1 /*
2  * acenic.c: Linux driver for the Alteon AceNIC Gigabit Ethernet card
3  *           and other Tigon based cards.
4  *
5  * Copyright 1998-2002 by Jes Sorensen, <jes@trained-monkey.org>.
6  *
7  * Thanks to Alteon and 3Com for providing hardware and documentation
8  * enabling me to write this driver.
9  *
10  * A mailing list for discussing the use of this driver has been
11  * setup, please subscribe to the lists if you have any questions
12  * about the driver. Send mail to linux-acenic-help@sunsite.auc.dk to
13  * see how to subscribe.
14  *
15  * This program is free software; you can redistribute it and/or modify
16  * it under the terms of the GNU General Public License as published by
17  * the Free Software Foundation; either version 2 of the License, or
18  * (at your option) any later version.
19  *
20  * Additional credits:
21  *   Pete Wyckoff <wyckoff@ca.sandia.gov>: Initial Linux/Alpha and trace
22  *       dump support. The trace dump support has not been
23  *       integrated yet however.
24  *   Troy Benjegerdes: Big Endian (PPC) patches.
25  *   Nate Stahl: Better out of memory handling and stats support.
26  *   Aman Singla: Nasty race between interrupt handler and tx code dealing
27  *                with 'testing the tx_ret_csm and setting tx_full'
28  *   David S. Miller <davem@redhat.com>: conversion to new PCI dma mapping
29  *                                       infrastructure and Sparc support
30  *   Pierrick Pinasseau (CERN): For lending me an Ultra 5 to test the
31  *                              driver under Linux/Sparc64
32  *   Matt Domsch <Matt_Domsch@dell.com>: Detect Alteon 1000baseT cards
33  *                                       ETHTOOL_GDRVINFO support
34  *   Chip Salzenberg <chip@valinux.com>: Fix race condition between tx
35  *                                       handler and close() cleanup.
36  *   Ken Aaker <kdaaker@rchland.vnet.ibm.com>: Correct check for whether
37  *                                       memory mapped IO is enabled to
38  *                                       make the driver work on RS/6000.
39  *   Takayoshi Kouchi <kouchi@hpc.bs1.fc.nec.co.jp>: Identifying problem
40  *                                       where the driver would disable
41  *                                       bus master mode if it had to disable
42  *                                       write and invalidate.
43  *   Stephen Hack <stephen_hack@hp.com>: Fixed ace_set_mac_addr for little
44  *                                       endian systems.
45  *   Val Henson <vhenson@esscom.com>:    Reset Jumbo skb producer and
46  *                                       rx producer index when
47  *                                       flushing the Jumbo ring.
48  *   Hans Grobler <grobh@sun.ac.za>:     Memory leak fixes in the
49  *                                       driver init path.
50  *   Grant Grundler <grundler@cup.hp.com>: PCI write posting fixes.
51  */
52 
53 #include <linux/module.h>
54 #include <linux/moduleparam.h>
55 #include <linux/types.h>
56 #include <linux/errno.h>
57 #include <linux/ioport.h>
58 #include <linux/pci.h>
59 #include <linux/dma-mapping.h>
60 #include <linux/kernel.h>
61 #include <linux/netdevice.h>
62 #include <linux/etherdevice.h>
63 #include <linux/skbuff.h>
64 #include <linux/init.h>
65 #include <linux/delay.h>
66 #include <linux/mm.h>
67 #include <linux/highmem.h>
68 #include <linux/sockios.h>
69 #include <linux/firmware.h>
70 #include <linux/slab.h>
71 #include <linux/prefetch.h>
72 #include <linux/if_vlan.h>
73 
74 #ifdef SIOCETHTOOL
75 #include <linux/ethtool.h>
76 #endif
77 
78 #include <net/sock.h>
79 #include <net/ip.h>
80 
81 #include <asm/io.h>
82 #include <asm/irq.h>
83 #include <asm/byteorder.h>
84 #include <asm/uaccess.h>
85 
86 
87 #define DRV_NAME "acenic"
88 
89 #undef INDEX_DEBUG
90 
91 #ifdef CONFIG_ACENIC_OMIT_TIGON_I
92 #define ACE_IS_TIGON_I(ap)	0
93 #define ACE_TX_RING_ENTRIES(ap)	MAX_TX_RING_ENTRIES
94 #else
95 #define ACE_IS_TIGON_I(ap)	(ap->version == 1)
96 #define ACE_TX_RING_ENTRIES(ap)	ap->tx_ring_entries
97 #endif
98 
99 #ifndef PCI_VENDOR_ID_ALTEON
100 #define PCI_VENDOR_ID_ALTEON		0x12ae
101 #endif
102 #ifndef PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE
103 #define PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE  0x0001
104 #define PCI_DEVICE_ID_ALTEON_ACENIC_COPPER 0x0002
105 #endif
106 #ifndef PCI_DEVICE_ID_3COM_3C985
107 #define PCI_DEVICE_ID_3COM_3C985	0x0001
108 #endif
109 #ifndef PCI_VENDOR_ID_NETGEAR
110 #define PCI_VENDOR_ID_NETGEAR		0x1385
111 #define PCI_DEVICE_ID_NETGEAR_GA620	0x620a
112 #endif
113 #ifndef PCI_DEVICE_ID_NETGEAR_GA620T
114 #define PCI_DEVICE_ID_NETGEAR_GA620T	0x630a
115 #endif
116 
117 
118 /*
119  * Farallon used the DEC vendor ID by mistake and they seem not
120  * to care - stinky!
121  */
122 #ifndef PCI_DEVICE_ID_FARALLON_PN9000SX
123 #define PCI_DEVICE_ID_FARALLON_PN9000SX	0x1a
124 #endif
125 #ifndef PCI_DEVICE_ID_FARALLON_PN9100T
126 #define PCI_DEVICE_ID_FARALLON_PN9100T  0xfa
127 #endif
128 #ifndef PCI_VENDOR_ID_SGI
129 #define PCI_VENDOR_ID_SGI		0x10a9
130 #endif
131 #ifndef PCI_DEVICE_ID_SGI_ACENIC
132 #define PCI_DEVICE_ID_SGI_ACENIC	0x0009
133 #endif
134 
135 static DEFINE_PCI_DEVICE_TABLE(acenic_pci_tbl) = {
136 	{ PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE,
137 	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
138 	{ PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_COPPER,
139 	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
140 	{ PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C985,
141 	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
142 	{ PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620,
143 	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
144 	{ PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620T,
145 	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
146 	/*
147 	 * Farallon used the DEC vendor ID on their cards incorrectly,
148 	 * then later Alteon's ID.
149 	 */
150 	{ PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_FARALLON_PN9000SX,
151 	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
152 	{ PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_FARALLON_PN9100T,
153 	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
154 	{ PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_ACENIC,
155 	  PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, },
156 	{ }
157 };
158 MODULE_DEVICE_TABLE(pci, acenic_pci_tbl);
159 
160 #define ace_sync_irq(irq)	synchronize_irq(irq)
161 
162 #ifndef offset_in_page
163 #define offset_in_page(ptr)	((unsigned long)(ptr) & ~PAGE_MASK)
164 #endif
165 
166 #define ACE_MAX_MOD_PARMS	8
167 #define BOARD_IDX_STATIC	0
168 #define BOARD_IDX_OVERFLOW	-1
169 
170 #include "acenic.h"
171 
172 /*
173  * These must be defined before the firmware is included.
174  */
175 #define MAX_TEXT_LEN	96*1024
176 #define MAX_RODATA_LEN	8*1024
177 #define MAX_DATA_LEN	2*1024
178 
179 #ifndef tigon2FwReleaseLocal
180 #define tigon2FwReleaseLocal 0
181 #endif
182 
183 /*
184  * This driver currently supports Tigon I and Tigon II based cards
185  * including the Alteon AceNIC, the 3Com 3C985[B] and NetGear
186  * GA620. The driver should also work on the SGI, DEC and Farallon
187  * versions of the card, however I have not been able to test that
188  * myself.
189  *
190  * This card is really neat, it supports receive hardware checksumming
191  * and jumbo frames (up to 9000 bytes) and does a lot of work in the
192  * firmware. Also the programming interface is quite neat, except for
193  * the parts dealing with the i2c eeprom on the card ;-)
194  *
195  * Using jumbo frames:
196  *
197  * To enable jumbo frames, simply specify an mtu between 1500 and 9000
198  * bytes to ifconfig. Jumbo frames can be enabled or disabled at any time
199  * by running `ifconfig eth<X> mtu <MTU>' with <X> being the Ethernet
200  * interface number and <MTU> being the MTU value.
201  *
202  * Module parameters:
203  *
204  * When compiled as a loadable module, the driver allows for a number
205  * of module parameters to be specified. The driver supports the
206  * following module parameters:
207  *
208  *  trace=<val> - Firmware trace level. This requires special traced
209  *                firmware to replace the firmware supplied with
210  *                the driver - for debugging purposes only.
211  *
212  *  link=<val>  - Link state. Normally you want to use the default link
213  *                parameters set by the driver. This can be used to
214  *                override these in case your switch doesn't negotiate
215  *                the link properly. Valid values are:
216  *         0x0001 - Force half duplex link.
217  *         0x0002 - Do not negotiate line speed with the other end.
218  *         0x0010 - 10Mbit/sec link.
219  *         0x0020 - 100Mbit/sec link.
220  *         0x0040 - 1000Mbit/sec link.
221  *         0x0100 - Do not negotiate flow control.
222  *         0x0200 - Enable RX flow control Y
223  *         0x0400 - Enable TX flow control Y (Tigon II NICs only).
224  *                Default value is 0x0270, ie. enable link+flow
225  *                control negotiation. Negotiating the highest
226  *                possible link speed with RX flow control enabled.
227  *
228  *                When disabling link speed negotiation, only one link
229  *                speed is allowed to be specified!
230  *
231  *  tx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
232  *                to wait for more packets to arive before
233  *                interrupting the host, from the time the first
234  *                packet arrives.
235  *
236  *  rx_coal_tick=<val> - number of coalescing clock ticks (us) allowed
237  *                to wait for more packets to arive in the transmit ring,
238  *                before interrupting the host, after transmitting the
239  *                first packet in the ring.
240  *
241  *  max_tx_desc=<val> - maximum number of transmit descriptors
242  *                (packets) transmitted before interrupting the host.
243  *
244  *  max_rx_desc=<val> - maximum number of receive descriptors
245  *                (packets) received before interrupting the host.
246  *
247  *  tx_ratio=<val> - 7 bit value (0 - 63) specifying the split in 64th
248  *                increments of the NIC's on board memory to be used for
249  *                transmit and receive buffers. For the 1MB NIC app. 800KB
250  *                is available, on the 1/2MB NIC app. 300KB is available.
251  *                68KB will always be available as a minimum for both
252  *                directions. The default value is a 50/50 split.
253  *  dis_pci_mem_inval=<val> - disable PCI memory write and invalidate
254  *                operations, default (1) is to always disable this as
255  *                that is what Alteon does on NT. I have not been able
256  *                to measure any real performance differences with
257  *                this on my systems. Set <val>=0 if you want to
258  *                enable these operations.
259  *
260  * If you use more than one NIC, specify the parameters for the
261  * individual NICs with a comma, ie. trace=0,0x00001fff,0 you want to
262  * run tracing on NIC #2 but not on NIC #1 and #3.
263  *
264  * TODO:
265  *
266  * - Proper multicast support.
267  * - NIC dump support.
268  * - More tuning parameters.
269  *
270  * The mini ring is not used under Linux and I am not sure it makes sense
271  * to actually use it.
272  *
273  * New interrupt handler strategy:
274  *
275  * The old interrupt handler worked using the traditional method of
276  * replacing an skbuff with a new one when a packet arrives. However
277  * the rx rings do not need to contain a static number of buffer
278  * descriptors, thus it makes sense to move the memory allocation out
279  * of the main interrupt handler and do it in a bottom half handler
280  * and only allocate new buffers when the number of buffers in the
281  * ring is below a certain threshold. In order to avoid starving the
282  * NIC under heavy load it is however necessary to force allocation
283  * when hitting a minimum threshold. The strategy for alloction is as
284  * follows:
285  *
286  *     RX_LOW_BUF_THRES    - allocate buffers in the bottom half
287  *     RX_PANIC_LOW_THRES  - we are very low on buffers, allocate
288  *                           the buffers in the interrupt handler
289  *     RX_RING_THRES       - maximum number of buffers in the rx ring
290  *     RX_MINI_THRES       - maximum number of buffers in the mini ring
291  *     RX_JUMBO_THRES      - maximum number of buffers in the jumbo ring
292  *
293  * One advantagous side effect of this allocation approach is that the
294  * entire rx processing can be done without holding any spin lock
295  * since the rx rings and registers are totally independent of the tx
296  * ring and its registers.  This of course includes the kmalloc's of
297  * new skb's. Thus start_xmit can run in parallel with rx processing
298  * and the memory allocation on SMP systems.
299  *
300  * Note that running the skb reallocation in a bottom half opens up
301  * another can of races which needs to be handled properly. In
302  * particular it can happen that the interrupt handler tries to run
303  * the reallocation while the bottom half is either running on another
304  * CPU or was interrupted on the same CPU. To get around this the
305  * driver uses bitops to prevent the reallocation routines from being
306  * reentered.
307  *
308  * TX handling can also be done without holding any spin lock, wheee
309  * this is fun! since tx_ret_csm is only written to by the interrupt
310  * handler. The case to be aware of is when shutting down the device
311  * and cleaning up where it is necessary to make sure that
312  * start_xmit() is not running while this is happening. Well DaveM
313  * informs me that this case is already protected against ... bye bye
314  * Mr. Spin Lock, it was nice to know you.
315  *
316  * TX interrupts are now partly disabled so the NIC will only generate
317  * TX interrupts for the number of coal ticks, not for the number of
318  * TX packets in the queue. This should reduce the number of TX only,
319  * ie. when no RX processing is done, interrupts seen.
320  */
321 
322 /*
323  * Threshold values for RX buffer allocation - the low water marks for
324  * when to start refilling the rings are set to 75% of the ring
325  * sizes. It seems to make sense to refill the rings entirely from the
326  * intrrupt handler once it gets below the panic threshold, that way
327  * we don't risk that the refilling is moved to another CPU when the
328  * one running the interrupt handler just got the slab code hot in its
329  * cache.
330  */
331 #define RX_RING_SIZE		72
332 #define RX_MINI_SIZE		64
333 #define RX_JUMBO_SIZE		48
334 
335 #define RX_PANIC_STD_THRES	16
336 #define RX_PANIC_STD_REFILL	(3*RX_PANIC_STD_THRES)/2
337 #define RX_LOW_STD_THRES	(3*RX_RING_SIZE)/4
338 #define RX_PANIC_MINI_THRES	12
339 #define RX_PANIC_MINI_REFILL	(3*RX_PANIC_MINI_THRES)/2
340 #define RX_LOW_MINI_THRES	(3*RX_MINI_SIZE)/4
341 #define RX_PANIC_JUMBO_THRES	6
342 #define RX_PANIC_JUMBO_REFILL	(3*RX_PANIC_JUMBO_THRES)/2
343 #define RX_LOW_JUMBO_THRES	(3*RX_JUMBO_SIZE)/4
344 
345 
346 /*
347  * Size of the mini ring entries, basically these just should be big
348  * enough to take TCP ACKs
349  */
350 #define ACE_MINI_SIZE		100
351 
352 #define ACE_MINI_BUFSIZE	ACE_MINI_SIZE
353 #define ACE_STD_BUFSIZE		(ACE_STD_MTU + ETH_HLEN + 4)
354 #define ACE_JUMBO_BUFSIZE	(ACE_JUMBO_MTU + ETH_HLEN + 4)
355 
356 /*
357  * There seems to be a magic difference in the effect between 995 and 996
358  * but little difference between 900 and 995 ... no idea why.
359  *
360  * There is now a default set of tuning parameters which is set, depending
361  * on whether or not the user enables Jumbo frames. It's assumed that if
362  * Jumbo frames are enabled, the user wants optimal tuning for that case.
363  */
364 #define DEF_TX_COAL		400 /* 996 */
365 #define DEF_TX_MAX_DESC		60  /* was 40 */
366 #define DEF_RX_COAL		120 /* 1000 */
367 #define DEF_RX_MAX_DESC		25
368 #define DEF_TX_RATIO		21 /* 24 */
369 
370 #define DEF_JUMBO_TX_COAL	20
371 #define DEF_JUMBO_TX_MAX_DESC	60
372 #define DEF_JUMBO_RX_COAL	30
373 #define DEF_JUMBO_RX_MAX_DESC	6
374 #define DEF_JUMBO_TX_RATIO	21
375 
376 #if tigon2FwReleaseLocal < 20001118
377 /*
378  * Standard firmware and early modifications duplicate
379  * IRQ load without this flag (coal timer is never reset).
380  * Note that with this flag tx_coal should be less than
381  * time to xmit full tx ring.
382  * 400usec is not so bad for tx ring size of 128.
383  */
384 #define TX_COAL_INTS_ONLY	1	/* worth it */
385 #else
386 /*
387  * With modified firmware, this is not necessary, but still useful.
388  */
389 #define TX_COAL_INTS_ONLY	1
390 #endif
391 
392 #define DEF_TRACE		0
393 #define DEF_STAT		(2 * TICKS_PER_SEC)
394 
395 
396 static int link_state[ACE_MAX_MOD_PARMS];
397 static int trace[ACE_MAX_MOD_PARMS];
398 static int tx_coal_tick[ACE_MAX_MOD_PARMS];
399 static int rx_coal_tick[ACE_MAX_MOD_PARMS];
400 static int max_tx_desc[ACE_MAX_MOD_PARMS];
401 static int max_rx_desc[ACE_MAX_MOD_PARMS];
402 static int tx_ratio[ACE_MAX_MOD_PARMS];
403 static int dis_pci_mem_inval[ACE_MAX_MOD_PARMS] = {1, 1, 1, 1, 1, 1, 1, 1};
404 
405 MODULE_AUTHOR("Jes Sorensen <jes@trained-monkey.org>");
406 MODULE_LICENSE("GPL");
407 MODULE_DESCRIPTION("AceNIC/3C985/GA620 Gigabit Ethernet driver");
408 #ifndef CONFIG_ACENIC_OMIT_TIGON_I
409 MODULE_FIRMWARE("acenic/tg1.bin");
410 #endif
411 MODULE_FIRMWARE("acenic/tg2.bin");
412 
413 module_param_array_named(link, link_state, int, NULL, 0);
414 module_param_array(trace, int, NULL, 0);
415 module_param_array(tx_coal_tick, int, NULL, 0);
416 module_param_array(max_tx_desc, int, NULL, 0);
417 module_param_array(rx_coal_tick, int, NULL, 0);
418 module_param_array(max_rx_desc, int, NULL, 0);
419 module_param_array(tx_ratio, int, NULL, 0);
420 MODULE_PARM_DESC(link, "AceNIC/3C985/NetGear link state");
421 MODULE_PARM_DESC(trace, "AceNIC/3C985/NetGear firmware trace level");
422 MODULE_PARM_DESC(tx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first tx descriptor arrives");
423 MODULE_PARM_DESC(max_tx_desc, "AceNIC/3C985/GA620 max number of transmit descriptors to wait");
424 MODULE_PARM_DESC(rx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first rx descriptor arrives");
425 MODULE_PARM_DESC(max_rx_desc, "AceNIC/3C985/GA620 max number of receive descriptors to wait");
426 MODULE_PARM_DESC(tx_ratio, "AceNIC/3C985/GA620 ratio of NIC memory used for TX/RX descriptors (range 0-63)");
427 
428 
429 static const char version[] =
430   "acenic.c: v0.92 08/05/2002  Jes Sorensen, linux-acenic@SunSITE.dk\n"
431   "                            http://home.cern.ch/~jes/gige/acenic.html\n";
432 
433 static int ace_get_settings(struct net_device *, struct ethtool_cmd *);
434 static int ace_set_settings(struct net_device *, struct ethtool_cmd *);
435 static void ace_get_drvinfo(struct net_device *, struct ethtool_drvinfo *);
436 
437 static const struct ethtool_ops ace_ethtool_ops = {
438 	.get_settings = ace_get_settings,
439 	.set_settings = ace_set_settings,
440 	.get_drvinfo = ace_get_drvinfo,
441 };
442 
443 static void ace_watchdog(struct net_device *dev);
444 
445 static const struct net_device_ops ace_netdev_ops = {
446 	.ndo_open		= ace_open,
447 	.ndo_stop		= ace_close,
448 	.ndo_tx_timeout		= ace_watchdog,
449 	.ndo_get_stats		= ace_get_stats,
450 	.ndo_start_xmit		= ace_start_xmit,
451 	.ndo_set_rx_mode	= ace_set_multicast_list,
452 	.ndo_validate_addr	= eth_validate_addr,
453 	.ndo_set_mac_address	= ace_set_mac_addr,
454 	.ndo_change_mtu		= ace_change_mtu,
455 };
456 
457 static int acenic_probe_one(struct pci_dev *pdev,
458 			    const struct pci_device_id *id)
459 {
460 	struct net_device *dev;
461 	struct ace_private *ap;
462 	static int boards_found;
463 
464 	dev = alloc_etherdev(sizeof(struct ace_private));
465 	if (dev == NULL)
466 		return -ENOMEM;
467 
468 	SET_NETDEV_DEV(dev, &pdev->dev);
469 
470 	ap = netdev_priv(dev);
471 	ap->pdev = pdev;
472 	ap->name = pci_name(pdev);
473 
474 	dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM;
475 	dev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX;
476 
477 	dev->watchdog_timeo = 5*HZ;
478 
479 	dev->netdev_ops = &ace_netdev_ops;
480 	SET_ETHTOOL_OPS(dev, &ace_ethtool_ops);
481 
482 	/* we only display this string ONCE */
483 	if (!boards_found)
484 		printk(version);
485 
486 	if (pci_enable_device(pdev))
487 		goto fail_free_netdev;
488 
489 	/*
490 	 * Enable master mode before we start playing with the
491 	 * pci_command word since pci_set_master() will modify
492 	 * it.
493 	 */
494 	pci_set_master(pdev);
495 
496 	pci_read_config_word(pdev, PCI_COMMAND, &ap->pci_command);
497 
498 	/* OpenFirmware on Mac's does not set this - DOH.. */
499 	if (!(ap->pci_command & PCI_COMMAND_MEMORY)) {
500 		printk(KERN_INFO "%s: Enabling PCI Memory Mapped "
501 		       "access - was not enabled by BIOS/Firmware\n",
502 		       ap->name);
503 		ap->pci_command = ap->pci_command | PCI_COMMAND_MEMORY;
504 		pci_write_config_word(ap->pdev, PCI_COMMAND,
505 				      ap->pci_command);
506 		wmb();
507 	}
508 
509 	pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &ap->pci_latency);
510 	if (ap->pci_latency <= 0x40) {
511 		ap->pci_latency = 0x40;
512 		pci_write_config_byte(pdev, PCI_LATENCY_TIMER, ap->pci_latency);
513 	}
514 
515 	/*
516 	 * Remap the regs into kernel space - this is abuse of
517 	 * dev->base_addr since it was means for I/O port
518 	 * addresses but who gives a damn.
519 	 */
520 	dev->base_addr = pci_resource_start(pdev, 0);
521 	ap->regs = ioremap(dev->base_addr, 0x4000);
522 	if (!ap->regs) {
523 		printk(KERN_ERR "%s:  Unable to map I/O register, "
524 		       "AceNIC %i will be disabled.\n",
525 		       ap->name, boards_found);
526 		goto fail_free_netdev;
527 	}
528 
529 	switch(pdev->vendor) {
530 	case PCI_VENDOR_ID_ALTEON:
531 		if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9100T) {
532 			printk(KERN_INFO "%s: Farallon PN9100-T ",
533 			       ap->name);
534 		} else {
535 			printk(KERN_INFO "%s: Alteon AceNIC ",
536 			       ap->name);
537 		}
538 		break;
539 	case PCI_VENDOR_ID_3COM:
540 		printk(KERN_INFO "%s: 3Com 3C985 ", ap->name);
541 		break;
542 	case PCI_VENDOR_ID_NETGEAR:
543 		printk(KERN_INFO "%s: NetGear GA620 ", ap->name);
544 		break;
545 	case PCI_VENDOR_ID_DEC:
546 		if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9000SX) {
547 			printk(KERN_INFO "%s: Farallon PN9000-SX ",
548 			       ap->name);
549 			break;
550 		}
551 	case PCI_VENDOR_ID_SGI:
552 		printk(KERN_INFO "%s: SGI AceNIC ", ap->name);
553 		break;
554 	default:
555 		printk(KERN_INFO "%s: Unknown AceNIC ", ap->name);
556 		break;
557 	}
558 
559 	printk("Gigabit Ethernet at 0x%08lx, ", dev->base_addr);
560 	printk("irq %d\n", pdev->irq);
561 
562 #ifdef CONFIG_ACENIC_OMIT_TIGON_I
563 	if ((readl(&ap->regs->HostCtrl) >> 28) == 4) {
564 		printk(KERN_ERR "%s: Driver compiled without Tigon I"
565 		       " support - NIC disabled\n", dev->name);
566 		goto fail_uninit;
567 	}
568 #endif
569 
570 	if (ace_allocate_descriptors(dev))
571 		goto fail_free_netdev;
572 
573 #ifdef MODULE
574 	if (boards_found >= ACE_MAX_MOD_PARMS)
575 		ap->board_idx = BOARD_IDX_OVERFLOW;
576 	else
577 		ap->board_idx = boards_found;
578 #else
579 	ap->board_idx = BOARD_IDX_STATIC;
580 #endif
581 
582 	if (ace_init(dev))
583 		goto fail_free_netdev;
584 
585 	if (register_netdev(dev)) {
586 		printk(KERN_ERR "acenic: device registration failed\n");
587 		goto fail_uninit;
588 	}
589 	ap->name = dev->name;
590 
591 	if (ap->pci_using_dac)
592 		dev->features |= NETIF_F_HIGHDMA;
593 
594 	pci_set_drvdata(pdev, dev);
595 
596 	boards_found++;
597 	return 0;
598 
599  fail_uninit:
600 	ace_init_cleanup(dev);
601  fail_free_netdev:
602 	free_netdev(dev);
603 	return -ENODEV;
604 }
605 
606 static void acenic_remove_one(struct pci_dev *pdev)
607 {
608 	struct net_device *dev = pci_get_drvdata(pdev);
609 	struct ace_private *ap = netdev_priv(dev);
610 	struct ace_regs __iomem *regs = ap->regs;
611 	short i;
612 
613 	unregister_netdev(dev);
614 
615 	writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
616 	if (ap->version >= 2)
617 		writel(readl(&regs->CpuBCtrl) | CPU_HALT, &regs->CpuBCtrl);
618 
619 	/*
620 	 * This clears any pending interrupts
621 	 */
622 	writel(1, &regs->Mb0Lo);
623 	readl(&regs->CpuCtrl);	/* flush */
624 
625 	/*
626 	 * Make sure no other CPUs are processing interrupts
627 	 * on the card before the buffers are being released.
628 	 * Otherwise one might experience some `interesting'
629 	 * effects.
630 	 *
631 	 * Then release the RX buffers - jumbo buffers were
632 	 * already released in ace_close().
633 	 */
634 	ace_sync_irq(dev->irq);
635 
636 	for (i = 0; i < RX_STD_RING_ENTRIES; i++) {
637 		struct sk_buff *skb = ap->skb->rx_std_skbuff[i].skb;
638 
639 		if (skb) {
640 			struct ring_info *ringp;
641 			dma_addr_t mapping;
642 
643 			ringp = &ap->skb->rx_std_skbuff[i];
644 			mapping = dma_unmap_addr(ringp, mapping);
645 			pci_unmap_page(ap->pdev, mapping,
646 				       ACE_STD_BUFSIZE,
647 				       PCI_DMA_FROMDEVICE);
648 
649 			ap->rx_std_ring[i].size = 0;
650 			ap->skb->rx_std_skbuff[i].skb = NULL;
651 			dev_kfree_skb(skb);
652 		}
653 	}
654 
655 	if (ap->version >= 2) {
656 		for (i = 0; i < RX_MINI_RING_ENTRIES; i++) {
657 			struct sk_buff *skb = ap->skb->rx_mini_skbuff[i].skb;
658 
659 			if (skb) {
660 				struct ring_info *ringp;
661 				dma_addr_t mapping;
662 
663 				ringp = &ap->skb->rx_mini_skbuff[i];
664 				mapping = dma_unmap_addr(ringp,mapping);
665 				pci_unmap_page(ap->pdev, mapping,
666 					       ACE_MINI_BUFSIZE,
667 					       PCI_DMA_FROMDEVICE);
668 
669 				ap->rx_mini_ring[i].size = 0;
670 				ap->skb->rx_mini_skbuff[i].skb = NULL;
671 				dev_kfree_skb(skb);
672 			}
673 		}
674 	}
675 
676 	for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
677 		struct sk_buff *skb = ap->skb->rx_jumbo_skbuff[i].skb;
678 		if (skb) {
679 			struct ring_info *ringp;
680 			dma_addr_t mapping;
681 
682 			ringp = &ap->skb->rx_jumbo_skbuff[i];
683 			mapping = dma_unmap_addr(ringp, mapping);
684 			pci_unmap_page(ap->pdev, mapping,
685 				       ACE_JUMBO_BUFSIZE,
686 				       PCI_DMA_FROMDEVICE);
687 
688 			ap->rx_jumbo_ring[i].size = 0;
689 			ap->skb->rx_jumbo_skbuff[i].skb = NULL;
690 			dev_kfree_skb(skb);
691 		}
692 	}
693 
694 	ace_init_cleanup(dev);
695 	free_netdev(dev);
696 }
697 
698 static struct pci_driver acenic_pci_driver = {
699 	.name		= "acenic",
700 	.id_table	= acenic_pci_tbl,
701 	.probe		= acenic_probe_one,
702 	.remove		= acenic_remove_one,
703 };
704 
705 static void ace_free_descriptors(struct net_device *dev)
706 {
707 	struct ace_private *ap = netdev_priv(dev);
708 	int size;
709 
710 	if (ap->rx_std_ring != NULL) {
711 		size = (sizeof(struct rx_desc) *
712 			(RX_STD_RING_ENTRIES +
713 			 RX_JUMBO_RING_ENTRIES +
714 			 RX_MINI_RING_ENTRIES +
715 			 RX_RETURN_RING_ENTRIES));
716 		pci_free_consistent(ap->pdev, size, ap->rx_std_ring,
717 				    ap->rx_ring_base_dma);
718 		ap->rx_std_ring = NULL;
719 		ap->rx_jumbo_ring = NULL;
720 		ap->rx_mini_ring = NULL;
721 		ap->rx_return_ring = NULL;
722 	}
723 	if (ap->evt_ring != NULL) {
724 		size = (sizeof(struct event) * EVT_RING_ENTRIES);
725 		pci_free_consistent(ap->pdev, size, ap->evt_ring,
726 				    ap->evt_ring_dma);
727 		ap->evt_ring = NULL;
728 	}
729 	if (ap->tx_ring != NULL && !ACE_IS_TIGON_I(ap)) {
730 		size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
731 		pci_free_consistent(ap->pdev, size, ap->tx_ring,
732 				    ap->tx_ring_dma);
733 	}
734 	ap->tx_ring = NULL;
735 
736 	if (ap->evt_prd != NULL) {
737 		pci_free_consistent(ap->pdev, sizeof(u32),
738 				    (void *)ap->evt_prd, ap->evt_prd_dma);
739 		ap->evt_prd = NULL;
740 	}
741 	if (ap->rx_ret_prd != NULL) {
742 		pci_free_consistent(ap->pdev, sizeof(u32),
743 				    (void *)ap->rx_ret_prd,
744 				    ap->rx_ret_prd_dma);
745 		ap->rx_ret_prd = NULL;
746 	}
747 	if (ap->tx_csm != NULL) {
748 		pci_free_consistent(ap->pdev, sizeof(u32),
749 				    (void *)ap->tx_csm, ap->tx_csm_dma);
750 		ap->tx_csm = NULL;
751 	}
752 }
753 
754 
755 static int ace_allocate_descriptors(struct net_device *dev)
756 {
757 	struct ace_private *ap = netdev_priv(dev);
758 	int size;
759 
760 	size = (sizeof(struct rx_desc) *
761 		(RX_STD_RING_ENTRIES +
762 		 RX_JUMBO_RING_ENTRIES +
763 		 RX_MINI_RING_ENTRIES +
764 		 RX_RETURN_RING_ENTRIES));
765 
766 	ap->rx_std_ring = pci_alloc_consistent(ap->pdev, size,
767 					       &ap->rx_ring_base_dma);
768 	if (ap->rx_std_ring == NULL)
769 		goto fail;
770 
771 	ap->rx_jumbo_ring = ap->rx_std_ring + RX_STD_RING_ENTRIES;
772 	ap->rx_mini_ring = ap->rx_jumbo_ring + RX_JUMBO_RING_ENTRIES;
773 	ap->rx_return_ring = ap->rx_mini_ring + RX_MINI_RING_ENTRIES;
774 
775 	size = (sizeof(struct event) * EVT_RING_ENTRIES);
776 
777 	ap->evt_ring = pci_alloc_consistent(ap->pdev, size, &ap->evt_ring_dma);
778 
779 	if (ap->evt_ring == NULL)
780 		goto fail;
781 
782 	/*
783 	 * Only allocate a host TX ring for the Tigon II, the Tigon I
784 	 * has to use PCI registers for this ;-(
785 	 */
786 	if (!ACE_IS_TIGON_I(ap)) {
787 		size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES);
788 
789 		ap->tx_ring = pci_alloc_consistent(ap->pdev, size,
790 						   &ap->tx_ring_dma);
791 
792 		if (ap->tx_ring == NULL)
793 			goto fail;
794 	}
795 
796 	ap->evt_prd = pci_alloc_consistent(ap->pdev, sizeof(u32),
797 					   &ap->evt_prd_dma);
798 	if (ap->evt_prd == NULL)
799 		goto fail;
800 
801 	ap->rx_ret_prd = pci_alloc_consistent(ap->pdev, sizeof(u32),
802 					      &ap->rx_ret_prd_dma);
803 	if (ap->rx_ret_prd == NULL)
804 		goto fail;
805 
806 	ap->tx_csm = pci_alloc_consistent(ap->pdev, sizeof(u32),
807 					  &ap->tx_csm_dma);
808 	if (ap->tx_csm == NULL)
809 		goto fail;
810 
811 	return 0;
812 
813 fail:
814 	/* Clean up. */
815 	ace_init_cleanup(dev);
816 	return 1;
817 }
818 
819 
820 /*
821  * Generic cleanup handling data allocated during init. Used when the
822  * module is unloaded or if an error occurs during initialization
823  */
824 static void ace_init_cleanup(struct net_device *dev)
825 {
826 	struct ace_private *ap;
827 
828 	ap = netdev_priv(dev);
829 
830 	ace_free_descriptors(dev);
831 
832 	if (ap->info)
833 		pci_free_consistent(ap->pdev, sizeof(struct ace_info),
834 				    ap->info, ap->info_dma);
835 	kfree(ap->skb);
836 	kfree(ap->trace_buf);
837 
838 	if (dev->irq)
839 		free_irq(dev->irq, dev);
840 
841 	iounmap(ap->regs);
842 }
843 
844 
845 /*
846  * Commands are considered to be slow.
847  */
848 static inline void ace_issue_cmd(struct ace_regs __iomem *regs, struct cmd *cmd)
849 {
850 	u32 idx;
851 
852 	idx = readl(&regs->CmdPrd);
853 
854 	writel(*(u32 *)(cmd), &regs->CmdRng[idx]);
855 	idx = (idx + 1) % CMD_RING_ENTRIES;
856 
857 	writel(idx, &regs->CmdPrd);
858 }
859 
860 
861 static int ace_init(struct net_device *dev)
862 {
863 	struct ace_private *ap;
864 	struct ace_regs __iomem *regs;
865 	struct ace_info *info = NULL;
866 	struct pci_dev *pdev;
867 	unsigned long myjif;
868 	u64 tmp_ptr;
869 	u32 tig_ver, mac1, mac2, tmp, pci_state;
870 	int board_idx, ecode = 0;
871 	short i;
872 	unsigned char cache_size;
873 
874 	ap = netdev_priv(dev);
875 	regs = ap->regs;
876 
877 	board_idx = ap->board_idx;
878 
879 	/*
880 	 * aman@sgi.com - its useful to do a NIC reset here to
881 	 * address the `Firmware not running' problem subsequent
882 	 * to any crashes involving the NIC
883 	 */
884 	writel(HW_RESET | (HW_RESET << 24), &regs->HostCtrl);
885 	readl(&regs->HostCtrl);		/* PCI write posting */
886 	udelay(5);
887 
888 	/*
889 	 * Don't access any other registers before this point!
890 	 */
891 #ifdef __BIG_ENDIAN
892 	/*
893 	 * This will most likely need BYTE_SWAP once we switch
894 	 * to using __raw_writel()
895 	 */
896 	writel((WORD_SWAP | CLR_INT | ((WORD_SWAP | CLR_INT) << 24)),
897 	       &regs->HostCtrl);
898 #else
899 	writel((CLR_INT | WORD_SWAP | ((CLR_INT | WORD_SWAP) << 24)),
900 	       &regs->HostCtrl);
901 #endif
902 	readl(&regs->HostCtrl);		/* PCI write posting */
903 
904 	/*
905 	 * Stop the NIC CPU and clear pending interrupts
906 	 */
907 	writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
908 	readl(&regs->CpuCtrl);		/* PCI write posting */
909 	writel(0, &regs->Mb0Lo);
910 
911 	tig_ver = readl(&regs->HostCtrl) >> 28;
912 
913 	switch(tig_ver){
914 #ifndef CONFIG_ACENIC_OMIT_TIGON_I
915 	case 4:
916 	case 5:
917 		printk(KERN_INFO "  Tigon I  (Rev. %i), Firmware: %i.%i.%i, ",
918 		       tig_ver, ap->firmware_major, ap->firmware_minor,
919 		       ap->firmware_fix);
920 		writel(0, &regs->LocalCtrl);
921 		ap->version = 1;
922 		ap->tx_ring_entries = TIGON_I_TX_RING_ENTRIES;
923 		break;
924 #endif
925 	case 6:
926 		printk(KERN_INFO "  Tigon II (Rev. %i), Firmware: %i.%i.%i, ",
927 		       tig_ver, ap->firmware_major, ap->firmware_minor,
928 		       ap->firmware_fix);
929 		writel(readl(&regs->CpuBCtrl) | CPU_HALT, &regs->CpuBCtrl);
930 		readl(&regs->CpuBCtrl);		/* PCI write posting */
931 		/*
932 		 * The SRAM bank size does _not_ indicate the amount
933 		 * of memory on the card, it controls the _bank_ size!
934 		 * Ie. a 1MB AceNIC will have two banks of 512KB.
935 		 */
936 		writel(SRAM_BANK_512K, &regs->LocalCtrl);
937 		writel(SYNC_SRAM_TIMING, &regs->MiscCfg);
938 		ap->version = 2;
939 		ap->tx_ring_entries = MAX_TX_RING_ENTRIES;
940 		break;
941 	default:
942 		printk(KERN_WARNING "  Unsupported Tigon version detected "
943 		       "(%i)\n", tig_ver);
944 		ecode = -ENODEV;
945 		goto init_error;
946 	}
947 
948 	/*
949 	 * ModeStat _must_ be set after the SRAM settings as this change
950 	 * seems to corrupt the ModeStat and possible other registers.
951 	 * The SRAM settings survive resets and setting it to the same
952 	 * value a second time works as well. This is what caused the
953 	 * `Firmware not running' problem on the Tigon II.
954 	 */
955 #ifdef __BIG_ENDIAN
956 	writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | ACE_BYTE_SWAP_BD |
957 	       ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, &regs->ModeStat);
958 #else
959 	writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL |
960 	       ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, &regs->ModeStat);
961 #endif
962 	readl(&regs->ModeStat);		/* PCI write posting */
963 
964 	mac1 = 0;
965 	for(i = 0; i < 4; i++) {
966 		int t;
967 
968 		mac1 = mac1 << 8;
969 		t = read_eeprom_byte(dev, 0x8c+i);
970 		if (t < 0) {
971 			ecode = -EIO;
972 			goto init_error;
973 		} else
974 			mac1 |= (t & 0xff);
975 	}
976 	mac2 = 0;
977 	for(i = 4; i < 8; i++) {
978 		int t;
979 
980 		mac2 = mac2 << 8;
981 		t = read_eeprom_byte(dev, 0x8c+i);
982 		if (t < 0) {
983 			ecode = -EIO;
984 			goto init_error;
985 		} else
986 			mac2 |= (t & 0xff);
987 	}
988 
989 	writel(mac1, &regs->MacAddrHi);
990 	writel(mac2, &regs->MacAddrLo);
991 
992 	dev->dev_addr[0] = (mac1 >> 8) & 0xff;
993 	dev->dev_addr[1] = mac1 & 0xff;
994 	dev->dev_addr[2] = (mac2 >> 24) & 0xff;
995 	dev->dev_addr[3] = (mac2 >> 16) & 0xff;
996 	dev->dev_addr[4] = (mac2 >> 8) & 0xff;
997 	dev->dev_addr[5] = mac2 & 0xff;
998 
999 	printk("MAC: %pM\n", dev->dev_addr);
1000 
1001 	/*
1002 	 * Looks like this is necessary to deal with on all architectures,
1003 	 * even this %$#%$# N440BX Intel based thing doesn't get it right.
1004 	 * Ie. having two NICs in the machine, one will have the cache
1005 	 * line set at boot time, the other will not.
1006 	 */
1007 	pdev = ap->pdev;
1008 	pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache_size);
1009 	cache_size <<= 2;
1010 	if (cache_size != SMP_CACHE_BYTES) {
1011 		printk(KERN_INFO "  PCI cache line size set incorrectly "
1012 		       "(%i bytes) by BIOS/FW, ", cache_size);
1013 		if (cache_size > SMP_CACHE_BYTES)
1014 			printk("expecting %i\n", SMP_CACHE_BYTES);
1015 		else {
1016 			printk("correcting to %i\n", SMP_CACHE_BYTES);
1017 			pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE,
1018 					      SMP_CACHE_BYTES >> 2);
1019 		}
1020 	}
1021 
1022 	pci_state = readl(&regs->PciState);
1023 	printk(KERN_INFO "  PCI bus width: %i bits, speed: %iMHz, "
1024 	       "latency: %i clks\n",
1025 	       	(pci_state & PCI_32BIT) ? 32 : 64,
1026 		(pci_state & PCI_66MHZ) ? 66 : 33,
1027 		ap->pci_latency);
1028 
1029 	/*
1030 	 * Set the max DMA transfer size. Seems that for most systems
1031 	 * the performance is better when no MAX parameter is
1032 	 * set. However for systems enabling PCI write and invalidate,
1033 	 * DMA writes must be set to the L1 cache line size to get
1034 	 * optimal performance.
1035 	 *
1036 	 * The default is now to turn the PCI write and invalidate off
1037 	 * - that is what Alteon does for NT.
1038 	 */
1039 	tmp = READ_CMD_MEM | WRITE_CMD_MEM;
1040 	if (ap->version >= 2) {
1041 		tmp |= (MEM_READ_MULTIPLE | (pci_state & PCI_66MHZ));
1042 		/*
1043 		 * Tuning parameters only supported for 8 cards
1044 		 */
1045 		if (board_idx == BOARD_IDX_OVERFLOW ||
1046 		    dis_pci_mem_inval[board_idx]) {
1047 			if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
1048 				ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
1049 				pci_write_config_word(pdev, PCI_COMMAND,
1050 						      ap->pci_command);
1051 				printk(KERN_INFO "  Disabling PCI memory "
1052 				       "write and invalidate\n");
1053 			}
1054 		} else if (ap->pci_command & PCI_COMMAND_INVALIDATE) {
1055 			printk(KERN_INFO "  PCI memory write & invalidate "
1056 			       "enabled by BIOS, enabling counter measures\n");
1057 
1058 			switch(SMP_CACHE_BYTES) {
1059 			case 16:
1060 				tmp |= DMA_WRITE_MAX_16;
1061 				break;
1062 			case 32:
1063 				tmp |= DMA_WRITE_MAX_32;
1064 				break;
1065 			case 64:
1066 				tmp |= DMA_WRITE_MAX_64;
1067 				break;
1068 			case 128:
1069 				tmp |= DMA_WRITE_MAX_128;
1070 				break;
1071 			default:
1072 				printk(KERN_INFO "  Cache line size %i not "
1073 				       "supported, PCI write and invalidate "
1074 				       "disabled\n", SMP_CACHE_BYTES);
1075 				ap->pci_command &= ~PCI_COMMAND_INVALIDATE;
1076 				pci_write_config_word(pdev, PCI_COMMAND,
1077 						      ap->pci_command);
1078 			}
1079 		}
1080 	}
1081 
1082 #ifdef __sparc__
1083 	/*
1084 	 * On this platform, we know what the best dma settings
1085 	 * are.  We use 64-byte maximum bursts, because if we
1086 	 * burst larger than the cache line size (or even cross
1087 	 * a 64byte boundary in a single burst) the UltraSparc
1088 	 * PCI controller will disconnect at 64-byte multiples.
1089 	 *
1090 	 * Read-multiple will be properly enabled above, and when
1091 	 * set will give the PCI controller proper hints about
1092 	 * prefetching.
1093 	 */
1094 	tmp &= ~DMA_READ_WRITE_MASK;
1095 	tmp |= DMA_READ_MAX_64;
1096 	tmp |= DMA_WRITE_MAX_64;
1097 #endif
1098 #ifdef __alpha__
1099 	tmp &= ~DMA_READ_WRITE_MASK;
1100 	tmp |= DMA_READ_MAX_128;
1101 	/*
1102 	 * All the docs say MUST NOT. Well, I did.
1103 	 * Nothing terrible happens, if we load wrong size.
1104 	 * Bit w&i still works better!
1105 	 */
1106 	tmp |= DMA_WRITE_MAX_128;
1107 #endif
1108 	writel(tmp, &regs->PciState);
1109 
1110 #if 0
1111 	/*
1112 	 * The Host PCI bus controller driver has to set FBB.
1113 	 * If all devices on that PCI bus support FBB, then the controller
1114 	 * can enable FBB support in the Host PCI Bus controller (or on
1115 	 * the PCI-PCI bridge if that applies).
1116 	 * -ggg
1117 	 */
1118 	/*
1119 	 * I have received reports from people having problems when this
1120 	 * bit is enabled.
1121 	 */
1122 	if (!(ap->pci_command & PCI_COMMAND_FAST_BACK)) {
1123 		printk(KERN_INFO "  Enabling PCI Fast Back to Back\n");
1124 		ap->pci_command |= PCI_COMMAND_FAST_BACK;
1125 		pci_write_config_word(pdev, PCI_COMMAND, ap->pci_command);
1126 	}
1127 #endif
1128 
1129 	/*
1130 	 * Configure DMA attributes.
1131 	 */
1132 	if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(64))) {
1133 		ap->pci_using_dac = 1;
1134 	} else if (!pci_set_dma_mask(pdev, DMA_BIT_MASK(32))) {
1135 		ap->pci_using_dac = 0;
1136 	} else {
1137 		ecode = -ENODEV;
1138 		goto init_error;
1139 	}
1140 
1141 	/*
1142 	 * Initialize the generic info block and the command+event rings
1143 	 * and the control blocks for the transmit and receive rings
1144 	 * as they need to be setup once and for all.
1145 	 */
1146 	if (!(info = pci_alloc_consistent(ap->pdev, sizeof(struct ace_info),
1147 					  &ap->info_dma))) {
1148 		ecode = -EAGAIN;
1149 		goto init_error;
1150 	}
1151 	ap->info = info;
1152 
1153 	/*
1154 	 * Get the memory for the skb rings.
1155 	 */
1156 	if (!(ap->skb = kmalloc(sizeof(struct ace_skb), GFP_KERNEL))) {
1157 		ecode = -EAGAIN;
1158 		goto init_error;
1159 	}
1160 
1161 	ecode = request_irq(pdev->irq, ace_interrupt, IRQF_SHARED,
1162 			    DRV_NAME, dev);
1163 	if (ecode) {
1164 		printk(KERN_WARNING "%s: Requested IRQ %d is busy\n",
1165 		       DRV_NAME, pdev->irq);
1166 		goto init_error;
1167 	} else
1168 		dev->irq = pdev->irq;
1169 
1170 #ifdef INDEX_DEBUG
1171 	spin_lock_init(&ap->debug_lock);
1172 	ap->last_tx = ACE_TX_RING_ENTRIES(ap) - 1;
1173 	ap->last_std_rx = 0;
1174 	ap->last_mini_rx = 0;
1175 #endif
1176 
1177 	memset(ap->info, 0, sizeof(struct ace_info));
1178 	memset(ap->skb, 0, sizeof(struct ace_skb));
1179 
1180 	ecode = ace_load_firmware(dev);
1181 	if (ecode)
1182 		goto init_error;
1183 
1184 	ap->fw_running = 0;
1185 
1186 	tmp_ptr = ap->info_dma;
1187 	writel(tmp_ptr >> 32, &regs->InfoPtrHi);
1188 	writel(tmp_ptr & 0xffffffff, &regs->InfoPtrLo);
1189 
1190 	memset(ap->evt_ring, 0, EVT_RING_ENTRIES * sizeof(struct event));
1191 
1192 	set_aceaddr(&info->evt_ctrl.rngptr, ap->evt_ring_dma);
1193 	info->evt_ctrl.flags = 0;
1194 
1195 	*(ap->evt_prd) = 0;
1196 	wmb();
1197 	set_aceaddr(&info->evt_prd_ptr, ap->evt_prd_dma);
1198 	writel(0, &regs->EvtCsm);
1199 
1200 	set_aceaddr(&info->cmd_ctrl.rngptr, 0x100);
1201 	info->cmd_ctrl.flags = 0;
1202 	info->cmd_ctrl.max_len = 0;
1203 
1204 	for (i = 0; i < CMD_RING_ENTRIES; i++)
1205 		writel(0, &regs->CmdRng[i]);
1206 
1207 	writel(0, &regs->CmdPrd);
1208 	writel(0, &regs->CmdCsm);
1209 
1210 	tmp_ptr = ap->info_dma;
1211 	tmp_ptr += (unsigned long) &(((struct ace_info *)0)->s.stats);
1212 	set_aceaddr(&info->stats2_ptr, (dma_addr_t) tmp_ptr);
1213 
1214 	set_aceaddr(&info->rx_std_ctrl.rngptr, ap->rx_ring_base_dma);
1215 	info->rx_std_ctrl.max_len = ACE_STD_BUFSIZE;
1216 	info->rx_std_ctrl.flags =
1217 	  RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST;
1218 
1219 	memset(ap->rx_std_ring, 0,
1220 	       RX_STD_RING_ENTRIES * sizeof(struct rx_desc));
1221 
1222 	for (i = 0; i < RX_STD_RING_ENTRIES; i++)
1223 		ap->rx_std_ring[i].flags = BD_FLG_TCP_UDP_SUM;
1224 
1225 	ap->rx_std_skbprd = 0;
1226 	atomic_set(&ap->cur_rx_bufs, 0);
1227 
1228 	set_aceaddr(&info->rx_jumbo_ctrl.rngptr,
1229 		    (ap->rx_ring_base_dma +
1230 		     (sizeof(struct rx_desc) * RX_STD_RING_ENTRIES)));
1231 	info->rx_jumbo_ctrl.max_len = 0;
1232 	info->rx_jumbo_ctrl.flags =
1233 	  RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST;
1234 
1235 	memset(ap->rx_jumbo_ring, 0,
1236 	       RX_JUMBO_RING_ENTRIES * sizeof(struct rx_desc));
1237 
1238 	for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++)
1239 		ap->rx_jumbo_ring[i].flags = BD_FLG_TCP_UDP_SUM | BD_FLG_JUMBO;
1240 
1241 	ap->rx_jumbo_skbprd = 0;
1242 	atomic_set(&ap->cur_jumbo_bufs, 0);
1243 
1244 	memset(ap->rx_mini_ring, 0,
1245 	       RX_MINI_RING_ENTRIES * sizeof(struct rx_desc));
1246 
1247 	if (ap->version >= 2) {
1248 		set_aceaddr(&info->rx_mini_ctrl.rngptr,
1249 			    (ap->rx_ring_base_dma +
1250 			     (sizeof(struct rx_desc) *
1251 			      (RX_STD_RING_ENTRIES +
1252 			       RX_JUMBO_RING_ENTRIES))));
1253 		info->rx_mini_ctrl.max_len = ACE_MINI_SIZE;
1254 		info->rx_mini_ctrl.flags =
1255 		  RCB_FLG_TCP_UDP_SUM|RCB_FLG_NO_PSEUDO_HDR|RCB_FLG_VLAN_ASSIST;
1256 
1257 		for (i = 0; i < RX_MINI_RING_ENTRIES; i++)
1258 			ap->rx_mini_ring[i].flags =
1259 				BD_FLG_TCP_UDP_SUM | BD_FLG_MINI;
1260 	} else {
1261 		set_aceaddr(&info->rx_mini_ctrl.rngptr, 0);
1262 		info->rx_mini_ctrl.flags = RCB_FLG_RNG_DISABLE;
1263 		info->rx_mini_ctrl.max_len = 0;
1264 	}
1265 
1266 	ap->rx_mini_skbprd = 0;
1267 	atomic_set(&ap->cur_mini_bufs, 0);
1268 
1269 	set_aceaddr(&info->rx_return_ctrl.rngptr,
1270 		    (ap->rx_ring_base_dma +
1271 		     (sizeof(struct rx_desc) *
1272 		      (RX_STD_RING_ENTRIES +
1273 		       RX_JUMBO_RING_ENTRIES +
1274 		       RX_MINI_RING_ENTRIES))));
1275 	info->rx_return_ctrl.flags = 0;
1276 	info->rx_return_ctrl.max_len = RX_RETURN_RING_ENTRIES;
1277 
1278 	memset(ap->rx_return_ring, 0,
1279 	       RX_RETURN_RING_ENTRIES * sizeof(struct rx_desc));
1280 
1281 	set_aceaddr(&info->rx_ret_prd_ptr, ap->rx_ret_prd_dma);
1282 	*(ap->rx_ret_prd) = 0;
1283 
1284 	writel(TX_RING_BASE, &regs->WinBase);
1285 
1286 	if (ACE_IS_TIGON_I(ap)) {
1287 		ap->tx_ring = (__force struct tx_desc *) regs->Window;
1288 		for (i = 0; i < (TIGON_I_TX_RING_ENTRIES
1289 				 * sizeof(struct tx_desc)) / sizeof(u32); i++)
1290 			writel(0, (__force void __iomem *)ap->tx_ring  + i * 4);
1291 
1292 		set_aceaddr(&info->tx_ctrl.rngptr, TX_RING_BASE);
1293 	} else {
1294 		memset(ap->tx_ring, 0,
1295 		       MAX_TX_RING_ENTRIES * sizeof(struct tx_desc));
1296 
1297 		set_aceaddr(&info->tx_ctrl.rngptr, ap->tx_ring_dma);
1298 	}
1299 
1300 	info->tx_ctrl.max_len = ACE_TX_RING_ENTRIES(ap);
1301 	tmp = RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST;
1302 
1303 	/*
1304 	 * The Tigon I does not like having the TX ring in host memory ;-(
1305 	 */
1306 	if (!ACE_IS_TIGON_I(ap))
1307 		tmp |= RCB_FLG_TX_HOST_RING;
1308 #if TX_COAL_INTS_ONLY
1309 	tmp |= RCB_FLG_COAL_INT_ONLY;
1310 #endif
1311 	info->tx_ctrl.flags = tmp;
1312 
1313 	set_aceaddr(&info->tx_csm_ptr, ap->tx_csm_dma);
1314 
1315 	/*
1316 	 * Potential item for tuning parameter
1317 	 */
1318 #if 0 /* NO */
1319 	writel(DMA_THRESH_16W, &regs->DmaReadCfg);
1320 	writel(DMA_THRESH_16W, &regs->DmaWriteCfg);
1321 #else
1322 	writel(DMA_THRESH_8W, &regs->DmaReadCfg);
1323 	writel(DMA_THRESH_8W, &regs->DmaWriteCfg);
1324 #endif
1325 
1326 	writel(0, &regs->MaskInt);
1327 	writel(1, &regs->IfIdx);
1328 #if 0
1329 	/*
1330 	 * McKinley boxes do not like us fiddling with AssistState
1331 	 * this early
1332 	 */
1333 	writel(1, &regs->AssistState);
1334 #endif
1335 
1336 	writel(DEF_STAT, &regs->TuneStatTicks);
1337 	writel(DEF_TRACE, &regs->TuneTrace);
1338 
1339 	ace_set_rxtx_parms(dev, 0);
1340 
1341 	if (board_idx == BOARD_IDX_OVERFLOW) {
1342 		printk(KERN_WARNING "%s: more than %i NICs detected, "
1343 		       "ignoring module parameters!\n",
1344 		       ap->name, ACE_MAX_MOD_PARMS);
1345 	} else if (board_idx >= 0) {
1346 		if (tx_coal_tick[board_idx])
1347 			writel(tx_coal_tick[board_idx],
1348 			       &regs->TuneTxCoalTicks);
1349 		if (max_tx_desc[board_idx])
1350 			writel(max_tx_desc[board_idx], &regs->TuneMaxTxDesc);
1351 
1352 		if (rx_coal_tick[board_idx])
1353 			writel(rx_coal_tick[board_idx],
1354 			       &regs->TuneRxCoalTicks);
1355 		if (max_rx_desc[board_idx])
1356 			writel(max_rx_desc[board_idx], &regs->TuneMaxRxDesc);
1357 
1358 		if (trace[board_idx])
1359 			writel(trace[board_idx], &regs->TuneTrace);
1360 
1361 		if ((tx_ratio[board_idx] > 0) && (tx_ratio[board_idx] < 64))
1362 			writel(tx_ratio[board_idx], &regs->TxBufRat);
1363 	}
1364 
1365 	/*
1366 	 * Default link parameters
1367 	 */
1368 	tmp = LNK_ENABLE | LNK_FULL_DUPLEX | LNK_1000MB | LNK_100MB |
1369 		LNK_10MB | LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL | LNK_NEGOTIATE;
1370 	if(ap->version >= 2)
1371 		tmp |= LNK_TX_FLOW_CTL_Y;
1372 
1373 	/*
1374 	 * Override link default parameters
1375 	 */
1376 	if ((board_idx >= 0) && link_state[board_idx]) {
1377 		int option = link_state[board_idx];
1378 
1379 		tmp = LNK_ENABLE;
1380 
1381 		if (option & 0x01) {
1382 			printk(KERN_INFO "%s: Setting half duplex link\n",
1383 			       ap->name);
1384 			tmp &= ~LNK_FULL_DUPLEX;
1385 		}
1386 		if (option & 0x02)
1387 			tmp &= ~LNK_NEGOTIATE;
1388 		if (option & 0x10)
1389 			tmp |= LNK_10MB;
1390 		if (option & 0x20)
1391 			tmp |= LNK_100MB;
1392 		if (option & 0x40)
1393 			tmp |= LNK_1000MB;
1394 		if ((option & 0x70) == 0) {
1395 			printk(KERN_WARNING "%s: No media speed specified, "
1396 			       "forcing auto negotiation\n", ap->name);
1397 			tmp |= LNK_NEGOTIATE | LNK_1000MB |
1398 				LNK_100MB | LNK_10MB;
1399 		}
1400 		if ((option & 0x100) == 0)
1401 			tmp |= LNK_NEG_FCTL;
1402 		else
1403 			printk(KERN_INFO "%s: Disabling flow control "
1404 			       "negotiation\n", ap->name);
1405 		if (option & 0x200)
1406 			tmp |= LNK_RX_FLOW_CTL_Y;
1407 		if ((option & 0x400) && (ap->version >= 2)) {
1408 			printk(KERN_INFO "%s: Enabling TX flow control\n",
1409 			       ap->name);
1410 			tmp |= LNK_TX_FLOW_CTL_Y;
1411 		}
1412 	}
1413 
1414 	ap->link = tmp;
1415 	writel(tmp, &regs->TuneLink);
1416 	if (ap->version >= 2)
1417 		writel(tmp, &regs->TuneFastLink);
1418 
1419 	writel(ap->firmware_start, &regs->Pc);
1420 
1421 	writel(0, &regs->Mb0Lo);
1422 
1423 	/*
1424 	 * Set tx_csm before we start receiving interrupts, otherwise
1425 	 * the interrupt handler might think it is supposed to process
1426 	 * tx ints before we are up and running, which may cause a null
1427 	 * pointer access in the int handler.
1428 	 */
1429 	ap->cur_rx = 0;
1430 	ap->tx_prd = *(ap->tx_csm) = ap->tx_ret_csm = 0;
1431 
1432 	wmb();
1433 	ace_set_txprd(regs, ap, 0);
1434 	writel(0, &regs->RxRetCsm);
1435 
1436        /*
1437 	* Enable DMA engine now.
1438 	* If we do this sooner, Mckinley box pukes.
1439 	* I assume it's because Tigon II DMA engine wants to check
1440 	* *something* even before the CPU is started.
1441 	*/
1442        writel(1, &regs->AssistState);  /* enable DMA */
1443 
1444 	/*
1445 	 * Start the NIC CPU
1446 	 */
1447 	writel(readl(&regs->CpuCtrl) & ~(CPU_HALT|CPU_TRACE), &regs->CpuCtrl);
1448 	readl(&regs->CpuCtrl);
1449 
1450 	/*
1451 	 * Wait for the firmware to spin up - max 3 seconds.
1452 	 */
1453 	myjif = jiffies + 3 * HZ;
1454 	while (time_before(jiffies, myjif) && !ap->fw_running)
1455 		cpu_relax();
1456 
1457 	if (!ap->fw_running) {
1458 		printk(KERN_ERR "%s: Firmware NOT running!\n", ap->name);
1459 
1460 		ace_dump_trace(ap);
1461 		writel(readl(&regs->CpuCtrl) | CPU_HALT, &regs->CpuCtrl);
1462 		readl(&regs->CpuCtrl);
1463 
1464 		/* aman@sgi.com - account for badly behaving firmware/NIC:
1465 		 * - have observed that the NIC may continue to generate
1466 		 *   interrupts for some reason; attempt to stop it - halt
1467 		 *   second CPU for Tigon II cards, and also clear Mb0
1468 		 * - if we're a module, we'll fail to load if this was
1469 		 *   the only GbE card in the system => if the kernel does
1470 		 *   see an interrupt from the NIC, code to handle it is
1471 		 *   gone and OOps! - so free_irq also
1472 		 */
1473 		if (ap->version >= 2)
1474 			writel(readl(&regs->CpuBCtrl) | CPU_HALT,
1475 			       &regs->CpuBCtrl);
1476 		writel(0, &regs->Mb0Lo);
1477 		readl(&regs->Mb0Lo);
1478 
1479 		ecode = -EBUSY;
1480 		goto init_error;
1481 	}
1482 
1483 	/*
1484 	 * We load the ring here as there seem to be no way to tell the
1485 	 * firmware to wipe the ring without re-initializing it.
1486 	 */
1487 	if (!test_and_set_bit(0, &ap->std_refill_busy))
1488 		ace_load_std_rx_ring(dev, RX_RING_SIZE);
1489 	else
1490 		printk(KERN_ERR "%s: Someone is busy refilling the RX ring\n",
1491 		       ap->name);
1492 	if (ap->version >= 2) {
1493 		if (!test_and_set_bit(0, &ap->mini_refill_busy))
1494 			ace_load_mini_rx_ring(dev, RX_MINI_SIZE);
1495 		else
1496 			printk(KERN_ERR "%s: Someone is busy refilling "
1497 			       "the RX mini ring\n", ap->name);
1498 	}
1499 	return 0;
1500 
1501  init_error:
1502 	ace_init_cleanup(dev);
1503 	return ecode;
1504 }
1505 
1506 
1507 static void ace_set_rxtx_parms(struct net_device *dev, int jumbo)
1508 {
1509 	struct ace_private *ap = netdev_priv(dev);
1510 	struct ace_regs __iomem *regs = ap->regs;
1511 	int board_idx = ap->board_idx;
1512 
1513 	if (board_idx >= 0) {
1514 		if (!jumbo) {
1515 			if (!tx_coal_tick[board_idx])
1516 				writel(DEF_TX_COAL, &regs->TuneTxCoalTicks);
1517 			if (!max_tx_desc[board_idx])
1518 				writel(DEF_TX_MAX_DESC, &regs->TuneMaxTxDesc);
1519 			if (!rx_coal_tick[board_idx])
1520 				writel(DEF_RX_COAL, &regs->TuneRxCoalTicks);
1521 			if (!max_rx_desc[board_idx])
1522 				writel(DEF_RX_MAX_DESC, &regs->TuneMaxRxDesc);
1523 			if (!tx_ratio[board_idx])
1524 				writel(DEF_TX_RATIO, &regs->TxBufRat);
1525 		} else {
1526 			if (!tx_coal_tick[board_idx])
1527 				writel(DEF_JUMBO_TX_COAL,
1528 				       &regs->TuneTxCoalTicks);
1529 			if (!max_tx_desc[board_idx])
1530 				writel(DEF_JUMBO_TX_MAX_DESC,
1531 				       &regs->TuneMaxTxDesc);
1532 			if (!rx_coal_tick[board_idx])
1533 				writel(DEF_JUMBO_RX_COAL,
1534 				       &regs->TuneRxCoalTicks);
1535 			if (!max_rx_desc[board_idx])
1536 				writel(DEF_JUMBO_RX_MAX_DESC,
1537 				       &regs->TuneMaxRxDesc);
1538 			if (!tx_ratio[board_idx])
1539 				writel(DEF_JUMBO_TX_RATIO, &regs->TxBufRat);
1540 		}
1541 	}
1542 }
1543 
1544 
1545 static void ace_watchdog(struct net_device *data)
1546 {
1547 	struct net_device *dev = data;
1548 	struct ace_private *ap = netdev_priv(dev);
1549 	struct ace_regs __iomem *regs = ap->regs;
1550 
1551 	/*
1552 	 * We haven't received a stats update event for more than 2.5
1553 	 * seconds and there is data in the transmit queue, thus we
1554 	 * assume the card is stuck.
1555 	 */
1556 	if (*ap->tx_csm != ap->tx_ret_csm) {
1557 		printk(KERN_WARNING "%s: Transmitter is stuck, %08x\n",
1558 		       dev->name, (unsigned int)readl(&regs->HostCtrl));
1559 		/* This can happen due to ieee flow control. */
1560 	} else {
1561 		printk(KERN_DEBUG "%s: BUG... transmitter died. Kicking it.\n",
1562 		       dev->name);
1563 #if 0
1564 		netif_wake_queue(dev);
1565 #endif
1566 	}
1567 }
1568 
1569 
1570 static void ace_tasklet(unsigned long arg)
1571 {
1572 	struct net_device *dev = (struct net_device *) arg;
1573 	struct ace_private *ap = netdev_priv(dev);
1574 	int cur_size;
1575 
1576 	cur_size = atomic_read(&ap->cur_rx_bufs);
1577 	if ((cur_size < RX_LOW_STD_THRES) &&
1578 	    !test_and_set_bit(0, &ap->std_refill_busy)) {
1579 #ifdef DEBUG
1580 		printk("refilling buffers (current %i)\n", cur_size);
1581 #endif
1582 		ace_load_std_rx_ring(dev, RX_RING_SIZE - cur_size);
1583 	}
1584 
1585 	if (ap->version >= 2) {
1586 		cur_size = atomic_read(&ap->cur_mini_bufs);
1587 		if ((cur_size < RX_LOW_MINI_THRES) &&
1588 		    !test_and_set_bit(0, &ap->mini_refill_busy)) {
1589 #ifdef DEBUG
1590 			printk("refilling mini buffers (current %i)\n",
1591 			       cur_size);
1592 #endif
1593 			ace_load_mini_rx_ring(dev, RX_MINI_SIZE - cur_size);
1594 		}
1595 	}
1596 
1597 	cur_size = atomic_read(&ap->cur_jumbo_bufs);
1598 	if (ap->jumbo && (cur_size < RX_LOW_JUMBO_THRES) &&
1599 	    !test_and_set_bit(0, &ap->jumbo_refill_busy)) {
1600 #ifdef DEBUG
1601 		printk("refilling jumbo buffers (current %i)\n", cur_size);
1602 #endif
1603 		ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE - cur_size);
1604 	}
1605 	ap->tasklet_pending = 0;
1606 }
1607 
1608 
1609 /*
1610  * Copy the contents of the NIC's trace buffer to kernel memory.
1611  */
1612 static void ace_dump_trace(struct ace_private *ap)
1613 {
1614 #if 0
1615 	if (!ap->trace_buf)
1616 		if (!(ap->trace_buf = kmalloc(ACE_TRACE_SIZE, GFP_KERNEL)))
1617 		    return;
1618 #endif
1619 }
1620 
1621 
1622 /*
1623  * Load the standard rx ring.
1624  *
1625  * Loading rings is safe without holding the spin lock since this is
1626  * done only before the device is enabled, thus no interrupts are
1627  * generated and by the interrupt handler/tasklet handler.
1628  */
1629 static void ace_load_std_rx_ring(struct net_device *dev, int nr_bufs)
1630 {
1631 	struct ace_private *ap = netdev_priv(dev);
1632 	struct ace_regs __iomem *regs = ap->regs;
1633 	short i, idx;
1634 
1635 
1636 	prefetchw(&ap->cur_rx_bufs);
1637 
1638 	idx = ap->rx_std_skbprd;
1639 
1640 	for (i = 0; i < nr_bufs; i++) {
1641 		struct sk_buff *skb;
1642 		struct rx_desc *rd;
1643 		dma_addr_t mapping;
1644 
1645 		skb = netdev_alloc_skb_ip_align(dev, ACE_STD_BUFSIZE);
1646 		if (!skb)
1647 			break;
1648 
1649 		mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1650 				       offset_in_page(skb->data),
1651 				       ACE_STD_BUFSIZE,
1652 				       PCI_DMA_FROMDEVICE);
1653 		ap->skb->rx_std_skbuff[idx].skb = skb;
1654 		dma_unmap_addr_set(&ap->skb->rx_std_skbuff[idx],
1655 				   mapping, mapping);
1656 
1657 		rd = &ap->rx_std_ring[idx];
1658 		set_aceaddr(&rd->addr, mapping);
1659 		rd->size = ACE_STD_BUFSIZE;
1660 		rd->idx = idx;
1661 		idx = (idx + 1) % RX_STD_RING_ENTRIES;
1662 	}
1663 
1664 	if (!i)
1665 		goto error_out;
1666 
1667 	atomic_add(i, &ap->cur_rx_bufs);
1668 	ap->rx_std_skbprd = idx;
1669 
1670 	if (ACE_IS_TIGON_I(ap)) {
1671 		struct cmd cmd;
1672 		cmd.evt = C_SET_RX_PRD_IDX;
1673 		cmd.code = 0;
1674 		cmd.idx = ap->rx_std_skbprd;
1675 		ace_issue_cmd(regs, &cmd);
1676 	} else {
1677 		writel(idx, &regs->RxStdPrd);
1678 		wmb();
1679 	}
1680 
1681  out:
1682 	clear_bit(0, &ap->std_refill_busy);
1683 	return;
1684 
1685  error_out:
1686 	printk(KERN_INFO "Out of memory when allocating "
1687 	       "standard receive buffers\n");
1688 	goto out;
1689 }
1690 
1691 
1692 static void ace_load_mini_rx_ring(struct net_device *dev, int nr_bufs)
1693 {
1694 	struct ace_private *ap = netdev_priv(dev);
1695 	struct ace_regs __iomem *regs = ap->regs;
1696 	short i, idx;
1697 
1698 	prefetchw(&ap->cur_mini_bufs);
1699 
1700 	idx = ap->rx_mini_skbprd;
1701 	for (i = 0; i < nr_bufs; i++) {
1702 		struct sk_buff *skb;
1703 		struct rx_desc *rd;
1704 		dma_addr_t mapping;
1705 
1706 		skb = netdev_alloc_skb_ip_align(dev, ACE_MINI_BUFSIZE);
1707 		if (!skb)
1708 			break;
1709 
1710 		mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1711 				       offset_in_page(skb->data),
1712 				       ACE_MINI_BUFSIZE,
1713 				       PCI_DMA_FROMDEVICE);
1714 		ap->skb->rx_mini_skbuff[idx].skb = skb;
1715 		dma_unmap_addr_set(&ap->skb->rx_mini_skbuff[idx],
1716 				   mapping, mapping);
1717 
1718 		rd = &ap->rx_mini_ring[idx];
1719 		set_aceaddr(&rd->addr, mapping);
1720 		rd->size = ACE_MINI_BUFSIZE;
1721 		rd->idx = idx;
1722 		idx = (idx + 1) % RX_MINI_RING_ENTRIES;
1723 	}
1724 
1725 	if (!i)
1726 		goto error_out;
1727 
1728 	atomic_add(i, &ap->cur_mini_bufs);
1729 
1730 	ap->rx_mini_skbprd = idx;
1731 
1732 	writel(idx, &regs->RxMiniPrd);
1733 	wmb();
1734 
1735  out:
1736 	clear_bit(0, &ap->mini_refill_busy);
1737 	return;
1738  error_out:
1739 	printk(KERN_INFO "Out of memory when allocating "
1740 	       "mini receive buffers\n");
1741 	goto out;
1742 }
1743 
1744 
1745 /*
1746  * Load the jumbo rx ring, this may happen at any time if the MTU
1747  * is changed to a value > 1500.
1748  */
1749 static void ace_load_jumbo_rx_ring(struct net_device *dev, int nr_bufs)
1750 {
1751 	struct ace_private *ap = netdev_priv(dev);
1752 	struct ace_regs __iomem *regs = ap->regs;
1753 	short i, idx;
1754 
1755 	idx = ap->rx_jumbo_skbprd;
1756 
1757 	for (i = 0; i < nr_bufs; i++) {
1758 		struct sk_buff *skb;
1759 		struct rx_desc *rd;
1760 		dma_addr_t mapping;
1761 
1762 		skb = netdev_alloc_skb_ip_align(dev, ACE_JUMBO_BUFSIZE);
1763 		if (!skb)
1764 			break;
1765 
1766 		mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
1767 				       offset_in_page(skb->data),
1768 				       ACE_JUMBO_BUFSIZE,
1769 				       PCI_DMA_FROMDEVICE);
1770 		ap->skb->rx_jumbo_skbuff[idx].skb = skb;
1771 		dma_unmap_addr_set(&ap->skb->rx_jumbo_skbuff[idx],
1772 				   mapping, mapping);
1773 
1774 		rd = &ap->rx_jumbo_ring[idx];
1775 		set_aceaddr(&rd->addr, mapping);
1776 		rd->size = ACE_JUMBO_BUFSIZE;
1777 		rd->idx = idx;
1778 		idx = (idx + 1) % RX_JUMBO_RING_ENTRIES;
1779 	}
1780 
1781 	if (!i)
1782 		goto error_out;
1783 
1784 	atomic_add(i, &ap->cur_jumbo_bufs);
1785 	ap->rx_jumbo_skbprd = idx;
1786 
1787 	if (ACE_IS_TIGON_I(ap)) {
1788 		struct cmd cmd;
1789 		cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
1790 		cmd.code = 0;
1791 		cmd.idx = ap->rx_jumbo_skbprd;
1792 		ace_issue_cmd(regs, &cmd);
1793 	} else {
1794 		writel(idx, &regs->RxJumboPrd);
1795 		wmb();
1796 	}
1797 
1798  out:
1799 	clear_bit(0, &ap->jumbo_refill_busy);
1800 	return;
1801  error_out:
1802 	if (net_ratelimit())
1803 		printk(KERN_INFO "Out of memory when allocating "
1804 		       "jumbo receive buffers\n");
1805 	goto out;
1806 }
1807 
1808 
1809 /*
1810  * All events are considered to be slow (RX/TX ints do not generate
1811  * events) and are handled here, outside the main interrupt handler,
1812  * to reduce the size of the handler.
1813  */
1814 static u32 ace_handle_event(struct net_device *dev, u32 evtcsm, u32 evtprd)
1815 {
1816 	struct ace_private *ap;
1817 
1818 	ap = netdev_priv(dev);
1819 
1820 	while (evtcsm != evtprd) {
1821 		switch (ap->evt_ring[evtcsm].evt) {
1822 		case E_FW_RUNNING:
1823 			printk(KERN_INFO "%s: Firmware up and running\n",
1824 			       ap->name);
1825 			ap->fw_running = 1;
1826 			wmb();
1827 			break;
1828 		case E_STATS_UPDATED:
1829 			break;
1830 		case E_LNK_STATE:
1831 		{
1832 			u16 code = ap->evt_ring[evtcsm].code;
1833 			switch (code) {
1834 			case E_C_LINK_UP:
1835 			{
1836 				u32 state = readl(&ap->regs->GigLnkState);
1837 				printk(KERN_WARNING "%s: Optical link UP "
1838 				       "(%s Duplex, Flow Control: %s%s)\n",
1839 				       ap->name,
1840 				       state & LNK_FULL_DUPLEX ? "Full":"Half",
1841 				       state & LNK_TX_FLOW_CTL_Y ? "TX " : "",
1842 				       state & LNK_RX_FLOW_CTL_Y ? "RX" : "");
1843 				break;
1844 			}
1845 			case E_C_LINK_DOWN:
1846 				printk(KERN_WARNING "%s: Optical link DOWN\n",
1847 				       ap->name);
1848 				break;
1849 			case E_C_LINK_10_100:
1850 				printk(KERN_WARNING "%s: 10/100BaseT link "
1851 				       "UP\n", ap->name);
1852 				break;
1853 			default:
1854 				printk(KERN_ERR "%s: Unknown optical link "
1855 				       "state %02x\n", ap->name, code);
1856 			}
1857 			break;
1858 		}
1859 		case E_ERROR:
1860 			switch(ap->evt_ring[evtcsm].code) {
1861 			case E_C_ERR_INVAL_CMD:
1862 				printk(KERN_ERR "%s: invalid command error\n",
1863 				       ap->name);
1864 				break;
1865 			case E_C_ERR_UNIMP_CMD:
1866 				printk(KERN_ERR "%s: unimplemented command "
1867 				       "error\n", ap->name);
1868 				break;
1869 			case E_C_ERR_BAD_CFG:
1870 				printk(KERN_ERR "%s: bad config error\n",
1871 				       ap->name);
1872 				break;
1873 			default:
1874 				printk(KERN_ERR "%s: unknown error %02x\n",
1875 				       ap->name, ap->evt_ring[evtcsm].code);
1876 			}
1877 			break;
1878 		case E_RESET_JUMBO_RNG:
1879 		{
1880 			int i;
1881 			for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) {
1882 				if (ap->skb->rx_jumbo_skbuff[i].skb) {
1883 					ap->rx_jumbo_ring[i].size = 0;
1884 					set_aceaddr(&ap->rx_jumbo_ring[i].addr, 0);
1885 					dev_kfree_skb(ap->skb->rx_jumbo_skbuff[i].skb);
1886 					ap->skb->rx_jumbo_skbuff[i].skb = NULL;
1887 				}
1888 			}
1889 
1890  			if (ACE_IS_TIGON_I(ap)) {
1891  				struct cmd cmd;
1892  				cmd.evt = C_SET_RX_JUMBO_PRD_IDX;
1893  				cmd.code = 0;
1894  				cmd.idx = 0;
1895  				ace_issue_cmd(ap->regs, &cmd);
1896  			} else {
1897  				writel(0, &((ap->regs)->RxJumboPrd));
1898  				wmb();
1899  			}
1900 
1901 			ap->jumbo = 0;
1902 			ap->rx_jumbo_skbprd = 0;
1903 			printk(KERN_INFO "%s: Jumbo ring flushed\n",
1904 			       ap->name);
1905 			clear_bit(0, &ap->jumbo_refill_busy);
1906 			break;
1907 		}
1908 		default:
1909 			printk(KERN_ERR "%s: Unhandled event 0x%02x\n",
1910 			       ap->name, ap->evt_ring[evtcsm].evt);
1911 		}
1912 		evtcsm = (evtcsm + 1) % EVT_RING_ENTRIES;
1913 	}
1914 
1915 	return evtcsm;
1916 }
1917 
1918 
1919 static void ace_rx_int(struct net_device *dev, u32 rxretprd, u32 rxretcsm)
1920 {
1921 	struct ace_private *ap = netdev_priv(dev);
1922 	u32 idx;
1923 	int mini_count = 0, std_count = 0;
1924 
1925 	idx = rxretcsm;
1926 
1927 	prefetchw(&ap->cur_rx_bufs);
1928 	prefetchw(&ap->cur_mini_bufs);
1929 
1930 	while (idx != rxretprd) {
1931 		struct ring_info *rip;
1932 		struct sk_buff *skb;
1933 		struct rx_desc *rxdesc, *retdesc;
1934 		u32 skbidx;
1935 		int bd_flags, desc_type, mapsize;
1936 		u16 csum;
1937 
1938 
1939 		/* make sure the rx descriptor isn't read before rxretprd */
1940 		if (idx == rxretcsm)
1941 			rmb();
1942 
1943 		retdesc = &ap->rx_return_ring[idx];
1944 		skbidx = retdesc->idx;
1945 		bd_flags = retdesc->flags;
1946 		desc_type = bd_flags & (BD_FLG_JUMBO | BD_FLG_MINI);
1947 
1948 		switch(desc_type) {
1949 			/*
1950 			 * Normal frames do not have any flags set
1951 			 *
1952 			 * Mini and normal frames arrive frequently,
1953 			 * so use a local counter to avoid doing
1954 			 * atomic operations for each packet arriving.
1955 			 */
1956 		case 0:
1957 			rip = &ap->skb->rx_std_skbuff[skbidx];
1958 			mapsize = ACE_STD_BUFSIZE;
1959 			rxdesc = &ap->rx_std_ring[skbidx];
1960 			std_count++;
1961 			break;
1962 		case BD_FLG_JUMBO:
1963 			rip = &ap->skb->rx_jumbo_skbuff[skbidx];
1964 			mapsize = ACE_JUMBO_BUFSIZE;
1965 			rxdesc = &ap->rx_jumbo_ring[skbidx];
1966 			atomic_dec(&ap->cur_jumbo_bufs);
1967 			break;
1968 		case BD_FLG_MINI:
1969 			rip = &ap->skb->rx_mini_skbuff[skbidx];
1970 			mapsize = ACE_MINI_BUFSIZE;
1971 			rxdesc = &ap->rx_mini_ring[skbidx];
1972 			mini_count++;
1973 			break;
1974 		default:
1975 			printk(KERN_INFO "%s: unknown frame type (0x%02x) "
1976 			       "returned by NIC\n", dev->name,
1977 			       retdesc->flags);
1978 			goto error;
1979 		}
1980 
1981 		skb = rip->skb;
1982 		rip->skb = NULL;
1983 		pci_unmap_page(ap->pdev,
1984 			       dma_unmap_addr(rip, mapping),
1985 			       mapsize,
1986 			       PCI_DMA_FROMDEVICE);
1987 		skb_put(skb, retdesc->size);
1988 
1989 		/*
1990 		 * Fly baby, fly!
1991 		 */
1992 		csum = retdesc->tcp_udp_csum;
1993 
1994 		skb->protocol = eth_type_trans(skb, dev);
1995 
1996 		/*
1997 		 * Instead of forcing the poor tigon mips cpu to calculate
1998 		 * pseudo hdr checksum, we do this ourselves.
1999 		 */
2000 		if (bd_flags & BD_FLG_TCP_UDP_SUM) {
2001 			skb->csum = htons(csum);
2002 			skb->ip_summed = CHECKSUM_COMPLETE;
2003 		} else {
2004 			skb_checksum_none_assert(skb);
2005 		}
2006 
2007 		/* send it up */
2008 		if ((bd_flags & BD_FLG_VLAN_TAG))
2009 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), retdesc->vlan);
2010 		netif_rx(skb);
2011 
2012 		dev->stats.rx_packets++;
2013 		dev->stats.rx_bytes += retdesc->size;
2014 
2015 		idx = (idx + 1) % RX_RETURN_RING_ENTRIES;
2016 	}
2017 
2018 	atomic_sub(std_count, &ap->cur_rx_bufs);
2019 	if (!ACE_IS_TIGON_I(ap))
2020 		atomic_sub(mini_count, &ap->cur_mini_bufs);
2021 
2022  out:
2023 	/*
2024 	 * According to the documentation RxRetCsm is obsolete with
2025 	 * the 12.3.x Firmware - my Tigon I NICs seem to disagree!
2026 	 */
2027 	if (ACE_IS_TIGON_I(ap)) {
2028 		writel(idx, &ap->regs->RxRetCsm);
2029 	}
2030 	ap->cur_rx = idx;
2031 
2032 	return;
2033  error:
2034 	idx = rxretprd;
2035 	goto out;
2036 }
2037 
2038 
2039 static inline void ace_tx_int(struct net_device *dev,
2040 			      u32 txcsm, u32 idx)
2041 {
2042 	struct ace_private *ap = netdev_priv(dev);
2043 
2044 	do {
2045 		struct sk_buff *skb;
2046 		struct tx_ring_info *info;
2047 
2048 		info = ap->skb->tx_skbuff + idx;
2049 		skb = info->skb;
2050 
2051 		if (dma_unmap_len(info, maplen)) {
2052 			pci_unmap_page(ap->pdev, dma_unmap_addr(info, mapping),
2053 				       dma_unmap_len(info, maplen),
2054 				       PCI_DMA_TODEVICE);
2055 			dma_unmap_len_set(info, maplen, 0);
2056 		}
2057 
2058 		if (skb) {
2059 			dev->stats.tx_packets++;
2060 			dev->stats.tx_bytes += skb->len;
2061 			dev_kfree_skb_irq(skb);
2062 			info->skb = NULL;
2063 		}
2064 
2065 		idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2066 	} while (idx != txcsm);
2067 
2068 	if (netif_queue_stopped(dev))
2069 		netif_wake_queue(dev);
2070 
2071 	wmb();
2072 	ap->tx_ret_csm = txcsm;
2073 
2074 	/* So... tx_ret_csm is advanced _after_ check for device wakeup.
2075 	 *
2076 	 * We could try to make it before. In this case we would get
2077 	 * the following race condition: hard_start_xmit on other cpu
2078 	 * enters after we advanced tx_ret_csm and fills space,
2079 	 * which we have just freed, so that we make illegal device wakeup.
2080 	 * There is no good way to workaround this (at entry
2081 	 * to ace_start_xmit detects this condition and prevents
2082 	 * ring corruption, but it is not a good workaround.)
2083 	 *
2084 	 * When tx_ret_csm is advanced after, we wake up device _only_
2085 	 * if we really have some space in ring (though the core doing
2086 	 * hard_start_xmit can see full ring for some period and has to
2087 	 * synchronize.) Superb.
2088 	 * BUT! We get another subtle race condition. hard_start_xmit
2089 	 * may think that ring is full between wakeup and advancing
2090 	 * tx_ret_csm and will stop device instantly! It is not so bad.
2091 	 * We are guaranteed that there is something in ring, so that
2092 	 * the next irq will resume transmission. To speedup this we could
2093 	 * mark descriptor, which closes ring with BD_FLG_COAL_NOW
2094 	 * (see ace_start_xmit).
2095 	 *
2096 	 * Well, this dilemma exists in all lock-free devices.
2097 	 * We, following scheme used in drivers by Donald Becker,
2098 	 * select the least dangerous.
2099 	 *							--ANK
2100 	 */
2101 }
2102 
2103 
2104 static irqreturn_t ace_interrupt(int irq, void *dev_id)
2105 {
2106 	struct net_device *dev = (struct net_device *)dev_id;
2107 	struct ace_private *ap = netdev_priv(dev);
2108 	struct ace_regs __iomem *regs = ap->regs;
2109 	u32 idx;
2110 	u32 txcsm, rxretcsm, rxretprd;
2111 	u32 evtcsm, evtprd;
2112 
2113 	/*
2114 	 * In case of PCI shared interrupts or spurious interrupts,
2115 	 * we want to make sure it is actually our interrupt before
2116 	 * spending any time in here.
2117 	 */
2118 	if (!(readl(&regs->HostCtrl) & IN_INT))
2119 		return IRQ_NONE;
2120 
2121 	/*
2122 	 * ACK intr now. Otherwise we will lose updates to rx_ret_prd,
2123 	 * which happened _after_ rxretprd = *ap->rx_ret_prd; but before
2124 	 * writel(0, &regs->Mb0Lo).
2125 	 *
2126 	 * "IRQ avoidance" recommended in docs applies to IRQs served
2127 	 * threads and it is wrong even for that case.
2128 	 */
2129 	writel(0, &regs->Mb0Lo);
2130 	readl(&regs->Mb0Lo);
2131 
2132 	/*
2133 	 * There is no conflict between transmit handling in
2134 	 * start_xmit and receive processing, thus there is no reason
2135 	 * to take a spin lock for RX handling. Wait until we start
2136 	 * working on the other stuff - hey we don't need a spin lock
2137 	 * anymore.
2138 	 */
2139 	rxretprd = *ap->rx_ret_prd;
2140 	rxretcsm = ap->cur_rx;
2141 
2142 	if (rxretprd != rxretcsm)
2143 		ace_rx_int(dev, rxretprd, rxretcsm);
2144 
2145 	txcsm = *ap->tx_csm;
2146 	idx = ap->tx_ret_csm;
2147 
2148 	if (txcsm != idx) {
2149 		/*
2150 		 * If each skb takes only one descriptor this check degenerates
2151 		 * to identity, because new space has just been opened.
2152 		 * But if skbs are fragmented we must check that this index
2153 		 * update releases enough of space, otherwise we just
2154 		 * wait for device to make more work.
2155 		 */
2156 		if (!tx_ring_full(ap, txcsm, ap->tx_prd))
2157 			ace_tx_int(dev, txcsm, idx);
2158 	}
2159 
2160 	evtcsm = readl(&regs->EvtCsm);
2161 	evtprd = *ap->evt_prd;
2162 
2163 	if (evtcsm != evtprd) {
2164 		evtcsm = ace_handle_event(dev, evtcsm, evtprd);
2165 		writel(evtcsm, &regs->EvtCsm);
2166 	}
2167 
2168 	/*
2169 	 * This has to go last in the interrupt handler and run with
2170 	 * the spin lock released ... what lock?
2171 	 */
2172 	if (netif_running(dev)) {
2173 		int cur_size;
2174 		int run_tasklet = 0;
2175 
2176 		cur_size = atomic_read(&ap->cur_rx_bufs);
2177 		if (cur_size < RX_LOW_STD_THRES) {
2178 			if ((cur_size < RX_PANIC_STD_THRES) &&
2179 			    !test_and_set_bit(0, &ap->std_refill_busy)) {
2180 #ifdef DEBUG
2181 				printk("low on std buffers %i\n", cur_size);
2182 #endif
2183 				ace_load_std_rx_ring(dev,
2184 						     RX_RING_SIZE - cur_size);
2185 			} else
2186 				run_tasklet = 1;
2187 		}
2188 
2189 		if (!ACE_IS_TIGON_I(ap)) {
2190 			cur_size = atomic_read(&ap->cur_mini_bufs);
2191 			if (cur_size < RX_LOW_MINI_THRES) {
2192 				if ((cur_size < RX_PANIC_MINI_THRES) &&
2193 				    !test_and_set_bit(0,
2194 						      &ap->mini_refill_busy)) {
2195 #ifdef DEBUG
2196 					printk("low on mini buffers %i\n",
2197 					       cur_size);
2198 #endif
2199 					ace_load_mini_rx_ring(dev,
2200 							      RX_MINI_SIZE - cur_size);
2201 				} else
2202 					run_tasklet = 1;
2203 			}
2204 		}
2205 
2206 		if (ap->jumbo) {
2207 			cur_size = atomic_read(&ap->cur_jumbo_bufs);
2208 			if (cur_size < RX_LOW_JUMBO_THRES) {
2209 				if ((cur_size < RX_PANIC_JUMBO_THRES) &&
2210 				    !test_and_set_bit(0,
2211 						      &ap->jumbo_refill_busy)){
2212 #ifdef DEBUG
2213 					printk("low on jumbo buffers %i\n",
2214 					       cur_size);
2215 #endif
2216 					ace_load_jumbo_rx_ring(dev,
2217 							       RX_JUMBO_SIZE - cur_size);
2218 				} else
2219 					run_tasklet = 1;
2220 			}
2221 		}
2222 		if (run_tasklet && !ap->tasklet_pending) {
2223 			ap->tasklet_pending = 1;
2224 			tasklet_schedule(&ap->ace_tasklet);
2225 		}
2226 	}
2227 
2228 	return IRQ_HANDLED;
2229 }
2230 
2231 static int ace_open(struct net_device *dev)
2232 {
2233 	struct ace_private *ap = netdev_priv(dev);
2234 	struct ace_regs __iomem *regs = ap->regs;
2235 	struct cmd cmd;
2236 
2237 	if (!(ap->fw_running)) {
2238 		printk(KERN_WARNING "%s: Firmware not running!\n", dev->name);
2239 		return -EBUSY;
2240 	}
2241 
2242 	writel(dev->mtu + ETH_HLEN + 4, &regs->IfMtu);
2243 
2244 	cmd.evt = C_CLEAR_STATS;
2245 	cmd.code = 0;
2246 	cmd.idx = 0;
2247 	ace_issue_cmd(regs, &cmd);
2248 
2249 	cmd.evt = C_HOST_STATE;
2250 	cmd.code = C_C_STACK_UP;
2251 	cmd.idx = 0;
2252 	ace_issue_cmd(regs, &cmd);
2253 
2254 	if (ap->jumbo &&
2255 	    !test_and_set_bit(0, &ap->jumbo_refill_busy))
2256 		ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE);
2257 
2258 	if (dev->flags & IFF_PROMISC) {
2259 		cmd.evt = C_SET_PROMISC_MODE;
2260 		cmd.code = C_C_PROMISC_ENABLE;
2261 		cmd.idx = 0;
2262 		ace_issue_cmd(regs, &cmd);
2263 
2264 		ap->promisc = 1;
2265 	}else
2266 		ap->promisc = 0;
2267 	ap->mcast_all = 0;
2268 
2269 #if 0
2270 	cmd.evt = C_LNK_NEGOTIATION;
2271 	cmd.code = 0;
2272 	cmd.idx = 0;
2273 	ace_issue_cmd(regs, &cmd);
2274 #endif
2275 
2276 	netif_start_queue(dev);
2277 
2278 	/*
2279 	 * Setup the bottom half rx ring refill handler
2280 	 */
2281 	tasklet_init(&ap->ace_tasklet, ace_tasklet, (unsigned long)dev);
2282 	return 0;
2283 }
2284 
2285 
2286 static int ace_close(struct net_device *dev)
2287 {
2288 	struct ace_private *ap = netdev_priv(dev);
2289 	struct ace_regs __iomem *regs = ap->regs;
2290 	struct cmd cmd;
2291 	unsigned long flags;
2292 	short i;
2293 
2294 	/*
2295 	 * Without (or before) releasing irq and stopping hardware, this
2296 	 * is an absolute non-sense, by the way. It will be reset instantly
2297 	 * by the first irq.
2298 	 */
2299 	netif_stop_queue(dev);
2300 
2301 
2302 	if (ap->promisc) {
2303 		cmd.evt = C_SET_PROMISC_MODE;
2304 		cmd.code = C_C_PROMISC_DISABLE;
2305 		cmd.idx = 0;
2306 		ace_issue_cmd(regs, &cmd);
2307 		ap->promisc = 0;
2308 	}
2309 
2310 	cmd.evt = C_HOST_STATE;
2311 	cmd.code = C_C_STACK_DOWN;
2312 	cmd.idx = 0;
2313 	ace_issue_cmd(regs, &cmd);
2314 
2315 	tasklet_kill(&ap->ace_tasklet);
2316 
2317 	/*
2318 	 * Make sure one CPU is not processing packets while
2319 	 * buffers are being released by another.
2320 	 */
2321 
2322 	local_irq_save(flags);
2323 	ace_mask_irq(dev);
2324 
2325 	for (i = 0; i < ACE_TX_RING_ENTRIES(ap); i++) {
2326 		struct sk_buff *skb;
2327 		struct tx_ring_info *info;
2328 
2329 		info = ap->skb->tx_skbuff + i;
2330 		skb = info->skb;
2331 
2332 		if (dma_unmap_len(info, maplen)) {
2333 			if (ACE_IS_TIGON_I(ap)) {
2334 				/* NB: TIGON_1 is special, tx_ring is in io space */
2335 				struct tx_desc __iomem *tx;
2336 				tx = (__force struct tx_desc __iomem *) &ap->tx_ring[i];
2337 				writel(0, &tx->addr.addrhi);
2338 				writel(0, &tx->addr.addrlo);
2339 				writel(0, &tx->flagsize);
2340 			} else
2341 				memset(ap->tx_ring + i, 0,
2342 				       sizeof(struct tx_desc));
2343 			pci_unmap_page(ap->pdev, dma_unmap_addr(info, mapping),
2344 				       dma_unmap_len(info, maplen),
2345 				       PCI_DMA_TODEVICE);
2346 			dma_unmap_len_set(info, maplen, 0);
2347 		}
2348 		if (skb) {
2349 			dev_kfree_skb(skb);
2350 			info->skb = NULL;
2351 		}
2352 	}
2353 
2354 	if (ap->jumbo) {
2355 		cmd.evt = C_RESET_JUMBO_RNG;
2356 		cmd.code = 0;
2357 		cmd.idx = 0;
2358 		ace_issue_cmd(regs, &cmd);
2359 	}
2360 
2361 	ace_unmask_irq(dev);
2362 	local_irq_restore(flags);
2363 
2364 	return 0;
2365 }
2366 
2367 
2368 static inline dma_addr_t
2369 ace_map_tx_skb(struct ace_private *ap, struct sk_buff *skb,
2370 	       struct sk_buff *tail, u32 idx)
2371 {
2372 	dma_addr_t mapping;
2373 	struct tx_ring_info *info;
2374 
2375 	mapping = pci_map_page(ap->pdev, virt_to_page(skb->data),
2376 			       offset_in_page(skb->data),
2377 			       skb->len, PCI_DMA_TODEVICE);
2378 
2379 	info = ap->skb->tx_skbuff + idx;
2380 	info->skb = tail;
2381 	dma_unmap_addr_set(info, mapping, mapping);
2382 	dma_unmap_len_set(info, maplen, skb->len);
2383 	return mapping;
2384 }
2385 
2386 
2387 static inline void
2388 ace_load_tx_bd(struct ace_private *ap, struct tx_desc *desc, u64 addr,
2389 	       u32 flagsize, u32 vlan_tag)
2390 {
2391 #if !USE_TX_COAL_NOW
2392 	flagsize &= ~BD_FLG_COAL_NOW;
2393 #endif
2394 
2395 	if (ACE_IS_TIGON_I(ap)) {
2396 		struct tx_desc __iomem *io = (__force struct tx_desc __iomem *) desc;
2397 		writel(addr >> 32, &io->addr.addrhi);
2398 		writel(addr & 0xffffffff, &io->addr.addrlo);
2399 		writel(flagsize, &io->flagsize);
2400 		writel(vlan_tag, &io->vlanres);
2401 	} else {
2402 		desc->addr.addrhi = addr >> 32;
2403 		desc->addr.addrlo = addr;
2404 		desc->flagsize = flagsize;
2405 		desc->vlanres = vlan_tag;
2406 	}
2407 }
2408 
2409 
2410 static netdev_tx_t ace_start_xmit(struct sk_buff *skb,
2411 				  struct net_device *dev)
2412 {
2413 	struct ace_private *ap = netdev_priv(dev);
2414 	struct ace_regs __iomem *regs = ap->regs;
2415 	struct tx_desc *desc;
2416 	u32 idx, flagsize;
2417 	unsigned long maxjiff = jiffies + 3*HZ;
2418 
2419 restart:
2420 	idx = ap->tx_prd;
2421 
2422 	if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2423 		goto overflow;
2424 
2425 	if (!skb_shinfo(skb)->nr_frags)	{
2426 		dma_addr_t mapping;
2427 		u32 vlan_tag = 0;
2428 
2429 		mapping = ace_map_tx_skb(ap, skb, skb, idx);
2430 		flagsize = (skb->len << 16) | (BD_FLG_END);
2431 		if (skb->ip_summed == CHECKSUM_PARTIAL)
2432 			flagsize |= BD_FLG_TCP_UDP_SUM;
2433 		if (vlan_tx_tag_present(skb)) {
2434 			flagsize |= BD_FLG_VLAN_TAG;
2435 			vlan_tag = vlan_tx_tag_get(skb);
2436 		}
2437 		desc = ap->tx_ring + idx;
2438 		idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2439 
2440 		/* Look at ace_tx_int for explanations. */
2441 		if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2442 			flagsize |= BD_FLG_COAL_NOW;
2443 
2444 		ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
2445 	} else {
2446 		dma_addr_t mapping;
2447 		u32 vlan_tag = 0;
2448 		int i, len = 0;
2449 
2450 		mapping = ace_map_tx_skb(ap, skb, NULL, idx);
2451 		flagsize = (skb_headlen(skb) << 16);
2452 		if (skb->ip_summed == CHECKSUM_PARTIAL)
2453 			flagsize |= BD_FLG_TCP_UDP_SUM;
2454 		if (vlan_tx_tag_present(skb)) {
2455 			flagsize |= BD_FLG_VLAN_TAG;
2456 			vlan_tag = vlan_tx_tag_get(skb);
2457 		}
2458 
2459 		ace_load_tx_bd(ap, ap->tx_ring + idx, mapping, flagsize, vlan_tag);
2460 
2461 		idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2462 
2463 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2464 			const skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2465 			struct tx_ring_info *info;
2466 
2467 			len += skb_frag_size(frag);
2468 			info = ap->skb->tx_skbuff + idx;
2469 			desc = ap->tx_ring + idx;
2470 
2471 			mapping = skb_frag_dma_map(&ap->pdev->dev, frag, 0,
2472 						   skb_frag_size(frag),
2473 						   DMA_TO_DEVICE);
2474 
2475 			flagsize = skb_frag_size(frag) << 16;
2476 			if (skb->ip_summed == CHECKSUM_PARTIAL)
2477 				flagsize |= BD_FLG_TCP_UDP_SUM;
2478 			idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap);
2479 
2480 			if (i == skb_shinfo(skb)->nr_frags - 1) {
2481 				flagsize |= BD_FLG_END;
2482 				if (tx_ring_full(ap, ap->tx_ret_csm, idx))
2483 					flagsize |= BD_FLG_COAL_NOW;
2484 
2485 				/*
2486 				 * Only the last fragment frees
2487 				 * the skb!
2488 				 */
2489 				info->skb = skb;
2490 			} else {
2491 				info->skb = NULL;
2492 			}
2493 			dma_unmap_addr_set(info, mapping, mapping);
2494 			dma_unmap_len_set(info, maplen, skb_frag_size(frag));
2495 			ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag);
2496 		}
2497 	}
2498 
2499  	wmb();
2500  	ap->tx_prd = idx;
2501  	ace_set_txprd(regs, ap, idx);
2502 
2503 	if (flagsize & BD_FLG_COAL_NOW) {
2504 		netif_stop_queue(dev);
2505 
2506 		/*
2507 		 * A TX-descriptor producer (an IRQ) might have gotten
2508 		 * between, making the ring free again. Since xmit is
2509 		 * serialized, this is the only situation we have to
2510 		 * re-test.
2511 		 */
2512 		if (!tx_ring_full(ap, ap->tx_ret_csm, idx))
2513 			netif_wake_queue(dev);
2514 	}
2515 
2516 	return NETDEV_TX_OK;
2517 
2518 overflow:
2519 	/*
2520 	 * This race condition is unavoidable with lock-free drivers.
2521 	 * We wake up the queue _before_ tx_prd is advanced, so that we can
2522 	 * enter hard_start_xmit too early, while tx ring still looks closed.
2523 	 * This happens ~1-4 times per 100000 packets, so that we can allow
2524 	 * to loop syncing to other CPU. Probably, we need an additional
2525 	 * wmb() in ace_tx_intr as well.
2526 	 *
2527 	 * Note that this race is relieved by reserving one more entry
2528 	 * in tx ring than it is necessary (see original non-SG driver).
2529 	 * However, with SG we need to reserve 2*MAX_SKB_FRAGS+1, which
2530 	 * is already overkill.
2531 	 *
2532 	 * Alternative is to return with 1 not throttling queue. In this
2533 	 * case loop becomes longer, no more useful effects.
2534 	 */
2535 	if (time_before(jiffies, maxjiff)) {
2536 		barrier();
2537 		cpu_relax();
2538 		goto restart;
2539 	}
2540 
2541 	/* The ring is stuck full. */
2542 	printk(KERN_WARNING "%s: Transmit ring stuck full\n", dev->name);
2543 	return NETDEV_TX_BUSY;
2544 }
2545 
2546 
2547 static int ace_change_mtu(struct net_device *dev, int new_mtu)
2548 {
2549 	struct ace_private *ap = netdev_priv(dev);
2550 	struct ace_regs __iomem *regs = ap->regs;
2551 
2552 	if (new_mtu > ACE_JUMBO_MTU)
2553 		return -EINVAL;
2554 
2555 	writel(new_mtu + ETH_HLEN + 4, &regs->IfMtu);
2556 	dev->mtu = new_mtu;
2557 
2558 	if (new_mtu > ACE_STD_MTU) {
2559 		if (!(ap->jumbo)) {
2560 			printk(KERN_INFO "%s: Enabling Jumbo frame "
2561 			       "support\n", dev->name);
2562 			ap->jumbo = 1;
2563 			if (!test_and_set_bit(0, &ap->jumbo_refill_busy))
2564 				ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE);
2565 			ace_set_rxtx_parms(dev, 1);
2566 		}
2567 	} else {
2568 		while (test_and_set_bit(0, &ap->jumbo_refill_busy));
2569 		ace_sync_irq(dev->irq);
2570 		ace_set_rxtx_parms(dev, 0);
2571 		if (ap->jumbo) {
2572 			struct cmd cmd;
2573 
2574 			cmd.evt = C_RESET_JUMBO_RNG;
2575 			cmd.code = 0;
2576 			cmd.idx = 0;
2577 			ace_issue_cmd(regs, &cmd);
2578 		}
2579 	}
2580 
2581 	return 0;
2582 }
2583 
2584 static int ace_get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2585 {
2586 	struct ace_private *ap = netdev_priv(dev);
2587 	struct ace_regs __iomem *regs = ap->regs;
2588 	u32 link;
2589 
2590 	memset(ecmd, 0, sizeof(struct ethtool_cmd));
2591 	ecmd->supported =
2592 		(SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full |
2593 		 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full |
2594 		 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full |
2595 		 SUPPORTED_Autoneg | SUPPORTED_FIBRE);
2596 
2597 	ecmd->port = PORT_FIBRE;
2598 	ecmd->transceiver = XCVR_INTERNAL;
2599 
2600 	link = readl(&regs->GigLnkState);
2601 	if (link & LNK_1000MB)
2602 		ethtool_cmd_speed_set(ecmd, SPEED_1000);
2603 	else {
2604 		link = readl(&regs->FastLnkState);
2605 		if (link & LNK_100MB)
2606 			ethtool_cmd_speed_set(ecmd, SPEED_100);
2607 		else if (link & LNK_10MB)
2608 			ethtool_cmd_speed_set(ecmd, SPEED_10);
2609 		else
2610 			ethtool_cmd_speed_set(ecmd, 0);
2611 	}
2612 	if (link & LNK_FULL_DUPLEX)
2613 		ecmd->duplex = DUPLEX_FULL;
2614 	else
2615 		ecmd->duplex = DUPLEX_HALF;
2616 
2617 	if (link & LNK_NEGOTIATE)
2618 		ecmd->autoneg = AUTONEG_ENABLE;
2619 	else
2620 		ecmd->autoneg = AUTONEG_DISABLE;
2621 
2622 #if 0
2623 	/*
2624 	 * Current struct ethtool_cmd is insufficient
2625 	 */
2626 	ecmd->trace = readl(&regs->TuneTrace);
2627 
2628 	ecmd->txcoal = readl(&regs->TuneTxCoalTicks);
2629 	ecmd->rxcoal = readl(&regs->TuneRxCoalTicks);
2630 #endif
2631 	ecmd->maxtxpkt = readl(&regs->TuneMaxTxDesc);
2632 	ecmd->maxrxpkt = readl(&regs->TuneMaxRxDesc);
2633 
2634 	return 0;
2635 }
2636 
2637 static int ace_set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
2638 {
2639 	struct ace_private *ap = netdev_priv(dev);
2640 	struct ace_regs __iomem *regs = ap->regs;
2641 	u32 link, speed;
2642 
2643 	link = readl(&regs->GigLnkState);
2644 	if (link & LNK_1000MB)
2645 		speed = SPEED_1000;
2646 	else {
2647 		link = readl(&regs->FastLnkState);
2648 		if (link & LNK_100MB)
2649 			speed = SPEED_100;
2650 		else if (link & LNK_10MB)
2651 			speed = SPEED_10;
2652 		else
2653 			speed = SPEED_100;
2654 	}
2655 
2656 	link = LNK_ENABLE | LNK_1000MB | LNK_100MB | LNK_10MB |
2657 		LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL;
2658 	if (!ACE_IS_TIGON_I(ap))
2659 		link |= LNK_TX_FLOW_CTL_Y;
2660 	if (ecmd->autoneg == AUTONEG_ENABLE)
2661 		link |= LNK_NEGOTIATE;
2662 	if (ethtool_cmd_speed(ecmd) != speed) {
2663 		link &= ~(LNK_1000MB | LNK_100MB | LNK_10MB);
2664 		switch (ethtool_cmd_speed(ecmd)) {
2665 		case SPEED_1000:
2666 			link |= LNK_1000MB;
2667 			break;
2668 		case SPEED_100:
2669 			link |= LNK_100MB;
2670 			break;
2671 		case SPEED_10:
2672 			link |= LNK_10MB;
2673 			break;
2674 		}
2675 	}
2676 
2677 	if (ecmd->duplex == DUPLEX_FULL)
2678 		link |= LNK_FULL_DUPLEX;
2679 
2680 	if (link != ap->link) {
2681 		struct cmd cmd;
2682 		printk(KERN_INFO "%s: Renegotiating link state\n",
2683 		       dev->name);
2684 
2685 		ap->link = link;
2686 		writel(link, &regs->TuneLink);
2687 		if (!ACE_IS_TIGON_I(ap))
2688 			writel(link, &regs->TuneFastLink);
2689 		wmb();
2690 
2691 		cmd.evt = C_LNK_NEGOTIATION;
2692 		cmd.code = 0;
2693 		cmd.idx = 0;
2694 		ace_issue_cmd(regs, &cmd);
2695 	}
2696 	return 0;
2697 }
2698 
2699 static void ace_get_drvinfo(struct net_device *dev,
2700 			    struct ethtool_drvinfo *info)
2701 {
2702 	struct ace_private *ap = netdev_priv(dev);
2703 
2704 	strlcpy(info->driver, "acenic", sizeof(info->driver));
2705 	snprintf(info->version, sizeof(info->version), "%i.%i.%i",
2706 		 ap->firmware_major, ap->firmware_minor,
2707 		 ap->firmware_fix);
2708 
2709 	if (ap->pdev)
2710 		strlcpy(info->bus_info, pci_name(ap->pdev),
2711 			sizeof(info->bus_info));
2712 
2713 }
2714 
2715 /*
2716  * Set the hardware MAC address.
2717  */
2718 static int ace_set_mac_addr(struct net_device *dev, void *p)
2719 {
2720 	struct ace_private *ap = netdev_priv(dev);
2721 	struct ace_regs __iomem *regs = ap->regs;
2722 	struct sockaddr *addr=p;
2723 	u8 *da;
2724 	struct cmd cmd;
2725 
2726 	if(netif_running(dev))
2727 		return -EBUSY;
2728 
2729 	memcpy(dev->dev_addr, addr->sa_data,dev->addr_len);
2730 
2731 	da = (u8 *)dev->dev_addr;
2732 
2733 	writel(da[0] << 8 | da[1], &regs->MacAddrHi);
2734 	writel((da[2] << 24) | (da[3] << 16) | (da[4] << 8) | da[5],
2735 	       &regs->MacAddrLo);
2736 
2737 	cmd.evt = C_SET_MAC_ADDR;
2738 	cmd.code = 0;
2739 	cmd.idx = 0;
2740 	ace_issue_cmd(regs, &cmd);
2741 
2742 	return 0;
2743 }
2744 
2745 
2746 static void ace_set_multicast_list(struct net_device *dev)
2747 {
2748 	struct ace_private *ap = netdev_priv(dev);
2749 	struct ace_regs __iomem *regs = ap->regs;
2750 	struct cmd cmd;
2751 
2752 	if ((dev->flags & IFF_ALLMULTI) && !(ap->mcast_all)) {
2753 		cmd.evt = C_SET_MULTICAST_MODE;
2754 		cmd.code = C_C_MCAST_ENABLE;
2755 		cmd.idx = 0;
2756 		ace_issue_cmd(regs, &cmd);
2757 		ap->mcast_all = 1;
2758 	} else if (ap->mcast_all) {
2759 		cmd.evt = C_SET_MULTICAST_MODE;
2760 		cmd.code = C_C_MCAST_DISABLE;
2761 		cmd.idx = 0;
2762 		ace_issue_cmd(regs, &cmd);
2763 		ap->mcast_all = 0;
2764 	}
2765 
2766 	if ((dev->flags & IFF_PROMISC) && !(ap->promisc)) {
2767 		cmd.evt = C_SET_PROMISC_MODE;
2768 		cmd.code = C_C_PROMISC_ENABLE;
2769 		cmd.idx = 0;
2770 		ace_issue_cmd(regs, &cmd);
2771 		ap->promisc = 1;
2772 	}else if (!(dev->flags & IFF_PROMISC) && (ap->promisc)) {
2773 		cmd.evt = C_SET_PROMISC_MODE;
2774 		cmd.code = C_C_PROMISC_DISABLE;
2775 		cmd.idx = 0;
2776 		ace_issue_cmd(regs, &cmd);
2777 		ap->promisc = 0;
2778 	}
2779 
2780 	/*
2781 	 * For the time being multicast relies on the upper layers
2782 	 * filtering it properly. The Firmware does not allow one to
2783 	 * set the entire multicast list at a time and keeping track of
2784 	 * it here is going to be messy.
2785 	 */
2786 	if (!netdev_mc_empty(dev) && !ap->mcast_all) {
2787 		cmd.evt = C_SET_MULTICAST_MODE;
2788 		cmd.code = C_C_MCAST_ENABLE;
2789 		cmd.idx = 0;
2790 		ace_issue_cmd(regs, &cmd);
2791 	}else if (!ap->mcast_all) {
2792 		cmd.evt = C_SET_MULTICAST_MODE;
2793 		cmd.code = C_C_MCAST_DISABLE;
2794 		cmd.idx = 0;
2795 		ace_issue_cmd(regs, &cmd);
2796 	}
2797 }
2798 
2799 
2800 static struct net_device_stats *ace_get_stats(struct net_device *dev)
2801 {
2802 	struct ace_private *ap = netdev_priv(dev);
2803 	struct ace_mac_stats __iomem *mac_stats =
2804 		(struct ace_mac_stats __iomem *)ap->regs->Stats;
2805 
2806 	dev->stats.rx_missed_errors = readl(&mac_stats->drop_space);
2807 	dev->stats.multicast = readl(&mac_stats->kept_mc);
2808 	dev->stats.collisions = readl(&mac_stats->coll);
2809 
2810 	return &dev->stats;
2811 }
2812 
2813 
2814 static void ace_copy(struct ace_regs __iomem *regs, const __be32 *src,
2815 		     u32 dest, int size)
2816 {
2817 	void __iomem *tdest;
2818 	short tsize, i;
2819 
2820 	if (size <= 0)
2821 		return;
2822 
2823 	while (size > 0) {
2824 		tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
2825 			    min_t(u32, size, ACE_WINDOW_SIZE));
2826 		tdest = (void __iomem *) &regs->Window +
2827 			(dest & (ACE_WINDOW_SIZE - 1));
2828 		writel(dest & ~(ACE_WINDOW_SIZE - 1), &regs->WinBase);
2829 		for (i = 0; i < (tsize / 4); i++) {
2830 			/* Firmware is big-endian */
2831 			writel(be32_to_cpup(src), tdest);
2832 			src++;
2833 			tdest += 4;
2834 			dest += 4;
2835 			size -= 4;
2836 		}
2837 	}
2838 }
2839 
2840 
2841 static void ace_clear(struct ace_regs __iomem *regs, u32 dest, int size)
2842 {
2843 	void __iomem *tdest;
2844 	short tsize = 0, i;
2845 
2846 	if (size <= 0)
2847 		return;
2848 
2849 	while (size > 0) {
2850 		tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1),
2851 				min_t(u32, size, ACE_WINDOW_SIZE));
2852 		tdest = (void __iomem *) &regs->Window +
2853 			(dest & (ACE_WINDOW_SIZE - 1));
2854 		writel(dest & ~(ACE_WINDOW_SIZE - 1), &regs->WinBase);
2855 
2856 		for (i = 0; i < (tsize / 4); i++) {
2857 			writel(0, tdest + i*4);
2858 		}
2859 
2860 		dest += tsize;
2861 		size -= tsize;
2862 	}
2863 }
2864 
2865 
2866 /*
2867  * Download the firmware into the SRAM on the NIC
2868  *
2869  * This operation requires the NIC to be halted and is performed with
2870  * interrupts disabled and with the spinlock hold.
2871  */
2872 static int ace_load_firmware(struct net_device *dev)
2873 {
2874 	const struct firmware *fw;
2875 	const char *fw_name = "acenic/tg2.bin";
2876 	struct ace_private *ap = netdev_priv(dev);
2877 	struct ace_regs __iomem *regs = ap->regs;
2878 	const __be32 *fw_data;
2879 	u32 load_addr;
2880 	int ret;
2881 
2882 	if (!(readl(&regs->CpuCtrl) & CPU_HALTED)) {
2883 		printk(KERN_ERR "%s: trying to download firmware while the "
2884 		       "CPU is running!\n", ap->name);
2885 		return -EFAULT;
2886 	}
2887 
2888 	if (ACE_IS_TIGON_I(ap))
2889 		fw_name = "acenic/tg1.bin";
2890 
2891 	ret = request_firmware(&fw, fw_name, &ap->pdev->dev);
2892 	if (ret) {
2893 		printk(KERN_ERR "%s: Failed to load firmware \"%s\"\n",
2894 		       ap->name, fw_name);
2895 		return ret;
2896 	}
2897 
2898 	fw_data = (void *)fw->data;
2899 
2900 	/* Firmware blob starts with version numbers, followed by
2901 	   load and start address. Remainder is the blob to be loaded
2902 	   contiguously from load address. We don't bother to represent
2903 	   the BSS/SBSS sections any more, since we were clearing the
2904 	   whole thing anyway. */
2905 	ap->firmware_major = fw->data[0];
2906 	ap->firmware_minor = fw->data[1];
2907 	ap->firmware_fix = fw->data[2];
2908 
2909 	ap->firmware_start = be32_to_cpu(fw_data[1]);
2910 	if (ap->firmware_start < 0x4000 || ap->firmware_start >= 0x80000) {
2911 		printk(KERN_ERR "%s: bogus load address %08x in \"%s\"\n",
2912 		       ap->name, ap->firmware_start, fw_name);
2913 		ret = -EINVAL;
2914 		goto out;
2915 	}
2916 
2917 	load_addr = be32_to_cpu(fw_data[2]);
2918 	if (load_addr < 0x4000 || load_addr >= 0x80000) {
2919 		printk(KERN_ERR "%s: bogus load address %08x in \"%s\"\n",
2920 		       ap->name, load_addr, fw_name);
2921 		ret = -EINVAL;
2922 		goto out;
2923 	}
2924 
2925 	/*
2926 	 * Do not try to clear more than 512KiB or we end up seeing
2927 	 * funny things on NICs with only 512KiB SRAM
2928 	 */
2929 	ace_clear(regs, 0x2000, 0x80000-0x2000);
2930 	ace_copy(regs, &fw_data[3], load_addr, fw->size-12);
2931  out:
2932 	release_firmware(fw);
2933 	return ret;
2934 }
2935 
2936 
2937 /*
2938  * The eeprom on the AceNIC is an Atmel i2c EEPROM.
2939  *
2940  * Accessing the EEPROM is `interesting' to say the least - don't read
2941  * this code right after dinner.
2942  *
2943  * This is all about black magic and bit-banging the device .... I
2944  * wonder in what hospital they have put the guy who designed the i2c
2945  * specs.
2946  *
2947  * Oh yes, this is only the beginning!
2948  *
2949  * Thanks to Stevarino Webinski for helping tracking down the bugs in the
2950  * code i2c readout code by beta testing all my hacks.
2951  */
2952 static void eeprom_start(struct ace_regs __iomem *regs)
2953 {
2954 	u32 local;
2955 
2956 	readl(&regs->LocalCtrl);
2957 	udelay(ACE_SHORT_DELAY);
2958 	local = readl(&regs->LocalCtrl);
2959 	local |= EEPROM_DATA_OUT | EEPROM_WRITE_ENABLE;
2960 	writel(local, &regs->LocalCtrl);
2961 	readl(&regs->LocalCtrl);
2962 	mb();
2963 	udelay(ACE_SHORT_DELAY);
2964 	local |= EEPROM_CLK_OUT;
2965 	writel(local, &regs->LocalCtrl);
2966 	readl(&regs->LocalCtrl);
2967 	mb();
2968 	udelay(ACE_SHORT_DELAY);
2969 	local &= ~EEPROM_DATA_OUT;
2970 	writel(local, &regs->LocalCtrl);
2971 	readl(&regs->LocalCtrl);
2972 	mb();
2973 	udelay(ACE_SHORT_DELAY);
2974 	local &= ~EEPROM_CLK_OUT;
2975 	writel(local, &regs->LocalCtrl);
2976 	readl(&regs->LocalCtrl);
2977 	mb();
2978 }
2979 
2980 
2981 static void eeprom_prep(struct ace_regs __iomem *regs, u8 magic)
2982 {
2983 	short i;
2984 	u32 local;
2985 
2986 	udelay(ACE_SHORT_DELAY);
2987 	local = readl(&regs->LocalCtrl);
2988 	local &= ~EEPROM_DATA_OUT;
2989 	local |= EEPROM_WRITE_ENABLE;
2990 	writel(local, &regs->LocalCtrl);
2991 	readl(&regs->LocalCtrl);
2992 	mb();
2993 
2994 	for (i = 0; i < 8; i++, magic <<= 1) {
2995 		udelay(ACE_SHORT_DELAY);
2996 		if (magic & 0x80)
2997 			local |= EEPROM_DATA_OUT;
2998 		else
2999 			local &= ~EEPROM_DATA_OUT;
3000 		writel(local, &regs->LocalCtrl);
3001 		readl(&regs->LocalCtrl);
3002 		mb();
3003 
3004 		udelay(ACE_SHORT_DELAY);
3005 		local |= EEPROM_CLK_OUT;
3006 		writel(local, &regs->LocalCtrl);
3007 		readl(&regs->LocalCtrl);
3008 		mb();
3009 		udelay(ACE_SHORT_DELAY);
3010 		local &= ~(EEPROM_CLK_OUT | EEPROM_DATA_OUT);
3011 		writel(local, &regs->LocalCtrl);
3012 		readl(&regs->LocalCtrl);
3013 		mb();
3014 	}
3015 }
3016 
3017 
3018 static int eeprom_check_ack(struct ace_regs __iomem *regs)
3019 {
3020 	int state;
3021 	u32 local;
3022 
3023 	local = readl(&regs->LocalCtrl);
3024 	local &= ~EEPROM_WRITE_ENABLE;
3025 	writel(local, &regs->LocalCtrl);
3026 	readl(&regs->LocalCtrl);
3027 	mb();
3028 	udelay(ACE_LONG_DELAY);
3029 	local |= EEPROM_CLK_OUT;
3030 	writel(local, &regs->LocalCtrl);
3031 	readl(&regs->LocalCtrl);
3032 	mb();
3033 	udelay(ACE_SHORT_DELAY);
3034 	/* sample data in middle of high clk */
3035 	state = (readl(&regs->LocalCtrl) & EEPROM_DATA_IN) != 0;
3036 	udelay(ACE_SHORT_DELAY);
3037 	mb();
3038 	writel(readl(&regs->LocalCtrl) & ~EEPROM_CLK_OUT, &regs->LocalCtrl);
3039 	readl(&regs->LocalCtrl);
3040 	mb();
3041 
3042 	return state;
3043 }
3044 
3045 
3046 static void eeprom_stop(struct ace_regs __iomem *regs)
3047 {
3048 	u32 local;
3049 
3050 	udelay(ACE_SHORT_DELAY);
3051 	local = readl(&regs->LocalCtrl);
3052 	local |= EEPROM_WRITE_ENABLE;
3053 	writel(local, &regs->LocalCtrl);
3054 	readl(&regs->LocalCtrl);
3055 	mb();
3056 	udelay(ACE_SHORT_DELAY);
3057 	local &= ~EEPROM_DATA_OUT;
3058 	writel(local, &regs->LocalCtrl);
3059 	readl(&regs->LocalCtrl);
3060 	mb();
3061 	udelay(ACE_SHORT_DELAY);
3062 	local |= EEPROM_CLK_OUT;
3063 	writel(local, &regs->LocalCtrl);
3064 	readl(&regs->LocalCtrl);
3065 	mb();
3066 	udelay(ACE_SHORT_DELAY);
3067 	local |= EEPROM_DATA_OUT;
3068 	writel(local, &regs->LocalCtrl);
3069 	readl(&regs->LocalCtrl);
3070 	mb();
3071 	udelay(ACE_LONG_DELAY);
3072 	local &= ~EEPROM_CLK_OUT;
3073 	writel(local, &regs->LocalCtrl);
3074 	mb();
3075 }
3076 
3077 
3078 /*
3079  * Read a whole byte from the EEPROM.
3080  */
3081 static int read_eeprom_byte(struct net_device *dev, unsigned long offset)
3082 {
3083 	struct ace_private *ap = netdev_priv(dev);
3084 	struct ace_regs __iomem *regs = ap->regs;
3085 	unsigned long flags;
3086 	u32 local;
3087 	int result = 0;
3088 	short i;
3089 
3090 	/*
3091 	 * Don't take interrupts on this CPU will bit banging
3092 	 * the %#%#@$ I2C device
3093 	 */
3094 	local_irq_save(flags);
3095 
3096 	eeprom_start(regs);
3097 
3098 	eeprom_prep(regs, EEPROM_WRITE_SELECT);
3099 	if (eeprom_check_ack(regs)) {
3100 		local_irq_restore(flags);
3101 		printk(KERN_ERR "%s: Unable to sync eeprom\n", ap->name);
3102 		result = -EIO;
3103 		goto eeprom_read_error;
3104 	}
3105 
3106 	eeprom_prep(regs, (offset >> 8) & 0xff);
3107 	if (eeprom_check_ack(regs)) {
3108 		local_irq_restore(flags);
3109 		printk(KERN_ERR "%s: Unable to set address byte 0\n",
3110 		       ap->name);
3111 		result = -EIO;
3112 		goto eeprom_read_error;
3113 	}
3114 
3115 	eeprom_prep(regs, offset & 0xff);
3116 	if (eeprom_check_ack(regs)) {
3117 		local_irq_restore(flags);
3118 		printk(KERN_ERR "%s: Unable to set address byte 1\n",
3119 		       ap->name);
3120 		result = -EIO;
3121 		goto eeprom_read_error;
3122 	}
3123 
3124 	eeprom_start(regs);
3125 	eeprom_prep(regs, EEPROM_READ_SELECT);
3126 	if (eeprom_check_ack(regs)) {
3127 		local_irq_restore(flags);
3128 		printk(KERN_ERR "%s: Unable to set READ_SELECT\n",
3129 		       ap->name);
3130 		result = -EIO;
3131 		goto eeprom_read_error;
3132 	}
3133 
3134 	for (i = 0; i < 8; i++) {
3135 		local = readl(&regs->LocalCtrl);
3136 		local &= ~EEPROM_WRITE_ENABLE;
3137 		writel(local, &regs->LocalCtrl);
3138 		readl(&regs->LocalCtrl);
3139 		udelay(ACE_LONG_DELAY);
3140 		mb();
3141 		local |= EEPROM_CLK_OUT;
3142 		writel(local, &regs->LocalCtrl);
3143 		readl(&regs->LocalCtrl);
3144 		mb();
3145 		udelay(ACE_SHORT_DELAY);
3146 		/* sample data mid high clk */
3147 		result = (result << 1) |
3148 			((readl(&regs->LocalCtrl) & EEPROM_DATA_IN) != 0);
3149 		udelay(ACE_SHORT_DELAY);
3150 		mb();
3151 		local = readl(&regs->LocalCtrl);
3152 		local &= ~EEPROM_CLK_OUT;
3153 		writel(local, &regs->LocalCtrl);
3154 		readl(&regs->LocalCtrl);
3155 		udelay(ACE_SHORT_DELAY);
3156 		mb();
3157 		if (i == 7) {
3158 			local |= EEPROM_WRITE_ENABLE;
3159 			writel(local, &regs->LocalCtrl);
3160 			readl(&regs->LocalCtrl);
3161 			mb();
3162 			udelay(ACE_SHORT_DELAY);
3163 		}
3164 	}
3165 
3166 	local |= EEPROM_DATA_OUT;
3167 	writel(local, &regs->LocalCtrl);
3168 	readl(&regs->LocalCtrl);
3169 	mb();
3170 	udelay(ACE_SHORT_DELAY);
3171 	writel(readl(&regs->LocalCtrl) | EEPROM_CLK_OUT, &regs->LocalCtrl);
3172 	readl(&regs->LocalCtrl);
3173 	udelay(ACE_LONG_DELAY);
3174 	writel(readl(&regs->LocalCtrl) & ~EEPROM_CLK_OUT, &regs->LocalCtrl);
3175 	readl(&regs->LocalCtrl);
3176 	mb();
3177 	udelay(ACE_SHORT_DELAY);
3178 	eeprom_stop(regs);
3179 
3180 	local_irq_restore(flags);
3181  out:
3182 	return result;
3183 
3184  eeprom_read_error:
3185 	printk(KERN_ERR "%s: Unable to read eeprom byte 0x%02lx\n",
3186 	       ap->name, offset);
3187 	goto out;
3188 }
3189 
3190 module_pci_driver(acenic_pci_driver);
3191