descriptors(struct net_device *dev) 773 { 774 struct ace_private *ap = netdev_priv(dev); 775 int size; 776 777 size = (sizeof(struct rx_desc) * 778 (RX_STD_RING_ENTRIES + 779 RX_JUMBO_RING_ENTRIES + 780 RX_MINI_RING_ENTRIES + 781 RX_RETURN_RING_ENTRIES)); 782 783 ap->rx_std_ring = pci_alloc_consistent(ap->pdev, size, 784 &ap->rx_ring_base_dma); 785 if (ap->rx_std_ring == NULL) 786 goto fail; 787 788 ap->rx_jumbo_ring = ap->rx_std_ring + RX_STD_RING_ENTRIES; 789 ap->rx_mini_ring = ap->rx_jumbo_ring + RX_JUMBO_RING_ENTRIES; 790 ap->rx_return_ring = ap->rx_mini_ring + RX_MINI_RING_ENTRIES; 791 792 size = (sizeof(struct event) * EVT_RING_ENTRIES); 793 794 ap->evt_ring = pci_alloc_consistent(ap->pdev, size, &ap->evt_ring_dma); 795 796 if (ap->evt_ring == NULL) 797 goto fail; 798 799 /* 800 * Only allocate a host TX ring for the Tigon II, the Tigon I 801 * has to use PCI registers for this ;-( 802 */ 803 if (!ACE_IS_TIGON_I(ap)) { 804 size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES); 805 806 ap->tx_ring = pci_alloc_consistent(ap->pdev, size, 807 &ap->tx_ring_dma); 808 809 if (ap->tx_ring == NULL) 810 goto fail; 811 } 812 813 ap->evt_prd = pci_alloc_consistent(ap->pdev, sizeof(u32), 814 &ap->evt_prd_dma); 815 if (ap->evt_prd == NULL) 816 goto fail; 817 818 ap->rx_ret_prd = pci_alloc_consistent(ap->pdev, sizeof(u32), 819 &ap->rx_ret_prd_dma); 820 if (ap->rx_ret_prd == NULL) 821 goto fail; 822 823 ap->tx_csm = pci_alloc_consistent(ap->pdev, sizeof(u32), 824 &ap->tx_csm_dma); 825 if (ap->tx_csm == NULL) 826 goto fail; 827 828 return 0; 829 830 fail: 831 /* Clean up. */ 832 ace_init_cleanup(dev); 833 return 1; 834 } 835 836 837 /* 838 * Generic cleanup handling data allocated during init. Used when the 839 * module is unloaded or if an error occurs during initialization 840 */ 841 static void ace_init_cleanup(struct net_device *dev) 842 { 843 struct ace_private *ap; 844 845 ap = netdev_priv(dev); 846 847 ace_free_descriptors(dev); 848 849 if (ap->info) 850 pci_free_consistent(ap->pdev, sizeof(struct ace_info), 851 ap->info, ap->info_dma); 852 kfree(ap->skb); 853 kfree(ap->trace_buf); 854 855 if (dev->irq) 856 free_irq(dev->irq, dev); 857 858 iounmap(ap->regs); 859 } 860 861 862 /* 863 * Commands are considered to be slow. 864 */ 865 static inline void ace_issue_cmd(struct ace_regs __iomem *regs, struct cmd *cmd) 866 { 867 u32 idx; 868 869 idx = readl(®s->CmdPrd); 870 871 writel(*(u32 *)(cmd), ®s->CmdRng[idx]); 872 idx = (idx + 1) % CMD_RING_ENTRIES; 873 874 writel(idx, ®s->CmdPrd); 875 } 876 877 878 static int __devinit ace_init(struct net_device *dev) 879 { 880 struct ace_private *ap; 881 struct ace_regs __iomem *regs; 882 struct ace_info *info = NULL; 883 struct pci_dev *pdev; 884 unsigned long myjif; 885 u64 tmp_ptr; 886 u32 tig_ver, mac1, mac2, tmp, pci_state; 887 int board_idx, ecode = 0; 888 short i; 889 unsigned char cache_size; 890 891 ap = netdev_priv(dev); 892 regs = ap->regs; 893 894 board_idx = ap->board_idx; 895 896 /* 897 * aman@sgi.com - its useful to do a NIC reset here to 898 * address the `Firmware not running' problem subsequent 899 * to any crashes involving the NIC 900 */ 901 writel(HW_RESET | (HW_RESET << 24), ®s->HostCtrl); 902 readl(®s->HostCtrl); /* PCI write posting */ 903 udelay(5); 904 905 /* 906 * Don't access any other registers before this point! 907 */ 908 #ifdef __BIG_ENDIAN 909 /* 910 * This will most likely need BYTE_SWAP once we switch 911 * to using __raw_writel() 912 */ 913 writel((WORD_SWAP | CLR_INT | ((WORD_SWAP | CLR_INT) << 24)), 914 ®s->HostCtrl); 915 #else 916 writel((CLR_INT | WORD_SWAP | ((CLR_INT | WORD_SWAP) << 24)), 917 ®s->HostCtrl); 918 #endif 919 readl(®s->HostCtrl); /* PCI write posting */ 920 921 /* 922 * Stop the NIC CPU and clear pending interrupts 923 */ 924 writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl); 925 readl(®s->CpuCtrl); /* PCI write posting */ 926 writel(0, ®s->Mb0Lo); 927 928 tig_ver = readl(®s->HostCtrl) >> 28; 929 930 switch(tig_ver){ 931 #ifndef CONFIG_ACENIC_OMIT_TIGON_I 932 case 4: 933 case 5: 934 printk(KERN_INFO " Tigon I (Rev. %i), Firmware: %i.%i.%i, ", 935 tig_ver, ap->firmware_major, ap->firmware_minor, 936 ap->firmware_fix); 937 writel(0, ®s->LocalCtrl); 938 ap->version = 1; 939 ap->tx_ring_entries = TIGON_I_TX_RING_ENTRIES; 940 break; 941 #endif 942 case 6: 943 printk(KERN_INFO " Tigon II (Rev. %i), Firmware: %i.%i.%i, ", 944 tig_ver, ap->firmware_major, ap->firmware_minor, 945 ap->firmware_fix); 946 writel(readl(®s->CpuBCtrl) | CPU_HALT, ®s->CpuBCtrl); 947 readl(®s->CpuBCtrl); /* PCI write posting */ 948 /* 949 * The SRAM bank size does _not_ indicate the amount 950 * of memory on the card, it controls the _bank_ size! 951 * Ie. a 1MB AceNIC will have two banks of 512KB. 952 */ 953 writel(SRAM_BANK_512K, ®s->LocalCtrl); 954 writel(SYNC_SRAM_TIMING, ®s->MiscCfg); 955 ap->version = 2; 956 ap->tx_ring_entries = MAX_TX_RING_ENTRIES; 957 break; 958 default: 959 printk(KERN_WARNING " Unsupported Tigon version detected " 960 "(%i)\n", tig_ver); 961 ecode = -ENODEV; 962 goto init_error; 963 } 964 965 /* 966 * ModeStat _must_ be set after the SRAM settings as this change 967 * seems to corrupt the ModeStat and possible other registers. 968 * The SRAM settings survive resets and setting it to the same 969 * value a second time works as well. This is what caused the 970 * `Firmware not running' problem on the Tigon II. 971 */ 972 #ifdef __BIG_ENDIAN 973 writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | ACE_BYTE_SWAP_BD | 974 ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, ®s->ModeStat); 975 #else 976 writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | 977 ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, ®s->ModeStat); 978 #endif 979 readl(®s->ModeStat); /* PCI write posting */ 980 981 mac1 = 0; 982 for(i = 0; i < 4; i++) { 983 int t; 984 985 mac1 = mac1 << 8; 986 t = read_eeprom_byte(dev, 0x8c+i); 987 if (t < 0) { 988 ecode = -EIO; 989 goto init_error; 990 } else 991 mac1 |= (t & 0xff); 992 } 993 mac2 = 0; 994 for(i = 4; i < 8; i++) { 995 int t; 996 997 mac2 = mac2 << 8; 998 t = read_eeprom_byte(dev, 0x8c+i); 999 if (t < 0) { 1000 ecode = -EIO; 1001 goto init_error; 1002 } else 1003 mac2 |= (t & 0xff); 1004 } 1005 1006 writel(mac1, ®s->MacAddrHi); 1007 writel(mac2, ®s->MacAddrLo); 1008 1009 dev->dev_addr[0] = (mac1 >> 8) & 0xff; 1010 dev->dev_addr[1] = mac1 & 0xff; 1011 dev->dev_addr[2] = (mac2 >> 24) & 0xff; 1012 dev->dev_addr[3] = (mac2 >> 16) & 0xff; 1013 dev->dev_addr[4] = (mac2 >> 8) & 0xff; 1014 dev->dev_addr[5] = mac2 & 0xff; 1015 1016 printk("MAC: %pM\n", dev->dev_addr); 1017 1018 /* 1019 * Looks like this is necessary to deal with on all architectures, 1020 * even this %$#%$# N440BX Intel based thing doesn't get it right. 1021 * Ie. having two NICs in the machine, one will have the cache 1022 * line set at boot time, the other will not. 1023 */ 1024 pdev = ap->pdev; 1025 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache_size); 1026 cache_size <<= 2; 1027 if (cache_size != SMP_CACHE_BYTES) { 1028 printk(KERN_INFO " PCI cache line size set incorrectly " 1029 "(%i bytes) by BIOS/FW, ", cache_size); 1030 if (cache_size > SMP_CACHE_BYTES) 1031 printk("expecting %i\n", SMP_CACHE_BYTES); 1032 else { 1033 printk("correcting to %i\n", SMP_CACHE_BYTES); 1034 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 1035 SMP_CACHE_BYTES >> 2); 1036 } 1037 } 1038 1039 pci_state = readl(®s->PciState); 1040 printk(KERN_INFO " PCI bus width: %i bits, speed: %iMHz, " 1041 "latency: %i clks\n", 1042 (pci_state & PCI_32BIT) ? 32 : 64, 1043 (pci_state & PCI_66MHZ) ? 66 : 33, 1044 ap->pci_latency); 1045 1046 /* 1047 * Set the max DMA transfer size. Seems that for most systems 1048 * the performance is better when no MAX parameter is 1049 * set. However for systems enabling PCI write and invalidate, 1050 * DMA writes must be set to the L1 cache line size to get 1051 * optimal performance. 1052 * 1053 * The default is now to turn the PCI write and invalidate off 1054 * - that is what Alteon does for NT. 1055 */ 1056 tmp = READ_CMD_MEM | WRITE_CMD_MEM; 1057 if (ap->version >= 2) { 1058 tmp |= (MEM_READ_MULTIPLE | (pci_state & PCI_66MHZ)); 1059 /* 1060 * Tuning parameters only supported for 8 cards 1061 */ 1062 if (board_idx == BOARD_IDX_OVERFLOW || 1063 dis_pci_mem_inval[board_idx]) { 1064 if (ap->pci_command & PCI_COMMAND_INVALIDATE) { 1065 ap->pci_command &= ~PCI_COMMAND_INVALIDATE; 1066 pci_write_config_word(pdev, PCI_COMMAND, 1067 ap->pci_command); 1068 printk(KERN_INFO " Disabling PCI memory " 1069 "write and invalidate\n"); 1070 } 1071 } else if (ap->pci_command & PCI_COMMAND_INVALIDATE) { 1072 printk(KERN_INFO " PCI memory write & invalidate " 1073 "enabled by BIOS, enabling counter measures\n"); 1074 1075 switch(SMP_CACHE_BYTES) { 1076 case 16: 1077 tmp |= DMA_WRITE_MAX_16; 1078 break; 1079 case 32: 1080 tmp |= DMA_WRITE_MAX_32; 1081 break; 1082 case 64: 1083 tmp |= DMA_WRITE_MAX_64; 1084 break; 1085 case 128: 1086 tmp |= DMA_WRITE_MAX_128; 1087 break; 1088 default: 1089 printk(KERN_INFO " Cache line size %i not " 1090 "supported, PCI write and invalidate " 1091 "disabled\n", SMP_CACHE_BYTES); 1092 ap->pci_command &= ~PCI_COMMAND_INVALIDATE; 1093 pci_write_config_word(pdev, PCI_COMMAND, 1094 ap->pci_command); 1095 } 1096 } 1097 } 1098 1099 #ifdef __sparc__ 1100 /* 1101 * On this platform, we know what the best dma settings 1102 * are. We use 64-byte maximum bursts, because if we 1103 * burst larger than the cache line size (or even cross 1104 * a 64byte boundary in a single burst) the UltraSparc 1105 * PCI controller will disconnect at 64-byte multiples. 1106 * 1107 * Read-multiple will be properly enabled above, and when 1108 * set will give the PCI controller proper hints about 1109 * prefetching. 1110 */ 1111 tmp &= ~DMA_READ_WRITE_MASK; 1112 tmp |= DMA_READ_MAX_64; 1113 tmp |= DMA_WRITE_MAX_64; 1114 #endif 1115 #ifdef __alpha__ 1116 tmp &= ~DMA_READ_WRITE_MASK; 1117 tmp |= DMA_READ_MAX_128; 1118 /* 1119 * All the docs say MUST NOT. Well, I did. 1120 * Nothing terrible happens, if we load wrong size. 1121 * Bit w&i still works better! 1122 */ 1123 tmp |= DMA_WRITE_MAX_128; 1124 #endif 1125 writel(tmp, ®s->PciState); 1126 1127 #if 0 1128 /* 1129 * The Host PCI bus controller driver has to set FBB. 1130 * If all devices on that PCI bus support FBB, then the controller 1131 * can enable FBB support in the Host PCI Bus controller (or on 1132 * the PCI-PCI bridge if that applies). 1133 * -ggg 1134 */ 1135 /* 1136 * I have received reports from people having problems when this 1137 * bit is enabled. 1138 */ 1139 if (!(ap->pci_command & PCI_COMMAND_FAST_BACK)) { 1140 printk(KERN_INFO " Enabling PCI Fast Back to Back\n"); 1141 ap->pci_command |= PCI_COMMAND_FAST_BACK; 1142 pci_write_config_word(pdev, PCI_COMMAND, ap->pci_command); 1143 } 1144 #endif 1145 1146 /* 1147 * Configure DMA attributes. 1148 */ 1149 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 1150 ap->pci_using_dac = 1; 1151 } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) { 1152 ap->pci_using_dac = 0; 1153 } else { 1154 ecode = -ENODEV; 1155 goto init_error; 1156 } 1157 1158 /* 1159 * Initialize the generic info block and the command+event rings 1160 * and the control blocks for the transmit and receive rings 1161 * as they need to be setup once and for all. 1162 */ 1163 if (!(info = pci_alloc_consistent(ap->pdev, sizeof(struct ace_info), 1164 &ap->info_dma))) { 1165 ecode = -EAGAIN; 1166 goto init_error; 1167 } 1168 ap->info = info; 1169 1170 /* 1171 * Get the memory for the skb rings. 1172 */ 1173 if (!(ap->skb = kmalloc(sizeof(struct ace_skb), GFP_KERNEL))) { 1174 ecode = -EAGAIN; 1175 goto init_error; 1176 } 1177 1178 ecode = request_irq(pdev->irq, ace_interrupt, IRQF_SHARED, 1179 DRV_NAME, dev); 1180 if (ecode) { 1181 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n", 1182 DRV_NAME, pdev->irq); 1183 goto init_error; 1184 } else 1185 dev->irq = pdev->irq; 1186 1187 #ifdef INDEX_DEBUG 1188 spin_lock_init(&ap->debug_lock); 1189 ap->last_tx = ACE_TX_RING_ENTRIES(ap) - 1; 1190 ap->last_std_rx = 0; 1191 ap->last_mini_rx = 0; 1192 #endif 1193 1194 memset(ap->info, 0, sizeof(struct ace_info)); 1195 memset(ap->skb, 0, sizeof(struct ace_skb)); 1196 1197 ecode = ace_load_firmware(dev); 1198 if (ecode) 1199 goto init_error; 1200 1201 ap->fw_running = 0; 1202 1203 tmp_ptr = ap->info_dma; 1204 writel(tmp_ptr >> 32, ®s->InfoPtrHi); 1205 writel(tmp_ptr & 0xffffffff, ®s->InfoPtrLo); 1206 1207 memset(ap->evt_ring, 0, EVT_RING_ENTRIES * sizeof(struct event)); 1208 1209 set_aceaddr(&info->evt_ctrl.rngptr, ap->evt_ring_dma); 1210 info->evt_ctrl.flags = 0; 1211 1212 *(ap->evt_prd) = 0; 1213 wmb(); 1214 set_aceaddr(&info->evt_prd_ptr, ap->evt_prd_dma); 1215 writel(0, ®s->EvtCsm); 1216 1217 set_aceaddr(&info->cmd_ctrl.rngptr, 0x100); 1218 info->cmd_ctrl.flags = 0; 1219 info->cmd_ctrl.max_len = 0; 1220 1221 for (i = 0; i < CMD_RING_ENTRIES; i++) 1222 writel(0, ®s->CmdRng[i]); 1223 1224 writel(0, ®s->CmdPrd); 1225 writel(0, ®s->CmdCsm); 1226 1227 tmp_ptr = ap->info_dma; 1228 tmp_ptr += (unsigned long) &(((struct ace_info *)0)->s.stats); 1229 set_aceaddr(&info->stats2_ptr, (dma_addr_t) tmp_ptr); 1230 1231 set_aceaddr(&info->rx_std_ctrl.rngptr, ap->rx_ring_base_dma); 1232 info->rx_std_ctrl.max_len = ACE_STD_BUFSIZE; 1233 info->rx_std_ctrl.flags = 1234 RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST; 1235 1236 memset(ap->rx_std_ring, 0, 1237 RX_STD_RING_ENTRIES * sizeof(struct rx_desc)); 1238 1239 for (i = 0; i < RX_STD_RING_ENTRIES; i++) 1240 ap->rx_std_ring[i].flags = BD_FLG_TCP_UDP_SUM; 1241 1242 ap->rx_std_skbprd = 0; 1243 atomic_set(&ap->cur_rx_bufs, 0); 1244 1245 set_aceaddr(&info->rx_jumbo_ctrl.rngptr, 1246 (ap->rx_ring_base_dma + 1247 (sizeof(struct rx_desc) * RX_STD_RING_ENTRIES))); 1248 info->rx_jumbo_ctrl.max_len = 0; 1249 info->rx_jumbo_ctrl.flags = 1250 RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST; 1251 1252 memset(ap->rx_jumbo_ring, 0, 1253 RX_JUMBO_RING_ENTRIES * sizeof(struct rx_desc)); 1254 1255 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) 1256 ap->rx_jumbo_ring[i].flags = BD_FLG_TCP_UDP_SUM | BD_FLG_JUMBO; 1257 1258 ap->rx_jumbo_skbprd = 0; 1259 atomic_set(&ap->cur_jumbo_bufs, 0); 1260 1261 memset(ap->rx_mini_ring, 0, 1262 RX_MINI_RING_ENTRIES * sizeof(struct rx_desc)); 1263 1264 if (ap->version >= 2) { 1265 set_aceaddr(&info->rx_mini_ctrl.rngptr, 1266 (ap->rx_ring_base_dma + 1267 (sizeof(struct rx_desc) * 1268 (RX_STD_RING_ENTRIES + 1269 RX_JUMBO_RING_ENTRIES)))); 1270 info->rx_mini_ctrl.max_len = ACE_MINI_SIZE; 1271 info->rx_mini_ctrl.flags = 1272 RCB_FLG_TCP_UDP_SUM|RCB_FLG_NO_PSEUDO_HDR|RCB_FLG_VLAN_ASSIST; 1273 1274 for (i = 0; i < RX_MINI_RING_ENTRIES; i++) 1275 ap->rx_mini_ring[i].flags = 1276 BD_FLG_TCP_UDP_SUM | BD_FLG_MINI; 1277 } else { 1278 set_aceaddr(&info->rx_mini_ctrl.rngptr, 0); 1279 info->rx_mini_ctrl.flags = RCB_FLG_RNG_DISABLE; 1280 info->rx_mini_ctrl.max_len = 0; 1281 } 1282 1283 ap->rx_mini_skbprd = 0; 1284 atomic_set(&ap->cur_mini_bufs, 0); 1285 1286 set_aceaddr(&info->rx_return_ctrl.rngptr, 1287 (ap->rx_ring_base_dma + 1288 (sizeof(struct rx_desc) * 1289 (RX_STD_RING_ENTRIES + 1290 RX_JUMBO_RING_ENTRIES + 1291 RX_MINI_RING_ENTRIES)))); 1292 info->rx_return_ctrl.flags = 0; 1293 info->rx_return_ctrl.max_len = RX_RETURN_RING_ENTRIES; 1294 1295 memset(ap->rx_return_ring, 0, 1296 RX_RETURN_RING_ENTRIES * sizeof(struct rx_desc)); 1297 1298 set_aceaddr(&info->rx_ret_prd_ptr, ap->rx_ret_prd_dma); 1299 *(ap->rx_ret_prd) = 0; 1300 1301 writel(TX_RING_BASE, ®s->WinBase); 1302 1303 if (ACE_IS_TIGON_I(ap)) { 1304 ap->tx_ring = (__force struct tx_desc *) regs->Window; 1305 for (i = 0; i < (TIGON_I_TX_RING_ENTRIES 1306 * sizeof(struct tx_desc)) / sizeof(u32); i++) 1307 writel(0, (__force void __iomem *)ap->tx_ring + i * 4); 1308 1309 set_aceaddr(&info->tx_ctrl.rngptr, TX_RING_BASE); 1310 } else { 1311 memset(ap->tx_ring, 0, 1312 MAX_TX_RING_ENTRIES * sizeof(struct tx_desc)); 1313 1314 set_aceaddr(&info->tx_ctrl.rngptr, ap->tx_ring_dma); 1315 } 1316 1317 info->tx_ctrl.max_len = ACE_TX_RING_ENTRIES(ap); 1318 tmp = RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST; 1319 1320 /* 1321 * The Tigon I does not like having the TX ring in host memory ;-( 1322 */ 1323 if (!ACE_IS_TIGON_I(ap)) 1324 tmp |= RCB_FLG_TX_HOST_RING; 1325 #if TX_COAL_INTS_ONLY 1326 tmp |= RCB_FLG_COAL_INT_ONLY; 1327 #endif 1328 info->tx_ctrl.flags = tmp; 1329 1330 set_aceaddr(&info->tx_csm_ptr, ap->tx_csm_dma); 1331 1332 /* 1333 * Potential item for tuning parameter 1334 */ 1335 #if 0 /* NO */ 1336 writel(DMA_THRESH_16W, ®s->DmaReadCfg); 1337 writel(DMA_THRESH_16W, ®s->DmaWriteCfg); 1338 #else 1339 writel(DMA_THRESH_8W, ®s->DmaReadCfg); 1340 writel(DMA_THRESH_8W, ®s->DmaWriteCfg); 1341 #endif 1342 1343 writel(0, ®s->MaskInt); 1344 writel(1, ®s->IfIdx); 1345 #if 0 1346 /* 1347 * McKinley boxes do not like us fiddling with AssistState 1348 * this early 1349 */ 1350 writel(1, ®s->AssistState); 1351 #endif 1352 1353 writel(DEF_STAT, ®s->TuneStatTicks); 1354 writel(DEF_TRACE, ®s->TuneTrace); 1355 1356 ace_set_rxtx_parms(dev, 0); 1357 1358 if (board_idx == BOARD_IDX_OVERFLOW) { 1359 printk(KERN_WARNING "%s: more than %i NICs detected, " 1360 "ignoring module parameters!\n", 1361 ap->name, ACE_MAX_MOD_PARMS); 1362 } else if (board_idx >= 0) { 1363 if (tx_coal_tick[board_idx]) 1364 writel(tx_coal_tick[board_idx], 1365 ®s->TuneTxCoalTicks); 1366 if (max_tx_desc[board_idx]) 1367 writel(max_tx_desc[board_idx], ®s->TuneMaxTxDesc); 1368 1369 if (rx_coal_tick[board_idx]) 1370 writel(rx_coal_tick[board_idx], 1371 ®s->TuneRxCoalTicks); 1372 if (max_rx_desc[board_idx]) 1373 writel(max_rx_desc[board_idx], ®s->TuneMaxRxDesc); 1374 1375 if (trace[board_idx]) 1376 writel(trace[board_idx], ®s->TuneTrace); 1377 1378 if ((tx_ratio[board_idx] > 0) && (tx_ratio[board_idx] < 64)) 1379 writel(tx_ratio[board_idx], ®s->TxBufRat); 1380 } 1381 1382 /* 1383 * Default link parameters 1384 */ 1385 tmp = LNK_ENABLE | LNK_FULL_DUPLEX | LNK_1000MB | LNK_100MB | 1386 LNK_10MB | LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL | LNK_NEGOTIATE; 1387 if(ap->version >= 2) 1388 tmp |= LNK_TX_FLOW_CTL_Y; 1389 1390 /* 1391 * Override link default parameters 1392 */ 1393 if ((board_idx >= 0) && link_state[board_idx]) { 1394 int option = link_state[board_idx]; 1395 1396 tmp = LNK_ENABLE; 1397 1398 if (option & 0x01) { 1399 printk(KERN_INFO "%s: Setting half duplex link\n", 1400 ap->name); 1401 tmp &= ~LNK_FULL_DUPLEX; 1402 } 1403 if (option & 0x02) 1404 tmp &= ~LNK_NEGOTIATE; 1405 if (option & 0x10) 1406 tmp |= LNK_10MB; 1407 if (option & 0x20) 1408 tmp |= LNK_100MB; 1409 if (option & 0x40) 1410 tmp |= LNK_1000MB; 1411 if ((option & 0x70) == 0) { 1412 printk(KERN_WARNING "%s: No media speed specified, " 1413 "forcing auto negotiation\n", ap->name); 1414 tmp |= LNK_NEGOTIATE | LNK_1000MB | 1415 LNK_100MB | LNK_10MB; 1416 } 1417 if ((option & 0x100) == 0) 1418 tmp |= LNK_NEG_FCTL; 1419 else 1420 printk(KERN_INFO "%s: Disabling flow control " 1421 "negotiation\n", ap->name); 1422 if (option & 0x200) 1423 tmp |= LNK_RX_FLOW_CTL_Y; 1424 if ((option & 0x400) && (ap->version >= 2)) { 1425 printk(KERN_INFO "%s: Enabling TX flow control\n", 1426 ap->name); 1427 tmp |= LNK_TX_FLOW_CTL_Y; 1428 } 1429 } 1430 1431 ap->link = tmp; 1432 writel(tmp, ®s->TuneLink); 1433 if (ap->version >= 2) 1434 writel(tmp, ®s->TuneFastLink); 1435 1436 writel(ap->firmware_start, ®s->Pc); 1437 1438 writel(0, ®s->Mb0Lo); 1439 1440 /* 1441 * Set tx_csm before we start receiving interrupts, otherwise 1442 * the interrupt handler might think it is supposed to process 1443 * tx ints before we are up and running, which may cause a null 1444 * pointer access in the int handler. 1445 */ 1446 ap->cur_rx = 0; 1447 ap->tx_prd = *(ap->tx_csm) = ap->tx_ret_csm = 0; 1448 1449 wmb(); 1450 ace_set_txprd(regs, ap, 0); 1451 writel(0, ®s->RxRetCsm); 1452 1453 /* 1454 * Enable DMA engine now. 1455 * If we do this sooner, Mckinley box pukes. 1456 * I assume it's because Tigon II DMA engine wants to check 1457 * *something* even before the CPU is started. 1458 */ 1459 writel(1, ®s->AssistState); /* enable DMA */ 1460 1461 /* 1462 * Start the NIC CPU 1463 */ 1464 writel(readl(®s->CpuCtrl) & ~(CPU_HALT|CPU_TRACE), ®s->CpuCtrl); 1465 readl(®s->CpuCtrl); 1466 1467 /* 1468 * Wait for the firmware to spin up - max 3 seconds. 1469 */ 1470 myjif = jiffies + 3 * HZ; 1471 while (time_before(jiffies, myjif) && !ap->fw_running) 1472 cpu_relax(); 1473 1474 if (!ap->fw_running) { 1475 printk(KERN_ERR "%s: Firmware NOT running!\n", ap->name); 1476 1477 ace_dump_trace(ap); 1478 writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl); 1479 readl(®s->CpuCtrl); 1480 1481 /* aman@sgi.com - account for badly behaving firmware/NIC: 1482 * - have observed that the NIC may continue to generate 1483 * interrupts for some reason; attempt to stop it - halt 1484 * second CPU for Tigon II cards, and also clear Mb0 1485 * - if we're a module, we'll fail to load if this was 1486 * the only GbE card in the system => if the kernel does 1487 * see an interrupt from the NIC, code to handle it is 1488 * gone and OOps! - so free_irq also 1489 */ 1490 if (ap->version >= 2) 1491 writel(readl(®s->CpuBCtrl) | CPU_HALT, 1492 ®s->CpuBCtrl); 1493 writel(0, ®s->Mb0Lo); 1494 readl(®s->Mb0Lo); 1495 1496 ecode = -EBUSY; 1497 goto init_error; 1498 } 1499 1500 /* 1501 * We load the ring here as there seem to be no way to tell the 1502 * firmware to wipe the ring without re-initializing it. 1503 */ 1504 if (!test_and_set_bit(0, &ap->std_refill_busy)) 1505 ace_load_std_rx_ring(dev, RX_RING_SIZE); 1506 else 1507 printk(KERN_ERR "%s: Someone is busy refilling the RX ring\n", 1508 ap->name); 1509 if (ap->version >= 2) { 1510 if (!test_and_set_bit(0, &ap->mini_refill_busy)) 1511 ace_load_mini_rx_ring(dev, RX_MINI_SIZE); 1512 else 1513 printk(KERN_ERR "%s: Someone is busy refilling " 1514 "the RX mini ring\n", ap->name); 1515 } 1516 return 0; 1517 1518 init_error: 1519 ace_init_cleanup(dev); 1520 return ecode; 1521 } 1522 1523 1524 static void ace_set_rxtx_parms(struct net_device *dev, int jumbo) 1525 { 1526 struct ace_private *ap = netdev_priv(dev); 1527 struct ace_regs __iomem *regs = ap->regs; 1528 int board_idx = ap->board_idx; 1529 1530 if (board_idx >= 0) { 1531 if (!jumbo) { 1532 if (!tx_coal_tick[board_idx]) 1533 writel(DEF_TX_COAL, ®s->TuneTxCoalTicks); 1534 if (!max_tx_desc[board_idx]) 1535 writel(DEF_TX_MAX_DESC, ®s->TuneMaxTxDesc); 1536 if (!rx_coal_tick[board_idx]) 1537 writel(DEF_RX_COAL, ®s->TuneRxCoalTicks); 1538 if (!max_rx_desc[board_idx]) 1539 writel(DEF_RX_MAX_DESC, ®s->TuneMaxRxDesc); 1540 if (!tx_ratio[board_idx]) 1541 writel(DEF_TX_RATIO, ®s->TxBufRat); 1542 } else { 1543 if (!tx_coal_tick[board_idx]) 1544 writel(DEF_JUMBO_TX_COAL, 1545 ®s->TuneTxCoalTicks); 1546 if (!max_tx_desc[board_idx]) 1547 writel(DEF_JUMBO_TX_MAX_DESC, 1548 ®s->TuneMaxTxDesc); 1549 if (!rx_coal_tick[board_idx]) 1550 writel(DEF_JUMBO_RX_COAL, 1551 ®s->TuneRxCoalTicks); 1552 if (!max_rx_desc[board_idx]) 1553 writel(DEF_JUMBO_RX_MAX_DESC, 1554 ®s->TuneMaxRxDesc); 1555 if (!tx_ratio[board_idx]) 1556 writel(DEF_JUMBO_TX_RATIO, ®s->TxBufRat); 1557 } 1558 } 1559 } 1560 1561 1562 static void ace_watchdog(struct net_device *data) 1563 { 1564 struct net_device *dev = data; 1565 struct ace_private *ap = netdev_priv(dev); 1566 struct ace_regs __iomem *regs = ap->regs; 1567 1568 /* 1569 * We haven't received a stats update event for more than 2.5 1570 * seconds and there is data in the transmit queue, thus we 1571 * assume the card is stuck. 1572 */ 1573 if (*ap->tx_csm != ap->tx_ret_csm) { 1574 printk(KERN_WARNING "%s: Transmitter is stuck, %08x\n", 1575 dev->name, (unsigned int)readl(®s->HostCtrl)); 1576 /* This can happen due to ieee flow control. */ 1577 } else { 1578 printk(KERN_DEBUG "%s: BUG... transmitter died. Kicking it.\n", 1579 dev->name); 1580 #if 0 1581 netif_wake_queue(dev); 1582 #endif 1583 } 1584 } 1585 1586 1587 static void ace_tasklet(unsigned long arg) 1588 { 1589 struct net_device *dev = (struct net_device *) arg; 1590 struct ace_private *ap = netdev_priv(dev); 1591 int cur_size; 1592 1593 cur_size = atomic_read(&ap->cur_rx_bufs); 1594 if ((cur_size < RX_LOW_STD_THRES) && 1595 !test_and_set_bit(0, &ap->std_refill_busy)) { 1596 #ifdef DEBUG 1597 printk("refilling buffers (current %i)\n", cur_size); 1598 #endif 1599 ace_load_std_rx_ring(dev, RX_RING_SIZE - cur_size); 1600 } 1601 1602 if (ap->version >= 2) { 1603 cur_size = atomic_read(&ap->cur_mini_bufs); 1604 if ((cur_size < RX_LOW_MINI_THRES) && 1605 !test_and_set_bit(0, &ap->mini_refill_busy)) { 1606 #ifdef DEBUG 1607 printk("refilling mini buffers (current %i)\n", 1608 cur_size); 1609 #endif 1610 ace_load_mini_rx_ring(dev, RX_MINI_SIZE - cur_size); 1611 } 1612 } 1613 1614 cur_size = atomic_read(&ap->cur_jumbo_bufs); 1615 if (ap->jumbo && (cur_size < RX_LOW_JUMBO_THRES) && 1616 !test_and_set_bit(0, &ap->jumbo_refill_busy)) { 1617 #ifdef DEBUG 1618 printk("refilling jumbo buffers (current %i)\n", cur_size); 1619 #endif 1620 ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE - cur_size); 1621 } 1622 ap->tasklet_pending = 0; 1623 } 1624 1625 1626 /* 1627 * Copy the contents of the NIC's trace buffer to kernel memory. 1628 */ 1629 static void ace_dump_trace(struct ace_private *ap) 1630 { 1631 #if 0 1632 if (!ap->trace_buf) 1633 if (!(ap->trace_buf = kmalloc(ACE_TRACE_SIZE, GFP_KERNEL))) 1634 return; 1635 #endif 1636 } 1637 1638 1639 /* 1640 * Load the standard rx ring. 1641 * 1642 * Loading rings is safe without holding the spin lock since this is 1643 * done only before the device is enabled, thus no interrupts are 1644 * generated and by the interrupt handler/tasklet handler. 1645 */ 1646 static void ace_load_std_rx_ring(struct net_device *dev, int nr_bufs) 1647 { 1648 struct ace_private *ap = netdev_priv(dev); 1649 struct ace_regs __iomem *regs = ap->regs; 1650 short i, idx; 1651 1652 1653 prefetchw(&ap->cur_rx_bufs); 1654 1655 idx = ap->rx_std_skbprd; 1656 1657 for (i = 0; i < nr_bufs; i++) { 1658 struct sk_buff *skb; 1659 struct rx_desc *rd; 1660 dma_addr_t mapping; 1661 1662 skb = netdev_alloc_skb_ip_align(dev, ACE_STD_BUFSIZE); 1663 if (!skb) 1664 break; 1665 1666 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data), 1667 offset_in_page(skb->data), 1668 ACE_STD_BUFSIZE, 1669 PCI_DMA_FROMDEVICE); 1670 ap->skb->rx_std_skbuff[idx].skb = skb; 1671 dma_unmap_addr_set(&ap->skb->rx_std_skbuff[idx], 1672 mapping, mapping); 1673 1674 rd = &ap->rx_std_ring[idx]; 1675 set_aceaddr(&rd->addr, mapping); 1676 rd->size = ACE_STD_BUFSIZE; 1677 rd->idx = idx; 1678 idx = (idx + 1) % RX_STD_RING_ENTRIES; 1679 } 1680 1681 if (!i) 1682 goto error_out; 1683 1684 atomic_add(i, &ap->cur_rx_bufs); 1685 ap->rx_std_skbprd = idx; 1686 1687 if (ACE_IS_TIGON_I(ap)) { 1688 struct cmd cmd; 1689 cmd.evt = C_SET_RX_PRD_IDX; 1690 cmd.code = 0; 1691 cmd.idx = ap->rx_std_skbprd; 1692 ace_issue_cmd(regs, &cmd); 1693 } else { 1694 writel(idx, ®s->RxStdPrd); 1695 wmb(); 1696 } 1697 1698 out: 1699 clear_bit(0, &ap->std_refill_busy); 1700 return; 1701 1702 error_out: 1703 printk(KERN_INFO "Out of memory when allocating " 1704 "standard receive buffers\n"); 1705 goto out; 1706 } 1707 1708 1709 static void ace_load_mini_rx_ring(struct net_device *dev, int nr_bufs) 1710 { 1711 struct ace_private *ap = netdev_priv(dev); 1712 struct ace_regs __iomem *regs = ap->regs; 1713 short i, idx; 1714 1715 prefetchw(&ap->cur_mini_bufs); 1716 1717 idx = ap->rx_mini_skbprd; 1718 for (i = 0; i < nr_bufs; i++) { 1719 struct sk_buff *skb; 1720 struct rx_desc *rd; 1721 dma_addr_t mapping; 1722 1723 skb = netdev_alloc_skb_ip_align(dev, ACE_MINI_BUFSIZE); 1724 if (!skb) 1725 break; 1726 1727 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data), 1728 offset_in_page(skb->data), 1729 ACE_MINI_BUFSIZE, 1730 PCI_DMA_FROMDEVICE); 1731 ap->skb->rx_mini_skbuff[idx].skb = skb; 1732 dma_unmap_addr_set(&ap->skb->rx_mini_skbuff[idx], 1733 mapping, mapping); 1734 1735 rd = &ap->rx_mini_ring[idx]; 1736 set_aceaddr(&rd->addr, mapping); 1737 rd->size = ACE_MINI_BUFSIZE; 1738 rd->idx = idx; 1739 idx = (idx + 1) % RX_MINI_RING_ENTRIES; 1740 } 1741 1742 if (!i) 1743 goto error_out; 1744 1745 atomic_add(i, &ap->cur_mini_bufs); 1746 1747 ap->rx_mini_skbprd = idx; 1748 1749 writel(idx, ®s->RxMiniPrd); 1750 wmb(); 1751 1752 out: 1753 clear_bit(0, &ap->mini_refill_busy); 1754 return; 1755 error_out: 1756 printk(KERN_INFO "Out of memory when allocating " 1757 "mini receive buffers\n"); 1758 goto out; 1759 } 1760 1761 1762 /* 1763 * Load the jumbo rx ring, this may happen at any time if the MTU 1764 * is changed to a value > 1500. 1765 */ 1766 static void ace_load_jumbo_rx_ring(struct net_device *dev, int nr_bufs) 1767 { 1768 struct ace_private *ap = netdev_priv(dev); 1769 struct ace_regs __iomem *regs = ap->regs; 1770 short i, idx; 1771 1772 idx = ap->rx_jumbo_skbprd; 1773 1774 for (i = 0; i < nr_bufs; i++) { 1775 struct sk_buff *skb; 1776 struct rx_desc *rd; 1777 dma_addr_t mapping; 1778 1779 skb = netdev_alloc_skb_ip_align(dev, ACE_JUMBO_BUFSIZE); 1780 if (!skb) 1781 break; 1782 1783 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data), 1784 offset_in_page(skb->data), 1785 ACE_JUMBO_BUFSIZE, 1786 PCI_DMA_FROMDEVICE); 1787 ap->skb->rx_jumbo_skbuff[idx].skb = skb; 1788 dma_unmap_addr_set(&ap->skb->rx_jumbo_skbuff[idx], 1789 mapping, mapping); 1790 1791 rd = &ap->rx_jumbo_ring[idx]; 1792 set_aceaddr(&rd->addr, mapping); 1793 rd->size = ACE_JUMBO_BUFSIZE; 1794 rd->idx = idx; 1795 idx = (idx + 1) % RX_JUMBO_RING_ENTRIES; 1796 } 1797 1798 if (!i) 1799 goto error_out; 1800 1801 atomic_add(i, &ap->cur_jumbo_bufs); 1802 ap->rx_jumbo_skbprd = idx; 1803 1804 if (ACE_IS_TIGON_I(ap)) { 1805 struct cmd cmd; 1806 cmd.evt = C_SET_RX_JUMBO_PRD_IDX; 1807 cmd.code = 0; 1808 cmd.idx = ap->rx_jumbo_skbprd; 1809 ace_issue_cmd(regs, &cmd); 1810 } else { 1811 writel(idx, ®s->RxJumboPrd); 1812 wmb(); 1813 } 1814 1815 out: 1816 clear_bit(0, &ap->jumbo_refill_busy); 1817 return; 1818 error_out: 1819 if (net_ratelimit()) 1820 printk(KERN_INFO "Out of memory when allocating " 1821 "jumbo receive buffers\n"); 1822 goto out; 1823 } 1824 1825 1826 /* 1827 * All events are considered to be slow (RX/TX ints do not generate 1828 * events) and are handled here, outside the main interrupt handler, 1829 * to reduce the size of the handler. 1830 */ 1831 static u32 ace_handle_event(struct net_device *dev, u32 evtcsm, u32 evtprd) 1832 { 1833 struct ace_private *ap; 1834 1835 ap = netdev_priv(dev); 1836 1837 while (evtcsm != evtprd) { 1838 switch (ap->evt_ring[evtcsm].evt) { 1839 case E_FW_RUNNING: 1840 printk(KERN_INFO "%s: Firmware up and running\n", 1841 ap->name); 1842 ap->fw_running = 1; 1843 wmb(); 1844 break; 1845 case E_STATS_UPDATED: 1846 break; 1847 case E_LNK_STATE: 1848 { 1849 u16 code = ap->evt_ring[evtcsm].code; 1850 switch (code) { 1851 case E_C_LINK_UP: 1852 { 1853 u32 state = readl(&ap->regs->GigLnkState); 1854 printk(KERN_WARNING "%s: Optical link UP " 1855 "(%s Duplex, Flow Control: %s%s)\n", 1856 ap->name, 1857 state & LNK_FULL_DUPLEX ? "Full":"Half", 1858 state & LNK_TX_FLOW_CTL_Y ? "TX " : "", 1859 state & LNK_RX_FLOW_CTL_Y ? "RX" : ""); 1860 break; 1861 } 1862 case E_C_LINK_DOWN: 1863 printk(KERN_WARNING "%s: Optical link DOWN\n", 1864 ap->name); 1865 break; 1866 case E_C_LINK_10_100: 1867 printk(KERN_WARNING "%s: 10/100BaseT link " 1868 "UP\n", ap->name); 1869 break; 1870 default: 1871 printk(KERN_ERR "%s: Unknown optical link " 1872 "state %02x\n", ap->name, code); 1873 } 1874 break; 1875 } 1876 case E_ERROR: 1877 switch(ap->evt_ring[evtcsm].code) { 1878 case E_C_ERR_INVAL_CMD: 1879 printk(KERN_ERR "%s: invalid command error\n", 1880 ap->name); 1881 break; 1882 case E_C_ERR_UNIMP_CMD: 1883 printk(KERN_ERR "%s: unimplemented command " 1884 "error\n", ap->name); 1885 break; 1886 case E_C_ERR_BAD_CFG: 1887 printk(KERN_ERR "%s: bad config error\n", 1888 ap->name); 1889 break; 1890 default: 1891 printk(KERN_ERR "%s: unknown error %02x\n", 1892 ap->name, ap->evt_ring[evtcsm].code); 1893 } 1894 break; 1895 case E_RESET_JUMBO_RNG: 1896 { 1897 int i; 1898 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) { 1899 if (ap->skb->rx_jumbo_skbuff[i].skb) { 1900 ap->rx_jumbo_ring[i].size = 0; 1901 set_aceaddr(&ap->rx_jumbo_ring[i].addr, 0); 1902 dev_kfree_skb(ap->skb->rx_jumbo_skbuff[i].skb); 1903 ap->skb->rx_jumbo_skbuff[i].skb = NULL; 1904 } 1905 } 1906 1907 if (ACE_IS_TIGON_I(ap)) { 1908 struct cmd cmd; 1909 cmd.evt = C_SET_RX_JUMBO_PRD_IDX; 1910 cmd.code = 0; 1911 cmd.idx = 0; 1912 ace_issue_cmd(ap->regs, &cmd); 1913 } else { 1914 writel(0, &((ap->regs)->RxJumboPrd)); 1915 wmb(); 1916 } 1917 1918 ap->jumbo = 0; 1919 ap->rx_jumbo_skbprd = 0; 1920 printk(KERN_INFO "%s: Jumbo ring flushed\n", 1921 ap->name); 1922 clear_bit(0, &ap->jumbo_refill_busy); 1923 break; 1924 } 1925 default: 1926 printk(KERN_ERR "%s: Unhandled event 0x%02x\n", 1927 ap->name, ap->evt_ring[evtcsm].evt); 1928 } 1929 evtcsm = (evtcsm + 1) % EVT_RING_ENTRIES; 1930 } 1931 1932 return evtcsm; 1933 } 1934 1935 1936 static void ace_rx_int(struct net_device *dev, u32 rxretprd, u32 rxretcsm) 1937 { 1938 struct ace_private *ap = netdev_priv(dev); 1939 u32 idx; 1940 int mini_count = 0, std_count = 0; 1941 1942 idx = rxretcsm; 1943 1944 prefetchw(&ap->cur_rx_bufs); 1945 prefetchw(&ap->cur_mini_bufs); 1946 1947 while (idx != rxretprd) { 1948 struct ring_info *rip; 1949 struct sk_buff *skb; 1950 struct rx_desc *rxdesc, *retdesc; 1951 u32 skbidx; 1952 int bd_flags, desc_type, mapsize; 1953 u16 csum; 1954 1955 1956 /* make sure the rx descriptor isn't read before rxretprd */ 1957 if (idx == rxretcsm) 1958 rmb(); 1959 1960 retdesc = &ap->rx_return_ring[idx]; 1961 skbidx = retdesc->idx; 1962 bd_flags = retdesc->flags; 1963 desc_type = bd_flags & (BD_FLG_JUMBO | BD_FLG_MINI); 1964 1965 switch(desc_type) { 1966 /* 1967 * Normal frames do not have any flags set 1968 * 1969 * Mini and normal frames arrive frequently, 1970 * so use a local counter to avoid doing 1971 * atomic operations for each packet arriving. 1972 */ 1973 case 0: 1974 rip = &ap->skb->rx_std_skbuff[skbidx]; 1975 mapsize = ACE_STD_BUFSIZE; 1976 rxdesc = &ap->rx_std_ring[skbidx]; 1977 std_count++; 1978 break; 1979 case BD_FLG_JUMBO: 1980 rip = &ap->skb->rx_jumbo_skbuff[skbidx]; 1981 mapsize = ACE_JUMBO_BUFSIZE; 1982 rxdesc = &ap->rx_jumbo_ring[skbidx]; 1983 atomic_dec(&ap->cur_jumbo_bufs); 1984 break; 1985 case BD_FLG_MINI: 1986 rip = &ap->skb->rx_mini_skbuff[skbidx]; 1987 mapsize = ACE_MINI_BUFSIZE; 1988 rxdesc = &ap->rx_mini_ring[skbidx]; 1989 mini_count++; 1990 break; 1991 default: 1992 printk(KERN_INFO "%s: unknown frame type (0x%02x) " 1993 "returned by NIC\n", dev->name, 1994 retdesc->flags); 1995 goto error; 1996 } 1997 1998 skb = rip->skb; 1999 rip->skb = NULL; 2000 pci_unmap_page(ap->pdev, 2001 dma_unmap_addr(rip, mapping), 2002 mapsize, 2003 PCI_DMA_FROMDEVICE); 2004 skb_put(skb, retdesc->size); 2005 2006 /* 2007 * Fly baby, fly! 2008 */ 2009 csum = retdesc->tcp_udp_csum; 2010 2011 skb->protocol = eth_type_trans(skb, dev); 2012 2013 /* 2014 * Instead of forcing the poor tigon mips cpu to calculate 2015 * pseudo hdr checksum, we do this ourselves. 2016 */ 2017 if (bd_flags & BD_FLG_TCP_UDP_SUM) { 2018 skb->csum = htons(csum); 2019 skb->ip_summed = CHECKSUM_COMPLETE; 2020 } else { 2021 skb_checksum_none_assert(skb); 2022 } 2023 2024 /* send it up */ 2025 if ((bd_flags & BD_FLG_VLAN_TAG)) 2026 __vlan_hwaccel_put_tag(skb, retdesc->vlan); 2027 netif_rx(skb); 2028 2029 dev->stats.rx_packets++; 2030 dev->stats.rx_bytes += retdesc->size; 2031 2032 idx = (idx + 1) % RX_RETURN_RING_ENTRIES; 2033 } 2034 2035 atomic_sub(std_count, &ap->cur_rx_bufs); 2036 if (!ACE_IS_TIGON_I(ap)) 2037 atomic_sub(mini_count, &ap->cur_mini_bufs); 2038 2039 out: 2040 /* 2041 * According to the documentation RxRetCsm is obsolete with 2042 * the 12.3.x Firmware - my Tigon I NICs seem to disagree! 2043 */ 2044 if (ACE_IS_TIGON_I(ap)) { 2045 writel(idx, &ap->regs->RxRetCsm); 2046 } 2047 ap->cur_rx = idx; 2048 2049 return; 2050 error: 2051 idx = rxretprd; 2052 goto out; 2053 } 2054 2055 2056 static inline void ace_tx_int(struct net_device *dev, 2057 u32 txcsm, u32 idx) 2058 { 2059 struct ace_private *ap = netdev_priv(dev); 2060 2061 do { 2062 struct sk_buff *skb; 2063 struct tx_ring_info *info; 2064 2065 info = ap->skb->tx_skbuff + idx; 2066 skb = info->skb; 2067 2068 if (dma_unmap_len(info, maplen)) { 2069 pci_unmap_page(ap->pdev, dma_unmap_addr(info, mapping), 2070 dma_unmap_len(info, maplen), 2071 PCI_DMA_TODEVICE); 2072 dma_unmap_len_set(info, maplen, 0); 2073 } 2074 2075 if (skb) { 2076 dev->stats.tx_packets++; 2077 dev->stats.tx_bytes += skb->len; 2078 dev_kfree_skb_irq(skb); 2079 info->skb = NULL; 2080 } 2081 2082 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap); 2083 } while (idx != txcsm); 2084 2085 if (netif_queue_stopped(dev)) 2086 netif_wake_queue(dev); 2087 2088 wmb(); 2089 ap->tx_ret_csm = txcsm; 2090 2091 /* So... tx_ret_csm is advanced _after_ check for device wakeup. 2092 * 2093 * We could try to make it before. In this case we would get 2094 * the following race condition: hard_start_xmit on other cpu 2095 * enters after we advanced tx_ret_csm and fills space, 2096 * which we have just freed, so that we make illegal device wakeup. 2097 * There is no good way to workaround this (at entry 2098 * to ace_start_xmit detects this condition and prevents 2099 * ring corruption, but it is not a good workaround.) 2100 * 2101 * When tx_ret_csm is advanced after, we wake up device _only_ 2102 * if we really have some space in ring (though the core doing 2103 * hard_start_xmit can see full ring for some period and has to 2104 * synchronize.) Superb. 2105 * BUT! We get another subtle race condition. hard_start_xmit 2106 * may think that ring is full between wakeup and advancing 2107 * tx_ret_csm and will stop device instantly! It is not so bad. 2108 * We are guaranteed that there is something in ring, so that 2109 * the next irq will resume transmission. To speedup this we could 2110 * mark descriptor, which closes ring with BD_FLG_COAL_NOW 2111 * (see ace_start_xmit). 2112 * 2113 * Well, this dilemma exists in all lock-free devices. 2114 * We, following scheme used in drivers by Donald Becker, 2115 * select the least dangerous. 2116 * --ANK 2117 */ 2118 } 2119 2120 2121 static irqreturn_t ace_interrupt(int irq, void *dev_id) 2122 { 2123 struct net_device *dev = (struct net_device *)dev_id; 2124 struct ace_private *ap = netdev_priv(dev); 2125 struct ace_regs __iomem *regs = ap->regs; 2126 u32 idx; 2127 u32 txcsm, rxretcsm, rxretprd; 2128 u32 evtcsm, evtprd; 2129 2130 /* 2131 * In case of PCI shared interrupts or spurious interrupts, 2132 * we want to make sure it is actually our interrupt before 2133 * spending any time in here. 2134 */ 2135 if (!(readl(®s->HostCtrl) & IN_INT)) 2136 return IRQ_NONE; 2137 2138 /* 2139 * ACK intr now. Otherwise we will lose updates to rx_ret_prd, 2140 * which happened _after_ rxretprd = *ap->rx_ret_prd; but before 2141 * writel(0, ®s->Mb0Lo). 2142 * 2143 * "IRQ avoidance" recommended in docs applies to IRQs served 2144 * threads and it is wrong even for that case. 2145 */ 2146 writel(0, ®s->Mb0Lo); 2147 readl(®s->Mb0Lo); 2148 2149 /* 2150 * There is no conflict between transmit handling in 2151 * start_xmit and receive processing, thus there is no reason 2152 * to take a spin lock for RX handling. Wait until we start 2153 * working on the other stuff - hey we don't need a spin lock 2154 * anymore. 2155 */ 2156 rxretprd = *ap->rx_ret_prd; 2157 rxretcsm = ap->cur_rx; 2158 2159 if (rxretprd != rxretcsm) 2160 ace_rx_int(dev, rxretprd, rxretcsm); 2161 2162 txcsm = *ap->tx_csm; 2163 idx = ap->tx_ret_csm; 2164 2165 if (txcsm != idx) { 2166 /* 2167 * If each skb takes only one descriptor this check degenerates 2168 * to identity, because new space has just been opened. 2169 * But if skbs are fragmented we must check that this index 2170 * update releases enough of space, otherwise we just 2171 * wait for device to make more work. 2172 */ 2173 if (!tx_ring_full(ap, txcsm, ap->tx_prd)) 2174 ace_tx_int(dev, txcsm, idx); 2175 } 2176 2177 evtcsm = readl(®s->EvtCsm); 2178 evtprd = *ap->evt_prd; 2179 2180 if (evtcsm != evtprd) { 2181 evtcsm = ace_handle_event(dev, evtcsm, evtprd); 2182 writel(evtcsm, ®s->EvtCsm); 2183 } 2184 2185 /* 2186 * This has to go last in the interrupt handler and run with 2187 * the spin lock released ... what lock? 2188 */ 2189 if (netif_running(dev)) { 2190 int cur_size; 2191 int run_tasklet = 0; 2192 2193 cur_size = atomic_read(&ap->cur_rx_bufs); 2194 if (cur_size < RX_LOW_STD_THRES) { 2195 if ((cur_size < RX_PANIC_STD_THRES) && 2196 !test_and_set_bit(0, &ap->std_refill_busy)) { 2197 #ifdef DEBUG 2198 printk("low on std buffers %i\n", cur_size); 2199 #endif 2200 ace_load_std_rx_ring(dev, 2201 RX_RING_SIZE - cur_size); 2202 } else 2203 run_tasklet = 1; 2204 } 2205 2206 if (!ACE_IS_TIGON_I(ap)) { 2207 cur_size = atomic_read(&ap->cur_mini_bufs); 2208 if (cur_size < RX_LOW_MINI_THRES) { 2209 if ((cur_size < RX_PANIC_MINI_THRES) && 2210 !test_and_set_bit(0, 2211 &ap->mini_refill_busy)) { 2212 #ifdef DEBUG 2213 printk("low on mini buffers %i\n", 2214 cur_size); 2215 #endif 2216 ace_load_mini_rx_ring(dev, 2217 RX_MINI_SIZE - cur_size); 2218 } else 2219 run_tasklet = 1; 2220 } 2221 } 2222 2223 if (ap->jumbo) { 2224 cur_size = atomic_read(&ap->cur_jumbo_bufs); 2225 if (cur_size < RX_LOW_JUMBO_THRES) { 2226 if ((cur_size < RX_PANIC_JUMBO_THRES) && 2227 !test_and_set_bit(0, 2228 &ap->jumbo_refill_busy)){ 2229 #ifdef DEBUG 2230 printk("low on jumbo buffers %i\n", 2231 cur_size); 2232 #endif 2233 ace_load_jumbo_rx_ring(dev, 2234 RX_JUMBO_SIZE - cur_size); 2235 } else 2236 run_tasklet = 1; 2237 } 2238 } 2239 if (run_tasklet && !ap->tasklet_pending) { 2240 ap->tasklet_pending = 1; 2241 tasklet_schedule(&ap->ace_tasklet); 2242 } 2243 } 2244 2245 return IRQ_HANDLED; 2246 } 2247 2248 static int ace_open(struct net_device *dev) 2249 { 2250 struct ace_private *ap = netdev_priv(dev); 2251 struct ace_regs __iomem *regs = ap->regs; 2252 struct cmd cmd; 2253 2254 if (!(ap->fw_running)) { 2255 printk(KERN_WARNING "%s: Firmware not running!\n", dev->name); 2256 return -EBUSY; 2257 } 2258 2259 writel(dev->mtu + ETH_HLEN + 4, ®s->IfMtu); 2260 2261 cmd.evt = C_CLEAR_STATS; 2262 cmd.code = 0; 2263 cmd.idx = 0; 2264 ace_issue_cmd(regs, &cmd); 2265 2266 cmd.evt = C_HOST_STATE; 2267 cmd.code = C_C_STACK_UP; 2268 cmd.idx = 0; 2269 ace_issue_cmd(regs, &cmd); 2270 2271 if (ap->jumbo && 2272 !test_and_set_bit(0, &ap->jumbo_refill_busy)) 2273 ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE); 2274 2275 if (dev->flags & IFF_PROMISC) { 2276 cmd.evt = C_SET_PROMISC_MODE; 2277 cmd.code = C_C_PROMISC_ENABLE; 2278 cmd.idx = 0; 2279 ace_issue_cmd(regs, &cmd); 2280 2281 ap->promisc = 1; 2282 }else 2283 ap->promisc = 0; 2284 ap->mcast_all = 0; 2285 2286 #if 0 2287 cmd.evt = C_LNK_NEGOTIATION; 2288 cmd.code = 0; 2289 cmd.idx = 0; 2290 ace_issue_cmd(regs, &cmd); 2291 #endif 2292 2293 netif_start_queue(dev); 2294 2295 /* 2296 * Setup the bottom half rx ring refill handler 2297 */ 2298 tasklet_init(&ap->ace_tasklet, ace_tasklet, (unsigned long)dev); 2299 return 0; 2300 } 2301 2302 2303 static int ace_close(struct net_device *dev) 2304 { 2305 struct ace_private *ap = netdev_priv(dev); 2306 struct ace_regs __iomem *regs = ap->regs; 2307 struct cmd cmd; 2308 unsigned long flags; 2309 short i; 2310 2311 /* 2312 * Without (or before) releasing irq and stopping hardware, this 2313 * is an absolute non-sense, by the way. It will be reset instantly 2314 * by the first irq. 2315 */ 2316 netif_stop_queue(dev); 2317 2318 2319 if (ap->promisc) { 2320 cmd.evt = C_SET_PROMISC_MODE; 2321 cmd.code = C_C_PROMISC_DISABLE; 2322 cmd.idx = 0; 2323 ace_issue_cmd(regs, &cmd); 2324 ap->promisc = 0; 2325 } 2326 2327 cmd.evt = C_HOST_STATE; 2328 cmd.code = C_C_STACK_DOWN; 2329 cmd.idx = 0; 2330 ace_issue_cmd(regs, &cmd); 2331 2332 tasklet_kill(&ap->ace_tasklet); 2333 2334 /* 2335 * Make sure one CPU is not processing packets while 2336 * buffers are being released by another. 2337 */ 2338 2339 local_irq_save(flags); 2340 ace_mask_irq(dev); 2341 2342 for (i = 0; i < ACE_TX_RING_ENTRIES(ap); i++) { 2343 struct sk_buff *skb; 2344 struct tx_ring_info *info; 2345 2346 info = ap->skb->tx_skbuff + i; 2347 skb = info->skb; 2348 2349 if (dma_unmap_len(info, maplen)) { 2350 if (ACE_IS_TIGON_I(ap)) { 2351 /* NB: TIGON_1 is special, tx_ring is in io space */ 2352 struct tx_desc __iomem *tx; 2353 tx = (__force struct tx_desc __iomem *) &ap->tx_ring[i]; 2354 writel(0, &tx->addr.addrhi); 2355 writel(0, &tx->addr.addrlo); 2356 writel(0, &tx->flagsize); 2357 } else 2358 memset(ap->tx_ring + i, 0, 2359 sizeof(struct tx_desc)); 2360 pci_unmap_page(ap->pdev, dma_unmap_addr(info, mapping), 2361 dma_unmap_len(info, maplen), 2362 PCI_DMA_TODEVICE); 2363 dma_unmap_len_set(info, maplen, 0); 2364 } 2365 if (skb) { 2366 dev_kfree_skb(skb); 2367 info->skb = NULL; 2368 } 2369 } 2370 2371 if (ap->jumbo) { 2372 cmd.evt = C_RESET_JUMBO_RNG; 2373 cmd.code = 0; 2374 cmd.idx = 0; 2375 ace_issue_cmd(regs, &cmd); 2376 } 2377 2378 ace_unmask_irq(dev); 2379 local_irq_restore(flags); 2380 2381 return 0; 2382 } 2383 2384 2385 static inline dma_addr_t 2386 ace_map_tx_skb(struct ace_private *ap, struct sk_buff *skb, 2387 struct sk_buff *tail, u32 idx) 2388 { 2389 dma_addr_t mapping; 2390 struct tx_ring_info *info; 2391 2392 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data), 2393 offset_in_page(skb->data), 2394 skb->len, PCI_DMA_TODEVICE); 2395 2396 info = ap->skb->tx_skbuff + idx; 2397 info->skb = tail; 2398 dma_unmap_addr_set(info, mapping, mapping); 2399 dma_unmap_len_set(info, maplen, skb->len); 2400 return mapping; 2401 } 2402 2403 2404 static inline void 2405 ace_load_tx_bd(struct ace_private *ap, struct tx_desc *desc, u64 addr, 2406 u32 flagsize, u32 vlan_tag) 2407 { 2408 #if !USE_TX_COAL_NOW 2409 flagsize &= ~BD_FLG_COAL_NOW; 2410 #endif 2411 2412 if (ACE_IS_TIGON_I(ap)) { 2413 struct tx_desc __iomem *io = (__force struct tx_desc __iomem *) desc; 2414 writel(addr >> 32, &io->addr.addrhi); 2415 writel(addr & 0xffffffff, &io->addr.addrlo); 2416 writel(flagsize, &io->flagsize); 2417 writel(vlan_tag, &io->vlanres); 2418 } else { 2419 desc->addr.addrhi = addr >> 32; 2420 desc->addr.addrlo = addr; 2421 desc->flagsize = flagsize; 2422 desc->vlanres = vlan_tag; 2423 } 2424 } 2425 2426 2427 static netdev_tx_t ace_start_xmit(struct sk_buff *skb, 2428 struct net_device *dev) 2429 { 2430 struct ace_private *ap = netdev_priv(dev); 2431 struct ace_regs __iomem *regs = ap->regs; 2432 struct tx_desc *desc; 2433 u32 idx, flagsize; 2434 unsigned long maxjiff = jiffies + 3*HZ; 2435 2436 restart: 2437 idx = ap->tx_prd; 2438 2439 if (tx_ring_full(ap, ap->tx_ret_csm, idx)) 2440 goto overflow; 2441 2442 if (!skb_shinfo(skb)->nr_frags) { 2443 dma_addr_t mapping; 2444 u32 vlan_tag = 0; 2445 2446 mapping = ace_map_tx_skb(ap, skb, skb, idx); 2447 flagsize = (skb->len << 16) | (BD_FLG_END); 2448 if (skb->ip_summed == CHECKSUM_PARTIAL) 2449 flagsize |= BD_FLG_TCP_UDP_SUM; 2450 if (vlan_tx_tag_present(skb)) { 2451 flagsize |= BD_FLG_VLAN_TAG; 2452 vlan_tag = vlan_tx_tag_get(skb); 2453 } 2454 desc = ap->tx_ring + idx; 2455 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap); 2456 2457 /* Look at ace_tx_int for explanations. */ 2458 if (tx_ring_full(ap, ap->tx_ret_csm, idx)) 2459 flagsize |= BD_FLG_COAL_NOW; 2460 2461 ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag); 2462 } else { 2463 dma_addr_t mapping; 2464 u32 vlan_tag = 0; 2465 int i, len = 0; 2466 2467 mapping = ace_map_tx_skb(ap, skb, NULL, idx); 2468 flagsize = (skb_headlen(skb) << 16); 2469 if (skb->ip_summed == CHECKSUM_PARTIAL) 2470 flagsize |= BD_FLG_TCP_UDP_SUM; 2471 if (vlan_tx_tag_present(skb)) { 2472 flagsize |= BD_FLG_VLAN_TAG; 2473 vlan_tag = vlan_tx_tag_get(skb); 2474 } 2475 2476 ace_load_tx_bd(ap, ap->tx_ring + idx, mapping, flagsize, vlan_tag); 2477 2478 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap); 2479 2480 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2481 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2482 struct tx_ring_info *info; 2483 2484 len += frag->size; 2485 info = ap->skb->tx_skbuff + idx; 2486 desc = ap->tx_ring + idx; 2487 2488 mapping = skb_frag_dma_map(&ap->pdev->dev, frag, 0, 2489 frag->size, 2490 PCI_DMA_TODEVICE); 2491 2492 flagsize = (frag->size << 16); 2493 if (skb->ip_summed == CHECKSUM_PARTIAL) 2494 flagsize |= BD_FLG_TCP_UDP_SUM; 2495 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap); 2496 2497 if (i == skb_shinfo(skb)->nr_frags - 1) { 2498 flagsize |= BD_FLG_END; 2499 if (tx_ring_full(ap, ap->tx_ret_csm, idx)) 2500 flagsize |= BD_FLG_COAL_NOW; 2501 2502 /* 2503 * Only the last fragment frees 2504 * the skb! 2505 */ 2506 info->skb = skb; 2507 } else { 2508 info->skb = NULL; 2509 } 2510 dma_unmap_addr_set(info, mapping, mapping); 2511 dma_unmap_len_set(info, maplen, frag->size); 2512 ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag); 2513 } 2514 } 2515 2516 wmb(); 2517 ap->tx_prd = idx; 2518 ace_set_txprd(regs, ap, idx); 2519 2520 if (flagsize & BD_FLG_COAL_NOW) { 2521 netif_stop_queue(dev); 2522 2523 /* 2524 * A TX-descriptor producer (an IRQ) might have gotten 2525 * between, making the ring free again. Since xmit is 2526 * serialized, this is the only situation we have to 2527 * re-test. 2528 */ 2529 if (!tx_ring_full(ap, ap->tx_ret_csm, idx)) 2530 netif_wake_queue(dev); 2531 } 2532 2533 return NETDEV_TX_OK; 2534 2535 overflow: 2536 /* 2537 * This race condition is unavoidable with lock-free drivers. 2538 * We wake up the queue _before_ tx_prd is advanced, so that we can 2539 * enter hard_start_xmit too early, while tx ring still looks closed. 2540 * This happens ~1-4 times per 100000 packets, so that we can allow 2541 * to loop syncing to other CPU. Probably, we need an additional 2542 * wmb() in ace_tx_intr as well. 2543 * 2544 * Note that this race is relieved by reserving one more entry 2545 * in tx ring than it is necessary (see original non-SG driver). 2546 * However, with SG we need to reserve 2*MAX_SKB_FRAGS+1, which 2547 * is already overkill. 2548 * 2549 * Alternative is to return with 1 not throttling queue. In this 2550 * case loop becomes longer, no more useful effects. 2551 */ 2552 if (time_before(jiffies, maxjiff)) { 2553 barrier(); 2554 cpu_relax(); 2555 goto restart; 2556 } 2557 2558 /* The ring is stuck full. */ 2559 printk(KERN_WARNING "%s: Transmit ring stuck full\n", dev->name); 2560 return NETDEV_TX_BUSY; 2561 } 2562 2563 2564 static int ace_change_mtu(struct net_device *dev, int new_mtu) 2565 { 2566 struct ace_private *ap = netdev_priv(dev); 2567 struct ace_regs __iomem *regs = ap->regs; 2568 2569 if (new_mtu > ACE_JUMBO_MTU) 2570 return -EINVAL; 2571 2572 writel(new_mtu + ETH_HLEN + 4, ®s->IfMtu); 2573 dev->mtu = new_mtu; 2574 2575 if (new_mtu > ACE_STD_MTU) { 2576 if (!(ap->jumbo)) { 2577 printk(KERN_INFO "%s: Enabling Jumbo frame " 2578 "support\n", dev->name); 2579 ap->jumbo = 1; 2580 if (!test_and_set_bit(0, &ap->jumbo_refill_busy)) 2581 ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE); 2582 ace_set_rxtx_parms(dev, 1); 2583 } 2584 } else { 2585 while (test_and_set_bit(0, &ap->jumbo_refill_busy)); 2586 ace_sync_irq(dev->irq); 2587 ace_set_rxtx_parms(dev, 0); 2588 if (ap->jumbo) { 2589 struct cmd cmd; 2590 2591 cmd.evt = C_RESET_JUMBO_RNG; 2592 cmd.code = 0; 2593 cmd.idx = 0; 2594 ace_issue_cmd(regs, &cmd); 2595 } 2596 } 2597 2598 return 0; 2599 } 2600 2601 static int ace_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd) 2602 { 2603 struct ace_private *ap = netdev_priv(dev); 2604 struct ace_regs __iomem *regs = ap->regs; 2605 u32 link; 2606 2607 memset(ecmd, 0, sizeof(struct ethtool_cmd)); 2608 ecmd->supported = 2609 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | 2610 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | 2611 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | 2612 SUPPORTED_Autoneg | SUPPORTED_FIBRE); 2613 2614 ecmd->port = PORT_FIBRE; 2615 ecmd->transceiver = XCVR_INTERNAL; 2616 2617 link = readl(®s->GigLnkState); 2618 if (link & LNK_1000MB) 2619 ethtool_cmd_speed_set(ecmd, SPEED_1000); 2620 else { 2621 link = readl(®s->FastLnkState); 2622 if (link & LNK_100MB) 2623 ethtool_cmd_speed_set(ecmd, SPEED_100); 2624 else if (link & LNK_10MB) 2625 ethtool_cmd_speed_set(ecmd, SPEED_10); 2626 else 2627 ethtool_cmd_speed_set(ecmd, 0); 2628 } 2629 if (link & LNK_FULL_DUPLEX) 2630 ecmd->duplex = DUPLEX_FULL; 2631 else 2632 ecmd->duplex = DUPLEX_HALF; 2633 2634 if (link & LNK_NEGOTIATE) 2635 ecmd->autoneg = AUTONEG_ENABLE; 2636 else 2637 ecmd->autoneg = AUTONEG_DISABLE; 2638 2639 #if 0 2640 /* 2641 * Current struct ethtool_cmd is insufficient 2642 */ 2643 ecmd->trace = readl(®s->TuneTrace); 2644 2645 ecmd->txcoal = readl(®s->TuneTxCoalTicks); 2646 ecmd->rxcoal = readl(®s->TuneRxCoalTicks); 2647 #endif 2648 ecmd->maxtxpkt = readl(®s->TuneMaxTxDesc); 2649 ecmd->maxrxpkt = readl(®s->TuneMaxRxDesc); 2650 2651 return 0; 2652 } 2653 2654 static int ace_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd) 2655 { 2656 struct ace_private *ap = netdev_priv(dev); 2657 struct ace_regs __iomem *regs = ap->regs; 2658 u32 link, speed; 2659 2660 link = readl(®s->GigLnkState); 2661 if (link & LNK_1000MB) 2662 speed = SPEED_1000; 2663 else { 2664 link = readl(®s->FastLnkState); 2665 if (link & LNK_100MB) 2666 speed = SPEED_100; 2667 else if (link & LNK_10MB) 2668 speed = SPEED_10; 2669 else 2670 speed = SPEED_100; 2671 } 2672 2673 link = LNK_ENABLE | LNK_1000MB | LNK_100MB | LNK_10MB | 2674 LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL; 2675 if (!ACE_IS_TIGON_I(ap)) 2676 link |= LNK_TX_FLOW_CTL_Y; 2677 if (ecmd->autoneg == AUTONEG_ENABLE) 2678 link |= LNK_NEGOTIATE; 2679 if (ethtool_cmd_speed(ecmd) != speed) { 2680 link &= ~(LNK_1000MB | LNK_100MB | LNK_10MB); 2681 switch (ethtool_cmd_speed(ecmd)) { 2682 case SPEED_1000: 2683 link |= LNK_1000MB; 2684 break; 2685 case SPEED_100: 2686 link |= LNK_100MB; 2687 break; 2688 case SPEED_10: 2689 link |= LNK_10MB; 2690 break; 2691 } 2692 } 2693 2694 if (ecmd->duplex == DUPLEX_FULL) 2695 link |= LNK_FULL_DUPLEX; 2696 2697 if (link != ap->link) { 2698 struct cmd cmd; 2699 printk(KERN_INFO "%s: Renegotiating link state\n", 2700 dev->name); 2701 2702 ap->link = link; 2703 writel(link, ®s->TuneLink); 2704 if (!ACE_IS_TIGON_I(ap)) 2705 writel(link, ®s->TuneFastLink); 2706 wmb(); 2707 2708 cmd.evt = C_LNK_NEGOTIATION; 2709 cmd.code = 0; 2710 cmd.idx = 0; 2711 ace_issue_cmd(regs, &cmd); 2712 } 2713 return 0; 2714 } 2715 2716 static void ace_get_drvinfo(struct net_device *dev, 2717 struct ethtool_drvinfo *info) 2718 { 2719 struct ace_private *ap = netdev_priv(dev); 2720 2721 strlcpy(info->driver, "acenic", sizeof(info->driver)); 2722 snprintf(info->version, sizeof(info->version), "%i.%i.%i", 2723 ap->firmware_major, ap->firmware_minor, 2724 ap->firmware_fix); 2725 2726 if (ap->pdev) 2727 strlcpy(info->bus_info, pci_name(ap->pdev), 2728 sizeof(info->bus_info)); 2729 2730 } 2731 2732 /* 2733 * Set the hardware MAC address. 2734 */ 2735 static int ace_set_mac_addr(struct net_device *dev, void *p) 2736 { 2737 struct ace_private *ap = netdev_priv(dev); 2738 struct ace_regs __iomem *regs = ap->regs; 2739 struct sockaddr *addr=p; 2740 u8 *da; 2741 struct cmd cmd; 2742 2743 if(netif_running(dev)) 2744 return -EBUSY; 2745 2746 memcpy(dev->dev_addr, addr->sa_data,dev->addr_len); 2747 2748 da = (u8 *)dev->dev_addr; 2749 2750 writel(da[0] << 8 | da[1], ®s->MacAddrHi); 2751 writel((da[2] << 24) | (da[3] << 16) | (da[4] << 8) | da[5], 2752 ®s->MacAddrLo); 2753 2754 cmd.evt = C_SET_MAC_ADDR; 2755 cmd.code = 0; 2756 cmd.idx = 0; 2757 ace_issue_cmd(regs, &cmd); 2758 2759 return 0; 2760 } 2761 2762 2763 static void ace_set_multicast_list(struct net_device *dev) 2764 { 2765 struct ace_private *ap = netdev_priv(dev); 2766 struct ace_regs __iomem *regs = ap->regs; 2767 struct cmd cmd; 2768 2769 if ((dev->flags & IFF_ALLMULTI) && !(ap->mcast_all)) { 2770 cmd.evt = C_SET_MULTICAST_MODE; 2771 cmd.code = C_C_MCAST_ENABLE; 2772 cmd.idx = 0; 2773 ace_issue_cmd(regs, &cmd); 2774 ap->mcast_all = 1; 2775 } else if (ap->mcast_all) { 2776 cmd.evt = C_SET_MULTICAST_MODE; 2777 cmd.code = C_C_MCAST_DISABLE; 2778 cmd.idx = 0; 2779 ace_issue_cmd(regs, &cmd); 2780 ap->mcast_all = 0; 2781 } 2782 2783 if ((dev->flags & IFF_PROMISC) && !(ap->promisc)) { 2784 cmd.evt = C_SET_PROMISC_MODE; 2785 cmd.code = C_C_PROMISC_ENABLE; 2786 cmd.idx = 0; 2787 ace_issue_cmd(regs, &cmd); 2788 ap->promisc = 1; 2789 }else if (!(dev->flags & IFF_PROMISC) && (ap->promisc)) { 2790 cmd.evt = C_SET_PROMISC_MODE; 2791 cmd.code = C_C_PROMISC_DISABLE; 2792 cmd.idx = 0; 2793 ace_issue_cmd(regs, &cmd); 2794 ap->promisc = 0; 2795 } 2796 2797 /* 2798 * For the time being multicast relies on the upper layers 2799 * filtering it properly. The Firmware does not allow one to 2800 * set the entire multicast list at a time and keeping track of 2801 * it here is going to be messy. 2802 */ 2803 if (!netdev_mc_empty(dev) && !ap->mcast_all) { 2804 cmd.evt = C_SET_MULTICAST_MODE; 2805 cmd.code = C_C_MCAST_ENABLE; 2806 cmd.idx = 0; 2807 ace_issue_cmd(regs, &cmd); 2808 }else if (!ap->mcast_all) { 2809 cmd.evt = C_SET_MULTICAST_MODE; 2810 cmd.code = C_C_MCAST_DISABLE; 2811 cmd.idx = 0; 2812 ace_issue_cmd(regs, &cmd); 2813 } 2814 } 2815 2816 2817 static struct net_device_stats *ace_get_stats(struct net_device *dev) 2818 { 2819 struct ace_private *ap = netdev_priv(dev); 2820 struct ace_mac_stats __iomem *mac_stats = 2821 (struct ace_mac_stats __iomem *)ap->regs->Stats; 2822 2823 dev->stats.rx_missed_errors = readl(&mac_stats->drop_space); 2824 dev->stats.multicast = readl(&mac_stats->kept_mc); 2825 dev->stats.collisions = readl(&mac_stats->coll); 2826 2827 return &dev->stats; 2828 } 2829 2830 2831 static void __devinit ace_copy(struct ace_regs __iomem *regs, const __be32 *src, 2832 u32 dest, int size) 2833 { 2834 void __iomem *tdest; 2835 short tsize, i; 2836 2837 if (size <= 0) 2838 return; 2839 2840 while (size > 0) { 2841 tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1), 2842 min_t(u32, size, ACE_WINDOW_SIZE)); 2843 tdest = (void __iomem *) ®s->Window + 2844 (dest & (ACE_WINDOW_SIZE - 1)); 2845 writel(dest & ~(ACE_WINDOW_SIZE - 1), ®s->WinBase); 2846 for (i = 0; i < (tsize / 4); i++) { 2847 /* Firmware is big-endian */ 2848 writel(be32_to_cpup(src), tdest); 2849 src++; 2850 tdest += 4; 2851 dest += 4; 2852 size -= 4; 2853 } 2854 } 2855 } 2856 2857 2858 static void __devinit ace_clear(struct ace_regs __iomem *regs, u32 dest, int size) 2859 { 2860 void __iomem *tdest; 2861 short tsize = 0, i; 2862 2863 if (size <= 0) 2864 return; 2865 2866 while (size > 0) { 2867 tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1), 2868 min_t(u32, size, ACE_WINDOW_SIZE)); 2869 tdest = (void __iomem *) ®s->Window + 2870 (dest & (ACE_WINDOW_SIZE - 1)); 2871 writel(dest & ~(ACE_WINDOW_SIZE - 1), ®s->WinBase); 2872 2873 for (i = 0; i < (tsize / 4); i++) { 2874 writel(0, tdest + i*4); 2875 } 2876 2877 dest += tsize; 2878 size -= tsize; 2879 } 2880 } 2881 2882 2883 /* 2884 * Download the firmware into the SRAM on the NIC 2885 * 2886 * This operation requires the NIC to be halted and is performed with 2887 * interrupts disabled and with the spinlock hold. 2888 */ 2889 static int __devinit ace_load_firmware(struct net_device *dev) 2890 { 2891 const struct firmware *fw; 2892 const char *fw_name = "acenic/tg2.bin"; 2893 struct ace_private *ap = netdev_priv(dev); 2894 struct ace_regs __iomem *regs = ap->regs; 2895 const __be32 *fw_data; 2896 u32 load_addr; 2897 int ret; 2898 2899 if (!(readl(®s->CpuCtrl) & CPU_HALTED)) { 2900 printk(KERN_ERR "%s: trying to download firmware while the " 2901 "CPU is running!\n", ap->name); 2902 return -EFAULT; 2903 } 2904 2905 if (ACE_IS_TIGON_I(ap)) 2906 fw_name = "acenic/tg1.bin"; 2907 2908 ret = request_firmware(&fw, fw_name, &ap->pdev->dev); 2909 if (ret) { 2910 printk(KERN_ERR "%s: Failed to load firmware \"%s\"\n", 2911 ap->name, fw_name); 2912 return ret; 2913 } 2914 2915 fw_data = (void *)fw->data; 2916 2917 /* Firmware blob starts with version numbers, followed by 2918 load and start address. Remainder is the blob to be loaded 2919 contiguously from load address. We don't bother to represent 2920 the BSS/SBSS sections any more, since we were clearing the 2921 whole thing anyway. */ 2922 ap->firmware_major = fw->data[0]; 2923 ap->firmware_minor = fw->data[1]; 2924 ap->firmware_fix = fw->data[2]; 2925 2926 ap->firmware_start = be32_to_cpu(fw_data[1]); 2927 if (ap->firmware_start < 0x4000 || ap->firmware_start >= 0x80000) { 2928 printk(KERN_ERR "%s: bogus load address %08x in \"%s\"\n", 2929 ap->name, ap->firmware_start, fw_name); 2930 ret = -EINVAL; 2931 goto out; 2932 } 2933 2934 load_addr = be32_to_cpu(fw_data[2]); 2935 if (load_addr < 0x4000 || load_addr >= 0x80000) { 2936 printk(KERN_ERR "%s: bogus load address %08x in \"%s\"\n", 2937 ap->name, load_addr, fw_name); 2938 ret = -EINVAL; 2939 goto out; 2940 } 2941 2942 /* 2943 * Do not try to clear more than 512KiB or we end up seeing 2944 * funny things on NICs with only 512KiB SRAM 2945 */ 2946 ace_clear(regs, 0x2000, 0x80000-0x2000); 2947 ace_copy(regs, &fw_data[3], load_addr, fw->size-12); 2948 out: 2949 release_firmware(fw); 2950 return ret; 2951 } 2952 2953 2954 /* 2955 * The eeprom on the AceNIC is an Atmel i2c EEPROM. 2956 * 2957 * Accessing the EEPROM is `interesting' to say the least - don't read 2958 * this code right after dinner. 2959 * 2960 * This is all about black magic and bit-banging the device .... I 2961 * wonder in what hospital they have put the guy who designed the i2c 2962 * specs. 2963 * 2964 * Oh yes, this is only the beginning! 2965 * 2966 * Thanks to Stevarino Webinski for helping tracking down the bugs in the 2967 * code i2c readout code by beta testing all my hacks. 2968 */ 2969 static void __devinit eeprom_start(struct ace_regs __iomem *regs) 2970 { 2971 u32 local; 2972 2973 readl(®s->LocalCtrl); 2974 udelay(ACE_SHORT_DELAY); 2975 local = readl(®s->LocalCtrl); 2976 local |= EEPROM_DATA_OUT | EEPROM_WRITE_ENABLE; 2977 writel(local, ®s->LocalCtrl); 2978 readl(®s->LocalCtrl); 2979 mb(); 2980 udelay(ACE_SHORT_DELAY); 2981 local |= EEPROM_CLK_OUT; 2982 writel(local, ®s->LocalCtrl); 2983 readl(®s->LocalCtrl); 2984 mb(); 2985 udelay(ACE_SHORT_DELAY); 2986 local &= ~EEPROM_DATA_OUT; 2987 writel(local, ®s->LocalCtrl); 2988 readl(®s->LocalCtrl); 2989 mb(); 2990 udelay(ACE_SHORT_DELAY); 2991 local &= ~EEPROM_CLK_OUT; 2992 writel(local, ®s->LocalCtrl); 2993 readl(®s->LocalCtrl); 2994 mb(); 2995 } 2996 2997 2998 static void __devinit eeprom_prep(struct ace_regs __iomem *regs, u8 magic) 2999 { 3000 short i; 3001 u32 local; 3002 3003 udelay(ACE_SHORT_DELAY); 3004 local = readl(®s->LocalCtrl); 3005 local &= ~EEPROM_DATA_OUT; 3006 local |= EEPROM_WRITE_ENABLE; 3007 writel(local, ®s->LocalCtrl); 3008 readl(®s->LocalCtrl); 3009 mb(); 3010 3011 for (i = 0; i < 8; i++, magic <<= 1) { 3012 udelay(ACE_SHORT_DELAY); 3013 if (magic & 0x80) 3014 local |= EEPROM_DATA_OUT; 3015 else 3016 local &= ~EEPROM_DATA_OUT; 3017 writel(local, ®s->LocalCtrl); 3018 readl(®s->LocalCtrl); 3019 mb(); 3020 3021 udelay(ACE_SHORT_DELAY); 3022 local |= EEPROM_CLK_OUT; 3023 writel(local, ®s->LocalCtrl); 3024 readl(®s->LocalCtrl); 3025 mb(); 3026 udelay(ACE_SHORT_DELAY); 3027 local &= ~(EEPROM_CLK_OUT | EEPROM_DATA_OUT); 3028 writel(local, ®s->LocalCtrl); 3029 readl(®s->LocalCtrl); 3030 mb(); 3031 } 3032 } 3033 3034 3035 static int __devinit eeprom_check_ack(struct ace_regs __iomem *regs) 3036 { 3037 int state; 3038 u32 local; 3039 3040 local = readl(®s->LocalCtrl); 3041 local &= ~EEPROM_WRITE_ENABLE; 3042 writel(local, ®s->LocalCtrl); 3043 readl(®s->LocalCtrl); 3044 mb(); 3045 udelay(ACE_LONG_DELAY); 3046 local |= EEPROM_CLK_OUT; 3047 writel(local, ®s->LocalCtrl); 3048 readl(®s->LocalCtrl); 3049 mb(); 3050 udelay(ACE_SHORT_DELAY); 3051 /* sample data in middle of high clk */ 3052 state = (readl(®s->LocalCtrl) & EEPROM_DATA_IN) != 0; 3053 udelay(ACE_SHORT_DELAY); 3054 mb(); 3055 writel(readl(®s->LocalCtrl) & ~EEPROM_CLK_OUT, ®s->LocalCtrl); 3056 readl(®s->LocalCtrl); 3057 mb(); 3058 3059 return state; 3060 } 3061 3062 3063 static void __devinit eeprom_stop(struct ace_regs __iomem *regs) 3064 { 3065 u32 local; 3066 3067 udelay(ACE_SHORT_DELAY); 3068 local = readl(®s->LocalCtrl); 3069 local |= EEPROM_WRITE_ENABLE; 3070 writel(local, ®s->LocalCtrl); 3071 readl(®s->LocalCtrl); 3072 mb(); 3073 udelay(ACE_SHORT_DELAY); 3074 local &= ~EEPROM_DATA_OUT; 3075 writel(local, ®s->LocalCtrl); 3076 readl(®s->LocalCtrl); 3077 mb(); 3078 udelay(ACE_SHORT_DELAY); 3079 local |= EEPROM_CLK_OUT; 3080 writel(local, ®s->LocalCtrl); 3081 readl(®s->LocalCtrl); 3082 mb(); 3083 udelay(ACE_SHORT_DELAY); 3084 local |= EEPROM_DATA_OUT; 3085 writel(local, ®s->LocalCtrl); 3086 readl(®s->LocalCtrl); 3087 mb(); 3088 udelay(ACE_LONG_DELAY); 3089 local &= ~EEPROM_CLK_OUT; 3090 writel(local, ®s->LocalCtrl); 3091 mb(); 3092 } 3093 3094 3095 /* 3096 * Read a whole byte from the EEPROM. 3097 */ 3098 static int __devinit read_eeprom_byte(struct net_device *dev, 3099 unsigned long offset) 3100 { 3101 struct ace_private *ap = netdev_priv(dev); 3102 struct ace_regs __iomem *regs = ap->regs; 3103 unsigned long flags; 3104 u32 local; 3105 int result = 0; 3106 short i; 3107 3108 /* 3109 * Don't take interrupts on this CPU will bit banging 3110 * the %#%#@$ I2C device 3111 */ 3112 local_irq_save(flags); 3113 3114 eeprom_start(regs); 3115 3116 eeprom_prep(regs, EEPROM_WRITE_SELECT); 3117 if (eeprom_check_ack(regs)) { 3118 local_irq_restore(flags); 3119 printk(KERN_ERR "%s: Unable to sync eeprom\n", ap->name); 3120 result = -EIO; 3121 goto eeprom_read_error; 3122 } 3123 3124 eeprom_prep(regs, (offset >> 8) & 0xff); 3125 if (eeprom_check_ack(regs)) { 3126 local_irq_restore(flags); 3127 printk(KERN_ERR "%s: Unable to set address byte 0\n", 3128 ap->name); 3129 result = -EIO; 3130 goto eeprom_read_error; 3131 } 3132 3133 eeprom_prep(regs, offset & 0xff); 3134 if (eeprom_check_ack(regs)) { 3135 local_irq_restore(flags); 3136 printk(KERN_ERR "%s: Unable to set address byte 1\n", 3137 ap->name); 3138 result = -EIO; 3139 goto eeprom_read_error; 3140 } 3141 3142 eeprom_start(regs); 3143 eeprom_prep(regs, EEPROM_READ_SELECT); 3144 if (eeprom_check_ack(regs)) { 3145 local_irq_restore(flags); 3146 printk(KERN_ERR "%s: Unable to set READ_SELECT\n", 3147 ap->name); 3148 result = -EIO; 3149 goto eeprom_read_error; 3150 } 3151 3152 for (i = 0; i < 8; i++) { 3153 local = readl(®s->LocalCtrl); 3154 local &= ~EEPROM_WRITE_ENABLE; 3155 writel(local, ®s->LocalCtrl); 3156 readl(®s->LocalCtrl); 3157 udelay(ACE_LONG_DELAY); 3158 mb(); 3159 local |= EEPROM_CLK_OUT; 3160 writel(local, ®s->LocalCtrl); 3161 readl(®s->LocalCtrl); 3162 mb(); 3163 udelay(ACE_SHORT_DELAY); 3164 /* sample data mid high clk */ 3165 result = (result << 1) | 3166 ((readl(®s->LocalCtrl) & EEPROM_DATA_IN) != 0); 3167 udelay(ACE_SHORT_DELAY); 3168 mb(); 3169 local = readl(®s->LocalCtrl); 3170 local &= ~EEPROM_CLK_OUT; 3171 writel(local, ®s->LocalCtrl); 3172 readl(®s->LocalCtrl); 3173 udelay(ACE_SHORT_DELAY); 3174 mb(); 3175 if (i == 7) { 3176 local |= EEPROM_WRITE_ENABLE; 3177 writel(local, ®s->LocalCtrl); 3178 readl(®s->LocalCtrl); 3179 mb(); 3180 udelay(ACE_SHORT_DELAY); 3181 } 3182 } 3183 3184 local |= EEPROM_DATA_OUT; 3185 writel(local, ®s->LocalCtrl); 3186 readl(®s->LocalCtrl); 3187 mb(); 3188 udelay(ACE_SHORT_DELAY); 3189 writel(readl(®s->LocalCtrl) | EEPROM_CLK_OUT, ®s->LocalCtrl); 3190 readl(®s->LocalCtrl); 3191 udelay(ACE_LONG_DELAY); 3192 writel(readl(®s->LocalCtrl) & ~EEPROM_CLK_OUT, ®s->LocalCtrl); 3193 readl(®s->LocalCtrl); 3194 mb(); 3195 udelay(ACE_SHORT_DELAY); 3196 eeprom_stop(regs); 3197 3198 local_irq_restore(flags); 3199 out: 3200 return result; 3201 3202 eeprom_read_error: 3203 printk(KERN_ERR "%s: Unable to read eeprom byte 0x%02lx\n", 3204 ap->name, offset); 3205 goto out; 3206 } 3207