1 /* 2 * acenic.c: Linux driver for the Alteon AceNIC Gigabit Ethernet card 3 * and other Tigon based cards. 4 * 5 * Copyright 1998-2002 by Jes Sorensen, <jes@trained-monkey.org>. 6 * 7 * Thanks to Alteon and 3Com for providing hardware and documentation 8 * enabling me to write this driver. 9 * 10 * A mailing list for discussing the use of this driver has been 11 * setup, please subscribe to the lists if you have any questions 12 * about the driver. Send mail to linux-acenic-help@sunsite.auc.dk to 13 * see how to subscribe. 14 * 15 * This program is free software; you can redistribute it and/or modify 16 * it under the terms of the GNU General Public License as published by 17 * the Free Software Foundation; either version 2 of the License, or 18 * (at your option) any later version. 19 * 20 * Additional credits: 21 * Pete Wyckoff <wyckoff@ca.sandia.gov>: Initial Linux/Alpha and trace 22 * dump support. The trace dump support has not been 23 * integrated yet however. 24 * Troy Benjegerdes: Big Endian (PPC) patches. 25 * Nate Stahl: Better out of memory handling and stats support. 26 * Aman Singla: Nasty race between interrupt handler and tx code dealing 27 * with 'testing the tx_ret_csm and setting tx_full' 28 * David S. Miller <davem@redhat.com>: conversion to new PCI dma mapping 29 * infrastructure and Sparc support 30 * Pierrick Pinasseau (CERN): For lending me an Ultra 5 to test the 31 * driver under Linux/Sparc64 32 * Matt Domsch <Matt_Domsch@dell.com>: Detect Alteon 1000baseT cards 33 * ETHTOOL_GDRVINFO support 34 * Chip Salzenberg <chip@valinux.com>: Fix race condition between tx 35 * handler and close() cleanup. 36 * Ken Aaker <kdaaker@rchland.vnet.ibm.com>: Correct check for whether 37 * memory mapped IO is enabled to 38 * make the driver work on RS/6000. 39 * Takayoshi Kouchi <kouchi@hpc.bs1.fc.nec.co.jp>: Identifying problem 40 * where the driver would disable 41 * bus master mode if it had to disable 42 * write and invalidate. 43 * Stephen Hack <stephen_hack@hp.com>: Fixed ace_set_mac_addr for little 44 * endian systems. 45 * Val Henson <vhenson@esscom.com>: Reset Jumbo skb producer and 46 * rx producer index when 47 * flushing the Jumbo ring. 48 * Hans Grobler <grobh@sun.ac.za>: Memory leak fixes in the 49 * driver init path. 50 * Grant Grundler <grundler@cup.hp.com>: PCI write posting fixes. 51 */ 52 53 #include <linux/module.h> 54 #include <linux/moduleparam.h> 55 #include <linux/types.h> 56 #include <linux/errno.h> 57 #include <linux/ioport.h> 58 #include <linux/pci.h> 59 #include <linux/dma-mapping.h> 60 #include <linux/kernel.h> 61 #include <linux/netdevice.h> 62 #include <linux/etherdevice.h> 63 #include <linux/skbuff.h> 64 #include <linux/delay.h> 65 #include <linux/mm.h> 66 #include <linux/highmem.h> 67 #include <linux/sockios.h> 68 #include <linux/firmware.h> 69 #include <linux/slab.h> 70 #include <linux/prefetch.h> 71 #include <linux/if_vlan.h> 72 73 #ifdef SIOCETHTOOL 74 #include <linux/ethtool.h> 75 #endif 76 77 #include <net/sock.h> 78 #include <net/ip.h> 79 80 #include <asm/io.h> 81 #include <asm/irq.h> 82 #include <asm/byteorder.h> 83 #include <asm/uaccess.h> 84 85 86 #define DRV_NAME "acenic" 87 88 #undef INDEX_DEBUG 89 90 #ifdef CONFIG_ACENIC_OMIT_TIGON_I 91 #define ACE_IS_TIGON_I(ap) 0 92 #define ACE_TX_RING_ENTRIES(ap) MAX_TX_RING_ENTRIES 93 #else 94 #define ACE_IS_TIGON_I(ap) (ap->version == 1) 95 #define ACE_TX_RING_ENTRIES(ap) ap->tx_ring_entries 96 #endif 97 98 #ifndef PCI_VENDOR_ID_ALTEON 99 #define PCI_VENDOR_ID_ALTEON 0x12ae 100 #endif 101 #ifndef PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE 102 #define PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE 0x0001 103 #define PCI_DEVICE_ID_ALTEON_ACENIC_COPPER 0x0002 104 #endif 105 #ifndef PCI_DEVICE_ID_3COM_3C985 106 #define PCI_DEVICE_ID_3COM_3C985 0x0001 107 #endif 108 #ifndef PCI_VENDOR_ID_NETGEAR 109 #define PCI_VENDOR_ID_NETGEAR 0x1385 110 #define PCI_DEVICE_ID_NETGEAR_GA620 0x620a 111 #endif 112 #ifndef PCI_DEVICE_ID_NETGEAR_GA620T 113 #define PCI_DEVICE_ID_NETGEAR_GA620T 0x630a 114 #endif 115 116 117 /* 118 * Farallon used the DEC vendor ID by mistake and they seem not 119 * to care - stinky! 120 */ 121 #ifndef PCI_DEVICE_ID_FARALLON_PN9000SX 122 #define PCI_DEVICE_ID_FARALLON_PN9000SX 0x1a 123 #endif 124 #ifndef PCI_DEVICE_ID_FARALLON_PN9100T 125 #define PCI_DEVICE_ID_FARALLON_PN9100T 0xfa 126 #endif 127 #ifndef PCI_VENDOR_ID_SGI 128 #define PCI_VENDOR_ID_SGI 0x10a9 129 #endif 130 #ifndef PCI_DEVICE_ID_SGI_ACENIC 131 #define PCI_DEVICE_ID_SGI_ACENIC 0x0009 132 #endif 133 134 static const struct pci_device_id acenic_pci_tbl[] = { 135 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE, 136 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, 137 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_COPPER, 138 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, 139 { PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C985, 140 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, 141 { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620, 142 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, 143 { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620T, 144 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, 145 /* 146 * Farallon used the DEC vendor ID on their cards incorrectly, 147 * then later Alteon's ID. 148 */ 149 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_FARALLON_PN9000SX, 150 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, 151 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_FARALLON_PN9100T, 152 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, 153 { PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_ACENIC, 154 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, 155 { } 156 }; 157 MODULE_DEVICE_TABLE(pci, acenic_pci_tbl); 158 159 #define ace_sync_irq(irq) synchronize_irq(irq) 160 161 #ifndef offset_in_page 162 #define offset_in_page(ptr) ((unsigned long)(ptr) & ~PAGE_MASK) 163 #endif 164 165 #define ACE_MAX_MOD_PARMS 8 166 #define BOARD_IDX_STATIC 0 167 #define BOARD_IDX_OVERFLOW -1 168 169 #include "acenic.h" 170 171 /* 172 * These must be defined before the firmware is included. 173 */ 174 #define MAX_TEXT_LEN 96*1024 175 #define MAX_RODATA_LEN 8*1024 176 #define MAX_DATA_LEN 2*1024 177 178 #ifndef tigon2FwReleaseLocal 179 #define tigon2FwReleaseLocal 0 180 #endif 181 182 /* 183 * This driver currently supports Tigon I and Tigon II based cards 184 * including the Alteon AceNIC, the 3Com 3C985[B] and NetGear 185 * GA620. The driver should also work on the SGI, DEC and Farallon 186 * versions of the card, however I have not been able to test that 187 * myself. 188 * 189 * This card is really neat, it supports receive hardware checksumming 190 * and jumbo frames (up to 9000 bytes) and does a lot of work in the 191 * firmware. Also the programming interface is quite neat, except for 192 * the parts dealing with the i2c eeprom on the card ;-) 193 * 194 * Using jumbo frames: 195 * 196 * To enable jumbo frames, simply specify an mtu between 1500 and 9000 197 * bytes to ifconfig. Jumbo frames can be enabled or disabled at any time 198 * by running `ifconfig eth<X> mtu <MTU>' with <X> being the Ethernet 199 * interface number and <MTU> being the MTU value. 200 * 201 * Module parameters: 202 * 203 * When compiled as a loadable module, the driver allows for a number 204 * of module parameters to be specified. The driver supports the 205 * following module parameters: 206 * 207 * trace=<val> - Firmware trace level. This requires special traced 208 * firmware to replace the firmware supplied with 209 * the driver - for debugging purposes only. 210 * 211 * link=<val> - Link state. Normally you want to use the default link 212 * parameters set by the driver. This can be used to 213 * override these in case your switch doesn't negotiate 214 * the link properly. Valid values are: 215 * 0x0001 - Force half duplex link. 216 * 0x0002 - Do not negotiate line speed with the other end. 217 * 0x0010 - 10Mbit/sec link. 218 * 0x0020 - 100Mbit/sec link. 219 * 0x0040 - 1000Mbit/sec link. 220 * 0x0100 - Do not negotiate flow control. 221 * 0x0200 - Enable RX flow control Y 222 * 0x0400 - Enable TX flow control Y (Tigon II NICs only). 223 * Default value is 0x0270, ie. enable link+flow 224 * control negotiation. Negotiating the highest 225 * possible link speed with RX flow control enabled. 226 * 227 * When disabling link speed negotiation, only one link 228 * speed is allowed to be specified! 229 * 230 * tx_coal_tick=<val> - number of coalescing clock ticks (us) allowed 231 * to wait for more packets to arive before 232 * interrupting the host, from the time the first 233 * packet arrives. 234 * 235 * rx_coal_tick=<val> - number of coalescing clock ticks (us) allowed 236 * to wait for more packets to arive in the transmit ring, 237 * before interrupting the host, after transmitting the 238 * first packet in the ring. 239 * 240 * max_tx_desc=<val> - maximum number of transmit descriptors 241 * (packets) transmitted before interrupting the host. 242 * 243 * max_rx_desc=<val> - maximum number of receive descriptors 244 * (packets) received before interrupting the host. 245 * 246 * tx_ratio=<val> - 7 bit value (0 - 63) specifying the split in 64th 247 * increments of the NIC's on board memory to be used for 248 * transmit and receive buffers. For the 1MB NIC app. 800KB 249 * is available, on the 1/2MB NIC app. 300KB is available. 250 * 68KB will always be available as a minimum for both 251 * directions. The default value is a 50/50 split. 252 * dis_pci_mem_inval=<val> - disable PCI memory write and invalidate 253 * operations, default (1) is to always disable this as 254 * that is what Alteon does on NT. I have not been able 255 * to measure any real performance differences with 256 * this on my systems. Set <val>=0 if you want to 257 * enable these operations. 258 * 259 * If you use more than one NIC, specify the parameters for the 260 * individual NICs with a comma, ie. trace=0,0x00001fff,0 you want to 261 * run tracing on NIC #2 but not on NIC #1 and #3. 262 * 263 * TODO: 264 * 265 * - Proper multicast support. 266 * - NIC dump support. 267 * - More tuning parameters. 268 * 269 * The mini ring is not used under Linux and I am not sure it makes sense 270 * to actually use it. 271 * 272 * New interrupt handler strategy: 273 * 274 * The old interrupt handler worked using the traditional method of 275 * replacing an skbuff with a new one when a packet arrives. However 276 * the rx rings do not need to contain a static number of buffer 277 * descriptors, thus it makes sense to move the memory allocation out 278 * of the main interrupt handler and do it in a bottom half handler 279 * and only allocate new buffers when the number of buffers in the 280 * ring is below a certain threshold. In order to avoid starving the 281 * NIC under heavy load it is however necessary to force allocation 282 * when hitting a minimum threshold. The strategy for alloction is as 283 * follows: 284 * 285 * RX_LOW_BUF_THRES - allocate buffers in the bottom half 286 * RX_PANIC_LOW_THRES - we are very low on buffers, allocate 287 * the buffers in the interrupt handler 288 * RX_RING_THRES - maximum number of buffers in the rx ring 289 * RX_MINI_THRES - maximum number of buffers in the mini ring 290 * RX_JUMBO_THRES - maximum number of buffers in the jumbo ring 291 * 292 * One advantagous side effect of this allocation approach is that the 293 * entire rx processing can be done without holding any spin lock 294 * since the rx rings and registers are totally independent of the tx 295 * ring and its registers. This of course includes the kmalloc's of 296 * new skb's. Thus start_xmit can run in parallel with rx processing 297 * and the memory allocation on SMP systems. 298 * 299 * Note that running the skb reallocation in a bottom half opens up 300 * another can of races which needs to be handled properly. In 301 * particular it can happen that the interrupt handler tries to run 302 * the reallocation while the bottom half is either running on another 303 * CPU or was interrupted on the same CPU. To get around this the 304 * driver uses bitops to prevent the reallocation routines from being 305 * reentered. 306 * 307 * TX handling can also be done without holding any spin lock, wheee 308 * this is fun! since tx_ret_csm is only written to by the interrupt 309 * handler. The case to be aware of is when shutting down the device 310 * and cleaning up where it is necessary to make sure that 311 * start_xmit() is not running while this is happening. Well DaveM 312 * informs me that this case is already protected against ... bye bye 313 * Mr. Spin Lock, it was nice to know you. 314 * 315 * TX interrupts are now partly disabled so the NIC will only generate 316 * TX interrupts for the number of coal ticks, not for the number of 317 * TX packets in the queue. This should reduce the number of TX only, 318 * ie. when no RX processing is done, interrupts seen. 319 */ 320 321 /* 322 * Threshold values for RX buffer allocation - the low water marks for 323 * when to start refilling the rings are set to 75% of the ring 324 * sizes. It seems to make sense to refill the rings entirely from the 325 * intrrupt handler once it gets below the panic threshold, that way 326 * we don't risk that the refilling is moved to another CPU when the 327 * one running the interrupt handler just got the slab code hot in its 328 * cache. 329 */ 330 #define RX_RING_SIZE 72 331 #define RX_MINI_SIZE 64 332 #define RX_JUMBO_SIZE 48 333 334 #define RX_PANIC_STD_THRES 16 335 #define RX_PANIC_STD_REFILL (3*RX_PANIC_STD_THRES)/2 336 #define RX_LOW_STD_THRES (3*RX_RING_SIZE)/4 337 #define RX_PANIC_MINI_THRES 12 338 #define RX_PANIC_MINI_REFILL (3*RX_PANIC_MINI_THRES)/2 339 #define RX_LOW_MINI_THRES (3*RX_MINI_SIZE)/4 340 #define RX_PANIC_JUMBO_THRES 6 341 #define RX_PANIC_JUMBO_REFILL (3*RX_PANIC_JUMBO_THRES)/2 342 #define RX_LOW_JUMBO_THRES (3*RX_JUMBO_SIZE)/4 343 344 345 /* 346 * Size of the mini ring entries, basically these just should be big 347 * enough to take TCP ACKs 348 */ 349 #define ACE_MINI_SIZE 100 350 351 #define ACE_MINI_BUFSIZE ACE_MINI_SIZE 352 #define ACE_STD_BUFSIZE (ACE_STD_MTU + ETH_HLEN + 4) 353 #define ACE_JUMBO_BUFSIZE (ACE_JUMBO_MTU + ETH_HLEN + 4) 354 355 /* 356 * There seems to be a magic difference in the effect between 995 and 996 357 * but little difference between 900 and 995 ... no idea why. 358 * 359 * There is now a default set of tuning parameters which is set, depending 360 * on whether or not the user enables Jumbo frames. It's assumed that if 361 * Jumbo frames are enabled, the user wants optimal tuning for that case. 362 */ 363 #define DEF_TX_COAL 400 /* 996 */ 364 #define DEF_TX_MAX_DESC 60 /* was 40 */ 365 #define DEF_RX_COAL 120 /* 1000 */ 366 #define DEF_RX_MAX_DESC 25 367 #define DEF_TX_RATIO 21 /* 24 */ 368 369 #define DEF_JUMBO_TX_COAL 20 370 #define DEF_JUMBO_TX_MAX_DESC 60 371 #define DEF_JUMBO_RX_COAL 30 372 #define DEF_JUMBO_RX_MAX_DESC 6 373 #define DEF_JUMBO_TX_RATIO 21 374 375 #if tigon2FwReleaseLocal < 20001118 376 /* 377 * Standard firmware and early modifications duplicate 378 * IRQ load without this flag (coal timer is never reset). 379 * Note that with this flag tx_coal should be less than 380 * time to xmit full tx ring. 381 * 400usec is not so bad for tx ring size of 128. 382 */ 383 #define TX_COAL_INTS_ONLY 1 /* worth it */ 384 #else 385 /* 386 * With modified firmware, this is not necessary, but still useful. 387 */ 388 #define TX_COAL_INTS_ONLY 1 389 #endif 390 391 #define DEF_TRACE 0 392 #define DEF_STAT (2 * TICKS_PER_SEC) 393 394 395 static int link_state[ACE_MAX_MOD_PARMS]; 396 static int trace[ACE_MAX_MOD_PARMS]; 397 static int tx_coal_tick[ACE_MAX_MOD_PARMS]; 398 static int rx_coal_tick[ACE_MAX_MOD_PARMS]; 399 static int max_tx_desc[ACE_MAX_MOD_PARMS]; 400 static int max_rx_desc[ACE_MAX_MOD_PARMS]; 401 static int tx_ratio[ACE_MAX_MOD_PARMS]; 402 static int dis_pci_mem_inval[ACE_MAX_MOD_PARMS] = {1, 1, 1, 1, 1, 1, 1, 1}; 403 404 MODULE_AUTHOR("Jes Sorensen <jes@trained-monkey.org>"); 405 MODULE_LICENSE("GPL"); 406 MODULE_DESCRIPTION("AceNIC/3C985/GA620 Gigabit Ethernet driver"); 407 #ifndef CONFIG_ACENIC_OMIT_TIGON_I 408 MODULE_FIRMWARE("acenic/tg1.bin"); 409 #endif 410 MODULE_FIRMWARE("acenic/tg2.bin"); 411 412 module_param_array_named(link, link_state, int, NULL, 0); 413 module_param_array(trace, int, NULL, 0); 414 module_param_array(tx_coal_tick, int, NULL, 0); 415 module_param_array(max_tx_desc, int, NULL, 0); 416 module_param_array(rx_coal_tick, int, NULL, 0); 417 module_param_array(max_rx_desc, int, NULL, 0); 418 module_param_array(tx_ratio, int, NULL, 0); 419 MODULE_PARM_DESC(link, "AceNIC/3C985/NetGear link state"); 420 MODULE_PARM_DESC(trace, "AceNIC/3C985/NetGear firmware trace level"); 421 MODULE_PARM_DESC(tx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first tx descriptor arrives"); 422 MODULE_PARM_DESC(max_tx_desc, "AceNIC/3C985/GA620 max number of transmit descriptors to wait"); 423 MODULE_PARM_DESC(rx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first rx descriptor arrives"); 424 MODULE_PARM_DESC(max_rx_desc, "AceNIC/3C985/GA620 max number of receive descriptors to wait"); 425 MODULE_PARM_DESC(tx_ratio, "AceNIC/3C985/GA620 ratio of NIC memory used for TX/RX descriptors (range 0-63)"); 426 427 428 static const char version[] = 429 "acenic.c: v0.92 08/05/2002 Jes Sorensen, linux-acenic@SunSITE.dk\n" 430 " http://home.cern.ch/~jes/gige/acenic.html\n"; 431 432 static int ace_get_settings(struct net_device *, struct ethtool_cmd *); 433 static int ace_set_settings(struct net_device *, struct ethtool_cmd *); 434 static void ace_get_drvinfo(struct net_device *, struct ethtool_drvinfo *); 435 436 static const struct ethtool_ops ace_ethtool_ops = { 437 .get_settings = ace_get_settings, 438 .set_settings = ace_set_settings, 439 .get_drvinfo = ace_get_drvinfo, 440 }; 441 442 static void ace_watchdog(struct net_device *dev); 443 444 static const struct net_device_ops ace_netdev_ops = { 445 .ndo_open = ace_open, 446 .ndo_stop = ace_close, 447 .ndo_tx_timeout = ace_watchdog, 448 .ndo_get_stats = ace_get_stats, 449 .ndo_start_xmit = ace_start_xmit, 450 .ndo_set_rx_mode = ace_set_multicast_list, 451 .ndo_validate_addr = eth_validate_addr, 452 .ndo_set_mac_address = ace_set_mac_addr, 453 .ndo_change_mtu = ace_change_mtu, 454 }; 455 456 static int acenic_probe_one(struct pci_dev *pdev, 457 const struct pci_device_id *id) 458 { 459 struct net_device *dev; 460 struct ace_private *ap; 461 static int boards_found; 462 463 dev = alloc_etherdev(sizeof(struct ace_private)); 464 if (dev == NULL) 465 return -ENOMEM; 466 467 SET_NETDEV_DEV(dev, &pdev->dev); 468 469 ap = netdev_priv(dev); 470 ap->pdev = pdev; 471 ap->name = pci_name(pdev); 472 473 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM; 474 dev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; 475 476 dev->watchdog_timeo = 5*HZ; 477 478 dev->netdev_ops = &ace_netdev_ops; 479 dev->ethtool_ops = &ace_ethtool_ops; 480 481 /* we only display this string ONCE */ 482 if (!boards_found) 483 printk(version); 484 485 if (pci_enable_device(pdev)) 486 goto fail_free_netdev; 487 488 /* 489 * Enable master mode before we start playing with the 490 * pci_command word since pci_set_master() will modify 491 * it. 492 */ 493 pci_set_master(pdev); 494 495 pci_read_config_word(pdev, PCI_COMMAND, &ap->pci_command); 496 497 /* OpenFirmware on Mac's does not set this - DOH.. */ 498 if (!(ap->pci_command & PCI_COMMAND_MEMORY)) { 499 printk(KERN_INFO "%s: Enabling PCI Memory Mapped " 500 "access - was not enabled by BIOS/Firmware\n", 501 ap->name); 502 ap->pci_command = ap->pci_command | PCI_COMMAND_MEMORY; 503 pci_write_config_word(ap->pdev, PCI_COMMAND, 504 ap->pci_command); 505 wmb(); 506 } 507 508 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &ap->pci_latency); 509 if (ap->pci_latency <= 0x40) { 510 ap->pci_latency = 0x40; 511 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, ap->pci_latency); 512 } 513 514 /* 515 * Remap the regs into kernel space - this is abuse of 516 * dev->base_addr since it was means for I/O port 517 * addresses but who gives a damn. 518 */ 519 dev->base_addr = pci_resource_start(pdev, 0); 520 ap->regs = ioremap(dev->base_addr, 0x4000); 521 if (!ap->regs) { 522 printk(KERN_ERR "%s: Unable to map I/O register, " 523 "AceNIC %i will be disabled.\n", 524 ap->name, boards_found); 525 goto fail_free_netdev; 526 } 527 528 switch(pdev->vendor) { 529 case PCI_VENDOR_ID_ALTEON: 530 if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9100T) { 531 printk(KERN_INFO "%s: Farallon PN9100-T ", 532 ap->name); 533 } else { 534 printk(KERN_INFO "%s: Alteon AceNIC ", 535 ap->name); 536 } 537 break; 538 case PCI_VENDOR_ID_3COM: 539 printk(KERN_INFO "%s: 3Com 3C985 ", ap->name); 540 break; 541 case PCI_VENDOR_ID_NETGEAR: 542 printk(KERN_INFO "%s: NetGear GA620 ", ap->name); 543 break; 544 case PCI_VENDOR_ID_DEC: 545 if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9000SX) { 546 printk(KERN_INFO "%s: Farallon PN9000-SX ", 547 ap->name); 548 break; 549 } 550 case PCI_VENDOR_ID_SGI: 551 printk(KERN_INFO "%s: SGI AceNIC ", ap->name); 552 break; 553 default: 554 printk(KERN_INFO "%s: Unknown AceNIC ", ap->name); 555 break; 556 } 557 558 printk("Gigabit Ethernet at 0x%08lx, ", dev->base_addr); 559 printk("irq %d\n", pdev->irq); 560 561 #ifdef CONFIG_ACENIC_OMIT_TIGON_I 562 if ((readl(&ap->regs->HostCtrl) >> 28) == 4) { 563 printk(KERN_ERR "%s: Driver compiled without Tigon I" 564 " support - NIC disabled\n", dev->name); 565 goto fail_uninit; 566 } 567 #endif 568 569 if (ace_allocate_descriptors(dev)) 570 goto fail_free_netdev; 571 572 #ifdef MODULE 573 if (boards_found >= ACE_MAX_MOD_PARMS) 574 ap->board_idx = BOARD_IDX_OVERFLOW; 575 else 576 ap->board_idx = boards_found; 577 #else 578 ap->board_idx = BOARD_IDX_STATIC; 579 #endif 580 581 if (ace_init(dev)) 582 goto fail_free_netdev; 583 584 if (register_netdev(dev)) { 585 printk(KERN_ERR "acenic: device registration failed\n"); 586 goto fail_uninit; 587 } 588 ap->name = dev->name; 589 590 if (ap->pci_using_dac) 591 dev->features |= NETIF_F_HIGHDMA; 592 593 pci_set_drvdata(pdev, dev); 594 595 boards_found++; 596 return 0; 597 598 fail_uninit: 599 ace_init_cleanup(dev); 600 fail_free_netdev: 601 free_netdev(dev); 602 return -ENODEV; 603 } 604 605 static void acenic_remove_one(struct pci_dev *pdev) 606 { 607 struct net_device *dev = pci_get_drvdata(pdev); 608 struct ace_private *ap = netdev_priv(dev); 609 struct ace_regs __iomem *regs = ap->regs; 610 short i; 611 612 unregister_netdev(dev); 613 614 writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl); 615 if (ap->version >= 2) 616 writel(readl(®s->CpuBCtrl) | CPU_HALT, ®s->CpuBCtrl); 617 618 /* 619 * This clears any pending interrupts 620 */ 621 writel(1, ®s->Mb0Lo); 622 readl(®s->CpuCtrl); /* flush */ 623 624 /* 625 * Make sure no other CPUs are processing interrupts 626 * on the card before the buffers are being released. 627 * Otherwise one might experience some `interesting' 628 * effects. 629 * 630 * Then release the RX buffers - jumbo buffers were 631 * already released in ace_close(). 632 */ 633 ace_sync_irq(dev->irq); 634 635 for (i = 0; i < RX_STD_RING_ENTRIES; i++) { 636 struct sk_buff *skb = ap->skb->rx_std_skbuff[i].skb; 637 638 if (skb) { 639 struct ring_info *ringp; 640 dma_addr_t mapping; 641 642 ringp = &ap->skb->rx_std_skbuff[i]; 643 mapping = dma_unmap_addr(ringp, mapping); 644 pci_unmap_page(ap->pdev, mapping, 645 ACE_STD_BUFSIZE, 646 PCI_DMA_FROMDEVICE); 647 648 ap->rx_std_ring[i].size = 0; 649 ap->skb->rx_std_skbuff[i].skb = NULL; 650 dev_kfree_skb(skb); 651 } 652 } 653 654 if (ap->version >= 2) { 655 for (i = 0; i < RX_MINI_RING_ENTRIES; i++) { 656 struct sk_buff *skb = ap->skb->rx_mini_skbuff[i].skb; 657 658 if (skb) { 659 struct ring_info *ringp; 660 dma_addr_t mapping; 661 662 ringp = &ap->skb->rx_mini_skbuff[i]; 663 mapping = dma_unmap_addr(ringp,mapping); 664 pci_unmap_page(ap->pdev, mapping, 665 ACE_MINI_BUFSIZE, 666 PCI_DMA_FROMDEVICE); 667 668 ap->rx_mini_ring[i].size = 0; 669 ap->skb->rx_mini_skbuff[i].skb = NULL; 670 dev_kfree_skb(skb); 671 } 672 } 673 } 674 675 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) { 676 struct sk_buff *skb = ap->skb->rx_jumbo_skbuff[i].skb; 677 if (skb) { 678 struct ring_info *ringp; 679 dma_addr_t mapping; 680 681 ringp = &ap->skb->rx_jumbo_skbuff[i]; 682 mapping = dma_unmap_addr(ringp, mapping); 683 pci_unmap_page(ap->pdev, mapping, 684 ACE_JUMBO_BUFSIZE, 685 PCI_DMA_FROMDEVICE); 686 687 ap->rx_jumbo_ring[i].size = 0; 688 ap->skb->rx_jumbo_skbuff[i].skb = NULL; 689 dev_kfree_skb(skb); 690 } 691 } 692 693 ace_init_cleanup(dev); 694 free_netdev(dev); 695 } 696 697 static struct pci_driver acenic_pci_driver = { 698 .name = "acenic", 699 .id_table = acenic_pci_tbl, 700 .probe = acenic_probe_one, 701 .remove = acenic_remove_one, 702 }; 703 704 static void ace_free_descriptors(struct net_device *dev) 705 { 706 struct ace_private *ap = netdev_priv(dev); 707 int size; 708 709 if (ap->rx_std_ring != NULL) { 710 size = (sizeof(struct rx_desc) * 711 (RX_STD_RING_ENTRIES + 712 RX_JUMBO_RING_ENTRIES + 713 RX_MINI_RING_ENTRIES + 714 RX_RETURN_RING_ENTRIES)); 715 pci_free_consistent(ap->pdev, size, ap->rx_std_ring, 716 ap->rx_ring_base_dma); 717 ap->rx_std_ring = NULL; 718 ap->rx_jumbo_ring = NULL; 719 ap->rx_mini_ring = NULL; 720 ap->rx_return_ring = NULL; 721 } 722 if (ap->evt_ring != NULL) { 723 size = (sizeof(struct event) * EVT_RING_ENTRIES); 724 pci_free_consistent(ap->pdev, size, ap->evt_ring, 725 ap->evt_ring_dma); 726 ap->evt_ring = NULL; 727 } 728 if (ap->tx_ring != NULL && !ACE_IS_TIGON_I(ap)) { 729 size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES); 730 pci_free_consistent(ap->pdev, size, ap->tx_ring, 731 ap->tx_ring_dma); 732 } 733 ap->tx_ring = NULL; 734 735 if (ap->evt_prd != NULL) { 736 pci_free_consistent(ap->pdev, sizeof(u32), 737 (void *)ap->evt_prd, ap->evt_prd_dma); 738 ap->evt_prd = NULL; 739 } 740 if (ap->rx_ret_prd != NULL) { 741 pci_free_consistent(ap->pdev, sizeof(u32), 742 (void *)ap->rx_ret_prd, 743 ap->rx_ret_prd_dma); 744 ap->rx_ret_prd = NULL; 745 } 746 if (ap->tx_csm != NULL) { 747 pci_free_consistent(ap->pdev, sizeof(u32), 748 (void *)ap->tx_csm, ap->tx_csm_dma); 749 ap->tx_csm = NULL; 750 } 751 } 752 753 754 static int ace_allocate_descriptors(struct net_device *dev) 755 { 756 struct ace_private *ap = netdev_priv(dev); 757 int size; 758 759 size = (sizeof(struct rx_desc) * 760 (RX_STD_RING_ENTRIES + 761 RX_JUMBO_RING_ENTRIES + 762 RX_MINI_RING_ENTRIES + 763 RX_RETURN_RING_ENTRIES)); 764 765 ap->rx_std_ring = pci_alloc_consistent(ap->pdev, size, 766 &ap->rx_ring_base_dma); 767 if (ap->rx_std_ring == NULL) 768 goto fail; 769 770 ap->rx_jumbo_ring = ap->rx_std_ring + RX_STD_RING_ENTRIES; 771 ap->rx_mini_ring = ap->rx_jumbo_ring + RX_JUMBO_RING_ENTRIES; 772 ap->rx_return_ring = ap->rx_mini_ring + RX_MINI_RING_ENTRIES; 773 774 size = (sizeof(struct event) * EVT_RING_ENTRIES); 775 776 ap->evt_ring = pci_alloc_consistent(ap->pdev, size, &ap->evt_ring_dma); 777 778 if (ap->evt_ring == NULL) 779 goto fail; 780 781 /* 782 * Only allocate a host TX ring for the Tigon II, the Tigon I 783 * has to use PCI registers for this ;-( 784 */ 785 if (!ACE_IS_TIGON_I(ap)) { 786 size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES); 787 788 ap->tx_ring = pci_alloc_consistent(ap->pdev, size, 789 &ap->tx_ring_dma); 790 791 if (ap->tx_ring == NULL) 792 goto fail; 793 } 794 795 ap->evt_prd = pci_alloc_consistent(ap->pdev, sizeof(u32), 796 &ap->evt_prd_dma); 797 if (ap->evt_prd == NULL) 798 goto fail; 799 800 ap->rx_ret_prd = pci_alloc_consistent(ap->pdev, sizeof(u32), 801 &ap->rx_ret_prd_dma); 802 if (ap->rx_ret_prd == NULL) 803 goto fail; 804 805 ap->tx_csm = pci_alloc_consistent(ap->pdev, sizeof(u32), 806 &ap->tx_csm_dma); 807 if (ap->tx_csm == NULL) 808 goto fail; 809 810 return 0; 811 812 fail: 813 /* Clean up. */ 814 ace_init_cleanup(dev); 815 return 1; 816 } 817 818 819 /* 820 * Generic cleanup handling data allocated during init. Used when the 821 * module is unloaded or if an error occurs during initialization 822 */ 823 static void ace_init_cleanup(struct net_device *dev) 824 { 825 struct ace_private *ap; 826 827 ap = netdev_priv(dev); 828 829 ace_free_descriptors(dev); 830 831 if (ap->info) 832 pci_free_consistent(ap->pdev, sizeof(struct ace_info), 833 ap->info, ap->info_dma); 834 kfree(ap->skb); 835 kfree(ap->trace_buf); 836 837 if (dev->irq) 838 free_irq(dev->irq, dev); 839 840 iounmap(ap->regs); 841 } 842 843 844 /* 845 * Commands are considered to be slow. 846 */ 847 static inline void ace_issue_cmd(struct ace_regs __iomem *regs, struct cmd *cmd) 848 { 849 u32 idx; 850 851 idx = readl(®s->CmdPrd); 852 853 writel(*(u32 *)(cmd), ®s->CmdRng[idx]); 854 idx = (idx + 1) % CMD_RING_ENTRIES; 855 856 writel(idx, ®s->CmdPrd); 857 } 858 859 860 static int ace_init(struct net_device *dev) 861 { 862 struct ace_private *ap; 863 struct ace_regs __iomem *regs; 864 struct ace_info *info = NULL; 865 struct pci_dev *pdev; 866 unsigned long myjif; 867 u64 tmp_ptr; 868 u32 tig_ver, mac1, mac2, tmp, pci_state; 869 int board_idx, ecode = 0; 870 short i; 871 unsigned char cache_size; 872 873 ap = netdev_priv(dev); 874 regs = ap->regs; 875 876 board_idx = ap->board_idx; 877 878 /* 879 * aman@sgi.com - its useful to do a NIC reset here to 880 * address the `Firmware not running' problem subsequent 881 * to any crashes involving the NIC 882 */ 883 writel(HW_RESET | (HW_RESET << 24), ®s->HostCtrl); 884 readl(®s->HostCtrl); /* PCI write posting */ 885 udelay(5); 886 887 /* 888 * Don't access any other registers before this point! 889 */ 890 #ifdef __BIG_ENDIAN 891 /* 892 * This will most likely need BYTE_SWAP once we switch 893 * to using __raw_writel() 894 */ 895 writel((WORD_SWAP | CLR_INT | ((WORD_SWAP | CLR_INT) << 24)), 896 ®s->HostCtrl); 897 #else 898 writel((CLR_INT | WORD_SWAP | ((CLR_INT | WORD_SWAP) << 24)), 899 ®s->HostCtrl); 900 #endif 901 readl(®s->HostCtrl); /* PCI write posting */ 902 903 /* 904 * Stop the NIC CPU and clear pending interrupts 905 */ 906 writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl); 907 readl(®s->CpuCtrl); /* PCI write posting */ 908 writel(0, ®s->Mb0Lo); 909 910 tig_ver = readl(®s->HostCtrl) >> 28; 911 912 switch(tig_ver){ 913 #ifndef CONFIG_ACENIC_OMIT_TIGON_I 914 case 4: 915 case 5: 916 printk(KERN_INFO " Tigon I (Rev. %i), Firmware: %i.%i.%i, ", 917 tig_ver, ap->firmware_major, ap->firmware_minor, 918 ap->firmware_fix); 919 writel(0, ®s->LocalCtrl); 920 ap->version = 1; 921 ap->tx_ring_entries = TIGON_I_TX_RING_ENTRIES; 922 break; 923 #endif 924 case 6: 925 printk(KERN_INFO " Tigon II (Rev. %i), Firmware: %i.%i.%i, ", 926 tig_ver, ap->firmware_major, ap->firmware_minor, 927 ap->firmware_fix); 928 writel(readl(®s->CpuBCtrl) | CPU_HALT, ®s->CpuBCtrl); 929 readl(®s->CpuBCtrl); /* PCI write posting */ 930 /* 931 * The SRAM bank size does _not_ indicate the amount 932 * of memory on the card, it controls the _bank_ size! 933 * Ie. a 1MB AceNIC will have two banks of 512KB. 934 */ 935 writel(SRAM_BANK_512K, ®s->LocalCtrl); 936 writel(SYNC_SRAM_TIMING, ®s->MiscCfg); 937 ap->version = 2; 938 ap->tx_ring_entries = MAX_TX_RING_ENTRIES; 939 break; 940 default: 941 printk(KERN_WARNING " Unsupported Tigon version detected " 942 "(%i)\n", tig_ver); 943 ecode = -ENODEV; 944 goto init_error; 945 } 946 947 /* 948 * ModeStat _must_ be set after the SRAM settings as this change 949 * seems to corrupt the ModeStat and possible other registers. 950 * The SRAM settings survive resets and setting it to the same 951 * value a second time works as well. This is what caused the 952 * `Firmware not running' problem on the Tigon II. 953 */ 954 #ifdef __BIG_ENDIAN 955 writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | ACE_BYTE_SWAP_BD | 956 ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, ®s->ModeStat); 957 #else 958 writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | 959 ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, ®s->ModeStat); 960 #endif 961 readl(®s->ModeStat); /* PCI write posting */ 962 963 mac1 = 0; 964 for(i = 0; i < 4; i++) { 965 int t; 966 967 mac1 = mac1 << 8; 968 t = read_eeprom_byte(dev, 0x8c+i); 969 if (t < 0) { 970 ecode = -EIO; 971 goto init_error; 972 } else 973 mac1 |= (t & 0xff); 974 } 975 mac2 = 0; 976 for(i = 4; i < 8; i++) { 977 int t; 978 979 mac2 = mac2 << 8; 980 t = read_eeprom_byte(dev, 0x8c+i); 981 if (t < 0) { 982 ecode = -EIO; 983 goto init_error; 984 } else 985 mac2 |= (t & 0xff); 986 } 987 988 writel(mac1, ®s->MacAddrHi); 989 writel(mac2, ®s->MacAddrLo); 990 991 dev->dev_addr[0] = (mac1 >> 8) & 0xff; 992 dev->dev_addr[1] = mac1 & 0xff; 993 dev->dev_addr[2] = (mac2 >> 24) & 0xff; 994 dev->dev_addr[3] = (mac2 >> 16) & 0xff; 995 dev->dev_addr[4] = (mac2 >> 8) & 0xff; 996 dev->dev_addr[5] = mac2 & 0xff; 997 998 printk("MAC: %pM\n", dev->dev_addr); 999 1000 /* 1001 * Looks like this is necessary to deal with on all architectures, 1002 * even this %$#%$# N440BX Intel based thing doesn't get it right. 1003 * Ie. having two NICs in the machine, one will have the cache 1004 * line set at boot time, the other will not. 1005 */ 1006 pdev = ap->pdev; 1007 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache_size); 1008 cache_size <<= 2; 1009 if (cache_size != SMP_CACHE_BYTES) { 1010 printk(KERN_INFO " PCI cache line size set incorrectly " 1011 "(%i bytes) by BIOS/FW, ", cache_size); 1012 if (cache_size > SMP_CACHE_BYTES) 1013 printk("expecting %i\n", SMP_CACHE_BYTES); 1014 else { 1015 printk("correcting to %i\n", SMP_CACHE_BYTES); 1016 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 1017 SMP_CACHE_BYTES >> 2); 1018 } 1019 } 1020 1021 pci_state = readl(®s->PciState); 1022 printk(KERN_INFO " PCI bus width: %i bits, speed: %iMHz, " 1023 "latency: %i clks\n", 1024 (pci_state & PCI_32BIT) ? 32 : 64, 1025 (pci_state & PCI_66MHZ) ? 66 : 33, 1026 ap->pci_latency); 1027 1028 /* 1029 * Set the max DMA transfer size. Seems that for most systems 1030 * the performance is better when no MAX parameter is 1031 * set. However for systems enabling PCI write and invalidate, 1032 * DMA writes must be set to the L1 cache line size to get 1033 * optimal performance. 1034 * 1035 * The default is now to turn the PCI write and invalidate off 1036 * - that is what Alteon does for NT. 1037 */ 1038 tmp = READ_CMD_MEM | WRITE_CMD_MEM; 1039 if (ap->version >= 2) { 1040 tmp |= (MEM_READ_MULTIPLE | (pci_state & PCI_66MHZ)); 1041 /* 1042 * Tuning parameters only supported for 8 cards 1043 */ 1044 if (board_idx == BOARD_IDX_OVERFLOW || 1045 dis_pci_mem_inval[board_idx]) { 1046 if (ap->pci_command & PCI_COMMAND_INVALIDATE) { 1047 ap->pci_command &= ~PCI_COMMAND_INVALIDATE; 1048 pci_write_config_word(pdev, PCI_COMMAND, 1049 ap->pci_command); 1050 printk(KERN_INFO " Disabling PCI memory " 1051 "write and invalidate\n"); 1052 } 1053 } else if (ap->pci_command & PCI_COMMAND_INVALIDATE) { 1054 printk(KERN_INFO " PCI memory write & invalidate " 1055 "enabled by BIOS, enabling counter measures\n"); 1056 1057 switch(SMP_CACHE_BYTES) { 1058 case 16: 1059 tmp |= DMA_WRITE_MAX_16; 1060 break; 1061 case 32: 1062 tmp |= DMA_WRITE_MAX_32; 1063 break; 1064 case 64: 1065 tmp |= DMA_WRITE_MAX_64; 1066 break; 1067 case 128: 1068 tmp |= DMA_WRITE_MAX_128; 1069 break; 1070 default: 1071 printk(KERN_INFO " Cache line size %i not " 1072 "supported, PCI write and invalidate " 1073 "disabled\n", SMP_CACHE_BYTES); 1074 ap->pci_command &= ~PCI_COMMAND_INVALIDATE; 1075 pci_write_config_word(pdev, PCI_COMMAND, 1076 ap->pci_command); 1077 } 1078 } 1079 } 1080 1081 #ifdef __sparc__ 1082 /* 1083 * On this platform, we know what the best dma settings 1084 * are. We use 64-byte maximum bursts, because if we 1085 * burst larger than the cache line size (or even cross 1086 * a 64byte boundary in a single burst) the UltraSparc 1087 * PCI controller will disconnect at 64-byte multiples. 1088 * 1089 * Read-multiple will be properly enabled above, and when 1090 * set will give the PCI controller proper hints about 1091 * prefetching. 1092 */ 1093 tmp &= ~DMA_READ_WRITE_MASK; 1094 tmp |= DMA_READ_MAX_64; 1095 tmp |= DMA_WRITE_MAX_64; 1096 #endif 1097 #ifdef __alpha__ 1098 tmp &= ~DMA_READ_WRITE_MASK; 1099 tmp |= DMA_READ_MAX_128; 1100 /* 1101 * All the docs say MUST NOT. Well, I did. 1102 * Nothing terrible happens, if we load wrong size. 1103 * Bit w&i still works better! 1104 */ 1105 tmp |= DMA_WRITE_MAX_128; 1106 #endif 1107 writel(tmp, ®s->PciState); 1108 1109 #if 0 1110 /* 1111 * The Host PCI bus controller driver has to set FBB. 1112 * If all devices on that PCI bus support FBB, then the controller 1113 * can enable FBB support in the Host PCI Bus controller (or on 1114 * the PCI-PCI bridge if that applies). 1115 * -ggg 1116 */ 1117 /* 1118 * I have received reports from people having problems when this 1119 * bit is enabled. 1120 */ 1121 if (!(ap->pci_command & PCI_COMMAND_FAST_BACK)) { 1122 printk(KERN_INFO " Enabling PCI Fast Back to Back\n"); 1123 ap->pci_command |= PCI_COMMAND_FAST_BACK; 1124 pci_write_config_word(pdev, PCI_COMMAND, ap->pci_command); 1125 } 1126 #endif 1127 1128 /* 1129 * Configure DMA attributes. 1130 */ 1131 if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) { 1132 ap->pci_using_dac = 1; 1133 } else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) { 1134 ap->pci_using_dac = 0; 1135 } else { 1136 ecode = -ENODEV; 1137 goto init_error; 1138 } 1139 1140 /* 1141 * Initialize the generic info block and the command+event rings 1142 * and the control blocks for the transmit and receive rings 1143 * as they need to be setup once and for all. 1144 */ 1145 if (!(info = pci_alloc_consistent(ap->pdev, sizeof(struct ace_info), 1146 &ap->info_dma))) { 1147 ecode = -EAGAIN; 1148 goto init_error; 1149 } 1150 ap->info = info; 1151 1152 /* 1153 * Get the memory for the skb rings. 1154 */ 1155 if (!(ap->skb = kmalloc(sizeof(struct ace_skb), GFP_KERNEL))) { 1156 ecode = -EAGAIN; 1157 goto init_error; 1158 } 1159 1160 ecode = request_irq(pdev->irq, ace_interrupt, IRQF_SHARED, 1161 DRV_NAME, dev); 1162 if (ecode) { 1163 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n", 1164 DRV_NAME, pdev->irq); 1165 goto init_error; 1166 } else 1167 dev->irq = pdev->irq; 1168 1169 #ifdef INDEX_DEBUG 1170 spin_lock_init(&ap->debug_lock); 1171 ap->last_tx = ACE_TX_RING_ENTRIES(ap) - 1; 1172 ap->last_std_rx = 0; 1173 ap->last_mini_rx = 0; 1174 #endif 1175 1176 memset(ap->info, 0, sizeof(struct ace_info)); 1177 memset(ap->skb, 0, sizeof(struct ace_skb)); 1178 1179 ecode = ace_load_firmware(dev); 1180 if (ecode) 1181 goto init_error; 1182 1183 ap->fw_running = 0; 1184 1185 tmp_ptr = ap->info_dma; 1186 writel(tmp_ptr >> 32, ®s->InfoPtrHi); 1187 writel(tmp_ptr & 0xffffffff, ®s->InfoPtrLo); 1188 1189 memset(ap->evt_ring, 0, EVT_RING_ENTRIES * sizeof(struct event)); 1190 1191 set_aceaddr(&info->evt_ctrl.rngptr, ap->evt_ring_dma); 1192 info->evt_ctrl.flags = 0; 1193 1194 *(ap->evt_prd) = 0; 1195 wmb(); 1196 set_aceaddr(&info->evt_prd_ptr, ap->evt_prd_dma); 1197 writel(0, ®s->EvtCsm); 1198 1199 set_aceaddr(&info->cmd_ctrl.rngptr, 0x100); 1200 info->cmd_ctrl.flags = 0; 1201 info->cmd_ctrl.max_len = 0; 1202 1203 for (i = 0; i < CMD_RING_ENTRIES; i++) 1204 writel(0, ®s->CmdRng[i]); 1205 1206 writel(0, ®s->CmdPrd); 1207 writel(0, ®s->CmdCsm); 1208 1209 tmp_ptr = ap->info_dma; 1210 tmp_ptr += (unsigned long) &(((struct ace_info *)0)->s.stats); 1211 set_aceaddr(&info->stats2_ptr, (dma_addr_t) tmp_ptr); 1212 1213 set_aceaddr(&info->rx_std_ctrl.rngptr, ap->rx_ring_base_dma); 1214 info->rx_std_ctrl.max_len = ACE_STD_BUFSIZE; 1215 info->rx_std_ctrl.flags = 1216 RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST; 1217 1218 memset(ap->rx_std_ring, 0, 1219 RX_STD_RING_ENTRIES * sizeof(struct rx_desc)); 1220 1221 for (i = 0; i < RX_STD_RING_ENTRIES; i++) 1222 ap->rx_std_ring[i].flags = BD_FLG_TCP_UDP_SUM; 1223 1224 ap->rx_std_skbprd = 0; 1225 atomic_set(&ap->cur_rx_bufs, 0); 1226 1227 set_aceaddr(&info->rx_jumbo_ctrl.rngptr, 1228 (ap->rx_ring_base_dma + 1229 (sizeof(struct rx_desc) * RX_STD_RING_ENTRIES))); 1230 info->rx_jumbo_ctrl.max_len = 0; 1231 info->rx_jumbo_ctrl.flags = 1232 RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST; 1233 1234 memset(ap->rx_jumbo_ring, 0, 1235 RX_JUMBO_RING_ENTRIES * sizeof(struct rx_desc)); 1236 1237 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) 1238 ap->rx_jumbo_ring[i].flags = BD_FLG_TCP_UDP_SUM | BD_FLG_JUMBO; 1239 1240 ap->rx_jumbo_skbprd = 0; 1241 atomic_set(&ap->cur_jumbo_bufs, 0); 1242 1243 memset(ap->rx_mini_ring, 0, 1244 RX_MINI_RING_ENTRIES * sizeof(struct rx_desc)); 1245 1246 if (ap->version >= 2) { 1247 set_aceaddr(&info->rx_mini_ctrl.rngptr, 1248 (ap->rx_ring_base_dma + 1249 (sizeof(struct rx_desc) * 1250 (RX_STD_RING_ENTRIES + 1251 RX_JUMBO_RING_ENTRIES)))); 1252 info->rx_mini_ctrl.max_len = ACE_MINI_SIZE; 1253 info->rx_mini_ctrl.flags = 1254 RCB_FLG_TCP_UDP_SUM|RCB_FLG_NO_PSEUDO_HDR|RCB_FLG_VLAN_ASSIST; 1255 1256 for (i = 0; i < RX_MINI_RING_ENTRIES; i++) 1257 ap->rx_mini_ring[i].flags = 1258 BD_FLG_TCP_UDP_SUM | BD_FLG_MINI; 1259 } else { 1260 set_aceaddr(&info->rx_mini_ctrl.rngptr, 0); 1261 info->rx_mini_ctrl.flags = RCB_FLG_RNG_DISABLE; 1262 info->rx_mini_ctrl.max_len = 0; 1263 } 1264 1265 ap->rx_mini_skbprd = 0; 1266 atomic_set(&ap->cur_mini_bufs, 0); 1267 1268 set_aceaddr(&info->rx_return_ctrl.rngptr, 1269 (ap->rx_ring_base_dma + 1270 (sizeof(struct rx_desc) * 1271 (RX_STD_RING_ENTRIES + 1272 RX_JUMBO_RING_ENTRIES + 1273 RX_MINI_RING_ENTRIES)))); 1274 info->rx_return_ctrl.flags = 0; 1275 info->rx_return_ctrl.max_len = RX_RETURN_RING_ENTRIES; 1276 1277 memset(ap->rx_return_ring, 0, 1278 RX_RETURN_RING_ENTRIES * sizeof(struct rx_desc)); 1279 1280 set_aceaddr(&info->rx_ret_prd_ptr, ap->rx_ret_prd_dma); 1281 *(ap->rx_ret_prd) = 0; 1282 1283 writel(TX_RING_BASE, ®s->WinBase); 1284 1285 if (ACE_IS_TIGON_I(ap)) { 1286 ap->tx_ring = (__force struct tx_desc *) regs->Window; 1287 for (i = 0; i < (TIGON_I_TX_RING_ENTRIES 1288 * sizeof(struct tx_desc)) / sizeof(u32); i++) 1289 writel(0, (__force void __iomem *)ap->tx_ring + i * 4); 1290 1291 set_aceaddr(&info->tx_ctrl.rngptr, TX_RING_BASE); 1292 } else { 1293 memset(ap->tx_ring, 0, 1294 MAX_TX_RING_ENTRIES * sizeof(struct tx_desc)); 1295 1296 set_aceaddr(&info->tx_ctrl.rngptr, ap->tx_ring_dma); 1297 } 1298 1299 info->tx_ctrl.max_len = ACE_TX_RING_ENTRIES(ap); 1300 tmp = RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST; 1301 1302 /* 1303 * The Tigon I does not like having the TX ring in host memory ;-( 1304 */ 1305 if (!ACE_IS_TIGON_I(ap)) 1306 tmp |= RCB_FLG_TX_HOST_RING; 1307 #if TX_COAL_INTS_ONLY 1308 tmp |= RCB_FLG_COAL_INT_ONLY; 1309 #endif 1310 info->tx_ctrl.flags = tmp; 1311 1312 set_aceaddr(&info->tx_csm_ptr, ap->tx_csm_dma); 1313 1314 /* 1315 * Potential item for tuning parameter 1316 */ 1317 #if 0 /* NO */ 1318 writel(DMA_THRESH_16W, ®s->DmaReadCfg); 1319 writel(DMA_THRESH_16W, ®s->DmaWriteCfg); 1320 #else 1321 writel(DMA_THRESH_8W, ®s->DmaReadCfg); 1322 writel(DMA_THRESH_8W, ®s->DmaWriteCfg); 1323 #endif 1324 1325 writel(0, ®s->MaskInt); 1326 writel(1, ®s->IfIdx); 1327 #if 0 1328 /* 1329 * McKinley boxes do not like us fiddling with AssistState 1330 * this early 1331 */ 1332 writel(1, ®s->AssistState); 1333 #endif 1334 1335 writel(DEF_STAT, ®s->TuneStatTicks); 1336 writel(DEF_TRACE, ®s->TuneTrace); 1337 1338 ace_set_rxtx_parms(dev, 0); 1339 1340 if (board_idx == BOARD_IDX_OVERFLOW) { 1341 printk(KERN_WARNING "%s: more than %i NICs detected, " 1342 "ignoring module parameters!\n", 1343 ap->name, ACE_MAX_MOD_PARMS); 1344 } else if (board_idx >= 0) { 1345 if (tx_coal_tick[board_idx]) 1346 writel(tx_coal_tick[board_idx], 1347 ®s->TuneTxCoalTicks); 1348 if (max_tx_desc[board_idx]) 1349 writel(max_tx_desc[board_idx], ®s->TuneMaxTxDesc); 1350 1351 if (rx_coal_tick[board_idx]) 1352 writel(rx_coal_tick[board_idx], 1353 ®s->TuneRxCoalTicks); 1354 if (max_rx_desc[board_idx]) 1355 writel(max_rx_desc[board_idx], ®s->TuneMaxRxDesc); 1356 1357 if (trace[board_idx]) 1358 writel(trace[board_idx], ®s->TuneTrace); 1359 1360 if ((tx_ratio[board_idx] > 0) && (tx_ratio[board_idx] < 64)) 1361 writel(tx_ratio[board_idx], ®s->TxBufRat); 1362 } 1363 1364 /* 1365 * Default link parameters 1366 */ 1367 tmp = LNK_ENABLE | LNK_FULL_DUPLEX | LNK_1000MB | LNK_100MB | 1368 LNK_10MB | LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL | LNK_NEGOTIATE; 1369 if(ap->version >= 2) 1370 tmp |= LNK_TX_FLOW_CTL_Y; 1371 1372 /* 1373 * Override link default parameters 1374 */ 1375 if ((board_idx >= 0) && link_state[board_idx]) { 1376 int option = link_state[board_idx]; 1377 1378 tmp = LNK_ENABLE; 1379 1380 if (option & 0x01) { 1381 printk(KERN_INFO "%s: Setting half duplex link\n", 1382 ap->name); 1383 tmp &= ~LNK_FULL_DUPLEX; 1384 } 1385 if (option & 0x02) 1386 tmp &= ~LNK_NEGOTIATE; 1387 if (option & 0x10) 1388 tmp |= LNK_10MB; 1389 if (option & 0x20) 1390 tmp |= LNK_100MB; 1391 if (option & 0x40) 1392 tmp |= LNK_1000MB; 1393 if ((option & 0x70) == 0) { 1394 printk(KERN_WARNING "%s: No media speed specified, " 1395 "forcing auto negotiation\n", ap->name); 1396 tmp |= LNK_NEGOTIATE | LNK_1000MB | 1397 LNK_100MB | LNK_10MB; 1398 } 1399 if ((option & 0x100) == 0) 1400 tmp |= LNK_NEG_FCTL; 1401 else 1402 printk(KERN_INFO "%s: Disabling flow control " 1403 "negotiation\n", ap->name); 1404 if (option & 0x200) 1405 tmp |= LNK_RX_FLOW_CTL_Y; 1406 if ((option & 0x400) && (ap->version >= 2)) { 1407 printk(KERN_INFO "%s: Enabling TX flow control\n", 1408 ap->name); 1409 tmp |= LNK_TX_FLOW_CTL_Y; 1410 } 1411 } 1412 1413 ap->link = tmp; 1414 writel(tmp, ®s->TuneLink); 1415 if (ap->version >= 2) 1416 writel(tmp, ®s->TuneFastLink); 1417 1418 writel(ap->firmware_start, ®s->Pc); 1419 1420 writel(0, ®s->Mb0Lo); 1421 1422 /* 1423 * Set tx_csm before we start receiving interrupts, otherwise 1424 * the interrupt handler might think it is supposed to process 1425 * tx ints before we are up and running, which may cause a null 1426 * pointer access in the int handler. 1427 */ 1428 ap->cur_rx = 0; 1429 ap->tx_prd = *(ap->tx_csm) = ap->tx_ret_csm = 0; 1430 1431 wmb(); 1432 ace_set_txprd(regs, ap, 0); 1433 writel(0, ®s->RxRetCsm); 1434 1435 /* 1436 * Enable DMA engine now. 1437 * If we do this sooner, Mckinley box pukes. 1438 * I assume it's because Tigon II DMA engine wants to check 1439 * *something* even before the CPU is started. 1440 */ 1441 writel(1, ®s->AssistState); /* enable DMA */ 1442 1443 /* 1444 * Start the NIC CPU 1445 */ 1446 writel(readl(®s->CpuCtrl) & ~(CPU_HALT|CPU_TRACE), ®s->CpuCtrl); 1447 readl(®s->CpuCtrl); 1448 1449 /* 1450 * Wait for the firmware to spin up - max 3 seconds. 1451 */ 1452 myjif = jiffies + 3 * HZ; 1453 while (time_before(jiffies, myjif) && !ap->fw_running) 1454 cpu_relax(); 1455 1456 if (!ap->fw_running) { 1457 printk(KERN_ERR "%s: Firmware NOT running!\n", ap->name); 1458 1459 ace_dump_trace(ap); 1460 writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl); 1461 readl(®s->CpuCtrl); 1462 1463 /* aman@sgi.com - account for badly behaving firmware/NIC: 1464 * - have observed that the NIC may continue to generate 1465 * interrupts for some reason; attempt to stop it - halt 1466 * second CPU for Tigon II cards, and also clear Mb0 1467 * - if we're a module, we'll fail to load if this was 1468 * the only GbE card in the system => if the kernel does 1469 * see an interrupt from the NIC, code to handle it is 1470 * gone and OOps! - so free_irq also 1471 */ 1472 if (ap->version >= 2) 1473 writel(readl(®s->CpuBCtrl) | CPU_HALT, 1474 ®s->CpuBCtrl); 1475 writel(0, ®s->Mb0Lo); 1476 readl(®s->Mb0Lo); 1477 1478 ecode = -EBUSY; 1479 goto init_error; 1480 } 1481 1482 /* 1483 * We load the ring here as there seem to be no way to tell the 1484 * firmware to wipe the ring without re-initializing it. 1485 */ 1486 if (!test_and_set_bit(0, &ap->std_refill_busy)) 1487 ace_load_std_rx_ring(dev, RX_RING_SIZE); 1488 else 1489 printk(KERN_ERR "%s: Someone is busy refilling the RX ring\n", 1490 ap->name); 1491 if (ap->version >= 2) { 1492 if (!test_and_set_bit(0, &ap->mini_refill_busy)) 1493 ace_load_mini_rx_ring(dev, RX_MINI_SIZE); 1494 else 1495 printk(KERN_ERR "%s: Someone is busy refilling " 1496 "the RX mini ring\n", ap->name); 1497 } 1498 return 0; 1499 1500 init_error: 1501 ace_init_cleanup(dev); 1502 return ecode; 1503 } 1504 1505 1506 static void ace_set_rxtx_parms(struct net_device *dev, int jumbo) 1507 { 1508 struct ace_private *ap = netdev_priv(dev); 1509 struct ace_regs __iomem *regs = ap->regs; 1510 int board_idx = ap->board_idx; 1511 1512 if (board_idx >= 0) { 1513 if (!jumbo) { 1514 if (!tx_coal_tick[board_idx]) 1515 writel(DEF_TX_COAL, ®s->TuneTxCoalTicks); 1516 if (!max_tx_desc[board_idx]) 1517 writel(DEF_TX_MAX_DESC, ®s->TuneMaxTxDesc); 1518 if (!rx_coal_tick[board_idx]) 1519 writel(DEF_RX_COAL, ®s->TuneRxCoalTicks); 1520 if (!max_rx_desc[board_idx]) 1521 writel(DEF_RX_MAX_DESC, ®s->TuneMaxRxDesc); 1522 if (!tx_ratio[board_idx]) 1523 writel(DEF_TX_RATIO, ®s->TxBufRat); 1524 } else { 1525 if (!tx_coal_tick[board_idx]) 1526 writel(DEF_JUMBO_TX_COAL, 1527 ®s->TuneTxCoalTicks); 1528 if (!max_tx_desc[board_idx]) 1529 writel(DEF_JUMBO_TX_MAX_DESC, 1530 ®s->TuneMaxTxDesc); 1531 if (!rx_coal_tick[board_idx]) 1532 writel(DEF_JUMBO_RX_COAL, 1533 ®s->TuneRxCoalTicks); 1534 if (!max_rx_desc[board_idx]) 1535 writel(DEF_JUMBO_RX_MAX_DESC, 1536 ®s->TuneMaxRxDesc); 1537 if (!tx_ratio[board_idx]) 1538 writel(DEF_JUMBO_TX_RATIO, ®s->TxBufRat); 1539 } 1540 } 1541 } 1542 1543 1544 static void ace_watchdog(struct net_device *data) 1545 { 1546 struct net_device *dev = data; 1547 struct ace_private *ap = netdev_priv(dev); 1548 struct ace_regs __iomem *regs = ap->regs; 1549 1550 /* 1551 * We haven't received a stats update event for more than 2.5 1552 * seconds and there is data in the transmit queue, thus we 1553 * assume the card is stuck. 1554 */ 1555 if (*ap->tx_csm != ap->tx_ret_csm) { 1556 printk(KERN_WARNING "%s: Transmitter is stuck, %08x\n", 1557 dev->name, (unsigned int)readl(®s->HostCtrl)); 1558 /* This can happen due to ieee flow control. */ 1559 } else { 1560 printk(KERN_DEBUG "%s: BUG... transmitter died. Kicking it.\n", 1561 dev->name); 1562 #if 0 1563 netif_wake_queue(dev); 1564 #endif 1565 } 1566 } 1567 1568 1569 static void ace_tasklet(unsigned long arg) 1570 { 1571 struct net_device *dev = (struct net_device *) arg; 1572 struct ace_private *ap = netdev_priv(dev); 1573 int cur_size; 1574 1575 cur_size = atomic_read(&ap->cur_rx_bufs); 1576 if ((cur_size < RX_LOW_STD_THRES) && 1577 !test_and_set_bit(0, &ap->std_refill_busy)) { 1578 #ifdef DEBUG 1579 printk("refilling buffers (current %i)\n", cur_size); 1580 #endif 1581 ace_load_std_rx_ring(dev, RX_RING_SIZE - cur_size); 1582 } 1583 1584 if (ap->version >= 2) { 1585 cur_size = atomic_read(&ap->cur_mini_bufs); 1586 if ((cur_size < RX_LOW_MINI_THRES) && 1587 !test_and_set_bit(0, &ap->mini_refill_busy)) { 1588 #ifdef DEBUG 1589 printk("refilling mini buffers (current %i)\n", 1590 cur_size); 1591 #endif 1592 ace_load_mini_rx_ring(dev, RX_MINI_SIZE - cur_size); 1593 } 1594 } 1595 1596 cur_size = atomic_read(&ap->cur_jumbo_bufs); 1597 if (ap->jumbo && (cur_size < RX_LOW_JUMBO_THRES) && 1598 !test_and_set_bit(0, &ap->jumbo_refill_busy)) { 1599 #ifdef DEBUG 1600 printk("refilling jumbo buffers (current %i)\n", cur_size); 1601 #endif 1602 ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE - cur_size); 1603 } 1604 ap->tasklet_pending = 0; 1605 } 1606 1607 1608 /* 1609 * Copy the contents of the NIC's trace buffer to kernel memory. 1610 */ 1611 static void ace_dump_trace(struct ace_private *ap) 1612 { 1613 #if 0 1614 if (!ap->trace_buf) 1615 if (!(ap->trace_buf = kmalloc(ACE_TRACE_SIZE, GFP_KERNEL))) 1616 return; 1617 #endif 1618 } 1619 1620 1621 /* 1622 * Load the standard rx ring. 1623 * 1624 * Loading rings is safe without holding the spin lock since this is 1625 * done only before the device is enabled, thus no interrupts are 1626 * generated and by the interrupt handler/tasklet handler. 1627 */ 1628 static void ace_load_std_rx_ring(struct net_device *dev, int nr_bufs) 1629 { 1630 struct ace_private *ap = netdev_priv(dev); 1631 struct ace_regs __iomem *regs = ap->regs; 1632 short i, idx; 1633 1634 1635 prefetchw(&ap->cur_rx_bufs); 1636 1637 idx = ap->rx_std_skbprd; 1638 1639 for (i = 0; i < nr_bufs; i++) { 1640 struct sk_buff *skb; 1641 struct rx_desc *rd; 1642 dma_addr_t mapping; 1643 1644 skb = netdev_alloc_skb_ip_align(dev, ACE_STD_BUFSIZE); 1645 if (!skb) 1646 break; 1647 1648 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data), 1649 offset_in_page(skb->data), 1650 ACE_STD_BUFSIZE, 1651 PCI_DMA_FROMDEVICE); 1652 ap->skb->rx_std_skbuff[idx].skb = skb; 1653 dma_unmap_addr_set(&ap->skb->rx_std_skbuff[idx], 1654 mapping, mapping); 1655 1656 rd = &ap->rx_std_ring[idx]; 1657 set_aceaddr(&rd->addr, mapping); 1658 rd->size = ACE_STD_BUFSIZE; 1659 rd->idx = idx; 1660 idx = (idx + 1) % RX_STD_RING_ENTRIES; 1661 } 1662 1663 if (!i) 1664 goto error_out; 1665 1666 atomic_add(i, &ap->cur_rx_bufs); 1667 ap->rx_std_skbprd = idx; 1668 1669 if (ACE_IS_TIGON_I(ap)) { 1670 struct cmd cmd; 1671 cmd.evt = C_SET_RX_PRD_IDX; 1672 cmd.code = 0; 1673 cmd.idx = ap->rx_std_skbprd; 1674 ace_issue_cmd(regs, &cmd); 1675 } else { 1676 writel(idx, ®s->RxStdPrd); 1677 wmb(); 1678 } 1679 1680 out: 1681 clear_bit(0, &ap->std_refill_busy); 1682 return; 1683 1684 error_out: 1685 printk(KERN_INFO "Out of memory when allocating " 1686 "standard receive buffers\n"); 1687 goto out; 1688 } 1689 1690 1691 static void ace_load_mini_rx_ring(struct net_device *dev, int nr_bufs) 1692 { 1693 struct ace_private *ap = netdev_priv(dev); 1694 struct ace_regs __iomem *regs = ap->regs; 1695 short i, idx; 1696 1697 prefetchw(&ap->cur_mini_bufs); 1698 1699 idx = ap->rx_mini_skbprd; 1700 for (i = 0; i < nr_bufs; i++) { 1701 struct sk_buff *skb; 1702 struct rx_desc *rd; 1703 dma_addr_t mapping; 1704 1705 skb = netdev_alloc_skb_ip_align(dev, ACE_MINI_BUFSIZE); 1706 if (!skb) 1707 break; 1708 1709 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data), 1710 offset_in_page(skb->data), 1711 ACE_MINI_BUFSIZE, 1712 PCI_DMA_FROMDEVICE); 1713 ap->skb->rx_mini_skbuff[idx].skb = skb; 1714 dma_unmap_addr_set(&ap->skb->rx_mini_skbuff[idx], 1715 mapping, mapping); 1716 1717 rd = &ap->rx_mini_ring[idx]; 1718 set_aceaddr(&rd->addr, mapping); 1719 rd->size = ACE_MINI_BUFSIZE; 1720 rd->idx = idx; 1721 idx = (idx + 1) % RX_MINI_RING_ENTRIES; 1722 } 1723 1724 if (!i) 1725 goto error_out; 1726 1727 atomic_add(i, &ap->cur_mini_bufs); 1728 1729 ap->rx_mini_skbprd = idx; 1730 1731 writel(idx, ®s->RxMiniPrd); 1732 wmb(); 1733 1734 out: 1735 clear_bit(0, &ap->mini_refill_busy); 1736 return; 1737 error_out: 1738 printk(KERN_INFO "Out of memory when allocating " 1739 "mini receive buffers\n"); 1740 goto out; 1741 } 1742 1743 1744 /* 1745 * Load the jumbo rx ring, this may happen at any time if the MTU 1746 * is changed to a value > 1500. 1747 */ 1748 static void ace_load_jumbo_rx_ring(struct net_device *dev, int nr_bufs) 1749 { 1750 struct ace_private *ap = netdev_priv(dev); 1751 struct ace_regs __iomem *regs = ap->regs; 1752 short i, idx; 1753 1754 idx = ap->rx_jumbo_skbprd; 1755 1756 for (i = 0; i < nr_bufs; i++) { 1757 struct sk_buff *skb; 1758 struct rx_desc *rd; 1759 dma_addr_t mapping; 1760 1761 skb = netdev_alloc_skb_ip_align(dev, ACE_JUMBO_BUFSIZE); 1762 if (!skb) 1763 break; 1764 1765 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data), 1766 offset_in_page(skb->data), 1767 ACE_JUMBO_BUFSIZE, 1768 PCI_DMA_FROMDEVICE); 1769 ap->skb->rx_jumbo_skbuff[idx].skb = skb; 1770 dma_unmap_addr_set(&ap->skb->rx_jumbo_skbuff[idx], 1771 mapping, mapping); 1772 1773 rd = &ap->rx_jumbo_ring[idx]; 1774 set_aceaddr(&rd->addr, mapping); 1775 rd->size = ACE_JUMBO_BUFSIZE; 1776 rd->idx = idx; 1777 idx = (idx + 1) % RX_JUMBO_RING_ENTRIES; 1778 } 1779 1780 if (!i) 1781 goto error_out; 1782 1783 atomic_add(i, &ap->cur_jumbo_bufs); 1784 ap->rx_jumbo_skbprd = idx; 1785 1786 if (ACE_IS_TIGON_I(ap)) { 1787 struct cmd cmd; 1788 cmd.evt = C_SET_RX_JUMBO_PRD_IDX; 1789 cmd.code = 0; 1790 cmd.idx = ap->rx_jumbo_skbprd; 1791 ace_issue_cmd(regs, &cmd); 1792 } else { 1793 writel(idx, ®s->RxJumboPrd); 1794 wmb(); 1795 } 1796 1797 out: 1798 clear_bit(0, &ap->jumbo_refill_busy); 1799 return; 1800 error_out: 1801 if (net_ratelimit()) 1802 printk(KERN_INFO "Out of memory when allocating " 1803 "jumbo receive buffers\n"); 1804 goto out; 1805 } 1806 1807 1808 /* 1809 * All events are considered to be slow (RX/TX ints do not generate 1810 * events) and are handled here, outside the main interrupt handler, 1811 * to reduce the size of the handler. 1812 */ 1813 static u32 ace_handle_event(struct net_device *dev, u32 evtcsm, u32 evtprd) 1814 { 1815 struct ace_private *ap; 1816 1817 ap = netdev_priv(dev); 1818 1819 while (evtcsm != evtprd) { 1820 switch (ap->evt_ring[evtcsm].evt) { 1821 case E_FW_RUNNING: 1822 printk(KERN_INFO "%s: Firmware up and running\n", 1823 ap->name); 1824 ap->fw_running = 1; 1825 wmb(); 1826 break; 1827 case E_STATS_UPDATED: 1828 break; 1829 case E_LNK_STATE: 1830 { 1831 u16 code = ap->evt_ring[evtcsm].code; 1832 switch (code) { 1833 case E_C_LINK_UP: 1834 { 1835 u32 state = readl(&ap->regs->GigLnkState); 1836 printk(KERN_WARNING "%s: Optical link UP " 1837 "(%s Duplex, Flow Control: %s%s)\n", 1838 ap->name, 1839 state & LNK_FULL_DUPLEX ? "Full":"Half", 1840 state & LNK_TX_FLOW_CTL_Y ? "TX " : "", 1841 state & LNK_RX_FLOW_CTL_Y ? "RX" : ""); 1842 break; 1843 } 1844 case E_C_LINK_DOWN: 1845 printk(KERN_WARNING "%s: Optical link DOWN\n", 1846 ap->name); 1847 break; 1848 case E_C_LINK_10_100: 1849 printk(KERN_WARNING "%s: 10/100BaseT link " 1850 "UP\n", ap->name); 1851 break; 1852 default: 1853 printk(KERN_ERR "%s: Unknown optical link " 1854 "state %02x\n", ap->name, code); 1855 } 1856 break; 1857 } 1858 case E_ERROR: 1859 switch(ap->evt_ring[evtcsm].code) { 1860 case E_C_ERR_INVAL_CMD: 1861 printk(KERN_ERR "%s: invalid command error\n", 1862 ap->name); 1863 break; 1864 case E_C_ERR_UNIMP_CMD: 1865 printk(KERN_ERR "%s: unimplemented command " 1866 "error\n", ap->name); 1867 break; 1868 case E_C_ERR_BAD_CFG: 1869 printk(KERN_ERR "%s: bad config error\n", 1870 ap->name); 1871 break; 1872 default: 1873 printk(KERN_ERR "%s: unknown error %02x\n", 1874 ap->name, ap->evt_ring[evtcsm].code); 1875 } 1876 break; 1877 case E_RESET_JUMBO_RNG: 1878 { 1879 int i; 1880 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) { 1881 if (ap->skb->rx_jumbo_skbuff[i].skb) { 1882 ap->rx_jumbo_ring[i].size = 0; 1883 set_aceaddr(&ap->rx_jumbo_ring[i].addr, 0); 1884 dev_kfree_skb(ap->skb->rx_jumbo_skbuff[i].skb); 1885 ap->skb->rx_jumbo_skbuff[i].skb = NULL; 1886 } 1887 } 1888 1889 if (ACE_IS_TIGON_I(ap)) { 1890 struct cmd cmd; 1891 cmd.evt = C_SET_RX_JUMBO_PRD_IDX; 1892 cmd.code = 0; 1893 cmd.idx = 0; 1894 ace_issue_cmd(ap->regs, &cmd); 1895 } else { 1896 writel(0, &((ap->regs)->RxJumboPrd)); 1897 wmb(); 1898 } 1899 1900 ap->jumbo = 0; 1901 ap->rx_jumbo_skbprd = 0; 1902 printk(KERN_INFO "%s: Jumbo ring flushed\n", 1903 ap->name); 1904 clear_bit(0, &ap->jumbo_refill_busy); 1905 break; 1906 } 1907 default: 1908 printk(KERN_ERR "%s: Unhandled event 0x%02x\n", 1909 ap->name, ap->evt_ring[evtcsm].evt); 1910 } 1911 evtcsm = (evtcsm + 1) % EVT_RING_ENTRIES; 1912 } 1913 1914 return evtcsm; 1915 } 1916 1917 1918 static void ace_rx_int(struct net_device *dev, u32 rxretprd, u32 rxretcsm) 1919 { 1920 struct ace_private *ap = netdev_priv(dev); 1921 u32 idx; 1922 int mini_count = 0, std_count = 0; 1923 1924 idx = rxretcsm; 1925 1926 prefetchw(&ap->cur_rx_bufs); 1927 prefetchw(&ap->cur_mini_bufs); 1928 1929 while (idx != rxretprd) { 1930 struct ring_info *rip; 1931 struct sk_buff *skb; 1932 struct rx_desc *rxdesc, *retdesc; 1933 u32 skbidx; 1934 int bd_flags, desc_type, mapsize; 1935 u16 csum; 1936 1937 1938 /* make sure the rx descriptor isn't read before rxretprd */ 1939 if (idx == rxretcsm) 1940 rmb(); 1941 1942 retdesc = &ap->rx_return_ring[idx]; 1943 skbidx = retdesc->idx; 1944 bd_flags = retdesc->flags; 1945 desc_type = bd_flags & (BD_FLG_JUMBO | BD_FLG_MINI); 1946 1947 switch(desc_type) { 1948 /* 1949 * Normal frames do not have any flags set 1950 * 1951 * Mini and normal frames arrive frequently, 1952 * so use a local counter to avoid doing 1953 * atomic operations for each packet arriving. 1954 */ 1955 case 0: 1956 rip = &ap->skb->rx_std_skbuff[skbidx]; 1957 mapsize = ACE_STD_BUFSIZE; 1958 rxdesc = &ap->rx_std_ring[skbidx]; 1959 std_count++; 1960 break; 1961 case BD_FLG_JUMBO: 1962 rip = &ap->skb->rx_jumbo_skbuff[skbidx]; 1963 mapsize = ACE_JUMBO_BUFSIZE; 1964 rxdesc = &ap->rx_jumbo_ring[skbidx]; 1965 atomic_dec(&ap->cur_jumbo_bufs); 1966 break; 1967 case BD_FLG_MINI: 1968 rip = &ap->skb->rx_mini_skbuff[skbidx]; 1969 mapsize = ACE_MINI_BUFSIZE; 1970 rxdesc = &ap->rx_mini_ring[skbidx]; 1971 mini_count++; 1972 break; 1973 default: 1974 printk(KERN_INFO "%s: unknown frame type (0x%02x) " 1975 "returned by NIC\n", dev->name, 1976 retdesc->flags); 1977 goto error; 1978 } 1979 1980 skb = rip->skb; 1981 rip->skb = NULL; 1982 pci_unmap_page(ap->pdev, 1983 dma_unmap_addr(rip, mapping), 1984 mapsize, 1985 PCI_DMA_FROMDEVICE); 1986 skb_put(skb, retdesc->size); 1987 1988 /* 1989 * Fly baby, fly! 1990 */ 1991 csum = retdesc->tcp_udp_csum; 1992 1993 skb->protocol = eth_type_trans(skb, dev); 1994 1995 /* 1996 * Instead of forcing the poor tigon mips cpu to calculate 1997 * pseudo hdr checksum, we do this ourselves. 1998 */ 1999 if (bd_flags & BD_FLG_TCP_UDP_SUM) { 2000 skb->csum = htons(csum); 2001 skb->ip_summed = CHECKSUM_COMPLETE; 2002 } else { 2003 skb_checksum_none_assert(skb); 2004 } 2005 2006 /* send it up */ 2007 if ((bd_flags & BD_FLG_VLAN_TAG)) 2008 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), retdesc->vlan); 2009 netif_rx(skb); 2010 2011 dev->stats.rx_packets++; 2012 dev->stats.rx_bytes += retdesc->size; 2013 2014 idx = (idx + 1) % RX_RETURN_RING_ENTRIES; 2015 } 2016 2017 atomic_sub(std_count, &ap->cur_rx_bufs); 2018 if (!ACE_IS_TIGON_I(ap)) 2019 atomic_sub(mini_count, &ap->cur_mini_bufs); 2020 2021 out: 2022 /* 2023 * According to the documentation RxRetCsm is obsolete with 2024 * the 12.3.x Firmware - my Tigon I NICs seem to disagree! 2025 */ 2026 if (ACE_IS_TIGON_I(ap)) { 2027 writel(idx, &ap->regs->RxRetCsm); 2028 } 2029 ap->cur_rx = idx; 2030 2031 return; 2032 error: 2033 idx = rxretprd; 2034 goto out; 2035 } 2036 2037 2038 static inline void ace_tx_int(struct net_device *dev, 2039 u32 txcsm, u32 idx) 2040 { 2041 struct ace_private *ap = netdev_priv(dev); 2042 2043 do { 2044 struct sk_buff *skb; 2045 struct tx_ring_info *info; 2046 2047 info = ap->skb->tx_skbuff + idx; 2048 skb = info->skb; 2049 2050 if (dma_unmap_len(info, maplen)) { 2051 pci_unmap_page(ap->pdev, dma_unmap_addr(info, mapping), 2052 dma_unmap_len(info, maplen), 2053 PCI_DMA_TODEVICE); 2054 dma_unmap_len_set(info, maplen, 0); 2055 } 2056 2057 if (skb) { 2058 dev->stats.tx_packets++; 2059 dev->stats.tx_bytes += skb->len; 2060 dev_kfree_skb_irq(skb); 2061 info->skb = NULL; 2062 } 2063 2064 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap); 2065 } while (idx != txcsm); 2066 2067 if (netif_queue_stopped(dev)) 2068 netif_wake_queue(dev); 2069 2070 wmb(); 2071 ap->tx_ret_csm = txcsm; 2072 2073 /* So... tx_ret_csm is advanced _after_ check for device wakeup. 2074 * 2075 * We could try to make it before. In this case we would get 2076 * the following race condition: hard_start_xmit on other cpu 2077 * enters after we advanced tx_ret_csm and fills space, 2078 * which we have just freed, so that we make illegal device wakeup. 2079 * There is no good way to workaround this (at entry 2080 * to ace_start_xmit detects this condition and prevents 2081 * ring corruption, but it is not a good workaround.) 2082 * 2083 * When tx_ret_csm is advanced after, we wake up device _only_ 2084 * if we really have some space in ring (though the core doing 2085 * hard_start_xmit can see full ring for some period and has to 2086 * synchronize.) Superb. 2087 * BUT! We get another subtle race condition. hard_start_xmit 2088 * may think that ring is full between wakeup and advancing 2089 * tx_ret_csm and will stop device instantly! It is not so bad. 2090 * We are guaranteed that there is something in ring, so that 2091 * the next irq will resume transmission. To speedup this we could 2092 * mark descriptor, which closes ring with BD_FLG_COAL_NOW 2093 * (see ace_start_xmit). 2094 * 2095 * Well, this dilemma exists in all lock-free devices. 2096 * We, following scheme used in drivers by Donald Becker, 2097 * select the least dangerous. 2098 * --ANK 2099 */ 2100 } 2101 2102 2103 static irqreturn_t ace_interrupt(int irq, void *dev_id) 2104 { 2105 struct net_device *dev = (struct net_device *)dev_id; 2106 struct ace_private *ap = netdev_priv(dev); 2107 struct ace_regs __iomem *regs = ap->regs; 2108 u32 idx; 2109 u32 txcsm, rxretcsm, rxretprd; 2110 u32 evtcsm, evtprd; 2111 2112 /* 2113 * In case of PCI shared interrupts or spurious interrupts, 2114 * we want to make sure it is actually our interrupt before 2115 * spending any time in here. 2116 */ 2117 if (!(readl(®s->HostCtrl) & IN_INT)) 2118 return IRQ_NONE; 2119 2120 /* 2121 * ACK intr now. Otherwise we will lose updates to rx_ret_prd, 2122 * which happened _after_ rxretprd = *ap->rx_ret_prd; but before 2123 * writel(0, ®s->Mb0Lo). 2124 * 2125 * "IRQ avoidance" recommended in docs applies to IRQs served 2126 * threads and it is wrong even for that case. 2127 */ 2128 writel(0, ®s->Mb0Lo); 2129 readl(®s->Mb0Lo); 2130 2131 /* 2132 * There is no conflict between transmit handling in 2133 * start_xmit and receive processing, thus there is no reason 2134 * to take a spin lock for RX handling. Wait until we start 2135 * working on the other stuff - hey we don't need a spin lock 2136 * anymore. 2137 */ 2138 rxretprd = *ap->rx_ret_prd; 2139 rxretcsm = ap->cur_rx; 2140 2141 if (rxretprd != rxretcsm) 2142 ace_rx_int(dev, rxretprd, rxretcsm); 2143 2144 txcsm = *ap->tx_csm; 2145 idx = ap->tx_ret_csm; 2146 2147 if (txcsm != idx) { 2148 /* 2149 * If each skb takes only one descriptor this check degenerates 2150 * to identity, because new space has just been opened. 2151 * But if skbs are fragmented we must check that this index 2152 * update releases enough of space, otherwise we just 2153 * wait for device to make more work. 2154 */ 2155 if (!tx_ring_full(ap, txcsm, ap->tx_prd)) 2156 ace_tx_int(dev, txcsm, idx); 2157 } 2158 2159 evtcsm = readl(®s->EvtCsm); 2160 evtprd = *ap->evt_prd; 2161 2162 if (evtcsm != evtprd) { 2163 evtcsm = ace_handle_event(dev, evtcsm, evtprd); 2164 writel(evtcsm, ®s->EvtCsm); 2165 } 2166 2167 /* 2168 * This has to go last in the interrupt handler and run with 2169 * the spin lock released ... what lock? 2170 */ 2171 if (netif_running(dev)) { 2172 int cur_size; 2173 int run_tasklet = 0; 2174 2175 cur_size = atomic_read(&ap->cur_rx_bufs); 2176 if (cur_size < RX_LOW_STD_THRES) { 2177 if ((cur_size < RX_PANIC_STD_THRES) && 2178 !test_and_set_bit(0, &ap->std_refill_busy)) { 2179 #ifdef DEBUG 2180 printk("low on std buffers %i\n", cur_size); 2181 #endif 2182 ace_load_std_rx_ring(dev, 2183 RX_RING_SIZE - cur_size); 2184 } else 2185 run_tasklet = 1; 2186 } 2187 2188 if (!ACE_IS_TIGON_I(ap)) { 2189 cur_size = atomic_read(&ap->cur_mini_bufs); 2190 if (cur_size < RX_LOW_MINI_THRES) { 2191 if ((cur_size < RX_PANIC_MINI_THRES) && 2192 !test_and_set_bit(0, 2193 &ap->mini_refill_busy)) { 2194 #ifdef DEBUG 2195 printk("low on mini buffers %i\n", 2196 cur_size); 2197 #endif 2198 ace_load_mini_rx_ring(dev, 2199 RX_MINI_SIZE - cur_size); 2200 } else 2201 run_tasklet = 1; 2202 } 2203 } 2204 2205 if (ap->jumbo) { 2206 cur_size = atomic_read(&ap->cur_jumbo_bufs); 2207 if (cur_size < RX_LOW_JUMBO_THRES) { 2208 if ((cur_size < RX_PANIC_JUMBO_THRES) && 2209 !test_and_set_bit(0, 2210 &ap->jumbo_refill_busy)){ 2211 #ifdef DEBUG 2212 printk("low on jumbo buffers %i\n", 2213 cur_size); 2214 #endif 2215 ace_load_jumbo_rx_ring(dev, 2216 RX_JUMBO_SIZE - cur_size); 2217 } else 2218 run_tasklet = 1; 2219 } 2220 } 2221 if (run_tasklet && !ap->tasklet_pending) { 2222 ap->tasklet_pending = 1; 2223 tasklet_schedule(&ap->ace_tasklet); 2224 } 2225 } 2226 2227 return IRQ_HANDLED; 2228 } 2229 2230 static int ace_open(struct net_device *dev) 2231 { 2232 struct ace_private *ap = netdev_priv(dev); 2233 struct ace_regs __iomem *regs = ap->regs; 2234 struct cmd cmd; 2235 2236 if (!(ap->fw_running)) { 2237 printk(KERN_WARNING "%s: Firmware not running!\n", dev->name); 2238 return -EBUSY; 2239 } 2240 2241 writel(dev->mtu + ETH_HLEN + 4, ®s->IfMtu); 2242 2243 cmd.evt = C_CLEAR_STATS; 2244 cmd.code = 0; 2245 cmd.idx = 0; 2246 ace_issue_cmd(regs, &cmd); 2247 2248 cmd.evt = C_HOST_STATE; 2249 cmd.code = C_C_STACK_UP; 2250 cmd.idx = 0; 2251 ace_issue_cmd(regs, &cmd); 2252 2253 if (ap->jumbo && 2254 !test_and_set_bit(0, &ap->jumbo_refill_busy)) 2255 ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE); 2256 2257 if (dev->flags & IFF_PROMISC) { 2258 cmd.evt = C_SET_PROMISC_MODE; 2259 cmd.code = C_C_PROMISC_ENABLE; 2260 cmd.idx = 0; 2261 ace_issue_cmd(regs, &cmd); 2262 2263 ap->promisc = 1; 2264 }else 2265 ap->promisc = 0; 2266 ap->mcast_all = 0; 2267 2268 #if 0 2269 cmd.evt = C_LNK_NEGOTIATION; 2270 cmd.code = 0; 2271 cmd.idx = 0; 2272 ace_issue_cmd(regs, &cmd); 2273 #endif 2274 2275 netif_start_queue(dev); 2276 2277 /* 2278 * Setup the bottom half rx ring refill handler 2279 */ 2280 tasklet_init(&ap->ace_tasklet, ace_tasklet, (unsigned long)dev); 2281 return 0; 2282 } 2283 2284 2285 static int ace_close(struct net_device *dev) 2286 { 2287 struct ace_private *ap = netdev_priv(dev); 2288 struct ace_regs __iomem *regs = ap->regs; 2289 struct cmd cmd; 2290 unsigned long flags; 2291 short i; 2292 2293 /* 2294 * Without (or before) releasing irq and stopping hardware, this 2295 * is an absolute non-sense, by the way. It will be reset instantly 2296 * by the first irq. 2297 */ 2298 netif_stop_queue(dev); 2299 2300 2301 if (ap->promisc) { 2302 cmd.evt = C_SET_PROMISC_MODE; 2303 cmd.code = C_C_PROMISC_DISABLE; 2304 cmd.idx = 0; 2305 ace_issue_cmd(regs, &cmd); 2306 ap->promisc = 0; 2307 } 2308 2309 cmd.evt = C_HOST_STATE; 2310 cmd.code = C_C_STACK_DOWN; 2311 cmd.idx = 0; 2312 ace_issue_cmd(regs, &cmd); 2313 2314 tasklet_kill(&ap->ace_tasklet); 2315 2316 /* 2317 * Make sure one CPU is not processing packets while 2318 * buffers are being released by another. 2319 */ 2320 2321 local_irq_save(flags); 2322 ace_mask_irq(dev); 2323 2324 for (i = 0; i < ACE_TX_RING_ENTRIES(ap); i++) { 2325 struct sk_buff *skb; 2326 struct tx_ring_info *info; 2327 2328 info = ap->skb->tx_skbuff + i; 2329 skb = info->skb; 2330 2331 if (dma_unmap_len(info, maplen)) { 2332 if (ACE_IS_TIGON_I(ap)) { 2333 /* NB: TIGON_1 is special, tx_ring is in io space */ 2334 struct tx_desc __iomem *tx; 2335 tx = (__force struct tx_desc __iomem *) &ap->tx_ring[i]; 2336 writel(0, &tx->addr.addrhi); 2337 writel(0, &tx->addr.addrlo); 2338 writel(0, &tx->flagsize); 2339 } else 2340 memset(ap->tx_ring + i, 0, 2341 sizeof(struct tx_desc)); 2342 pci_unmap_page(ap->pdev, dma_unmap_addr(info, mapping), 2343 dma_unmap_len(info, maplen), 2344 PCI_DMA_TODEVICE); 2345 dma_unmap_len_set(info, maplen, 0); 2346 } 2347 if (skb) { 2348 dev_kfree_skb(skb); 2349 info->skb = NULL; 2350 } 2351 } 2352 2353 if (ap->jumbo) { 2354 cmd.evt = C_RESET_JUMBO_RNG; 2355 cmd.code = 0; 2356 cmd.idx = 0; 2357 ace_issue_cmd(regs, &cmd); 2358 } 2359 2360 ace_unmask_irq(dev); 2361 local_irq_restore(flags); 2362 2363 return 0; 2364 } 2365 2366 2367 static inline dma_addr_t 2368 ace_map_tx_skb(struct ace_private *ap, struct sk_buff *skb, 2369 struct sk_buff *tail, u32 idx) 2370 { 2371 dma_addr_t mapping; 2372 struct tx_ring_info *info; 2373 2374 mapping = pci_map_page(ap->pdev, virt_to_page(skb->data), 2375 offset_in_page(skb->data), 2376 skb->len, PCI_DMA_TODEVICE); 2377 2378 info = ap->skb->tx_skbuff + idx; 2379 info->skb = tail; 2380 dma_unmap_addr_set(info, mapping, mapping); 2381 dma_unmap_len_set(info, maplen, skb->len); 2382 return mapping; 2383 } 2384 2385 2386 static inline void 2387 ace_load_tx_bd(struct ace_private *ap, struct tx_desc *desc, u64 addr, 2388 u32 flagsize, u32 vlan_tag) 2389 { 2390 #if !USE_TX_COAL_NOW 2391 flagsize &= ~BD_FLG_COAL_NOW; 2392 #endif 2393 2394 if (ACE_IS_TIGON_I(ap)) { 2395 struct tx_desc __iomem *io = (__force struct tx_desc __iomem *) desc; 2396 writel(addr >> 32, &io->addr.addrhi); 2397 writel(addr & 0xffffffff, &io->addr.addrlo); 2398 writel(flagsize, &io->flagsize); 2399 writel(vlan_tag, &io->vlanres); 2400 } else { 2401 desc->addr.addrhi = addr >> 32; 2402 desc->addr.addrlo = addr; 2403 desc->flagsize = flagsize; 2404 desc->vlanres = vlan_tag; 2405 } 2406 } 2407 2408 2409 static netdev_tx_t ace_start_xmit(struct sk_buff *skb, 2410 struct net_device *dev) 2411 { 2412 struct ace_private *ap = netdev_priv(dev); 2413 struct ace_regs __iomem *regs = ap->regs; 2414 struct tx_desc *desc; 2415 u32 idx, flagsize; 2416 unsigned long maxjiff = jiffies + 3*HZ; 2417 2418 restart: 2419 idx = ap->tx_prd; 2420 2421 if (tx_ring_full(ap, ap->tx_ret_csm, idx)) 2422 goto overflow; 2423 2424 if (!skb_shinfo(skb)->nr_frags) { 2425 dma_addr_t mapping; 2426 u32 vlan_tag = 0; 2427 2428 mapping = ace_map_tx_skb(ap, skb, skb, idx); 2429 flagsize = (skb->len << 16) | (BD_FLG_END); 2430 if (skb->ip_summed == CHECKSUM_PARTIAL) 2431 flagsize |= BD_FLG_TCP_UDP_SUM; 2432 if (skb_vlan_tag_present(skb)) { 2433 flagsize |= BD_FLG_VLAN_TAG; 2434 vlan_tag = skb_vlan_tag_get(skb); 2435 } 2436 desc = ap->tx_ring + idx; 2437 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap); 2438 2439 /* Look at ace_tx_int for explanations. */ 2440 if (tx_ring_full(ap, ap->tx_ret_csm, idx)) 2441 flagsize |= BD_FLG_COAL_NOW; 2442 2443 ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag); 2444 } else { 2445 dma_addr_t mapping; 2446 u32 vlan_tag = 0; 2447 int i, len = 0; 2448 2449 mapping = ace_map_tx_skb(ap, skb, NULL, idx); 2450 flagsize = (skb_headlen(skb) << 16); 2451 if (skb->ip_summed == CHECKSUM_PARTIAL) 2452 flagsize |= BD_FLG_TCP_UDP_SUM; 2453 if (skb_vlan_tag_present(skb)) { 2454 flagsize |= BD_FLG_VLAN_TAG; 2455 vlan_tag = skb_vlan_tag_get(skb); 2456 } 2457 2458 ace_load_tx_bd(ap, ap->tx_ring + idx, mapping, flagsize, vlan_tag); 2459 2460 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap); 2461 2462 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2463 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2464 struct tx_ring_info *info; 2465 2466 len += skb_frag_size(frag); 2467 info = ap->skb->tx_skbuff + idx; 2468 desc = ap->tx_ring + idx; 2469 2470 mapping = skb_frag_dma_map(&ap->pdev->dev, frag, 0, 2471 skb_frag_size(frag), 2472 DMA_TO_DEVICE); 2473 2474 flagsize = skb_frag_size(frag) << 16; 2475 if (skb->ip_summed == CHECKSUM_PARTIAL) 2476 flagsize |= BD_FLG_TCP_UDP_SUM; 2477 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap); 2478 2479 if (i == skb_shinfo(skb)->nr_frags - 1) { 2480 flagsize |= BD_FLG_END; 2481 if (tx_ring_full(ap, ap->tx_ret_csm, idx)) 2482 flagsize |= BD_FLG_COAL_NOW; 2483 2484 /* 2485 * Only the last fragment frees 2486 * the skb! 2487 */ 2488 info->skb = skb; 2489 } else { 2490 info->skb = NULL; 2491 } 2492 dma_unmap_addr_set(info, mapping, mapping); 2493 dma_unmap_len_set(info, maplen, skb_frag_size(frag)); 2494 ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag); 2495 } 2496 } 2497 2498 wmb(); 2499 ap->tx_prd = idx; 2500 ace_set_txprd(regs, ap, idx); 2501 2502 if (flagsize & BD_FLG_COAL_NOW) { 2503 netif_stop_queue(dev); 2504 2505 /* 2506 * A TX-descriptor producer (an IRQ) might have gotten 2507 * between, making the ring free again. Since xmit is 2508 * serialized, this is the only situation we have to 2509 * re-test. 2510 */ 2511 if (!tx_ring_full(ap, ap->tx_ret_csm, idx)) 2512 netif_wake_queue(dev); 2513 } 2514 2515 return NETDEV_TX_OK; 2516 2517 overflow: 2518 /* 2519 * This race condition is unavoidable with lock-free drivers. 2520 * We wake up the queue _before_ tx_prd is advanced, so that we can 2521 * enter hard_start_xmit too early, while tx ring still looks closed. 2522 * This happens ~1-4 times per 100000 packets, so that we can allow 2523 * to loop syncing to other CPU. Probably, we need an additional 2524 * wmb() in ace_tx_intr as well. 2525 * 2526 * Note that this race is relieved by reserving one more entry 2527 * in tx ring than it is necessary (see original non-SG driver). 2528 * However, with SG we need to reserve 2*MAX_SKB_FRAGS+1, which 2529 * is already overkill. 2530 * 2531 * Alternative is to return with 1 not throttling queue. In this 2532 * case loop becomes longer, no more useful effects. 2533 */ 2534 if (time_before(jiffies, maxjiff)) { 2535 barrier(); 2536 cpu_relax(); 2537 goto restart; 2538 } 2539 2540 /* The ring is stuck full. */ 2541 printk(KERN_WARNING "%s: Transmit ring stuck full\n", dev->name); 2542 return NETDEV_TX_BUSY; 2543 } 2544 2545 2546 static int ace_change_mtu(struct net_device *dev, int new_mtu) 2547 { 2548 struct ace_private *ap = netdev_priv(dev); 2549 struct ace_regs __iomem *regs = ap->regs; 2550 2551 if (new_mtu > ACE_JUMBO_MTU) 2552 return -EINVAL; 2553 2554 writel(new_mtu + ETH_HLEN + 4, ®s->IfMtu); 2555 dev->mtu = new_mtu; 2556 2557 if (new_mtu > ACE_STD_MTU) { 2558 if (!(ap->jumbo)) { 2559 printk(KERN_INFO "%s: Enabling Jumbo frame " 2560 "support\n", dev->name); 2561 ap->jumbo = 1; 2562 if (!test_and_set_bit(0, &ap->jumbo_refill_busy)) 2563 ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE); 2564 ace_set_rxtx_parms(dev, 1); 2565 } 2566 } else { 2567 while (test_and_set_bit(0, &ap->jumbo_refill_busy)); 2568 ace_sync_irq(dev->irq); 2569 ace_set_rxtx_parms(dev, 0); 2570 if (ap->jumbo) { 2571 struct cmd cmd; 2572 2573 cmd.evt = C_RESET_JUMBO_RNG; 2574 cmd.code = 0; 2575 cmd.idx = 0; 2576 ace_issue_cmd(regs, &cmd); 2577 } 2578 } 2579 2580 return 0; 2581 } 2582 2583 static int ace_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd) 2584 { 2585 struct ace_private *ap = netdev_priv(dev); 2586 struct ace_regs __iomem *regs = ap->regs; 2587 u32 link; 2588 2589 memset(ecmd, 0, sizeof(struct ethtool_cmd)); 2590 ecmd->supported = 2591 (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | 2592 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | 2593 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | 2594 SUPPORTED_Autoneg | SUPPORTED_FIBRE); 2595 2596 ecmd->port = PORT_FIBRE; 2597 ecmd->transceiver = XCVR_INTERNAL; 2598 2599 link = readl(®s->GigLnkState); 2600 if (link & LNK_1000MB) 2601 ethtool_cmd_speed_set(ecmd, SPEED_1000); 2602 else { 2603 link = readl(®s->FastLnkState); 2604 if (link & LNK_100MB) 2605 ethtool_cmd_speed_set(ecmd, SPEED_100); 2606 else if (link & LNK_10MB) 2607 ethtool_cmd_speed_set(ecmd, SPEED_10); 2608 else 2609 ethtool_cmd_speed_set(ecmd, 0); 2610 } 2611 if (link & LNK_FULL_DUPLEX) 2612 ecmd->duplex = DUPLEX_FULL; 2613 else 2614 ecmd->duplex = DUPLEX_HALF; 2615 2616 if (link & LNK_NEGOTIATE) 2617 ecmd->autoneg = AUTONEG_ENABLE; 2618 else 2619 ecmd->autoneg = AUTONEG_DISABLE; 2620 2621 #if 0 2622 /* 2623 * Current struct ethtool_cmd is insufficient 2624 */ 2625 ecmd->trace = readl(®s->TuneTrace); 2626 2627 ecmd->txcoal = readl(®s->TuneTxCoalTicks); 2628 ecmd->rxcoal = readl(®s->TuneRxCoalTicks); 2629 #endif 2630 ecmd->maxtxpkt = readl(®s->TuneMaxTxDesc); 2631 ecmd->maxrxpkt = readl(®s->TuneMaxRxDesc); 2632 2633 return 0; 2634 } 2635 2636 static int ace_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd) 2637 { 2638 struct ace_private *ap = netdev_priv(dev); 2639 struct ace_regs __iomem *regs = ap->regs; 2640 u32 link, speed; 2641 2642 link = readl(®s->GigLnkState); 2643 if (link & LNK_1000MB) 2644 speed = SPEED_1000; 2645 else { 2646 link = readl(®s->FastLnkState); 2647 if (link & LNK_100MB) 2648 speed = SPEED_100; 2649 else if (link & LNK_10MB) 2650 speed = SPEED_10; 2651 else 2652 speed = SPEED_100; 2653 } 2654 2655 link = LNK_ENABLE | LNK_1000MB | LNK_100MB | LNK_10MB | 2656 LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL; 2657 if (!ACE_IS_TIGON_I(ap)) 2658 link |= LNK_TX_FLOW_CTL_Y; 2659 if (ecmd->autoneg == AUTONEG_ENABLE) 2660 link |= LNK_NEGOTIATE; 2661 if (ethtool_cmd_speed(ecmd) != speed) { 2662 link &= ~(LNK_1000MB | LNK_100MB | LNK_10MB); 2663 switch (ethtool_cmd_speed(ecmd)) { 2664 case SPEED_1000: 2665 link |= LNK_1000MB; 2666 break; 2667 case SPEED_100: 2668 link |= LNK_100MB; 2669 break; 2670 case SPEED_10: 2671 link |= LNK_10MB; 2672 break; 2673 } 2674 } 2675 2676 if (ecmd->duplex == DUPLEX_FULL) 2677 link |= LNK_FULL_DUPLEX; 2678 2679 if (link != ap->link) { 2680 struct cmd cmd; 2681 printk(KERN_INFO "%s: Renegotiating link state\n", 2682 dev->name); 2683 2684 ap->link = link; 2685 writel(link, ®s->TuneLink); 2686 if (!ACE_IS_TIGON_I(ap)) 2687 writel(link, ®s->TuneFastLink); 2688 wmb(); 2689 2690 cmd.evt = C_LNK_NEGOTIATION; 2691 cmd.code = 0; 2692 cmd.idx = 0; 2693 ace_issue_cmd(regs, &cmd); 2694 } 2695 return 0; 2696 } 2697 2698 static void ace_get_drvinfo(struct net_device *dev, 2699 struct ethtool_drvinfo *info) 2700 { 2701 struct ace_private *ap = netdev_priv(dev); 2702 2703 strlcpy(info->driver, "acenic", sizeof(info->driver)); 2704 snprintf(info->version, sizeof(info->version), "%i.%i.%i", 2705 ap->firmware_major, ap->firmware_minor, 2706 ap->firmware_fix); 2707 2708 if (ap->pdev) 2709 strlcpy(info->bus_info, pci_name(ap->pdev), 2710 sizeof(info->bus_info)); 2711 2712 } 2713 2714 /* 2715 * Set the hardware MAC address. 2716 */ 2717 static int ace_set_mac_addr(struct net_device *dev, void *p) 2718 { 2719 struct ace_private *ap = netdev_priv(dev); 2720 struct ace_regs __iomem *regs = ap->regs; 2721 struct sockaddr *addr=p; 2722 u8 *da; 2723 struct cmd cmd; 2724 2725 if(netif_running(dev)) 2726 return -EBUSY; 2727 2728 memcpy(dev->dev_addr, addr->sa_data,dev->addr_len); 2729 2730 da = (u8 *)dev->dev_addr; 2731 2732 writel(da[0] << 8 | da[1], ®s->MacAddrHi); 2733 writel((da[2] << 24) | (da[3] << 16) | (da[4] << 8) | da[5], 2734 ®s->MacAddrLo); 2735 2736 cmd.evt = C_SET_MAC_ADDR; 2737 cmd.code = 0; 2738 cmd.idx = 0; 2739 ace_issue_cmd(regs, &cmd); 2740 2741 return 0; 2742 } 2743 2744 2745 static void ace_set_multicast_list(struct net_device *dev) 2746 { 2747 struct ace_private *ap = netdev_priv(dev); 2748 struct ace_regs __iomem *regs = ap->regs; 2749 struct cmd cmd; 2750 2751 if ((dev->flags & IFF_ALLMULTI) && !(ap->mcast_all)) { 2752 cmd.evt = C_SET_MULTICAST_MODE; 2753 cmd.code = C_C_MCAST_ENABLE; 2754 cmd.idx = 0; 2755 ace_issue_cmd(regs, &cmd); 2756 ap->mcast_all = 1; 2757 } else if (ap->mcast_all) { 2758 cmd.evt = C_SET_MULTICAST_MODE; 2759 cmd.code = C_C_MCAST_DISABLE; 2760 cmd.idx = 0; 2761 ace_issue_cmd(regs, &cmd); 2762 ap->mcast_all = 0; 2763 } 2764 2765 if ((dev->flags & IFF_PROMISC) && !(ap->promisc)) { 2766 cmd.evt = C_SET_PROMISC_MODE; 2767 cmd.code = C_C_PROMISC_ENABLE; 2768 cmd.idx = 0; 2769 ace_issue_cmd(regs, &cmd); 2770 ap->promisc = 1; 2771 }else if (!(dev->flags & IFF_PROMISC) && (ap->promisc)) { 2772 cmd.evt = C_SET_PROMISC_MODE; 2773 cmd.code = C_C_PROMISC_DISABLE; 2774 cmd.idx = 0; 2775 ace_issue_cmd(regs, &cmd); 2776 ap->promisc = 0; 2777 } 2778 2779 /* 2780 * For the time being multicast relies on the upper layers 2781 * filtering it properly. The Firmware does not allow one to 2782 * set the entire multicast list at a time and keeping track of 2783 * it here is going to be messy. 2784 */ 2785 if (!netdev_mc_empty(dev) && !ap->mcast_all) { 2786 cmd.evt = C_SET_MULTICAST_MODE; 2787 cmd.code = C_C_MCAST_ENABLE; 2788 cmd.idx = 0; 2789 ace_issue_cmd(regs, &cmd); 2790 }else if (!ap->mcast_all) { 2791 cmd.evt = C_SET_MULTICAST_MODE; 2792 cmd.code = C_C_MCAST_DISABLE; 2793 cmd.idx = 0; 2794 ace_issue_cmd(regs, &cmd); 2795 } 2796 } 2797 2798 2799 static struct net_device_stats *ace_get_stats(struct net_device *dev) 2800 { 2801 struct ace_private *ap = netdev_priv(dev); 2802 struct ace_mac_stats __iomem *mac_stats = 2803 (struct ace_mac_stats __iomem *)ap->regs->Stats; 2804 2805 dev->stats.rx_missed_errors = readl(&mac_stats->drop_space); 2806 dev->stats.multicast = readl(&mac_stats->kept_mc); 2807 dev->stats.collisions = readl(&mac_stats->coll); 2808 2809 return &dev->stats; 2810 } 2811 2812 2813 static void ace_copy(struct ace_regs __iomem *regs, const __be32 *src, 2814 u32 dest, int size) 2815 { 2816 void __iomem *tdest; 2817 short tsize, i; 2818 2819 if (size <= 0) 2820 return; 2821 2822 while (size > 0) { 2823 tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1), 2824 min_t(u32, size, ACE_WINDOW_SIZE)); 2825 tdest = (void __iomem *) ®s->Window + 2826 (dest & (ACE_WINDOW_SIZE - 1)); 2827 writel(dest & ~(ACE_WINDOW_SIZE - 1), ®s->WinBase); 2828 for (i = 0; i < (tsize / 4); i++) { 2829 /* Firmware is big-endian */ 2830 writel(be32_to_cpup(src), tdest); 2831 src++; 2832 tdest += 4; 2833 dest += 4; 2834 size -= 4; 2835 } 2836 } 2837 } 2838 2839 2840 static void ace_clear(struct ace_regs __iomem *regs, u32 dest, int size) 2841 { 2842 void __iomem *tdest; 2843 short tsize = 0, i; 2844 2845 if (size <= 0) 2846 return; 2847 2848 while (size > 0) { 2849 tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1), 2850 min_t(u32, size, ACE_WINDOW_SIZE)); 2851 tdest = (void __iomem *) ®s->Window + 2852 (dest & (ACE_WINDOW_SIZE - 1)); 2853 writel(dest & ~(ACE_WINDOW_SIZE - 1), ®s->WinBase); 2854 2855 for (i = 0; i < (tsize / 4); i++) { 2856 writel(0, tdest + i*4); 2857 } 2858 2859 dest += tsize; 2860 size -= tsize; 2861 } 2862 } 2863 2864 2865 /* 2866 * Download the firmware into the SRAM on the NIC 2867 * 2868 * This operation requires the NIC to be halted and is performed with 2869 * interrupts disabled and with the spinlock hold. 2870 */ 2871 static int ace_load_firmware(struct net_device *dev) 2872 { 2873 const struct firmware *fw; 2874 const char *fw_name = "acenic/tg2.bin"; 2875 struct ace_private *ap = netdev_priv(dev); 2876 struct ace_regs __iomem *regs = ap->regs; 2877 const __be32 *fw_data; 2878 u32 load_addr; 2879 int ret; 2880 2881 if (!(readl(®s->CpuCtrl) & CPU_HALTED)) { 2882 printk(KERN_ERR "%s: trying to download firmware while the " 2883 "CPU is running!\n", ap->name); 2884 return -EFAULT; 2885 } 2886 2887 if (ACE_IS_TIGON_I(ap)) 2888 fw_name = "acenic/tg1.bin"; 2889 2890 ret = request_firmware(&fw, fw_name, &ap->pdev->dev); 2891 if (ret) { 2892 printk(KERN_ERR "%s: Failed to load firmware \"%s\"\n", 2893 ap->name, fw_name); 2894 return ret; 2895 } 2896 2897 fw_data = (void *)fw->data; 2898 2899 /* Firmware blob starts with version numbers, followed by 2900 load and start address. Remainder is the blob to be loaded 2901 contiguously from load address. We don't bother to represent 2902 the BSS/SBSS sections any more, since we were clearing the 2903 whole thing anyway. */ 2904 ap->firmware_major = fw->data[0]; 2905 ap->firmware_minor = fw->data[1]; 2906 ap->firmware_fix = fw->data[2]; 2907 2908 ap->firmware_start = be32_to_cpu(fw_data[1]); 2909 if (ap->firmware_start < 0x4000 || ap->firmware_start >= 0x80000) { 2910 printk(KERN_ERR "%s: bogus load address %08x in \"%s\"\n", 2911 ap->name, ap->firmware_start, fw_name); 2912 ret = -EINVAL; 2913 goto out; 2914 } 2915 2916 load_addr = be32_to_cpu(fw_data[2]); 2917 if (load_addr < 0x4000 || load_addr >= 0x80000) { 2918 printk(KERN_ERR "%s: bogus load address %08x in \"%s\"\n", 2919 ap->name, load_addr, fw_name); 2920 ret = -EINVAL; 2921 goto out; 2922 } 2923 2924 /* 2925 * Do not try to clear more than 512KiB or we end up seeing 2926 * funny things on NICs with only 512KiB SRAM 2927 */ 2928 ace_clear(regs, 0x2000, 0x80000-0x2000); 2929 ace_copy(regs, &fw_data[3], load_addr, fw->size-12); 2930 out: 2931 release_firmware(fw); 2932 return ret; 2933 } 2934 2935 2936 /* 2937 * The eeprom on the AceNIC is an Atmel i2c EEPROM. 2938 * 2939 * Accessing the EEPROM is `interesting' to say the least - don't read 2940 * this code right after dinner. 2941 * 2942 * This is all about black magic and bit-banging the device .... I 2943 * wonder in what hospital they have put the guy who designed the i2c 2944 * specs. 2945 * 2946 * Oh yes, this is only the beginning! 2947 * 2948 * Thanks to Stevarino Webinski for helping tracking down the bugs in the 2949 * code i2c readout code by beta testing all my hacks. 2950 */ 2951 static void eeprom_start(struct ace_regs __iomem *regs) 2952 { 2953 u32 local; 2954 2955 readl(®s->LocalCtrl); 2956 udelay(ACE_SHORT_DELAY); 2957 local = readl(®s->LocalCtrl); 2958 local |= EEPROM_DATA_OUT | EEPROM_WRITE_ENABLE; 2959 writel(local, ®s->LocalCtrl); 2960 readl(®s->LocalCtrl); 2961 mb(); 2962 udelay(ACE_SHORT_DELAY); 2963 local |= EEPROM_CLK_OUT; 2964 writel(local, ®s->LocalCtrl); 2965 readl(®s->LocalCtrl); 2966 mb(); 2967 udelay(ACE_SHORT_DELAY); 2968 local &= ~EEPROM_DATA_OUT; 2969 writel(local, ®s->LocalCtrl); 2970 readl(®s->LocalCtrl); 2971 mb(); 2972 udelay(ACE_SHORT_DELAY); 2973 local &= ~EEPROM_CLK_OUT; 2974 writel(local, ®s->LocalCtrl); 2975 readl(®s->LocalCtrl); 2976 mb(); 2977 } 2978 2979 2980 static void eeprom_prep(struct ace_regs __iomem *regs, u8 magic) 2981 { 2982 short i; 2983 u32 local; 2984 2985 udelay(ACE_SHORT_DELAY); 2986 local = readl(®s->LocalCtrl); 2987 local &= ~EEPROM_DATA_OUT; 2988 local |= EEPROM_WRITE_ENABLE; 2989 writel(local, ®s->LocalCtrl); 2990 readl(®s->LocalCtrl); 2991 mb(); 2992 2993 for (i = 0; i < 8; i++, magic <<= 1) { 2994 udelay(ACE_SHORT_DELAY); 2995 if (magic & 0x80) 2996 local |= EEPROM_DATA_OUT; 2997 else 2998 local &= ~EEPROM_DATA_OUT; 2999 writel(local, ®s->LocalCtrl); 3000 readl(®s->LocalCtrl); 3001 mb(); 3002 3003 udelay(ACE_SHORT_DELAY); 3004 local |= EEPROM_CLK_OUT; 3005 writel(local, ®s->LocalCtrl); 3006 readl(®s->LocalCtrl); 3007 mb(); 3008 udelay(ACE_SHORT_DELAY); 3009 local &= ~(EEPROM_CLK_OUT | EEPROM_DATA_OUT); 3010 writel(local, ®s->LocalCtrl); 3011 readl(®s->LocalCtrl); 3012 mb(); 3013 } 3014 } 3015 3016 3017 static int eeprom_check_ack(struct ace_regs __iomem *regs) 3018 { 3019 int state; 3020 u32 local; 3021 3022 local = readl(®s->LocalCtrl); 3023 local &= ~EEPROM_WRITE_ENABLE; 3024 writel(local, ®s->LocalCtrl); 3025 readl(®s->LocalCtrl); 3026 mb(); 3027 udelay(ACE_LONG_DELAY); 3028 local |= EEPROM_CLK_OUT; 3029 writel(local, ®s->LocalCtrl); 3030 readl(®s->LocalCtrl); 3031 mb(); 3032 udelay(ACE_SHORT_DELAY); 3033 /* sample data in middle of high clk */ 3034 state = (readl(®s->LocalCtrl) & EEPROM_DATA_IN) != 0; 3035 udelay(ACE_SHORT_DELAY); 3036 mb(); 3037 writel(readl(®s->LocalCtrl) & ~EEPROM_CLK_OUT, ®s->LocalCtrl); 3038 readl(®s->LocalCtrl); 3039 mb(); 3040 3041 return state; 3042 } 3043 3044 3045 static void eeprom_stop(struct ace_regs __iomem *regs) 3046 { 3047 u32 local; 3048 3049 udelay(ACE_SHORT_DELAY); 3050 local = readl(®s->LocalCtrl); 3051 local |= EEPROM_WRITE_ENABLE; 3052 writel(local, ®s->LocalCtrl); 3053 readl(®s->LocalCtrl); 3054 mb(); 3055 udelay(ACE_SHORT_DELAY); 3056 local &= ~EEPROM_DATA_OUT; 3057 writel(local, ®s->LocalCtrl); 3058 readl(®s->LocalCtrl); 3059 mb(); 3060 udelay(ACE_SHORT_DELAY); 3061 local |= EEPROM_CLK_OUT; 3062 writel(local, ®s->LocalCtrl); 3063 readl(®s->LocalCtrl); 3064 mb(); 3065 udelay(ACE_SHORT_DELAY); 3066 local |= EEPROM_DATA_OUT; 3067 writel(local, ®s->LocalCtrl); 3068 readl(®s->LocalCtrl); 3069 mb(); 3070 udelay(ACE_LONG_DELAY); 3071 local &= ~EEPROM_CLK_OUT; 3072 writel(local, ®s->LocalCtrl); 3073 mb(); 3074 } 3075 3076 3077 /* 3078 * Read a whole byte from the EEPROM. 3079 */ 3080 static int read_eeprom_byte(struct net_device *dev, unsigned long offset) 3081 { 3082 struct ace_private *ap = netdev_priv(dev); 3083 struct ace_regs __iomem *regs = ap->regs; 3084 unsigned long flags; 3085 u32 local; 3086 int result = 0; 3087 short i; 3088 3089 /* 3090 * Don't take interrupts on this CPU will bit banging 3091 * the %#%#@$ I2C device 3092 */ 3093 local_irq_save(flags); 3094 3095 eeprom_start(regs); 3096 3097 eeprom_prep(regs, EEPROM_WRITE_SELECT); 3098 if (eeprom_check_ack(regs)) { 3099 local_irq_restore(flags); 3100 printk(KERN_ERR "%s: Unable to sync eeprom\n", ap->name); 3101 result = -EIO; 3102 goto eeprom_read_error; 3103 } 3104 3105 eeprom_prep(regs, (offset >> 8) & 0xff); 3106 if (eeprom_check_ack(regs)) { 3107 local_irq_restore(flags); 3108 printk(KERN_ERR "%s: Unable to set address byte 0\n", 3109 ap->name); 3110 result = -EIO; 3111 goto eeprom_read_error; 3112 } 3113 3114 eeprom_prep(regs, offset & 0xff); 3115 if (eeprom_check_ack(regs)) { 3116 local_irq_restore(flags); 3117 printk(KERN_ERR "%s: Unable to set address byte 1\n", 3118 ap->name); 3119 result = -EIO; 3120 goto eeprom_read_error; 3121 } 3122 3123 eeprom_start(regs); 3124 eeprom_prep(regs, EEPROM_READ_SELECT); 3125 if (eeprom_check_ack(regs)) { 3126 local_irq_restore(flags); 3127 printk(KERN_ERR "%s: Unable to set READ_SELECT\n", 3128 ap->name); 3129 result = -EIO; 3130 goto eeprom_read_error; 3131 } 3132 3133 for (i = 0; i < 8; i++) { 3134 local = readl(®s->LocalCtrl); 3135 local &= ~EEPROM_WRITE_ENABLE; 3136 writel(local, ®s->LocalCtrl); 3137 readl(®s->LocalCtrl); 3138 udelay(ACE_LONG_DELAY); 3139 mb(); 3140 local |= EEPROM_CLK_OUT; 3141 writel(local, ®s->LocalCtrl); 3142 readl(®s->LocalCtrl); 3143 mb(); 3144 udelay(ACE_SHORT_DELAY); 3145 /* sample data mid high clk */ 3146 result = (result << 1) | 3147 ((readl(®s->LocalCtrl) & EEPROM_DATA_IN) != 0); 3148 udelay(ACE_SHORT_DELAY); 3149 mb(); 3150 local = readl(®s->LocalCtrl); 3151 local &= ~EEPROM_CLK_OUT; 3152 writel(local, ®s->LocalCtrl); 3153 readl(®s->LocalCtrl); 3154 udelay(ACE_SHORT_DELAY); 3155 mb(); 3156 if (i == 7) { 3157 local |= EEPROM_WRITE_ENABLE; 3158 writel(local, ®s->LocalCtrl); 3159 readl(®s->LocalCtrl); 3160 mb(); 3161 udelay(ACE_SHORT_DELAY); 3162 } 3163 } 3164 3165 local |= EEPROM_DATA_OUT; 3166 writel(local, ®s->LocalCtrl); 3167 readl(®s->LocalCtrl); 3168 mb(); 3169 udelay(ACE_SHORT_DELAY); 3170 writel(readl(®s->LocalCtrl) | EEPROM_CLK_OUT, ®s->LocalCtrl); 3171 readl(®s->LocalCtrl); 3172 udelay(ACE_LONG_DELAY); 3173 writel(readl(®s->LocalCtrl) & ~EEPROM_CLK_OUT, ®s->LocalCtrl); 3174 readl(®s->LocalCtrl); 3175 mb(); 3176 udelay(ACE_SHORT_DELAY); 3177 eeprom_stop(regs); 3178 3179 local_irq_restore(flags); 3180 out: 3181 return result; 3182 3183 eeprom_read_error: 3184 printk(KERN_ERR "%s: Unable to read eeprom byte 0x%02lx\n", 3185 ap->name, offset); 3186 goto out; 3187 } 3188 3189 module_pci_driver(acenic_pci_driver); 3190