xref: /openbmc/linux/drivers/net/ethernet/agere/et131x.c (revision f97cee494dc92395a668445bcd24d34c89f4ff8c)
1 /* Agere Systems Inc.
2  * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
3  *
4  * Copyright © 2005 Agere Systems Inc.
5  * All rights reserved.
6  *   http://www.agere.com
7  *
8  * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com>
9  *
10  *------------------------------------------------------------------------------
11  *
12  * SOFTWARE LICENSE
13  *
14  * This software is provided subject to the following terms and conditions,
15  * which you should read carefully before using the software.  Using this
16  * software indicates your acceptance of these terms and conditions.  If you do
17  * not agree with these terms and conditions, do not use the software.
18  *
19  * Copyright © 2005 Agere Systems Inc.
20  * All rights reserved.
21  *
22  * Redistribution and use in source or binary forms, with or without
23  * modifications, are permitted provided that the following conditions are met:
24  *
25  * . Redistributions of source code must retain the above copyright notice, this
26  *    list of conditions and the following Disclaimer as comments in the code as
27  *    well as in the documentation and/or other materials provided with the
28  *    distribution.
29  *
30  * . Redistributions in binary form must reproduce the above copyright notice,
31  *    this list of conditions and the following Disclaimer in the documentation
32  *    and/or other materials provided with the distribution.
33  *
34  * . Neither the name of Agere Systems Inc. nor the names of the contributors
35  *    may be used to endorse or promote products derived from this software
36  *    without specific prior written permission.
37  *
38  * Disclaimer
39  *
40  * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
41  * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
42  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  ANY
43  * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
44  * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
45  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
46  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
47  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
48  * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
50  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
51  * DAMAGE.
52  */
53 
54 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
55 
56 #include <linux/pci.h>
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/kernel.h>
60 
61 #include <linux/sched.h>
62 #include <linux/ptrace.h>
63 #include <linux/slab.h>
64 #include <linux/ctype.h>
65 #include <linux/string.h>
66 #include <linux/timer.h>
67 #include <linux/interrupt.h>
68 #include <linux/in.h>
69 #include <linux/delay.h>
70 #include <linux/bitops.h>
71 #include <linux/io.h>
72 
73 #include <linux/netdevice.h>
74 #include <linux/etherdevice.h>
75 #include <linux/skbuff.h>
76 #include <linux/if_arp.h>
77 #include <linux/ioport.h>
78 #include <linux/crc32.h>
79 #include <linux/random.h>
80 #include <linux/phy.h>
81 
82 #include "et131x.h"
83 
84 MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>");
85 MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>");
86 MODULE_LICENSE("Dual BSD/GPL");
87 MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver for the ET1310 by Agere Systems");
88 
89 /* EEPROM defines */
90 #define MAX_NUM_REGISTER_POLLS          1000
91 #define MAX_NUM_WRITE_RETRIES           2
92 
93 /* MAC defines */
94 #define COUNTER_WRAP_16_BIT 0x10000
95 #define COUNTER_WRAP_12_BIT 0x1000
96 
97 /* PCI defines */
98 #define INTERNAL_MEM_SIZE       0x400	/* 1024 of internal memory */
99 #define INTERNAL_MEM_RX_OFFSET  0x1FF	/* 50%   Tx, 50%   Rx */
100 
101 /* ISR defines */
102 /* For interrupts, normal running is:
103  *       rxdma_xfr_done, phy_interrupt, mac_stat_interrupt,
104  *       watchdog_interrupt & txdma_xfer_done
105  *
106  * In both cases, when flow control is enabled for either Tx or bi-direction,
107  * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the
108  * buffer rings are running low.
109  */
110 #define INT_MASK_DISABLE            0xffffffff
111 
112 /* NOTE: Masking out MAC_STAT Interrupt for now...
113  * #define INT_MASK_ENABLE             0xfff6bf17
114  * #define INT_MASK_ENABLE_NO_FLOW     0xfff6bfd7
115  */
116 #define INT_MASK_ENABLE             0xfffebf17
117 #define INT_MASK_ENABLE_NO_FLOW     0xfffebfd7
118 
119 /* General defines */
120 /* Packet and header sizes */
121 #define NIC_MIN_PACKET_SIZE	60
122 
123 /* Multicast list size */
124 #define NIC_MAX_MCAST_LIST	128
125 
126 /* Supported Filters */
127 #define ET131X_PACKET_TYPE_DIRECTED		0x0001
128 #define ET131X_PACKET_TYPE_MULTICAST		0x0002
129 #define ET131X_PACKET_TYPE_BROADCAST		0x0004
130 #define ET131X_PACKET_TYPE_PROMISCUOUS		0x0008
131 #define ET131X_PACKET_TYPE_ALL_MULTICAST	0x0010
132 
133 /* Tx Timeout */
134 #define ET131X_TX_TIMEOUT	(1 * HZ)
135 #define NIC_SEND_HANG_THRESHOLD	0
136 
137 /* MP_ADAPTER flags */
138 #define FMP_ADAPTER_INTERRUPT_IN_USE	0x00000008
139 
140 /* MP_SHARED flags */
141 #define FMP_ADAPTER_LOWER_POWER		0x00200000
142 
143 #define FMP_ADAPTER_NON_RECOVER_ERROR	0x00800000
144 #define FMP_ADAPTER_HARDWARE_ERROR	0x04000000
145 
146 #define FMP_ADAPTER_FAIL_SEND_MASK	0x3ff00000
147 
148 /* Some offsets in PCI config space that are actually used. */
149 #define ET1310_PCI_MAC_ADDRESS		0xA4
150 #define ET1310_PCI_EEPROM_STATUS	0xB2
151 #define ET1310_PCI_ACK_NACK		0xC0
152 #define ET1310_PCI_REPLAY		0xC2
153 #define ET1310_PCI_L0L1LATENCY		0xCF
154 
155 /* PCI Product IDs */
156 #define ET131X_PCI_DEVICE_ID_GIG	0xED00	/* ET1310 1000 Base-T 8 */
157 #define ET131X_PCI_DEVICE_ID_FAST	0xED01	/* ET1310 100  Base-T */
158 
159 /* Define order of magnitude converter */
160 #define NANO_IN_A_MICRO	1000
161 
162 #define PARM_RX_NUM_BUFS_DEF    4
163 #define PARM_RX_TIME_INT_DEF    10
164 #define PARM_RX_MEM_END_DEF     0x2bc
165 #define PARM_TX_TIME_INT_DEF    40
166 #define PARM_TX_NUM_BUFS_DEF    4
167 #define PARM_DMA_CACHE_DEF      0
168 
169 /* RX defines */
170 #define FBR_CHUNKS		32
171 #define MAX_DESC_PER_RING_RX	1024
172 
173 /* number of RFDs - default and min */
174 #define RFD_LOW_WATER_MARK	40
175 #define NIC_DEFAULT_NUM_RFD	1024
176 #define NUM_FBRS		2
177 
178 #define MAX_PACKETS_HANDLED	256
179 #define ET131X_MIN_MTU		64
180 #define ET131X_MAX_MTU		9216
181 
182 #define ALCATEL_MULTICAST_PKT	0x01000000
183 #define ALCATEL_BROADCAST_PKT	0x02000000
184 
185 /* typedefs for Free Buffer Descriptors */
186 struct fbr_desc {
187 	u32 addr_lo;
188 	u32 addr_hi;
189 	u32 word2;		/* Bits 10-31 reserved, 0-9 descriptor */
190 };
191 
192 /* Packet Status Ring Descriptors
193  *
194  * Word 0:
195  *
196  * top 16 bits are from the Alcatel Status Word as enumerated in
197  * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2)
198  *
199  * 0: hp			hash pass
200  * 1: ipa			IP checksum assist
201  * 2: ipp			IP checksum pass
202  * 3: tcpa			TCP checksum assist
203  * 4: tcpp			TCP checksum pass
204  * 5: wol			WOL Event
205  * 6: rxmac_error		RXMAC Error Indicator
206  * 7: drop			Drop packet
207  * 8: ft			Frame Truncated
208  * 9: jp			Jumbo Packet
209  * 10: vp			VLAN Packet
210  * 11-15: unused
211  * 16: asw_prev_pkt_dropped	e.g. IFG too small on previous
212  * 17: asw_RX_DV_event		short receive event detected
213  * 18: asw_false_carrier_event	bad carrier since last good packet
214  * 19: asw_code_err		one or more nibbles signalled as errors
215  * 20: asw_CRC_err		CRC error
216  * 21: asw_len_chk_err		frame length field incorrect
217  * 22: asw_too_long		frame length > 1518 bytes
218  * 23: asw_OK			valid CRC + no code error
219  * 24: asw_multicast		has a multicast address
220  * 25: asw_broadcast		has a broadcast address
221  * 26: asw_dribble_nibble	spurious bits after EOP
222  * 27: asw_control_frame	is a control frame
223  * 28: asw_pause_frame		is a pause frame
224  * 29: asw_unsupported_op	unsupported OP code
225  * 30: asw_VLAN_tag		VLAN tag detected
226  * 31: asw_long_evt		Rx long event
227  *
228  * Word 1:
229  * 0-15: length			length in bytes
230  * 16-25: bi			Buffer Index
231  * 26-27: ri			Ring Index
232  * 28-31: reserved
233  */
234 struct pkt_stat_desc {
235 	u32 word0;
236 	u32 word1;
237 };
238 
239 /* Typedefs for the RX DMA status word */
240 
241 /* rx status word 0 holds part of the status bits of the Rx DMA engine
242  * that get copied out to memory by the ET-1310.  Word 0 is a 32 bit word
243  * which contains the Free Buffer ring 0 and 1 available offset.
244  *
245  * bit 0-9 FBR1 offset
246  * bit 10 Wrap flag for FBR1
247  * bit 16-25 FBR0 offset
248  * bit 26 Wrap flag for FBR0
249  */
250 
251 /* RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine
252  * that get copied out to memory by the ET-1310.  Word 3 is a 32 bit word
253  * which contains the Packet Status Ring available offset.
254  *
255  * bit 0-15 reserved
256  * bit 16-27 PSRoffset
257  * bit 28 PSRwrap
258  * bit 29-31 unused
259  */
260 
261 /* struct rx_status_block is a structure representing the status of the Rx
262  * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020
263  */
264 struct rx_status_block {
265 	u32 word0;
266 	u32 word1;
267 };
268 
269 /* Structure for look-up table holding free buffer ring pointers, addresses
270  * and state.
271  */
272 struct fbr_lookup {
273 	void		*virt[MAX_DESC_PER_RING_RX];
274 	u32		 bus_high[MAX_DESC_PER_RING_RX];
275 	u32		 bus_low[MAX_DESC_PER_RING_RX];
276 	void		*ring_virtaddr;
277 	dma_addr_t	 ring_physaddr;
278 	void		*mem_virtaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
279 	dma_addr_t	 mem_physaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
280 	u32		 local_full;
281 	u32		 num_entries;
282 	dma_addr_t	 buffsize;
283 };
284 
285 /* struct rx_ring is the structure representing the adaptor's local
286  * reference(s) to the rings
287  */
288 struct rx_ring {
289 	struct fbr_lookup *fbr[NUM_FBRS];
290 	void *ps_ring_virtaddr;
291 	dma_addr_t ps_ring_physaddr;
292 	u32 local_psr_full;
293 	u32 psr_entries;
294 
295 	struct rx_status_block *rx_status_block;
296 	dma_addr_t rx_status_bus;
297 
298 	struct list_head recv_list;
299 	u32 num_ready_recv;
300 
301 	u32 num_rfd;
302 
303 	bool unfinished_receives;
304 };
305 
306 /* TX defines */
307 /* word 2 of the control bits in the Tx Descriptor ring for the ET-1310
308  *
309  * 0-15: length of packet
310  * 16-27: VLAN tag
311  * 28: VLAN CFI
312  * 29-31: VLAN priority
313  *
314  * word 3 of the control bits in the Tx Descriptor ring for the ET-1310
315  *
316  * 0: last packet in the sequence
317  * 1: first packet in the sequence
318  * 2: interrupt the processor when this pkt sent
319  * 3: Control word - no packet data
320  * 4: Issue half-duplex backpressure : XON/XOFF
321  * 5: send pause frame
322  * 6: Tx frame has error
323  * 7: append CRC
324  * 8: MAC override
325  * 9: pad packet
326  * 10: Packet is a Huge packet
327  * 11: append VLAN tag
328  * 12: IP checksum assist
329  * 13: TCP checksum assist
330  * 14: UDP checksum assist
331  */
332 #define TXDESC_FLAG_LASTPKT		0x0001
333 #define TXDESC_FLAG_FIRSTPKT		0x0002
334 #define TXDESC_FLAG_INTPROC		0x0004
335 
336 /* struct tx_desc represents each descriptor on the ring */
337 struct tx_desc {
338 	u32 addr_hi;
339 	u32 addr_lo;
340 	u32 len_vlan;	/* control words how to xmit the */
341 	u32 flags;	/* data (detailed above) */
342 };
343 
344 /* The status of the Tx DMA engine it sits in free memory, and is pointed to
345  * by 0x101c / 0x1020. This is a DMA10 type
346  */
347 
348 /* TCB (Transmit Control Block: Host Side) */
349 struct tcb {
350 	struct tcb *next;	/* Next entry in ring */
351 	u32 count;		/* Used to spot stuck/lost packets */
352 	u32 stale;		/* Used to spot stuck/lost packets */
353 	struct sk_buff *skb;	/* Network skb we are tied to */
354 	u32 index;		/* Ring indexes */
355 	u32 index_start;
356 };
357 
358 /* Structure representing our local reference(s) to the ring */
359 struct tx_ring {
360 	/* TCB (Transmit Control Block) memory and lists */
361 	struct tcb *tcb_ring;
362 
363 	/* List of TCBs that are ready to be used */
364 	struct tcb *tcb_qhead;
365 	struct tcb *tcb_qtail;
366 
367 	/* list of TCBs that are currently being sent. */
368 	struct tcb *send_head;
369 	struct tcb *send_tail;
370 	int used;
371 
372 	/* The actual descriptor ring */
373 	struct tx_desc *tx_desc_ring;
374 	dma_addr_t tx_desc_ring_pa;
375 
376 	/* send_idx indicates where we last wrote to in the descriptor ring. */
377 	u32 send_idx;
378 
379 	/* The location of the write-back status block */
380 	u32 *tx_status;
381 	dma_addr_t tx_status_pa;
382 
383 	/* Packets since the last IRQ: used for interrupt coalescing */
384 	int since_irq;
385 };
386 
387 /* Do not change these values: if changed, then change also in respective
388  * TXdma and Rxdma engines
389  */
390 #define NUM_DESC_PER_RING_TX         512    /* TX Do not change these values */
391 #define NUM_TCB                      64
392 
393 /* These values are all superseded by registry entries to facilitate tuning.
394  * Once the desired performance has been achieved, the optimal registry values
395  * should be re-populated to these #defines:
396  */
397 #define TX_ERROR_PERIOD             1000
398 
399 #define LO_MARK_PERCENT_FOR_PSR     15
400 #define LO_MARK_PERCENT_FOR_RX      15
401 
402 /* RFD (Receive Frame Descriptor) */
403 struct rfd {
404 	struct list_head list_node;
405 	struct sk_buff *skb;
406 	u32 len;	/* total size of receive frame */
407 	u16 bufferindex;
408 	u8 ringindex;
409 };
410 
411 /* Flow Control */
412 #define FLOW_BOTH	0
413 #define FLOW_TXONLY	1
414 #define FLOW_RXONLY	2
415 #define FLOW_NONE	3
416 
417 /* Struct to define some device statistics */
418 struct ce_stats {
419 	u32		multicast_pkts_rcvd;
420 	u32		rcvd_pkts_dropped;
421 
422 	u32		tx_underflows;
423 	u32		tx_collisions;
424 	u32		tx_excessive_collisions;
425 	u32		tx_first_collisions;
426 	u32		tx_late_collisions;
427 	u32		tx_max_pkt_errs;
428 	u32		tx_deferred;
429 
430 	u32		rx_overflows;
431 	u32		rx_length_errs;
432 	u32		rx_align_errs;
433 	u32		rx_crc_errs;
434 	u32		rx_code_violations;
435 	u32		rx_other_errs;
436 
437 	u32		interrupt_status;
438 };
439 
440 /* The private adapter structure */
441 struct et131x_adapter {
442 	struct net_device *netdev;
443 	struct pci_dev *pdev;
444 	struct mii_bus *mii_bus;
445 	struct napi_struct napi;
446 
447 	/* Flags that indicate current state of the adapter */
448 	u32 flags;
449 
450 	/* local link state, to determine if a state change has occurred */
451 	int link;
452 
453 	/* Configuration  */
454 	u8 rom_addr[ETH_ALEN];
455 	u8 addr[ETH_ALEN];
456 	bool has_eeprom;
457 	u8 eeprom_data[2];
458 
459 	spinlock_t tcb_send_qlock; /* protects the tx_ring send tcb list */
460 	spinlock_t tcb_ready_qlock; /* protects the tx_ring ready tcb list */
461 	spinlock_t rcv_lock; /* protects the rx_ring receive list */
462 
463 	/* Packet Filter and look ahead size */
464 	u32 packet_filter;
465 
466 	/* multicast list */
467 	u32 multicast_addr_count;
468 	u8 multicast_list[NIC_MAX_MCAST_LIST][ETH_ALEN];
469 
470 	/* Pointer to the device's PCI register space */
471 	struct address_map __iomem *regs;
472 
473 	/* Registry parameters */
474 	u8 wanted_flow;		/* Flow we want for 802.3x flow control */
475 	u32 registry_jumbo_packet;	/* Max supported ethernet packet size */
476 
477 	/* Derived from the registry: */
478 	u8 flow;		/* flow control validated by the far-end */
479 
480 	/* Minimize init-time */
481 	struct timer_list error_timer;
482 
483 	/* variable putting the phy into coma mode when boot up with no cable
484 	 * plugged in after 5 seconds
485 	 */
486 	u8 boot_coma;
487 
488 	/* Tx Memory Variables */
489 	struct tx_ring tx_ring;
490 
491 	/* Rx Memory Variables */
492 	struct rx_ring rx_ring;
493 
494 	struct ce_stats stats;
495 };
496 
497 static int eeprom_wait_ready(struct pci_dev *pdev, u32 *status)
498 {
499 	u32 reg;
500 	int i;
501 
502 	/* 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
503 	 *    bits 7,1:0 both equal to 1, at least once after reset.
504 	 *    Subsequent operations need only to check that bits 1:0 are equal
505 	 *    to 1 prior to starting a single byte read/write
506 	 */
507 	for (i = 0; i < MAX_NUM_REGISTER_POLLS; i++) {
508 		if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP, &reg))
509 			return -EIO;
510 
511 		/* I2C idle and Phy Queue Avail both true */
512 		if ((reg & 0x3000) == 0x3000) {
513 			if (status)
514 				*status = reg;
515 			return reg & 0xFF;
516 		}
517 	}
518 	return -ETIMEDOUT;
519 }
520 
521 static int eeprom_write(struct et131x_adapter *adapter, u32 addr, u8 data)
522 {
523 	struct pci_dev *pdev = adapter->pdev;
524 	int index = 0;
525 	int retries;
526 	int err = 0;
527 	int writeok = 0;
528 	u32 status;
529 	u32 val = 0;
530 
531 	/* For an EEPROM, an I2C single byte write is defined as a START
532 	 * condition followed by the device address, EEPROM address, one byte
533 	 * of data and a STOP condition.  The STOP condition will trigger the
534 	 * EEPROM's internally timed write cycle to the nonvolatile memory.
535 	 * All inputs are disabled during this write cycle and the EEPROM will
536 	 * not respond to any access until the internal write is complete.
537 	 */
538 	err = eeprom_wait_ready(pdev, NULL);
539 	if (err < 0)
540 		return err;
541 
542 	 /* 2. Write to the LBCIF Control Register:  bit 7=1, bit 6=1, bit 3=0,
543 	  *    and bits 1:0 both =0.  Bit 5 should be set according to the
544 	  *    type of EEPROM being accessed (1=two byte addressing, 0=one
545 	  *    byte addressing).
546 	  */
547 	if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
548 				  LBCIF_CONTROL_LBCIF_ENABLE |
549 					LBCIF_CONTROL_I2C_WRITE))
550 		return -EIO;
551 
552 	/* Prepare EEPROM address for Step 3 */
553 	for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) {
554 		if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
555 			break;
556 		/* Write the data to the LBCIF Data Register (the I2C write
557 		 * will begin).
558 		 */
559 		if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER, data))
560 			break;
561 		/* Monitor bit 1:0 of the LBCIF Status Register.  When bits
562 		 * 1:0 are both equal to 1, the I2C write has completed and the
563 		 * internal write cycle of the EEPROM is about to start.
564 		 * (bits 1:0 = 01 is a legal state while waiting from both
565 		 * equal to 1, but bits 1:0 = 10 is invalid and implies that
566 		 * something is broken).
567 		 */
568 		err = eeprom_wait_ready(pdev, &status);
569 		if (err < 0)
570 			return 0;
571 
572 		/* Check bit 3 of the LBCIF Status Register.  If  equal to 1,
573 		 * an error has occurred.Don't break here if we are revision
574 		 * 1, this is so we do a blind write for load bug.
575 		 */
576 		if ((status & LBCIF_STATUS_GENERAL_ERROR) &&
577 		    adapter->pdev->revision == 0)
578 			break;
579 
580 		/* Check bit 2 of the LBCIF Status Register.  If equal to 1 an
581 		 * ACK error has occurred on the address phase of the write.
582 		 * This could be due to an actual hardware failure or the
583 		 * EEPROM may still be in its internal write cycle from a
584 		 * previous write. This write operation was ignored and must be
585 		  *repeated later.
586 		 */
587 		if (status & LBCIF_STATUS_ACK_ERROR) {
588 			/* This could be due to an actual hardware failure
589 			 * or the EEPROM may still be in its internal write
590 			 * cycle from a previous write. This write operation
591 			 * was ignored and must be repeated later.
592 			 */
593 			udelay(10);
594 			continue;
595 		}
596 
597 		writeok = 1;
598 		break;
599 	}
600 
601 	udelay(10);
602 
603 	while (1) {
604 		if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
605 					  LBCIF_CONTROL_LBCIF_ENABLE))
606 			writeok = 0;
607 
608 		/* Do read until internal ACK_ERROR goes away meaning write
609 		 * completed
610 		 */
611 		do {
612 			pci_write_config_dword(pdev,
613 					       LBCIF_ADDRESS_REGISTER,
614 					       addr);
615 			do {
616 				pci_read_config_dword(pdev,
617 						      LBCIF_DATA_REGISTER,
618 						      &val);
619 			} while ((val & 0x00010000) == 0);
620 		} while (val & 0x00040000);
621 
622 		if ((val & 0xFF00) != 0xC000 || index == 10000)
623 			break;
624 		index++;
625 	}
626 	return writeok ? 0 : -EIO;
627 }
628 
629 static int eeprom_read(struct et131x_adapter *adapter, u32 addr, u8 *pdata)
630 {
631 	struct pci_dev *pdev = adapter->pdev;
632 	int err;
633 	u32 status;
634 
635 	/* A single byte read is similar to the single byte write, with the
636 	 * exception of the data flow:
637 	 */
638 	err = eeprom_wait_ready(pdev, NULL);
639 	if (err < 0)
640 		return err;
641 	/* Write to the LBCIF Control Register:  bit 7=1, bit 6=0, bit 3=0,
642 	 * and bits 1:0 both =0.  Bit 5 should be set according to the type
643 	 * of EEPROM being accessed (1=two byte addressing, 0=one byte
644 	 * addressing).
645 	 */
646 	if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
647 				  LBCIF_CONTROL_LBCIF_ENABLE))
648 		return -EIO;
649 	/* Write the address to the LBCIF Address Register (I2C read will
650 	 * begin).
651 	 */
652 	if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
653 		return -EIO;
654 	/* Monitor bit 0 of the LBCIF Status Register.  When = 1, I2C read
655 	 * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure
656 	 * has occurred).
657 	 */
658 	err = eeprom_wait_ready(pdev, &status);
659 	if (err < 0)
660 		return err;
661 	/* Regardless of error status, read data byte from LBCIF Data
662 	 * Register.
663 	 */
664 	*pdata = err;
665 
666 	return (status & LBCIF_STATUS_ACK_ERROR) ? -EIO : 0;
667 }
668 
669 static int et131x_init_eeprom(struct et131x_adapter *adapter)
670 {
671 	struct pci_dev *pdev = adapter->pdev;
672 	u8 eestatus;
673 
674 	pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus);
675 
676 	/* THIS IS A WORKAROUND:
677 	 * I need to call this function twice to get my card in a
678 	 * LG M1 Express Dual running. I tried also a msleep before this
679 	 * function, because I thought there could be some time conditions
680 	 * but it didn't work. Call the whole function twice also work.
681 	 */
682 	if (pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus)) {
683 		dev_err(&pdev->dev,
684 			"Could not read PCI config space for EEPROM Status\n");
685 		return -EIO;
686 	}
687 
688 	/* Determine if the error(s) we care about are present. If they are
689 	 * present we need to fail.
690 	 */
691 	if (eestatus & 0x4C) {
692 		int write_failed = 0;
693 
694 		if (pdev->revision == 0x01) {
695 			int	i;
696 			static const u8 eedata[4] = { 0xFE, 0x13, 0x10, 0xFF };
697 
698 			/* Re-write the first 4 bytes if we have an eeprom
699 			 * present and the revision id is 1, this fixes the
700 			 * corruption seen with 1310 B Silicon
701 			 */
702 			for (i = 0; i < 3; i++)
703 				if (eeprom_write(adapter, i, eedata[i]) < 0)
704 					write_failed = 1;
705 		}
706 		if (pdev->revision  != 0x01 || write_failed) {
707 			dev_err(&pdev->dev,
708 				"Fatal EEPROM Status Error - 0x%04x\n",
709 				eestatus);
710 
711 			/* This error could mean that there was an error
712 			 * reading the eeprom or that the eeprom doesn't exist.
713 			 * We will treat each case the same and not try to
714 			 * gather additional information that normally would
715 			 * come from the eeprom, like MAC Address
716 			 */
717 			adapter->has_eeprom = false;
718 			return -EIO;
719 		}
720 	}
721 	adapter->has_eeprom = true;
722 
723 	/* Read the EEPROM for information regarding LED behavior. Refer to
724 	 * et131x_xcvr_init() for its use.
725 	 */
726 	eeprom_read(adapter, 0x70, &adapter->eeprom_data[0]);
727 	eeprom_read(adapter, 0x71, &adapter->eeprom_data[1]);
728 
729 	if (adapter->eeprom_data[0] != 0xcd)
730 		/* Disable all optional features */
731 		adapter->eeprom_data[1] = 0x00;
732 
733 	return 0;
734 }
735 
736 static void et131x_rx_dma_enable(struct et131x_adapter *adapter)
737 {
738 	/* Setup the receive dma configuration register for normal operation */
739 	u32 csr =  ET_RXDMA_CSR_FBR1_ENABLE;
740 	struct rx_ring *rx_ring = &adapter->rx_ring;
741 
742 	if (rx_ring->fbr[1]->buffsize == 4096)
743 		csr |= ET_RXDMA_CSR_FBR1_SIZE_LO;
744 	else if (rx_ring->fbr[1]->buffsize == 8192)
745 		csr |= ET_RXDMA_CSR_FBR1_SIZE_HI;
746 	else if (rx_ring->fbr[1]->buffsize == 16384)
747 		csr |= ET_RXDMA_CSR_FBR1_SIZE_LO | ET_RXDMA_CSR_FBR1_SIZE_HI;
748 
749 	csr |= ET_RXDMA_CSR_FBR0_ENABLE;
750 	if (rx_ring->fbr[0]->buffsize == 256)
751 		csr |= ET_RXDMA_CSR_FBR0_SIZE_LO;
752 	else if (rx_ring->fbr[0]->buffsize == 512)
753 		csr |= ET_RXDMA_CSR_FBR0_SIZE_HI;
754 	else if (rx_ring->fbr[0]->buffsize == 1024)
755 		csr |= ET_RXDMA_CSR_FBR0_SIZE_LO | ET_RXDMA_CSR_FBR0_SIZE_HI;
756 	writel(csr, &adapter->regs->rxdma.csr);
757 
758 	csr = readl(&adapter->regs->rxdma.csr);
759 	if (csr & ET_RXDMA_CSR_HALT_STATUS) {
760 		udelay(5);
761 		csr = readl(&adapter->regs->rxdma.csr);
762 		if (csr & ET_RXDMA_CSR_HALT_STATUS) {
763 			dev_err(&adapter->pdev->dev,
764 				"RX Dma failed to exit halt state. CSR 0x%08x\n",
765 				csr);
766 		}
767 	}
768 }
769 
770 static void et131x_rx_dma_disable(struct et131x_adapter *adapter)
771 {
772 	u32 csr;
773 	/* Setup the receive dma configuration register */
774 	writel(ET_RXDMA_CSR_HALT | ET_RXDMA_CSR_FBR1_ENABLE,
775 	       &adapter->regs->rxdma.csr);
776 	csr = readl(&adapter->regs->rxdma.csr);
777 	if (!(csr & ET_RXDMA_CSR_HALT_STATUS)) {
778 		udelay(5);
779 		csr = readl(&adapter->regs->rxdma.csr);
780 		if (!(csr & ET_RXDMA_CSR_HALT_STATUS))
781 			dev_err(&adapter->pdev->dev,
782 				"RX Dma failed to enter halt state. CSR 0x%08x\n",
783 				csr);
784 	}
785 }
786 
787 static void et131x_tx_dma_enable(struct et131x_adapter *adapter)
788 {
789 	/* Setup the transmit dma configuration register for normal
790 	 * operation
791 	 */
792 	writel(ET_TXDMA_SNGL_EPKT | (PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT),
793 	       &adapter->regs->txdma.csr);
794 }
795 
796 static inline void add_10bit(u32 *v, int n)
797 {
798 	*v = INDEX10(*v + n) | (*v & ET_DMA10_WRAP);
799 }
800 
801 static inline void add_12bit(u32 *v, int n)
802 {
803 	*v = INDEX12(*v + n) | (*v & ET_DMA12_WRAP);
804 }
805 
806 static void et1310_config_mac_regs1(struct et131x_adapter *adapter)
807 {
808 	struct mac_regs __iomem *macregs = &adapter->regs->mac;
809 	u32 station1;
810 	u32 station2;
811 	u32 ipg;
812 
813 	/* First we need to reset everything.  Write to MAC configuration
814 	 * register 1 to perform reset.
815 	 */
816 	writel(ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET  |
817 	       ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
818 	       ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC,
819 	       &macregs->cfg1);
820 
821 	/* Next lets configure the MAC Inter-packet gap register */
822 	ipg = 0x38005860;		/* IPG1 0x38 IPG2 0x58 B2B 0x60 */
823 	ipg |= 0x50 << 8;		/* ifg enforce 0x50 */
824 	writel(ipg, &macregs->ipg);
825 
826 	/* Next lets configure the MAC Half Duplex register */
827 	/* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */
828 	writel(0x00A1F037, &macregs->hfdp);
829 
830 	/* Next lets configure the MAC Interface Control register */
831 	writel(0, &macregs->if_ctrl);
832 
833 	writel(ET_MAC_MIIMGMT_CLK_RST, &macregs->mii_mgmt_cfg);
834 
835 	/* Next lets configure the MAC Station Address register.  These
836 	 * values are read from the EEPROM during initialization and stored
837 	 * in the adapter structure.  We write what is stored in the adapter
838 	 * structure to the MAC Station Address registers high and low.  This
839 	 * station address is used for generating and checking pause control
840 	 * packets.
841 	 */
842 	station2 = (adapter->addr[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT) |
843 		   (adapter->addr[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT);
844 	station1 = (adapter->addr[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT) |
845 		   (adapter->addr[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT) |
846 		   (adapter->addr[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT) |
847 		    adapter->addr[2];
848 	writel(station1, &macregs->station_addr_1);
849 	writel(station2, &macregs->station_addr_2);
850 
851 	/* Max ethernet packet in bytes that will be passed by the mac without
852 	 * being truncated.  Allow the MAC to pass 4 more than our max packet
853 	 * size.  This is 4 for the Ethernet CRC.
854 	 *
855 	 * Packets larger than (registry_jumbo_packet) that do not contain a
856 	 * VLAN ID will be dropped by the Rx function.
857 	 */
858 	writel(adapter->registry_jumbo_packet + 4, &macregs->max_fm_len);
859 
860 	/* clear out MAC config reset */
861 	writel(0, &macregs->cfg1);
862 }
863 
864 static void et1310_config_mac_regs2(struct et131x_adapter *adapter)
865 {
866 	int32_t delay = 0;
867 	struct mac_regs __iomem *mac = &adapter->regs->mac;
868 	struct phy_device *phydev = adapter->netdev->phydev;
869 	u32 cfg1;
870 	u32 cfg2;
871 	u32 ifctrl;
872 	u32 ctl;
873 
874 	ctl = readl(&adapter->regs->txmac.ctl);
875 	cfg1 = readl(&mac->cfg1);
876 	cfg2 = readl(&mac->cfg2);
877 	ifctrl = readl(&mac->if_ctrl);
878 
879 	/* Set up the if mode bits */
880 	cfg2 &= ~ET_MAC_CFG2_IFMODE_MASK;
881 	if (phydev->speed == SPEED_1000) {
882 		cfg2 |= ET_MAC_CFG2_IFMODE_1000;
883 		ifctrl &= ~ET_MAC_IFCTRL_PHYMODE;
884 	} else {
885 		cfg2 |= ET_MAC_CFG2_IFMODE_100;
886 		ifctrl |= ET_MAC_IFCTRL_PHYMODE;
887 	}
888 
889 	cfg1 |= ET_MAC_CFG1_RX_ENABLE | ET_MAC_CFG1_TX_ENABLE |
890 							ET_MAC_CFG1_TX_FLOW;
891 
892 	cfg1 &= ~(ET_MAC_CFG1_LOOPBACK | ET_MAC_CFG1_RX_FLOW);
893 	if (adapter->flow == FLOW_RXONLY || adapter->flow == FLOW_BOTH)
894 		cfg1 |= ET_MAC_CFG1_RX_FLOW;
895 	writel(cfg1, &mac->cfg1);
896 
897 	/* Now we need to initialize the MAC Configuration 2 register */
898 	/* preamble 7, check length, huge frame off, pad crc, crc enable
899 	 * full duplex off
900 	 */
901 	cfg2 |= 0x7 << ET_MAC_CFG2_PREAMBLE_SHIFT;
902 	cfg2 |= ET_MAC_CFG2_IFMODE_LEN_CHECK;
903 	cfg2 |= ET_MAC_CFG2_IFMODE_PAD_CRC;
904 	cfg2 |=	ET_MAC_CFG2_IFMODE_CRC_ENABLE;
905 	cfg2 &= ~ET_MAC_CFG2_IFMODE_HUGE_FRAME;
906 	cfg2 &= ~ET_MAC_CFG2_IFMODE_FULL_DPLX;
907 
908 	if (phydev->duplex == DUPLEX_FULL)
909 		cfg2 |= ET_MAC_CFG2_IFMODE_FULL_DPLX;
910 
911 	ifctrl &= ~ET_MAC_IFCTRL_GHDMODE;
912 	if (phydev->duplex == DUPLEX_HALF)
913 		ifctrl |= ET_MAC_IFCTRL_GHDMODE;
914 
915 	writel(ifctrl, &mac->if_ctrl);
916 	writel(cfg2, &mac->cfg2);
917 
918 	do {
919 		udelay(10);
920 		delay++;
921 		cfg1 = readl(&mac->cfg1);
922 	} while ((cfg1 & ET_MAC_CFG1_WAIT) != ET_MAC_CFG1_WAIT && delay < 100);
923 
924 	if (delay == 100) {
925 		dev_warn(&adapter->pdev->dev,
926 			 "Syncd bits did not respond correctly cfg1 word 0x%08x\n",
927 			 cfg1);
928 	}
929 
930 	ctl |= ET_TX_CTRL_TXMAC_ENABLE | ET_TX_CTRL_FC_DISABLE;
931 	writel(ctl, &adapter->regs->txmac.ctl);
932 
933 	if (adapter->flags & FMP_ADAPTER_LOWER_POWER) {
934 		et131x_rx_dma_enable(adapter);
935 		et131x_tx_dma_enable(adapter);
936 	}
937 }
938 
939 static int et1310_in_phy_coma(struct et131x_adapter *adapter)
940 {
941 	u32 pmcsr = readl(&adapter->regs->global.pm_csr);
942 
943 	return ET_PM_PHY_SW_COMA & pmcsr ? 1 : 0;
944 }
945 
946 static void et1310_setup_device_for_multicast(struct et131x_adapter *adapter)
947 {
948 	struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
949 	u32 hash1 = 0;
950 	u32 hash2 = 0;
951 	u32 hash3 = 0;
952 	u32 hash4 = 0;
953 
954 	/* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision
955 	 * the multi-cast LIST.  If it is NOT specified, (and "ALL" is not
956 	 * specified) then we should pass NO multi-cast addresses to the
957 	 * driver.
958 	 */
959 	if (adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST) {
960 		int i;
961 
962 		/* Loop through our multicast array and set up the device */
963 		for (i = 0; i < adapter->multicast_addr_count; i++) {
964 			u32 result;
965 
966 			result = ether_crc(6, adapter->multicast_list[i]);
967 
968 			result = (result & 0x3F800000) >> 23;
969 
970 			if (result < 32) {
971 				hash1 |= (1 << result);
972 			} else if ((31 < result) && (result < 64)) {
973 				result -= 32;
974 				hash2 |= (1 << result);
975 			} else if ((63 < result) && (result < 96)) {
976 				result -= 64;
977 				hash3 |= (1 << result);
978 			} else {
979 				result -= 96;
980 				hash4 |= (1 << result);
981 			}
982 		}
983 	}
984 
985 	/* Write out the new hash to the device */
986 	if (!et1310_in_phy_coma(adapter)) {
987 		writel(hash1, &rxmac->multi_hash1);
988 		writel(hash2, &rxmac->multi_hash2);
989 		writel(hash3, &rxmac->multi_hash3);
990 		writel(hash4, &rxmac->multi_hash4);
991 	}
992 }
993 
994 static void et1310_setup_device_for_unicast(struct et131x_adapter *adapter)
995 {
996 	struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
997 	u32 uni_pf1;
998 	u32 uni_pf2;
999 	u32 uni_pf3;
1000 
1001 	/* Set up unicast packet filter reg 3 to be the first two octets of
1002 	 * the MAC address for both address
1003 	 *
1004 	 * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the
1005 	 * MAC address for second address
1006 	 *
1007 	 * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the
1008 	 * MAC address for first address
1009 	 */
1010 	uni_pf3 = (adapter->addr[0] << ET_RX_UNI_PF_ADDR2_1_SHIFT) |
1011 		  (adapter->addr[1] << ET_RX_UNI_PF_ADDR2_2_SHIFT) |
1012 		  (adapter->addr[0] << ET_RX_UNI_PF_ADDR1_1_SHIFT) |
1013 		   adapter->addr[1];
1014 
1015 	uni_pf2 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR2_3_SHIFT) |
1016 		  (adapter->addr[3] << ET_RX_UNI_PF_ADDR2_4_SHIFT) |
1017 		  (adapter->addr[4] << ET_RX_UNI_PF_ADDR2_5_SHIFT) |
1018 		   adapter->addr[5];
1019 
1020 	uni_pf1 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR1_3_SHIFT) |
1021 		  (adapter->addr[3] << ET_RX_UNI_PF_ADDR1_4_SHIFT) |
1022 		  (adapter->addr[4] << ET_RX_UNI_PF_ADDR1_5_SHIFT) |
1023 		   adapter->addr[5];
1024 
1025 	if (!et1310_in_phy_coma(adapter)) {
1026 		writel(uni_pf1, &rxmac->uni_pf_addr1);
1027 		writel(uni_pf2, &rxmac->uni_pf_addr2);
1028 		writel(uni_pf3, &rxmac->uni_pf_addr3);
1029 	}
1030 }
1031 
1032 static void et1310_config_rxmac_regs(struct et131x_adapter *adapter)
1033 {
1034 	struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1035 	struct phy_device *phydev = adapter->netdev->phydev;
1036 	u32 sa_lo;
1037 	u32 sa_hi = 0;
1038 	u32 pf_ctrl = 0;
1039 	u32 __iomem *wolw;
1040 
1041 	/* Disable the MAC while it is being configured (also disable WOL) */
1042 	writel(0x8, &rxmac->ctrl);
1043 
1044 	/* Initialize WOL to disabled. */
1045 	writel(0, &rxmac->crc0);
1046 	writel(0, &rxmac->crc12);
1047 	writel(0, &rxmac->crc34);
1048 
1049 	/* We need to set the WOL mask0 - mask4 next.  We initialize it to
1050 	 * its default Values of 0x00000000 because there are not WOL masks
1051 	 * as of this time.
1052 	 */
1053 	for (wolw = &rxmac->mask0_word0; wolw <= &rxmac->mask4_word3; wolw++)
1054 		writel(0, wolw);
1055 
1056 	/* Lets setup the WOL Source Address */
1057 	sa_lo = (adapter->addr[2] << ET_RX_WOL_LO_SA3_SHIFT) |
1058 		(adapter->addr[3] << ET_RX_WOL_LO_SA4_SHIFT) |
1059 		(adapter->addr[4] << ET_RX_WOL_LO_SA5_SHIFT) |
1060 		 adapter->addr[5];
1061 	writel(sa_lo, &rxmac->sa_lo);
1062 
1063 	sa_hi = (u32)(adapter->addr[0] << ET_RX_WOL_HI_SA1_SHIFT) |
1064 		       adapter->addr[1];
1065 	writel(sa_hi, &rxmac->sa_hi);
1066 
1067 	/* Disable all Packet Filtering */
1068 	writel(0, &rxmac->pf_ctrl);
1069 
1070 	/* Let's initialize the Unicast Packet filtering address */
1071 	if (adapter->packet_filter & ET131X_PACKET_TYPE_DIRECTED) {
1072 		et1310_setup_device_for_unicast(adapter);
1073 		pf_ctrl |= ET_RX_PFCTRL_UNICST_FILTER_ENABLE;
1074 	} else {
1075 		writel(0, &rxmac->uni_pf_addr1);
1076 		writel(0, &rxmac->uni_pf_addr2);
1077 		writel(0, &rxmac->uni_pf_addr3);
1078 	}
1079 
1080 	/* Let's initialize the Multicast hash */
1081 	if (!(adapter->packet_filter & ET131X_PACKET_TYPE_ALL_MULTICAST)) {
1082 		pf_ctrl |= ET_RX_PFCTRL_MLTCST_FILTER_ENABLE;
1083 		et1310_setup_device_for_multicast(adapter);
1084 	}
1085 
1086 	/* Runt packet filtering.  Didn't work in version A silicon. */
1087 	pf_ctrl |= (NIC_MIN_PACKET_SIZE + 4) << ET_RX_PFCTRL_MIN_PKT_SZ_SHIFT;
1088 	pf_ctrl |= ET_RX_PFCTRL_FRAG_FILTER_ENABLE;
1089 
1090 	if (adapter->registry_jumbo_packet > 8192)
1091 		/* In order to transmit jumbo packets greater than 8k, the
1092 		 * FIFO between RxMAC and RxDMA needs to be reduced in size
1093 		 * to (16k - Jumbo packet size).  In order to implement this,
1094 		 * we must use "cut through" mode in the RxMAC, which chops
1095 		 * packets down into segments which are (max_size * 16).  In
1096 		 * this case we selected 256 bytes, since this is the size of
1097 		 * the PCI-Express TLP's that the 1310 uses.
1098 		 *
1099 		 * seg_en on, fc_en off, size 0x10
1100 		 */
1101 		writel(0x41, &rxmac->mcif_ctrl_max_seg);
1102 	else
1103 		writel(0, &rxmac->mcif_ctrl_max_seg);
1104 
1105 	writel(0, &rxmac->mcif_water_mark);
1106 	writel(0, &rxmac->mif_ctrl);
1107 	writel(0, &rxmac->space_avail);
1108 
1109 	/* Initialize the the mif_ctrl register
1110 	 * bit 3:  Receive code error. One or more nibbles were signaled as
1111 	 *	   errors  during the reception of the packet.  Clear this
1112 	 *	   bit in Gigabit, set it in 100Mbit.  This was derived
1113 	 *	   experimentally at UNH.
1114 	 * bit 4:  Receive CRC error. The packet's CRC did not match the
1115 	 *	   internally generated CRC.
1116 	 * bit 5:  Receive length check error. Indicates that frame length
1117 	 *	   field value in the packet does not match the actual data
1118 	 *	   byte length and is not a type field.
1119 	 * bit 16: Receive frame truncated.
1120 	 * bit 17: Drop packet enable
1121 	 */
1122 	if (phydev && phydev->speed == SPEED_100)
1123 		writel(0x30038, &rxmac->mif_ctrl);
1124 	else
1125 		writel(0x30030, &rxmac->mif_ctrl);
1126 
1127 	/* Finally we initialize RxMac to be enabled & WOL disabled.  Packet
1128 	 * filter is always enabled since it is where the runt packets are
1129 	 * supposed to be dropped.  For version A silicon, runt packet
1130 	 * dropping doesn't work, so it is disabled in the pf_ctrl register,
1131 	 * but we still leave the packet filter on.
1132 	 */
1133 	writel(pf_ctrl, &rxmac->pf_ctrl);
1134 	writel(ET_RX_CTRL_RXMAC_ENABLE | ET_RX_CTRL_WOL_DISABLE, &rxmac->ctrl);
1135 }
1136 
1137 static void et1310_config_txmac_regs(struct et131x_adapter *adapter)
1138 {
1139 	struct txmac_regs __iomem *txmac = &adapter->regs->txmac;
1140 
1141 	/* We need to update the Control Frame Parameters
1142 	 * cfpt - control frame pause timer set to 64 (0x40)
1143 	 * cfep - control frame extended pause timer set to 0x0
1144 	 */
1145 	if (adapter->flow == FLOW_NONE)
1146 		writel(0, &txmac->cf_param);
1147 	else
1148 		writel(0x40, &txmac->cf_param);
1149 }
1150 
1151 static void et1310_config_macstat_regs(struct et131x_adapter *adapter)
1152 {
1153 	struct macstat_regs __iomem *macstat = &adapter->regs->macstat;
1154 	u32 __iomem *reg;
1155 
1156 	/* initialize all the macstat registers to zero on the device  */
1157 	for (reg = &macstat->txrx_0_64_byte_frames;
1158 	     reg <= &macstat->carry_reg2; reg++)
1159 		writel(0, reg);
1160 
1161 	/* Unmask any counters that we want to track the overflow of.
1162 	 * Initially this will be all counters.  It may become clear later
1163 	 * that we do not need to track all counters.
1164 	 */
1165 	writel(0xFFFFBE32, &macstat->carry_reg1_mask);
1166 	writel(0xFFFE7E8B, &macstat->carry_reg2_mask);
1167 }
1168 
1169 static int et131x_phy_mii_read(struct et131x_adapter *adapter, u8 addr,
1170 			       u8 reg, u16 *value)
1171 {
1172 	struct mac_regs __iomem *mac = &adapter->regs->mac;
1173 	int status = 0;
1174 	u32 delay = 0;
1175 	u32 mii_addr;
1176 	u32 mii_cmd;
1177 	u32 mii_indicator;
1178 
1179 	/* Save a local copy of the registers we are dealing with so we can
1180 	 * set them back
1181 	 */
1182 	mii_addr = readl(&mac->mii_mgmt_addr);
1183 	mii_cmd = readl(&mac->mii_mgmt_cmd);
1184 
1185 	/* Stop the current operation */
1186 	writel(0, &mac->mii_mgmt_cmd);
1187 
1188 	/* Set up the register we need to read from on the correct PHY */
1189 	writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1190 
1191 	writel(0x1, &mac->mii_mgmt_cmd);
1192 
1193 	do {
1194 		udelay(50);
1195 		delay++;
1196 		mii_indicator = readl(&mac->mii_mgmt_indicator);
1197 	} while ((mii_indicator & ET_MAC_MGMT_WAIT) && delay < 50);
1198 
1199 	/* If we hit the max delay, we could not read the register */
1200 	if (delay == 50) {
1201 		dev_warn(&adapter->pdev->dev,
1202 			 "reg 0x%08x could not be read\n", reg);
1203 		dev_warn(&adapter->pdev->dev, "status is  0x%08x\n",
1204 			 mii_indicator);
1205 
1206 		status = -EIO;
1207 		goto out;
1208 	}
1209 
1210 	/* If we hit here we were able to read the register and we need to
1211 	 * return the value to the caller
1212 	 */
1213 	*value = readl(&mac->mii_mgmt_stat) & ET_MAC_MIIMGMT_STAT_PHYCRTL_MASK;
1214 
1215 out:
1216 	/* Stop the read operation */
1217 	writel(0, &mac->mii_mgmt_cmd);
1218 
1219 	/* set the registers we touched back to the state at which we entered
1220 	 * this function
1221 	 */
1222 	writel(mii_addr, &mac->mii_mgmt_addr);
1223 	writel(mii_cmd, &mac->mii_mgmt_cmd);
1224 
1225 	return status;
1226 }
1227 
1228 static int et131x_mii_read(struct et131x_adapter *adapter, u8 reg, u16 *value)
1229 {
1230 	struct phy_device *phydev = adapter->netdev->phydev;
1231 
1232 	if (!phydev)
1233 		return -EIO;
1234 
1235 	return et131x_phy_mii_read(adapter, phydev->mdio.addr, reg, value);
1236 }
1237 
1238 static int et131x_mii_write(struct et131x_adapter *adapter, u8 addr, u8 reg,
1239 			    u16 value)
1240 {
1241 	struct mac_regs __iomem *mac = &adapter->regs->mac;
1242 	int status = 0;
1243 	u32 delay = 0;
1244 	u32 mii_addr;
1245 	u32 mii_cmd;
1246 	u32 mii_indicator;
1247 
1248 	/* Save a local copy of the registers we are dealing with so we can
1249 	 * set them back
1250 	 */
1251 	mii_addr = readl(&mac->mii_mgmt_addr);
1252 	mii_cmd = readl(&mac->mii_mgmt_cmd);
1253 
1254 	/* Stop the current operation */
1255 	writel(0, &mac->mii_mgmt_cmd);
1256 
1257 	/* Set up the register we need to write to on the correct PHY */
1258 	writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1259 
1260 	/* Add the value to write to the registers to the mac */
1261 	writel(value, &mac->mii_mgmt_ctrl);
1262 
1263 	do {
1264 		udelay(50);
1265 		delay++;
1266 		mii_indicator = readl(&mac->mii_mgmt_indicator);
1267 	} while ((mii_indicator & ET_MAC_MGMT_BUSY) && delay < 100);
1268 
1269 	/* If we hit the max delay, we could not write the register */
1270 	if (delay == 100) {
1271 		u16 tmp;
1272 
1273 		dev_warn(&adapter->pdev->dev,
1274 			 "reg 0x%08x could not be written", reg);
1275 		dev_warn(&adapter->pdev->dev, "status is  0x%08x\n",
1276 			 mii_indicator);
1277 		dev_warn(&adapter->pdev->dev, "command is  0x%08x\n",
1278 			 readl(&mac->mii_mgmt_cmd));
1279 
1280 		et131x_mii_read(adapter, reg, &tmp);
1281 
1282 		status = -EIO;
1283 	}
1284 	/* Stop the write operation */
1285 	writel(0, &mac->mii_mgmt_cmd);
1286 
1287 	/* set the registers we touched back to the state at which we entered
1288 	 * this function
1289 	 */
1290 	writel(mii_addr, &mac->mii_mgmt_addr);
1291 	writel(mii_cmd, &mac->mii_mgmt_cmd);
1292 
1293 	return status;
1294 }
1295 
1296 static void et1310_phy_read_mii_bit(struct et131x_adapter *adapter,
1297 				    u16 regnum,
1298 				    u16 bitnum,
1299 				    u8 *value)
1300 {
1301 	u16 reg;
1302 	u16 mask = 1 << bitnum;
1303 
1304 	et131x_mii_read(adapter, regnum, &reg);
1305 
1306 	*value = (reg & mask) >> bitnum;
1307 }
1308 
1309 static void et1310_config_flow_control(struct et131x_adapter *adapter)
1310 {
1311 	struct phy_device *phydev = adapter->netdev->phydev;
1312 
1313 	if (phydev->duplex == DUPLEX_HALF) {
1314 		adapter->flow = FLOW_NONE;
1315 	} else {
1316 		char remote_pause, remote_async_pause;
1317 
1318 		et1310_phy_read_mii_bit(adapter, 5, 10, &remote_pause);
1319 		et1310_phy_read_mii_bit(adapter, 5, 11, &remote_async_pause);
1320 
1321 		if (remote_pause && remote_async_pause) {
1322 			adapter->flow = adapter->wanted_flow;
1323 		} else if (remote_pause && !remote_async_pause) {
1324 			if (adapter->wanted_flow == FLOW_BOTH)
1325 				adapter->flow = FLOW_BOTH;
1326 			else
1327 				adapter->flow = FLOW_NONE;
1328 		} else if (!remote_pause && !remote_async_pause) {
1329 			adapter->flow = FLOW_NONE;
1330 		} else {
1331 			if (adapter->wanted_flow == FLOW_BOTH)
1332 				adapter->flow = FLOW_RXONLY;
1333 			else
1334 				adapter->flow = FLOW_NONE;
1335 		}
1336 	}
1337 }
1338 
1339 /* et1310_update_macstat_host_counters - Update local copy of the statistics */
1340 static void et1310_update_macstat_host_counters(struct et131x_adapter *adapter)
1341 {
1342 	struct ce_stats *stats = &adapter->stats;
1343 	struct macstat_regs __iomem *macstat =
1344 		&adapter->regs->macstat;
1345 
1346 	stats->tx_collisions	       += readl(&macstat->tx_total_collisions);
1347 	stats->tx_first_collisions     += readl(&macstat->tx_single_collisions);
1348 	stats->tx_deferred	       += readl(&macstat->tx_deferred);
1349 	stats->tx_excessive_collisions +=
1350 				readl(&macstat->tx_multiple_collisions);
1351 	stats->tx_late_collisions      += readl(&macstat->tx_late_collisions);
1352 	stats->tx_underflows	       += readl(&macstat->tx_undersize_frames);
1353 	stats->tx_max_pkt_errs	       += readl(&macstat->tx_oversize_frames);
1354 
1355 	stats->rx_align_errs        += readl(&macstat->rx_align_errs);
1356 	stats->rx_crc_errs          += readl(&macstat->rx_code_errs);
1357 	stats->rcvd_pkts_dropped    += readl(&macstat->rx_drops);
1358 	stats->rx_overflows         += readl(&macstat->rx_oversize_packets);
1359 	stats->rx_code_violations   += readl(&macstat->rx_fcs_errs);
1360 	stats->rx_length_errs       += readl(&macstat->rx_frame_len_errs);
1361 	stats->rx_other_errs        += readl(&macstat->rx_fragment_packets);
1362 }
1363 
1364 /* et1310_handle_macstat_interrupt
1365  *
1366  * One of the MACSTAT counters has wrapped.  Update the local copy of
1367  * the statistics held in the adapter structure, checking the "wrap"
1368  * bit for each counter.
1369  */
1370 static void et1310_handle_macstat_interrupt(struct et131x_adapter *adapter)
1371 {
1372 	u32 carry_reg1;
1373 	u32 carry_reg2;
1374 
1375 	/* Read the interrupt bits from the register(s).  These are Clear On
1376 	 * Write.
1377 	 */
1378 	carry_reg1 = readl(&adapter->regs->macstat.carry_reg1);
1379 	carry_reg2 = readl(&adapter->regs->macstat.carry_reg2);
1380 
1381 	writel(carry_reg1, &adapter->regs->macstat.carry_reg1);
1382 	writel(carry_reg2, &adapter->regs->macstat.carry_reg2);
1383 
1384 	/* We need to do update the host copy of all the MAC_STAT counters.
1385 	 * For each counter, check it's overflow bit.  If the overflow bit is
1386 	 * set, then increment the host version of the count by one complete
1387 	 * revolution of the counter.  This routine is called when the counter
1388 	 * block indicates that one of the counters has wrapped.
1389 	 */
1390 	if (carry_reg1 & (1 << 14))
1391 		adapter->stats.rx_code_violations	+= COUNTER_WRAP_16_BIT;
1392 	if (carry_reg1 & (1 << 8))
1393 		adapter->stats.rx_align_errs	+= COUNTER_WRAP_12_BIT;
1394 	if (carry_reg1 & (1 << 7))
1395 		adapter->stats.rx_length_errs	+= COUNTER_WRAP_16_BIT;
1396 	if (carry_reg1 & (1 << 2))
1397 		adapter->stats.rx_other_errs	+= COUNTER_WRAP_16_BIT;
1398 	if (carry_reg1 & (1 << 6))
1399 		adapter->stats.rx_crc_errs	+= COUNTER_WRAP_16_BIT;
1400 	if (carry_reg1 & (1 << 3))
1401 		adapter->stats.rx_overflows	+= COUNTER_WRAP_16_BIT;
1402 	if (carry_reg1 & (1 << 0))
1403 		adapter->stats.rcvd_pkts_dropped	+= COUNTER_WRAP_16_BIT;
1404 	if (carry_reg2 & (1 << 16))
1405 		adapter->stats.tx_max_pkt_errs	+= COUNTER_WRAP_12_BIT;
1406 	if (carry_reg2 & (1 << 15))
1407 		adapter->stats.tx_underflows	+= COUNTER_WRAP_12_BIT;
1408 	if (carry_reg2 & (1 << 6))
1409 		adapter->stats.tx_first_collisions += COUNTER_WRAP_12_BIT;
1410 	if (carry_reg2 & (1 << 8))
1411 		adapter->stats.tx_deferred	+= COUNTER_WRAP_12_BIT;
1412 	if (carry_reg2 & (1 << 5))
1413 		adapter->stats.tx_excessive_collisions += COUNTER_WRAP_12_BIT;
1414 	if (carry_reg2 & (1 << 4))
1415 		adapter->stats.tx_late_collisions	+= COUNTER_WRAP_12_BIT;
1416 	if (carry_reg2 & (1 << 2))
1417 		adapter->stats.tx_collisions	+= COUNTER_WRAP_12_BIT;
1418 }
1419 
1420 static int et131x_mdio_read(struct mii_bus *bus, int phy_addr, int reg)
1421 {
1422 	struct net_device *netdev = bus->priv;
1423 	struct et131x_adapter *adapter = netdev_priv(netdev);
1424 	u16 value;
1425 	int ret;
1426 
1427 	ret = et131x_phy_mii_read(adapter, phy_addr, reg, &value);
1428 
1429 	if (ret < 0)
1430 		return ret;
1431 
1432 	return value;
1433 }
1434 
1435 static int et131x_mdio_write(struct mii_bus *bus, int phy_addr,
1436 			     int reg, u16 value)
1437 {
1438 	struct net_device *netdev = bus->priv;
1439 	struct et131x_adapter *adapter = netdev_priv(netdev);
1440 
1441 	return et131x_mii_write(adapter, phy_addr, reg, value);
1442 }
1443 
1444 /*	et1310_phy_power_switch	-	PHY power control
1445  *	@adapter: device to control
1446  *	@down: true for off/false for back on
1447  *
1448  *	one hundred, ten, one thousand megs
1449  *	How would you like to have your LAN accessed
1450  *	Can't you see that this code processed
1451  *	Phy power, phy power..
1452  */
1453 static void et1310_phy_power_switch(struct et131x_adapter *adapter, bool down)
1454 {
1455 	u16 data;
1456 	struct  phy_device *phydev = adapter->netdev->phydev;
1457 
1458 	et131x_mii_read(adapter, MII_BMCR, &data);
1459 	data &= ~BMCR_PDOWN;
1460 	if (down)
1461 		data |= BMCR_PDOWN;
1462 	et131x_mii_write(adapter, phydev->mdio.addr, MII_BMCR, data);
1463 }
1464 
1465 /* et131x_xcvr_init - Init the phy if we are setting it into force mode */
1466 static void et131x_xcvr_init(struct et131x_adapter *adapter)
1467 {
1468 	u16 lcr2;
1469 	struct  phy_device *phydev = adapter->netdev->phydev;
1470 
1471 	/* Set the LED behavior such that LED 1 indicates speed (off =
1472 	 * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
1473 	 * link and activity (on for link, blink off for activity).
1474 	 *
1475 	 * NOTE: Some customizations have been added here for specific
1476 	 * vendors; The LED behavior is now determined by vendor data in the
1477 	 * EEPROM. However, the above description is the default.
1478 	 */
1479 	if ((adapter->eeprom_data[1] & 0x4) == 0) {
1480 		et131x_mii_read(adapter, PHY_LED_2, &lcr2);
1481 
1482 		lcr2 &= (ET_LED2_LED_100TX | ET_LED2_LED_1000T);
1483 		lcr2 |= (LED_VAL_LINKON_ACTIVE << LED_LINK_SHIFT);
1484 
1485 		if ((adapter->eeprom_data[1] & 0x8) == 0)
1486 			lcr2 |= (LED_VAL_1000BT_100BTX << LED_TXRX_SHIFT);
1487 		else
1488 			lcr2 |= (LED_VAL_LINKON << LED_TXRX_SHIFT);
1489 
1490 		et131x_mii_write(adapter, phydev->mdio.addr, PHY_LED_2, lcr2);
1491 	}
1492 }
1493 
1494 /* et131x_configure_global_regs	- configure JAGCore global regs */
1495 static void et131x_configure_global_regs(struct et131x_adapter *adapter)
1496 {
1497 	struct global_regs __iomem *regs = &adapter->regs->global;
1498 
1499 	writel(0, &regs->rxq_start_addr);
1500 	writel(INTERNAL_MEM_SIZE - 1, &regs->txq_end_addr);
1501 
1502 	if (adapter->registry_jumbo_packet < 2048) {
1503 		/* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word
1504 		 * block of RAM that the driver can split between Tx
1505 		 * and Rx as it desires.  Our default is to split it
1506 		 * 50/50:
1507 		 */
1508 		writel(PARM_RX_MEM_END_DEF, &regs->rxq_end_addr);
1509 		writel(PARM_RX_MEM_END_DEF + 1, &regs->txq_start_addr);
1510 	} else if (adapter->registry_jumbo_packet < 8192) {
1511 		/* For jumbo packets > 2k but < 8k, split 50-50. */
1512 		writel(INTERNAL_MEM_RX_OFFSET, &regs->rxq_end_addr);
1513 		writel(INTERNAL_MEM_RX_OFFSET + 1, &regs->txq_start_addr);
1514 	} else {
1515 		/* 9216 is the only packet size greater than 8k that
1516 		 * is available. The Tx buffer has to be big enough
1517 		 * for one whole packet on the Tx side. We'll make
1518 		 * the Tx 9408, and give the rest to Rx
1519 		 */
1520 		writel(0x01b3, &regs->rxq_end_addr);
1521 		writel(0x01b4, &regs->txq_start_addr);
1522 	}
1523 
1524 	/* Initialize the loopback register. Disable all loopbacks. */
1525 	writel(0, &regs->loopback);
1526 
1527 	writel(0, &regs->msi_config);
1528 
1529 	/* By default, disable the watchdog timer.  It will be enabled when
1530 	 * a packet is queued.
1531 	 */
1532 	writel(0, &regs->watchdog_timer);
1533 }
1534 
1535 /* et131x_config_rx_dma_regs - Start of Rx_DMA init sequence */
1536 static void et131x_config_rx_dma_regs(struct et131x_adapter *adapter)
1537 {
1538 	struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
1539 	struct rx_ring *rx_local = &adapter->rx_ring;
1540 	struct fbr_desc *fbr_entry;
1541 	u32 entry;
1542 	u32 psr_num_des;
1543 	unsigned long flags;
1544 	u8 id;
1545 
1546 	et131x_rx_dma_disable(adapter);
1547 
1548 	/* Load the completion writeback physical address */
1549 	writel(upper_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_hi);
1550 	writel(lower_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_lo);
1551 
1552 	memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block));
1553 
1554 	/* Set the address and parameters of the packet status ring */
1555 	writel(upper_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_hi);
1556 	writel(lower_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_lo);
1557 	writel(rx_local->psr_entries - 1, &rx_dma->psr_num_des);
1558 	writel(0, &rx_dma->psr_full_offset);
1559 
1560 	psr_num_des = readl(&rx_dma->psr_num_des) & ET_RXDMA_PSR_NUM_DES_MASK;
1561 	writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100,
1562 	       &rx_dma->psr_min_des);
1563 
1564 	spin_lock_irqsave(&adapter->rcv_lock, flags);
1565 
1566 	/* These local variables track the PSR in the adapter structure */
1567 	rx_local->local_psr_full = 0;
1568 
1569 	for (id = 0; id < NUM_FBRS; id++) {
1570 		u32 __iomem *num_des;
1571 		u32 __iomem *full_offset;
1572 		u32 __iomem *min_des;
1573 		u32 __iomem *base_hi;
1574 		u32 __iomem *base_lo;
1575 		struct fbr_lookup *fbr = rx_local->fbr[id];
1576 
1577 		if (id == 0) {
1578 			num_des = &rx_dma->fbr0_num_des;
1579 			full_offset = &rx_dma->fbr0_full_offset;
1580 			min_des = &rx_dma->fbr0_min_des;
1581 			base_hi = &rx_dma->fbr0_base_hi;
1582 			base_lo = &rx_dma->fbr0_base_lo;
1583 		} else {
1584 			num_des = &rx_dma->fbr1_num_des;
1585 			full_offset = &rx_dma->fbr1_full_offset;
1586 			min_des = &rx_dma->fbr1_min_des;
1587 			base_hi = &rx_dma->fbr1_base_hi;
1588 			base_lo = &rx_dma->fbr1_base_lo;
1589 		}
1590 
1591 		/* Now's the best time to initialize FBR contents */
1592 		fbr_entry = fbr->ring_virtaddr;
1593 		for (entry = 0; entry < fbr->num_entries; entry++) {
1594 			fbr_entry->addr_hi = fbr->bus_high[entry];
1595 			fbr_entry->addr_lo = fbr->bus_low[entry];
1596 			fbr_entry->word2 = entry;
1597 			fbr_entry++;
1598 		}
1599 
1600 		/* Set the address and parameters of Free buffer ring 1 and 0 */
1601 		writel(upper_32_bits(fbr->ring_physaddr), base_hi);
1602 		writel(lower_32_bits(fbr->ring_physaddr), base_lo);
1603 		writel(fbr->num_entries - 1, num_des);
1604 		writel(ET_DMA10_WRAP, full_offset);
1605 
1606 		/* This variable tracks the free buffer ring 1 full position,
1607 		 * so it has to match the above.
1608 		 */
1609 		fbr->local_full = ET_DMA10_WRAP;
1610 		writel(((fbr->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
1611 		       min_des);
1612 	}
1613 
1614 	/* Program the number of packets we will receive before generating an
1615 	 * interrupt.
1616 	 * For version B silicon, this value gets updated once autoneg is
1617 	 *complete.
1618 	 */
1619 	writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done);
1620 
1621 	/* The "time_done" is not working correctly to coalesce interrupts
1622 	 * after a given time period, but rather is giving us an interrupt
1623 	 * regardless of whether we have received packets.
1624 	 * This value gets updated once autoneg is complete.
1625 	 */
1626 	writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time);
1627 
1628 	spin_unlock_irqrestore(&adapter->rcv_lock, flags);
1629 }
1630 
1631 /* et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore.
1632  *
1633  * Configure the transmit engine with the ring buffers we have created
1634  * and prepare it for use.
1635  */
1636 static void et131x_config_tx_dma_regs(struct et131x_adapter *adapter)
1637 {
1638 	struct txdma_regs __iomem *txdma = &adapter->regs->txdma;
1639 	struct tx_ring *tx_ring = &adapter->tx_ring;
1640 
1641 	/* Load the hardware with the start of the transmit descriptor ring. */
1642 	writel(upper_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_hi);
1643 	writel(lower_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_lo);
1644 
1645 	/* Initialise the transmit DMA engine */
1646 	writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des);
1647 
1648 	/* Load the completion writeback physical address */
1649 	writel(upper_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_hi);
1650 	writel(lower_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_lo);
1651 
1652 	*tx_ring->tx_status = 0;
1653 
1654 	writel(0, &txdma->service_request);
1655 	tx_ring->send_idx = 0;
1656 }
1657 
1658 /* et131x_adapter_setup - Set the adapter up as per cassini+ documentation */
1659 static void et131x_adapter_setup(struct et131x_adapter *adapter)
1660 {
1661 	et131x_configure_global_regs(adapter);
1662 	et1310_config_mac_regs1(adapter);
1663 
1664 	/* Configure the MMC registers */
1665 	/* All we need to do is initialize the Memory Control Register */
1666 	writel(ET_MMC_ENABLE, &adapter->regs->mmc.mmc_ctrl);
1667 
1668 	et1310_config_rxmac_regs(adapter);
1669 	et1310_config_txmac_regs(adapter);
1670 
1671 	et131x_config_rx_dma_regs(adapter);
1672 	et131x_config_tx_dma_regs(adapter);
1673 
1674 	et1310_config_macstat_regs(adapter);
1675 
1676 	et1310_phy_power_switch(adapter, 0);
1677 	et131x_xcvr_init(adapter);
1678 }
1679 
1680 /* et131x_soft_reset - Issue soft reset to the hardware, complete for ET1310 */
1681 static void et131x_soft_reset(struct et131x_adapter *adapter)
1682 {
1683 	u32 reg;
1684 
1685 	/* Disable MAC Core */
1686 	reg = ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET |
1687 	      ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1688 	      ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1689 	writel(reg, &adapter->regs->mac.cfg1);
1690 
1691 	reg = ET_RESET_ALL;
1692 	writel(reg, &adapter->regs->global.sw_reset);
1693 
1694 	reg = ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1695 	      ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1696 	writel(reg, &adapter->regs->mac.cfg1);
1697 	writel(0, &adapter->regs->mac.cfg1);
1698 }
1699 
1700 static void et131x_enable_interrupts(struct et131x_adapter *adapter)
1701 {
1702 	u32 mask;
1703 
1704 	if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH)
1705 		mask = INT_MASK_ENABLE;
1706 	else
1707 		mask = INT_MASK_ENABLE_NO_FLOW;
1708 
1709 	writel(mask, &adapter->regs->global.int_mask);
1710 }
1711 
1712 static void et131x_disable_interrupts(struct et131x_adapter *adapter)
1713 {
1714 	writel(INT_MASK_DISABLE, &adapter->regs->global.int_mask);
1715 }
1716 
1717 static void et131x_tx_dma_disable(struct et131x_adapter *adapter)
1718 {
1719 	/* Setup the transmit dma configuration register */
1720 	writel(ET_TXDMA_CSR_HALT | ET_TXDMA_SNGL_EPKT,
1721 	       &adapter->regs->txdma.csr);
1722 }
1723 
1724 static void et131x_enable_txrx(struct net_device *netdev)
1725 {
1726 	struct et131x_adapter *adapter = netdev_priv(netdev);
1727 
1728 	et131x_rx_dma_enable(adapter);
1729 	et131x_tx_dma_enable(adapter);
1730 
1731 	if (adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE)
1732 		et131x_enable_interrupts(adapter);
1733 
1734 	netif_start_queue(netdev);
1735 }
1736 
1737 static void et131x_disable_txrx(struct net_device *netdev)
1738 {
1739 	struct et131x_adapter *adapter = netdev_priv(netdev);
1740 
1741 	netif_stop_queue(netdev);
1742 
1743 	et131x_rx_dma_disable(adapter);
1744 	et131x_tx_dma_disable(adapter);
1745 
1746 	et131x_disable_interrupts(adapter);
1747 }
1748 
1749 static void et131x_init_send(struct et131x_adapter *adapter)
1750 {
1751 	int i;
1752 	struct tx_ring *tx_ring = &adapter->tx_ring;
1753 	struct tcb *tcb = tx_ring->tcb_ring;
1754 
1755 	tx_ring->tcb_qhead = tcb;
1756 
1757 	memset(tcb, 0, sizeof(struct tcb) * NUM_TCB);
1758 
1759 	for (i = 0; i < NUM_TCB; i++) {
1760 		tcb->next = tcb + 1;
1761 		tcb++;
1762 	}
1763 
1764 	tcb--;
1765 	tx_ring->tcb_qtail = tcb;
1766 	tcb->next = NULL;
1767 	/* Curr send queue should now be empty */
1768 	tx_ring->send_head = NULL;
1769 	tx_ring->send_tail = NULL;
1770 }
1771 
1772 /* et1310_enable_phy_coma
1773  *
1774  * driver receive an phy status change interrupt while in D0 and check that
1775  * phy_status is down.
1776  *
1777  *          -- gate off JAGCore;
1778  *          -- set gigE PHY in Coma mode
1779  *          -- wake on phy_interrupt; Perform software reset JAGCore,
1780  *             re-initialize jagcore and gigE PHY
1781  */
1782 static void et1310_enable_phy_coma(struct et131x_adapter *adapter)
1783 {
1784 	u32 pmcsr = readl(&adapter->regs->global.pm_csr);
1785 
1786 	/* Stop sending packets. */
1787 	adapter->flags |= FMP_ADAPTER_LOWER_POWER;
1788 
1789 	/* Wait for outstanding Receive packets */
1790 	et131x_disable_txrx(adapter->netdev);
1791 
1792 	/* Gate off JAGCore 3 clock domains */
1793 	pmcsr &= ~ET_PMCSR_INIT;
1794 	writel(pmcsr, &adapter->regs->global.pm_csr);
1795 
1796 	/* Program gigE PHY in to Coma mode */
1797 	pmcsr |= ET_PM_PHY_SW_COMA;
1798 	writel(pmcsr, &adapter->regs->global.pm_csr);
1799 }
1800 
1801 static void et1310_disable_phy_coma(struct et131x_adapter *adapter)
1802 {
1803 	u32 pmcsr;
1804 
1805 	pmcsr = readl(&adapter->regs->global.pm_csr);
1806 
1807 	/* Disable phy_sw_coma register and re-enable JAGCore clocks */
1808 	pmcsr |= ET_PMCSR_INIT;
1809 	pmcsr &= ~ET_PM_PHY_SW_COMA;
1810 	writel(pmcsr, &adapter->regs->global.pm_csr);
1811 
1812 	/* Restore the GbE PHY speed and duplex modes;
1813 	 * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY
1814 	 */
1815 
1816 	/* Re-initialize the send structures */
1817 	et131x_init_send(adapter);
1818 
1819 	/* Bring the device back to the state it was during init prior to
1820 	 * autonegotiation being complete.  This way, when we get the auto-neg
1821 	 * complete interrupt, we can complete init by calling ConfigMacREGS2.
1822 	 */
1823 	et131x_soft_reset(adapter);
1824 
1825 	et131x_adapter_setup(adapter);
1826 
1827 	/* Allow Tx to restart */
1828 	adapter->flags &= ~FMP_ADAPTER_LOWER_POWER;
1829 
1830 	et131x_enable_txrx(adapter->netdev);
1831 }
1832 
1833 static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit)
1834 {
1835 	u32 tmp_free_buff_ring = *free_buff_ring;
1836 
1837 	tmp_free_buff_ring++;
1838 	/* This works for all cases where limit < 1024. The 1023 case
1839 	 * works because 1023++ is 1024 which means the if condition is not
1840 	 * taken but the carry of the bit into the wrap bit toggles the wrap
1841 	 * value correctly
1842 	 */
1843 	if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) {
1844 		tmp_free_buff_ring &= ~ET_DMA10_MASK;
1845 		tmp_free_buff_ring ^= ET_DMA10_WRAP;
1846 	}
1847 	/* For the 1023 case */
1848 	tmp_free_buff_ring &= (ET_DMA10_MASK | ET_DMA10_WRAP);
1849 	*free_buff_ring = tmp_free_buff_ring;
1850 	return tmp_free_buff_ring;
1851 }
1852 
1853 /* et131x_rx_dma_memory_alloc
1854  *
1855  * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
1856  * and the Packet Status Ring.
1857  */
1858 static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
1859 {
1860 	u8 id;
1861 	u32 i, j;
1862 	u32 bufsize;
1863 	u32 psr_size;
1864 	u32 fbr_chunksize;
1865 	struct rx_ring *rx_ring = &adapter->rx_ring;
1866 	struct fbr_lookup *fbr;
1867 
1868 	/* Alloc memory for the lookup table */
1869 	rx_ring->fbr[0] = kzalloc(sizeof(*fbr), GFP_KERNEL);
1870 	if (rx_ring->fbr[0] == NULL)
1871 		return -ENOMEM;
1872 	rx_ring->fbr[1] = kzalloc(sizeof(*fbr), GFP_KERNEL);
1873 	if (rx_ring->fbr[1] == NULL)
1874 		return -ENOMEM;
1875 
1876 	/* The first thing we will do is configure the sizes of the buffer
1877 	 * rings. These will change based on jumbo packet support.  Larger
1878 	 * jumbo packets increases the size of each entry in FBR0, and the
1879 	 * number of entries in FBR0, while at the same time decreasing the
1880 	 * number of entries in FBR1.
1881 	 *
1882 	 * FBR1 holds "large" frames, FBR0 holds "small" frames.  If FBR1
1883 	 * entries are huge in order to accommodate a "jumbo" frame, then it
1884 	 * will have less entries.  Conversely, FBR1 will now be relied upon
1885 	 * to carry more "normal" frames, thus it's entry size also increases
1886 	 * and the number of entries goes up too (since it now carries
1887 	 * "small" + "regular" packets.
1888 	 *
1889 	 * In this scheme, we try to maintain 512 entries between the two
1890 	 * rings. Also, FBR1 remains a constant size - when it's size doubles
1891 	 * the number of entries halves.  FBR0 increases in size, however.
1892 	 */
1893 	if (adapter->registry_jumbo_packet < 2048) {
1894 		rx_ring->fbr[0]->buffsize = 256;
1895 		rx_ring->fbr[0]->num_entries = 512;
1896 		rx_ring->fbr[1]->buffsize = 2048;
1897 		rx_ring->fbr[1]->num_entries = 512;
1898 	} else if (adapter->registry_jumbo_packet < 4096) {
1899 		rx_ring->fbr[0]->buffsize = 512;
1900 		rx_ring->fbr[0]->num_entries = 1024;
1901 		rx_ring->fbr[1]->buffsize = 4096;
1902 		rx_ring->fbr[1]->num_entries = 512;
1903 	} else {
1904 		rx_ring->fbr[0]->buffsize = 1024;
1905 		rx_ring->fbr[0]->num_entries = 768;
1906 		rx_ring->fbr[1]->buffsize = 16384;
1907 		rx_ring->fbr[1]->num_entries = 128;
1908 	}
1909 
1910 	rx_ring->psr_entries = rx_ring->fbr[0]->num_entries +
1911 			       rx_ring->fbr[1]->num_entries;
1912 
1913 	for (id = 0; id < NUM_FBRS; id++) {
1914 		fbr = rx_ring->fbr[id];
1915 		/* Allocate an area of memory for Free Buffer Ring */
1916 		bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
1917 		fbr->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
1918 							bufsize,
1919 							&fbr->ring_physaddr,
1920 							GFP_KERNEL);
1921 		if (!fbr->ring_virtaddr) {
1922 			dev_err(&adapter->pdev->dev,
1923 				"Cannot alloc memory for Free Buffer Ring %d\n",
1924 				id);
1925 			return -ENOMEM;
1926 		}
1927 	}
1928 
1929 	for (id = 0; id < NUM_FBRS; id++) {
1930 		fbr = rx_ring->fbr[id];
1931 		fbr_chunksize = (FBR_CHUNKS * fbr->buffsize);
1932 
1933 		for (i = 0; i < fbr->num_entries / FBR_CHUNKS; i++) {
1934 			dma_addr_t fbr_physaddr;
1935 
1936 			fbr->mem_virtaddrs[i] = dma_alloc_coherent(
1937 					&adapter->pdev->dev, fbr_chunksize,
1938 					&fbr->mem_physaddrs[i],
1939 					GFP_KERNEL);
1940 
1941 			if (!fbr->mem_virtaddrs[i]) {
1942 				dev_err(&adapter->pdev->dev,
1943 					"Could not alloc memory\n");
1944 				return -ENOMEM;
1945 			}
1946 
1947 			/* See NOTE in "Save Physical Address" comment above */
1948 			fbr_physaddr = fbr->mem_physaddrs[i];
1949 
1950 			for (j = 0; j < FBR_CHUNKS; j++) {
1951 				u32 k = (i * FBR_CHUNKS) + j;
1952 
1953 				/* Save the Virtual address of this index for
1954 				 * quick access later
1955 				 */
1956 				fbr->virt[k] = (u8 *)fbr->mem_virtaddrs[i] +
1957 						   (j * fbr->buffsize);
1958 
1959 				/* now store the physical address in the
1960 				 * descriptor so the device can access it
1961 				 */
1962 				fbr->bus_high[k] = upper_32_bits(fbr_physaddr);
1963 				fbr->bus_low[k] = lower_32_bits(fbr_physaddr);
1964 				fbr_physaddr += fbr->buffsize;
1965 			}
1966 		}
1967 	}
1968 
1969 	/* Allocate an area of memory for FIFO of Packet Status ring entries */
1970 	psr_size = sizeof(struct pkt_stat_desc) * rx_ring->psr_entries;
1971 
1972 	rx_ring->ps_ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
1973 						  psr_size,
1974 						  &rx_ring->ps_ring_physaddr,
1975 						  GFP_KERNEL);
1976 
1977 	if (!rx_ring->ps_ring_virtaddr) {
1978 		dev_err(&adapter->pdev->dev,
1979 			"Cannot alloc memory for Packet Status Ring\n");
1980 		return -ENOMEM;
1981 	}
1982 
1983 	/* Allocate an area of memory for writeback of status information */
1984 	rx_ring->rx_status_block = dma_alloc_coherent(&adapter->pdev->dev,
1985 					    sizeof(struct rx_status_block),
1986 					    &rx_ring->rx_status_bus,
1987 					    GFP_KERNEL);
1988 	if (!rx_ring->rx_status_block) {
1989 		dev_err(&adapter->pdev->dev,
1990 			"Cannot alloc memory for Status Block\n");
1991 		return -ENOMEM;
1992 	}
1993 	rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD;
1994 
1995 	/* The RFDs are going to be put on lists later on, so initialize the
1996 	 * lists now.
1997 	 */
1998 	INIT_LIST_HEAD(&rx_ring->recv_list);
1999 	return 0;
2000 }
2001 
2002 static void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
2003 {
2004 	u8 id;
2005 	u32 ii;
2006 	u32 bufsize;
2007 	u32 psr_size;
2008 	struct rfd *rfd;
2009 	struct rx_ring *rx_ring = &adapter->rx_ring;
2010 	struct fbr_lookup *fbr;
2011 
2012 	/* Free RFDs and associated packet descriptors */
2013 	WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd);
2014 
2015 	while (!list_empty(&rx_ring->recv_list)) {
2016 		rfd = list_entry(rx_ring->recv_list.next,
2017 				 struct rfd, list_node);
2018 
2019 		list_del(&rfd->list_node);
2020 		rfd->skb = NULL;
2021 		kfree(rfd);
2022 	}
2023 
2024 	/* Free Free Buffer Rings */
2025 	for (id = 0; id < NUM_FBRS; id++) {
2026 		fbr = rx_ring->fbr[id];
2027 
2028 		if (!fbr || !fbr->ring_virtaddr)
2029 			continue;
2030 
2031 		/* First the packet memory */
2032 		for (ii = 0; ii < fbr->num_entries / FBR_CHUNKS; ii++) {
2033 			if (fbr->mem_virtaddrs[ii]) {
2034 				bufsize = fbr->buffsize * FBR_CHUNKS;
2035 
2036 				dma_free_coherent(&adapter->pdev->dev,
2037 						  bufsize,
2038 						  fbr->mem_virtaddrs[ii],
2039 						  fbr->mem_physaddrs[ii]);
2040 
2041 				fbr->mem_virtaddrs[ii] = NULL;
2042 			}
2043 		}
2044 
2045 		bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
2046 
2047 		dma_free_coherent(&adapter->pdev->dev,
2048 				  bufsize,
2049 				  fbr->ring_virtaddr,
2050 				  fbr->ring_physaddr);
2051 
2052 		fbr->ring_virtaddr = NULL;
2053 	}
2054 
2055 	/* Free Packet Status Ring */
2056 	if (rx_ring->ps_ring_virtaddr) {
2057 		psr_size = sizeof(struct pkt_stat_desc) * rx_ring->psr_entries;
2058 
2059 		dma_free_coherent(&adapter->pdev->dev, psr_size,
2060 				  rx_ring->ps_ring_virtaddr,
2061 				  rx_ring->ps_ring_physaddr);
2062 
2063 		rx_ring->ps_ring_virtaddr = NULL;
2064 	}
2065 
2066 	/* Free area of memory for the writeback of status information */
2067 	if (rx_ring->rx_status_block) {
2068 		dma_free_coherent(&adapter->pdev->dev,
2069 				  sizeof(struct rx_status_block),
2070 				  rx_ring->rx_status_block,
2071 				  rx_ring->rx_status_bus);
2072 		rx_ring->rx_status_block = NULL;
2073 	}
2074 
2075 	/* Free the FBR Lookup Table */
2076 	kfree(rx_ring->fbr[0]);
2077 	kfree(rx_ring->fbr[1]);
2078 
2079 	/* Reset Counters */
2080 	rx_ring->num_ready_recv = 0;
2081 }
2082 
2083 /* et131x_init_recv - Initialize receive data structures */
2084 static int et131x_init_recv(struct et131x_adapter *adapter)
2085 {
2086 	struct rfd *rfd;
2087 	u32 rfdct;
2088 	struct rx_ring *rx_ring = &adapter->rx_ring;
2089 
2090 	/* Setup each RFD */
2091 	for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) {
2092 		rfd = kzalloc(sizeof(*rfd), GFP_ATOMIC | GFP_DMA);
2093 		if (!rfd)
2094 			return -ENOMEM;
2095 
2096 		rfd->skb = NULL;
2097 
2098 		/* Add this RFD to the recv_list */
2099 		list_add_tail(&rfd->list_node, &rx_ring->recv_list);
2100 
2101 		/* Increment the available RFD's */
2102 		rx_ring->num_ready_recv++;
2103 	}
2104 
2105 	return 0;
2106 }
2107 
2108 /* et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate */
2109 static void et131x_set_rx_dma_timer(struct et131x_adapter *adapter)
2110 {
2111 	struct phy_device *phydev = adapter->netdev->phydev;
2112 
2113 	/* For version B silicon, we do not use the RxDMA timer for 10 and 100
2114 	 * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
2115 	 */
2116 	if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) {
2117 		writel(0, &adapter->regs->rxdma.max_pkt_time);
2118 		writel(1, &adapter->regs->rxdma.num_pkt_done);
2119 	}
2120 }
2121 
2122 /* nic_return_rfd - Recycle a RFD and put it back onto the receive list */
2123 static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd)
2124 {
2125 	struct rx_ring *rx_local = &adapter->rx_ring;
2126 	struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
2127 	u16 buff_index = rfd->bufferindex;
2128 	u8 ring_index = rfd->ringindex;
2129 	unsigned long flags;
2130 	struct fbr_lookup *fbr = rx_local->fbr[ring_index];
2131 
2132 	/* We don't use any of the OOB data besides status. Otherwise, we
2133 	 * need to clean up OOB data
2134 	 */
2135 	if (buff_index < fbr->num_entries) {
2136 		u32 free_buff_ring;
2137 		u32 __iomem *offset;
2138 		struct fbr_desc *next;
2139 
2140 		if (ring_index == 0)
2141 			offset = &rx_dma->fbr0_full_offset;
2142 		else
2143 			offset = &rx_dma->fbr1_full_offset;
2144 
2145 		next = (struct fbr_desc *)(fbr->ring_virtaddr) +
2146 		       INDEX10(fbr->local_full);
2147 
2148 		/* Handle the Free Buffer Ring advancement here. Write
2149 		 * the PA / Buffer Index for the returned buffer into
2150 		 * the oldest (next to be freed)FBR entry
2151 		 */
2152 		next->addr_hi = fbr->bus_high[buff_index];
2153 		next->addr_lo = fbr->bus_low[buff_index];
2154 		next->word2 = buff_index;
2155 
2156 		free_buff_ring = bump_free_buff_ring(&fbr->local_full,
2157 						     fbr->num_entries - 1);
2158 		writel(free_buff_ring, offset);
2159 	} else {
2160 		dev_err(&adapter->pdev->dev,
2161 			"%s illegal Buffer Index returned\n", __func__);
2162 	}
2163 
2164 	/* The processing on this RFD is done, so put it back on the tail of
2165 	 * our list
2166 	 */
2167 	spin_lock_irqsave(&adapter->rcv_lock, flags);
2168 	list_add_tail(&rfd->list_node, &rx_local->recv_list);
2169 	rx_local->num_ready_recv++;
2170 	spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2171 
2172 	WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd);
2173 }
2174 
2175 /* nic_rx_pkts - Checks the hardware for available packets
2176  *
2177  * Checks the hardware for available packets, using completion ring
2178  * If packets are available, it gets an RFD from the recv_list, attaches
2179  * the packet to it, puts the RFD in the RecvPendList, and also returns
2180  * the pointer to the RFD.
2181  */
2182 static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter)
2183 {
2184 	struct rx_ring *rx_local = &adapter->rx_ring;
2185 	struct rx_status_block *status;
2186 	struct pkt_stat_desc *psr;
2187 	struct rfd *rfd;
2188 	unsigned long flags;
2189 	struct list_head *element;
2190 	u8 ring_index;
2191 	u16 buff_index;
2192 	u32 len;
2193 	u32 word0;
2194 	u32 word1;
2195 	struct sk_buff *skb;
2196 	struct fbr_lookup *fbr;
2197 
2198 	/* RX Status block is written by the DMA engine prior to every
2199 	 * interrupt. It contains the next to be used entry in the Packet
2200 	 * Status Ring, and also the two Free Buffer rings.
2201 	 */
2202 	status = rx_local->rx_status_block;
2203 	word1 = status->word1 >> 16;
2204 
2205 	/* Check the PSR and wrap bits do not match */
2206 	if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF))
2207 		return NULL; /* Looks like this ring is not updated yet */
2208 
2209 	/* The packet status ring indicates that data is available. */
2210 	psr = (struct pkt_stat_desc *)(rx_local->ps_ring_virtaddr) +
2211 			(rx_local->local_psr_full & 0xFFF);
2212 
2213 	/* Grab any information that is required once the PSR is advanced,
2214 	 * since we can no longer rely on the memory being accurate
2215 	 */
2216 	len = psr->word1 & 0xFFFF;
2217 	ring_index = (psr->word1 >> 26) & 0x03;
2218 	fbr = rx_local->fbr[ring_index];
2219 	buff_index = (psr->word1 >> 16) & 0x3FF;
2220 	word0 = psr->word0;
2221 
2222 	/* Indicate that we have used this PSR entry. */
2223 	/* FIXME wrap 12 */
2224 	add_12bit(&rx_local->local_psr_full, 1);
2225 	if ((rx_local->local_psr_full & 0xFFF) > rx_local->psr_entries - 1) {
2226 		/* Clear psr full and toggle the wrap bit */
2227 		rx_local->local_psr_full &=  ~0xFFF;
2228 		rx_local->local_psr_full ^= 0x1000;
2229 	}
2230 
2231 	writel(rx_local->local_psr_full, &adapter->regs->rxdma.psr_full_offset);
2232 
2233 	if (ring_index > 1 || buff_index > fbr->num_entries - 1) {
2234 		/* Illegal buffer or ring index cannot be used by S/W*/
2235 		dev_err(&adapter->pdev->dev,
2236 			"NICRxPkts PSR Entry %d indicates length of %d and/or bad bi(%d)\n",
2237 			rx_local->local_psr_full & 0xFFF, len, buff_index);
2238 		return NULL;
2239 	}
2240 
2241 	/* Get and fill the RFD. */
2242 	spin_lock_irqsave(&adapter->rcv_lock, flags);
2243 
2244 	element = rx_local->recv_list.next;
2245 	rfd = list_entry(element, struct rfd, list_node);
2246 
2247 	if (!rfd) {
2248 		spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2249 		return NULL;
2250 	}
2251 
2252 	list_del(&rfd->list_node);
2253 	rx_local->num_ready_recv--;
2254 
2255 	spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2256 
2257 	rfd->bufferindex = buff_index;
2258 	rfd->ringindex = ring_index;
2259 
2260 	/* In V1 silicon, there is a bug which screws up filtering of runt
2261 	 * packets. Therefore runt packet filtering is disabled in the MAC and
2262 	 * the packets are dropped here. They are also counted here.
2263 	 */
2264 	if (len < (NIC_MIN_PACKET_SIZE + 4)) {
2265 		adapter->stats.rx_other_errs++;
2266 		rfd->len = 0;
2267 		goto out;
2268 	}
2269 
2270 	if ((word0 & ALCATEL_MULTICAST_PKT) && !(word0 & ALCATEL_BROADCAST_PKT))
2271 		adapter->stats.multicast_pkts_rcvd++;
2272 
2273 	rfd->len = len;
2274 
2275 	skb = dev_alloc_skb(rfd->len + 2);
2276 	if (!skb)
2277 		return NULL;
2278 
2279 	adapter->netdev->stats.rx_bytes += rfd->len;
2280 
2281 	skb_put_data(skb, fbr->virt[buff_index], rfd->len);
2282 
2283 	skb->protocol = eth_type_trans(skb, adapter->netdev);
2284 	skb->ip_summed = CHECKSUM_NONE;
2285 	netif_receive_skb(skb);
2286 
2287 out:
2288 	nic_return_rfd(adapter, rfd);
2289 	return rfd;
2290 }
2291 
2292 static int et131x_handle_recv_pkts(struct et131x_adapter *adapter, int budget)
2293 {
2294 	struct rfd *rfd = NULL;
2295 	int count = 0;
2296 	int limit = budget;
2297 	bool done = true;
2298 	struct rx_ring *rx_ring = &adapter->rx_ring;
2299 
2300 	if (budget > MAX_PACKETS_HANDLED)
2301 		limit = MAX_PACKETS_HANDLED;
2302 
2303 	/* Process up to available RFD's */
2304 	while (count < limit) {
2305 		if (list_empty(&rx_ring->recv_list)) {
2306 			WARN_ON(rx_ring->num_ready_recv != 0);
2307 			done = false;
2308 			break;
2309 		}
2310 
2311 		rfd = nic_rx_pkts(adapter);
2312 
2313 		if (rfd == NULL)
2314 			break;
2315 
2316 		/* Do not receive any packets until a filter has been set.
2317 		 * Do not receive any packets until we have link.
2318 		 * If length is zero, return the RFD in order to advance the
2319 		 * Free buffer ring.
2320 		 */
2321 		if (!adapter->packet_filter ||
2322 		    !netif_carrier_ok(adapter->netdev) ||
2323 		    rfd->len == 0)
2324 			continue;
2325 
2326 		adapter->netdev->stats.rx_packets++;
2327 
2328 		if (rx_ring->num_ready_recv < RFD_LOW_WATER_MARK)
2329 			dev_warn(&adapter->pdev->dev, "RFD's are running out\n");
2330 
2331 		count++;
2332 	}
2333 
2334 	if (count == limit || !done) {
2335 		rx_ring->unfinished_receives = true;
2336 		writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2337 		       &adapter->regs->global.watchdog_timer);
2338 	} else {
2339 		/* Watchdog timer will disable itself if appropriate. */
2340 		rx_ring->unfinished_receives = false;
2341 	}
2342 
2343 	return count;
2344 }
2345 
2346 /* et131x_tx_dma_memory_alloc
2347  *
2348  * Allocates memory that will be visible both to the device and to the CPU.
2349  * The OS will pass us packets, pointers to which we will insert in the Tx
2350  * Descriptor queue. The device will read this queue to find the packets in
2351  * memory. The device will update the "status" in memory each time it xmits a
2352  * packet.
2353  */
2354 static int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter)
2355 {
2356 	int desc_size = 0;
2357 	struct tx_ring *tx_ring = &adapter->tx_ring;
2358 
2359 	/* Allocate memory for the TCB's (Transmit Control Block) */
2360 	tx_ring->tcb_ring = kcalloc(NUM_TCB, sizeof(struct tcb),
2361 				    GFP_KERNEL | GFP_DMA);
2362 	if (!tx_ring->tcb_ring)
2363 		return -ENOMEM;
2364 
2365 	desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
2366 	tx_ring->tx_desc_ring = dma_alloc_coherent(&adapter->pdev->dev,
2367 						   desc_size,
2368 						   &tx_ring->tx_desc_ring_pa,
2369 						   GFP_KERNEL);
2370 	if (!tx_ring->tx_desc_ring) {
2371 		dev_err(&adapter->pdev->dev,
2372 			"Cannot alloc memory for Tx Ring\n");
2373 		return -ENOMEM;
2374 	}
2375 
2376 	tx_ring->tx_status = dma_alloc_coherent(&adapter->pdev->dev,
2377 						    sizeof(u32),
2378 						    &tx_ring->tx_status_pa,
2379 						    GFP_KERNEL);
2380 	if (!tx_ring->tx_status) {
2381 		dev_err(&adapter->pdev->dev,
2382 			"Cannot alloc memory for Tx status block\n");
2383 		return -ENOMEM;
2384 	}
2385 	return 0;
2386 }
2387 
2388 static void et131x_tx_dma_memory_free(struct et131x_adapter *adapter)
2389 {
2390 	int desc_size = 0;
2391 	struct tx_ring *tx_ring = &adapter->tx_ring;
2392 
2393 	if (tx_ring->tx_desc_ring) {
2394 		/* Free memory relating to Tx rings here */
2395 		desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
2396 		dma_free_coherent(&adapter->pdev->dev,
2397 				  desc_size,
2398 				  tx_ring->tx_desc_ring,
2399 				  tx_ring->tx_desc_ring_pa);
2400 		tx_ring->tx_desc_ring = NULL;
2401 	}
2402 
2403 	/* Free memory for the Tx status block */
2404 	if (tx_ring->tx_status) {
2405 		dma_free_coherent(&adapter->pdev->dev,
2406 				  sizeof(u32),
2407 				  tx_ring->tx_status,
2408 				  tx_ring->tx_status_pa);
2409 
2410 		tx_ring->tx_status = NULL;
2411 	}
2412 	/* Free the memory for the tcb structures */
2413 	kfree(tx_ring->tcb_ring);
2414 }
2415 
2416 /* nic_send_packet - NIC specific send handler for version B silicon. */
2417 static int nic_send_packet(struct et131x_adapter *adapter, struct tcb *tcb)
2418 {
2419 	u32 i;
2420 	struct tx_desc desc[24];
2421 	u32 frag = 0;
2422 	u32 thiscopy, remainder;
2423 	struct sk_buff *skb = tcb->skb;
2424 	u32 nr_frags = skb_shinfo(skb)->nr_frags + 1;
2425 	skb_frag_t *frags = &skb_shinfo(skb)->frags[0];
2426 	struct phy_device *phydev = adapter->netdev->phydev;
2427 	dma_addr_t dma_addr;
2428 	struct tx_ring *tx_ring = &adapter->tx_ring;
2429 
2430 	/* Part of the optimizations of this send routine restrict us to
2431 	 * sending 24 fragments at a pass.  In practice we should never see
2432 	 * more than 5 fragments.
2433 	 */
2434 
2435 	/* nr_frags should be no more than 18. */
2436 	BUILD_BUG_ON(MAX_SKB_FRAGS + 1 > 23);
2437 
2438 	memset(desc, 0, sizeof(struct tx_desc) * (nr_frags + 1));
2439 
2440 	for (i = 0; i < nr_frags; i++) {
2441 		/* If there is something in this element, lets get a
2442 		 * descriptor from the ring and get the necessary data
2443 		 */
2444 		if (i == 0) {
2445 			/* If the fragments are smaller than a standard MTU,
2446 			 * then map them to a single descriptor in the Tx
2447 			 * Desc ring. However, if they're larger, as is
2448 			 * possible with support for jumbo packets, then
2449 			 * split them each across 2 descriptors.
2450 			 *
2451 			 * This will work until we determine why the hardware
2452 			 * doesn't seem to like large fragments.
2453 			 */
2454 			if (skb_headlen(skb) <= 1514) {
2455 				/* Low 16bits are length, high is vlan and
2456 				 * unused currently so zero
2457 				 */
2458 				desc[frag].len_vlan = skb_headlen(skb);
2459 				dma_addr = dma_map_single(&adapter->pdev->dev,
2460 							  skb->data,
2461 							  skb_headlen(skb),
2462 							  DMA_TO_DEVICE);
2463 				desc[frag].addr_lo = lower_32_bits(dma_addr);
2464 				desc[frag].addr_hi = upper_32_bits(dma_addr);
2465 				frag++;
2466 			} else {
2467 				desc[frag].len_vlan = skb_headlen(skb) / 2;
2468 				dma_addr = dma_map_single(&adapter->pdev->dev,
2469 							  skb->data,
2470 							  skb_headlen(skb) / 2,
2471 							  DMA_TO_DEVICE);
2472 				desc[frag].addr_lo = lower_32_bits(dma_addr);
2473 				desc[frag].addr_hi = upper_32_bits(dma_addr);
2474 				frag++;
2475 
2476 				desc[frag].len_vlan = skb_headlen(skb) / 2;
2477 				dma_addr = dma_map_single(&adapter->pdev->dev,
2478 							  skb->data +
2479 							  skb_headlen(skb) / 2,
2480 							  skb_headlen(skb) / 2,
2481 							  DMA_TO_DEVICE);
2482 				desc[frag].addr_lo = lower_32_bits(dma_addr);
2483 				desc[frag].addr_hi = upper_32_bits(dma_addr);
2484 				frag++;
2485 			}
2486 		} else {
2487 			desc[frag].len_vlan = skb_frag_size(&frags[i - 1]);
2488 			dma_addr = skb_frag_dma_map(&adapter->pdev->dev,
2489 						    &frags[i - 1],
2490 						    0,
2491 						    desc[frag].len_vlan,
2492 						    DMA_TO_DEVICE);
2493 			desc[frag].addr_lo = lower_32_bits(dma_addr);
2494 			desc[frag].addr_hi = upper_32_bits(dma_addr);
2495 			frag++;
2496 		}
2497 	}
2498 
2499 	if (phydev && phydev->speed == SPEED_1000) {
2500 		if (++tx_ring->since_irq == PARM_TX_NUM_BUFS_DEF) {
2501 			/* Last element & Interrupt flag */
2502 			desc[frag - 1].flags =
2503 				    TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
2504 			tx_ring->since_irq = 0;
2505 		} else { /* Last element */
2506 			desc[frag - 1].flags = TXDESC_FLAG_LASTPKT;
2507 		}
2508 	} else {
2509 		desc[frag - 1].flags =
2510 				    TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
2511 	}
2512 
2513 	desc[0].flags |= TXDESC_FLAG_FIRSTPKT;
2514 
2515 	tcb->index_start = tx_ring->send_idx;
2516 	tcb->stale = 0;
2517 
2518 	thiscopy = NUM_DESC_PER_RING_TX - INDEX10(tx_ring->send_idx);
2519 
2520 	if (thiscopy >= frag) {
2521 		remainder = 0;
2522 		thiscopy = frag;
2523 	} else {
2524 		remainder = frag - thiscopy;
2525 	}
2526 
2527 	memcpy(tx_ring->tx_desc_ring + INDEX10(tx_ring->send_idx),
2528 	       desc,
2529 	       sizeof(struct tx_desc) * thiscopy);
2530 
2531 	add_10bit(&tx_ring->send_idx, thiscopy);
2532 
2533 	if (INDEX10(tx_ring->send_idx) == 0 ||
2534 	    INDEX10(tx_ring->send_idx) == NUM_DESC_PER_RING_TX) {
2535 		tx_ring->send_idx &= ~ET_DMA10_MASK;
2536 		tx_ring->send_idx ^= ET_DMA10_WRAP;
2537 	}
2538 
2539 	if (remainder) {
2540 		memcpy(tx_ring->tx_desc_ring,
2541 		       desc + thiscopy,
2542 		       sizeof(struct tx_desc) * remainder);
2543 
2544 		add_10bit(&tx_ring->send_idx, remainder);
2545 	}
2546 
2547 	if (INDEX10(tx_ring->send_idx) == 0) {
2548 		if (tx_ring->send_idx)
2549 			tcb->index = NUM_DESC_PER_RING_TX - 1;
2550 		else
2551 			tcb->index = ET_DMA10_WRAP|(NUM_DESC_PER_RING_TX - 1);
2552 	} else {
2553 		tcb->index = tx_ring->send_idx - 1;
2554 	}
2555 
2556 	spin_lock(&adapter->tcb_send_qlock);
2557 
2558 	if (tx_ring->send_tail)
2559 		tx_ring->send_tail->next = tcb;
2560 	else
2561 		tx_ring->send_head = tcb;
2562 
2563 	tx_ring->send_tail = tcb;
2564 
2565 	WARN_ON(tcb->next != NULL);
2566 
2567 	tx_ring->used++;
2568 
2569 	spin_unlock(&adapter->tcb_send_qlock);
2570 
2571 	/* Write the new write pointer back to the device. */
2572 	writel(tx_ring->send_idx, &adapter->regs->txdma.service_request);
2573 
2574 	/* For Gig only, we use Tx Interrupt coalescing.  Enable the software
2575 	 * timer to wake us up if this packet isn't followed by N more.
2576 	 */
2577 	if (phydev && phydev->speed == SPEED_1000) {
2578 		writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2579 		       &adapter->regs->global.watchdog_timer);
2580 	}
2581 	return 0;
2582 }
2583 
2584 static int send_packet(struct sk_buff *skb, struct et131x_adapter *adapter)
2585 {
2586 	int status;
2587 	struct tcb *tcb;
2588 	unsigned long flags;
2589 	struct tx_ring *tx_ring = &adapter->tx_ring;
2590 
2591 	/* All packets must have at least a MAC address and a protocol type */
2592 	if (skb->len < ETH_HLEN)
2593 		return -EIO;
2594 
2595 	spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2596 
2597 	tcb = tx_ring->tcb_qhead;
2598 
2599 	if (tcb == NULL) {
2600 		spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2601 		return -ENOMEM;
2602 	}
2603 
2604 	tx_ring->tcb_qhead = tcb->next;
2605 
2606 	if (tx_ring->tcb_qhead == NULL)
2607 		tx_ring->tcb_qtail = NULL;
2608 
2609 	spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2610 
2611 	tcb->skb = skb;
2612 	tcb->next = NULL;
2613 
2614 	status = nic_send_packet(adapter, tcb);
2615 
2616 	if (status != 0) {
2617 		spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2618 
2619 		if (tx_ring->tcb_qtail)
2620 			tx_ring->tcb_qtail->next = tcb;
2621 		else
2622 			/* Apparently ready Q is empty. */
2623 			tx_ring->tcb_qhead = tcb;
2624 
2625 		tx_ring->tcb_qtail = tcb;
2626 		spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2627 		return status;
2628 	}
2629 	WARN_ON(tx_ring->used > NUM_TCB);
2630 	return 0;
2631 }
2632 
2633 /* free_send_packet - Recycle a struct tcb */
2634 static inline void free_send_packet(struct et131x_adapter *adapter,
2635 				    struct tcb *tcb)
2636 {
2637 	unsigned long flags;
2638 	struct tx_desc *desc = NULL;
2639 	struct net_device_stats *stats = &adapter->netdev->stats;
2640 	struct tx_ring *tx_ring = &adapter->tx_ring;
2641 	u64  dma_addr;
2642 
2643 	if (tcb->skb) {
2644 		stats->tx_bytes += tcb->skb->len;
2645 
2646 		/* Iterate through the TX descriptors on the ring
2647 		 * corresponding to this packet and umap the fragments
2648 		 * they point to
2649 		 */
2650 		do {
2651 			desc = tx_ring->tx_desc_ring +
2652 			       INDEX10(tcb->index_start);
2653 
2654 			dma_addr = desc->addr_lo;
2655 			dma_addr |= (u64)desc->addr_hi << 32;
2656 
2657 			dma_unmap_single(&adapter->pdev->dev,
2658 					 dma_addr,
2659 					 desc->len_vlan, DMA_TO_DEVICE);
2660 
2661 			add_10bit(&tcb->index_start, 1);
2662 			if (INDEX10(tcb->index_start) >=
2663 							NUM_DESC_PER_RING_TX) {
2664 				tcb->index_start &= ~ET_DMA10_MASK;
2665 				tcb->index_start ^= ET_DMA10_WRAP;
2666 			}
2667 		} while (desc != tx_ring->tx_desc_ring + INDEX10(tcb->index));
2668 
2669 		dev_kfree_skb_any(tcb->skb);
2670 	}
2671 
2672 	memset(tcb, 0, sizeof(struct tcb));
2673 
2674 	/* Add the TCB to the Ready Q */
2675 	spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2676 
2677 	stats->tx_packets++;
2678 
2679 	if (tx_ring->tcb_qtail)
2680 		tx_ring->tcb_qtail->next = tcb;
2681 	else /* Apparently ready Q is empty. */
2682 		tx_ring->tcb_qhead = tcb;
2683 
2684 	tx_ring->tcb_qtail = tcb;
2685 
2686 	spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2687 	WARN_ON(tx_ring->used < 0);
2688 }
2689 
2690 /* et131x_free_busy_send_packets - Free and complete the stopped active sends */
2691 static void et131x_free_busy_send_packets(struct et131x_adapter *adapter)
2692 {
2693 	struct tcb *tcb;
2694 	unsigned long flags;
2695 	u32 freed = 0;
2696 	struct tx_ring *tx_ring = &adapter->tx_ring;
2697 
2698 	/* Any packets being sent? Check the first TCB on the send list */
2699 	spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2700 
2701 	tcb = tx_ring->send_head;
2702 
2703 	while (tcb != NULL && freed < NUM_TCB) {
2704 		struct tcb *next = tcb->next;
2705 
2706 		tx_ring->send_head = next;
2707 
2708 		if (next == NULL)
2709 			tx_ring->send_tail = NULL;
2710 
2711 		tx_ring->used--;
2712 
2713 		spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2714 
2715 		freed++;
2716 		free_send_packet(adapter, tcb);
2717 
2718 		spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2719 
2720 		tcb = tx_ring->send_head;
2721 	}
2722 
2723 	WARN_ON(freed == NUM_TCB);
2724 
2725 	spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2726 
2727 	tx_ring->used = 0;
2728 }
2729 
2730 /* et131x_handle_send_pkts
2731  *
2732  * Re-claim the send resources, complete sends and get more to send from
2733  * the send wait queue.
2734  */
2735 static void et131x_handle_send_pkts(struct et131x_adapter *adapter)
2736 {
2737 	unsigned long flags;
2738 	u32 serviced;
2739 	struct tcb *tcb;
2740 	u32 index;
2741 	struct tx_ring *tx_ring = &adapter->tx_ring;
2742 
2743 	serviced = readl(&adapter->regs->txdma.new_service_complete);
2744 	index = INDEX10(serviced);
2745 
2746 	/* Has the ring wrapped?  Process any descriptors that do not have
2747 	 * the same "wrap" indicator as the current completion indicator
2748 	 */
2749 	spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2750 
2751 	tcb = tx_ring->send_head;
2752 
2753 	while (tcb &&
2754 	       ((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
2755 	       index < INDEX10(tcb->index)) {
2756 		tx_ring->used--;
2757 		tx_ring->send_head = tcb->next;
2758 		if (tcb->next == NULL)
2759 			tx_ring->send_tail = NULL;
2760 
2761 		spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2762 		free_send_packet(adapter, tcb);
2763 		spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2764 
2765 		/* Goto the next packet */
2766 		tcb = tx_ring->send_head;
2767 	}
2768 	while (tcb &&
2769 	       !((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
2770 	       index > (tcb->index & ET_DMA10_MASK)) {
2771 		tx_ring->used--;
2772 		tx_ring->send_head = tcb->next;
2773 		if (tcb->next == NULL)
2774 			tx_ring->send_tail = NULL;
2775 
2776 		spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2777 		free_send_packet(adapter, tcb);
2778 		spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2779 
2780 		/* Goto the next packet */
2781 		tcb = tx_ring->send_head;
2782 	}
2783 
2784 	/* Wake up the queue when we hit a low-water mark */
2785 	if (tx_ring->used <= NUM_TCB / 3)
2786 		netif_wake_queue(adapter->netdev);
2787 
2788 	spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2789 }
2790 
2791 static int et131x_get_regs_len(struct net_device *netdev)
2792 {
2793 #define ET131X_REGS_LEN 256
2794 	return ET131X_REGS_LEN * sizeof(u32);
2795 }
2796 
2797 static void et131x_get_regs(struct net_device *netdev,
2798 			    struct ethtool_regs *regs, void *regs_data)
2799 {
2800 	struct et131x_adapter *adapter = netdev_priv(netdev);
2801 	struct address_map __iomem *aregs = adapter->regs;
2802 	u32 *regs_buff = regs_data;
2803 	u32 num = 0;
2804 	u16 tmp;
2805 
2806 	memset(regs_data, 0, et131x_get_regs_len(netdev));
2807 
2808 	regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
2809 			adapter->pdev->device;
2810 
2811 	/* PHY regs */
2812 	et131x_mii_read(adapter, MII_BMCR, &tmp);
2813 	regs_buff[num++] = tmp;
2814 	et131x_mii_read(adapter, MII_BMSR, &tmp);
2815 	regs_buff[num++] = tmp;
2816 	et131x_mii_read(adapter, MII_PHYSID1, &tmp);
2817 	regs_buff[num++] = tmp;
2818 	et131x_mii_read(adapter, MII_PHYSID2, &tmp);
2819 	regs_buff[num++] = tmp;
2820 	et131x_mii_read(adapter, MII_ADVERTISE, &tmp);
2821 	regs_buff[num++] = tmp;
2822 	et131x_mii_read(adapter, MII_LPA, &tmp);
2823 	regs_buff[num++] = tmp;
2824 	et131x_mii_read(adapter, MII_EXPANSION, &tmp);
2825 	regs_buff[num++] = tmp;
2826 	/* Autoneg next page transmit reg */
2827 	et131x_mii_read(adapter, 0x07, &tmp);
2828 	regs_buff[num++] = tmp;
2829 	/* Link partner next page reg */
2830 	et131x_mii_read(adapter, 0x08, &tmp);
2831 	regs_buff[num++] = tmp;
2832 	et131x_mii_read(adapter, MII_CTRL1000, &tmp);
2833 	regs_buff[num++] = tmp;
2834 	et131x_mii_read(adapter, MII_STAT1000, &tmp);
2835 	regs_buff[num++] = tmp;
2836 	et131x_mii_read(adapter, 0x0b, &tmp);
2837 	regs_buff[num++] = tmp;
2838 	et131x_mii_read(adapter, 0x0c, &tmp);
2839 	regs_buff[num++] = tmp;
2840 	et131x_mii_read(adapter, MII_MMD_CTRL, &tmp);
2841 	regs_buff[num++] = tmp;
2842 	et131x_mii_read(adapter, MII_MMD_DATA, &tmp);
2843 	regs_buff[num++] = tmp;
2844 	et131x_mii_read(adapter, MII_ESTATUS, &tmp);
2845 	regs_buff[num++] = tmp;
2846 
2847 	et131x_mii_read(adapter, PHY_INDEX_REG, &tmp);
2848 	regs_buff[num++] = tmp;
2849 	et131x_mii_read(adapter, PHY_DATA_REG, &tmp);
2850 	regs_buff[num++] = tmp;
2851 	et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG, &tmp);
2852 	regs_buff[num++] = tmp;
2853 	et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL, &tmp);
2854 	regs_buff[num++] = tmp;
2855 	et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL + 1, &tmp);
2856 	regs_buff[num++] = tmp;
2857 
2858 	et131x_mii_read(adapter, PHY_REGISTER_MGMT_CONTROL, &tmp);
2859 	regs_buff[num++] = tmp;
2860 	et131x_mii_read(adapter, PHY_CONFIG, &tmp);
2861 	regs_buff[num++] = tmp;
2862 	et131x_mii_read(adapter, PHY_PHY_CONTROL, &tmp);
2863 	regs_buff[num++] = tmp;
2864 	et131x_mii_read(adapter, PHY_INTERRUPT_MASK, &tmp);
2865 	regs_buff[num++] = tmp;
2866 	et131x_mii_read(adapter, PHY_INTERRUPT_STATUS, &tmp);
2867 	regs_buff[num++] = tmp;
2868 	et131x_mii_read(adapter, PHY_PHY_STATUS, &tmp);
2869 	regs_buff[num++] = tmp;
2870 	et131x_mii_read(adapter, PHY_LED_1, &tmp);
2871 	regs_buff[num++] = tmp;
2872 	et131x_mii_read(adapter, PHY_LED_2, &tmp);
2873 	regs_buff[num++] = tmp;
2874 
2875 	/* Global regs */
2876 	regs_buff[num++] = readl(&aregs->global.txq_start_addr);
2877 	regs_buff[num++] = readl(&aregs->global.txq_end_addr);
2878 	regs_buff[num++] = readl(&aregs->global.rxq_start_addr);
2879 	regs_buff[num++] = readl(&aregs->global.rxq_end_addr);
2880 	regs_buff[num++] = readl(&aregs->global.pm_csr);
2881 	regs_buff[num++] = adapter->stats.interrupt_status;
2882 	regs_buff[num++] = readl(&aregs->global.int_mask);
2883 	regs_buff[num++] = readl(&aregs->global.int_alias_clr_en);
2884 	regs_buff[num++] = readl(&aregs->global.int_status_alias);
2885 	regs_buff[num++] = readl(&aregs->global.sw_reset);
2886 	regs_buff[num++] = readl(&aregs->global.slv_timer);
2887 	regs_buff[num++] = readl(&aregs->global.msi_config);
2888 	regs_buff[num++] = readl(&aregs->global.loopback);
2889 	regs_buff[num++] = readl(&aregs->global.watchdog_timer);
2890 
2891 	/* TXDMA regs */
2892 	regs_buff[num++] = readl(&aregs->txdma.csr);
2893 	regs_buff[num++] = readl(&aregs->txdma.pr_base_hi);
2894 	regs_buff[num++] = readl(&aregs->txdma.pr_base_lo);
2895 	regs_buff[num++] = readl(&aregs->txdma.pr_num_des);
2896 	regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr);
2897 	regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr_ext);
2898 	regs_buff[num++] = readl(&aregs->txdma.txq_rd_addr);
2899 	regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_hi);
2900 	regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_lo);
2901 	regs_buff[num++] = readl(&aregs->txdma.service_request);
2902 	regs_buff[num++] = readl(&aregs->txdma.service_complete);
2903 	regs_buff[num++] = readl(&aregs->txdma.cache_rd_index);
2904 	regs_buff[num++] = readl(&aregs->txdma.cache_wr_index);
2905 	regs_buff[num++] = readl(&aregs->txdma.tx_dma_error);
2906 	regs_buff[num++] = readl(&aregs->txdma.desc_abort_cnt);
2907 	regs_buff[num++] = readl(&aregs->txdma.payload_abort_cnt);
2908 	regs_buff[num++] = readl(&aregs->txdma.writeback_abort_cnt);
2909 	regs_buff[num++] = readl(&aregs->txdma.desc_timeout_cnt);
2910 	regs_buff[num++] = readl(&aregs->txdma.payload_timeout_cnt);
2911 	regs_buff[num++] = readl(&aregs->txdma.writeback_timeout_cnt);
2912 	regs_buff[num++] = readl(&aregs->txdma.desc_error_cnt);
2913 	regs_buff[num++] = readl(&aregs->txdma.payload_error_cnt);
2914 	regs_buff[num++] = readl(&aregs->txdma.writeback_error_cnt);
2915 	regs_buff[num++] = readl(&aregs->txdma.dropped_tlp_cnt);
2916 	regs_buff[num++] = readl(&aregs->txdma.new_service_complete);
2917 	regs_buff[num++] = readl(&aregs->txdma.ethernet_packet_cnt);
2918 
2919 	/* RXDMA regs */
2920 	regs_buff[num++] = readl(&aregs->rxdma.csr);
2921 	regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_hi);
2922 	regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_lo);
2923 	regs_buff[num++] = readl(&aregs->rxdma.num_pkt_done);
2924 	regs_buff[num++] = readl(&aregs->rxdma.max_pkt_time);
2925 	regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr);
2926 	regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr_ext);
2927 	regs_buff[num++] = readl(&aregs->rxdma.rxq_wr_addr);
2928 	regs_buff[num++] = readl(&aregs->rxdma.psr_base_hi);
2929 	regs_buff[num++] = readl(&aregs->rxdma.psr_base_lo);
2930 	regs_buff[num++] = readl(&aregs->rxdma.psr_num_des);
2931 	regs_buff[num++] = readl(&aregs->rxdma.psr_avail_offset);
2932 	regs_buff[num++] = readl(&aregs->rxdma.psr_full_offset);
2933 	regs_buff[num++] = readl(&aregs->rxdma.psr_access_index);
2934 	regs_buff[num++] = readl(&aregs->rxdma.psr_min_des);
2935 	regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_lo);
2936 	regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_hi);
2937 	regs_buff[num++] = readl(&aregs->rxdma.fbr0_num_des);
2938 	regs_buff[num++] = readl(&aregs->rxdma.fbr0_avail_offset);
2939 	regs_buff[num++] = readl(&aregs->rxdma.fbr0_full_offset);
2940 	regs_buff[num++] = readl(&aregs->rxdma.fbr0_rd_index);
2941 	regs_buff[num++] = readl(&aregs->rxdma.fbr0_min_des);
2942 	regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_lo);
2943 	regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_hi);
2944 	regs_buff[num++] = readl(&aregs->rxdma.fbr1_num_des);
2945 	regs_buff[num++] = readl(&aregs->rxdma.fbr1_avail_offset);
2946 	regs_buff[num++] = readl(&aregs->rxdma.fbr1_full_offset);
2947 	regs_buff[num++] = readl(&aregs->rxdma.fbr1_rd_index);
2948 	regs_buff[num++] = readl(&aregs->rxdma.fbr1_min_des);
2949 }
2950 
2951 static void et131x_get_drvinfo(struct net_device *netdev,
2952 			       struct ethtool_drvinfo *info)
2953 {
2954 	struct et131x_adapter *adapter = netdev_priv(netdev);
2955 
2956 	strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver));
2957 	strlcpy(info->bus_info, pci_name(adapter->pdev),
2958 		sizeof(info->bus_info));
2959 }
2960 
2961 static const struct ethtool_ops et131x_ethtool_ops = {
2962 	.get_drvinfo	= et131x_get_drvinfo,
2963 	.get_regs_len	= et131x_get_regs_len,
2964 	.get_regs	= et131x_get_regs,
2965 	.get_link	= ethtool_op_get_link,
2966 	.get_link_ksettings = phy_ethtool_get_link_ksettings,
2967 	.set_link_ksettings = phy_ethtool_set_link_ksettings,
2968 };
2969 
2970 /* et131x_hwaddr_init - set up the MAC Address */
2971 static void et131x_hwaddr_init(struct et131x_adapter *adapter)
2972 {
2973 	/* If have our default mac from init and no mac address from
2974 	 * EEPROM then we need to generate the last octet and set it on the
2975 	 * device
2976 	 */
2977 	if (is_zero_ether_addr(adapter->rom_addr)) {
2978 		/* We need to randomly generate the last octet so we
2979 		 * decrease our chances of setting the mac address to
2980 		 * same as another one of our cards in the system
2981 		 */
2982 		get_random_bytes(&adapter->addr[5], 1);
2983 		/* We have the default value in the register we are
2984 		 * working with so we need to copy the current
2985 		 * address into the permanent address
2986 		 */
2987 		ether_addr_copy(adapter->rom_addr, adapter->addr);
2988 	} else {
2989 		/* We do not have an override address, so set the
2990 		 * current address to the permanent address and add
2991 		 * it to the device
2992 		 */
2993 		ether_addr_copy(adapter->addr, adapter->rom_addr);
2994 	}
2995 }
2996 
2997 static int et131x_pci_init(struct et131x_adapter *adapter,
2998 			   struct pci_dev *pdev)
2999 {
3000 	u16 max_payload;
3001 	int i, rc;
3002 
3003 	rc = et131x_init_eeprom(adapter);
3004 	if (rc < 0)
3005 		goto out;
3006 
3007 	if (!pci_is_pcie(pdev)) {
3008 		dev_err(&pdev->dev, "Missing PCIe capabilities\n");
3009 		goto err_out;
3010 	}
3011 
3012 	/* Program the Ack/Nak latency and replay timers */
3013 	max_payload = pdev->pcie_mpss;
3014 
3015 	if (max_payload < 2) {
3016 		static const u16 acknak[2] = { 0x76, 0xD0 };
3017 		static const u16 replay[2] = { 0x1E0, 0x2ED };
3018 
3019 		if (pci_write_config_word(pdev, ET1310_PCI_ACK_NACK,
3020 					  acknak[max_payload])) {
3021 			dev_err(&pdev->dev,
3022 				"Could not write PCI config space for ACK/NAK\n");
3023 			goto err_out;
3024 		}
3025 		if (pci_write_config_word(pdev, ET1310_PCI_REPLAY,
3026 					  replay[max_payload])) {
3027 			dev_err(&pdev->dev,
3028 				"Could not write PCI config space for Replay Timer\n");
3029 			goto err_out;
3030 		}
3031 	}
3032 
3033 	/* l0s and l1 latency timers.  We are using default values.
3034 	 * Representing 001 for L0s and 010 for L1
3035 	 */
3036 	if (pci_write_config_byte(pdev, ET1310_PCI_L0L1LATENCY, 0x11)) {
3037 		dev_err(&pdev->dev,
3038 			"Could not write PCI config space for Latency Timers\n");
3039 		goto err_out;
3040 	}
3041 
3042 	/* Change the max read size to 2k */
3043 	if (pcie_set_readrq(pdev, 2048)) {
3044 		dev_err(&pdev->dev,
3045 			"Couldn't change PCI config space for Max read size\n");
3046 		goto err_out;
3047 	}
3048 
3049 	/* Get MAC address from config space if an eeprom exists, otherwise
3050 	 * the MAC address there will not be valid
3051 	 */
3052 	if (!adapter->has_eeprom) {
3053 		et131x_hwaddr_init(adapter);
3054 		return 0;
3055 	}
3056 
3057 	for (i = 0; i < ETH_ALEN; i++) {
3058 		if (pci_read_config_byte(pdev, ET1310_PCI_MAC_ADDRESS + i,
3059 					 adapter->rom_addr + i)) {
3060 			dev_err(&pdev->dev, "Could not read PCI config space for MAC address\n");
3061 			goto err_out;
3062 		}
3063 	}
3064 	ether_addr_copy(adapter->addr, adapter->rom_addr);
3065 out:
3066 	return rc;
3067 err_out:
3068 	rc = -EIO;
3069 	goto out;
3070 }
3071 
3072 /* et131x_error_timer_handler
3073  * @data: timer-specific variable; here a pointer to our adapter structure
3074  *
3075  * The routine called when the error timer expires, to track the number of
3076  * recurring errors.
3077  */
3078 static void et131x_error_timer_handler(struct timer_list *t)
3079 {
3080 	struct et131x_adapter *adapter = from_timer(adapter, t, error_timer);
3081 	struct phy_device *phydev = adapter->netdev->phydev;
3082 
3083 	if (et1310_in_phy_coma(adapter)) {
3084 		/* Bring the device immediately out of coma, to
3085 		 * prevent it from sleeping indefinitely, this
3086 		 * mechanism could be improved!
3087 		 */
3088 		et1310_disable_phy_coma(adapter);
3089 		adapter->boot_coma = 20;
3090 	} else {
3091 		et1310_update_macstat_host_counters(adapter);
3092 	}
3093 
3094 	if (!phydev->link && adapter->boot_coma < 11)
3095 		adapter->boot_coma++;
3096 
3097 	if (adapter->boot_coma == 10) {
3098 		if (!phydev->link) {
3099 			if (!et1310_in_phy_coma(adapter)) {
3100 				/* NOTE - This was originally a 'sync with
3101 				 *  interrupt'. How to do that under Linux?
3102 				 */
3103 				et131x_enable_interrupts(adapter);
3104 				et1310_enable_phy_coma(adapter);
3105 			}
3106 		}
3107 	}
3108 
3109 	/* This is a periodic timer, so reschedule */
3110 	mod_timer(&adapter->error_timer, jiffies +
3111 		  msecs_to_jiffies(TX_ERROR_PERIOD));
3112 }
3113 
3114 static void et131x_adapter_memory_free(struct et131x_adapter *adapter)
3115 {
3116 	et131x_tx_dma_memory_free(adapter);
3117 	et131x_rx_dma_memory_free(adapter);
3118 }
3119 
3120 static int et131x_adapter_memory_alloc(struct et131x_adapter *adapter)
3121 {
3122 	int status;
3123 
3124 	status = et131x_tx_dma_memory_alloc(adapter);
3125 	if (status) {
3126 		dev_err(&adapter->pdev->dev,
3127 			"et131x_tx_dma_memory_alloc FAILED\n");
3128 		et131x_tx_dma_memory_free(adapter);
3129 		return status;
3130 	}
3131 
3132 	status = et131x_rx_dma_memory_alloc(adapter);
3133 	if (status) {
3134 		dev_err(&adapter->pdev->dev,
3135 			"et131x_rx_dma_memory_alloc FAILED\n");
3136 		et131x_adapter_memory_free(adapter);
3137 		return status;
3138 	}
3139 
3140 	status = et131x_init_recv(adapter);
3141 	if (status) {
3142 		dev_err(&adapter->pdev->dev, "et131x_init_recv FAILED\n");
3143 		et131x_adapter_memory_free(adapter);
3144 	}
3145 	return status;
3146 }
3147 
3148 static void et131x_adjust_link(struct net_device *netdev)
3149 {
3150 	struct et131x_adapter *adapter = netdev_priv(netdev);
3151 	struct  phy_device *phydev = netdev->phydev;
3152 
3153 	if (!phydev)
3154 		return;
3155 	if (phydev->link == adapter->link)
3156 		return;
3157 
3158 	/* Check to see if we are in coma mode and if
3159 	 * so, disable it because we will not be able
3160 	 * to read PHY values until we are out.
3161 	 */
3162 	if (et1310_in_phy_coma(adapter))
3163 		et1310_disable_phy_coma(adapter);
3164 
3165 	adapter->link = phydev->link;
3166 	phy_print_status(phydev);
3167 
3168 	if (phydev->link) {
3169 		adapter->boot_coma = 20;
3170 		if (phydev->speed == SPEED_10) {
3171 			u16 register18;
3172 
3173 			et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3174 					&register18);
3175 			et131x_mii_write(adapter, phydev->mdio.addr,
3176 					 PHY_MPHY_CONTROL_REG,
3177 					 register18 | 0x4);
3178 			et131x_mii_write(adapter, phydev->mdio.addr,
3179 					 PHY_INDEX_REG, register18 | 0x8402);
3180 			et131x_mii_write(adapter, phydev->mdio.addr,
3181 					 PHY_DATA_REG, register18 | 511);
3182 			et131x_mii_write(adapter, phydev->mdio.addr,
3183 					 PHY_MPHY_CONTROL_REG, register18);
3184 		}
3185 
3186 		et1310_config_flow_control(adapter);
3187 
3188 		if (phydev->speed == SPEED_1000 &&
3189 		    adapter->registry_jumbo_packet > 2048) {
3190 			u16 reg;
3191 
3192 			et131x_mii_read(adapter, PHY_CONFIG, &reg);
3193 			reg &= ~ET_PHY_CONFIG_TX_FIFO_DEPTH;
3194 			reg |= ET_PHY_CONFIG_FIFO_DEPTH_32;
3195 			et131x_mii_write(adapter, phydev->mdio.addr,
3196 					 PHY_CONFIG, reg);
3197 		}
3198 
3199 		et131x_set_rx_dma_timer(adapter);
3200 		et1310_config_mac_regs2(adapter);
3201 	} else {
3202 		adapter->boot_coma = 0;
3203 
3204 		if (phydev->speed == SPEED_10) {
3205 			u16 register18;
3206 
3207 			et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3208 					&register18);
3209 			et131x_mii_write(adapter, phydev->mdio.addr,
3210 					 PHY_MPHY_CONTROL_REG,
3211 					 register18 | 0x4);
3212 			et131x_mii_write(adapter, phydev->mdio.addr,
3213 					 PHY_INDEX_REG, register18 | 0x8402);
3214 			et131x_mii_write(adapter, phydev->mdio.addr,
3215 					 PHY_DATA_REG, register18 | 511);
3216 			et131x_mii_write(adapter, phydev->mdio.addr,
3217 					 PHY_MPHY_CONTROL_REG, register18);
3218 		}
3219 
3220 		et131x_free_busy_send_packets(adapter);
3221 		et131x_init_send(adapter);
3222 
3223 		/* Bring the device back to the state it was during
3224 		 * init prior to autonegotiation being complete. This
3225 		 * way, when we get the auto-neg complete interrupt,
3226 		 * we can complete init by calling config_mac_regs2.
3227 		 */
3228 		et131x_soft_reset(adapter);
3229 
3230 		et131x_adapter_setup(adapter);
3231 
3232 		et131x_disable_txrx(netdev);
3233 		et131x_enable_txrx(netdev);
3234 	}
3235 }
3236 
3237 static int et131x_mii_probe(struct net_device *netdev)
3238 {
3239 	struct et131x_adapter *adapter = netdev_priv(netdev);
3240 	struct  phy_device *phydev = NULL;
3241 
3242 	phydev = phy_find_first(adapter->mii_bus);
3243 	if (!phydev) {
3244 		dev_err(&adapter->pdev->dev, "no PHY found\n");
3245 		return -ENODEV;
3246 	}
3247 
3248 	phydev = phy_connect(netdev, phydev_name(phydev),
3249 			     &et131x_adjust_link, PHY_INTERFACE_MODE_MII);
3250 
3251 	if (IS_ERR(phydev)) {
3252 		dev_err(&adapter->pdev->dev, "Could not attach to PHY\n");
3253 		return PTR_ERR(phydev);
3254 	}
3255 
3256 	phy_set_max_speed(phydev, SPEED_100);
3257 
3258 	if (adapter->pdev->device != ET131X_PCI_DEVICE_ID_FAST)
3259 		phy_set_max_speed(phydev, SPEED_1000);
3260 
3261 	phydev->autoneg = AUTONEG_ENABLE;
3262 
3263 	phy_attached_info(phydev);
3264 
3265 	return 0;
3266 }
3267 
3268 static struct et131x_adapter *et131x_adapter_init(struct net_device *netdev,
3269 						  struct pci_dev *pdev)
3270 {
3271 	static const u8 default_mac[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 };
3272 
3273 	struct et131x_adapter *adapter;
3274 
3275 	adapter = netdev_priv(netdev);
3276 	adapter->pdev = pci_dev_get(pdev);
3277 	adapter->netdev = netdev;
3278 
3279 	spin_lock_init(&adapter->tcb_send_qlock);
3280 	spin_lock_init(&adapter->tcb_ready_qlock);
3281 	spin_lock_init(&adapter->rcv_lock);
3282 
3283 	adapter->registry_jumbo_packet = 1514;	/* 1514-9216 */
3284 
3285 	ether_addr_copy(adapter->addr, default_mac);
3286 
3287 	return adapter;
3288 }
3289 
3290 static void et131x_pci_remove(struct pci_dev *pdev)
3291 {
3292 	struct net_device *netdev = pci_get_drvdata(pdev);
3293 	struct et131x_adapter *adapter = netdev_priv(netdev);
3294 
3295 	unregister_netdev(netdev);
3296 	netif_napi_del(&adapter->napi);
3297 	phy_disconnect(netdev->phydev);
3298 	mdiobus_unregister(adapter->mii_bus);
3299 	mdiobus_free(adapter->mii_bus);
3300 
3301 	et131x_adapter_memory_free(adapter);
3302 	iounmap(adapter->regs);
3303 	pci_dev_put(pdev);
3304 
3305 	free_netdev(netdev);
3306 	pci_release_regions(pdev);
3307 	pci_disable_device(pdev);
3308 }
3309 
3310 static void et131x_up(struct net_device *netdev)
3311 {
3312 	et131x_enable_txrx(netdev);
3313 	phy_start(netdev->phydev);
3314 }
3315 
3316 static void et131x_down(struct net_device *netdev)
3317 {
3318 	/* Save the timestamp for the TX watchdog, prevent a timeout */
3319 	netif_trans_update(netdev);
3320 
3321 	phy_stop(netdev->phydev);
3322 	et131x_disable_txrx(netdev);
3323 }
3324 
3325 #ifdef CONFIG_PM_SLEEP
3326 static int et131x_suspend(struct device *dev)
3327 {
3328 	struct pci_dev *pdev = to_pci_dev(dev);
3329 	struct net_device *netdev = pci_get_drvdata(pdev);
3330 
3331 	if (netif_running(netdev)) {
3332 		netif_device_detach(netdev);
3333 		et131x_down(netdev);
3334 		pci_save_state(pdev);
3335 	}
3336 
3337 	return 0;
3338 }
3339 
3340 static int et131x_resume(struct device *dev)
3341 {
3342 	struct pci_dev *pdev = to_pci_dev(dev);
3343 	struct net_device *netdev = pci_get_drvdata(pdev);
3344 
3345 	if (netif_running(netdev)) {
3346 		pci_restore_state(pdev);
3347 		et131x_up(netdev);
3348 		netif_device_attach(netdev);
3349 	}
3350 
3351 	return 0;
3352 }
3353 #endif
3354 
3355 static SIMPLE_DEV_PM_OPS(et131x_pm_ops, et131x_suspend, et131x_resume);
3356 
3357 static irqreturn_t et131x_isr(int irq, void *dev_id)
3358 {
3359 	bool handled = true;
3360 	bool enable_interrupts = true;
3361 	struct net_device *netdev = dev_id;
3362 	struct et131x_adapter *adapter = netdev_priv(netdev);
3363 	struct address_map __iomem *iomem = adapter->regs;
3364 	struct rx_ring *rx_ring = &adapter->rx_ring;
3365 	struct tx_ring *tx_ring = &adapter->tx_ring;
3366 	u32 status;
3367 
3368 	if (!netif_device_present(netdev)) {
3369 		handled = false;
3370 		enable_interrupts = false;
3371 		goto out;
3372 	}
3373 
3374 	et131x_disable_interrupts(adapter);
3375 
3376 	status = readl(&adapter->regs->global.int_status);
3377 
3378 	if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH)
3379 		status &= ~INT_MASK_ENABLE;
3380 	else
3381 		status &= ~INT_MASK_ENABLE_NO_FLOW;
3382 
3383 	/* Make sure this is our interrupt */
3384 	if (!status) {
3385 		handled = false;
3386 		et131x_enable_interrupts(adapter);
3387 		goto out;
3388 	}
3389 
3390 	/* This is our interrupt, so process accordingly */
3391 	if (status & ET_INTR_WATCHDOG) {
3392 		struct tcb *tcb = tx_ring->send_head;
3393 
3394 		if (tcb)
3395 			if (++tcb->stale > 1)
3396 				status |= ET_INTR_TXDMA_ISR;
3397 
3398 		if (rx_ring->unfinished_receives)
3399 			status |= ET_INTR_RXDMA_XFR_DONE;
3400 		else if (tcb == NULL)
3401 			writel(0, &adapter->regs->global.watchdog_timer);
3402 
3403 		status &= ~ET_INTR_WATCHDOG;
3404 	}
3405 
3406 	if (status & (ET_INTR_RXDMA_XFR_DONE | ET_INTR_TXDMA_ISR)) {
3407 		enable_interrupts = false;
3408 		napi_schedule(&adapter->napi);
3409 	}
3410 
3411 	status &= ~(ET_INTR_TXDMA_ISR | ET_INTR_RXDMA_XFR_DONE);
3412 
3413 	if (!status)
3414 		goto out;
3415 
3416 	if (status & ET_INTR_TXDMA_ERR) {
3417 		/* Following read also clears the register (COR) */
3418 		u32 txdma_err = readl(&iomem->txdma.tx_dma_error);
3419 
3420 		dev_warn(&adapter->pdev->dev,
3421 			 "TXDMA_ERR interrupt, error = %d\n",
3422 			 txdma_err);
3423 	}
3424 
3425 	if (status & (ET_INTR_RXDMA_FB_R0_LOW | ET_INTR_RXDMA_FB_R1_LOW)) {
3426 		/* This indicates the number of unused buffers in RXDMA free
3427 		 * buffer ring 0 is <= the limit you programmed. Free buffer
3428 		 * resources need to be returned.  Free buffers are consumed as
3429 		 * packets are passed from the network to the host. The host
3430 		 * becomes aware of the packets from the contents of the packet
3431 		 * status ring. This ring is queried when the packet done
3432 		 * interrupt occurs. Packets are then passed to the OS. When
3433 		 * the OS is done with the packets the resources can be
3434 		 * returned to the ET1310 for re-use. This interrupt is one
3435 		 * method of returning resources.
3436 		 */
3437 
3438 		/*  If the user has flow control on, then we will
3439 		 * send a pause packet, otherwise just exit
3440 		 */
3441 		if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH) {
3442 			/* Tell the device to send a pause packet via the back
3443 			 * pressure register (bp req and bp xon/xoff)
3444 			 */
3445 			if (!et1310_in_phy_coma(adapter))
3446 				writel(3, &iomem->txmac.bp_ctrl);
3447 		}
3448 	}
3449 
3450 	/* Handle Packet Status Ring Low Interrupt */
3451 	if (status & ET_INTR_RXDMA_STAT_LOW) {
3452 		/* Same idea as with the two Free Buffer Rings. Packets going
3453 		 * from the network to the host each consume a free buffer
3454 		 * resource and a packet status resource. These resources are
3455 		 * passed to the OS. When the OS is done with the resources,
3456 		 * they need to be returned to the ET1310. This is one method
3457 		 * of returning the resources.
3458 		 */
3459 	}
3460 
3461 	if (status & ET_INTR_RXDMA_ERR) {
3462 		/* The rxdma_error interrupt is sent when a time-out on a
3463 		 * request issued by the JAGCore has occurred or a completion is
3464 		 * returned with an un-successful status. In both cases the
3465 		 * request is considered complete. The JAGCore will
3466 		 * automatically re-try the request in question. Normally
3467 		 * information on events like these are sent to the host using
3468 		 * the "Advanced Error Reporting" capability. This interrupt is
3469 		 * another way of getting similar information. The only thing
3470 		 * required is to clear the interrupt by reading the ISR in the
3471 		 * global resources. The JAGCore will do a re-try on the
3472 		 * request. Normally you should never see this interrupt. If
3473 		 * you start to see this interrupt occurring frequently then
3474 		 * something bad has occurred. A reset might be the thing to do.
3475 		 */
3476 		/* TRAP();*/
3477 
3478 		dev_warn(&adapter->pdev->dev, "RxDMA_ERR interrupt, error %x\n",
3479 			 readl(&iomem->txmac.tx_test));
3480 	}
3481 
3482 	/* Handle the Wake on LAN Event */
3483 	if (status & ET_INTR_WOL) {
3484 		/* This is a secondary interrupt for wake on LAN. The driver
3485 		 * should never see this, if it does, something serious is
3486 		 * wrong.
3487 		 */
3488 		dev_err(&adapter->pdev->dev, "WAKE_ON_LAN interrupt\n");
3489 	}
3490 
3491 	if (status & ET_INTR_TXMAC) {
3492 		u32 err = readl(&iomem->txmac.err);
3493 
3494 		/* When any of the errors occur and TXMAC generates an
3495 		 * interrupt to report these errors, it usually means that
3496 		 * TXMAC has detected an error in the data stream retrieved
3497 		 * from the on-chip Tx Q. All of these errors are catastrophic
3498 		 * and TXMAC won't be able to recover data when these errors
3499 		 * occur. In a nutshell, the whole Tx path will have to be reset
3500 		 * and re-configured afterwards.
3501 		 */
3502 		dev_warn(&adapter->pdev->dev, "TXMAC interrupt, error 0x%08x\n",
3503 			 err);
3504 
3505 		/* If we are debugging, we want to see this error, otherwise we
3506 		 * just want the device to be reset and continue
3507 		 */
3508 	}
3509 
3510 	if (status & ET_INTR_RXMAC) {
3511 		/* These interrupts are catastrophic to the device, what we need
3512 		 * to do is disable the interrupts and set the flag to cause us
3513 		 * to reset so we can solve this issue.
3514 		 */
3515 		dev_warn(&adapter->pdev->dev,
3516 			 "RXMAC interrupt, error 0x%08x.  Requesting reset\n",
3517 			 readl(&iomem->rxmac.err_reg));
3518 
3519 		dev_warn(&adapter->pdev->dev,
3520 			 "Enable 0x%08x, Diag 0x%08x\n",
3521 			 readl(&iomem->rxmac.ctrl),
3522 			 readl(&iomem->rxmac.rxq_diag));
3523 
3524 		/* If we are debugging, we want to see this error, otherwise we
3525 		 * just want the device to be reset and continue
3526 		 */
3527 	}
3528 
3529 	if (status & ET_INTR_MAC_STAT) {
3530 		/* This means at least one of the un-masked counters in the
3531 		 * MAC_STAT block has rolled over. Use this to maintain the top,
3532 		 * software managed bits of the counter(s).
3533 		 */
3534 		et1310_handle_macstat_interrupt(adapter);
3535 	}
3536 
3537 	if (status & ET_INTR_SLV_TIMEOUT) {
3538 		/* This means a timeout has occurred on a read or write request
3539 		 * to one of the JAGCore registers. The Global Resources block
3540 		 * has terminated the request and on a read request, returned a
3541 		 * "fake" value. The most likely reasons are: Bad Address or the
3542 		 * addressed module is in a power-down state and can't respond.
3543 		 */
3544 	}
3545 
3546 out:
3547 	if (enable_interrupts)
3548 		et131x_enable_interrupts(adapter);
3549 
3550 	return IRQ_RETVAL(handled);
3551 }
3552 
3553 static int et131x_poll(struct napi_struct *napi, int budget)
3554 {
3555 	struct et131x_adapter *adapter =
3556 		container_of(napi, struct et131x_adapter, napi);
3557 	int work_done = et131x_handle_recv_pkts(adapter, budget);
3558 
3559 	et131x_handle_send_pkts(adapter);
3560 
3561 	if (work_done < budget) {
3562 		napi_complete_done(&adapter->napi, work_done);
3563 		et131x_enable_interrupts(adapter);
3564 	}
3565 
3566 	return work_done;
3567 }
3568 
3569 /* et131x_stats - Return the current device statistics  */
3570 static struct net_device_stats *et131x_stats(struct net_device *netdev)
3571 {
3572 	struct et131x_adapter *adapter = netdev_priv(netdev);
3573 	struct net_device_stats *stats = &adapter->netdev->stats;
3574 	struct ce_stats *devstat = &adapter->stats;
3575 
3576 	stats->rx_errors = devstat->rx_length_errs +
3577 			   devstat->rx_align_errs +
3578 			   devstat->rx_crc_errs +
3579 			   devstat->rx_code_violations +
3580 			   devstat->rx_other_errs;
3581 	stats->tx_errors = devstat->tx_max_pkt_errs;
3582 	stats->multicast = devstat->multicast_pkts_rcvd;
3583 	stats->collisions = devstat->tx_collisions;
3584 
3585 	stats->rx_length_errors = devstat->rx_length_errs;
3586 	stats->rx_over_errors = devstat->rx_overflows;
3587 	stats->rx_crc_errors = devstat->rx_crc_errs;
3588 	stats->rx_dropped = devstat->rcvd_pkts_dropped;
3589 
3590 	/* NOTE: Not used, can't find analogous statistics */
3591 	/* stats->rx_frame_errors     = devstat->; */
3592 	/* stats->rx_fifo_errors      = devstat->; */
3593 	/* stats->rx_missed_errors    = devstat->; */
3594 
3595 	/* stats->tx_aborted_errors   = devstat->; */
3596 	/* stats->tx_carrier_errors   = devstat->; */
3597 	/* stats->tx_fifo_errors      = devstat->; */
3598 	/* stats->tx_heartbeat_errors = devstat->; */
3599 	/* stats->tx_window_errors    = devstat->; */
3600 	return stats;
3601 }
3602 
3603 static int et131x_open(struct net_device *netdev)
3604 {
3605 	struct et131x_adapter *adapter = netdev_priv(netdev);
3606 	struct pci_dev *pdev = adapter->pdev;
3607 	unsigned int irq = pdev->irq;
3608 	int result;
3609 
3610 	/* Start the timer to track NIC errors */
3611 	timer_setup(&adapter->error_timer, et131x_error_timer_handler, 0);
3612 	adapter->error_timer.expires = jiffies +
3613 		msecs_to_jiffies(TX_ERROR_PERIOD);
3614 	add_timer(&adapter->error_timer);
3615 
3616 	result = request_irq(irq, et131x_isr,
3617 			     IRQF_SHARED, netdev->name, netdev);
3618 	if (result) {
3619 		dev_err(&pdev->dev, "could not register IRQ %d\n", irq);
3620 		return result;
3621 	}
3622 
3623 	adapter->flags |= FMP_ADAPTER_INTERRUPT_IN_USE;
3624 
3625 	napi_enable(&adapter->napi);
3626 
3627 	et131x_up(netdev);
3628 
3629 	return result;
3630 }
3631 
3632 static int et131x_close(struct net_device *netdev)
3633 {
3634 	struct et131x_adapter *adapter = netdev_priv(netdev);
3635 
3636 	et131x_down(netdev);
3637 	napi_disable(&adapter->napi);
3638 
3639 	adapter->flags &= ~FMP_ADAPTER_INTERRUPT_IN_USE;
3640 	free_irq(adapter->pdev->irq, netdev);
3641 
3642 	/* Stop the error timer */
3643 	return del_timer_sync(&adapter->error_timer);
3644 }
3645 
3646 /* et131x_set_packet_filter - Configures the Rx Packet filtering */
3647 static int et131x_set_packet_filter(struct et131x_adapter *adapter)
3648 {
3649 	int filter = adapter->packet_filter;
3650 	u32 ctrl;
3651 	u32 pf_ctrl;
3652 
3653 	ctrl = readl(&adapter->regs->rxmac.ctrl);
3654 	pf_ctrl = readl(&adapter->regs->rxmac.pf_ctrl);
3655 
3656 	/* Default to disabled packet filtering */
3657 	ctrl |= 0x04;
3658 
3659 	/* Set us to be in promiscuous mode so we receive everything, this
3660 	 * is also true when we get a packet filter of 0
3661 	 */
3662 	if ((filter & ET131X_PACKET_TYPE_PROMISCUOUS) || filter == 0)
3663 		pf_ctrl &= ~7;	/* Clear filter bits */
3664 	else {
3665 		/* Set us up with Multicast packet filtering.  Three cases are
3666 		 * possible - (1) we have a multi-cast list, (2) we receive ALL
3667 		 * multicast entries or (3) we receive none.
3668 		 */
3669 		if (filter & ET131X_PACKET_TYPE_ALL_MULTICAST)
3670 			pf_ctrl &= ~2;	/* Multicast filter bit */
3671 		else {
3672 			et1310_setup_device_for_multicast(adapter);
3673 			pf_ctrl |= 2;
3674 			ctrl &= ~0x04;
3675 		}
3676 
3677 		/* Set us up with Unicast packet filtering */
3678 		if (filter & ET131X_PACKET_TYPE_DIRECTED) {
3679 			et1310_setup_device_for_unicast(adapter);
3680 			pf_ctrl |= 4;
3681 			ctrl &= ~0x04;
3682 		}
3683 
3684 		/* Set us up with Broadcast packet filtering */
3685 		if (filter & ET131X_PACKET_TYPE_BROADCAST) {
3686 			pf_ctrl |= 1;	/* Broadcast filter bit */
3687 			ctrl &= ~0x04;
3688 		} else {
3689 			pf_ctrl &= ~1;
3690 		}
3691 
3692 		/* Setup the receive mac configuration registers - Packet
3693 		 * Filter control + the enable / disable for packet filter
3694 		 * in the control reg.
3695 		 */
3696 		writel(pf_ctrl, &adapter->regs->rxmac.pf_ctrl);
3697 		writel(ctrl, &adapter->regs->rxmac.ctrl);
3698 	}
3699 	return 0;
3700 }
3701 
3702 static void et131x_multicast(struct net_device *netdev)
3703 {
3704 	struct et131x_adapter *adapter = netdev_priv(netdev);
3705 	int packet_filter;
3706 	struct netdev_hw_addr *ha;
3707 	int i;
3708 
3709 	/* Before we modify the platform-independent filter flags, store them
3710 	 * locally. This allows us to determine if anything's changed and if
3711 	 * we even need to bother the hardware
3712 	 */
3713 	packet_filter = adapter->packet_filter;
3714 
3715 	/* Clear the 'multicast' flag locally; because we only have a single
3716 	 * flag to check multicast, and multiple multicast addresses can be
3717 	 * set, this is the easiest way to determine if more than one
3718 	 * multicast address is being set.
3719 	 */
3720 	packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
3721 
3722 	/* Check the net_device flags and set the device independent flags
3723 	 * accordingly
3724 	 */
3725 	if (netdev->flags & IFF_PROMISC)
3726 		adapter->packet_filter |= ET131X_PACKET_TYPE_PROMISCUOUS;
3727 	else
3728 		adapter->packet_filter &= ~ET131X_PACKET_TYPE_PROMISCUOUS;
3729 
3730 	if ((netdev->flags & IFF_ALLMULTI) ||
3731 	    (netdev_mc_count(netdev) > NIC_MAX_MCAST_LIST))
3732 		adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
3733 
3734 	if (netdev_mc_count(netdev) < 1) {
3735 		adapter->packet_filter &= ~ET131X_PACKET_TYPE_ALL_MULTICAST;
3736 		adapter->packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
3737 	} else {
3738 		adapter->packet_filter |= ET131X_PACKET_TYPE_MULTICAST;
3739 	}
3740 
3741 	/* Set values in the private adapter struct */
3742 	i = 0;
3743 	netdev_for_each_mc_addr(ha, netdev) {
3744 		if (i == NIC_MAX_MCAST_LIST)
3745 			break;
3746 		ether_addr_copy(adapter->multicast_list[i++], ha->addr);
3747 	}
3748 	adapter->multicast_addr_count = i;
3749 
3750 	/* Are the new flags different from the previous ones? If not, then no
3751 	 * action is required
3752 	 *
3753 	 * NOTE - This block will always update the multicast_list with the
3754 	 *        hardware, even if the addresses aren't the same.
3755 	 */
3756 	if (packet_filter != adapter->packet_filter)
3757 		et131x_set_packet_filter(adapter);
3758 }
3759 
3760 static netdev_tx_t et131x_tx(struct sk_buff *skb, struct net_device *netdev)
3761 {
3762 	struct et131x_adapter *adapter = netdev_priv(netdev);
3763 	struct tx_ring *tx_ring = &adapter->tx_ring;
3764 
3765 	/* stop the queue if it's getting full */
3766 	if (tx_ring->used >= NUM_TCB - 1 && !netif_queue_stopped(netdev))
3767 		netif_stop_queue(netdev);
3768 
3769 	/* Save the timestamp for the TX timeout watchdog */
3770 	netif_trans_update(netdev);
3771 
3772 	/* TCB is not available */
3773 	if (tx_ring->used >= NUM_TCB)
3774 		goto drop_err;
3775 
3776 	if ((adapter->flags & FMP_ADAPTER_FAIL_SEND_MASK) ||
3777 	    !netif_carrier_ok(netdev))
3778 		goto drop_err;
3779 
3780 	if (send_packet(skb, adapter))
3781 		goto drop_err;
3782 
3783 	return NETDEV_TX_OK;
3784 
3785 drop_err:
3786 	dev_kfree_skb_any(skb);
3787 	adapter->netdev->stats.tx_dropped++;
3788 	return NETDEV_TX_OK;
3789 }
3790 
3791 /* et131x_tx_timeout - Timeout handler
3792  *
3793  * The handler called when a Tx request times out. The timeout period is
3794  * specified by the 'tx_timeo" element in the net_device structure (see
3795  * et131x_alloc_device() to see how this value is set).
3796  */
3797 static void et131x_tx_timeout(struct net_device *netdev, unsigned int txqueue)
3798 {
3799 	struct et131x_adapter *adapter = netdev_priv(netdev);
3800 	struct tx_ring *tx_ring = &adapter->tx_ring;
3801 	struct tcb *tcb;
3802 	unsigned long flags;
3803 
3804 	/* If the device is closed, ignore the timeout */
3805 	if (!(adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE))
3806 		return;
3807 
3808 	/* Any nonrecoverable hardware error?
3809 	 * Checks adapter->flags for any failure in phy reading
3810 	 */
3811 	if (adapter->flags & FMP_ADAPTER_NON_RECOVER_ERROR)
3812 		return;
3813 
3814 	/* Hardware failure? */
3815 	if (adapter->flags & FMP_ADAPTER_HARDWARE_ERROR) {
3816 		dev_err(&adapter->pdev->dev, "hardware error - reset\n");
3817 		return;
3818 	}
3819 
3820 	/* Is send stuck? */
3821 	spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3822 	tcb = tx_ring->send_head;
3823 	spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3824 
3825 	if (tcb) {
3826 		tcb->count++;
3827 
3828 		if (tcb->count > NIC_SEND_HANG_THRESHOLD) {
3829 			dev_warn(&adapter->pdev->dev,
3830 				 "Send stuck - reset. tcb->WrIndex %x\n",
3831 				 tcb->index);
3832 
3833 			adapter->netdev->stats.tx_errors++;
3834 
3835 			/* perform reset of tx/rx */
3836 			et131x_disable_txrx(netdev);
3837 			et131x_enable_txrx(netdev);
3838 		}
3839 	}
3840 }
3841 
3842 static int et131x_change_mtu(struct net_device *netdev, int new_mtu)
3843 {
3844 	int result = 0;
3845 	struct et131x_adapter *adapter = netdev_priv(netdev);
3846 
3847 	et131x_disable_txrx(netdev);
3848 
3849 	netdev->mtu = new_mtu;
3850 
3851 	et131x_adapter_memory_free(adapter);
3852 
3853 	/* Set the config parameter for Jumbo Packet support */
3854 	adapter->registry_jumbo_packet = new_mtu + 14;
3855 	et131x_soft_reset(adapter);
3856 
3857 	result = et131x_adapter_memory_alloc(adapter);
3858 	if (result != 0) {
3859 		dev_warn(&adapter->pdev->dev,
3860 			 "Change MTU failed; couldn't re-alloc DMA memory\n");
3861 		return result;
3862 	}
3863 
3864 	et131x_init_send(adapter);
3865 	et131x_hwaddr_init(adapter);
3866 	ether_addr_copy(netdev->dev_addr, adapter->addr);
3867 
3868 	/* Init the device with the new settings */
3869 	et131x_adapter_setup(adapter);
3870 	et131x_enable_txrx(netdev);
3871 
3872 	return result;
3873 }
3874 
3875 static const struct net_device_ops et131x_netdev_ops = {
3876 	.ndo_open		= et131x_open,
3877 	.ndo_stop		= et131x_close,
3878 	.ndo_start_xmit		= et131x_tx,
3879 	.ndo_set_rx_mode	= et131x_multicast,
3880 	.ndo_tx_timeout		= et131x_tx_timeout,
3881 	.ndo_change_mtu		= et131x_change_mtu,
3882 	.ndo_set_mac_address	= eth_mac_addr,
3883 	.ndo_validate_addr	= eth_validate_addr,
3884 	.ndo_get_stats		= et131x_stats,
3885 	.ndo_do_ioctl		= phy_do_ioctl,
3886 };
3887 
3888 static int et131x_pci_setup(struct pci_dev *pdev,
3889 			    const struct pci_device_id *ent)
3890 {
3891 	struct net_device *netdev;
3892 	struct et131x_adapter *adapter;
3893 	int rc;
3894 
3895 	rc = pci_enable_device(pdev);
3896 	if (rc < 0) {
3897 		dev_err(&pdev->dev, "pci_enable_device() failed\n");
3898 		goto out;
3899 	}
3900 
3901 	/* Perform some basic PCI checks */
3902 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
3903 		dev_err(&pdev->dev, "Can't find PCI device's base address\n");
3904 		rc = -ENODEV;
3905 		goto err_disable;
3906 	}
3907 
3908 	rc = pci_request_regions(pdev, DRIVER_NAME);
3909 	if (rc < 0) {
3910 		dev_err(&pdev->dev, "Can't get PCI resources\n");
3911 		goto err_disable;
3912 	}
3913 
3914 	pci_set_master(pdev);
3915 
3916 	/* Check the DMA addressing support of this device */
3917 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
3918 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32))) {
3919 		dev_err(&pdev->dev, "No usable DMA addressing method\n");
3920 		rc = -EIO;
3921 		goto err_release_res;
3922 	}
3923 
3924 	netdev = alloc_etherdev(sizeof(struct et131x_adapter));
3925 	if (!netdev) {
3926 		dev_err(&pdev->dev, "Couldn't alloc netdev struct\n");
3927 		rc = -ENOMEM;
3928 		goto err_release_res;
3929 	}
3930 
3931 	netdev->watchdog_timeo = ET131X_TX_TIMEOUT;
3932 	netdev->netdev_ops     = &et131x_netdev_ops;
3933 	netdev->min_mtu        = ET131X_MIN_MTU;
3934 	netdev->max_mtu        = ET131X_MAX_MTU;
3935 
3936 	SET_NETDEV_DEV(netdev, &pdev->dev);
3937 	netdev->ethtool_ops = &et131x_ethtool_ops;
3938 
3939 	adapter = et131x_adapter_init(netdev, pdev);
3940 
3941 	rc = et131x_pci_init(adapter, pdev);
3942 	if (rc < 0)
3943 		goto err_free_dev;
3944 
3945 	/* Map the bus-relative registers to system virtual memory */
3946 	adapter->regs = pci_ioremap_bar(pdev, 0);
3947 	if (!adapter->regs) {
3948 		dev_err(&pdev->dev, "Cannot map device registers\n");
3949 		rc = -ENOMEM;
3950 		goto err_free_dev;
3951 	}
3952 
3953 	/* If Phy COMA mode was enabled when we went down, disable it here. */
3954 	writel(ET_PMCSR_INIT,  &adapter->regs->global.pm_csr);
3955 
3956 	et131x_soft_reset(adapter);
3957 	et131x_disable_interrupts(adapter);
3958 
3959 	rc = et131x_adapter_memory_alloc(adapter);
3960 	if (rc < 0) {
3961 		dev_err(&pdev->dev, "Could not alloc adapter memory (DMA)\n");
3962 		goto err_iounmap;
3963 	}
3964 
3965 	et131x_init_send(adapter);
3966 
3967 	netif_napi_add(netdev, &adapter->napi, et131x_poll, 64);
3968 
3969 	ether_addr_copy(netdev->dev_addr, adapter->addr);
3970 
3971 	rc = -ENOMEM;
3972 
3973 	adapter->mii_bus = mdiobus_alloc();
3974 	if (!adapter->mii_bus) {
3975 		dev_err(&pdev->dev, "Alloc of mii_bus struct failed\n");
3976 		goto err_mem_free;
3977 	}
3978 
3979 	adapter->mii_bus->name = "et131x_eth_mii";
3980 	snprintf(adapter->mii_bus->id, MII_BUS_ID_SIZE, "%x",
3981 		 (adapter->pdev->bus->number << 8) | adapter->pdev->devfn);
3982 	adapter->mii_bus->priv = netdev;
3983 	adapter->mii_bus->read = et131x_mdio_read;
3984 	adapter->mii_bus->write = et131x_mdio_write;
3985 
3986 	rc = mdiobus_register(adapter->mii_bus);
3987 	if (rc < 0) {
3988 		dev_err(&pdev->dev, "failed to register MII bus\n");
3989 		goto err_mdio_free;
3990 	}
3991 
3992 	rc = et131x_mii_probe(netdev);
3993 	if (rc < 0) {
3994 		dev_err(&pdev->dev, "failed to probe MII bus\n");
3995 		goto err_mdio_unregister;
3996 	}
3997 
3998 	et131x_adapter_setup(adapter);
3999 
4000 	/* Init variable for counting how long we do not have link status */
4001 	adapter->boot_coma = 0;
4002 	et1310_disable_phy_coma(adapter);
4003 
4004 	/* We can enable interrupts now
4005 	 *
4006 	 *  NOTE - Because registration of interrupt handler is done in the
4007 	 *         device's open(), defer enabling device interrupts to that
4008 	 *         point
4009 	 */
4010 
4011 	rc = register_netdev(netdev);
4012 	if (rc < 0) {
4013 		dev_err(&pdev->dev, "register_netdev() failed\n");
4014 		goto err_phy_disconnect;
4015 	}
4016 
4017 	/* Register the net_device struct with the PCI subsystem. Save a copy
4018 	 * of the PCI config space for this device now that the device has
4019 	 * been initialized, just in case it needs to be quickly restored.
4020 	 */
4021 	pci_set_drvdata(pdev, netdev);
4022 out:
4023 	return rc;
4024 
4025 err_phy_disconnect:
4026 	phy_disconnect(netdev->phydev);
4027 err_mdio_unregister:
4028 	mdiobus_unregister(adapter->mii_bus);
4029 err_mdio_free:
4030 	mdiobus_free(adapter->mii_bus);
4031 err_mem_free:
4032 	et131x_adapter_memory_free(adapter);
4033 err_iounmap:
4034 	iounmap(adapter->regs);
4035 err_free_dev:
4036 	pci_dev_put(pdev);
4037 	free_netdev(netdev);
4038 err_release_res:
4039 	pci_release_regions(pdev);
4040 err_disable:
4041 	pci_disable_device(pdev);
4042 	goto out;
4043 }
4044 
4045 static const struct pci_device_id et131x_pci_table[] = {
4046 	{ PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_GIG), 0UL},
4047 	{ PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_FAST), 0UL},
4048 	{ 0,}
4049 };
4050 MODULE_DEVICE_TABLE(pci, et131x_pci_table);
4051 
4052 static struct pci_driver et131x_driver = {
4053 	.name		= DRIVER_NAME,
4054 	.id_table	= et131x_pci_table,
4055 	.probe		= et131x_pci_setup,
4056 	.remove		= et131x_pci_remove,
4057 	.driver.pm	= &et131x_pm_ops,
4058 };
4059 
4060 module_pci_driver(et131x_driver);
4061