1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * acenic.c: Linux driver for the Alteon AceNIC Gigabit Ethernet card 4 * and other Tigon based cards. 5 * 6 * Copyright 1998-2002 by Jes Sorensen, <jes@trained-monkey.org>. 7 * 8 * Thanks to Alteon and 3Com for providing hardware and documentation 9 * enabling me to write this driver. 10 * 11 * A mailing list for discussing the use of this driver has been 12 * setup, please subscribe to the lists if you have any questions 13 * about the driver. Send mail to linux-acenic-help@sunsite.auc.dk to 14 * see how to subscribe. 15 * 16 * Additional credits: 17 * Pete Wyckoff <wyckoff@ca.sandia.gov>: Initial Linux/Alpha and trace 18 * dump support. The trace dump support has not been 19 * integrated yet however. 20 * Troy Benjegerdes: Big Endian (PPC) patches. 21 * Nate Stahl: Better out of memory handling and stats support. 22 * Aman Singla: Nasty race between interrupt handler and tx code dealing 23 * with 'testing the tx_ret_csm and setting tx_full' 24 * David S. Miller <davem@redhat.com>: conversion to new PCI dma mapping 25 * infrastructure and Sparc support 26 * Pierrick Pinasseau (CERN): For lending me an Ultra 5 to test the 27 * driver under Linux/Sparc64 28 * Matt Domsch <Matt_Domsch@dell.com>: Detect Alteon 1000baseT cards 29 * ETHTOOL_GDRVINFO support 30 * Chip Salzenberg <chip@valinux.com>: Fix race condition between tx 31 * handler and close() cleanup. 32 * Ken Aaker <kdaaker@rchland.vnet.ibm.com>: Correct check for whether 33 * memory mapped IO is enabled to 34 * make the driver work on RS/6000. 35 * Takayoshi Kouchi <kouchi@hpc.bs1.fc.nec.co.jp>: Identifying problem 36 * where the driver would disable 37 * bus master mode if it had to disable 38 * write and invalidate. 39 * Stephen Hack <stephen_hack@hp.com>: Fixed ace_set_mac_addr for little 40 * endian systems. 41 * Val Henson <vhenson@esscom.com>: Reset Jumbo skb producer and 42 * rx producer index when 43 * flushing the Jumbo ring. 44 * Hans Grobler <grobh@sun.ac.za>: Memory leak fixes in the 45 * driver init path. 46 * Grant Grundler <grundler@cup.hp.com>: PCI write posting fixes. 47 */ 48 49 #include <linux/module.h> 50 #include <linux/moduleparam.h> 51 #include <linux/types.h> 52 #include <linux/errno.h> 53 #include <linux/ioport.h> 54 #include <linux/pci.h> 55 #include <linux/dma-mapping.h> 56 #include <linux/kernel.h> 57 #include <linux/netdevice.h> 58 #include <linux/etherdevice.h> 59 #include <linux/skbuff.h> 60 #include <linux/delay.h> 61 #include <linux/mm.h> 62 #include <linux/highmem.h> 63 #include <linux/sockios.h> 64 #include <linux/firmware.h> 65 #include <linux/slab.h> 66 #include <linux/prefetch.h> 67 #include <linux/if_vlan.h> 68 69 #ifdef SIOCETHTOOL 70 #include <linux/ethtool.h> 71 #endif 72 73 #include <net/sock.h> 74 #include <net/ip.h> 75 76 #include <asm/io.h> 77 #include <asm/irq.h> 78 #include <asm/byteorder.h> 79 #include <linux/uaccess.h> 80 81 82 #define DRV_NAME "acenic" 83 84 #undef INDEX_DEBUG 85 86 #ifdef CONFIG_ACENIC_OMIT_TIGON_I 87 #define ACE_IS_TIGON_I(ap) 0 88 #define ACE_TX_RING_ENTRIES(ap) MAX_TX_RING_ENTRIES 89 #else 90 #define ACE_IS_TIGON_I(ap) (ap->version == 1) 91 #define ACE_TX_RING_ENTRIES(ap) ap->tx_ring_entries 92 #endif 93 94 #ifndef PCI_VENDOR_ID_ALTEON 95 #define PCI_VENDOR_ID_ALTEON 0x12ae 96 #endif 97 #ifndef PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE 98 #define PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE 0x0001 99 #define PCI_DEVICE_ID_ALTEON_ACENIC_COPPER 0x0002 100 #endif 101 #ifndef PCI_DEVICE_ID_3COM_3C985 102 #define PCI_DEVICE_ID_3COM_3C985 0x0001 103 #endif 104 #ifndef PCI_VENDOR_ID_NETGEAR 105 #define PCI_VENDOR_ID_NETGEAR 0x1385 106 #define PCI_DEVICE_ID_NETGEAR_GA620 0x620a 107 #endif 108 #ifndef PCI_DEVICE_ID_NETGEAR_GA620T 109 #define PCI_DEVICE_ID_NETGEAR_GA620T 0x630a 110 #endif 111 112 113 /* 114 * Farallon used the DEC vendor ID by mistake and they seem not 115 * to care - stinky! 116 */ 117 #ifndef PCI_DEVICE_ID_FARALLON_PN9000SX 118 #define PCI_DEVICE_ID_FARALLON_PN9000SX 0x1a 119 #endif 120 #ifndef PCI_DEVICE_ID_FARALLON_PN9100T 121 #define PCI_DEVICE_ID_FARALLON_PN9100T 0xfa 122 #endif 123 #ifndef PCI_VENDOR_ID_SGI 124 #define PCI_VENDOR_ID_SGI 0x10a9 125 #endif 126 #ifndef PCI_DEVICE_ID_SGI_ACENIC 127 #define PCI_DEVICE_ID_SGI_ACENIC 0x0009 128 #endif 129 130 static const struct pci_device_id acenic_pci_tbl[] = { 131 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_FIBRE, 132 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, 133 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_ALTEON_ACENIC_COPPER, 134 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, 135 { PCI_VENDOR_ID_3COM, PCI_DEVICE_ID_3COM_3C985, 136 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, 137 { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620, 138 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, 139 { PCI_VENDOR_ID_NETGEAR, PCI_DEVICE_ID_NETGEAR_GA620T, 140 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, 141 /* 142 * Farallon used the DEC vendor ID on their cards incorrectly, 143 * then later Alteon's ID. 144 */ 145 { PCI_VENDOR_ID_DEC, PCI_DEVICE_ID_FARALLON_PN9000SX, 146 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, 147 { PCI_VENDOR_ID_ALTEON, PCI_DEVICE_ID_FARALLON_PN9100T, 148 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, 149 { PCI_VENDOR_ID_SGI, PCI_DEVICE_ID_SGI_ACENIC, 150 PCI_ANY_ID, PCI_ANY_ID, PCI_CLASS_NETWORK_ETHERNET << 8, 0xffff00, }, 151 { } 152 }; 153 MODULE_DEVICE_TABLE(pci, acenic_pci_tbl); 154 155 #define ace_sync_irq(irq) synchronize_irq(irq) 156 157 #ifndef offset_in_page 158 #define offset_in_page(ptr) ((unsigned long)(ptr) & ~PAGE_MASK) 159 #endif 160 161 #define ACE_MAX_MOD_PARMS 8 162 #define BOARD_IDX_STATIC 0 163 #define BOARD_IDX_OVERFLOW -1 164 165 #include "acenic.h" 166 167 /* 168 * These must be defined before the firmware is included. 169 */ 170 #define MAX_TEXT_LEN 96*1024 171 #define MAX_RODATA_LEN 8*1024 172 #define MAX_DATA_LEN 2*1024 173 174 #ifndef tigon2FwReleaseLocal 175 #define tigon2FwReleaseLocal 0 176 #endif 177 178 /* 179 * This driver currently supports Tigon I and Tigon II based cards 180 * including the Alteon AceNIC, the 3Com 3C985[B] and NetGear 181 * GA620. The driver should also work on the SGI, DEC and Farallon 182 * versions of the card, however I have not been able to test that 183 * myself. 184 * 185 * This card is really neat, it supports receive hardware checksumming 186 * and jumbo frames (up to 9000 bytes) and does a lot of work in the 187 * firmware. Also the programming interface is quite neat, except for 188 * the parts dealing with the i2c eeprom on the card ;-) 189 * 190 * Using jumbo frames: 191 * 192 * To enable jumbo frames, simply specify an mtu between 1500 and 9000 193 * bytes to ifconfig. Jumbo frames can be enabled or disabled at any time 194 * by running `ifconfig eth<X> mtu <MTU>' with <X> being the Ethernet 195 * interface number and <MTU> being the MTU value. 196 * 197 * Module parameters: 198 * 199 * When compiled as a loadable module, the driver allows for a number 200 * of module parameters to be specified. The driver supports the 201 * following module parameters: 202 * 203 * trace=<val> - Firmware trace level. This requires special traced 204 * firmware to replace the firmware supplied with 205 * the driver - for debugging purposes only. 206 * 207 * link=<val> - Link state. Normally you want to use the default link 208 * parameters set by the driver. This can be used to 209 * override these in case your switch doesn't negotiate 210 * the link properly. Valid values are: 211 * 0x0001 - Force half duplex link. 212 * 0x0002 - Do not negotiate line speed with the other end. 213 * 0x0010 - 10Mbit/sec link. 214 * 0x0020 - 100Mbit/sec link. 215 * 0x0040 - 1000Mbit/sec link. 216 * 0x0100 - Do not negotiate flow control. 217 * 0x0200 - Enable RX flow control Y 218 * 0x0400 - Enable TX flow control Y (Tigon II NICs only). 219 * Default value is 0x0270, ie. enable link+flow 220 * control negotiation. Negotiating the highest 221 * possible link speed with RX flow control enabled. 222 * 223 * When disabling link speed negotiation, only one link 224 * speed is allowed to be specified! 225 * 226 * tx_coal_tick=<val> - number of coalescing clock ticks (us) allowed 227 * to wait for more packets to arive before 228 * interrupting the host, from the time the first 229 * packet arrives. 230 * 231 * rx_coal_tick=<val> - number of coalescing clock ticks (us) allowed 232 * to wait for more packets to arive in the transmit ring, 233 * before interrupting the host, after transmitting the 234 * first packet in the ring. 235 * 236 * max_tx_desc=<val> - maximum number of transmit descriptors 237 * (packets) transmitted before interrupting the host. 238 * 239 * max_rx_desc=<val> - maximum number of receive descriptors 240 * (packets) received before interrupting the host. 241 * 242 * tx_ratio=<val> - 7 bit value (0 - 63) specifying the split in 64th 243 * increments of the NIC's on board memory to be used for 244 * transmit and receive buffers. For the 1MB NIC app. 800KB 245 * is available, on the 1/2MB NIC app. 300KB is available. 246 * 68KB will always be available as a minimum for both 247 * directions. The default value is a 50/50 split. 248 * dis_pci_mem_inval=<val> - disable PCI memory write and invalidate 249 * operations, default (1) is to always disable this as 250 * that is what Alteon does on NT. I have not been able 251 * to measure any real performance differences with 252 * this on my systems. Set <val>=0 if you want to 253 * enable these operations. 254 * 255 * If you use more than one NIC, specify the parameters for the 256 * individual NICs with a comma, ie. trace=0,0x00001fff,0 you want to 257 * run tracing on NIC #2 but not on NIC #1 and #3. 258 * 259 * TODO: 260 * 261 * - Proper multicast support. 262 * - NIC dump support. 263 * - More tuning parameters. 264 * 265 * The mini ring is not used under Linux and I am not sure it makes sense 266 * to actually use it. 267 * 268 * New interrupt handler strategy: 269 * 270 * The old interrupt handler worked using the traditional method of 271 * replacing an skbuff with a new one when a packet arrives. However 272 * the rx rings do not need to contain a static number of buffer 273 * descriptors, thus it makes sense to move the memory allocation out 274 * of the main interrupt handler and do it in a bottom half handler 275 * and only allocate new buffers when the number of buffers in the 276 * ring is below a certain threshold. In order to avoid starving the 277 * NIC under heavy load it is however necessary to force allocation 278 * when hitting a minimum threshold. The strategy for alloction is as 279 * follows: 280 * 281 * RX_LOW_BUF_THRES - allocate buffers in the bottom half 282 * RX_PANIC_LOW_THRES - we are very low on buffers, allocate 283 * the buffers in the interrupt handler 284 * RX_RING_THRES - maximum number of buffers in the rx ring 285 * RX_MINI_THRES - maximum number of buffers in the mini ring 286 * RX_JUMBO_THRES - maximum number of buffers in the jumbo ring 287 * 288 * One advantagous side effect of this allocation approach is that the 289 * entire rx processing can be done without holding any spin lock 290 * since the rx rings and registers are totally independent of the tx 291 * ring and its registers. This of course includes the kmalloc's of 292 * new skb's. Thus start_xmit can run in parallel with rx processing 293 * and the memory allocation on SMP systems. 294 * 295 * Note that running the skb reallocation in a bottom half opens up 296 * another can of races which needs to be handled properly. In 297 * particular it can happen that the interrupt handler tries to run 298 * the reallocation while the bottom half is either running on another 299 * CPU or was interrupted on the same CPU. To get around this the 300 * driver uses bitops to prevent the reallocation routines from being 301 * reentered. 302 * 303 * TX handling can also be done without holding any spin lock, wheee 304 * this is fun! since tx_ret_csm is only written to by the interrupt 305 * handler. The case to be aware of is when shutting down the device 306 * and cleaning up where it is necessary to make sure that 307 * start_xmit() is not running while this is happening. Well DaveM 308 * informs me that this case is already protected against ... bye bye 309 * Mr. Spin Lock, it was nice to know you. 310 * 311 * TX interrupts are now partly disabled so the NIC will only generate 312 * TX interrupts for the number of coal ticks, not for the number of 313 * TX packets in the queue. This should reduce the number of TX only, 314 * ie. when no RX processing is done, interrupts seen. 315 */ 316 317 /* 318 * Threshold values for RX buffer allocation - the low water marks for 319 * when to start refilling the rings are set to 75% of the ring 320 * sizes. It seems to make sense to refill the rings entirely from the 321 * intrrupt handler once it gets below the panic threshold, that way 322 * we don't risk that the refilling is moved to another CPU when the 323 * one running the interrupt handler just got the slab code hot in its 324 * cache. 325 */ 326 #define RX_RING_SIZE 72 327 #define RX_MINI_SIZE 64 328 #define RX_JUMBO_SIZE 48 329 330 #define RX_PANIC_STD_THRES 16 331 #define RX_PANIC_STD_REFILL (3*RX_PANIC_STD_THRES)/2 332 #define RX_LOW_STD_THRES (3*RX_RING_SIZE)/4 333 #define RX_PANIC_MINI_THRES 12 334 #define RX_PANIC_MINI_REFILL (3*RX_PANIC_MINI_THRES)/2 335 #define RX_LOW_MINI_THRES (3*RX_MINI_SIZE)/4 336 #define RX_PANIC_JUMBO_THRES 6 337 #define RX_PANIC_JUMBO_REFILL (3*RX_PANIC_JUMBO_THRES)/2 338 #define RX_LOW_JUMBO_THRES (3*RX_JUMBO_SIZE)/4 339 340 341 /* 342 * Size of the mini ring entries, basically these just should be big 343 * enough to take TCP ACKs 344 */ 345 #define ACE_MINI_SIZE 100 346 347 #define ACE_MINI_BUFSIZE ACE_MINI_SIZE 348 #define ACE_STD_BUFSIZE (ACE_STD_MTU + ETH_HLEN + 4) 349 #define ACE_JUMBO_BUFSIZE (ACE_JUMBO_MTU + ETH_HLEN + 4) 350 351 /* 352 * There seems to be a magic difference in the effect between 995 and 996 353 * but little difference between 900 and 995 ... no idea why. 354 * 355 * There is now a default set of tuning parameters which is set, depending 356 * on whether or not the user enables Jumbo frames. It's assumed that if 357 * Jumbo frames are enabled, the user wants optimal tuning for that case. 358 */ 359 #define DEF_TX_COAL 400 /* 996 */ 360 #define DEF_TX_MAX_DESC 60 /* was 40 */ 361 #define DEF_RX_COAL 120 /* 1000 */ 362 #define DEF_RX_MAX_DESC 25 363 #define DEF_TX_RATIO 21 /* 24 */ 364 365 #define DEF_JUMBO_TX_COAL 20 366 #define DEF_JUMBO_TX_MAX_DESC 60 367 #define DEF_JUMBO_RX_COAL 30 368 #define DEF_JUMBO_RX_MAX_DESC 6 369 #define DEF_JUMBO_TX_RATIO 21 370 371 #if tigon2FwReleaseLocal < 20001118 372 /* 373 * Standard firmware and early modifications duplicate 374 * IRQ load without this flag (coal timer is never reset). 375 * Note that with this flag tx_coal should be less than 376 * time to xmit full tx ring. 377 * 400usec is not so bad for tx ring size of 128. 378 */ 379 #define TX_COAL_INTS_ONLY 1 /* worth it */ 380 #else 381 /* 382 * With modified firmware, this is not necessary, but still useful. 383 */ 384 #define TX_COAL_INTS_ONLY 1 385 #endif 386 387 #define DEF_TRACE 0 388 #define DEF_STAT (2 * TICKS_PER_SEC) 389 390 391 static int link_state[ACE_MAX_MOD_PARMS]; 392 static int trace[ACE_MAX_MOD_PARMS]; 393 static int tx_coal_tick[ACE_MAX_MOD_PARMS]; 394 static int rx_coal_tick[ACE_MAX_MOD_PARMS]; 395 static int max_tx_desc[ACE_MAX_MOD_PARMS]; 396 static int max_rx_desc[ACE_MAX_MOD_PARMS]; 397 static int tx_ratio[ACE_MAX_MOD_PARMS]; 398 static int dis_pci_mem_inval[ACE_MAX_MOD_PARMS] = {1, 1, 1, 1, 1, 1, 1, 1}; 399 400 MODULE_AUTHOR("Jes Sorensen <jes@trained-monkey.org>"); 401 MODULE_LICENSE("GPL"); 402 MODULE_DESCRIPTION("AceNIC/3C985/GA620 Gigabit Ethernet driver"); 403 #ifndef CONFIG_ACENIC_OMIT_TIGON_I 404 MODULE_FIRMWARE("acenic/tg1.bin"); 405 #endif 406 MODULE_FIRMWARE("acenic/tg2.bin"); 407 408 module_param_array_named(link, link_state, int, NULL, 0); 409 module_param_array(trace, int, NULL, 0); 410 module_param_array(tx_coal_tick, int, NULL, 0); 411 module_param_array(max_tx_desc, int, NULL, 0); 412 module_param_array(rx_coal_tick, int, NULL, 0); 413 module_param_array(max_rx_desc, int, NULL, 0); 414 module_param_array(tx_ratio, int, NULL, 0); 415 MODULE_PARM_DESC(link, "AceNIC/3C985/NetGear link state"); 416 MODULE_PARM_DESC(trace, "AceNIC/3C985/NetGear firmware trace level"); 417 MODULE_PARM_DESC(tx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first tx descriptor arrives"); 418 MODULE_PARM_DESC(max_tx_desc, "AceNIC/3C985/GA620 max number of transmit descriptors to wait"); 419 MODULE_PARM_DESC(rx_coal_tick, "AceNIC/3C985/GA620 max clock ticks to wait from first rx descriptor arrives"); 420 MODULE_PARM_DESC(max_rx_desc, "AceNIC/3C985/GA620 max number of receive descriptors to wait"); 421 MODULE_PARM_DESC(tx_ratio, "AceNIC/3C985/GA620 ratio of NIC memory used for TX/RX descriptors (range 0-63)"); 422 423 424 static const char version[] = 425 "acenic.c: v0.92 08/05/2002 Jes Sorensen, linux-acenic@SunSITE.dk\n" 426 " http://home.cern.ch/~jes/gige/acenic.html\n"; 427 428 static int ace_get_link_ksettings(struct net_device *, 429 struct ethtool_link_ksettings *); 430 static int ace_set_link_ksettings(struct net_device *, 431 const struct ethtool_link_ksettings *); 432 static void ace_get_drvinfo(struct net_device *, struct ethtool_drvinfo *); 433 434 static const struct ethtool_ops ace_ethtool_ops = { 435 .get_drvinfo = ace_get_drvinfo, 436 .get_link_ksettings = ace_get_link_ksettings, 437 .set_link_ksettings = ace_set_link_ksettings, 438 }; 439 440 static void ace_watchdog(struct net_device *dev, unsigned int txqueue); 441 442 static const struct net_device_ops ace_netdev_ops = { 443 .ndo_open = ace_open, 444 .ndo_stop = ace_close, 445 .ndo_tx_timeout = ace_watchdog, 446 .ndo_get_stats = ace_get_stats, 447 .ndo_start_xmit = ace_start_xmit, 448 .ndo_set_rx_mode = ace_set_multicast_list, 449 .ndo_validate_addr = eth_validate_addr, 450 .ndo_set_mac_address = ace_set_mac_addr, 451 .ndo_change_mtu = ace_change_mtu, 452 }; 453 454 static int acenic_probe_one(struct pci_dev *pdev, 455 const struct pci_device_id *id) 456 { 457 struct net_device *dev; 458 struct ace_private *ap; 459 static int boards_found; 460 461 dev = alloc_etherdev(sizeof(struct ace_private)); 462 if (dev == NULL) 463 return -ENOMEM; 464 465 SET_NETDEV_DEV(dev, &pdev->dev); 466 467 ap = netdev_priv(dev); 468 ap->ndev = dev; 469 ap->pdev = pdev; 470 ap->name = pci_name(pdev); 471 472 dev->features |= NETIF_F_SG | NETIF_F_IP_CSUM; 473 dev->features |= NETIF_F_HW_VLAN_CTAG_TX | NETIF_F_HW_VLAN_CTAG_RX; 474 475 dev->watchdog_timeo = 5*HZ; 476 dev->min_mtu = 0; 477 dev->max_mtu = ACE_JUMBO_MTU; 478 479 dev->netdev_ops = &ace_netdev_ops; 480 dev->ethtool_ops = &ace_ethtool_ops; 481 482 /* we only display this string ONCE */ 483 if (!boards_found) 484 printk(version); 485 486 if (pci_enable_device(pdev)) 487 goto fail_free_netdev; 488 489 /* 490 * Enable master mode before we start playing with the 491 * pci_command word since pci_set_master() will modify 492 * it. 493 */ 494 pci_set_master(pdev); 495 496 pci_read_config_word(pdev, PCI_COMMAND, &ap->pci_command); 497 498 /* OpenFirmware on Mac's does not set this - DOH.. */ 499 if (!(ap->pci_command & PCI_COMMAND_MEMORY)) { 500 printk(KERN_INFO "%s: Enabling PCI Memory Mapped " 501 "access - was not enabled by BIOS/Firmware\n", 502 ap->name); 503 ap->pci_command = ap->pci_command | PCI_COMMAND_MEMORY; 504 pci_write_config_word(ap->pdev, PCI_COMMAND, 505 ap->pci_command); 506 wmb(); 507 } 508 509 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &ap->pci_latency); 510 if (ap->pci_latency <= 0x40) { 511 ap->pci_latency = 0x40; 512 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, ap->pci_latency); 513 } 514 515 /* 516 * Remap the regs into kernel space - this is abuse of 517 * dev->base_addr since it was means for I/O port 518 * addresses but who gives a damn. 519 */ 520 dev->base_addr = pci_resource_start(pdev, 0); 521 ap->regs = ioremap(dev->base_addr, 0x4000); 522 if (!ap->regs) { 523 printk(KERN_ERR "%s: Unable to map I/O register, " 524 "AceNIC %i will be disabled.\n", 525 ap->name, boards_found); 526 goto fail_free_netdev; 527 } 528 529 switch(pdev->vendor) { 530 case PCI_VENDOR_ID_ALTEON: 531 if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9100T) { 532 printk(KERN_INFO "%s: Farallon PN9100-T ", 533 ap->name); 534 } else { 535 printk(KERN_INFO "%s: Alteon AceNIC ", 536 ap->name); 537 } 538 break; 539 case PCI_VENDOR_ID_3COM: 540 printk(KERN_INFO "%s: 3Com 3C985 ", ap->name); 541 break; 542 case PCI_VENDOR_ID_NETGEAR: 543 printk(KERN_INFO "%s: NetGear GA620 ", ap->name); 544 break; 545 case PCI_VENDOR_ID_DEC: 546 if (pdev->device == PCI_DEVICE_ID_FARALLON_PN9000SX) { 547 printk(KERN_INFO "%s: Farallon PN9000-SX ", 548 ap->name); 549 break; 550 } 551 fallthrough; 552 case PCI_VENDOR_ID_SGI: 553 printk(KERN_INFO "%s: SGI AceNIC ", ap->name); 554 break; 555 default: 556 printk(KERN_INFO "%s: Unknown AceNIC ", ap->name); 557 break; 558 } 559 560 printk("Gigabit Ethernet at 0x%08lx, ", dev->base_addr); 561 printk("irq %d\n", pdev->irq); 562 563 #ifdef CONFIG_ACENIC_OMIT_TIGON_I 564 if ((readl(&ap->regs->HostCtrl) >> 28) == 4) { 565 printk(KERN_ERR "%s: Driver compiled without Tigon I" 566 " support - NIC disabled\n", dev->name); 567 goto fail_uninit; 568 } 569 #endif 570 571 if (ace_allocate_descriptors(dev)) 572 goto fail_free_netdev; 573 574 #ifdef MODULE 575 if (boards_found >= ACE_MAX_MOD_PARMS) 576 ap->board_idx = BOARD_IDX_OVERFLOW; 577 else 578 ap->board_idx = boards_found; 579 #else 580 ap->board_idx = BOARD_IDX_STATIC; 581 #endif 582 583 if (ace_init(dev)) 584 goto fail_free_netdev; 585 586 if (register_netdev(dev)) { 587 printk(KERN_ERR "acenic: device registration failed\n"); 588 goto fail_uninit; 589 } 590 ap->name = dev->name; 591 592 if (ap->pci_using_dac) 593 dev->features |= NETIF_F_HIGHDMA; 594 595 pci_set_drvdata(pdev, dev); 596 597 boards_found++; 598 return 0; 599 600 fail_uninit: 601 ace_init_cleanup(dev); 602 fail_free_netdev: 603 free_netdev(dev); 604 return -ENODEV; 605 } 606 607 static void acenic_remove_one(struct pci_dev *pdev) 608 { 609 struct net_device *dev = pci_get_drvdata(pdev); 610 struct ace_private *ap = netdev_priv(dev); 611 struct ace_regs __iomem *regs = ap->regs; 612 short i; 613 614 unregister_netdev(dev); 615 616 writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl); 617 if (ap->version >= 2) 618 writel(readl(®s->CpuBCtrl) | CPU_HALT, ®s->CpuBCtrl); 619 620 /* 621 * This clears any pending interrupts 622 */ 623 writel(1, ®s->Mb0Lo); 624 readl(®s->CpuCtrl); /* flush */ 625 626 /* 627 * Make sure no other CPUs are processing interrupts 628 * on the card before the buffers are being released. 629 * Otherwise one might experience some `interesting' 630 * effects. 631 * 632 * Then release the RX buffers - jumbo buffers were 633 * already released in ace_close(). 634 */ 635 ace_sync_irq(dev->irq); 636 637 for (i = 0; i < RX_STD_RING_ENTRIES; i++) { 638 struct sk_buff *skb = ap->skb->rx_std_skbuff[i].skb; 639 640 if (skb) { 641 struct ring_info *ringp; 642 dma_addr_t mapping; 643 644 ringp = &ap->skb->rx_std_skbuff[i]; 645 mapping = dma_unmap_addr(ringp, mapping); 646 dma_unmap_page(&ap->pdev->dev, mapping, 647 ACE_STD_BUFSIZE, DMA_FROM_DEVICE); 648 649 ap->rx_std_ring[i].size = 0; 650 ap->skb->rx_std_skbuff[i].skb = NULL; 651 dev_kfree_skb(skb); 652 } 653 } 654 655 if (ap->version >= 2) { 656 for (i = 0; i < RX_MINI_RING_ENTRIES; i++) { 657 struct sk_buff *skb = ap->skb->rx_mini_skbuff[i].skb; 658 659 if (skb) { 660 struct ring_info *ringp; 661 dma_addr_t mapping; 662 663 ringp = &ap->skb->rx_mini_skbuff[i]; 664 mapping = dma_unmap_addr(ringp,mapping); 665 dma_unmap_page(&ap->pdev->dev, mapping, 666 ACE_MINI_BUFSIZE, 667 DMA_FROM_DEVICE); 668 669 ap->rx_mini_ring[i].size = 0; 670 ap->skb->rx_mini_skbuff[i].skb = NULL; 671 dev_kfree_skb(skb); 672 } 673 } 674 } 675 676 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) { 677 struct sk_buff *skb = ap->skb->rx_jumbo_skbuff[i].skb; 678 if (skb) { 679 struct ring_info *ringp; 680 dma_addr_t mapping; 681 682 ringp = &ap->skb->rx_jumbo_skbuff[i]; 683 mapping = dma_unmap_addr(ringp, mapping); 684 dma_unmap_page(&ap->pdev->dev, mapping, 685 ACE_JUMBO_BUFSIZE, DMA_FROM_DEVICE); 686 687 ap->rx_jumbo_ring[i].size = 0; 688 ap->skb->rx_jumbo_skbuff[i].skb = NULL; 689 dev_kfree_skb(skb); 690 } 691 } 692 693 ace_init_cleanup(dev); 694 free_netdev(dev); 695 } 696 697 static struct pci_driver acenic_pci_driver = { 698 .name = "acenic", 699 .id_table = acenic_pci_tbl, 700 .probe = acenic_probe_one, 701 .remove = acenic_remove_one, 702 }; 703 704 static void ace_free_descriptors(struct net_device *dev) 705 { 706 struct ace_private *ap = netdev_priv(dev); 707 int size; 708 709 if (ap->rx_std_ring != NULL) { 710 size = (sizeof(struct rx_desc) * 711 (RX_STD_RING_ENTRIES + 712 RX_JUMBO_RING_ENTRIES + 713 RX_MINI_RING_ENTRIES + 714 RX_RETURN_RING_ENTRIES)); 715 dma_free_coherent(&ap->pdev->dev, size, ap->rx_std_ring, 716 ap->rx_ring_base_dma); 717 ap->rx_std_ring = NULL; 718 ap->rx_jumbo_ring = NULL; 719 ap->rx_mini_ring = NULL; 720 ap->rx_return_ring = NULL; 721 } 722 if (ap->evt_ring != NULL) { 723 size = (sizeof(struct event) * EVT_RING_ENTRIES); 724 dma_free_coherent(&ap->pdev->dev, size, ap->evt_ring, 725 ap->evt_ring_dma); 726 ap->evt_ring = NULL; 727 } 728 if (ap->tx_ring != NULL && !ACE_IS_TIGON_I(ap)) { 729 size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES); 730 dma_free_coherent(&ap->pdev->dev, size, ap->tx_ring, 731 ap->tx_ring_dma); 732 } 733 ap->tx_ring = NULL; 734 735 if (ap->evt_prd != NULL) { 736 dma_free_coherent(&ap->pdev->dev, sizeof(u32), 737 (void *)ap->evt_prd, ap->evt_prd_dma); 738 ap->evt_prd = NULL; 739 } 740 if (ap->rx_ret_prd != NULL) { 741 dma_free_coherent(&ap->pdev->dev, sizeof(u32), 742 (void *)ap->rx_ret_prd, ap->rx_ret_prd_dma); 743 ap->rx_ret_prd = NULL; 744 } 745 if (ap->tx_csm != NULL) { 746 dma_free_coherent(&ap->pdev->dev, sizeof(u32), 747 (void *)ap->tx_csm, ap->tx_csm_dma); 748 ap->tx_csm = NULL; 749 } 750 } 751 752 753 static int ace_allocate_descriptors(struct net_device *dev) 754 { 755 struct ace_private *ap = netdev_priv(dev); 756 int size; 757 758 size = (sizeof(struct rx_desc) * 759 (RX_STD_RING_ENTRIES + 760 RX_JUMBO_RING_ENTRIES + 761 RX_MINI_RING_ENTRIES + 762 RX_RETURN_RING_ENTRIES)); 763 764 ap->rx_std_ring = dma_alloc_coherent(&ap->pdev->dev, size, 765 &ap->rx_ring_base_dma, GFP_KERNEL); 766 if (ap->rx_std_ring == NULL) 767 goto fail; 768 769 ap->rx_jumbo_ring = ap->rx_std_ring + RX_STD_RING_ENTRIES; 770 ap->rx_mini_ring = ap->rx_jumbo_ring + RX_JUMBO_RING_ENTRIES; 771 ap->rx_return_ring = ap->rx_mini_ring + RX_MINI_RING_ENTRIES; 772 773 size = (sizeof(struct event) * EVT_RING_ENTRIES); 774 775 ap->evt_ring = dma_alloc_coherent(&ap->pdev->dev, size, 776 &ap->evt_ring_dma, GFP_KERNEL); 777 778 if (ap->evt_ring == NULL) 779 goto fail; 780 781 /* 782 * Only allocate a host TX ring for the Tigon II, the Tigon I 783 * has to use PCI registers for this ;-( 784 */ 785 if (!ACE_IS_TIGON_I(ap)) { 786 size = (sizeof(struct tx_desc) * MAX_TX_RING_ENTRIES); 787 788 ap->tx_ring = dma_alloc_coherent(&ap->pdev->dev, size, 789 &ap->tx_ring_dma, GFP_KERNEL); 790 791 if (ap->tx_ring == NULL) 792 goto fail; 793 } 794 795 ap->evt_prd = dma_alloc_coherent(&ap->pdev->dev, sizeof(u32), 796 &ap->evt_prd_dma, GFP_KERNEL); 797 if (ap->evt_prd == NULL) 798 goto fail; 799 800 ap->rx_ret_prd = dma_alloc_coherent(&ap->pdev->dev, sizeof(u32), 801 &ap->rx_ret_prd_dma, GFP_KERNEL); 802 if (ap->rx_ret_prd == NULL) 803 goto fail; 804 805 ap->tx_csm = dma_alloc_coherent(&ap->pdev->dev, sizeof(u32), 806 &ap->tx_csm_dma, GFP_KERNEL); 807 if (ap->tx_csm == NULL) 808 goto fail; 809 810 return 0; 811 812 fail: 813 /* Clean up. */ 814 ace_init_cleanup(dev); 815 return 1; 816 } 817 818 819 /* 820 * Generic cleanup handling data allocated during init. Used when the 821 * module is unloaded or if an error occurs during initialization 822 */ 823 static void ace_init_cleanup(struct net_device *dev) 824 { 825 struct ace_private *ap; 826 827 ap = netdev_priv(dev); 828 829 ace_free_descriptors(dev); 830 831 if (ap->info) 832 dma_free_coherent(&ap->pdev->dev, sizeof(struct ace_info), 833 ap->info, ap->info_dma); 834 kfree(ap->skb); 835 kfree(ap->trace_buf); 836 837 if (dev->irq) 838 free_irq(dev->irq, dev); 839 840 iounmap(ap->regs); 841 } 842 843 844 /* 845 * Commands are considered to be slow. 846 */ 847 static inline void ace_issue_cmd(struct ace_regs __iomem *regs, struct cmd *cmd) 848 { 849 u32 idx; 850 851 idx = readl(®s->CmdPrd); 852 853 writel(*(u32 *)(cmd), ®s->CmdRng[idx]); 854 idx = (idx + 1) % CMD_RING_ENTRIES; 855 856 writel(idx, ®s->CmdPrd); 857 } 858 859 860 static int ace_init(struct net_device *dev) 861 { 862 struct ace_private *ap; 863 struct ace_regs __iomem *regs; 864 struct ace_info *info = NULL; 865 struct pci_dev *pdev; 866 unsigned long myjif; 867 u64 tmp_ptr; 868 u32 tig_ver, mac1, mac2, tmp, pci_state; 869 int board_idx, ecode = 0; 870 short i; 871 unsigned char cache_size; 872 873 ap = netdev_priv(dev); 874 regs = ap->regs; 875 876 board_idx = ap->board_idx; 877 878 /* 879 * aman@sgi.com - its useful to do a NIC reset here to 880 * address the `Firmware not running' problem subsequent 881 * to any crashes involving the NIC 882 */ 883 writel(HW_RESET | (HW_RESET << 24), ®s->HostCtrl); 884 readl(®s->HostCtrl); /* PCI write posting */ 885 udelay(5); 886 887 /* 888 * Don't access any other registers before this point! 889 */ 890 #ifdef __BIG_ENDIAN 891 /* 892 * This will most likely need BYTE_SWAP once we switch 893 * to using __raw_writel() 894 */ 895 writel((WORD_SWAP | CLR_INT | ((WORD_SWAP | CLR_INT) << 24)), 896 ®s->HostCtrl); 897 #else 898 writel((CLR_INT | WORD_SWAP | ((CLR_INT | WORD_SWAP) << 24)), 899 ®s->HostCtrl); 900 #endif 901 readl(®s->HostCtrl); /* PCI write posting */ 902 903 /* 904 * Stop the NIC CPU and clear pending interrupts 905 */ 906 writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl); 907 readl(®s->CpuCtrl); /* PCI write posting */ 908 writel(0, ®s->Mb0Lo); 909 910 tig_ver = readl(®s->HostCtrl) >> 28; 911 912 switch(tig_ver){ 913 #ifndef CONFIG_ACENIC_OMIT_TIGON_I 914 case 4: 915 case 5: 916 printk(KERN_INFO " Tigon I (Rev. %i), Firmware: %i.%i.%i, ", 917 tig_ver, ap->firmware_major, ap->firmware_minor, 918 ap->firmware_fix); 919 writel(0, ®s->LocalCtrl); 920 ap->version = 1; 921 ap->tx_ring_entries = TIGON_I_TX_RING_ENTRIES; 922 break; 923 #endif 924 case 6: 925 printk(KERN_INFO " Tigon II (Rev. %i), Firmware: %i.%i.%i, ", 926 tig_ver, ap->firmware_major, ap->firmware_minor, 927 ap->firmware_fix); 928 writel(readl(®s->CpuBCtrl) | CPU_HALT, ®s->CpuBCtrl); 929 readl(®s->CpuBCtrl); /* PCI write posting */ 930 /* 931 * The SRAM bank size does _not_ indicate the amount 932 * of memory on the card, it controls the _bank_ size! 933 * Ie. a 1MB AceNIC will have two banks of 512KB. 934 */ 935 writel(SRAM_BANK_512K, ®s->LocalCtrl); 936 writel(SYNC_SRAM_TIMING, ®s->MiscCfg); 937 ap->version = 2; 938 ap->tx_ring_entries = MAX_TX_RING_ENTRIES; 939 break; 940 default: 941 printk(KERN_WARNING " Unsupported Tigon version detected " 942 "(%i)\n", tig_ver); 943 ecode = -ENODEV; 944 goto init_error; 945 } 946 947 /* 948 * ModeStat _must_ be set after the SRAM settings as this change 949 * seems to corrupt the ModeStat and possible other registers. 950 * The SRAM settings survive resets and setting it to the same 951 * value a second time works as well. This is what caused the 952 * `Firmware not running' problem on the Tigon II. 953 */ 954 #ifdef __BIG_ENDIAN 955 writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | ACE_BYTE_SWAP_BD | 956 ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, ®s->ModeStat); 957 #else 958 writel(ACE_BYTE_SWAP_DMA | ACE_WARN | ACE_FATAL | 959 ACE_WORD_SWAP_BD | ACE_NO_JUMBO_FRAG, ®s->ModeStat); 960 #endif 961 readl(®s->ModeStat); /* PCI write posting */ 962 963 mac1 = 0; 964 for(i = 0; i < 4; i++) { 965 int t; 966 967 mac1 = mac1 << 8; 968 t = read_eeprom_byte(dev, 0x8c+i); 969 if (t < 0) { 970 ecode = -EIO; 971 goto init_error; 972 } else 973 mac1 |= (t & 0xff); 974 } 975 mac2 = 0; 976 for(i = 4; i < 8; i++) { 977 int t; 978 979 mac2 = mac2 << 8; 980 t = read_eeprom_byte(dev, 0x8c+i); 981 if (t < 0) { 982 ecode = -EIO; 983 goto init_error; 984 } else 985 mac2 |= (t & 0xff); 986 } 987 988 writel(mac1, ®s->MacAddrHi); 989 writel(mac2, ®s->MacAddrLo); 990 991 dev->dev_addr[0] = (mac1 >> 8) & 0xff; 992 dev->dev_addr[1] = mac1 & 0xff; 993 dev->dev_addr[2] = (mac2 >> 24) & 0xff; 994 dev->dev_addr[3] = (mac2 >> 16) & 0xff; 995 dev->dev_addr[4] = (mac2 >> 8) & 0xff; 996 dev->dev_addr[5] = mac2 & 0xff; 997 998 printk("MAC: %pM\n", dev->dev_addr); 999 1000 /* 1001 * Looks like this is necessary to deal with on all architectures, 1002 * even this %$#%$# N440BX Intel based thing doesn't get it right. 1003 * Ie. having two NICs in the machine, one will have the cache 1004 * line set at boot time, the other will not. 1005 */ 1006 pdev = ap->pdev; 1007 pci_read_config_byte(pdev, PCI_CACHE_LINE_SIZE, &cache_size); 1008 cache_size <<= 2; 1009 if (cache_size != SMP_CACHE_BYTES) { 1010 printk(KERN_INFO " PCI cache line size set incorrectly " 1011 "(%i bytes) by BIOS/FW, ", cache_size); 1012 if (cache_size > SMP_CACHE_BYTES) 1013 printk("expecting %i\n", SMP_CACHE_BYTES); 1014 else { 1015 printk("correcting to %i\n", SMP_CACHE_BYTES); 1016 pci_write_config_byte(pdev, PCI_CACHE_LINE_SIZE, 1017 SMP_CACHE_BYTES >> 2); 1018 } 1019 } 1020 1021 pci_state = readl(®s->PciState); 1022 printk(KERN_INFO " PCI bus width: %i bits, speed: %iMHz, " 1023 "latency: %i clks\n", 1024 (pci_state & PCI_32BIT) ? 32 : 64, 1025 (pci_state & PCI_66MHZ) ? 66 : 33, 1026 ap->pci_latency); 1027 1028 /* 1029 * Set the max DMA transfer size. Seems that for most systems 1030 * the performance is better when no MAX parameter is 1031 * set. However for systems enabling PCI write and invalidate, 1032 * DMA writes must be set to the L1 cache line size to get 1033 * optimal performance. 1034 * 1035 * The default is now to turn the PCI write and invalidate off 1036 * - that is what Alteon does for NT. 1037 */ 1038 tmp = READ_CMD_MEM | WRITE_CMD_MEM; 1039 if (ap->version >= 2) { 1040 tmp |= (MEM_READ_MULTIPLE | (pci_state & PCI_66MHZ)); 1041 /* 1042 * Tuning parameters only supported for 8 cards 1043 */ 1044 if (board_idx == BOARD_IDX_OVERFLOW || 1045 dis_pci_mem_inval[board_idx]) { 1046 if (ap->pci_command & PCI_COMMAND_INVALIDATE) { 1047 ap->pci_command &= ~PCI_COMMAND_INVALIDATE; 1048 pci_write_config_word(pdev, PCI_COMMAND, 1049 ap->pci_command); 1050 printk(KERN_INFO " Disabling PCI memory " 1051 "write and invalidate\n"); 1052 } 1053 } else if (ap->pci_command & PCI_COMMAND_INVALIDATE) { 1054 printk(KERN_INFO " PCI memory write & invalidate " 1055 "enabled by BIOS, enabling counter measures\n"); 1056 1057 switch(SMP_CACHE_BYTES) { 1058 case 16: 1059 tmp |= DMA_WRITE_MAX_16; 1060 break; 1061 case 32: 1062 tmp |= DMA_WRITE_MAX_32; 1063 break; 1064 case 64: 1065 tmp |= DMA_WRITE_MAX_64; 1066 break; 1067 case 128: 1068 tmp |= DMA_WRITE_MAX_128; 1069 break; 1070 default: 1071 printk(KERN_INFO " Cache line size %i not " 1072 "supported, PCI write and invalidate " 1073 "disabled\n", SMP_CACHE_BYTES); 1074 ap->pci_command &= ~PCI_COMMAND_INVALIDATE; 1075 pci_write_config_word(pdev, PCI_COMMAND, 1076 ap->pci_command); 1077 } 1078 } 1079 } 1080 1081 #ifdef __sparc__ 1082 /* 1083 * On this platform, we know what the best dma settings 1084 * are. We use 64-byte maximum bursts, because if we 1085 * burst larger than the cache line size (or even cross 1086 * a 64byte boundary in a single burst) the UltraSparc 1087 * PCI controller will disconnect at 64-byte multiples. 1088 * 1089 * Read-multiple will be properly enabled above, and when 1090 * set will give the PCI controller proper hints about 1091 * prefetching. 1092 */ 1093 tmp &= ~DMA_READ_WRITE_MASK; 1094 tmp |= DMA_READ_MAX_64; 1095 tmp |= DMA_WRITE_MAX_64; 1096 #endif 1097 #ifdef __alpha__ 1098 tmp &= ~DMA_READ_WRITE_MASK; 1099 tmp |= DMA_READ_MAX_128; 1100 /* 1101 * All the docs say MUST NOT. Well, I did. 1102 * Nothing terrible happens, if we load wrong size. 1103 * Bit w&i still works better! 1104 */ 1105 tmp |= DMA_WRITE_MAX_128; 1106 #endif 1107 writel(tmp, ®s->PciState); 1108 1109 #if 0 1110 /* 1111 * The Host PCI bus controller driver has to set FBB. 1112 * If all devices on that PCI bus support FBB, then the controller 1113 * can enable FBB support in the Host PCI Bus controller (or on 1114 * the PCI-PCI bridge if that applies). 1115 * -ggg 1116 */ 1117 /* 1118 * I have received reports from people having problems when this 1119 * bit is enabled. 1120 */ 1121 if (!(ap->pci_command & PCI_COMMAND_FAST_BACK)) { 1122 printk(KERN_INFO " Enabling PCI Fast Back to Back\n"); 1123 ap->pci_command |= PCI_COMMAND_FAST_BACK; 1124 pci_write_config_word(pdev, PCI_COMMAND, ap->pci_command); 1125 } 1126 #endif 1127 1128 /* 1129 * Configure DMA attributes. 1130 */ 1131 if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(64))) { 1132 ap->pci_using_dac = 1; 1133 } else if (!dma_set_mask(&pdev->dev, DMA_BIT_MASK(32))) { 1134 ap->pci_using_dac = 0; 1135 } else { 1136 ecode = -ENODEV; 1137 goto init_error; 1138 } 1139 1140 /* 1141 * Initialize the generic info block and the command+event rings 1142 * and the control blocks for the transmit and receive rings 1143 * as they need to be setup once and for all. 1144 */ 1145 if (!(info = dma_alloc_coherent(&ap->pdev->dev, sizeof(struct ace_info), 1146 &ap->info_dma, GFP_KERNEL))) { 1147 ecode = -EAGAIN; 1148 goto init_error; 1149 } 1150 ap->info = info; 1151 1152 /* 1153 * Get the memory for the skb rings. 1154 */ 1155 if (!(ap->skb = kzalloc(sizeof(struct ace_skb), GFP_KERNEL))) { 1156 ecode = -EAGAIN; 1157 goto init_error; 1158 } 1159 1160 ecode = request_irq(pdev->irq, ace_interrupt, IRQF_SHARED, 1161 DRV_NAME, dev); 1162 if (ecode) { 1163 printk(KERN_WARNING "%s: Requested IRQ %d is busy\n", 1164 DRV_NAME, pdev->irq); 1165 goto init_error; 1166 } else 1167 dev->irq = pdev->irq; 1168 1169 #ifdef INDEX_DEBUG 1170 spin_lock_init(&ap->debug_lock); 1171 ap->last_tx = ACE_TX_RING_ENTRIES(ap) - 1; 1172 ap->last_std_rx = 0; 1173 ap->last_mini_rx = 0; 1174 #endif 1175 1176 ecode = ace_load_firmware(dev); 1177 if (ecode) 1178 goto init_error; 1179 1180 ap->fw_running = 0; 1181 1182 tmp_ptr = ap->info_dma; 1183 writel(tmp_ptr >> 32, ®s->InfoPtrHi); 1184 writel(tmp_ptr & 0xffffffff, ®s->InfoPtrLo); 1185 1186 memset(ap->evt_ring, 0, EVT_RING_ENTRIES * sizeof(struct event)); 1187 1188 set_aceaddr(&info->evt_ctrl.rngptr, ap->evt_ring_dma); 1189 info->evt_ctrl.flags = 0; 1190 1191 *(ap->evt_prd) = 0; 1192 wmb(); 1193 set_aceaddr(&info->evt_prd_ptr, ap->evt_prd_dma); 1194 writel(0, ®s->EvtCsm); 1195 1196 set_aceaddr(&info->cmd_ctrl.rngptr, 0x100); 1197 info->cmd_ctrl.flags = 0; 1198 info->cmd_ctrl.max_len = 0; 1199 1200 for (i = 0; i < CMD_RING_ENTRIES; i++) 1201 writel(0, ®s->CmdRng[i]); 1202 1203 writel(0, ®s->CmdPrd); 1204 writel(0, ®s->CmdCsm); 1205 1206 tmp_ptr = ap->info_dma; 1207 tmp_ptr += (unsigned long) &(((struct ace_info *)0)->s.stats); 1208 set_aceaddr(&info->stats2_ptr, (dma_addr_t) tmp_ptr); 1209 1210 set_aceaddr(&info->rx_std_ctrl.rngptr, ap->rx_ring_base_dma); 1211 info->rx_std_ctrl.max_len = ACE_STD_BUFSIZE; 1212 info->rx_std_ctrl.flags = 1213 RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST; 1214 1215 memset(ap->rx_std_ring, 0, 1216 RX_STD_RING_ENTRIES * sizeof(struct rx_desc)); 1217 1218 for (i = 0; i < RX_STD_RING_ENTRIES; i++) 1219 ap->rx_std_ring[i].flags = BD_FLG_TCP_UDP_SUM; 1220 1221 ap->rx_std_skbprd = 0; 1222 atomic_set(&ap->cur_rx_bufs, 0); 1223 1224 set_aceaddr(&info->rx_jumbo_ctrl.rngptr, 1225 (ap->rx_ring_base_dma + 1226 (sizeof(struct rx_desc) * RX_STD_RING_ENTRIES))); 1227 info->rx_jumbo_ctrl.max_len = 0; 1228 info->rx_jumbo_ctrl.flags = 1229 RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST; 1230 1231 memset(ap->rx_jumbo_ring, 0, 1232 RX_JUMBO_RING_ENTRIES * sizeof(struct rx_desc)); 1233 1234 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) 1235 ap->rx_jumbo_ring[i].flags = BD_FLG_TCP_UDP_SUM | BD_FLG_JUMBO; 1236 1237 ap->rx_jumbo_skbprd = 0; 1238 atomic_set(&ap->cur_jumbo_bufs, 0); 1239 1240 memset(ap->rx_mini_ring, 0, 1241 RX_MINI_RING_ENTRIES * sizeof(struct rx_desc)); 1242 1243 if (ap->version >= 2) { 1244 set_aceaddr(&info->rx_mini_ctrl.rngptr, 1245 (ap->rx_ring_base_dma + 1246 (sizeof(struct rx_desc) * 1247 (RX_STD_RING_ENTRIES + 1248 RX_JUMBO_RING_ENTRIES)))); 1249 info->rx_mini_ctrl.max_len = ACE_MINI_SIZE; 1250 info->rx_mini_ctrl.flags = 1251 RCB_FLG_TCP_UDP_SUM|RCB_FLG_NO_PSEUDO_HDR|RCB_FLG_VLAN_ASSIST; 1252 1253 for (i = 0; i < RX_MINI_RING_ENTRIES; i++) 1254 ap->rx_mini_ring[i].flags = 1255 BD_FLG_TCP_UDP_SUM | BD_FLG_MINI; 1256 } else { 1257 set_aceaddr(&info->rx_mini_ctrl.rngptr, 0); 1258 info->rx_mini_ctrl.flags = RCB_FLG_RNG_DISABLE; 1259 info->rx_mini_ctrl.max_len = 0; 1260 } 1261 1262 ap->rx_mini_skbprd = 0; 1263 atomic_set(&ap->cur_mini_bufs, 0); 1264 1265 set_aceaddr(&info->rx_return_ctrl.rngptr, 1266 (ap->rx_ring_base_dma + 1267 (sizeof(struct rx_desc) * 1268 (RX_STD_RING_ENTRIES + 1269 RX_JUMBO_RING_ENTRIES + 1270 RX_MINI_RING_ENTRIES)))); 1271 info->rx_return_ctrl.flags = 0; 1272 info->rx_return_ctrl.max_len = RX_RETURN_RING_ENTRIES; 1273 1274 memset(ap->rx_return_ring, 0, 1275 RX_RETURN_RING_ENTRIES * sizeof(struct rx_desc)); 1276 1277 set_aceaddr(&info->rx_ret_prd_ptr, ap->rx_ret_prd_dma); 1278 *(ap->rx_ret_prd) = 0; 1279 1280 writel(TX_RING_BASE, ®s->WinBase); 1281 1282 if (ACE_IS_TIGON_I(ap)) { 1283 ap->tx_ring = (__force struct tx_desc *) regs->Window; 1284 for (i = 0; i < (TIGON_I_TX_RING_ENTRIES 1285 * sizeof(struct tx_desc)) / sizeof(u32); i++) 1286 writel(0, (__force void __iomem *)ap->tx_ring + i * 4); 1287 1288 set_aceaddr(&info->tx_ctrl.rngptr, TX_RING_BASE); 1289 } else { 1290 memset(ap->tx_ring, 0, 1291 MAX_TX_RING_ENTRIES * sizeof(struct tx_desc)); 1292 1293 set_aceaddr(&info->tx_ctrl.rngptr, ap->tx_ring_dma); 1294 } 1295 1296 info->tx_ctrl.max_len = ACE_TX_RING_ENTRIES(ap); 1297 tmp = RCB_FLG_TCP_UDP_SUM | RCB_FLG_NO_PSEUDO_HDR | RCB_FLG_VLAN_ASSIST; 1298 1299 /* 1300 * The Tigon I does not like having the TX ring in host memory ;-( 1301 */ 1302 if (!ACE_IS_TIGON_I(ap)) 1303 tmp |= RCB_FLG_TX_HOST_RING; 1304 #if TX_COAL_INTS_ONLY 1305 tmp |= RCB_FLG_COAL_INT_ONLY; 1306 #endif 1307 info->tx_ctrl.flags = tmp; 1308 1309 set_aceaddr(&info->tx_csm_ptr, ap->tx_csm_dma); 1310 1311 /* 1312 * Potential item for tuning parameter 1313 */ 1314 #if 0 /* NO */ 1315 writel(DMA_THRESH_16W, ®s->DmaReadCfg); 1316 writel(DMA_THRESH_16W, ®s->DmaWriteCfg); 1317 #else 1318 writel(DMA_THRESH_8W, ®s->DmaReadCfg); 1319 writel(DMA_THRESH_8W, ®s->DmaWriteCfg); 1320 #endif 1321 1322 writel(0, ®s->MaskInt); 1323 writel(1, ®s->IfIdx); 1324 #if 0 1325 /* 1326 * McKinley boxes do not like us fiddling with AssistState 1327 * this early 1328 */ 1329 writel(1, ®s->AssistState); 1330 #endif 1331 1332 writel(DEF_STAT, ®s->TuneStatTicks); 1333 writel(DEF_TRACE, ®s->TuneTrace); 1334 1335 ace_set_rxtx_parms(dev, 0); 1336 1337 if (board_idx == BOARD_IDX_OVERFLOW) { 1338 printk(KERN_WARNING "%s: more than %i NICs detected, " 1339 "ignoring module parameters!\n", 1340 ap->name, ACE_MAX_MOD_PARMS); 1341 } else if (board_idx >= 0) { 1342 if (tx_coal_tick[board_idx]) 1343 writel(tx_coal_tick[board_idx], 1344 ®s->TuneTxCoalTicks); 1345 if (max_tx_desc[board_idx]) 1346 writel(max_tx_desc[board_idx], ®s->TuneMaxTxDesc); 1347 1348 if (rx_coal_tick[board_idx]) 1349 writel(rx_coal_tick[board_idx], 1350 ®s->TuneRxCoalTicks); 1351 if (max_rx_desc[board_idx]) 1352 writel(max_rx_desc[board_idx], ®s->TuneMaxRxDesc); 1353 1354 if (trace[board_idx]) 1355 writel(trace[board_idx], ®s->TuneTrace); 1356 1357 if ((tx_ratio[board_idx] > 0) && (tx_ratio[board_idx] < 64)) 1358 writel(tx_ratio[board_idx], ®s->TxBufRat); 1359 } 1360 1361 /* 1362 * Default link parameters 1363 */ 1364 tmp = LNK_ENABLE | LNK_FULL_DUPLEX | LNK_1000MB | LNK_100MB | 1365 LNK_10MB | LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL | LNK_NEGOTIATE; 1366 if(ap->version >= 2) 1367 tmp |= LNK_TX_FLOW_CTL_Y; 1368 1369 /* 1370 * Override link default parameters 1371 */ 1372 if ((board_idx >= 0) && link_state[board_idx]) { 1373 int option = link_state[board_idx]; 1374 1375 tmp = LNK_ENABLE; 1376 1377 if (option & 0x01) { 1378 printk(KERN_INFO "%s: Setting half duplex link\n", 1379 ap->name); 1380 tmp &= ~LNK_FULL_DUPLEX; 1381 } 1382 if (option & 0x02) 1383 tmp &= ~LNK_NEGOTIATE; 1384 if (option & 0x10) 1385 tmp |= LNK_10MB; 1386 if (option & 0x20) 1387 tmp |= LNK_100MB; 1388 if (option & 0x40) 1389 tmp |= LNK_1000MB; 1390 if ((option & 0x70) == 0) { 1391 printk(KERN_WARNING "%s: No media speed specified, " 1392 "forcing auto negotiation\n", ap->name); 1393 tmp |= LNK_NEGOTIATE | LNK_1000MB | 1394 LNK_100MB | LNK_10MB; 1395 } 1396 if ((option & 0x100) == 0) 1397 tmp |= LNK_NEG_FCTL; 1398 else 1399 printk(KERN_INFO "%s: Disabling flow control " 1400 "negotiation\n", ap->name); 1401 if (option & 0x200) 1402 tmp |= LNK_RX_FLOW_CTL_Y; 1403 if ((option & 0x400) && (ap->version >= 2)) { 1404 printk(KERN_INFO "%s: Enabling TX flow control\n", 1405 ap->name); 1406 tmp |= LNK_TX_FLOW_CTL_Y; 1407 } 1408 } 1409 1410 ap->link = tmp; 1411 writel(tmp, ®s->TuneLink); 1412 if (ap->version >= 2) 1413 writel(tmp, ®s->TuneFastLink); 1414 1415 writel(ap->firmware_start, ®s->Pc); 1416 1417 writel(0, ®s->Mb0Lo); 1418 1419 /* 1420 * Set tx_csm before we start receiving interrupts, otherwise 1421 * the interrupt handler might think it is supposed to process 1422 * tx ints before we are up and running, which may cause a null 1423 * pointer access in the int handler. 1424 */ 1425 ap->cur_rx = 0; 1426 ap->tx_prd = *(ap->tx_csm) = ap->tx_ret_csm = 0; 1427 1428 wmb(); 1429 ace_set_txprd(regs, ap, 0); 1430 writel(0, ®s->RxRetCsm); 1431 1432 /* 1433 * Enable DMA engine now. 1434 * If we do this sooner, Mckinley box pukes. 1435 * I assume it's because Tigon II DMA engine wants to check 1436 * *something* even before the CPU is started. 1437 */ 1438 writel(1, ®s->AssistState); /* enable DMA */ 1439 1440 /* 1441 * Start the NIC CPU 1442 */ 1443 writel(readl(®s->CpuCtrl) & ~(CPU_HALT|CPU_TRACE), ®s->CpuCtrl); 1444 readl(®s->CpuCtrl); 1445 1446 /* 1447 * Wait for the firmware to spin up - max 3 seconds. 1448 */ 1449 myjif = jiffies + 3 * HZ; 1450 while (time_before(jiffies, myjif) && !ap->fw_running) 1451 cpu_relax(); 1452 1453 if (!ap->fw_running) { 1454 printk(KERN_ERR "%s: Firmware NOT running!\n", ap->name); 1455 1456 ace_dump_trace(ap); 1457 writel(readl(®s->CpuCtrl) | CPU_HALT, ®s->CpuCtrl); 1458 readl(®s->CpuCtrl); 1459 1460 /* aman@sgi.com - account for badly behaving firmware/NIC: 1461 * - have observed that the NIC may continue to generate 1462 * interrupts for some reason; attempt to stop it - halt 1463 * second CPU for Tigon II cards, and also clear Mb0 1464 * - if we're a module, we'll fail to load if this was 1465 * the only GbE card in the system => if the kernel does 1466 * see an interrupt from the NIC, code to handle it is 1467 * gone and OOps! - so free_irq also 1468 */ 1469 if (ap->version >= 2) 1470 writel(readl(®s->CpuBCtrl) | CPU_HALT, 1471 ®s->CpuBCtrl); 1472 writel(0, ®s->Mb0Lo); 1473 readl(®s->Mb0Lo); 1474 1475 ecode = -EBUSY; 1476 goto init_error; 1477 } 1478 1479 /* 1480 * We load the ring here as there seem to be no way to tell the 1481 * firmware to wipe the ring without re-initializing it. 1482 */ 1483 if (!test_and_set_bit(0, &ap->std_refill_busy)) 1484 ace_load_std_rx_ring(dev, RX_RING_SIZE); 1485 else 1486 printk(KERN_ERR "%s: Someone is busy refilling the RX ring\n", 1487 ap->name); 1488 if (ap->version >= 2) { 1489 if (!test_and_set_bit(0, &ap->mini_refill_busy)) 1490 ace_load_mini_rx_ring(dev, RX_MINI_SIZE); 1491 else 1492 printk(KERN_ERR "%s: Someone is busy refilling " 1493 "the RX mini ring\n", ap->name); 1494 } 1495 return 0; 1496 1497 init_error: 1498 ace_init_cleanup(dev); 1499 return ecode; 1500 } 1501 1502 1503 static void ace_set_rxtx_parms(struct net_device *dev, int jumbo) 1504 { 1505 struct ace_private *ap = netdev_priv(dev); 1506 struct ace_regs __iomem *regs = ap->regs; 1507 int board_idx = ap->board_idx; 1508 1509 if (board_idx >= 0) { 1510 if (!jumbo) { 1511 if (!tx_coal_tick[board_idx]) 1512 writel(DEF_TX_COAL, ®s->TuneTxCoalTicks); 1513 if (!max_tx_desc[board_idx]) 1514 writel(DEF_TX_MAX_DESC, ®s->TuneMaxTxDesc); 1515 if (!rx_coal_tick[board_idx]) 1516 writel(DEF_RX_COAL, ®s->TuneRxCoalTicks); 1517 if (!max_rx_desc[board_idx]) 1518 writel(DEF_RX_MAX_DESC, ®s->TuneMaxRxDesc); 1519 if (!tx_ratio[board_idx]) 1520 writel(DEF_TX_RATIO, ®s->TxBufRat); 1521 } else { 1522 if (!tx_coal_tick[board_idx]) 1523 writel(DEF_JUMBO_TX_COAL, 1524 ®s->TuneTxCoalTicks); 1525 if (!max_tx_desc[board_idx]) 1526 writel(DEF_JUMBO_TX_MAX_DESC, 1527 ®s->TuneMaxTxDesc); 1528 if (!rx_coal_tick[board_idx]) 1529 writel(DEF_JUMBO_RX_COAL, 1530 ®s->TuneRxCoalTicks); 1531 if (!max_rx_desc[board_idx]) 1532 writel(DEF_JUMBO_RX_MAX_DESC, 1533 ®s->TuneMaxRxDesc); 1534 if (!tx_ratio[board_idx]) 1535 writel(DEF_JUMBO_TX_RATIO, ®s->TxBufRat); 1536 } 1537 } 1538 } 1539 1540 1541 static void ace_watchdog(struct net_device *data, unsigned int txqueue) 1542 { 1543 struct net_device *dev = data; 1544 struct ace_private *ap = netdev_priv(dev); 1545 struct ace_regs __iomem *regs = ap->regs; 1546 1547 /* 1548 * We haven't received a stats update event for more than 2.5 1549 * seconds and there is data in the transmit queue, thus we 1550 * assume the card is stuck. 1551 */ 1552 if (*ap->tx_csm != ap->tx_ret_csm) { 1553 printk(KERN_WARNING "%s: Transmitter is stuck, %08x\n", 1554 dev->name, (unsigned int)readl(®s->HostCtrl)); 1555 /* This can happen due to ieee flow control. */ 1556 } else { 1557 printk(KERN_DEBUG "%s: BUG... transmitter died. Kicking it.\n", 1558 dev->name); 1559 #if 0 1560 netif_wake_queue(dev); 1561 #endif 1562 } 1563 } 1564 1565 1566 static void ace_tasklet(struct tasklet_struct *t) 1567 { 1568 struct ace_private *ap = from_tasklet(ap, t, ace_tasklet); 1569 struct net_device *dev = ap->ndev; 1570 int cur_size; 1571 1572 cur_size = atomic_read(&ap->cur_rx_bufs); 1573 if ((cur_size < RX_LOW_STD_THRES) && 1574 !test_and_set_bit(0, &ap->std_refill_busy)) { 1575 #ifdef DEBUG 1576 printk("refilling buffers (current %i)\n", cur_size); 1577 #endif 1578 ace_load_std_rx_ring(dev, RX_RING_SIZE - cur_size); 1579 } 1580 1581 if (ap->version >= 2) { 1582 cur_size = atomic_read(&ap->cur_mini_bufs); 1583 if ((cur_size < RX_LOW_MINI_THRES) && 1584 !test_and_set_bit(0, &ap->mini_refill_busy)) { 1585 #ifdef DEBUG 1586 printk("refilling mini buffers (current %i)\n", 1587 cur_size); 1588 #endif 1589 ace_load_mini_rx_ring(dev, RX_MINI_SIZE - cur_size); 1590 } 1591 } 1592 1593 cur_size = atomic_read(&ap->cur_jumbo_bufs); 1594 if (ap->jumbo && (cur_size < RX_LOW_JUMBO_THRES) && 1595 !test_and_set_bit(0, &ap->jumbo_refill_busy)) { 1596 #ifdef DEBUG 1597 printk("refilling jumbo buffers (current %i)\n", cur_size); 1598 #endif 1599 ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE - cur_size); 1600 } 1601 ap->tasklet_pending = 0; 1602 } 1603 1604 1605 /* 1606 * Copy the contents of the NIC's trace buffer to kernel memory. 1607 */ 1608 static void ace_dump_trace(struct ace_private *ap) 1609 { 1610 #if 0 1611 if (!ap->trace_buf) 1612 if (!(ap->trace_buf = kmalloc(ACE_TRACE_SIZE, GFP_KERNEL))) 1613 return; 1614 #endif 1615 } 1616 1617 1618 /* 1619 * Load the standard rx ring. 1620 * 1621 * Loading rings is safe without holding the spin lock since this is 1622 * done only before the device is enabled, thus no interrupts are 1623 * generated and by the interrupt handler/tasklet handler. 1624 */ 1625 static void ace_load_std_rx_ring(struct net_device *dev, int nr_bufs) 1626 { 1627 struct ace_private *ap = netdev_priv(dev); 1628 struct ace_regs __iomem *regs = ap->regs; 1629 short i, idx; 1630 1631 1632 prefetchw(&ap->cur_rx_bufs); 1633 1634 idx = ap->rx_std_skbprd; 1635 1636 for (i = 0; i < nr_bufs; i++) { 1637 struct sk_buff *skb; 1638 struct rx_desc *rd; 1639 dma_addr_t mapping; 1640 1641 skb = netdev_alloc_skb_ip_align(dev, ACE_STD_BUFSIZE); 1642 if (!skb) 1643 break; 1644 1645 mapping = dma_map_page(&ap->pdev->dev, 1646 virt_to_page(skb->data), 1647 offset_in_page(skb->data), 1648 ACE_STD_BUFSIZE, DMA_FROM_DEVICE); 1649 ap->skb->rx_std_skbuff[idx].skb = skb; 1650 dma_unmap_addr_set(&ap->skb->rx_std_skbuff[idx], 1651 mapping, mapping); 1652 1653 rd = &ap->rx_std_ring[idx]; 1654 set_aceaddr(&rd->addr, mapping); 1655 rd->size = ACE_STD_BUFSIZE; 1656 rd->idx = idx; 1657 idx = (idx + 1) % RX_STD_RING_ENTRIES; 1658 } 1659 1660 if (!i) 1661 goto error_out; 1662 1663 atomic_add(i, &ap->cur_rx_bufs); 1664 ap->rx_std_skbprd = idx; 1665 1666 if (ACE_IS_TIGON_I(ap)) { 1667 struct cmd cmd; 1668 cmd.evt = C_SET_RX_PRD_IDX; 1669 cmd.code = 0; 1670 cmd.idx = ap->rx_std_skbprd; 1671 ace_issue_cmd(regs, &cmd); 1672 } else { 1673 writel(idx, ®s->RxStdPrd); 1674 wmb(); 1675 } 1676 1677 out: 1678 clear_bit(0, &ap->std_refill_busy); 1679 return; 1680 1681 error_out: 1682 printk(KERN_INFO "Out of memory when allocating " 1683 "standard receive buffers\n"); 1684 goto out; 1685 } 1686 1687 1688 static void ace_load_mini_rx_ring(struct net_device *dev, int nr_bufs) 1689 { 1690 struct ace_private *ap = netdev_priv(dev); 1691 struct ace_regs __iomem *regs = ap->regs; 1692 short i, idx; 1693 1694 prefetchw(&ap->cur_mini_bufs); 1695 1696 idx = ap->rx_mini_skbprd; 1697 for (i = 0; i < nr_bufs; i++) { 1698 struct sk_buff *skb; 1699 struct rx_desc *rd; 1700 dma_addr_t mapping; 1701 1702 skb = netdev_alloc_skb_ip_align(dev, ACE_MINI_BUFSIZE); 1703 if (!skb) 1704 break; 1705 1706 mapping = dma_map_page(&ap->pdev->dev, 1707 virt_to_page(skb->data), 1708 offset_in_page(skb->data), 1709 ACE_MINI_BUFSIZE, DMA_FROM_DEVICE); 1710 ap->skb->rx_mini_skbuff[idx].skb = skb; 1711 dma_unmap_addr_set(&ap->skb->rx_mini_skbuff[idx], 1712 mapping, mapping); 1713 1714 rd = &ap->rx_mini_ring[idx]; 1715 set_aceaddr(&rd->addr, mapping); 1716 rd->size = ACE_MINI_BUFSIZE; 1717 rd->idx = idx; 1718 idx = (idx + 1) % RX_MINI_RING_ENTRIES; 1719 } 1720 1721 if (!i) 1722 goto error_out; 1723 1724 atomic_add(i, &ap->cur_mini_bufs); 1725 1726 ap->rx_mini_skbprd = idx; 1727 1728 writel(idx, ®s->RxMiniPrd); 1729 wmb(); 1730 1731 out: 1732 clear_bit(0, &ap->mini_refill_busy); 1733 return; 1734 error_out: 1735 printk(KERN_INFO "Out of memory when allocating " 1736 "mini receive buffers\n"); 1737 goto out; 1738 } 1739 1740 1741 /* 1742 * Load the jumbo rx ring, this may happen at any time if the MTU 1743 * is changed to a value > 1500. 1744 */ 1745 static void ace_load_jumbo_rx_ring(struct net_device *dev, int nr_bufs) 1746 { 1747 struct ace_private *ap = netdev_priv(dev); 1748 struct ace_regs __iomem *regs = ap->regs; 1749 short i, idx; 1750 1751 idx = ap->rx_jumbo_skbprd; 1752 1753 for (i = 0; i < nr_bufs; i++) { 1754 struct sk_buff *skb; 1755 struct rx_desc *rd; 1756 dma_addr_t mapping; 1757 1758 skb = netdev_alloc_skb_ip_align(dev, ACE_JUMBO_BUFSIZE); 1759 if (!skb) 1760 break; 1761 1762 mapping = dma_map_page(&ap->pdev->dev, 1763 virt_to_page(skb->data), 1764 offset_in_page(skb->data), 1765 ACE_JUMBO_BUFSIZE, DMA_FROM_DEVICE); 1766 ap->skb->rx_jumbo_skbuff[idx].skb = skb; 1767 dma_unmap_addr_set(&ap->skb->rx_jumbo_skbuff[idx], 1768 mapping, mapping); 1769 1770 rd = &ap->rx_jumbo_ring[idx]; 1771 set_aceaddr(&rd->addr, mapping); 1772 rd->size = ACE_JUMBO_BUFSIZE; 1773 rd->idx = idx; 1774 idx = (idx + 1) % RX_JUMBO_RING_ENTRIES; 1775 } 1776 1777 if (!i) 1778 goto error_out; 1779 1780 atomic_add(i, &ap->cur_jumbo_bufs); 1781 ap->rx_jumbo_skbprd = idx; 1782 1783 if (ACE_IS_TIGON_I(ap)) { 1784 struct cmd cmd; 1785 cmd.evt = C_SET_RX_JUMBO_PRD_IDX; 1786 cmd.code = 0; 1787 cmd.idx = ap->rx_jumbo_skbprd; 1788 ace_issue_cmd(regs, &cmd); 1789 } else { 1790 writel(idx, ®s->RxJumboPrd); 1791 wmb(); 1792 } 1793 1794 out: 1795 clear_bit(0, &ap->jumbo_refill_busy); 1796 return; 1797 error_out: 1798 if (net_ratelimit()) 1799 printk(KERN_INFO "Out of memory when allocating " 1800 "jumbo receive buffers\n"); 1801 goto out; 1802 } 1803 1804 1805 /* 1806 * All events are considered to be slow (RX/TX ints do not generate 1807 * events) and are handled here, outside the main interrupt handler, 1808 * to reduce the size of the handler. 1809 */ 1810 static u32 ace_handle_event(struct net_device *dev, u32 evtcsm, u32 evtprd) 1811 { 1812 struct ace_private *ap; 1813 1814 ap = netdev_priv(dev); 1815 1816 while (evtcsm != evtprd) { 1817 switch (ap->evt_ring[evtcsm].evt) { 1818 case E_FW_RUNNING: 1819 printk(KERN_INFO "%s: Firmware up and running\n", 1820 ap->name); 1821 ap->fw_running = 1; 1822 wmb(); 1823 break; 1824 case E_STATS_UPDATED: 1825 break; 1826 case E_LNK_STATE: 1827 { 1828 u16 code = ap->evt_ring[evtcsm].code; 1829 switch (code) { 1830 case E_C_LINK_UP: 1831 { 1832 u32 state = readl(&ap->regs->GigLnkState); 1833 printk(KERN_WARNING "%s: Optical link UP " 1834 "(%s Duplex, Flow Control: %s%s)\n", 1835 ap->name, 1836 state & LNK_FULL_DUPLEX ? "Full":"Half", 1837 state & LNK_TX_FLOW_CTL_Y ? "TX " : "", 1838 state & LNK_RX_FLOW_CTL_Y ? "RX" : ""); 1839 break; 1840 } 1841 case E_C_LINK_DOWN: 1842 printk(KERN_WARNING "%s: Optical link DOWN\n", 1843 ap->name); 1844 break; 1845 case E_C_LINK_10_100: 1846 printk(KERN_WARNING "%s: 10/100BaseT link " 1847 "UP\n", ap->name); 1848 break; 1849 default: 1850 printk(KERN_ERR "%s: Unknown optical link " 1851 "state %02x\n", ap->name, code); 1852 } 1853 break; 1854 } 1855 case E_ERROR: 1856 switch(ap->evt_ring[evtcsm].code) { 1857 case E_C_ERR_INVAL_CMD: 1858 printk(KERN_ERR "%s: invalid command error\n", 1859 ap->name); 1860 break; 1861 case E_C_ERR_UNIMP_CMD: 1862 printk(KERN_ERR "%s: unimplemented command " 1863 "error\n", ap->name); 1864 break; 1865 case E_C_ERR_BAD_CFG: 1866 printk(KERN_ERR "%s: bad config error\n", 1867 ap->name); 1868 break; 1869 default: 1870 printk(KERN_ERR "%s: unknown error %02x\n", 1871 ap->name, ap->evt_ring[evtcsm].code); 1872 } 1873 break; 1874 case E_RESET_JUMBO_RNG: 1875 { 1876 int i; 1877 for (i = 0; i < RX_JUMBO_RING_ENTRIES; i++) { 1878 if (ap->skb->rx_jumbo_skbuff[i].skb) { 1879 ap->rx_jumbo_ring[i].size = 0; 1880 set_aceaddr(&ap->rx_jumbo_ring[i].addr, 0); 1881 dev_kfree_skb(ap->skb->rx_jumbo_skbuff[i].skb); 1882 ap->skb->rx_jumbo_skbuff[i].skb = NULL; 1883 } 1884 } 1885 1886 if (ACE_IS_TIGON_I(ap)) { 1887 struct cmd cmd; 1888 cmd.evt = C_SET_RX_JUMBO_PRD_IDX; 1889 cmd.code = 0; 1890 cmd.idx = 0; 1891 ace_issue_cmd(ap->regs, &cmd); 1892 } else { 1893 writel(0, &((ap->regs)->RxJumboPrd)); 1894 wmb(); 1895 } 1896 1897 ap->jumbo = 0; 1898 ap->rx_jumbo_skbprd = 0; 1899 printk(KERN_INFO "%s: Jumbo ring flushed\n", 1900 ap->name); 1901 clear_bit(0, &ap->jumbo_refill_busy); 1902 break; 1903 } 1904 default: 1905 printk(KERN_ERR "%s: Unhandled event 0x%02x\n", 1906 ap->name, ap->evt_ring[evtcsm].evt); 1907 } 1908 evtcsm = (evtcsm + 1) % EVT_RING_ENTRIES; 1909 } 1910 1911 return evtcsm; 1912 } 1913 1914 1915 static void ace_rx_int(struct net_device *dev, u32 rxretprd, u32 rxretcsm) 1916 { 1917 struct ace_private *ap = netdev_priv(dev); 1918 u32 idx; 1919 int mini_count = 0, std_count = 0; 1920 1921 idx = rxretcsm; 1922 1923 prefetchw(&ap->cur_rx_bufs); 1924 prefetchw(&ap->cur_mini_bufs); 1925 1926 while (idx != rxretprd) { 1927 struct ring_info *rip; 1928 struct sk_buff *skb; 1929 struct rx_desc *retdesc; 1930 u32 skbidx; 1931 int bd_flags, desc_type, mapsize; 1932 u16 csum; 1933 1934 1935 /* make sure the rx descriptor isn't read before rxretprd */ 1936 if (idx == rxretcsm) 1937 rmb(); 1938 1939 retdesc = &ap->rx_return_ring[idx]; 1940 skbidx = retdesc->idx; 1941 bd_flags = retdesc->flags; 1942 desc_type = bd_flags & (BD_FLG_JUMBO | BD_FLG_MINI); 1943 1944 switch(desc_type) { 1945 /* 1946 * Normal frames do not have any flags set 1947 * 1948 * Mini and normal frames arrive frequently, 1949 * so use a local counter to avoid doing 1950 * atomic operations for each packet arriving. 1951 */ 1952 case 0: 1953 rip = &ap->skb->rx_std_skbuff[skbidx]; 1954 mapsize = ACE_STD_BUFSIZE; 1955 std_count++; 1956 break; 1957 case BD_FLG_JUMBO: 1958 rip = &ap->skb->rx_jumbo_skbuff[skbidx]; 1959 mapsize = ACE_JUMBO_BUFSIZE; 1960 atomic_dec(&ap->cur_jumbo_bufs); 1961 break; 1962 case BD_FLG_MINI: 1963 rip = &ap->skb->rx_mini_skbuff[skbidx]; 1964 mapsize = ACE_MINI_BUFSIZE; 1965 mini_count++; 1966 break; 1967 default: 1968 printk(KERN_INFO "%s: unknown frame type (0x%02x) " 1969 "returned by NIC\n", dev->name, 1970 retdesc->flags); 1971 goto error; 1972 } 1973 1974 skb = rip->skb; 1975 rip->skb = NULL; 1976 dma_unmap_page(&ap->pdev->dev, dma_unmap_addr(rip, mapping), 1977 mapsize, DMA_FROM_DEVICE); 1978 skb_put(skb, retdesc->size); 1979 1980 /* 1981 * Fly baby, fly! 1982 */ 1983 csum = retdesc->tcp_udp_csum; 1984 1985 skb->protocol = eth_type_trans(skb, dev); 1986 1987 /* 1988 * Instead of forcing the poor tigon mips cpu to calculate 1989 * pseudo hdr checksum, we do this ourselves. 1990 */ 1991 if (bd_flags & BD_FLG_TCP_UDP_SUM) { 1992 skb->csum = htons(csum); 1993 skb->ip_summed = CHECKSUM_COMPLETE; 1994 } else { 1995 skb_checksum_none_assert(skb); 1996 } 1997 1998 /* send it up */ 1999 if ((bd_flags & BD_FLG_VLAN_TAG)) 2000 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), retdesc->vlan); 2001 netif_rx(skb); 2002 2003 dev->stats.rx_packets++; 2004 dev->stats.rx_bytes += retdesc->size; 2005 2006 idx = (idx + 1) % RX_RETURN_RING_ENTRIES; 2007 } 2008 2009 atomic_sub(std_count, &ap->cur_rx_bufs); 2010 if (!ACE_IS_TIGON_I(ap)) 2011 atomic_sub(mini_count, &ap->cur_mini_bufs); 2012 2013 out: 2014 /* 2015 * According to the documentation RxRetCsm is obsolete with 2016 * the 12.3.x Firmware - my Tigon I NICs seem to disagree! 2017 */ 2018 if (ACE_IS_TIGON_I(ap)) { 2019 writel(idx, &ap->regs->RxRetCsm); 2020 } 2021 ap->cur_rx = idx; 2022 2023 return; 2024 error: 2025 idx = rxretprd; 2026 goto out; 2027 } 2028 2029 2030 static inline void ace_tx_int(struct net_device *dev, 2031 u32 txcsm, u32 idx) 2032 { 2033 struct ace_private *ap = netdev_priv(dev); 2034 2035 do { 2036 struct sk_buff *skb; 2037 struct tx_ring_info *info; 2038 2039 info = ap->skb->tx_skbuff + idx; 2040 skb = info->skb; 2041 2042 if (dma_unmap_len(info, maplen)) { 2043 dma_unmap_page(&ap->pdev->dev, 2044 dma_unmap_addr(info, mapping), 2045 dma_unmap_len(info, maplen), 2046 DMA_TO_DEVICE); 2047 dma_unmap_len_set(info, maplen, 0); 2048 } 2049 2050 if (skb) { 2051 dev->stats.tx_packets++; 2052 dev->stats.tx_bytes += skb->len; 2053 dev_consume_skb_irq(skb); 2054 info->skb = NULL; 2055 } 2056 2057 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap); 2058 } while (idx != txcsm); 2059 2060 if (netif_queue_stopped(dev)) 2061 netif_wake_queue(dev); 2062 2063 wmb(); 2064 ap->tx_ret_csm = txcsm; 2065 2066 /* So... tx_ret_csm is advanced _after_ check for device wakeup. 2067 * 2068 * We could try to make it before. In this case we would get 2069 * the following race condition: hard_start_xmit on other cpu 2070 * enters after we advanced tx_ret_csm and fills space, 2071 * which we have just freed, so that we make illegal device wakeup. 2072 * There is no good way to workaround this (at entry 2073 * to ace_start_xmit detects this condition and prevents 2074 * ring corruption, but it is not a good workaround.) 2075 * 2076 * When tx_ret_csm is advanced after, we wake up device _only_ 2077 * if we really have some space in ring (though the core doing 2078 * hard_start_xmit can see full ring for some period and has to 2079 * synchronize.) Superb. 2080 * BUT! We get another subtle race condition. hard_start_xmit 2081 * may think that ring is full between wakeup and advancing 2082 * tx_ret_csm and will stop device instantly! It is not so bad. 2083 * We are guaranteed that there is something in ring, so that 2084 * the next irq will resume transmission. To speedup this we could 2085 * mark descriptor, which closes ring with BD_FLG_COAL_NOW 2086 * (see ace_start_xmit). 2087 * 2088 * Well, this dilemma exists in all lock-free devices. 2089 * We, following scheme used in drivers by Donald Becker, 2090 * select the least dangerous. 2091 * --ANK 2092 */ 2093 } 2094 2095 2096 static irqreturn_t ace_interrupt(int irq, void *dev_id) 2097 { 2098 struct net_device *dev = (struct net_device *)dev_id; 2099 struct ace_private *ap = netdev_priv(dev); 2100 struct ace_regs __iomem *regs = ap->regs; 2101 u32 idx; 2102 u32 txcsm, rxretcsm, rxretprd; 2103 u32 evtcsm, evtprd; 2104 2105 /* 2106 * In case of PCI shared interrupts or spurious interrupts, 2107 * we want to make sure it is actually our interrupt before 2108 * spending any time in here. 2109 */ 2110 if (!(readl(®s->HostCtrl) & IN_INT)) 2111 return IRQ_NONE; 2112 2113 /* 2114 * ACK intr now. Otherwise we will lose updates to rx_ret_prd, 2115 * which happened _after_ rxretprd = *ap->rx_ret_prd; but before 2116 * writel(0, ®s->Mb0Lo). 2117 * 2118 * "IRQ avoidance" recommended in docs applies to IRQs served 2119 * threads and it is wrong even for that case. 2120 */ 2121 writel(0, ®s->Mb0Lo); 2122 readl(®s->Mb0Lo); 2123 2124 /* 2125 * There is no conflict between transmit handling in 2126 * start_xmit and receive processing, thus there is no reason 2127 * to take a spin lock for RX handling. Wait until we start 2128 * working on the other stuff - hey we don't need a spin lock 2129 * anymore. 2130 */ 2131 rxretprd = *ap->rx_ret_prd; 2132 rxretcsm = ap->cur_rx; 2133 2134 if (rxretprd != rxretcsm) 2135 ace_rx_int(dev, rxretprd, rxretcsm); 2136 2137 txcsm = *ap->tx_csm; 2138 idx = ap->tx_ret_csm; 2139 2140 if (txcsm != idx) { 2141 /* 2142 * If each skb takes only one descriptor this check degenerates 2143 * to identity, because new space has just been opened. 2144 * But if skbs are fragmented we must check that this index 2145 * update releases enough of space, otherwise we just 2146 * wait for device to make more work. 2147 */ 2148 if (!tx_ring_full(ap, txcsm, ap->tx_prd)) 2149 ace_tx_int(dev, txcsm, idx); 2150 } 2151 2152 evtcsm = readl(®s->EvtCsm); 2153 evtprd = *ap->evt_prd; 2154 2155 if (evtcsm != evtprd) { 2156 evtcsm = ace_handle_event(dev, evtcsm, evtprd); 2157 writel(evtcsm, ®s->EvtCsm); 2158 } 2159 2160 /* 2161 * This has to go last in the interrupt handler and run with 2162 * the spin lock released ... what lock? 2163 */ 2164 if (netif_running(dev)) { 2165 int cur_size; 2166 int run_tasklet = 0; 2167 2168 cur_size = atomic_read(&ap->cur_rx_bufs); 2169 if (cur_size < RX_LOW_STD_THRES) { 2170 if ((cur_size < RX_PANIC_STD_THRES) && 2171 !test_and_set_bit(0, &ap->std_refill_busy)) { 2172 #ifdef DEBUG 2173 printk("low on std buffers %i\n", cur_size); 2174 #endif 2175 ace_load_std_rx_ring(dev, 2176 RX_RING_SIZE - cur_size); 2177 } else 2178 run_tasklet = 1; 2179 } 2180 2181 if (!ACE_IS_TIGON_I(ap)) { 2182 cur_size = atomic_read(&ap->cur_mini_bufs); 2183 if (cur_size < RX_LOW_MINI_THRES) { 2184 if ((cur_size < RX_PANIC_MINI_THRES) && 2185 !test_and_set_bit(0, 2186 &ap->mini_refill_busy)) { 2187 #ifdef DEBUG 2188 printk("low on mini buffers %i\n", 2189 cur_size); 2190 #endif 2191 ace_load_mini_rx_ring(dev, 2192 RX_MINI_SIZE - cur_size); 2193 } else 2194 run_tasklet = 1; 2195 } 2196 } 2197 2198 if (ap->jumbo) { 2199 cur_size = atomic_read(&ap->cur_jumbo_bufs); 2200 if (cur_size < RX_LOW_JUMBO_THRES) { 2201 if ((cur_size < RX_PANIC_JUMBO_THRES) && 2202 !test_and_set_bit(0, 2203 &ap->jumbo_refill_busy)){ 2204 #ifdef DEBUG 2205 printk("low on jumbo buffers %i\n", 2206 cur_size); 2207 #endif 2208 ace_load_jumbo_rx_ring(dev, 2209 RX_JUMBO_SIZE - cur_size); 2210 } else 2211 run_tasklet = 1; 2212 } 2213 } 2214 if (run_tasklet && !ap->tasklet_pending) { 2215 ap->tasklet_pending = 1; 2216 tasklet_schedule(&ap->ace_tasklet); 2217 } 2218 } 2219 2220 return IRQ_HANDLED; 2221 } 2222 2223 static int ace_open(struct net_device *dev) 2224 { 2225 struct ace_private *ap = netdev_priv(dev); 2226 struct ace_regs __iomem *regs = ap->regs; 2227 struct cmd cmd; 2228 2229 if (!(ap->fw_running)) { 2230 printk(KERN_WARNING "%s: Firmware not running!\n", dev->name); 2231 return -EBUSY; 2232 } 2233 2234 writel(dev->mtu + ETH_HLEN + 4, ®s->IfMtu); 2235 2236 cmd.evt = C_CLEAR_STATS; 2237 cmd.code = 0; 2238 cmd.idx = 0; 2239 ace_issue_cmd(regs, &cmd); 2240 2241 cmd.evt = C_HOST_STATE; 2242 cmd.code = C_C_STACK_UP; 2243 cmd.idx = 0; 2244 ace_issue_cmd(regs, &cmd); 2245 2246 if (ap->jumbo && 2247 !test_and_set_bit(0, &ap->jumbo_refill_busy)) 2248 ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE); 2249 2250 if (dev->flags & IFF_PROMISC) { 2251 cmd.evt = C_SET_PROMISC_MODE; 2252 cmd.code = C_C_PROMISC_ENABLE; 2253 cmd.idx = 0; 2254 ace_issue_cmd(regs, &cmd); 2255 2256 ap->promisc = 1; 2257 }else 2258 ap->promisc = 0; 2259 ap->mcast_all = 0; 2260 2261 #if 0 2262 cmd.evt = C_LNK_NEGOTIATION; 2263 cmd.code = 0; 2264 cmd.idx = 0; 2265 ace_issue_cmd(regs, &cmd); 2266 #endif 2267 2268 netif_start_queue(dev); 2269 2270 /* 2271 * Setup the bottom half rx ring refill handler 2272 */ 2273 tasklet_setup(&ap->ace_tasklet, ace_tasklet); 2274 return 0; 2275 } 2276 2277 2278 static int ace_close(struct net_device *dev) 2279 { 2280 struct ace_private *ap = netdev_priv(dev); 2281 struct ace_regs __iomem *regs = ap->regs; 2282 struct cmd cmd; 2283 unsigned long flags; 2284 short i; 2285 2286 /* 2287 * Without (or before) releasing irq and stopping hardware, this 2288 * is an absolute non-sense, by the way. It will be reset instantly 2289 * by the first irq. 2290 */ 2291 netif_stop_queue(dev); 2292 2293 2294 if (ap->promisc) { 2295 cmd.evt = C_SET_PROMISC_MODE; 2296 cmd.code = C_C_PROMISC_DISABLE; 2297 cmd.idx = 0; 2298 ace_issue_cmd(regs, &cmd); 2299 ap->promisc = 0; 2300 } 2301 2302 cmd.evt = C_HOST_STATE; 2303 cmd.code = C_C_STACK_DOWN; 2304 cmd.idx = 0; 2305 ace_issue_cmd(regs, &cmd); 2306 2307 tasklet_kill(&ap->ace_tasklet); 2308 2309 /* 2310 * Make sure one CPU is not processing packets while 2311 * buffers are being released by another. 2312 */ 2313 2314 local_irq_save(flags); 2315 ace_mask_irq(dev); 2316 2317 for (i = 0; i < ACE_TX_RING_ENTRIES(ap); i++) { 2318 struct sk_buff *skb; 2319 struct tx_ring_info *info; 2320 2321 info = ap->skb->tx_skbuff + i; 2322 skb = info->skb; 2323 2324 if (dma_unmap_len(info, maplen)) { 2325 if (ACE_IS_TIGON_I(ap)) { 2326 /* NB: TIGON_1 is special, tx_ring is in io space */ 2327 struct tx_desc __iomem *tx; 2328 tx = (__force struct tx_desc __iomem *) &ap->tx_ring[i]; 2329 writel(0, &tx->addr.addrhi); 2330 writel(0, &tx->addr.addrlo); 2331 writel(0, &tx->flagsize); 2332 } else 2333 memset(ap->tx_ring + i, 0, 2334 sizeof(struct tx_desc)); 2335 dma_unmap_page(&ap->pdev->dev, 2336 dma_unmap_addr(info, mapping), 2337 dma_unmap_len(info, maplen), 2338 DMA_TO_DEVICE); 2339 dma_unmap_len_set(info, maplen, 0); 2340 } 2341 if (skb) { 2342 dev_kfree_skb(skb); 2343 info->skb = NULL; 2344 } 2345 } 2346 2347 if (ap->jumbo) { 2348 cmd.evt = C_RESET_JUMBO_RNG; 2349 cmd.code = 0; 2350 cmd.idx = 0; 2351 ace_issue_cmd(regs, &cmd); 2352 } 2353 2354 ace_unmask_irq(dev); 2355 local_irq_restore(flags); 2356 2357 return 0; 2358 } 2359 2360 2361 static inline dma_addr_t 2362 ace_map_tx_skb(struct ace_private *ap, struct sk_buff *skb, 2363 struct sk_buff *tail, u32 idx) 2364 { 2365 dma_addr_t mapping; 2366 struct tx_ring_info *info; 2367 2368 mapping = dma_map_page(&ap->pdev->dev, virt_to_page(skb->data), 2369 offset_in_page(skb->data), skb->len, 2370 DMA_TO_DEVICE); 2371 2372 info = ap->skb->tx_skbuff + idx; 2373 info->skb = tail; 2374 dma_unmap_addr_set(info, mapping, mapping); 2375 dma_unmap_len_set(info, maplen, skb->len); 2376 return mapping; 2377 } 2378 2379 2380 static inline void 2381 ace_load_tx_bd(struct ace_private *ap, struct tx_desc *desc, u64 addr, 2382 u32 flagsize, u32 vlan_tag) 2383 { 2384 #if !USE_TX_COAL_NOW 2385 flagsize &= ~BD_FLG_COAL_NOW; 2386 #endif 2387 2388 if (ACE_IS_TIGON_I(ap)) { 2389 struct tx_desc __iomem *io = (__force struct tx_desc __iomem *) desc; 2390 writel(addr >> 32, &io->addr.addrhi); 2391 writel(addr & 0xffffffff, &io->addr.addrlo); 2392 writel(flagsize, &io->flagsize); 2393 writel(vlan_tag, &io->vlanres); 2394 } else { 2395 desc->addr.addrhi = addr >> 32; 2396 desc->addr.addrlo = addr; 2397 desc->flagsize = flagsize; 2398 desc->vlanres = vlan_tag; 2399 } 2400 } 2401 2402 2403 static netdev_tx_t ace_start_xmit(struct sk_buff *skb, 2404 struct net_device *dev) 2405 { 2406 struct ace_private *ap = netdev_priv(dev); 2407 struct ace_regs __iomem *regs = ap->regs; 2408 struct tx_desc *desc; 2409 u32 idx, flagsize; 2410 unsigned long maxjiff = jiffies + 3*HZ; 2411 2412 restart: 2413 idx = ap->tx_prd; 2414 2415 if (tx_ring_full(ap, ap->tx_ret_csm, idx)) 2416 goto overflow; 2417 2418 if (!skb_shinfo(skb)->nr_frags) { 2419 dma_addr_t mapping; 2420 u32 vlan_tag = 0; 2421 2422 mapping = ace_map_tx_skb(ap, skb, skb, idx); 2423 flagsize = (skb->len << 16) | (BD_FLG_END); 2424 if (skb->ip_summed == CHECKSUM_PARTIAL) 2425 flagsize |= BD_FLG_TCP_UDP_SUM; 2426 if (skb_vlan_tag_present(skb)) { 2427 flagsize |= BD_FLG_VLAN_TAG; 2428 vlan_tag = skb_vlan_tag_get(skb); 2429 } 2430 desc = ap->tx_ring + idx; 2431 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap); 2432 2433 /* Look at ace_tx_int for explanations. */ 2434 if (tx_ring_full(ap, ap->tx_ret_csm, idx)) 2435 flagsize |= BD_FLG_COAL_NOW; 2436 2437 ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag); 2438 } else { 2439 dma_addr_t mapping; 2440 u32 vlan_tag = 0; 2441 int i, len = 0; 2442 2443 mapping = ace_map_tx_skb(ap, skb, NULL, idx); 2444 flagsize = (skb_headlen(skb) << 16); 2445 if (skb->ip_summed == CHECKSUM_PARTIAL) 2446 flagsize |= BD_FLG_TCP_UDP_SUM; 2447 if (skb_vlan_tag_present(skb)) { 2448 flagsize |= BD_FLG_VLAN_TAG; 2449 vlan_tag = skb_vlan_tag_get(skb); 2450 } 2451 2452 ace_load_tx_bd(ap, ap->tx_ring + idx, mapping, flagsize, vlan_tag); 2453 2454 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap); 2455 2456 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2457 const skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2458 struct tx_ring_info *info; 2459 2460 len += skb_frag_size(frag); 2461 info = ap->skb->tx_skbuff + idx; 2462 desc = ap->tx_ring + idx; 2463 2464 mapping = skb_frag_dma_map(&ap->pdev->dev, frag, 0, 2465 skb_frag_size(frag), 2466 DMA_TO_DEVICE); 2467 2468 flagsize = skb_frag_size(frag) << 16; 2469 if (skb->ip_summed == CHECKSUM_PARTIAL) 2470 flagsize |= BD_FLG_TCP_UDP_SUM; 2471 idx = (idx + 1) % ACE_TX_RING_ENTRIES(ap); 2472 2473 if (i == skb_shinfo(skb)->nr_frags - 1) { 2474 flagsize |= BD_FLG_END; 2475 if (tx_ring_full(ap, ap->tx_ret_csm, idx)) 2476 flagsize |= BD_FLG_COAL_NOW; 2477 2478 /* 2479 * Only the last fragment frees 2480 * the skb! 2481 */ 2482 info->skb = skb; 2483 } else { 2484 info->skb = NULL; 2485 } 2486 dma_unmap_addr_set(info, mapping, mapping); 2487 dma_unmap_len_set(info, maplen, skb_frag_size(frag)); 2488 ace_load_tx_bd(ap, desc, mapping, flagsize, vlan_tag); 2489 } 2490 } 2491 2492 wmb(); 2493 ap->tx_prd = idx; 2494 ace_set_txprd(regs, ap, idx); 2495 2496 if (flagsize & BD_FLG_COAL_NOW) { 2497 netif_stop_queue(dev); 2498 2499 /* 2500 * A TX-descriptor producer (an IRQ) might have gotten 2501 * between, making the ring free again. Since xmit is 2502 * serialized, this is the only situation we have to 2503 * re-test. 2504 */ 2505 if (!tx_ring_full(ap, ap->tx_ret_csm, idx)) 2506 netif_wake_queue(dev); 2507 } 2508 2509 return NETDEV_TX_OK; 2510 2511 overflow: 2512 /* 2513 * This race condition is unavoidable with lock-free drivers. 2514 * We wake up the queue _before_ tx_prd is advanced, so that we can 2515 * enter hard_start_xmit too early, while tx ring still looks closed. 2516 * This happens ~1-4 times per 100000 packets, so that we can allow 2517 * to loop syncing to other CPU. Probably, we need an additional 2518 * wmb() in ace_tx_intr as well. 2519 * 2520 * Note that this race is relieved by reserving one more entry 2521 * in tx ring than it is necessary (see original non-SG driver). 2522 * However, with SG we need to reserve 2*MAX_SKB_FRAGS+1, which 2523 * is already overkill. 2524 * 2525 * Alternative is to return with 1 not throttling queue. In this 2526 * case loop becomes longer, no more useful effects. 2527 */ 2528 if (time_before(jiffies, maxjiff)) { 2529 barrier(); 2530 cpu_relax(); 2531 goto restart; 2532 } 2533 2534 /* The ring is stuck full. */ 2535 printk(KERN_WARNING "%s: Transmit ring stuck full\n", dev->name); 2536 return NETDEV_TX_BUSY; 2537 } 2538 2539 2540 static int ace_change_mtu(struct net_device *dev, int new_mtu) 2541 { 2542 struct ace_private *ap = netdev_priv(dev); 2543 struct ace_regs __iomem *regs = ap->regs; 2544 2545 writel(new_mtu + ETH_HLEN + 4, ®s->IfMtu); 2546 dev->mtu = new_mtu; 2547 2548 if (new_mtu > ACE_STD_MTU) { 2549 if (!(ap->jumbo)) { 2550 printk(KERN_INFO "%s: Enabling Jumbo frame " 2551 "support\n", dev->name); 2552 ap->jumbo = 1; 2553 if (!test_and_set_bit(0, &ap->jumbo_refill_busy)) 2554 ace_load_jumbo_rx_ring(dev, RX_JUMBO_SIZE); 2555 ace_set_rxtx_parms(dev, 1); 2556 } 2557 } else { 2558 while (test_and_set_bit(0, &ap->jumbo_refill_busy)); 2559 ace_sync_irq(dev->irq); 2560 ace_set_rxtx_parms(dev, 0); 2561 if (ap->jumbo) { 2562 struct cmd cmd; 2563 2564 cmd.evt = C_RESET_JUMBO_RNG; 2565 cmd.code = 0; 2566 cmd.idx = 0; 2567 ace_issue_cmd(regs, &cmd); 2568 } 2569 } 2570 2571 return 0; 2572 } 2573 2574 static int ace_get_link_ksettings(struct net_device *dev, 2575 struct ethtool_link_ksettings *cmd) 2576 { 2577 struct ace_private *ap = netdev_priv(dev); 2578 struct ace_regs __iomem *regs = ap->regs; 2579 u32 link; 2580 u32 supported; 2581 2582 memset(cmd, 0, sizeof(struct ethtool_link_ksettings)); 2583 2584 supported = (SUPPORTED_10baseT_Half | SUPPORTED_10baseT_Full | 2585 SUPPORTED_100baseT_Half | SUPPORTED_100baseT_Full | 2586 SUPPORTED_1000baseT_Half | SUPPORTED_1000baseT_Full | 2587 SUPPORTED_Autoneg | SUPPORTED_FIBRE); 2588 2589 cmd->base.port = PORT_FIBRE; 2590 2591 link = readl(®s->GigLnkState); 2592 if (link & LNK_1000MB) { 2593 cmd->base.speed = SPEED_1000; 2594 } else { 2595 link = readl(®s->FastLnkState); 2596 if (link & LNK_100MB) 2597 cmd->base.speed = SPEED_100; 2598 else if (link & LNK_10MB) 2599 cmd->base.speed = SPEED_10; 2600 else 2601 cmd->base.speed = 0; 2602 } 2603 if (link & LNK_FULL_DUPLEX) 2604 cmd->base.duplex = DUPLEX_FULL; 2605 else 2606 cmd->base.duplex = DUPLEX_HALF; 2607 2608 if (link & LNK_NEGOTIATE) 2609 cmd->base.autoneg = AUTONEG_ENABLE; 2610 else 2611 cmd->base.autoneg = AUTONEG_DISABLE; 2612 2613 #if 0 2614 /* 2615 * Current struct ethtool_cmd is insufficient 2616 */ 2617 ecmd->trace = readl(®s->TuneTrace); 2618 2619 ecmd->txcoal = readl(®s->TuneTxCoalTicks); 2620 ecmd->rxcoal = readl(®s->TuneRxCoalTicks); 2621 #endif 2622 2623 ethtool_convert_legacy_u32_to_link_mode(cmd->link_modes.supported, 2624 supported); 2625 2626 return 0; 2627 } 2628 2629 static int ace_set_link_ksettings(struct net_device *dev, 2630 const struct ethtool_link_ksettings *cmd) 2631 { 2632 struct ace_private *ap = netdev_priv(dev); 2633 struct ace_regs __iomem *regs = ap->regs; 2634 u32 link, speed; 2635 2636 link = readl(®s->GigLnkState); 2637 if (link & LNK_1000MB) 2638 speed = SPEED_1000; 2639 else { 2640 link = readl(®s->FastLnkState); 2641 if (link & LNK_100MB) 2642 speed = SPEED_100; 2643 else if (link & LNK_10MB) 2644 speed = SPEED_10; 2645 else 2646 speed = SPEED_100; 2647 } 2648 2649 link = LNK_ENABLE | LNK_1000MB | LNK_100MB | LNK_10MB | 2650 LNK_RX_FLOW_CTL_Y | LNK_NEG_FCTL; 2651 if (!ACE_IS_TIGON_I(ap)) 2652 link |= LNK_TX_FLOW_CTL_Y; 2653 if (cmd->base.autoneg == AUTONEG_ENABLE) 2654 link |= LNK_NEGOTIATE; 2655 if (cmd->base.speed != speed) { 2656 link &= ~(LNK_1000MB | LNK_100MB | LNK_10MB); 2657 switch (cmd->base.speed) { 2658 case SPEED_1000: 2659 link |= LNK_1000MB; 2660 break; 2661 case SPEED_100: 2662 link |= LNK_100MB; 2663 break; 2664 case SPEED_10: 2665 link |= LNK_10MB; 2666 break; 2667 } 2668 } 2669 2670 if (cmd->base.duplex == DUPLEX_FULL) 2671 link |= LNK_FULL_DUPLEX; 2672 2673 if (link != ap->link) { 2674 struct cmd cmd; 2675 printk(KERN_INFO "%s: Renegotiating link state\n", 2676 dev->name); 2677 2678 ap->link = link; 2679 writel(link, ®s->TuneLink); 2680 if (!ACE_IS_TIGON_I(ap)) 2681 writel(link, ®s->TuneFastLink); 2682 wmb(); 2683 2684 cmd.evt = C_LNK_NEGOTIATION; 2685 cmd.code = 0; 2686 cmd.idx = 0; 2687 ace_issue_cmd(regs, &cmd); 2688 } 2689 return 0; 2690 } 2691 2692 static void ace_get_drvinfo(struct net_device *dev, 2693 struct ethtool_drvinfo *info) 2694 { 2695 struct ace_private *ap = netdev_priv(dev); 2696 2697 strlcpy(info->driver, "acenic", sizeof(info->driver)); 2698 snprintf(info->fw_version, sizeof(info->version), "%i.%i.%i", 2699 ap->firmware_major, ap->firmware_minor, ap->firmware_fix); 2700 2701 if (ap->pdev) 2702 strlcpy(info->bus_info, pci_name(ap->pdev), 2703 sizeof(info->bus_info)); 2704 2705 } 2706 2707 /* 2708 * Set the hardware MAC address. 2709 */ 2710 static int ace_set_mac_addr(struct net_device *dev, void *p) 2711 { 2712 struct ace_private *ap = netdev_priv(dev); 2713 struct ace_regs __iomem *regs = ap->regs; 2714 struct sockaddr *addr=p; 2715 u8 *da; 2716 struct cmd cmd; 2717 2718 if(netif_running(dev)) 2719 return -EBUSY; 2720 2721 memcpy(dev->dev_addr, addr->sa_data,dev->addr_len); 2722 2723 da = (u8 *)dev->dev_addr; 2724 2725 writel(da[0] << 8 | da[1], ®s->MacAddrHi); 2726 writel((da[2] << 24) | (da[3] << 16) | (da[4] << 8) | da[5], 2727 ®s->MacAddrLo); 2728 2729 cmd.evt = C_SET_MAC_ADDR; 2730 cmd.code = 0; 2731 cmd.idx = 0; 2732 ace_issue_cmd(regs, &cmd); 2733 2734 return 0; 2735 } 2736 2737 2738 static void ace_set_multicast_list(struct net_device *dev) 2739 { 2740 struct ace_private *ap = netdev_priv(dev); 2741 struct ace_regs __iomem *regs = ap->regs; 2742 struct cmd cmd; 2743 2744 if ((dev->flags & IFF_ALLMULTI) && !(ap->mcast_all)) { 2745 cmd.evt = C_SET_MULTICAST_MODE; 2746 cmd.code = C_C_MCAST_ENABLE; 2747 cmd.idx = 0; 2748 ace_issue_cmd(regs, &cmd); 2749 ap->mcast_all = 1; 2750 } else if (ap->mcast_all) { 2751 cmd.evt = C_SET_MULTICAST_MODE; 2752 cmd.code = C_C_MCAST_DISABLE; 2753 cmd.idx = 0; 2754 ace_issue_cmd(regs, &cmd); 2755 ap->mcast_all = 0; 2756 } 2757 2758 if ((dev->flags & IFF_PROMISC) && !(ap->promisc)) { 2759 cmd.evt = C_SET_PROMISC_MODE; 2760 cmd.code = C_C_PROMISC_ENABLE; 2761 cmd.idx = 0; 2762 ace_issue_cmd(regs, &cmd); 2763 ap->promisc = 1; 2764 }else if (!(dev->flags & IFF_PROMISC) && (ap->promisc)) { 2765 cmd.evt = C_SET_PROMISC_MODE; 2766 cmd.code = C_C_PROMISC_DISABLE; 2767 cmd.idx = 0; 2768 ace_issue_cmd(regs, &cmd); 2769 ap->promisc = 0; 2770 } 2771 2772 /* 2773 * For the time being multicast relies on the upper layers 2774 * filtering it properly. The Firmware does not allow one to 2775 * set the entire multicast list at a time and keeping track of 2776 * it here is going to be messy. 2777 */ 2778 if (!netdev_mc_empty(dev) && !ap->mcast_all) { 2779 cmd.evt = C_SET_MULTICAST_MODE; 2780 cmd.code = C_C_MCAST_ENABLE; 2781 cmd.idx = 0; 2782 ace_issue_cmd(regs, &cmd); 2783 }else if (!ap->mcast_all) { 2784 cmd.evt = C_SET_MULTICAST_MODE; 2785 cmd.code = C_C_MCAST_DISABLE; 2786 cmd.idx = 0; 2787 ace_issue_cmd(regs, &cmd); 2788 } 2789 } 2790 2791 2792 static struct net_device_stats *ace_get_stats(struct net_device *dev) 2793 { 2794 struct ace_private *ap = netdev_priv(dev); 2795 struct ace_mac_stats __iomem *mac_stats = 2796 (struct ace_mac_stats __iomem *)ap->regs->Stats; 2797 2798 dev->stats.rx_missed_errors = readl(&mac_stats->drop_space); 2799 dev->stats.multicast = readl(&mac_stats->kept_mc); 2800 dev->stats.collisions = readl(&mac_stats->coll); 2801 2802 return &dev->stats; 2803 } 2804 2805 2806 static void ace_copy(struct ace_regs __iomem *regs, const __be32 *src, 2807 u32 dest, int size) 2808 { 2809 void __iomem *tdest; 2810 short tsize, i; 2811 2812 if (size <= 0) 2813 return; 2814 2815 while (size > 0) { 2816 tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1), 2817 min_t(u32, size, ACE_WINDOW_SIZE)); 2818 tdest = (void __iomem *) ®s->Window + 2819 (dest & (ACE_WINDOW_SIZE - 1)); 2820 writel(dest & ~(ACE_WINDOW_SIZE - 1), ®s->WinBase); 2821 for (i = 0; i < (tsize / 4); i++) { 2822 /* Firmware is big-endian */ 2823 writel(be32_to_cpup(src), tdest); 2824 src++; 2825 tdest += 4; 2826 dest += 4; 2827 size -= 4; 2828 } 2829 } 2830 } 2831 2832 2833 static void ace_clear(struct ace_regs __iomem *regs, u32 dest, int size) 2834 { 2835 void __iomem *tdest; 2836 short tsize = 0, i; 2837 2838 if (size <= 0) 2839 return; 2840 2841 while (size > 0) { 2842 tsize = min_t(u32, ((~dest & (ACE_WINDOW_SIZE - 1)) + 1), 2843 min_t(u32, size, ACE_WINDOW_SIZE)); 2844 tdest = (void __iomem *) ®s->Window + 2845 (dest & (ACE_WINDOW_SIZE - 1)); 2846 writel(dest & ~(ACE_WINDOW_SIZE - 1), ®s->WinBase); 2847 2848 for (i = 0; i < (tsize / 4); i++) { 2849 writel(0, tdest + i*4); 2850 } 2851 2852 dest += tsize; 2853 size -= tsize; 2854 } 2855 } 2856 2857 2858 /* 2859 * Download the firmware into the SRAM on the NIC 2860 * 2861 * This operation requires the NIC to be halted and is performed with 2862 * interrupts disabled and with the spinlock hold. 2863 */ 2864 static int ace_load_firmware(struct net_device *dev) 2865 { 2866 const struct firmware *fw; 2867 const char *fw_name = "acenic/tg2.bin"; 2868 struct ace_private *ap = netdev_priv(dev); 2869 struct ace_regs __iomem *regs = ap->regs; 2870 const __be32 *fw_data; 2871 u32 load_addr; 2872 int ret; 2873 2874 if (!(readl(®s->CpuCtrl) & CPU_HALTED)) { 2875 printk(KERN_ERR "%s: trying to download firmware while the " 2876 "CPU is running!\n", ap->name); 2877 return -EFAULT; 2878 } 2879 2880 if (ACE_IS_TIGON_I(ap)) 2881 fw_name = "acenic/tg1.bin"; 2882 2883 ret = request_firmware(&fw, fw_name, &ap->pdev->dev); 2884 if (ret) { 2885 printk(KERN_ERR "%s: Failed to load firmware \"%s\"\n", 2886 ap->name, fw_name); 2887 return ret; 2888 } 2889 2890 fw_data = (void *)fw->data; 2891 2892 /* Firmware blob starts with version numbers, followed by 2893 load and start address. Remainder is the blob to be loaded 2894 contiguously from load address. We don't bother to represent 2895 the BSS/SBSS sections any more, since we were clearing the 2896 whole thing anyway. */ 2897 ap->firmware_major = fw->data[0]; 2898 ap->firmware_minor = fw->data[1]; 2899 ap->firmware_fix = fw->data[2]; 2900 2901 ap->firmware_start = be32_to_cpu(fw_data[1]); 2902 if (ap->firmware_start < 0x4000 || ap->firmware_start >= 0x80000) { 2903 printk(KERN_ERR "%s: bogus load address %08x in \"%s\"\n", 2904 ap->name, ap->firmware_start, fw_name); 2905 ret = -EINVAL; 2906 goto out; 2907 } 2908 2909 load_addr = be32_to_cpu(fw_data[2]); 2910 if (load_addr < 0x4000 || load_addr >= 0x80000) { 2911 printk(KERN_ERR "%s: bogus load address %08x in \"%s\"\n", 2912 ap->name, load_addr, fw_name); 2913 ret = -EINVAL; 2914 goto out; 2915 } 2916 2917 /* 2918 * Do not try to clear more than 512KiB or we end up seeing 2919 * funny things on NICs with only 512KiB SRAM 2920 */ 2921 ace_clear(regs, 0x2000, 0x80000-0x2000); 2922 ace_copy(regs, &fw_data[3], load_addr, fw->size-12); 2923 out: 2924 release_firmware(fw); 2925 return ret; 2926 } 2927 2928 2929 /* 2930 * The eeprom on the AceNIC is an Atmel i2c EEPROM. 2931 * 2932 * Accessing the EEPROM is `interesting' to say the least - don't read 2933 * this code right after dinner. 2934 * 2935 * This is all about black magic and bit-banging the device .... I 2936 * wonder in what hospital they have put the guy who designed the i2c 2937 * specs. 2938 * 2939 * Oh yes, this is only the beginning! 2940 * 2941 * Thanks to Stevarino Webinski for helping tracking down the bugs in the 2942 * code i2c readout code by beta testing all my hacks. 2943 */ 2944 static void eeprom_start(struct ace_regs __iomem *regs) 2945 { 2946 u32 local; 2947 2948 readl(®s->LocalCtrl); 2949 udelay(ACE_SHORT_DELAY); 2950 local = readl(®s->LocalCtrl); 2951 local |= EEPROM_DATA_OUT | EEPROM_WRITE_ENABLE; 2952 writel(local, ®s->LocalCtrl); 2953 readl(®s->LocalCtrl); 2954 mb(); 2955 udelay(ACE_SHORT_DELAY); 2956 local |= EEPROM_CLK_OUT; 2957 writel(local, ®s->LocalCtrl); 2958 readl(®s->LocalCtrl); 2959 mb(); 2960 udelay(ACE_SHORT_DELAY); 2961 local &= ~EEPROM_DATA_OUT; 2962 writel(local, ®s->LocalCtrl); 2963 readl(®s->LocalCtrl); 2964 mb(); 2965 udelay(ACE_SHORT_DELAY); 2966 local &= ~EEPROM_CLK_OUT; 2967 writel(local, ®s->LocalCtrl); 2968 readl(®s->LocalCtrl); 2969 mb(); 2970 } 2971 2972 2973 static void eeprom_prep(struct ace_regs __iomem *regs, u8 magic) 2974 { 2975 short i; 2976 u32 local; 2977 2978 udelay(ACE_SHORT_DELAY); 2979 local = readl(®s->LocalCtrl); 2980 local &= ~EEPROM_DATA_OUT; 2981 local |= EEPROM_WRITE_ENABLE; 2982 writel(local, ®s->LocalCtrl); 2983 readl(®s->LocalCtrl); 2984 mb(); 2985 2986 for (i = 0; i < 8; i++, magic <<= 1) { 2987 udelay(ACE_SHORT_DELAY); 2988 if (magic & 0x80) 2989 local |= EEPROM_DATA_OUT; 2990 else 2991 local &= ~EEPROM_DATA_OUT; 2992 writel(local, ®s->LocalCtrl); 2993 readl(®s->LocalCtrl); 2994 mb(); 2995 2996 udelay(ACE_SHORT_DELAY); 2997 local |= EEPROM_CLK_OUT; 2998 writel(local, ®s->LocalCtrl); 2999 readl(®s->LocalCtrl); 3000 mb(); 3001 udelay(ACE_SHORT_DELAY); 3002 local &= ~(EEPROM_CLK_OUT | EEPROM_DATA_OUT); 3003 writel(local, ®s->LocalCtrl); 3004 readl(®s->LocalCtrl); 3005 mb(); 3006 } 3007 } 3008 3009 3010 static int eeprom_check_ack(struct ace_regs __iomem *regs) 3011 { 3012 int state; 3013 u32 local; 3014 3015 local = readl(®s->LocalCtrl); 3016 local &= ~EEPROM_WRITE_ENABLE; 3017 writel(local, ®s->LocalCtrl); 3018 readl(®s->LocalCtrl); 3019 mb(); 3020 udelay(ACE_LONG_DELAY); 3021 local |= EEPROM_CLK_OUT; 3022 writel(local, ®s->LocalCtrl); 3023 readl(®s->LocalCtrl); 3024 mb(); 3025 udelay(ACE_SHORT_DELAY); 3026 /* sample data in middle of high clk */ 3027 state = (readl(®s->LocalCtrl) & EEPROM_DATA_IN) != 0; 3028 udelay(ACE_SHORT_DELAY); 3029 mb(); 3030 writel(readl(®s->LocalCtrl) & ~EEPROM_CLK_OUT, ®s->LocalCtrl); 3031 readl(®s->LocalCtrl); 3032 mb(); 3033 3034 return state; 3035 } 3036 3037 3038 static void eeprom_stop(struct ace_regs __iomem *regs) 3039 { 3040 u32 local; 3041 3042 udelay(ACE_SHORT_DELAY); 3043 local = readl(®s->LocalCtrl); 3044 local |= EEPROM_WRITE_ENABLE; 3045 writel(local, ®s->LocalCtrl); 3046 readl(®s->LocalCtrl); 3047 mb(); 3048 udelay(ACE_SHORT_DELAY); 3049 local &= ~EEPROM_DATA_OUT; 3050 writel(local, ®s->LocalCtrl); 3051 readl(®s->LocalCtrl); 3052 mb(); 3053 udelay(ACE_SHORT_DELAY); 3054 local |= EEPROM_CLK_OUT; 3055 writel(local, ®s->LocalCtrl); 3056 readl(®s->LocalCtrl); 3057 mb(); 3058 udelay(ACE_SHORT_DELAY); 3059 local |= EEPROM_DATA_OUT; 3060 writel(local, ®s->LocalCtrl); 3061 readl(®s->LocalCtrl); 3062 mb(); 3063 udelay(ACE_LONG_DELAY); 3064 local &= ~EEPROM_CLK_OUT; 3065 writel(local, ®s->LocalCtrl); 3066 mb(); 3067 } 3068 3069 3070 /* 3071 * Read a whole byte from the EEPROM. 3072 */ 3073 static int read_eeprom_byte(struct net_device *dev, unsigned long offset) 3074 { 3075 struct ace_private *ap = netdev_priv(dev); 3076 struct ace_regs __iomem *regs = ap->regs; 3077 unsigned long flags; 3078 u32 local; 3079 int result = 0; 3080 short i; 3081 3082 /* 3083 * Don't take interrupts on this CPU will bit banging 3084 * the %#%#@$ I2C device 3085 */ 3086 local_irq_save(flags); 3087 3088 eeprom_start(regs); 3089 3090 eeprom_prep(regs, EEPROM_WRITE_SELECT); 3091 if (eeprom_check_ack(regs)) { 3092 local_irq_restore(flags); 3093 printk(KERN_ERR "%s: Unable to sync eeprom\n", ap->name); 3094 result = -EIO; 3095 goto eeprom_read_error; 3096 } 3097 3098 eeprom_prep(regs, (offset >> 8) & 0xff); 3099 if (eeprom_check_ack(regs)) { 3100 local_irq_restore(flags); 3101 printk(KERN_ERR "%s: Unable to set address byte 0\n", 3102 ap->name); 3103 result = -EIO; 3104 goto eeprom_read_error; 3105 } 3106 3107 eeprom_prep(regs, offset & 0xff); 3108 if (eeprom_check_ack(regs)) { 3109 local_irq_restore(flags); 3110 printk(KERN_ERR "%s: Unable to set address byte 1\n", 3111 ap->name); 3112 result = -EIO; 3113 goto eeprom_read_error; 3114 } 3115 3116 eeprom_start(regs); 3117 eeprom_prep(regs, EEPROM_READ_SELECT); 3118 if (eeprom_check_ack(regs)) { 3119 local_irq_restore(flags); 3120 printk(KERN_ERR "%s: Unable to set READ_SELECT\n", 3121 ap->name); 3122 result = -EIO; 3123 goto eeprom_read_error; 3124 } 3125 3126 for (i = 0; i < 8; i++) { 3127 local = readl(®s->LocalCtrl); 3128 local &= ~EEPROM_WRITE_ENABLE; 3129 writel(local, ®s->LocalCtrl); 3130 readl(®s->LocalCtrl); 3131 udelay(ACE_LONG_DELAY); 3132 mb(); 3133 local |= EEPROM_CLK_OUT; 3134 writel(local, ®s->LocalCtrl); 3135 readl(®s->LocalCtrl); 3136 mb(); 3137 udelay(ACE_SHORT_DELAY); 3138 /* sample data mid high clk */ 3139 result = (result << 1) | 3140 ((readl(®s->LocalCtrl) & EEPROM_DATA_IN) != 0); 3141 udelay(ACE_SHORT_DELAY); 3142 mb(); 3143 local = readl(®s->LocalCtrl); 3144 local &= ~EEPROM_CLK_OUT; 3145 writel(local, ®s->LocalCtrl); 3146 readl(®s->LocalCtrl); 3147 udelay(ACE_SHORT_DELAY); 3148 mb(); 3149 if (i == 7) { 3150 local |= EEPROM_WRITE_ENABLE; 3151 writel(local, ®s->LocalCtrl); 3152 readl(®s->LocalCtrl); 3153 mb(); 3154 udelay(ACE_SHORT_DELAY); 3155 } 3156 } 3157 3158 local |= EEPROM_DATA_OUT; 3159 writel(local, ®s->LocalCtrl); 3160 readl(®s->LocalCtrl); 3161 mb(); 3162 udelay(ACE_SHORT_DELAY); 3163 writel(readl(®s->LocalCtrl) | EEPROM_CLK_OUT, ®s->LocalCtrl); 3164 readl(®s->LocalCtrl); 3165 udelay(ACE_LONG_DELAY); 3166 writel(readl(®s->LocalCtrl) & ~EEPROM_CLK_OUT, ®s->LocalCtrl); 3167 readl(®s->LocalCtrl); 3168 mb(); 3169 udelay(ACE_SHORT_DELAY); 3170 eeprom_stop(regs); 3171 3172 local_irq_restore(flags); 3173 out: 3174 return result; 3175 3176 eeprom_read_error: 3177 printk(KERN_ERR "%s: Unable to read eeprom byte 0x%02lx\n", 3178 ap->name, offset); 3179 goto out; 3180 } 3181 3182 module_pci_driver(acenic_pci_driver); 3183