1 /* Agere Systems Inc. 2 * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs 3 * 4 * Copyright © 2005 Agere Systems Inc. 5 * All rights reserved. 6 * http://www.agere.com 7 * 8 * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com> 9 * 10 *------------------------------------------------------------------------------ 11 * 12 * SOFTWARE LICENSE 13 * 14 * This software is provided subject to the following terms and conditions, 15 * which you should read carefully before using the software. Using this 16 * software indicates your acceptance of these terms and conditions. If you do 17 * not agree with these terms and conditions, do not use the software. 18 * 19 * Copyright © 2005 Agere Systems Inc. 20 * All rights reserved. 21 * 22 * Redistribution and use in source or binary forms, with or without 23 * modifications, are permitted provided that the following conditions are met: 24 * 25 * . Redistributions of source code must retain the above copyright notice, this 26 * list of conditions and the following Disclaimer as comments in the code as 27 * well as in the documentation and/or other materials provided with the 28 * distribution. 29 * 30 * . Redistributions in binary form must reproduce the above copyright notice, 31 * this list of conditions and the following Disclaimer in the documentation 32 * and/or other materials provided with the distribution. 33 * 34 * . Neither the name of Agere Systems Inc. nor the names of the contributors 35 * may be used to endorse or promote products derived from this software 36 * without specific prior written permission. 37 * 38 * Disclaimer 39 * 40 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, 41 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF 42 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY 43 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN 44 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY 45 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 46 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 47 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 48 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT 49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 50 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 51 * DAMAGE. 52 */ 53 54 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 55 56 #include <linux/pci.h> 57 #include <linux/module.h> 58 #include <linux/types.h> 59 #include <linux/kernel.h> 60 61 #include <linux/sched.h> 62 #include <linux/ptrace.h> 63 #include <linux/slab.h> 64 #include <linux/ctype.h> 65 #include <linux/string.h> 66 #include <linux/timer.h> 67 #include <linux/interrupt.h> 68 #include <linux/in.h> 69 #include <linux/delay.h> 70 #include <linux/bitops.h> 71 #include <linux/io.h> 72 73 #include <linux/netdevice.h> 74 #include <linux/etherdevice.h> 75 #include <linux/skbuff.h> 76 #include <linux/if_arp.h> 77 #include <linux/ioport.h> 78 #include <linux/crc32.h> 79 #include <linux/random.h> 80 #include <linux/phy.h> 81 82 #include "et131x.h" 83 84 MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>"); 85 MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>"); 86 MODULE_LICENSE("Dual BSD/GPL"); 87 MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver for the ET1310 by Agere Systems"); 88 89 /* EEPROM defines */ 90 #define MAX_NUM_REGISTER_POLLS 1000 91 #define MAX_NUM_WRITE_RETRIES 2 92 93 /* MAC defines */ 94 #define COUNTER_WRAP_16_BIT 0x10000 95 #define COUNTER_WRAP_12_BIT 0x1000 96 97 /* PCI defines */ 98 #define INTERNAL_MEM_SIZE 0x400 /* 1024 of internal memory */ 99 #define INTERNAL_MEM_RX_OFFSET 0x1FF /* 50% Tx, 50% Rx */ 100 101 /* ISR defines */ 102 /* For interrupts, normal running is: 103 * rxdma_xfr_done, phy_interrupt, mac_stat_interrupt, 104 * watchdog_interrupt & txdma_xfer_done 105 * 106 * In both cases, when flow control is enabled for either Tx or bi-direction, 107 * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the 108 * buffer rings are running low. 109 */ 110 #define INT_MASK_DISABLE 0xffffffff 111 112 /* NOTE: Masking out MAC_STAT Interrupt for now... 113 * #define INT_MASK_ENABLE 0xfff6bf17 114 * #define INT_MASK_ENABLE_NO_FLOW 0xfff6bfd7 115 */ 116 #define INT_MASK_ENABLE 0xfffebf17 117 #define INT_MASK_ENABLE_NO_FLOW 0xfffebfd7 118 119 /* General defines */ 120 /* Packet and header sizes */ 121 #define NIC_MIN_PACKET_SIZE 60 122 123 /* Multicast list size */ 124 #define NIC_MAX_MCAST_LIST 128 125 126 /* Supported Filters */ 127 #define ET131X_PACKET_TYPE_DIRECTED 0x0001 128 #define ET131X_PACKET_TYPE_MULTICAST 0x0002 129 #define ET131X_PACKET_TYPE_BROADCAST 0x0004 130 #define ET131X_PACKET_TYPE_PROMISCUOUS 0x0008 131 #define ET131X_PACKET_TYPE_ALL_MULTICAST 0x0010 132 133 /* Tx Timeout */ 134 #define ET131X_TX_TIMEOUT (1 * HZ) 135 #define NIC_SEND_HANG_THRESHOLD 0 136 137 /* MP_ADAPTER flags */ 138 #define FMP_ADAPTER_INTERRUPT_IN_USE 0x00000008 139 140 /* MP_SHARED flags */ 141 #define FMP_ADAPTER_LOWER_POWER 0x00200000 142 143 #define FMP_ADAPTER_NON_RECOVER_ERROR 0x00800000 144 #define FMP_ADAPTER_HARDWARE_ERROR 0x04000000 145 146 #define FMP_ADAPTER_FAIL_SEND_MASK 0x3ff00000 147 148 /* Some offsets in PCI config space that are actually used. */ 149 #define ET1310_PCI_MAC_ADDRESS 0xA4 150 #define ET1310_PCI_EEPROM_STATUS 0xB2 151 #define ET1310_PCI_ACK_NACK 0xC0 152 #define ET1310_PCI_REPLAY 0xC2 153 #define ET1310_PCI_L0L1LATENCY 0xCF 154 155 /* PCI Product IDs */ 156 #define ET131X_PCI_DEVICE_ID_GIG 0xED00 /* ET1310 1000 Base-T 8 */ 157 #define ET131X_PCI_DEVICE_ID_FAST 0xED01 /* ET1310 100 Base-T */ 158 159 /* Define order of magnitude converter */ 160 #define NANO_IN_A_MICRO 1000 161 162 #define PARM_RX_NUM_BUFS_DEF 4 163 #define PARM_RX_TIME_INT_DEF 10 164 #define PARM_RX_MEM_END_DEF 0x2bc 165 #define PARM_TX_TIME_INT_DEF 40 166 #define PARM_TX_NUM_BUFS_DEF 4 167 #define PARM_DMA_CACHE_DEF 0 168 169 /* RX defines */ 170 #define FBR_CHUNKS 32 171 #define MAX_DESC_PER_RING_RX 1024 172 173 /* number of RFDs - default and min */ 174 #define RFD_LOW_WATER_MARK 40 175 #define NIC_DEFAULT_NUM_RFD 1024 176 #define NUM_FBRS 2 177 178 #define MAX_PACKETS_HANDLED 256 179 #define ET131X_MIN_MTU 64 180 #define ET131X_MAX_MTU 9216 181 182 #define ALCATEL_MULTICAST_PKT 0x01000000 183 #define ALCATEL_BROADCAST_PKT 0x02000000 184 185 /* typedefs for Free Buffer Descriptors */ 186 struct fbr_desc { 187 u32 addr_lo; 188 u32 addr_hi; 189 u32 word2; /* Bits 10-31 reserved, 0-9 descriptor */ 190 }; 191 192 /* Packet Status Ring Descriptors 193 * 194 * Word 0: 195 * 196 * top 16 bits are from the Alcatel Status Word as enumerated in 197 * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2) 198 * 199 * 0: hp hash pass 200 * 1: ipa IP checksum assist 201 * 2: ipp IP checksum pass 202 * 3: tcpa TCP checksum assist 203 * 4: tcpp TCP checksum pass 204 * 5: wol WOL Event 205 * 6: rxmac_error RXMAC Error Indicator 206 * 7: drop Drop packet 207 * 8: ft Frame Truncated 208 * 9: jp Jumbo Packet 209 * 10: vp VLAN Packet 210 * 11-15: unused 211 * 16: asw_prev_pkt_dropped e.g. IFG too small on previous 212 * 17: asw_RX_DV_event short receive event detected 213 * 18: asw_false_carrier_event bad carrier since last good packet 214 * 19: asw_code_err one or more nibbles signalled as errors 215 * 20: asw_CRC_err CRC error 216 * 21: asw_len_chk_err frame length field incorrect 217 * 22: asw_too_long frame length > 1518 bytes 218 * 23: asw_OK valid CRC + no code error 219 * 24: asw_multicast has a multicast address 220 * 25: asw_broadcast has a broadcast address 221 * 26: asw_dribble_nibble spurious bits after EOP 222 * 27: asw_control_frame is a control frame 223 * 28: asw_pause_frame is a pause frame 224 * 29: asw_unsupported_op unsupported OP code 225 * 30: asw_VLAN_tag VLAN tag detected 226 * 31: asw_long_evt Rx long event 227 * 228 * Word 1: 229 * 0-15: length length in bytes 230 * 16-25: bi Buffer Index 231 * 26-27: ri Ring Index 232 * 28-31: reserved 233 */ 234 struct pkt_stat_desc { 235 u32 word0; 236 u32 word1; 237 }; 238 239 /* Typedefs for the RX DMA status word */ 240 241 /* rx status word 0 holds part of the status bits of the Rx DMA engine 242 * that get copied out to memory by the ET-1310. Word 0 is a 32 bit word 243 * which contains the Free Buffer ring 0 and 1 available offset. 244 * 245 * bit 0-9 FBR1 offset 246 * bit 10 Wrap flag for FBR1 247 * bit 16-25 FBR0 offset 248 * bit 26 Wrap flag for FBR0 249 */ 250 251 /* RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine 252 * that get copied out to memory by the ET-1310. Word 3 is a 32 bit word 253 * which contains the Packet Status Ring available offset. 254 * 255 * bit 0-15 reserved 256 * bit 16-27 PSRoffset 257 * bit 28 PSRwrap 258 * bit 29-31 unused 259 */ 260 261 /* struct rx_status_block is a structure representing the status of the Rx 262 * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020 263 */ 264 struct rx_status_block { 265 u32 word0; 266 u32 word1; 267 }; 268 269 /* Structure for look-up table holding free buffer ring pointers, addresses 270 * and state. 271 */ 272 struct fbr_lookup { 273 void *virt[MAX_DESC_PER_RING_RX]; 274 u32 bus_high[MAX_DESC_PER_RING_RX]; 275 u32 bus_low[MAX_DESC_PER_RING_RX]; 276 void *ring_virtaddr; 277 dma_addr_t ring_physaddr; 278 void *mem_virtaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS]; 279 dma_addr_t mem_physaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS]; 280 u32 local_full; 281 u32 num_entries; 282 dma_addr_t buffsize; 283 }; 284 285 /* struct rx_ring is the structure representing the adaptor's local 286 * reference(s) to the rings 287 */ 288 struct rx_ring { 289 struct fbr_lookup *fbr[NUM_FBRS]; 290 void *ps_ring_virtaddr; 291 dma_addr_t ps_ring_physaddr; 292 u32 local_psr_full; 293 u32 psr_entries; 294 295 struct rx_status_block *rx_status_block; 296 dma_addr_t rx_status_bus; 297 298 struct list_head recv_list; 299 u32 num_ready_recv; 300 301 u32 num_rfd; 302 303 bool unfinished_receives; 304 }; 305 306 /* TX defines */ 307 /* word 2 of the control bits in the Tx Descriptor ring for the ET-1310 308 * 309 * 0-15: length of packet 310 * 16-27: VLAN tag 311 * 28: VLAN CFI 312 * 29-31: VLAN priority 313 * 314 * word 3 of the control bits in the Tx Descriptor ring for the ET-1310 315 * 316 * 0: last packet in the sequence 317 * 1: first packet in the sequence 318 * 2: interrupt the processor when this pkt sent 319 * 3: Control word - no packet data 320 * 4: Issue half-duplex backpressure : XON/XOFF 321 * 5: send pause frame 322 * 6: Tx frame has error 323 * 7: append CRC 324 * 8: MAC override 325 * 9: pad packet 326 * 10: Packet is a Huge packet 327 * 11: append VLAN tag 328 * 12: IP checksum assist 329 * 13: TCP checksum assist 330 * 14: UDP checksum assist 331 */ 332 #define TXDESC_FLAG_LASTPKT 0x0001 333 #define TXDESC_FLAG_FIRSTPKT 0x0002 334 #define TXDESC_FLAG_INTPROC 0x0004 335 336 /* struct tx_desc represents each descriptor on the ring */ 337 struct tx_desc { 338 u32 addr_hi; 339 u32 addr_lo; 340 u32 len_vlan; /* control words how to xmit the */ 341 u32 flags; /* data (detailed above) */ 342 }; 343 344 /* The status of the Tx DMA engine it sits in free memory, and is pointed to 345 * by 0x101c / 0x1020. This is a DMA10 type 346 */ 347 348 /* TCB (Transmit Control Block: Host Side) */ 349 struct tcb { 350 struct tcb *next; /* Next entry in ring */ 351 u32 count; /* Used to spot stuck/lost packets */ 352 u32 stale; /* Used to spot stuck/lost packets */ 353 struct sk_buff *skb; /* Network skb we are tied to */ 354 u32 index; /* Ring indexes */ 355 u32 index_start; 356 }; 357 358 /* Structure representing our local reference(s) to the ring */ 359 struct tx_ring { 360 /* TCB (Transmit Control Block) memory and lists */ 361 struct tcb *tcb_ring; 362 363 /* List of TCBs that are ready to be used */ 364 struct tcb *tcb_qhead; 365 struct tcb *tcb_qtail; 366 367 /* list of TCBs that are currently being sent. */ 368 struct tcb *send_head; 369 struct tcb *send_tail; 370 int used; 371 372 /* The actual descriptor ring */ 373 struct tx_desc *tx_desc_ring; 374 dma_addr_t tx_desc_ring_pa; 375 376 /* send_idx indicates where we last wrote to in the descriptor ring. */ 377 u32 send_idx; 378 379 /* The location of the write-back status block */ 380 u32 *tx_status; 381 dma_addr_t tx_status_pa; 382 383 /* Packets since the last IRQ: used for interrupt coalescing */ 384 int since_irq; 385 }; 386 387 /* Do not change these values: if changed, then change also in respective 388 * TXdma and Rxdma engines 389 */ 390 #define NUM_DESC_PER_RING_TX 512 /* TX Do not change these values */ 391 #define NUM_TCB 64 392 393 /* These values are all superseded by registry entries to facilitate tuning. 394 * Once the desired performance has been achieved, the optimal registry values 395 * should be re-populated to these #defines: 396 */ 397 #define TX_ERROR_PERIOD 1000 398 399 #define LO_MARK_PERCENT_FOR_PSR 15 400 #define LO_MARK_PERCENT_FOR_RX 15 401 402 /* RFD (Receive Frame Descriptor) */ 403 struct rfd { 404 struct list_head list_node; 405 struct sk_buff *skb; 406 u32 len; /* total size of receive frame */ 407 u16 bufferindex; 408 u8 ringindex; 409 }; 410 411 /* Flow Control */ 412 #define FLOW_BOTH 0 413 #define FLOW_TXONLY 1 414 #define FLOW_RXONLY 2 415 #define FLOW_NONE 3 416 417 /* Struct to define some device statistics */ 418 struct ce_stats { 419 u32 multicast_pkts_rcvd; 420 u32 rcvd_pkts_dropped; 421 422 u32 tx_underflows; 423 u32 tx_collisions; 424 u32 tx_excessive_collisions; 425 u32 tx_first_collisions; 426 u32 tx_late_collisions; 427 u32 tx_max_pkt_errs; 428 u32 tx_deferred; 429 430 u32 rx_overflows; 431 u32 rx_length_errs; 432 u32 rx_align_errs; 433 u32 rx_crc_errs; 434 u32 rx_code_violations; 435 u32 rx_other_errs; 436 437 u32 interrupt_status; 438 }; 439 440 /* The private adapter structure */ 441 struct et131x_adapter { 442 struct net_device *netdev; 443 struct pci_dev *pdev; 444 struct mii_bus *mii_bus; 445 struct napi_struct napi; 446 447 /* Flags that indicate current state of the adapter */ 448 u32 flags; 449 450 /* local link state, to determine if a state change has occurred */ 451 int link; 452 453 /* Configuration */ 454 u8 rom_addr[ETH_ALEN]; 455 u8 addr[ETH_ALEN]; 456 bool has_eeprom; 457 u8 eeprom_data[2]; 458 459 spinlock_t tcb_send_qlock; /* protects the tx_ring send tcb list */ 460 spinlock_t tcb_ready_qlock; /* protects the tx_ring ready tcb list */ 461 spinlock_t rcv_lock; /* protects the rx_ring receive list */ 462 463 /* Packet Filter and look ahead size */ 464 u32 packet_filter; 465 466 /* multicast list */ 467 u32 multicast_addr_count; 468 u8 multicast_list[NIC_MAX_MCAST_LIST][ETH_ALEN]; 469 470 /* Pointer to the device's PCI register space */ 471 struct address_map __iomem *regs; 472 473 /* Registry parameters */ 474 u8 wanted_flow; /* Flow we want for 802.3x flow control */ 475 u32 registry_jumbo_packet; /* Max supported ethernet packet size */ 476 477 /* Derived from the registry: */ 478 u8 flow; /* flow control validated by the far-end */ 479 480 /* Minimize init-time */ 481 struct timer_list error_timer; 482 483 /* variable putting the phy into coma mode when boot up with no cable 484 * plugged in after 5 seconds 485 */ 486 u8 boot_coma; 487 488 /* Tx Memory Variables */ 489 struct tx_ring tx_ring; 490 491 /* Rx Memory Variables */ 492 struct rx_ring rx_ring; 493 494 struct ce_stats stats; 495 }; 496 497 static int eeprom_wait_ready(struct pci_dev *pdev, u32 *status) 498 { 499 u32 reg; 500 int i; 501 502 /* 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and 503 * bits 7,1:0 both equal to 1, at least once after reset. 504 * Subsequent operations need only to check that bits 1:0 are equal 505 * to 1 prior to starting a single byte read/write 506 */ 507 for (i = 0; i < MAX_NUM_REGISTER_POLLS; i++) { 508 if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP, ®)) 509 return -EIO; 510 511 /* I2C idle and Phy Queue Avail both true */ 512 if ((reg & 0x3000) == 0x3000) { 513 if (status) 514 *status = reg; 515 return reg & 0xFF; 516 } 517 } 518 return -ETIMEDOUT; 519 } 520 521 static int eeprom_write(struct et131x_adapter *adapter, u32 addr, u8 data) 522 { 523 struct pci_dev *pdev = adapter->pdev; 524 int index = 0; 525 int retries; 526 int err = 0; 527 int writeok = 0; 528 u32 status; 529 u32 val = 0; 530 531 /* For an EEPROM, an I2C single byte write is defined as a START 532 * condition followed by the device address, EEPROM address, one byte 533 * of data and a STOP condition. The STOP condition will trigger the 534 * EEPROM's internally timed write cycle to the nonvolatile memory. 535 * All inputs are disabled during this write cycle and the EEPROM will 536 * not respond to any access until the internal write is complete. 537 */ 538 err = eeprom_wait_ready(pdev, NULL); 539 if (err < 0) 540 return err; 541 542 /* 2. Write to the LBCIF Control Register: bit 7=1, bit 6=1, bit 3=0, 543 * and bits 1:0 both =0. Bit 5 should be set according to the 544 * type of EEPROM being accessed (1=two byte addressing, 0=one 545 * byte addressing). 546 */ 547 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER, 548 LBCIF_CONTROL_LBCIF_ENABLE | 549 LBCIF_CONTROL_I2C_WRITE)) 550 return -EIO; 551 552 /* Prepare EEPROM address for Step 3 */ 553 for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) { 554 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr)) 555 break; 556 /* Write the data to the LBCIF Data Register (the I2C write 557 * will begin). 558 */ 559 if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER, data)) 560 break; 561 /* Monitor bit 1:0 of the LBCIF Status Register. When bits 562 * 1:0 are both equal to 1, the I2C write has completed and the 563 * internal write cycle of the EEPROM is about to start. 564 * (bits 1:0 = 01 is a legal state while waiting from both 565 * equal to 1, but bits 1:0 = 10 is invalid and implies that 566 * something is broken). 567 */ 568 err = eeprom_wait_ready(pdev, &status); 569 if (err < 0) 570 return 0; 571 572 /* Check bit 3 of the LBCIF Status Register. If equal to 1, 573 * an error has occurred.Don't break here if we are revision 574 * 1, this is so we do a blind write for load bug. 575 */ 576 if ((status & LBCIF_STATUS_GENERAL_ERROR) && 577 adapter->pdev->revision == 0) 578 break; 579 580 /* Check bit 2 of the LBCIF Status Register. If equal to 1 an 581 * ACK error has occurred on the address phase of the write. 582 * This could be due to an actual hardware failure or the 583 * EEPROM may still be in its internal write cycle from a 584 * previous write. This write operation was ignored and must be 585 *repeated later. 586 */ 587 if (status & LBCIF_STATUS_ACK_ERROR) { 588 /* This could be due to an actual hardware failure 589 * or the EEPROM may still be in its internal write 590 * cycle from a previous write. This write operation 591 * was ignored and must be repeated later. 592 */ 593 udelay(10); 594 continue; 595 } 596 597 writeok = 1; 598 break; 599 } 600 601 udelay(10); 602 603 while (1) { 604 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER, 605 LBCIF_CONTROL_LBCIF_ENABLE)) 606 writeok = 0; 607 608 /* Do read until internal ACK_ERROR goes away meaning write 609 * completed 610 */ 611 do { 612 pci_write_config_dword(pdev, 613 LBCIF_ADDRESS_REGISTER, 614 addr); 615 do { 616 pci_read_config_dword(pdev, 617 LBCIF_DATA_REGISTER, 618 &val); 619 } while ((val & 0x00010000) == 0); 620 } while (val & 0x00040000); 621 622 if ((val & 0xFF00) != 0xC000 || index == 10000) 623 break; 624 index++; 625 } 626 return writeok ? 0 : -EIO; 627 } 628 629 static int eeprom_read(struct et131x_adapter *adapter, u32 addr, u8 *pdata) 630 { 631 struct pci_dev *pdev = adapter->pdev; 632 int err; 633 u32 status; 634 635 /* A single byte read is similar to the single byte write, with the 636 * exception of the data flow: 637 */ 638 err = eeprom_wait_ready(pdev, NULL); 639 if (err < 0) 640 return err; 641 /* Write to the LBCIF Control Register: bit 7=1, bit 6=0, bit 3=0, 642 * and bits 1:0 both =0. Bit 5 should be set according to the type 643 * of EEPROM being accessed (1=two byte addressing, 0=one byte 644 * addressing). 645 */ 646 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER, 647 LBCIF_CONTROL_LBCIF_ENABLE)) 648 return -EIO; 649 /* Write the address to the LBCIF Address Register (I2C read will 650 * begin). 651 */ 652 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr)) 653 return -EIO; 654 /* Monitor bit 0 of the LBCIF Status Register. When = 1, I2C read 655 * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure 656 * has occurred). 657 */ 658 err = eeprom_wait_ready(pdev, &status); 659 if (err < 0) 660 return err; 661 /* Regardless of error status, read data byte from LBCIF Data 662 * Register. 663 */ 664 *pdata = err; 665 666 return (status & LBCIF_STATUS_ACK_ERROR) ? -EIO : 0; 667 } 668 669 static int et131x_init_eeprom(struct et131x_adapter *adapter) 670 { 671 struct pci_dev *pdev = adapter->pdev; 672 u8 eestatus; 673 674 pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus); 675 676 /* THIS IS A WORKAROUND: 677 * I need to call this function twice to get my card in a 678 * LG M1 Express Dual running. I tried also a msleep before this 679 * function, because I thought there could be some time conditions 680 * but it didn't work. Call the whole function twice also work. 681 */ 682 if (pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus)) { 683 dev_err(&pdev->dev, 684 "Could not read PCI config space for EEPROM Status\n"); 685 return -EIO; 686 } 687 688 /* Determine if the error(s) we care about are present. If they are 689 * present we need to fail. 690 */ 691 if (eestatus & 0x4C) { 692 int write_failed = 0; 693 694 if (pdev->revision == 0x01) { 695 int i; 696 static const u8 eedata[4] = { 0xFE, 0x13, 0x10, 0xFF }; 697 698 /* Re-write the first 4 bytes if we have an eeprom 699 * present and the revision id is 1, this fixes the 700 * corruption seen with 1310 B Silicon 701 */ 702 for (i = 0; i < 3; i++) 703 if (eeprom_write(adapter, i, eedata[i]) < 0) 704 write_failed = 1; 705 } 706 if (pdev->revision != 0x01 || write_failed) { 707 dev_err(&pdev->dev, 708 "Fatal EEPROM Status Error - 0x%04x\n", 709 eestatus); 710 711 /* This error could mean that there was an error 712 * reading the eeprom or that the eeprom doesn't exist. 713 * We will treat each case the same and not try to 714 * gather additional information that normally would 715 * come from the eeprom, like MAC Address 716 */ 717 adapter->has_eeprom = false; 718 return -EIO; 719 } 720 } 721 adapter->has_eeprom = true; 722 723 /* Read the EEPROM for information regarding LED behavior. Refer to 724 * et131x_xcvr_init() for its use. 725 */ 726 eeprom_read(adapter, 0x70, &adapter->eeprom_data[0]); 727 eeprom_read(adapter, 0x71, &adapter->eeprom_data[1]); 728 729 if (adapter->eeprom_data[0] != 0xcd) 730 /* Disable all optional features */ 731 adapter->eeprom_data[1] = 0x00; 732 733 return 0; 734 } 735 736 static void et131x_rx_dma_enable(struct et131x_adapter *adapter) 737 { 738 /* Setup the receive dma configuration register for normal operation */ 739 u32 csr = ET_RXDMA_CSR_FBR1_ENABLE; 740 struct rx_ring *rx_ring = &adapter->rx_ring; 741 742 if (rx_ring->fbr[1]->buffsize == 4096) 743 csr |= ET_RXDMA_CSR_FBR1_SIZE_LO; 744 else if (rx_ring->fbr[1]->buffsize == 8192) 745 csr |= ET_RXDMA_CSR_FBR1_SIZE_HI; 746 else if (rx_ring->fbr[1]->buffsize == 16384) 747 csr |= ET_RXDMA_CSR_FBR1_SIZE_LO | ET_RXDMA_CSR_FBR1_SIZE_HI; 748 749 csr |= ET_RXDMA_CSR_FBR0_ENABLE; 750 if (rx_ring->fbr[0]->buffsize == 256) 751 csr |= ET_RXDMA_CSR_FBR0_SIZE_LO; 752 else if (rx_ring->fbr[0]->buffsize == 512) 753 csr |= ET_RXDMA_CSR_FBR0_SIZE_HI; 754 else if (rx_ring->fbr[0]->buffsize == 1024) 755 csr |= ET_RXDMA_CSR_FBR0_SIZE_LO | ET_RXDMA_CSR_FBR0_SIZE_HI; 756 writel(csr, &adapter->regs->rxdma.csr); 757 758 csr = readl(&adapter->regs->rxdma.csr); 759 if (csr & ET_RXDMA_CSR_HALT_STATUS) { 760 udelay(5); 761 csr = readl(&adapter->regs->rxdma.csr); 762 if (csr & ET_RXDMA_CSR_HALT_STATUS) { 763 dev_err(&adapter->pdev->dev, 764 "RX Dma failed to exit halt state. CSR 0x%08x\n", 765 csr); 766 } 767 } 768 } 769 770 static void et131x_rx_dma_disable(struct et131x_adapter *adapter) 771 { 772 u32 csr; 773 /* Setup the receive dma configuration register */ 774 writel(ET_RXDMA_CSR_HALT | ET_RXDMA_CSR_FBR1_ENABLE, 775 &adapter->regs->rxdma.csr); 776 csr = readl(&adapter->regs->rxdma.csr); 777 if (!(csr & ET_RXDMA_CSR_HALT_STATUS)) { 778 udelay(5); 779 csr = readl(&adapter->regs->rxdma.csr); 780 if (!(csr & ET_RXDMA_CSR_HALT_STATUS)) 781 dev_err(&adapter->pdev->dev, 782 "RX Dma failed to enter halt state. CSR 0x%08x\n", 783 csr); 784 } 785 } 786 787 static void et131x_tx_dma_enable(struct et131x_adapter *adapter) 788 { 789 /* Setup the transmit dma configuration register for normal 790 * operation 791 */ 792 writel(ET_TXDMA_SNGL_EPKT | (PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT), 793 &adapter->regs->txdma.csr); 794 } 795 796 static inline void add_10bit(u32 *v, int n) 797 { 798 *v = INDEX10(*v + n) | (*v & ET_DMA10_WRAP); 799 } 800 801 static inline void add_12bit(u32 *v, int n) 802 { 803 *v = INDEX12(*v + n) | (*v & ET_DMA12_WRAP); 804 } 805 806 static void et1310_config_mac_regs1(struct et131x_adapter *adapter) 807 { 808 struct mac_regs __iomem *macregs = &adapter->regs->mac; 809 u32 station1; 810 u32 station2; 811 u32 ipg; 812 813 /* First we need to reset everything. Write to MAC configuration 814 * register 1 to perform reset. 815 */ 816 writel(ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET | 817 ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC | 818 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC, 819 ¯egs->cfg1); 820 821 /* Next lets configure the MAC Inter-packet gap register */ 822 ipg = 0x38005860; /* IPG1 0x38 IPG2 0x58 B2B 0x60 */ 823 ipg |= 0x50 << 8; /* ifg enforce 0x50 */ 824 writel(ipg, ¯egs->ipg); 825 826 /* Next lets configure the MAC Half Duplex register */ 827 /* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */ 828 writel(0x00A1F037, ¯egs->hfdp); 829 830 /* Next lets configure the MAC Interface Control register */ 831 writel(0, ¯egs->if_ctrl); 832 833 writel(ET_MAC_MIIMGMT_CLK_RST, ¯egs->mii_mgmt_cfg); 834 835 /* Next lets configure the MAC Station Address register. These 836 * values are read from the EEPROM during initialization and stored 837 * in the adapter structure. We write what is stored in the adapter 838 * structure to the MAC Station Address registers high and low. This 839 * station address is used for generating and checking pause control 840 * packets. 841 */ 842 station2 = (adapter->addr[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT) | 843 (adapter->addr[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT); 844 station1 = (adapter->addr[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT) | 845 (adapter->addr[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT) | 846 (adapter->addr[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT) | 847 adapter->addr[2]; 848 writel(station1, ¯egs->station_addr_1); 849 writel(station2, ¯egs->station_addr_2); 850 851 /* Max ethernet packet in bytes that will be passed by the mac without 852 * being truncated. Allow the MAC to pass 4 more than our max packet 853 * size. This is 4 for the Ethernet CRC. 854 * 855 * Packets larger than (registry_jumbo_packet) that do not contain a 856 * VLAN ID will be dropped by the Rx function. 857 */ 858 writel(adapter->registry_jumbo_packet + 4, ¯egs->max_fm_len); 859 860 /* clear out MAC config reset */ 861 writel(0, ¯egs->cfg1); 862 } 863 864 static void et1310_config_mac_regs2(struct et131x_adapter *adapter) 865 { 866 int32_t delay = 0; 867 struct mac_regs __iomem *mac = &adapter->regs->mac; 868 struct phy_device *phydev = adapter->netdev->phydev; 869 u32 cfg1; 870 u32 cfg2; 871 u32 ifctrl; 872 u32 ctl; 873 874 ctl = readl(&adapter->regs->txmac.ctl); 875 cfg1 = readl(&mac->cfg1); 876 cfg2 = readl(&mac->cfg2); 877 ifctrl = readl(&mac->if_ctrl); 878 879 /* Set up the if mode bits */ 880 cfg2 &= ~ET_MAC_CFG2_IFMODE_MASK; 881 if (phydev->speed == SPEED_1000) { 882 cfg2 |= ET_MAC_CFG2_IFMODE_1000; 883 ifctrl &= ~ET_MAC_IFCTRL_PHYMODE; 884 } else { 885 cfg2 |= ET_MAC_CFG2_IFMODE_100; 886 ifctrl |= ET_MAC_IFCTRL_PHYMODE; 887 } 888 889 cfg1 |= ET_MAC_CFG1_RX_ENABLE | ET_MAC_CFG1_TX_ENABLE | 890 ET_MAC_CFG1_TX_FLOW; 891 892 cfg1 &= ~(ET_MAC_CFG1_LOOPBACK | ET_MAC_CFG1_RX_FLOW); 893 if (adapter->flow == FLOW_RXONLY || adapter->flow == FLOW_BOTH) 894 cfg1 |= ET_MAC_CFG1_RX_FLOW; 895 writel(cfg1, &mac->cfg1); 896 897 /* Now we need to initialize the MAC Configuration 2 register */ 898 /* preamble 7, check length, huge frame off, pad crc, crc enable 899 * full duplex off 900 */ 901 cfg2 |= 0x7 << ET_MAC_CFG2_PREAMBLE_SHIFT; 902 cfg2 |= ET_MAC_CFG2_IFMODE_LEN_CHECK; 903 cfg2 |= ET_MAC_CFG2_IFMODE_PAD_CRC; 904 cfg2 |= ET_MAC_CFG2_IFMODE_CRC_ENABLE; 905 cfg2 &= ~ET_MAC_CFG2_IFMODE_HUGE_FRAME; 906 cfg2 &= ~ET_MAC_CFG2_IFMODE_FULL_DPLX; 907 908 if (phydev->duplex == DUPLEX_FULL) 909 cfg2 |= ET_MAC_CFG2_IFMODE_FULL_DPLX; 910 911 ifctrl &= ~ET_MAC_IFCTRL_GHDMODE; 912 if (phydev->duplex == DUPLEX_HALF) 913 ifctrl |= ET_MAC_IFCTRL_GHDMODE; 914 915 writel(ifctrl, &mac->if_ctrl); 916 writel(cfg2, &mac->cfg2); 917 918 do { 919 udelay(10); 920 delay++; 921 cfg1 = readl(&mac->cfg1); 922 } while ((cfg1 & ET_MAC_CFG1_WAIT) != ET_MAC_CFG1_WAIT && delay < 100); 923 924 if (delay == 100) { 925 dev_warn(&adapter->pdev->dev, 926 "Syncd bits did not respond correctly cfg1 word 0x%08x\n", 927 cfg1); 928 } 929 930 ctl |= ET_TX_CTRL_TXMAC_ENABLE | ET_TX_CTRL_FC_DISABLE; 931 writel(ctl, &adapter->regs->txmac.ctl); 932 933 if (adapter->flags & FMP_ADAPTER_LOWER_POWER) { 934 et131x_rx_dma_enable(adapter); 935 et131x_tx_dma_enable(adapter); 936 } 937 } 938 939 static int et1310_in_phy_coma(struct et131x_adapter *adapter) 940 { 941 u32 pmcsr = readl(&adapter->regs->global.pm_csr); 942 943 return ET_PM_PHY_SW_COMA & pmcsr ? 1 : 0; 944 } 945 946 static void et1310_setup_device_for_multicast(struct et131x_adapter *adapter) 947 { 948 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac; 949 u32 hash1 = 0; 950 u32 hash2 = 0; 951 u32 hash3 = 0; 952 u32 hash4 = 0; 953 954 /* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision 955 * the multi-cast LIST. If it is NOT specified, (and "ALL" is not 956 * specified) then we should pass NO multi-cast addresses to the 957 * driver. 958 */ 959 if (adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST) { 960 int i; 961 962 /* Loop through our multicast array and set up the device */ 963 for (i = 0; i < adapter->multicast_addr_count; i++) { 964 u32 result; 965 966 result = ether_crc(6, adapter->multicast_list[i]); 967 968 result = (result & 0x3F800000) >> 23; 969 970 if (result < 32) { 971 hash1 |= (1 << result); 972 } else if ((31 < result) && (result < 64)) { 973 result -= 32; 974 hash2 |= (1 << result); 975 } else if ((63 < result) && (result < 96)) { 976 result -= 64; 977 hash3 |= (1 << result); 978 } else { 979 result -= 96; 980 hash4 |= (1 << result); 981 } 982 } 983 } 984 985 /* Write out the new hash to the device */ 986 if (!et1310_in_phy_coma(adapter)) { 987 writel(hash1, &rxmac->multi_hash1); 988 writel(hash2, &rxmac->multi_hash2); 989 writel(hash3, &rxmac->multi_hash3); 990 writel(hash4, &rxmac->multi_hash4); 991 } 992 } 993 994 static void et1310_setup_device_for_unicast(struct et131x_adapter *adapter) 995 { 996 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac; 997 u32 uni_pf1; 998 u32 uni_pf2; 999 u32 uni_pf3; 1000 1001 /* Set up unicast packet filter reg 3 to be the first two octets of 1002 * the MAC address for both address 1003 * 1004 * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the 1005 * MAC address for second address 1006 * 1007 * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the 1008 * MAC address for first address 1009 */ 1010 uni_pf3 = (adapter->addr[0] << ET_RX_UNI_PF_ADDR2_1_SHIFT) | 1011 (adapter->addr[1] << ET_RX_UNI_PF_ADDR2_2_SHIFT) | 1012 (adapter->addr[0] << ET_RX_UNI_PF_ADDR1_1_SHIFT) | 1013 adapter->addr[1]; 1014 1015 uni_pf2 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR2_3_SHIFT) | 1016 (adapter->addr[3] << ET_RX_UNI_PF_ADDR2_4_SHIFT) | 1017 (adapter->addr[4] << ET_RX_UNI_PF_ADDR2_5_SHIFT) | 1018 adapter->addr[5]; 1019 1020 uni_pf1 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR1_3_SHIFT) | 1021 (adapter->addr[3] << ET_RX_UNI_PF_ADDR1_4_SHIFT) | 1022 (adapter->addr[4] << ET_RX_UNI_PF_ADDR1_5_SHIFT) | 1023 adapter->addr[5]; 1024 1025 if (!et1310_in_phy_coma(adapter)) { 1026 writel(uni_pf1, &rxmac->uni_pf_addr1); 1027 writel(uni_pf2, &rxmac->uni_pf_addr2); 1028 writel(uni_pf3, &rxmac->uni_pf_addr3); 1029 } 1030 } 1031 1032 static void et1310_config_rxmac_regs(struct et131x_adapter *adapter) 1033 { 1034 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac; 1035 struct phy_device *phydev = adapter->netdev->phydev; 1036 u32 sa_lo; 1037 u32 sa_hi = 0; 1038 u32 pf_ctrl = 0; 1039 u32 __iomem *wolw; 1040 1041 /* Disable the MAC while it is being configured (also disable WOL) */ 1042 writel(0x8, &rxmac->ctrl); 1043 1044 /* Initialize WOL to disabled. */ 1045 writel(0, &rxmac->crc0); 1046 writel(0, &rxmac->crc12); 1047 writel(0, &rxmac->crc34); 1048 1049 /* We need to set the WOL mask0 - mask4 next. We initialize it to 1050 * its default Values of 0x00000000 because there are not WOL masks 1051 * as of this time. 1052 */ 1053 for (wolw = &rxmac->mask0_word0; wolw <= &rxmac->mask4_word3; wolw++) 1054 writel(0, wolw); 1055 1056 /* Lets setup the WOL Source Address */ 1057 sa_lo = (adapter->addr[2] << ET_RX_WOL_LO_SA3_SHIFT) | 1058 (adapter->addr[3] << ET_RX_WOL_LO_SA4_SHIFT) | 1059 (adapter->addr[4] << ET_RX_WOL_LO_SA5_SHIFT) | 1060 adapter->addr[5]; 1061 writel(sa_lo, &rxmac->sa_lo); 1062 1063 sa_hi = (u32)(adapter->addr[0] << ET_RX_WOL_HI_SA1_SHIFT) | 1064 adapter->addr[1]; 1065 writel(sa_hi, &rxmac->sa_hi); 1066 1067 /* Disable all Packet Filtering */ 1068 writel(0, &rxmac->pf_ctrl); 1069 1070 /* Let's initialize the Unicast Packet filtering address */ 1071 if (adapter->packet_filter & ET131X_PACKET_TYPE_DIRECTED) { 1072 et1310_setup_device_for_unicast(adapter); 1073 pf_ctrl |= ET_RX_PFCTRL_UNICST_FILTER_ENABLE; 1074 } else { 1075 writel(0, &rxmac->uni_pf_addr1); 1076 writel(0, &rxmac->uni_pf_addr2); 1077 writel(0, &rxmac->uni_pf_addr3); 1078 } 1079 1080 /* Let's initialize the Multicast hash */ 1081 if (!(adapter->packet_filter & ET131X_PACKET_TYPE_ALL_MULTICAST)) { 1082 pf_ctrl |= ET_RX_PFCTRL_MLTCST_FILTER_ENABLE; 1083 et1310_setup_device_for_multicast(adapter); 1084 } 1085 1086 /* Runt packet filtering. Didn't work in version A silicon. */ 1087 pf_ctrl |= (NIC_MIN_PACKET_SIZE + 4) << ET_RX_PFCTRL_MIN_PKT_SZ_SHIFT; 1088 pf_ctrl |= ET_RX_PFCTRL_FRAG_FILTER_ENABLE; 1089 1090 if (adapter->registry_jumbo_packet > 8192) 1091 /* In order to transmit jumbo packets greater than 8k, the 1092 * FIFO between RxMAC and RxDMA needs to be reduced in size 1093 * to (16k - Jumbo packet size). In order to implement this, 1094 * we must use "cut through" mode in the RxMAC, which chops 1095 * packets down into segments which are (max_size * 16). In 1096 * this case we selected 256 bytes, since this is the size of 1097 * the PCI-Express TLP's that the 1310 uses. 1098 * 1099 * seg_en on, fc_en off, size 0x10 1100 */ 1101 writel(0x41, &rxmac->mcif_ctrl_max_seg); 1102 else 1103 writel(0, &rxmac->mcif_ctrl_max_seg); 1104 1105 writel(0, &rxmac->mcif_water_mark); 1106 writel(0, &rxmac->mif_ctrl); 1107 writel(0, &rxmac->space_avail); 1108 1109 /* Initialize the the mif_ctrl register 1110 * bit 3: Receive code error. One or more nibbles were signaled as 1111 * errors during the reception of the packet. Clear this 1112 * bit in Gigabit, set it in 100Mbit. This was derived 1113 * experimentally at UNH. 1114 * bit 4: Receive CRC error. The packet's CRC did not match the 1115 * internally generated CRC. 1116 * bit 5: Receive length check error. Indicates that frame length 1117 * field value in the packet does not match the actual data 1118 * byte length and is not a type field. 1119 * bit 16: Receive frame truncated. 1120 * bit 17: Drop packet enable 1121 */ 1122 if (phydev && phydev->speed == SPEED_100) 1123 writel(0x30038, &rxmac->mif_ctrl); 1124 else 1125 writel(0x30030, &rxmac->mif_ctrl); 1126 1127 /* Finally we initialize RxMac to be enabled & WOL disabled. Packet 1128 * filter is always enabled since it is where the runt packets are 1129 * supposed to be dropped. For version A silicon, runt packet 1130 * dropping doesn't work, so it is disabled in the pf_ctrl register, 1131 * but we still leave the packet filter on. 1132 */ 1133 writel(pf_ctrl, &rxmac->pf_ctrl); 1134 writel(ET_RX_CTRL_RXMAC_ENABLE | ET_RX_CTRL_WOL_DISABLE, &rxmac->ctrl); 1135 } 1136 1137 static void et1310_config_txmac_regs(struct et131x_adapter *adapter) 1138 { 1139 struct txmac_regs __iomem *txmac = &adapter->regs->txmac; 1140 1141 /* We need to update the Control Frame Parameters 1142 * cfpt - control frame pause timer set to 64 (0x40) 1143 * cfep - control frame extended pause timer set to 0x0 1144 */ 1145 if (adapter->flow == FLOW_NONE) 1146 writel(0, &txmac->cf_param); 1147 else 1148 writel(0x40, &txmac->cf_param); 1149 } 1150 1151 static void et1310_config_macstat_regs(struct et131x_adapter *adapter) 1152 { 1153 struct macstat_regs __iomem *macstat = &adapter->regs->macstat; 1154 u32 __iomem *reg; 1155 1156 /* initialize all the macstat registers to zero on the device */ 1157 for (reg = &macstat->txrx_0_64_byte_frames; 1158 reg <= &macstat->carry_reg2; reg++) 1159 writel(0, reg); 1160 1161 /* Unmask any counters that we want to track the overflow of. 1162 * Initially this will be all counters. It may become clear later 1163 * that we do not need to track all counters. 1164 */ 1165 writel(0xFFFFBE32, &macstat->carry_reg1_mask); 1166 writel(0xFFFE7E8B, &macstat->carry_reg2_mask); 1167 } 1168 1169 static int et131x_phy_mii_read(struct et131x_adapter *adapter, u8 addr, 1170 u8 reg, u16 *value) 1171 { 1172 struct mac_regs __iomem *mac = &adapter->regs->mac; 1173 int status = 0; 1174 u32 delay = 0; 1175 u32 mii_addr; 1176 u32 mii_cmd; 1177 u32 mii_indicator; 1178 1179 /* Save a local copy of the registers we are dealing with so we can 1180 * set them back 1181 */ 1182 mii_addr = readl(&mac->mii_mgmt_addr); 1183 mii_cmd = readl(&mac->mii_mgmt_cmd); 1184 1185 /* Stop the current operation */ 1186 writel(0, &mac->mii_mgmt_cmd); 1187 1188 /* Set up the register we need to read from on the correct PHY */ 1189 writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr); 1190 1191 writel(0x1, &mac->mii_mgmt_cmd); 1192 1193 do { 1194 udelay(50); 1195 delay++; 1196 mii_indicator = readl(&mac->mii_mgmt_indicator); 1197 } while ((mii_indicator & ET_MAC_MGMT_WAIT) && delay < 50); 1198 1199 /* If we hit the max delay, we could not read the register */ 1200 if (delay == 50) { 1201 dev_warn(&adapter->pdev->dev, 1202 "reg 0x%08x could not be read\n", reg); 1203 dev_warn(&adapter->pdev->dev, "status is 0x%08x\n", 1204 mii_indicator); 1205 1206 status = -EIO; 1207 goto out; 1208 } 1209 1210 /* If we hit here we were able to read the register and we need to 1211 * return the value to the caller 1212 */ 1213 *value = readl(&mac->mii_mgmt_stat) & ET_MAC_MIIMGMT_STAT_PHYCRTL_MASK; 1214 1215 out: 1216 /* Stop the read operation */ 1217 writel(0, &mac->mii_mgmt_cmd); 1218 1219 /* set the registers we touched back to the state at which we entered 1220 * this function 1221 */ 1222 writel(mii_addr, &mac->mii_mgmt_addr); 1223 writel(mii_cmd, &mac->mii_mgmt_cmd); 1224 1225 return status; 1226 } 1227 1228 static int et131x_mii_read(struct et131x_adapter *adapter, u8 reg, u16 *value) 1229 { 1230 struct phy_device *phydev = adapter->netdev->phydev; 1231 1232 if (!phydev) 1233 return -EIO; 1234 1235 return et131x_phy_mii_read(adapter, phydev->mdio.addr, reg, value); 1236 } 1237 1238 static int et131x_mii_write(struct et131x_adapter *adapter, u8 addr, u8 reg, 1239 u16 value) 1240 { 1241 struct mac_regs __iomem *mac = &adapter->regs->mac; 1242 int status = 0; 1243 u32 delay = 0; 1244 u32 mii_addr; 1245 u32 mii_cmd; 1246 u32 mii_indicator; 1247 1248 /* Save a local copy of the registers we are dealing with so we can 1249 * set them back 1250 */ 1251 mii_addr = readl(&mac->mii_mgmt_addr); 1252 mii_cmd = readl(&mac->mii_mgmt_cmd); 1253 1254 /* Stop the current operation */ 1255 writel(0, &mac->mii_mgmt_cmd); 1256 1257 /* Set up the register we need to write to on the correct PHY */ 1258 writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr); 1259 1260 /* Add the value to write to the registers to the mac */ 1261 writel(value, &mac->mii_mgmt_ctrl); 1262 1263 do { 1264 udelay(50); 1265 delay++; 1266 mii_indicator = readl(&mac->mii_mgmt_indicator); 1267 } while ((mii_indicator & ET_MAC_MGMT_BUSY) && delay < 100); 1268 1269 /* If we hit the max delay, we could not write the register */ 1270 if (delay == 100) { 1271 u16 tmp; 1272 1273 dev_warn(&adapter->pdev->dev, 1274 "reg 0x%08x could not be written", reg); 1275 dev_warn(&adapter->pdev->dev, "status is 0x%08x\n", 1276 mii_indicator); 1277 dev_warn(&adapter->pdev->dev, "command is 0x%08x\n", 1278 readl(&mac->mii_mgmt_cmd)); 1279 1280 et131x_mii_read(adapter, reg, &tmp); 1281 1282 status = -EIO; 1283 } 1284 /* Stop the write operation */ 1285 writel(0, &mac->mii_mgmt_cmd); 1286 1287 /* set the registers we touched back to the state at which we entered 1288 * this function 1289 */ 1290 writel(mii_addr, &mac->mii_mgmt_addr); 1291 writel(mii_cmd, &mac->mii_mgmt_cmd); 1292 1293 return status; 1294 } 1295 1296 static void et1310_phy_read_mii_bit(struct et131x_adapter *adapter, 1297 u16 regnum, 1298 u16 bitnum, 1299 u8 *value) 1300 { 1301 u16 reg; 1302 u16 mask = 1 << bitnum; 1303 1304 et131x_mii_read(adapter, regnum, ®); 1305 1306 *value = (reg & mask) >> bitnum; 1307 } 1308 1309 static void et1310_config_flow_control(struct et131x_adapter *adapter) 1310 { 1311 struct phy_device *phydev = adapter->netdev->phydev; 1312 1313 if (phydev->duplex == DUPLEX_HALF) { 1314 adapter->flow = FLOW_NONE; 1315 } else { 1316 char remote_pause, remote_async_pause; 1317 1318 et1310_phy_read_mii_bit(adapter, 5, 10, &remote_pause); 1319 et1310_phy_read_mii_bit(adapter, 5, 11, &remote_async_pause); 1320 1321 if (remote_pause && remote_async_pause) { 1322 adapter->flow = adapter->wanted_flow; 1323 } else if (remote_pause && !remote_async_pause) { 1324 if (adapter->wanted_flow == FLOW_BOTH) 1325 adapter->flow = FLOW_BOTH; 1326 else 1327 adapter->flow = FLOW_NONE; 1328 } else if (!remote_pause && !remote_async_pause) { 1329 adapter->flow = FLOW_NONE; 1330 } else { 1331 if (adapter->wanted_flow == FLOW_BOTH) 1332 adapter->flow = FLOW_RXONLY; 1333 else 1334 adapter->flow = FLOW_NONE; 1335 } 1336 } 1337 } 1338 1339 /* et1310_update_macstat_host_counters - Update local copy of the statistics */ 1340 static void et1310_update_macstat_host_counters(struct et131x_adapter *adapter) 1341 { 1342 struct ce_stats *stats = &adapter->stats; 1343 struct macstat_regs __iomem *macstat = 1344 &adapter->regs->macstat; 1345 1346 stats->tx_collisions += readl(&macstat->tx_total_collisions); 1347 stats->tx_first_collisions += readl(&macstat->tx_single_collisions); 1348 stats->tx_deferred += readl(&macstat->tx_deferred); 1349 stats->tx_excessive_collisions += 1350 readl(&macstat->tx_multiple_collisions); 1351 stats->tx_late_collisions += readl(&macstat->tx_late_collisions); 1352 stats->tx_underflows += readl(&macstat->tx_undersize_frames); 1353 stats->tx_max_pkt_errs += readl(&macstat->tx_oversize_frames); 1354 1355 stats->rx_align_errs += readl(&macstat->rx_align_errs); 1356 stats->rx_crc_errs += readl(&macstat->rx_code_errs); 1357 stats->rcvd_pkts_dropped += readl(&macstat->rx_drops); 1358 stats->rx_overflows += readl(&macstat->rx_oversize_packets); 1359 stats->rx_code_violations += readl(&macstat->rx_fcs_errs); 1360 stats->rx_length_errs += readl(&macstat->rx_frame_len_errs); 1361 stats->rx_other_errs += readl(&macstat->rx_fragment_packets); 1362 } 1363 1364 /* et1310_handle_macstat_interrupt 1365 * 1366 * One of the MACSTAT counters has wrapped. Update the local copy of 1367 * the statistics held in the adapter structure, checking the "wrap" 1368 * bit for each counter. 1369 */ 1370 static void et1310_handle_macstat_interrupt(struct et131x_adapter *adapter) 1371 { 1372 u32 carry_reg1; 1373 u32 carry_reg2; 1374 1375 /* Read the interrupt bits from the register(s). These are Clear On 1376 * Write. 1377 */ 1378 carry_reg1 = readl(&adapter->regs->macstat.carry_reg1); 1379 carry_reg2 = readl(&adapter->regs->macstat.carry_reg2); 1380 1381 writel(carry_reg1, &adapter->regs->macstat.carry_reg1); 1382 writel(carry_reg2, &adapter->regs->macstat.carry_reg2); 1383 1384 /* We need to do update the host copy of all the MAC_STAT counters. 1385 * For each counter, check it's overflow bit. If the overflow bit is 1386 * set, then increment the host version of the count by one complete 1387 * revolution of the counter. This routine is called when the counter 1388 * block indicates that one of the counters has wrapped. 1389 */ 1390 if (carry_reg1 & (1 << 14)) 1391 adapter->stats.rx_code_violations += COUNTER_WRAP_16_BIT; 1392 if (carry_reg1 & (1 << 8)) 1393 adapter->stats.rx_align_errs += COUNTER_WRAP_12_BIT; 1394 if (carry_reg1 & (1 << 7)) 1395 adapter->stats.rx_length_errs += COUNTER_WRAP_16_BIT; 1396 if (carry_reg1 & (1 << 2)) 1397 adapter->stats.rx_other_errs += COUNTER_WRAP_16_BIT; 1398 if (carry_reg1 & (1 << 6)) 1399 adapter->stats.rx_crc_errs += COUNTER_WRAP_16_BIT; 1400 if (carry_reg1 & (1 << 3)) 1401 adapter->stats.rx_overflows += COUNTER_WRAP_16_BIT; 1402 if (carry_reg1 & (1 << 0)) 1403 adapter->stats.rcvd_pkts_dropped += COUNTER_WRAP_16_BIT; 1404 if (carry_reg2 & (1 << 16)) 1405 adapter->stats.tx_max_pkt_errs += COUNTER_WRAP_12_BIT; 1406 if (carry_reg2 & (1 << 15)) 1407 adapter->stats.tx_underflows += COUNTER_WRAP_12_BIT; 1408 if (carry_reg2 & (1 << 6)) 1409 adapter->stats.tx_first_collisions += COUNTER_WRAP_12_BIT; 1410 if (carry_reg2 & (1 << 8)) 1411 adapter->stats.tx_deferred += COUNTER_WRAP_12_BIT; 1412 if (carry_reg2 & (1 << 5)) 1413 adapter->stats.tx_excessive_collisions += COUNTER_WRAP_12_BIT; 1414 if (carry_reg2 & (1 << 4)) 1415 adapter->stats.tx_late_collisions += COUNTER_WRAP_12_BIT; 1416 if (carry_reg2 & (1 << 2)) 1417 adapter->stats.tx_collisions += COUNTER_WRAP_12_BIT; 1418 } 1419 1420 static int et131x_mdio_read(struct mii_bus *bus, int phy_addr, int reg) 1421 { 1422 struct net_device *netdev = bus->priv; 1423 struct et131x_adapter *adapter = netdev_priv(netdev); 1424 u16 value; 1425 int ret; 1426 1427 ret = et131x_phy_mii_read(adapter, phy_addr, reg, &value); 1428 1429 if (ret < 0) 1430 return ret; 1431 1432 return value; 1433 } 1434 1435 static int et131x_mdio_write(struct mii_bus *bus, int phy_addr, 1436 int reg, u16 value) 1437 { 1438 struct net_device *netdev = bus->priv; 1439 struct et131x_adapter *adapter = netdev_priv(netdev); 1440 1441 return et131x_mii_write(adapter, phy_addr, reg, value); 1442 } 1443 1444 /* et1310_phy_power_switch - PHY power control 1445 * @adapter: device to control 1446 * @down: true for off/false for back on 1447 * 1448 * one hundred, ten, one thousand megs 1449 * How would you like to have your LAN accessed 1450 * Can't you see that this code processed 1451 * Phy power, phy power.. 1452 */ 1453 static void et1310_phy_power_switch(struct et131x_adapter *adapter, bool down) 1454 { 1455 u16 data; 1456 struct phy_device *phydev = adapter->netdev->phydev; 1457 1458 et131x_mii_read(adapter, MII_BMCR, &data); 1459 data &= ~BMCR_PDOWN; 1460 if (down) 1461 data |= BMCR_PDOWN; 1462 et131x_mii_write(adapter, phydev->mdio.addr, MII_BMCR, data); 1463 } 1464 1465 /* et131x_xcvr_init - Init the phy if we are setting it into force mode */ 1466 static void et131x_xcvr_init(struct et131x_adapter *adapter) 1467 { 1468 u16 lcr2; 1469 struct phy_device *phydev = adapter->netdev->phydev; 1470 1471 /* Set the LED behavior such that LED 1 indicates speed (off = 1472 * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates 1473 * link and activity (on for link, blink off for activity). 1474 * 1475 * NOTE: Some customizations have been added here for specific 1476 * vendors; The LED behavior is now determined by vendor data in the 1477 * EEPROM. However, the above description is the default. 1478 */ 1479 if ((adapter->eeprom_data[1] & 0x4) == 0) { 1480 et131x_mii_read(adapter, PHY_LED_2, &lcr2); 1481 1482 lcr2 &= (ET_LED2_LED_100TX | ET_LED2_LED_1000T); 1483 lcr2 |= (LED_VAL_LINKON_ACTIVE << LED_LINK_SHIFT); 1484 1485 if ((adapter->eeprom_data[1] & 0x8) == 0) 1486 lcr2 |= (LED_VAL_1000BT_100BTX << LED_TXRX_SHIFT); 1487 else 1488 lcr2 |= (LED_VAL_LINKON << LED_TXRX_SHIFT); 1489 1490 et131x_mii_write(adapter, phydev->mdio.addr, PHY_LED_2, lcr2); 1491 } 1492 } 1493 1494 /* et131x_configure_global_regs - configure JAGCore global regs */ 1495 static void et131x_configure_global_regs(struct et131x_adapter *adapter) 1496 { 1497 struct global_regs __iomem *regs = &adapter->regs->global; 1498 1499 writel(0, ®s->rxq_start_addr); 1500 writel(INTERNAL_MEM_SIZE - 1, ®s->txq_end_addr); 1501 1502 if (adapter->registry_jumbo_packet < 2048) { 1503 /* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word 1504 * block of RAM that the driver can split between Tx 1505 * and Rx as it desires. Our default is to split it 1506 * 50/50: 1507 */ 1508 writel(PARM_RX_MEM_END_DEF, ®s->rxq_end_addr); 1509 writel(PARM_RX_MEM_END_DEF + 1, ®s->txq_start_addr); 1510 } else if (adapter->registry_jumbo_packet < 8192) { 1511 /* For jumbo packets > 2k but < 8k, split 50-50. */ 1512 writel(INTERNAL_MEM_RX_OFFSET, ®s->rxq_end_addr); 1513 writel(INTERNAL_MEM_RX_OFFSET + 1, ®s->txq_start_addr); 1514 } else { 1515 /* 9216 is the only packet size greater than 8k that 1516 * is available. The Tx buffer has to be big enough 1517 * for one whole packet on the Tx side. We'll make 1518 * the Tx 9408, and give the rest to Rx 1519 */ 1520 writel(0x01b3, ®s->rxq_end_addr); 1521 writel(0x01b4, ®s->txq_start_addr); 1522 } 1523 1524 /* Initialize the loopback register. Disable all loopbacks. */ 1525 writel(0, ®s->loopback); 1526 1527 writel(0, ®s->msi_config); 1528 1529 /* By default, disable the watchdog timer. It will be enabled when 1530 * a packet is queued. 1531 */ 1532 writel(0, ®s->watchdog_timer); 1533 } 1534 1535 /* et131x_config_rx_dma_regs - Start of Rx_DMA init sequence */ 1536 static void et131x_config_rx_dma_regs(struct et131x_adapter *adapter) 1537 { 1538 struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma; 1539 struct rx_ring *rx_local = &adapter->rx_ring; 1540 struct fbr_desc *fbr_entry; 1541 u32 entry; 1542 u32 psr_num_des; 1543 unsigned long flags; 1544 u8 id; 1545 1546 et131x_rx_dma_disable(adapter); 1547 1548 /* Load the completion writeback physical address */ 1549 writel(upper_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_hi); 1550 writel(lower_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_lo); 1551 1552 memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block)); 1553 1554 /* Set the address and parameters of the packet status ring */ 1555 writel(upper_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_hi); 1556 writel(lower_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_lo); 1557 writel(rx_local->psr_entries - 1, &rx_dma->psr_num_des); 1558 writel(0, &rx_dma->psr_full_offset); 1559 1560 psr_num_des = readl(&rx_dma->psr_num_des) & ET_RXDMA_PSR_NUM_DES_MASK; 1561 writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100, 1562 &rx_dma->psr_min_des); 1563 1564 spin_lock_irqsave(&adapter->rcv_lock, flags); 1565 1566 /* These local variables track the PSR in the adapter structure */ 1567 rx_local->local_psr_full = 0; 1568 1569 for (id = 0; id < NUM_FBRS; id++) { 1570 u32 __iomem *num_des; 1571 u32 __iomem *full_offset; 1572 u32 __iomem *min_des; 1573 u32 __iomem *base_hi; 1574 u32 __iomem *base_lo; 1575 struct fbr_lookup *fbr = rx_local->fbr[id]; 1576 1577 if (id == 0) { 1578 num_des = &rx_dma->fbr0_num_des; 1579 full_offset = &rx_dma->fbr0_full_offset; 1580 min_des = &rx_dma->fbr0_min_des; 1581 base_hi = &rx_dma->fbr0_base_hi; 1582 base_lo = &rx_dma->fbr0_base_lo; 1583 } else { 1584 num_des = &rx_dma->fbr1_num_des; 1585 full_offset = &rx_dma->fbr1_full_offset; 1586 min_des = &rx_dma->fbr1_min_des; 1587 base_hi = &rx_dma->fbr1_base_hi; 1588 base_lo = &rx_dma->fbr1_base_lo; 1589 } 1590 1591 /* Now's the best time to initialize FBR contents */ 1592 fbr_entry = fbr->ring_virtaddr; 1593 for (entry = 0; entry < fbr->num_entries; entry++) { 1594 fbr_entry->addr_hi = fbr->bus_high[entry]; 1595 fbr_entry->addr_lo = fbr->bus_low[entry]; 1596 fbr_entry->word2 = entry; 1597 fbr_entry++; 1598 } 1599 1600 /* Set the address and parameters of Free buffer ring 1 and 0 */ 1601 writel(upper_32_bits(fbr->ring_physaddr), base_hi); 1602 writel(lower_32_bits(fbr->ring_physaddr), base_lo); 1603 writel(fbr->num_entries - 1, num_des); 1604 writel(ET_DMA10_WRAP, full_offset); 1605 1606 /* This variable tracks the free buffer ring 1 full position, 1607 * so it has to match the above. 1608 */ 1609 fbr->local_full = ET_DMA10_WRAP; 1610 writel(((fbr->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1, 1611 min_des); 1612 } 1613 1614 /* Program the number of packets we will receive before generating an 1615 * interrupt. 1616 * For version B silicon, this value gets updated once autoneg is 1617 *complete. 1618 */ 1619 writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done); 1620 1621 /* The "time_done" is not working correctly to coalesce interrupts 1622 * after a given time period, but rather is giving us an interrupt 1623 * regardless of whether we have received packets. 1624 * This value gets updated once autoneg is complete. 1625 */ 1626 writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time); 1627 1628 spin_unlock_irqrestore(&adapter->rcv_lock, flags); 1629 } 1630 1631 /* et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore. 1632 * 1633 * Configure the transmit engine with the ring buffers we have created 1634 * and prepare it for use. 1635 */ 1636 static void et131x_config_tx_dma_regs(struct et131x_adapter *adapter) 1637 { 1638 struct txdma_regs __iomem *txdma = &adapter->regs->txdma; 1639 struct tx_ring *tx_ring = &adapter->tx_ring; 1640 1641 /* Load the hardware with the start of the transmit descriptor ring. */ 1642 writel(upper_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_hi); 1643 writel(lower_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_lo); 1644 1645 /* Initialise the transmit DMA engine */ 1646 writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des); 1647 1648 /* Load the completion writeback physical address */ 1649 writel(upper_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_hi); 1650 writel(lower_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_lo); 1651 1652 *tx_ring->tx_status = 0; 1653 1654 writel(0, &txdma->service_request); 1655 tx_ring->send_idx = 0; 1656 } 1657 1658 /* et131x_adapter_setup - Set the adapter up as per cassini+ documentation */ 1659 static void et131x_adapter_setup(struct et131x_adapter *adapter) 1660 { 1661 et131x_configure_global_regs(adapter); 1662 et1310_config_mac_regs1(adapter); 1663 1664 /* Configure the MMC registers */ 1665 /* All we need to do is initialize the Memory Control Register */ 1666 writel(ET_MMC_ENABLE, &adapter->regs->mmc.mmc_ctrl); 1667 1668 et1310_config_rxmac_regs(adapter); 1669 et1310_config_txmac_regs(adapter); 1670 1671 et131x_config_rx_dma_regs(adapter); 1672 et131x_config_tx_dma_regs(adapter); 1673 1674 et1310_config_macstat_regs(adapter); 1675 1676 et1310_phy_power_switch(adapter, 0); 1677 et131x_xcvr_init(adapter); 1678 } 1679 1680 /* et131x_soft_reset - Issue soft reset to the hardware, complete for ET1310 */ 1681 static void et131x_soft_reset(struct et131x_adapter *adapter) 1682 { 1683 u32 reg; 1684 1685 /* Disable MAC Core */ 1686 reg = ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET | 1687 ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC | 1688 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC; 1689 writel(reg, &adapter->regs->mac.cfg1); 1690 1691 reg = ET_RESET_ALL; 1692 writel(reg, &adapter->regs->global.sw_reset); 1693 1694 reg = ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC | 1695 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC; 1696 writel(reg, &adapter->regs->mac.cfg1); 1697 writel(0, &adapter->regs->mac.cfg1); 1698 } 1699 1700 static void et131x_enable_interrupts(struct et131x_adapter *adapter) 1701 { 1702 u32 mask; 1703 1704 if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH) 1705 mask = INT_MASK_ENABLE; 1706 else 1707 mask = INT_MASK_ENABLE_NO_FLOW; 1708 1709 writel(mask, &adapter->regs->global.int_mask); 1710 } 1711 1712 static void et131x_disable_interrupts(struct et131x_adapter *adapter) 1713 { 1714 writel(INT_MASK_DISABLE, &adapter->regs->global.int_mask); 1715 } 1716 1717 static void et131x_tx_dma_disable(struct et131x_adapter *adapter) 1718 { 1719 /* Setup the transmit dma configuration register */ 1720 writel(ET_TXDMA_CSR_HALT | ET_TXDMA_SNGL_EPKT, 1721 &adapter->regs->txdma.csr); 1722 } 1723 1724 static void et131x_enable_txrx(struct net_device *netdev) 1725 { 1726 struct et131x_adapter *adapter = netdev_priv(netdev); 1727 1728 et131x_rx_dma_enable(adapter); 1729 et131x_tx_dma_enable(adapter); 1730 1731 if (adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE) 1732 et131x_enable_interrupts(adapter); 1733 1734 netif_start_queue(netdev); 1735 } 1736 1737 static void et131x_disable_txrx(struct net_device *netdev) 1738 { 1739 struct et131x_adapter *adapter = netdev_priv(netdev); 1740 1741 netif_stop_queue(netdev); 1742 1743 et131x_rx_dma_disable(adapter); 1744 et131x_tx_dma_disable(adapter); 1745 1746 et131x_disable_interrupts(adapter); 1747 } 1748 1749 static void et131x_init_send(struct et131x_adapter *adapter) 1750 { 1751 int i; 1752 struct tx_ring *tx_ring = &adapter->tx_ring; 1753 struct tcb *tcb = tx_ring->tcb_ring; 1754 1755 tx_ring->tcb_qhead = tcb; 1756 1757 memset(tcb, 0, sizeof(struct tcb) * NUM_TCB); 1758 1759 for (i = 0; i < NUM_TCB; i++) { 1760 tcb->next = tcb + 1; 1761 tcb++; 1762 } 1763 1764 tcb--; 1765 tx_ring->tcb_qtail = tcb; 1766 tcb->next = NULL; 1767 /* Curr send queue should now be empty */ 1768 tx_ring->send_head = NULL; 1769 tx_ring->send_tail = NULL; 1770 } 1771 1772 /* et1310_enable_phy_coma 1773 * 1774 * driver receive an phy status change interrupt while in D0 and check that 1775 * phy_status is down. 1776 * 1777 * -- gate off JAGCore; 1778 * -- set gigE PHY in Coma mode 1779 * -- wake on phy_interrupt; Perform software reset JAGCore, 1780 * re-initialize jagcore and gigE PHY 1781 */ 1782 static void et1310_enable_phy_coma(struct et131x_adapter *adapter) 1783 { 1784 u32 pmcsr = readl(&adapter->regs->global.pm_csr); 1785 1786 /* Stop sending packets. */ 1787 adapter->flags |= FMP_ADAPTER_LOWER_POWER; 1788 1789 /* Wait for outstanding Receive packets */ 1790 et131x_disable_txrx(adapter->netdev); 1791 1792 /* Gate off JAGCore 3 clock domains */ 1793 pmcsr &= ~ET_PMCSR_INIT; 1794 writel(pmcsr, &adapter->regs->global.pm_csr); 1795 1796 /* Program gigE PHY in to Coma mode */ 1797 pmcsr |= ET_PM_PHY_SW_COMA; 1798 writel(pmcsr, &adapter->regs->global.pm_csr); 1799 } 1800 1801 static void et1310_disable_phy_coma(struct et131x_adapter *adapter) 1802 { 1803 u32 pmcsr; 1804 1805 pmcsr = readl(&adapter->regs->global.pm_csr); 1806 1807 /* Disable phy_sw_coma register and re-enable JAGCore clocks */ 1808 pmcsr |= ET_PMCSR_INIT; 1809 pmcsr &= ~ET_PM_PHY_SW_COMA; 1810 writel(pmcsr, &adapter->regs->global.pm_csr); 1811 1812 /* Restore the GbE PHY speed and duplex modes; 1813 * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY 1814 */ 1815 1816 /* Re-initialize the send structures */ 1817 et131x_init_send(adapter); 1818 1819 /* Bring the device back to the state it was during init prior to 1820 * autonegotiation being complete. This way, when we get the auto-neg 1821 * complete interrupt, we can complete init by calling ConfigMacREGS2. 1822 */ 1823 et131x_soft_reset(adapter); 1824 1825 et131x_adapter_setup(adapter); 1826 1827 /* Allow Tx to restart */ 1828 adapter->flags &= ~FMP_ADAPTER_LOWER_POWER; 1829 1830 et131x_enable_txrx(adapter->netdev); 1831 } 1832 1833 static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit) 1834 { 1835 u32 tmp_free_buff_ring = *free_buff_ring; 1836 1837 tmp_free_buff_ring++; 1838 /* This works for all cases where limit < 1024. The 1023 case 1839 * works because 1023++ is 1024 which means the if condition is not 1840 * taken but the carry of the bit into the wrap bit toggles the wrap 1841 * value correctly 1842 */ 1843 if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) { 1844 tmp_free_buff_ring &= ~ET_DMA10_MASK; 1845 tmp_free_buff_ring ^= ET_DMA10_WRAP; 1846 } 1847 /* For the 1023 case */ 1848 tmp_free_buff_ring &= (ET_DMA10_MASK | ET_DMA10_WRAP); 1849 *free_buff_ring = tmp_free_buff_ring; 1850 return tmp_free_buff_ring; 1851 } 1852 1853 /* et131x_rx_dma_memory_alloc 1854 * 1855 * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required, 1856 * and the Packet Status Ring. 1857 */ 1858 static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter) 1859 { 1860 u8 id; 1861 u32 i, j; 1862 u32 bufsize; 1863 u32 psr_size; 1864 u32 fbr_chunksize; 1865 struct rx_ring *rx_ring = &adapter->rx_ring; 1866 struct fbr_lookup *fbr; 1867 1868 /* Alloc memory for the lookup table */ 1869 rx_ring->fbr[0] = kzalloc(sizeof(*fbr), GFP_KERNEL); 1870 if (rx_ring->fbr[0] == NULL) 1871 return -ENOMEM; 1872 rx_ring->fbr[1] = kzalloc(sizeof(*fbr), GFP_KERNEL); 1873 if (rx_ring->fbr[1] == NULL) 1874 return -ENOMEM; 1875 1876 /* The first thing we will do is configure the sizes of the buffer 1877 * rings. These will change based on jumbo packet support. Larger 1878 * jumbo packets increases the size of each entry in FBR0, and the 1879 * number of entries in FBR0, while at the same time decreasing the 1880 * number of entries in FBR1. 1881 * 1882 * FBR1 holds "large" frames, FBR0 holds "small" frames. If FBR1 1883 * entries are huge in order to accommodate a "jumbo" frame, then it 1884 * will have less entries. Conversely, FBR1 will now be relied upon 1885 * to carry more "normal" frames, thus it's entry size also increases 1886 * and the number of entries goes up too (since it now carries 1887 * "small" + "regular" packets. 1888 * 1889 * In this scheme, we try to maintain 512 entries between the two 1890 * rings. Also, FBR1 remains a constant size - when it's size doubles 1891 * the number of entries halves. FBR0 increases in size, however. 1892 */ 1893 if (adapter->registry_jumbo_packet < 2048) { 1894 rx_ring->fbr[0]->buffsize = 256; 1895 rx_ring->fbr[0]->num_entries = 512; 1896 rx_ring->fbr[1]->buffsize = 2048; 1897 rx_ring->fbr[1]->num_entries = 512; 1898 } else if (adapter->registry_jumbo_packet < 4096) { 1899 rx_ring->fbr[0]->buffsize = 512; 1900 rx_ring->fbr[0]->num_entries = 1024; 1901 rx_ring->fbr[1]->buffsize = 4096; 1902 rx_ring->fbr[1]->num_entries = 512; 1903 } else { 1904 rx_ring->fbr[0]->buffsize = 1024; 1905 rx_ring->fbr[0]->num_entries = 768; 1906 rx_ring->fbr[1]->buffsize = 16384; 1907 rx_ring->fbr[1]->num_entries = 128; 1908 } 1909 1910 rx_ring->psr_entries = rx_ring->fbr[0]->num_entries + 1911 rx_ring->fbr[1]->num_entries; 1912 1913 for (id = 0; id < NUM_FBRS; id++) { 1914 fbr = rx_ring->fbr[id]; 1915 /* Allocate an area of memory for Free Buffer Ring */ 1916 bufsize = sizeof(struct fbr_desc) * fbr->num_entries; 1917 fbr->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev, 1918 bufsize, 1919 &fbr->ring_physaddr, 1920 GFP_KERNEL); 1921 if (!fbr->ring_virtaddr) { 1922 dev_err(&adapter->pdev->dev, 1923 "Cannot alloc memory for Free Buffer Ring %d\n", 1924 id); 1925 return -ENOMEM; 1926 } 1927 } 1928 1929 for (id = 0; id < NUM_FBRS; id++) { 1930 fbr = rx_ring->fbr[id]; 1931 fbr_chunksize = (FBR_CHUNKS * fbr->buffsize); 1932 1933 for (i = 0; i < fbr->num_entries / FBR_CHUNKS; i++) { 1934 dma_addr_t fbr_physaddr; 1935 1936 fbr->mem_virtaddrs[i] = dma_alloc_coherent( 1937 &adapter->pdev->dev, fbr_chunksize, 1938 &fbr->mem_physaddrs[i], 1939 GFP_KERNEL); 1940 1941 if (!fbr->mem_virtaddrs[i]) { 1942 dev_err(&adapter->pdev->dev, 1943 "Could not alloc memory\n"); 1944 return -ENOMEM; 1945 } 1946 1947 /* See NOTE in "Save Physical Address" comment above */ 1948 fbr_physaddr = fbr->mem_physaddrs[i]; 1949 1950 for (j = 0; j < FBR_CHUNKS; j++) { 1951 u32 k = (i * FBR_CHUNKS) + j; 1952 1953 /* Save the Virtual address of this index for 1954 * quick access later 1955 */ 1956 fbr->virt[k] = (u8 *)fbr->mem_virtaddrs[i] + 1957 (j * fbr->buffsize); 1958 1959 /* now store the physical address in the 1960 * descriptor so the device can access it 1961 */ 1962 fbr->bus_high[k] = upper_32_bits(fbr_physaddr); 1963 fbr->bus_low[k] = lower_32_bits(fbr_physaddr); 1964 fbr_physaddr += fbr->buffsize; 1965 } 1966 } 1967 } 1968 1969 /* Allocate an area of memory for FIFO of Packet Status ring entries */ 1970 psr_size = sizeof(struct pkt_stat_desc) * rx_ring->psr_entries; 1971 1972 rx_ring->ps_ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev, 1973 psr_size, 1974 &rx_ring->ps_ring_physaddr, 1975 GFP_KERNEL); 1976 1977 if (!rx_ring->ps_ring_virtaddr) { 1978 dev_err(&adapter->pdev->dev, 1979 "Cannot alloc memory for Packet Status Ring\n"); 1980 return -ENOMEM; 1981 } 1982 1983 /* Allocate an area of memory for writeback of status information */ 1984 rx_ring->rx_status_block = dma_alloc_coherent(&adapter->pdev->dev, 1985 sizeof(struct rx_status_block), 1986 &rx_ring->rx_status_bus, 1987 GFP_KERNEL); 1988 if (!rx_ring->rx_status_block) { 1989 dev_err(&adapter->pdev->dev, 1990 "Cannot alloc memory for Status Block\n"); 1991 return -ENOMEM; 1992 } 1993 rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD; 1994 1995 /* The RFDs are going to be put on lists later on, so initialize the 1996 * lists now. 1997 */ 1998 INIT_LIST_HEAD(&rx_ring->recv_list); 1999 return 0; 2000 } 2001 2002 static void et131x_rx_dma_memory_free(struct et131x_adapter *adapter) 2003 { 2004 u8 id; 2005 u32 ii; 2006 u32 bufsize; 2007 u32 psr_size; 2008 struct rfd *rfd; 2009 struct rx_ring *rx_ring = &adapter->rx_ring; 2010 struct fbr_lookup *fbr; 2011 2012 /* Free RFDs and associated packet descriptors */ 2013 WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd); 2014 2015 while (!list_empty(&rx_ring->recv_list)) { 2016 rfd = list_entry(rx_ring->recv_list.next, 2017 struct rfd, list_node); 2018 2019 list_del(&rfd->list_node); 2020 rfd->skb = NULL; 2021 kfree(rfd); 2022 } 2023 2024 /* Free Free Buffer Rings */ 2025 for (id = 0; id < NUM_FBRS; id++) { 2026 fbr = rx_ring->fbr[id]; 2027 2028 if (!fbr || !fbr->ring_virtaddr) 2029 continue; 2030 2031 /* First the packet memory */ 2032 for (ii = 0; ii < fbr->num_entries / FBR_CHUNKS; ii++) { 2033 if (fbr->mem_virtaddrs[ii]) { 2034 bufsize = fbr->buffsize * FBR_CHUNKS; 2035 2036 dma_free_coherent(&adapter->pdev->dev, 2037 bufsize, 2038 fbr->mem_virtaddrs[ii], 2039 fbr->mem_physaddrs[ii]); 2040 2041 fbr->mem_virtaddrs[ii] = NULL; 2042 } 2043 } 2044 2045 bufsize = sizeof(struct fbr_desc) * fbr->num_entries; 2046 2047 dma_free_coherent(&adapter->pdev->dev, 2048 bufsize, 2049 fbr->ring_virtaddr, 2050 fbr->ring_physaddr); 2051 2052 fbr->ring_virtaddr = NULL; 2053 } 2054 2055 /* Free Packet Status Ring */ 2056 if (rx_ring->ps_ring_virtaddr) { 2057 psr_size = sizeof(struct pkt_stat_desc) * rx_ring->psr_entries; 2058 2059 dma_free_coherent(&adapter->pdev->dev, psr_size, 2060 rx_ring->ps_ring_virtaddr, 2061 rx_ring->ps_ring_physaddr); 2062 2063 rx_ring->ps_ring_virtaddr = NULL; 2064 } 2065 2066 /* Free area of memory for the writeback of status information */ 2067 if (rx_ring->rx_status_block) { 2068 dma_free_coherent(&adapter->pdev->dev, 2069 sizeof(struct rx_status_block), 2070 rx_ring->rx_status_block, 2071 rx_ring->rx_status_bus); 2072 rx_ring->rx_status_block = NULL; 2073 } 2074 2075 /* Free the FBR Lookup Table */ 2076 kfree(rx_ring->fbr[0]); 2077 kfree(rx_ring->fbr[1]); 2078 2079 /* Reset Counters */ 2080 rx_ring->num_ready_recv = 0; 2081 } 2082 2083 /* et131x_init_recv - Initialize receive data structures */ 2084 static int et131x_init_recv(struct et131x_adapter *adapter) 2085 { 2086 struct rfd *rfd; 2087 u32 rfdct; 2088 struct rx_ring *rx_ring = &adapter->rx_ring; 2089 2090 /* Setup each RFD */ 2091 for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) { 2092 rfd = kzalloc(sizeof(*rfd), GFP_ATOMIC | GFP_DMA); 2093 if (!rfd) 2094 return -ENOMEM; 2095 2096 rfd->skb = NULL; 2097 2098 /* Add this RFD to the recv_list */ 2099 list_add_tail(&rfd->list_node, &rx_ring->recv_list); 2100 2101 /* Increment the available RFD's */ 2102 rx_ring->num_ready_recv++; 2103 } 2104 2105 return 0; 2106 } 2107 2108 /* et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate */ 2109 static void et131x_set_rx_dma_timer(struct et131x_adapter *adapter) 2110 { 2111 struct phy_device *phydev = adapter->netdev->phydev; 2112 2113 /* For version B silicon, we do not use the RxDMA timer for 10 and 100 2114 * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing. 2115 */ 2116 if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) { 2117 writel(0, &adapter->regs->rxdma.max_pkt_time); 2118 writel(1, &adapter->regs->rxdma.num_pkt_done); 2119 } 2120 } 2121 2122 /* nic_return_rfd - Recycle a RFD and put it back onto the receive list */ 2123 static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd) 2124 { 2125 struct rx_ring *rx_local = &adapter->rx_ring; 2126 struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma; 2127 u16 buff_index = rfd->bufferindex; 2128 u8 ring_index = rfd->ringindex; 2129 unsigned long flags; 2130 struct fbr_lookup *fbr = rx_local->fbr[ring_index]; 2131 2132 /* We don't use any of the OOB data besides status. Otherwise, we 2133 * need to clean up OOB data 2134 */ 2135 if (buff_index < fbr->num_entries) { 2136 u32 free_buff_ring; 2137 u32 __iomem *offset; 2138 struct fbr_desc *next; 2139 2140 if (ring_index == 0) 2141 offset = &rx_dma->fbr0_full_offset; 2142 else 2143 offset = &rx_dma->fbr1_full_offset; 2144 2145 next = (struct fbr_desc *)(fbr->ring_virtaddr) + 2146 INDEX10(fbr->local_full); 2147 2148 /* Handle the Free Buffer Ring advancement here. Write 2149 * the PA / Buffer Index for the returned buffer into 2150 * the oldest (next to be freed)FBR entry 2151 */ 2152 next->addr_hi = fbr->bus_high[buff_index]; 2153 next->addr_lo = fbr->bus_low[buff_index]; 2154 next->word2 = buff_index; 2155 2156 free_buff_ring = bump_free_buff_ring(&fbr->local_full, 2157 fbr->num_entries - 1); 2158 writel(free_buff_ring, offset); 2159 } else { 2160 dev_err(&adapter->pdev->dev, 2161 "%s illegal Buffer Index returned\n", __func__); 2162 } 2163 2164 /* The processing on this RFD is done, so put it back on the tail of 2165 * our list 2166 */ 2167 spin_lock_irqsave(&adapter->rcv_lock, flags); 2168 list_add_tail(&rfd->list_node, &rx_local->recv_list); 2169 rx_local->num_ready_recv++; 2170 spin_unlock_irqrestore(&adapter->rcv_lock, flags); 2171 2172 WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd); 2173 } 2174 2175 /* nic_rx_pkts - Checks the hardware for available packets 2176 * 2177 * Checks the hardware for available packets, using completion ring 2178 * If packets are available, it gets an RFD from the recv_list, attaches 2179 * the packet to it, puts the RFD in the RecvPendList, and also returns 2180 * the pointer to the RFD. 2181 */ 2182 static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter) 2183 { 2184 struct rx_ring *rx_local = &adapter->rx_ring; 2185 struct rx_status_block *status; 2186 struct pkt_stat_desc *psr; 2187 struct rfd *rfd; 2188 unsigned long flags; 2189 struct list_head *element; 2190 u8 ring_index; 2191 u16 buff_index; 2192 u32 len; 2193 u32 word0; 2194 u32 word1; 2195 struct sk_buff *skb; 2196 struct fbr_lookup *fbr; 2197 2198 /* RX Status block is written by the DMA engine prior to every 2199 * interrupt. It contains the next to be used entry in the Packet 2200 * Status Ring, and also the two Free Buffer rings. 2201 */ 2202 status = rx_local->rx_status_block; 2203 word1 = status->word1 >> 16; 2204 2205 /* Check the PSR and wrap bits do not match */ 2206 if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF)) 2207 return NULL; /* Looks like this ring is not updated yet */ 2208 2209 /* The packet status ring indicates that data is available. */ 2210 psr = (struct pkt_stat_desc *)(rx_local->ps_ring_virtaddr) + 2211 (rx_local->local_psr_full & 0xFFF); 2212 2213 /* Grab any information that is required once the PSR is advanced, 2214 * since we can no longer rely on the memory being accurate 2215 */ 2216 len = psr->word1 & 0xFFFF; 2217 ring_index = (psr->word1 >> 26) & 0x03; 2218 fbr = rx_local->fbr[ring_index]; 2219 buff_index = (psr->word1 >> 16) & 0x3FF; 2220 word0 = psr->word0; 2221 2222 /* Indicate that we have used this PSR entry. */ 2223 /* FIXME wrap 12 */ 2224 add_12bit(&rx_local->local_psr_full, 1); 2225 if ((rx_local->local_psr_full & 0xFFF) > rx_local->psr_entries - 1) { 2226 /* Clear psr full and toggle the wrap bit */ 2227 rx_local->local_psr_full &= ~0xFFF; 2228 rx_local->local_psr_full ^= 0x1000; 2229 } 2230 2231 writel(rx_local->local_psr_full, &adapter->regs->rxdma.psr_full_offset); 2232 2233 if (ring_index > 1 || buff_index > fbr->num_entries - 1) { 2234 /* Illegal buffer or ring index cannot be used by S/W*/ 2235 dev_err(&adapter->pdev->dev, 2236 "NICRxPkts PSR Entry %d indicates length of %d and/or bad bi(%d)\n", 2237 rx_local->local_psr_full & 0xFFF, len, buff_index); 2238 return NULL; 2239 } 2240 2241 /* Get and fill the RFD. */ 2242 spin_lock_irqsave(&adapter->rcv_lock, flags); 2243 2244 element = rx_local->recv_list.next; 2245 rfd = list_entry(element, struct rfd, list_node); 2246 2247 if (!rfd) { 2248 spin_unlock_irqrestore(&adapter->rcv_lock, flags); 2249 return NULL; 2250 } 2251 2252 list_del(&rfd->list_node); 2253 rx_local->num_ready_recv--; 2254 2255 spin_unlock_irqrestore(&adapter->rcv_lock, flags); 2256 2257 rfd->bufferindex = buff_index; 2258 rfd->ringindex = ring_index; 2259 2260 /* In V1 silicon, there is a bug which screws up filtering of runt 2261 * packets. Therefore runt packet filtering is disabled in the MAC and 2262 * the packets are dropped here. They are also counted here. 2263 */ 2264 if (len < (NIC_MIN_PACKET_SIZE + 4)) { 2265 adapter->stats.rx_other_errs++; 2266 rfd->len = 0; 2267 goto out; 2268 } 2269 2270 if ((word0 & ALCATEL_MULTICAST_PKT) && !(word0 & ALCATEL_BROADCAST_PKT)) 2271 adapter->stats.multicast_pkts_rcvd++; 2272 2273 rfd->len = len; 2274 2275 skb = dev_alloc_skb(rfd->len + 2); 2276 if (!skb) 2277 return NULL; 2278 2279 adapter->netdev->stats.rx_bytes += rfd->len; 2280 2281 skb_put_data(skb, fbr->virt[buff_index], rfd->len); 2282 2283 skb->protocol = eth_type_trans(skb, adapter->netdev); 2284 skb->ip_summed = CHECKSUM_NONE; 2285 netif_receive_skb(skb); 2286 2287 out: 2288 nic_return_rfd(adapter, rfd); 2289 return rfd; 2290 } 2291 2292 static int et131x_handle_recv_pkts(struct et131x_adapter *adapter, int budget) 2293 { 2294 struct rfd *rfd = NULL; 2295 int count = 0; 2296 int limit = budget; 2297 bool done = true; 2298 struct rx_ring *rx_ring = &adapter->rx_ring; 2299 2300 if (budget > MAX_PACKETS_HANDLED) 2301 limit = MAX_PACKETS_HANDLED; 2302 2303 /* Process up to available RFD's */ 2304 while (count < limit) { 2305 if (list_empty(&rx_ring->recv_list)) { 2306 WARN_ON(rx_ring->num_ready_recv != 0); 2307 done = false; 2308 break; 2309 } 2310 2311 rfd = nic_rx_pkts(adapter); 2312 2313 if (rfd == NULL) 2314 break; 2315 2316 /* Do not receive any packets until a filter has been set. 2317 * Do not receive any packets until we have link. 2318 * If length is zero, return the RFD in order to advance the 2319 * Free buffer ring. 2320 */ 2321 if (!adapter->packet_filter || 2322 !netif_carrier_ok(adapter->netdev) || 2323 rfd->len == 0) 2324 continue; 2325 2326 adapter->netdev->stats.rx_packets++; 2327 2328 if (rx_ring->num_ready_recv < RFD_LOW_WATER_MARK) 2329 dev_warn(&adapter->pdev->dev, "RFD's are running out\n"); 2330 2331 count++; 2332 } 2333 2334 if (count == limit || !done) { 2335 rx_ring->unfinished_receives = true; 2336 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO, 2337 &adapter->regs->global.watchdog_timer); 2338 } else { 2339 /* Watchdog timer will disable itself if appropriate. */ 2340 rx_ring->unfinished_receives = false; 2341 } 2342 2343 return count; 2344 } 2345 2346 /* et131x_tx_dma_memory_alloc 2347 * 2348 * Allocates memory that will be visible both to the device and to the CPU. 2349 * The OS will pass us packets, pointers to which we will insert in the Tx 2350 * Descriptor queue. The device will read this queue to find the packets in 2351 * memory. The device will update the "status" in memory each time it xmits a 2352 * packet. 2353 */ 2354 static int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter) 2355 { 2356 int desc_size = 0; 2357 struct tx_ring *tx_ring = &adapter->tx_ring; 2358 2359 /* Allocate memory for the TCB's (Transmit Control Block) */ 2360 tx_ring->tcb_ring = kcalloc(NUM_TCB, sizeof(struct tcb), 2361 GFP_KERNEL | GFP_DMA); 2362 if (!tx_ring->tcb_ring) 2363 return -ENOMEM; 2364 2365 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX); 2366 tx_ring->tx_desc_ring = dma_alloc_coherent(&adapter->pdev->dev, 2367 desc_size, 2368 &tx_ring->tx_desc_ring_pa, 2369 GFP_KERNEL); 2370 if (!tx_ring->tx_desc_ring) { 2371 dev_err(&adapter->pdev->dev, 2372 "Cannot alloc memory for Tx Ring\n"); 2373 return -ENOMEM; 2374 } 2375 2376 tx_ring->tx_status = dma_alloc_coherent(&adapter->pdev->dev, 2377 sizeof(u32), 2378 &tx_ring->tx_status_pa, 2379 GFP_KERNEL); 2380 if (!tx_ring->tx_status) { 2381 dev_err(&adapter->pdev->dev, 2382 "Cannot alloc memory for Tx status block\n"); 2383 return -ENOMEM; 2384 } 2385 return 0; 2386 } 2387 2388 static void et131x_tx_dma_memory_free(struct et131x_adapter *adapter) 2389 { 2390 int desc_size = 0; 2391 struct tx_ring *tx_ring = &adapter->tx_ring; 2392 2393 if (tx_ring->tx_desc_ring) { 2394 /* Free memory relating to Tx rings here */ 2395 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX); 2396 dma_free_coherent(&adapter->pdev->dev, 2397 desc_size, 2398 tx_ring->tx_desc_ring, 2399 tx_ring->tx_desc_ring_pa); 2400 tx_ring->tx_desc_ring = NULL; 2401 } 2402 2403 /* Free memory for the Tx status block */ 2404 if (tx_ring->tx_status) { 2405 dma_free_coherent(&adapter->pdev->dev, 2406 sizeof(u32), 2407 tx_ring->tx_status, 2408 tx_ring->tx_status_pa); 2409 2410 tx_ring->tx_status = NULL; 2411 } 2412 /* Free the memory for the tcb structures */ 2413 kfree(tx_ring->tcb_ring); 2414 } 2415 2416 /* nic_send_packet - NIC specific send handler for version B silicon. */ 2417 static int nic_send_packet(struct et131x_adapter *adapter, struct tcb *tcb) 2418 { 2419 u32 i; 2420 struct tx_desc desc[24]; 2421 u32 frag = 0; 2422 u32 thiscopy, remainder; 2423 struct sk_buff *skb = tcb->skb; 2424 u32 nr_frags = skb_shinfo(skb)->nr_frags + 1; 2425 skb_frag_t *frags = &skb_shinfo(skb)->frags[0]; 2426 struct phy_device *phydev = adapter->netdev->phydev; 2427 dma_addr_t dma_addr; 2428 struct tx_ring *tx_ring = &adapter->tx_ring; 2429 2430 /* Part of the optimizations of this send routine restrict us to 2431 * sending 24 fragments at a pass. In practice we should never see 2432 * more than 5 fragments. 2433 */ 2434 2435 /* nr_frags should be no more than 18. */ 2436 BUILD_BUG_ON(MAX_SKB_FRAGS + 1 > 23); 2437 2438 memset(desc, 0, sizeof(struct tx_desc) * (nr_frags + 1)); 2439 2440 for (i = 0; i < nr_frags; i++) { 2441 /* If there is something in this element, lets get a 2442 * descriptor from the ring and get the necessary data 2443 */ 2444 if (i == 0) { 2445 /* If the fragments are smaller than a standard MTU, 2446 * then map them to a single descriptor in the Tx 2447 * Desc ring. However, if they're larger, as is 2448 * possible with support for jumbo packets, then 2449 * split them each across 2 descriptors. 2450 * 2451 * This will work until we determine why the hardware 2452 * doesn't seem to like large fragments. 2453 */ 2454 if (skb_headlen(skb) <= 1514) { 2455 /* Low 16bits are length, high is vlan and 2456 * unused currently so zero 2457 */ 2458 desc[frag].len_vlan = skb_headlen(skb); 2459 dma_addr = dma_map_single(&adapter->pdev->dev, 2460 skb->data, 2461 skb_headlen(skb), 2462 DMA_TO_DEVICE); 2463 desc[frag].addr_lo = lower_32_bits(dma_addr); 2464 desc[frag].addr_hi = upper_32_bits(dma_addr); 2465 frag++; 2466 } else { 2467 desc[frag].len_vlan = skb_headlen(skb) / 2; 2468 dma_addr = dma_map_single(&adapter->pdev->dev, 2469 skb->data, 2470 skb_headlen(skb) / 2, 2471 DMA_TO_DEVICE); 2472 desc[frag].addr_lo = lower_32_bits(dma_addr); 2473 desc[frag].addr_hi = upper_32_bits(dma_addr); 2474 frag++; 2475 2476 desc[frag].len_vlan = skb_headlen(skb) / 2; 2477 dma_addr = dma_map_single(&adapter->pdev->dev, 2478 skb->data + 2479 skb_headlen(skb) / 2, 2480 skb_headlen(skb) / 2, 2481 DMA_TO_DEVICE); 2482 desc[frag].addr_lo = lower_32_bits(dma_addr); 2483 desc[frag].addr_hi = upper_32_bits(dma_addr); 2484 frag++; 2485 } 2486 } else { 2487 desc[frag].len_vlan = skb_frag_size(&frags[i - 1]); 2488 dma_addr = skb_frag_dma_map(&adapter->pdev->dev, 2489 &frags[i - 1], 2490 0, 2491 desc[frag].len_vlan, 2492 DMA_TO_DEVICE); 2493 desc[frag].addr_lo = lower_32_bits(dma_addr); 2494 desc[frag].addr_hi = upper_32_bits(dma_addr); 2495 frag++; 2496 } 2497 } 2498 2499 if (phydev && phydev->speed == SPEED_1000) { 2500 if (++tx_ring->since_irq == PARM_TX_NUM_BUFS_DEF) { 2501 /* Last element & Interrupt flag */ 2502 desc[frag - 1].flags = 2503 TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT; 2504 tx_ring->since_irq = 0; 2505 } else { /* Last element */ 2506 desc[frag - 1].flags = TXDESC_FLAG_LASTPKT; 2507 } 2508 } else { 2509 desc[frag - 1].flags = 2510 TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT; 2511 } 2512 2513 desc[0].flags |= TXDESC_FLAG_FIRSTPKT; 2514 2515 tcb->index_start = tx_ring->send_idx; 2516 tcb->stale = 0; 2517 2518 thiscopy = NUM_DESC_PER_RING_TX - INDEX10(tx_ring->send_idx); 2519 2520 if (thiscopy >= frag) { 2521 remainder = 0; 2522 thiscopy = frag; 2523 } else { 2524 remainder = frag - thiscopy; 2525 } 2526 2527 memcpy(tx_ring->tx_desc_ring + INDEX10(tx_ring->send_idx), 2528 desc, 2529 sizeof(struct tx_desc) * thiscopy); 2530 2531 add_10bit(&tx_ring->send_idx, thiscopy); 2532 2533 if (INDEX10(tx_ring->send_idx) == 0 || 2534 INDEX10(tx_ring->send_idx) == NUM_DESC_PER_RING_TX) { 2535 tx_ring->send_idx &= ~ET_DMA10_MASK; 2536 tx_ring->send_idx ^= ET_DMA10_WRAP; 2537 } 2538 2539 if (remainder) { 2540 memcpy(tx_ring->tx_desc_ring, 2541 desc + thiscopy, 2542 sizeof(struct tx_desc) * remainder); 2543 2544 add_10bit(&tx_ring->send_idx, remainder); 2545 } 2546 2547 if (INDEX10(tx_ring->send_idx) == 0) { 2548 if (tx_ring->send_idx) 2549 tcb->index = NUM_DESC_PER_RING_TX - 1; 2550 else 2551 tcb->index = ET_DMA10_WRAP|(NUM_DESC_PER_RING_TX - 1); 2552 } else { 2553 tcb->index = tx_ring->send_idx - 1; 2554 } 2555 2556 spin_lock(&adapter->tcb_send_qlock); 2557 2558 if (tx_ring->send_tail) 2559 tx_ring->send_tail->next = tcb; 2560 else 2561 tx_ring->send_head = tcb; 2562 2563 tx_ring->send_tail = tcb; 2564 2565 WARN_ON(tcb->next != NULL); 2566 2567 tx_ring->used++; 2568 2569 spin_unlock(&adapter->tcb_send_qlock); 2570 2571 /* Write the new write pointer back to the device. */ 2572 writel(tx_ring->send_idx, &adapter->regs->txdma.service_request); 2573 2574 /* For Gig only, we use Tx Interrupt coalescing. Enable the software 2575 * timer to wake us up if this packet isn't followed by N more. 2576 */ 2577 if (phydev && phydev->speed == SPEED_1000) { 2578 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO, 2579 &adapter->regs->global.watchdog_timer); 2580 } 2581 return 0; 2582 } 2583 2584 static int send_packet(struct sk_buff *skb, struct et131x_adapter *adapter) 2585 { 2586 int status; 2587 struct tcb *tcb; 2588 unsigned long flags; 2589 struct tx_ring *tx_ring = &adapter->tx_ring; 2590 2591 /* All packets must have at least a MAC address and a protocol type */ 2592 if (skb->len < ETH_HLEN) 2593 return -EIO; 2594 2595 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags); 2596 2597 tcb = tx_ring->tcb_qhead; 2598 2599 if (tcb == NULL) { 2600 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags); 2601 return -ENOMEM; 2602 } 2603 2604 tx_ring->tcb_qhead = tcb->next; 2605 2606 if (tx_ring->tcb_qhead == NULL) 2607 tx_ring->tcb_qtail = NULL; 2608 2609 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags); 2610 2611 tcb->skb = skb; 2612 tcb->next = NULL; 2613 2614 status = nic_send_packet(adapter, tcb); 2615 2616 if (status != 0) { 2617 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags); 2618 2619 if (tx_ring->tcb_qtail) 2620 tx_ring->tcb_qtail->next = tcb; 2621 else 2622 /* Apparently ready Q is empty. */ 2623 tx_ring->tcb_qhead = tcb; 2624 2625 tx_ring->tcb_qtail = tcb; 2626 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags); 2627 return status; 2628 } 2629 WARN_ON(tx_ring->used > NUM_TCB); 2630 return 0; 2631 } 2632 2633 /* free_send_packet - Recycle a struct tcb */ 2634 static inline void free_send_packet(struct et131x_adapter *adapter, 2635 struct tcb *tcb) 2636 { 2637 unsigned long flags; 2638 struct tx_desc *desc = NULL; 2639 struct net_device_stats *stats = &adapter->netdev->stats; 2640 struct tx_ring *tx_ring = &adapter->tx_ring; 2641 u64 dma_addr; 2642 2643 if (tcb->skb) { 2644 stats->tx_bytes += tcb->skb->len; 2645 2646 /* Iterate through the TX descriptors on the ring 2647 * corresponding to this packet and umap the fragments 2648 * they point to 2649 */ 2650 do { 2651 desc = tx_ring->tx_desc_ring + 2652 INDEX10(tcb->index_start); 2653 2654 dma_addr = desc->addr_lo; 2655 dma_addr |= (u64)desc->addr_hi << 32; 2656 2657 dma_unmap_single(&adapter->pdev->dev, 2658 dma_addr, 2659 desc->len_vlan, DMA_TO_DEVICE); 2660 2661 add_10bit(&tcb->index_start, 1); 2662 if (INDEX10(tcb->index_start) >= 2663 NUM_DESC_PER_RING_TX) { 2664 tcb->index_start &= ~ET_DMA10_MASK; 2665 tcb->index_start ^= ET_DMA10_WRAP; 2666 } 2667 } while (desc != tx_ring->tx_desc_ring + INDEX10(tcb->index)); 2668 2669 dev_kfree_skb_any(tcb->skb); 2670 } 2671 2672 memset(tcb, 0, sizeof(struct tcb)); 2673 2674 /* Add the TCB to the Ready Q */ 2675 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags); 2676 2677 stats->tx_packets++; 2678 2679 if (tx_ring->tcb_qtail) 2680 tx_ring->tcb_qtail->next = tcb; 2681 else /* Apparently ready Q is empty. */ 2682 tx_ring->tcb_qhead = tcb; 2683 2684 tx_ring->tcb_qtail = tcb; 2685 2686 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags); 2687 WARN_ON(tx_ring->used < 0); 2688 } 2689 2690 /* et131x_free_busy_send_packets - Free and complete the stopped active sends */ 2691 static void et131x_free_busy_send_packets(struct et131x_adapter *adapter) 2692 { 2693 struct tcb *tcb; 2694 unsigned long flags; 2695 u32 freed = 0; 2696 struct tx_ring *tx_ring = &adapter->tx_ring; 2697 2698 /* Any packets being sent? Check the first TCB on the send list */ 2699 spin_lock_irqsave(&adapter->tcb_send_qlock, flags); 2700 2701 tcb = tx_ring->send_head; 2702 2703 while (tcb != NULL && freed < NUM_TCB) { 2704 struct tcb *next = tcb->next; 2705 2706 tx_ring->send_head = next; 2707 2708 if (next == NULL) 2709 tx_ring->send_tail = NULL; 2710 2711 tx_ring->used--; 2712 2713 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags); 2714 2715 freed++; 2716 free_send_packet(adapter, tcb); 2717 2718 spin_lock_irqsave(&adapter->tcb_send_qlock, flags); 2719 2720 tcb = tx_ring->send_head; 2721 } 2722 2723 WARN_ON(freed == NUM_TCB); 2724 2725 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags); 2726 2727 tx_ring->used = 0; 2728 } 2729 2730 /* et131x_handle_send_pkts 2731 * 2732 * Re-claim the send resources, complete sends and get more to send from 2733 * the send wait queue. 2734 */ 2735 static void et131x_handle_send_pkts(struct et131x_adapter *adapter) 2736 { 2737 unsigned long flags; 2738 u32 serviced; 2739 struct tcb *tcb; 2740 u32 index; 2741 struct tx_ring *tx_ring = &adapter->tx_ring; 2742 2743 serviced = readl(&adapter->regs->txdma.new_service_complete); 2744 index = INDEX10(serviced); 2745 2746 /* Has the ring wrapped? Process any descriptors that do not have 2747 * the same "wrap" indicator as the current completion indicator 2748 */ 2749 spin_lock_irqsave(&adapter->tcb_send_qlock, flags); 2750 2751 tcb = tx_ring->send_head; 2752 2753 while (tcb && 2754 ((serviced ^ tcb->index) & ET_DMA10_WRAP) && 2755 index < INDEX10(tcb->index)) { 2756 tx_ring->used--; 2757 tx_ring->send_head = tcb->next; 2758 if (tcb->next == NULL) 2759 tx_ring->send_tail = NULL; 2760 2761 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags); 2762 free_send_packet(adapter, tcb); 2763 spin_lock_irqsave(&adapter->tcb_send_qlock, flags); 2764 2765 /* Goto the next packet */ 2766 tcb = tx_ring->send_head; 2767 } 2768 while (tcb && 2769 !((serviced ^ tcb->index) & ET_DMA10_WRAP) && 2770 index > (tcb->index & ET_DMA10_MASK)) { 2771 tx_ring->used--; 2772 tx_ring->send_head = tcb->next; 2773 if (tcb->next == NULL) 2774 tx_ring->send_tail = NULL; 2775 2776 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags); 2777 free_send_packet(adapter, tcb); 2778 spin_lock_irqsave(&adapter->tcb_send_qlock, flags); 2779 2780 /* Goto the next packet */ 2781 tcb = tx_ring->send_head; 2782 } 2783 2784 /* Wake up the queue when we hit a low-water mark */ 2785 if (tx_ring->used <= NUM_TCB / 3) 2786 netif_wake_queue(adapter->netdev); 2787 2788 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags); 2789 } 2790 2791 static int et131x_get_regs_len(struct net_device *netdev) 2792 { 2793 #define ET131X_REGS_LEN 256 2794 return ET131X_REGS_LEN * sizeof(u32); 2795 } 2796 2797 static void et131x_get_regs(struct net_device *netdev, 2798 struct ethtool_regs *regs, void *regs_data) 2799 { 2800 struct et131x_adapter *adapter = netdev_priv(netdev); 2801 struct address_map __iomem *aregs = adapter->regs; 2802 u32 *regs_buff = regs_data; 2803 u32 num = 0; 2804 u16 tmp; 2805 2806 memset(regs_data, 0, et131x_get_regs_len(netdev)); 2807 2808 regs->version = (1 << 24) | (adapter->pdev->revision << 16) | 2809 adapter->pdev->device; 2810 2811 /* PHY regs */ 2812 et131x_mii_read(adapter, MII_BMCR, &tmp); 2813 regs_buff[num++] = tmp; 2814 et131x_mii_read(adapter, MII_BMSR, &tmp); 2815 regs_buff[num++] = tmp; 2816 et131x_mii_read(adapter, MII_PHYSID1, &tmp); 2817 regs_buff[num++] = tmp; 2818 et131x_mii_read(adapter, MII_PHYSID2, &tmp); 2819 regs_buff[num++] = tmp; 2820 et131x_mii_read(adapter, MII_ADVERTISE, &tmp); 2821 regs_buff[num++] = tmp; 2822 et131x_mii_read(adapter, MII_LPA, &tmp); 2823 regs_buff[num++] = tmp; 2824 et131x_mii_read(adapter, MII_EXPANSION, &tmp); 2825 regs_buff[num++] = tmp; 2826 /* Autoneg next page transmit reg */ 2827 et131x_mii_read(adapter, 0x07, &tmp); 2828 regs_buff[num++] = tmp; 2829 /* Link partner next page reg */ 2830 et131x_mii_read(adapter, 0x08, &tmp); 2831 regs_buff[num++] = tmp; 2832 et131x_mii_read(adapter, MII_CTRL1000, &tmp); 2833 regs_buff[num++] = tmp; 2834 et131x_mii_read(adapter, MII_STAT1000, &tmp); 2835 regs_buff[num++] = tmp; 2836 et131x_mii_read(adapter, 0x0b, &tmp); 2837 regs_buff[num++] = tmp; 2838 et131x_mii_read(adapter, 0x0c, &tmp); 2839 regs_buff[num++] = tmp; 2840 et131x_mii_read(adapter, MII_MMD_CTRL, &tmp); 2841 regs_buff[num++] = tmp; 2842 et131x_mii_read(adapter, MII_MMD_DATA, &tmp); 2843 regs_buff[num++] = tmp; 2844 et131x_mii_read(adapter, MII_ESTATUS, &tmp); 2845 regs_buff[num++] = tmp; 2846 2847 et131x_mii_read(adapter, PHY_INDEX_REG, &tmp); 2848 regs_buff[num++] = tmp; 2849 et131x_mii_read(adapter, PHY_DATA_REG, &tmp); 2850 regs_buff[num++] = tmp; 2851 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG, &tmp); 2852 regs_buff[num++] = tmp; 2853 et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL, &tmp); 2854 regs_buff[num++] = tmp; 2855 et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL + 1, &tmp); 2856 regs_buff[num++] = tmp; 2857 2858 et131x_mii_read(adapter, PHY_REGISTER_MGMT_CONTROL, &tmp); 2859 regs_buff[num++] = tmp; 2860 et131x_mii_read(adapter, PHY_CONFIG, &tmp); 2861 regs_buff[num++] = tmp; 2862 et131x_mii_read(adapter, PHY_PHY_CONTROL, &tmp); 2863 regs_buff[num++] = tmp; 2864 et131x_mii_read(adapter, PHY_INTERRUPT_MASK, &tmp); 2865 regs_buff[num++] = tmp; 2866 et131x_mii_read(adapter, PHY_INTERRUPT_STATUS, &tmp); 2867 regs_buff[num++] = tmp; 2868 et131x_mii_read(adapter, PHY_PHY_STATUS, &tmp); 2869 regs_buff[num++] = tmp; 2870 et131x_mii_read(adapter, PHY_LED_1, &tmp); 2871 regs_buff[num++] = tmp; 2872 et131x_mii_read(adapter, PHY_LED_2, &tmp); 2873 regs_buff[num++] = tmp; 2874 2875 /* Global regs */ 2876 regs_buff[num++] = readl(&aregs->global.txq_start_addr); 2877 regs_buff[num++] = readl(&aregs->global.txq_end_addr); 2878 regs_buff[num++] = readl(&aregs->global.rxq_start_addr); 2879 regs_buff[num++] = readl(&aregs->global.rxq_end_addr); 2880 regs_buff[num++] = readl(&aregs->global.pm_csr); 2881 regs_buff[num++] = adapter->stats.interrupt_status; 2882 regs_buff[num++] = readl(&aregs->global.int_mask); 2883 regs_buff[num++] = readl(&aregs->global.int_alias_clr_en); 2884 regs_buff[num++] = readl(&aregs->global.int_status_alias); 2885 regs_buff[num++] = readl(&aregs->global.sw_reset); 2886 regs_buff[num++] = readl(&aregs->global.slv_timer); 2887 regs_buff[num++] = readl(&aregs->global.msi_config); 2888 regs_buff[num++] = readl(&aregs->global.loopback); 2889 regs_buff[num++] = readl(&aregs->global.watchdog_timer); 2890 2891 /* TXDMA regs */ 2892 regs_buff[num++] = readl(&aregs->txdma.csr); 2893 regs_buff[num++] = readl(&aregs->txdma.pr_base_hi); 2894 regs_buff[num++] = readl(&aregs->txdma.pr_base_lo); 2895 regs_buff[num++] = readl(&aregs->txdma.pr_num_des); 2896 regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr); 2897 regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr_ext); 2898 regs_buff[num++] = readl(&aregs->txdma.txq_rd_addr); 2899 regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_hi); 2900 regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_lo); 2901 regs_buff[num++] = readl(&aregs->txdma.service_request); 2902 regs_buff[num++] = readl(&aregs->txdma.service_complete); 2903 regs_buff[num++] = readl(&aregs->txdma.cache_rd_index); 2904 regs_buff[num++] = readl(&aregs->txdma.cache_wr_index); 2905 regs_buff[num++] = readl(&aregs->txdma.tx_dma_error); 2906 regs_buff[num++] = readl(&aregs->txdma.desc_abort_cnt); 2907 regs_buff[num++] = readl(&aregs->txdma.payload_abort_cnt); 2908 regs_buff[num++] = readl(&aregs->txdma.writeback_abort_cnt); 2909 regs_buff[num++] = readl(&aregs->txdma.desc_timeout_cnt); 2910 regs_buff[num++] = readl(&aregs->txdma.payload_timeout_cnt); 2911 regs_buff[num++] = readl(&aregs->txdma.writeback_timeout_cnt); 2912 regs_buff[num++] = readl(&aregs->txdma.desc_error_cnt); 2913 regs_buff[num++] = readl(&aregs->txdma.payload_error_cnt); 2914 regs_buff[num++] = readl(&aregs->txdma.writeback_error_cnt); 2915 regs_buff[num++] = readl(&aregs->txdma.dropped_tlp_cnt); 2916 regs_buff[num++] = readl(&aregs->txdma.new_service_complete); 2917 regs_buff[num++] = readl(&aregs->txdma.ethernet_packet_cnt); 2918 2919 /* RXDMA regs */ 2920 regs_buff[num++] = readl(&aregs->rxdma.csr); 2921 regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_hi); 2922 regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_lo); 2923 regs_buff[num++] = readl(&aregs->rxdma.num_pkt_done); 2924 regs_buff[num++] = readl(&aregs->rxdma.max_pkt_time); 2925 regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr); 2926 regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr_ext); 2927 regs_buff[num++] = readl(&aregs->rxdma.rxq_wr_addr); 2928 regs_buff[num++] = readl(&aregs->rxdma.psr_base_hi); 2929 regs_buff[num++] = readl(&aregs->rxdma.psr_base_lo); 2930 regs_buff[num++] = readl(&aregs->rxdma.psr_num_des); 2931 regs_buff[num++] = readl(&aregs->rxdma.psr_avail_offset); 2932 regs_buff[num++] = readl(&aregs->rxdma.psr_full_offset); 2933 regs_buff[num++] = readl(&aregs->rxdma.psr_access_index); 2934 regs_buff[num++] = readl(&aregs->rxdma.psr_min_des); 2935 regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_lo); 2936 regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_hi); 2937 regs_buff[num++] = readl(&aregs->rxdma.fbr0_num_des); 2938 regs_buff[num++] = readl(&aregs->rxdma.fbr0_avail_offset); 2939 regs_buff[num++] = readl(&aregs->rxdma.fbr0_full_offset); 2940 regs_buff[num++] = readl(&aregs->rxdma.fbr0_rd_index); 2941 regs_buff[num++] = readl(&aregs->rxdma.fbr0_min_des); 2942 regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_lo); 2943 regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_hi); 2944 regs_buff[num++] = readl(&aregs->rxdma.fbr1_num_des); 2945 regs_buff[num++] = readl(&aregs->rxdma.fbr1_avail_offset); 2946 regs_buff[num++] = readl(&aregs->rxdma.fbr1_full_offset); 2947 regs_buff[num++] = readl(&aregs->rxdma.fbr1_rd_index); 2948 regs_buff[num++] = readl(&aregs->rxdma.fbr1_min_des); 2949 } 2950 2951 static void et131x_get_drvinfo(struct net_device *netdev, 2952 struct ethtool_drvinfo *info) 2953 { 2954 struct et131x_adapter *adapter = netdev_priv(netdev); 2955 2956 strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver)); 2957 strlcpy(info->bus_info, pci_name(adapter->pdev), 2958 sizeof(info->bus_info)); 2959 } 2960 2961 static const struct ethtool_ops et131x_ethtool_ops = { 2962 .get_drvinfo = et131x_get_drvinfo, 2963 .get_regs_len = et131x_get_regs_len, 2964 .get_regs = et131x_get_regs, 2965 .get_link = ethtool_op_get_link, 2966 .get_link_ksettings = phy_ethtool_get_link_ksettings, 2967 .set_link_ksettings = phy_ethtool_set_link_ksettings, 2968 }; 2969 2970 /* et131x_hwaddr_init - set up the MAC Address */ 2971 static void et131x_hwaddr_init(struct et131x_adapter *adapter) 2972 { 2973 /* If have our default mac from init and no mac address from 2974 * EEPROM then we need to generate the last octet and set it on the 2975 * device 2976 */ 2977 if (is_zero_ether_addr(adapter->rom_addr)) { 2978 /* We need to randomly generate the last octet so we 2979 * decrease our chances of setting the mac address to 2980 * same as another one of our cards in the system 2981 */ 2982 get_random_bytes(&adapter->addr[5], 1); 2983 /* We have the default value in the register we are 2984 * working with so we need to copy the current 2985 * address into the permanent address 2986 */ 2987 ether_addr_copy(adapter->rom_addr, adapter->addr); 2988 } else { 2989 /* We do not have an override address, so set the 2990 * current address to the permanent address and add 2991 * it to the device 2992 */ 2993 ether_addr_copy(adapter->addr, adapter->rom_addr); 2994 } 2995 } 2996 2997 static int et131x_pci_init(struct et131x_adapter *adapter, 2998 struct pci_dev *pdev) 2999 { 3000 u16 max_payload; 3001 int i, rc; 3002 3003 rc = et131x_init_eeprom(adapter); 3004 if (rc < 0) 3005 goto out; 3006 3007 if (!pci_is_pcie(pdev)) { 3008 dev_err(&pdev->dev, "Missing PCIe capabilities\n"); 3009 goto err_out; 3010 } 3011 3012 /* Program the Ack/Nak latency and replay timers */ 3013 max_payload = pdev->pcie_mpss; 3014 3015 if (max_payload < 2) { 3016 static const u16 acknak[2] = { 0x76, 0xD0 }; 3017 static const u16 replay[2] = { 0x1E0, 0x2ED }; 3018 3019 if (pci_write_config_word(pdev, ET1310_PCI_ACK_NACK, 3020 acknak[max_payload])) { 3021 dev_err(&pdev->dev, 3022 "Could not write PCI config space for ACK/NAK\n"); 3023 goto err_out; 3024 } 3025 if (pci_write_config_word(pdev, ET1310_PCI_REPLAY, 3026 replay[max_payload])) { 3027 dev_err(&pdev->dev, 3028 "Could not write PCI config space for Replay Timer\n"); 3029 goto err_out; 3030 } 3031 } 3032 3033 /* l0s and l1 latency timers. We are using default values. 3034 * Representing 001 for L0s and 010 for L1 3035 */ 3036 if (pci_write_config_byte(pdev, ET1310_PCI_L0L1LATENCY, 0x11)) { 3037 dev_err(&pdev->dev, 3038 "Could not write PCI config space for Latency Timers\n"); 3039 goto err_out; 3040 } 3041 3042 /* Change the max read size to 2k */ 3043 if (pcie_set_readrq(pdev, 2048)) { 3044 dev_err(&pdev->dev, 3045 "Couldn't change PCI config space for Max read size\n"); 3046 goto err_out; 3047 } 3048 3049 /* Get MAC address from config space if an eeprom exists, otherwise 3050 * the MAC address there will not be valid 3051 */ 3052 if (!adapter->has_eeprom) { 3053 et131x_hwaddr_init(adapter); 3054 return 0; 3055 } 3056 3057 for (i = 0; i < ETH_ALEN; i++) { 3058 if (pci_read_config_byte(pdev, ET1310_PCI_MAC_ADDRESS + i, 3059 adapter->rom_addr + i)) { 3060 dev_err(&pdev->dev, "Could not read PCI config space for MAC address\n"); 3061 goto err_out; 3062 } 3063 } 3064 ether_addr_copy(adapter->addr, adapter->rom_addr); 3065 out: 3066 return rc; 3067 err_out: 3068 rc = -EIO; 3069 goto out; 3070 } 3071 3072 /* et131x_error_timer_handler 3073 * @data: timer-specific variable; here a pointer to our adapter structure 3074 * 3075 * The routine called when the error timer expires, to track the number of 3076 * recurring errors. 3077 */ 3078 static void et131x_error_timer_handler(struct timer_list *t) 3079 { 3080 struct et131x_adapter *adapter = from_timer(adapter, t, error_timer); 3081 struct phy_device *phydev = adapter->netdev->phydev; 3082 3083 if (et1310_in_phy_coma(adapter)) { 3084 /* Bring the device immediately out of coma, to 3085 * prevent it from sleeping indefinitely, this 3086 * mechanism could be improved! 3087 */ 3088 et1310_disable_phy_coma(adapter); 3089 adapter->boot_coma = 20; 3090 } else { 3091 et1310_update_macstat_host_counters(adapter); 3092 } 3093 3094 if (!phydev->link && adapter->boot_coma < 11) 3095 adapter->boot_coma++; 3096 3097 if (adapter->boot_coma == 10) { 3098 if (!phydev->link) { 3099 if (!et1310_in_phy_coma(adapter)) { 3100 /* NOTE - This was originally a 'sync with 3101 * interrupt'. How to do that under Linux? 3102 */ 3103 et131x_enable_interrupts(adapter); 3104 et1310_enable_phy_coma(adapter); 3105 } 3106 } 3107 } 3108 3109 /* This is a periodic timer, so reschedule */ 3110 mod_timer(&adapter->error_timer, jiffies + 3111 msecs_to_jiffies(TX_ERROR_PERIOD)); 3112 } 3113 3114 static void et131x_adapter_memory_free(struct et131x_adapter *adapter) 3115 { 3116 et131x_tx_dma_memory_free(adapter); 3117 et131x_rx_dma_memory_free(adapter); 3118 } 3119 3120 static int et131x_adapter_memory_alloc(struct et131x_adapter *adapter) 3121 { 3122 int status; 3123 3124 status = et131x_tx_dma_memory_alloc(adapter); 3125 if (status) { 3126 dev_err(&adapter->pdev->dev, 3127 "et131x_tx_dma_memory_alloc FAILED\n"); 3128 et131x_tx_dma_memory_free(adapter); 3129 return status; 3130 } 3131 3132 status = et131x_rx_dma_memory_alloc(adapter); 3133 if (status) { 3134 dev_err(&adapter->pdev->dev, 3135 "et131x_rx_dma_memory_alloc FAILED\n"); 3136 et131x_adapter_memory_free(adapter); 3137 return status; 3138 } 3139 3140 status = et131x_init_recv(adapter); 3141 if (status) { 3142 dev_err(&adapter->pdev->dev, "et131x_init_recv FAILED\n"); 3143 et131x_adapter_memory_free(adapter); 3144 } 3145 return status; 3146 } 3147 3148 static void et131x_adjust_link(struct net_device *netdev) 3149 { 3150 struct et131x_adapter *adapter = netdev_priv(netdev); 3151 struct phy_device *phydev = netdev->phydev; 3152 3153 if (!phydev) 3154 return; 3155 if (phydev->link == adapter->link) 3156 return; 3157 3158 /* Check to see if we are in coma mode and if 3159 * so, disable it because we will not be able 3160 * to read PHY values until we are out. 3161 */ 3162 if (et1310_in_phy_coma(adapter)) 3163 et1310_disable_phy_coma(adapter); 3164 3165 adapter->link = phydev->link; 3166 phy_print_status(phydev); 3167 3168 if (phydev->link) { 3169 adapter->boot_coma = 20; 3170 if (phydev->speed == SPEED_10) { 3171 u16 register18; 3172 3173 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG, 3174 ®ister18); 3175 et131x_mii_write(adapter, phydev->mdio.addr, 3176 PHY_MPHY_CONTROL_REG, 3177 register18 | 0x4); 3178 et131x_mii_write(adapter, phydev->mdio.addr, 3179 PHY_INDEX_REG, register18 | 0x8402); 3180 et131x_mii_write(adapter, phydev->mdio.addr, 3181 PHY_DATA_REG, register18 | 511); 3182 et131x_mii_write(adapter, phydev->mdio.addr, 3183 PHY_MPHY_CONTROL_REG, register18); 3184 } 3185 3186 et1310_config_flow_control(adapter); 3187 3188 if (phydev->speed == SPEED_1000 && 3189 adapter->registry_jumbo_packet > 2048) { 3190 u16 reg; 3191 3192 et131x_mii_read(adapter, PHY_CONFIG, ®); 3193 reg &= ~ET_PHY_CONFIG_TX_FIFO_DEPTH; 3194 reg |= ET_PHY_CONFIG_FIFO_DEPTH_32; 3195 et131x_mii_write(adapter, phydev->mdio.addr, 3196 PHY_CONFIG, reg); 3197 } 3198 3199 et131x_set_rx_dma_timer(adapter); 3200 et1310_config_mac_regs2(adapter); 3201 } else { 3202 adapter->boot_coma = 0; 3203 3204 if (phydev->speed == SPEED_10) { 3205 u16 register18; 3206 3207 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG, 3208 ®ister18); 3209 et131x_mii_write(adapter, phydev->mdio.addr, 3210 PHY_MPHY_CONTROL_REG, 3211 register18 | 0x4); 3212 et131x_mii_write(adapter, phydev->mdio.addr, 3213 PHY_INDEX_REG, register18 | 0x8402); 3214 et131x_mii_write(adapter, phydev->mdio.addr, 3215 PHY_DATA_REG, register18 | 511); 3216 et131x_mii_write(adapter, phydev->mdio.addr, 3217 PHY_MPHY_CONTROL_REG, register18); 3218 } 3219 3220 et131x_free_busy_send_packets(adapter); 3221 et131x_init_send(adapter); 3222 3223 /* Bring the device back to the state it was during 3224 * init prior to autonegotiation being complete. This 3225 * way, when we get the auto-neg complete interrupt, 3226 * we can complete init by calling config_mac_regs2. 3227 */ 3228 et131x_soft_reset(adapter); 3229 3230 et131x_adapter_setup(adapter); 3231 3232 et131x_disable_txrx(netdev); 3233 et131x_enable_txrx(netdev); 3234 } 3235 } 3236 3237 static int et131x_mii_probe(struct net_device *netdev) 3238 { 3239 struct et131x_adapter *adapter = netdev_priv(netdev); 3240 struct phy_device *phydev = NULL; 3241 3242 phydev = phy_find_first(adapter->mii_bus); 3243 if (!phydev) { 3244 dev_err(&adapter->pdev->dev, "no PHY found\n"); 3245 return -ENODEV; 3246 } 3247 3248 phydev = phy_connect(netdev, phydev_name(phydev), 3249 &et131x_adjust_link, PHY_INTERFACE_MODE_MII); 3250 3251 if (IS_ERR(phydev)) { 3252 dev_err(&adapter->pdev->dev, "Could not attach to PHY\n"); 3253 return PTR_ERR(phydev); 3254 } 3255 3256 phy_set_max_speed(phydev, SPEED_100); 3257 3258 if (adapter->pdev->device != ET131X_PCI_DEVICE_ID_FAST) 3259 phy_set_max_speed(phydev, SPEED_1000); 3260 3261 phydev->autoneg = AUTONEG_ENABLE; 3262 3263 phy_attached_info(phydev); 3264 3265 return 0; 3266 } 3267 3268 static struct et131x_adapter *et131x_adapter_init(struct net_device *netdev, 3269 struct pci_dev *pdev) 3270 { 3271 static const u8 default_mac[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 }; 3272 3273 struct et131x_adapter *adapter; 3274 3275 adapter = netdev_priv(netdev); 3276 adapter->pdev = pci_dev_get(pdev); 3277 adapter->netdev = netdev; 3278 3279 spin_lock_init(&adapter->tcb_send_qlock); 3280 spin_lock_init(&adapter->tcb_ready_qlock); 3281 spin_lock_init(&adapter->rcv_lock); 3282 3283 adapter->registry_jumbo_packet = 1514; /* 1514-9216 */ 3284 3285 ether_addr_copy(adapter->addr, default_mac); 3286 3287 return adapter; 3288 } 3289 3290 static void et131x_pci_remove(struct pci_dev *pdev) 3291 { 3292 struct net_device *netdev = pci_get_drvdata(pdev); 3293 struct et131x_adapter *adapter = netdev_priv(netdev); 3294 3295 unregister_netdev(netdev); 3296 netif_napi_del(&adapter->napi); 3297 phy_disconnect(netdev->phydev); 3298 mdiobus_unregister(adapter->mii_bus); 3299 mdiobus_free(adapter->mii_bus); 3300 3301 et131x_adapter_memory_free(adapter); 3302 iounmap(adapter->regs); 3303 pci_dev_put(pdev); 3304 3305 free_netdev(netdev); 3306 pci_release_regions(pdev); 3307 pci_disable_device(pdev); 3308 } 3309 3310 static void et131x_up(struct net_device *netdev) 3311 { 3312 et131x_enable_txrx(netdev); 3313 phy_start(netdev->phydev); 3314 } 3315 3316 static void et131x_down(struct net_device *netdev) 3317 { 3318 /* Save the timestamp for the TX watchdog, prevent a timeout */ 3319 netif_trans_update(netdev); 3320 3321 phy_stop(netdev->phydev); 3322 et131x_disable_txrx(netdev); 3323 } 3324 3325 #ifdef CONFIG_PM_SLEEP 3326 static int et131x_suspend(struct device *dev) 3327 { 3328 struct pci_dev *pdev = to_pci_dev(dev); 3329 struct net_device *netdev = pci_get_drvdata(pdev); 3330 3331 if (netif_running(netdev)) { 3332 netif_device_detach(netdev); 3333 et131x_down(netdev); 3334 pci_save_state(pdev); 3335 } 3336 3337 return 0; 3338 } 3339 3340 static int et131x_resume(struct device *dev) 3341 { 3342 struct pci_dev *pdev = to_pci_dev(dev); 3343 struct net_device *netdev = pci_get_drvdata(pdev); 3344 3345 if (netif_running(netdev)) { 3346 pci_restore_state(pdev); 3347 et131x_up(netdev); 3348 netif_device_attach(netdev); 3349 } 3350 3351 return 0; 3352 } 3353 #endif 3354 3355 static SIMPLE_DEV_PM_OPS(et131x_pm_ops, et131x_suspend, et131x_resume); 3356 3357 static irqreturn_t et131x_isr(int irq, void *dev_id) 3358 { 3359 bool handled = true; 3360 bool enable_interrupts = true; 3361 struct net_device *netdev = dev_id; 3362 struct et131x_adapter *adapter = netdev_priv(netdev); 3363 struct address_map __iomem *iomem = adapter->regs; 3364 struct rx_ring *rx_ring = &adapter->rx_ring; 3365 struct tx_ring *tx_ring = &adapter->tx_ring; 3366 u32 status; 3367 3368 if (!netif_device_present(netdev)) { 3369 handled = false; 3370 enable_interrupts = false; 3371 goto out; 3372 } 3373 3374 et131x_disable_interrupts(adapter); 3375 3376 status = readl(&adapter->regs->global.int_status); 3377 3378 if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH) 3379 status &= ~INT_MASK_ENABLE; 3380 else 3381 status &= ~INT_MASK_ENABLE_NO_FLOW; 3382 3383 /* Make sure this is our interrupt */ 3384 if (!status) { 3385 handled = false; 3386 et131x_enable_interrupts(adapter); 3387 goto out; 3388 } 3389 3390 /* This is our interrupt, so process accordingly */ 3391 if (status & ET_INTR_WATCHDOG) { 3392 struct tcb *tcb = tx_ring->send_head; 3393 3394 if (tcb) 3395 if (++tcb->stale > 1) 3396 status |= ET_INTR_TXDMA_ISR; 3397 3398 if (rx_ring->unfinished_receives) 3399 status |= ET_INTR_RXDMA_XFR_DONE; 3400 else if (tcb == NULL) 3401 writel(0, &adapter->regs->global.watchdog_timer); 3402 3403 status &= ~ET_INTR_WATCHDOG; 3404 } 3405 3406 if (status & (ET_INTR_RXDMA_XFR_DONE | ET_INTR_TXDMA_ISR)) { 3407 enable_interrupts = false; 3408 napi_schedule(&adapter->napi); 3409 } 3410 3411 status &= ~(ET_INTR_TXDMA_ISR | ET_INTR_RXDMA_XFR_DONE); 3412 3413 if (!status) 3414 goto out; 3415 3416 if (status & ET_INTR_TXDMA_ERR) { 3417 /* Following read also clears the register (COR) */ 3418 u32 txdma_err = readl(&iomem->txdma.tx_dma_error); 3419 3420 dev_warn(&adapter->pdev->dev, 3421 "TXDMA_ERR interrupt, error = %d\n", 3422 txdma_err); 3423 } 3424 3425 if (status & (ET_INTR_RXDMA_FB_R0_LOW | ET_INTR_RXDMA_FB_R1_LOW)) { 3426 /* This indicates the number of unused buffers in RXDMA free 3427 * buffer ring 0 is <= the limit you programmed. Free buffer 3428 * resources need to be returned. Free buffers are consumed as 3429 * packets are passed from the network to the host. The host 3430 * becomes aware of the packets from the contents of the packet 3431 * status ring. This ring is queried when the packet done 3432 * interrupt occurs. Packets are then passed to the OS. When 3433 * the OS is done with the packets the resources can be 3434 * returned to the ET1310 for re-use. This interrupt is one 3435 * method of returning resources. 3436 */ 3437 3438 /* If the user has flow control on, then we will 3439 * send a pause packet, otherwise just exit 3440 */ 3441 if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH) { 3442 /* Tell the device to send a pause packet via the back 3443 * pressure register (bp req and bp xon/xoff) 3444 */ 3445 if (!et1310_in_phy_coma(adapter)) 3446 writel(3, &iomem->txmac.bp_ctrl); 3447 } 3448 } 3449 3450 /* Handle Packet Status Ring Low Interrupt */ 3451 if (status & ET_INTR_RXDMA_STAT_LOW) { 3452 /* Same idea as with the two Free Buffer Rings. Packets going 3453 * from the network to the host each consume a free buffer 3454 * resource and a packet status resource. These resources are 3455 * passed to the OS. When the OS is done with the resources, 3456 * they need to be returned to the ET1310. This is one method 3457 * of returning the resources. 3458 */ 3459 } 3460 3461 if (status & ET_INTR_RXDMA_ERR) { 3462 /* The rxdma_error interrupt is sent when a time-out on a 3463 * request issued by the JAGCore has occurred or a completion is 3464 * returned with an un-successful status. In both cases the 3465 * request is considered complete. The JAGCore will 3466 * automatically re-try the request in question. Normally 3467 * information on events like these are sent to the host using 3468 * the "Advanced Error Reporting" capability. This interrupt is 3469 * another way of getting similar information. The only thing 3470 * required is to clear the interrupt by reading the ISR in the 3471 * global resources. The JAGCore will do a re-try on the 3472 * request. Normally you should never see this interrupt. If 3473 * you start to see this interrupt occurring frequently then 3474 * something bad has occurred. A reset might be the thing to do. 3475 */ 3476 /* TRAP();*/ 3477 3478 dev_warn(&adapter->pdev->dev, "RxDMA_ERR interrupt, error %x\n", 3479 readl(&iomem->txmac.tx_test)); 3480 } 3481 3482 /* Handle the Wake on LAN Event */ 3483 if (status & ET_INTR_WOL) { 3484 /* This is a secondary interrupt for wake on LAN. The driver 3485 * should never see this, if it does, something serious is 3486 * wrong. 3487 */ 3488 dev_err(&adapter->pdev->dev, "WAKE_ON_LAN interrupt\n"); 3489 } 3490 3491 if (status & ET_INTR_TXMAC) { 3492 u32 err = readl(&iomem->txmac.err); 3493 3494 /* When any of the errors occur and TXMAC generates an 3495 * interrupt to report these errors, it usually means that 3496 * TXMAC has detected an error in the data stream retrieved 3497 * from the on-chip Tx Q. All of these errors are catastrophic 3498 * and TXMAC won't be able to recover data when these errors 3499 * occur. In a nutshell, the whole Tx path will have to be reset 3500 * and re-configured afterwards. 3501 */ 3502 dev_warn(&adapter->pdev->dev, "TXMAC interrupt, error 0x%08x\n", 3503 err); 3504 3505 /* If we are debugging, we want to see this error, otherwise we 3506 * just want the device to be reset and continue 3507 */ 3508 } 3509 3510 if (status & ET_INTR_RXMAC) { 3511 /* These interrupts are catastrophic to the device, what we need 3512 * to do is disable the interrupts and set the flag to cause us 3513 * to reset so we can solve this issue. 3514 */ 3515 dev_warn(&adapter->pdev->dev, 3516 "RXMAC interrupt, error 0x%08x. Requesting reset\n", 3517 readl(&iomem->rxmac.err_reg)); 3518 3519 dev_warn(&adapter->pdev->dev, 3520 "Enable 0x%08x, Diag 0x%08x\n", 3521 readl(&iomem->rxmac.ctrl), 3522 readl(&iomem->rxmac.rxq_diag)); 3523 3524 /* If we are debugging, we want to see this error, otherwise we 3525 * just want the device to be reset and continue 3526 */ 3527 } 3528 3529 if (status & ET_INTR_MAC_STAT) { 3530 /* This means at least one of the un-masked counters in the 3531 * MAC_STAT block has rolled over. Use this to maintain the top, 3532 * software managed bits of the counter(s). 3533 */ 3534 et1310_handle_macstat_interrupt(adapter); 3535 } 3536 3537 if (status & ET_INTR_SLV_TIMEOUT) { 3538 /* This means a timeout has occurred on a read or write request 3539 * to one of the JAGCore registers. The Global Resources block 3540 * has terminated the request and on a read request, returned a 3541 * "fake" value. The most likely reasons are: Bad Address or the 3542 * addressed module is in a power-down state and can't respond. 3543 */ 3544 } 3545 3546 out: 3547 if (enable_interrupts) 3548 et131x_enable_interrupts(adapter); 3549 3550 return IRQ_RETVAL(handled); 3551 } 3552 3553 static int et131x_poll(struct napi_struct *napi, int budget) 3554 { 3555 struct et131x_adapter *adapter = 3556 container_of(napi, struct et131x_adapter, napi); 3557 int work_done = et131x_handle_recv_pkts(adapter, budget); 3558 3559 et131x_handle_send_pkts(adapter); 3560 3561 if (work_done < budget) { 3562 napi_complete_done(&adapter->napi, work_done); 3563 et131x_enable_interrupts(adapter); 3564 } 3565 3566 return work_done; 3567 } 3568 3569 /* et131x_stats - Return the current device statistics */ 3570 static struct net_device_stats *et131x_stats(struct net_device *netdev) 3571 { 3572 struct et131x_adapter *adapter = netdev_priv(netdev); 3573 struct net_device_stats *stats = &adapter->netdev->stats; 3574 struct ce_stats *devstat = &adapter->stats; 3575 3576 stats->rx_errors = devstat->rx_length_errs + 3577 devstat->rx_align_errs + 3578 devstat->rx_crc_errs + 3579 devstat->rx_code_violations + 3580 devstat->rx_other_errs; 3581 stats->tx_errors = devstat->tx_max_pkt_errs; 3582 stats->multicast = devstat->multicast_pkts_rcvd; 3583 stats->collisions = devstat->tx_collisions; 3584 3585 stats->rx_length_errors = devstat->rx_length_errs; 3586 stats->rx_over_errors = devstat->rx_overflows; 3587 stats->rx_crc_errors = devstat->rx_crc_errs; 3588 stats->rx_dropped = devstat->rcvd_pkts_dropped; 3589 3590 /* NOTE: Not used, can't find analogous statistics */ 3591 /* stats->rx_frame_errors = devstat->; */ 3592 /* stats->rx_fifo_errors = devstat->; */ 3593 /* stats->rx_missed_errors = devstat->; */ 3594 3595 /* stats->tx_aborted_errors = devstat->; */ 3596 /* stats->tx_carrier_errors = devstat->; */ 3597 /* stats->tx_fifo_errors = devstat->; */ 3598 /* stats->tx_heartbeat_errors = devstat->; */ 3599 /* stats->tx_window_errors = devstat->; */ 3600 return stats; 3601 } 3602 3603 static int et131x_open(struct net_device *netdev) 3604 { 3605 struct et131x_adapter *adapter = netdev_priv(netdev); 3606 struct pci_dev *pdev = adapter->pdev; 3607 unsigned int irq = pdev->irq; 3608 int result; 3609 3610 /* Start the timer to track NIC errors */ 3611 timer_setup(&adapter->error_timer, et131x_error_timer_handler, 0); 3612 adapter->error_timer.expires = jiffies + 3613 msecs_to_jiffies(TX_ERROR_PERIOD); 3614 add_timer(&adapter->error_timer); 3615 3616 result = request_irq(irq, et131x_isr, 3617 IRQF_SHARED, netdev->name, netdev); 3618 if (result) { 3619 dev_err(&pdev->dev, "could not register IRQ %d\n", irq); 3620 return result; 3621 } 3622 3623 adapter->flags |= FMP_ADAPTER_INTERRUPT_IN_USE; 3624 3625 napi_enable(&adapter->napi); 3626 3627 et131x_up(netdev); 3628 3629 return result; 3630 } 3631 3632 static int et131x_close(struct net_device *netdev) 3633 { 3634 struct et131x_adapter *adapter = netdev_priv(netdev); 3635 3636 et131x_down(netdev); 3637 napi_disable(&adapter->napi); 3638 3639 adapter->flags &= ~FMP_ADAPTER_INTERRUPT_IN_USE; 3640 free_irq(adapter->pdev->irq, netdev); 3641 3642 /* Stop the error timer */ 3643 return del_timer_sync(&adapter->error_timer); 3644 } 3645 3646 /* et131x_set_packet_filter - Configures the Rx Packet filtering */ 3647 static int et131x_set_packet_filter(struct et131x_adapter *adapter) 3648 { 3649 int filter = adapter->packet_filter; 3650 u32 ctrl; 3651 u32 pf_ctrl; 3652 3653 ctrl = readl(&adapter->regs->rxmac.ctrl); 3654 pf_ctrl = readl(&adapter->regs->rxmac.pf_ctrl); 3655 3656 /* Default to disabled packet filtering */ 3657 ctrl |= 0x04; 3658 3659 /* Set us to be in promiscuous mode so we receive everything, this 3660 * is also true when we get a packet filter of 0 3661 */ 3662 if ((filter & ET131X_PACKET_TYPE_PROMISCUOUS) || filter == 0) 3663 pf_ctrl &= ~7; /* Clear filter bits */ 3664 else { 3665 /* Set us up with Multicast packet filtering. Three cases are 3666 * possible - (1) we have a multi-cast list, (2) we receive ALL 3667 * multicast entries or (3) we receive none. 3668 */ 3669 if (filter & ET131X_PACKET_TYPE_ALL_MULTICAST) 3670 pf_ctrl &= ~2; /* Multicast filter bit */ 3671 else { 3672 et1310_setup_device_for_multicast(adapter); 3673 pf_ctrl |= 2; 3674 ctrl &= ~0x04; 3675 } 3676 3677 /* Set us up with Unicast packet filtering */ 3678 if (filter & ET131X_PACKET_TYPE_DIRECTED) { 3679 et1310_setup_device_for_unicast(adapter); 3680 pf_ctrl |= 4; 3681 ctrl &= ~0x04; 3682 } 3683 3684 /* Set us up with Broadcast packet filtering */ 3685 if (filter & ET131X_PACKET_TYPE_BROADCAST) { 3686 pf_ctrl |= 1; /* Broadcast filter bit */ 3687 ctrl &= ~0x04; 3688 } else { 3689 pf_ctrl &= ~1; 3690 } 3691 3692 /* Setup the receive mac configuration registers - Packet 3693 * Filter control + the enable / disable for packet filter 3694 * in the control reg. 3695 */ 3696 writel(pf_ctrl, &adapter->regs->rxmac.pf_ctrl); 3697 writel(ctrl, &adapter->regs->rxmac.ctrl); 3698 } 3699 return 0; 3700 } 3701 3702 static void et131x_multicast(struct net_device *netdev) 3703 { 3704 struct et131x_adapter *adapter = netdev_priv(netdev); 3705 int packet_filter; 3706 struct netdev_hw_addr *ha; 3707 int i; 3708 3709 /* Before we modify the platform-independent filter flags, store them 3710 * locally. This allows us to determine if anything's changed and if 3711 * we even need to bother the hardware 3712 */ 3713 packet_filter = adapter->packet_filter; 3714 3715 /* Clear the 'multicast' flag locally; because we only have a single 3716 * flag to check multicast, and multiple multicast addresses can be 3717 * set, this is the easiest way to determine if more than one 3718 * multicast address is being set. 3719 */ 3720 packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST; 3721 3722 /* Check the net_device flags and set the device independent flags 3723 * accordingly 3724 */ 3725 if (netdev->flags & IFF_PROMISC) 3726 adapter->packet_filter |= ET131X_PACKET_TYPE_PROMISCUOUS; 3727 else 3728 adapter->packet_filter &= ~ET131X_PACKET_TYPE_PROMISCUOUS; 3729 3730 if ((netdev->flags & IFF_ALLMULTI) || 3731 (netdev_mc_count(netdev) > NIC_MAX_MCAST_LIST)) 3732 adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST; 3733 3734 if (netdev_mc_count(netdev) < 1) { 3735 adapter->packet_filter &= ~ET131X_PACKET_TYPE_ALL_MULTICAST; 3736 adapter->packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST; 3737 } else { 3738 adapter->packet_filter |= ET131X_PACKET_TYPE_MULTICAST; 3739 } 3740 3741 /* Set values in the private adapter struct */ 3742 i = 0; 3743 netdev_for_each_mc_addr(ha, netdev) { 3744 if (i == NIC_MAX_MCAST_LIST) 3745 break; 3746 ether_addr_copy(adapter->multicast_list[i++], ha->addr); 3747 } 3748 adapter->multicast_addr_count = i; 3749 3750 /* Are the new flags different from the previous ones? If not, then no 3751 * action is required 3752 * 3753 * NOTE - This block will always update the multicast_list with the 3754 * hardware, even if the addresses aren't the same. 3755 */ 3756 if (packet_filter != adapter->packet_filter) 3757 et131x_set_packet_filter(adapter); 3758 } 3759 3760 static netdev_tx_t et131x_tx(struct sk_buff *skb, struct net_device *netdev) 3761 { 3762 struct et131x_adapter *adapter = netdev_priv(netdev); 3763 struct tx_ring *tx_ring = &adapter->tx_ring; 3764 3765 /* stop the queue if it's getting full */ 3766 if (tx_ring->used >= NUM_TCB - 1 && !netif_queue_stopped(netdev)) 3767 netif_stop_queue(netdev); 3768 3769 /* Save the timestamp for the TX timeout watchdog */ 3770 netif_trans_update(netdev); 3771 3772 /* TCB is not available */ 3773 if (tx_ring->used >= NUM_TCB) 3774 goto drop_err; 3775 3776 if ((adapter->flags & FMP_ADAPTER_FAIL_SEND_MASK) || 3777 !netif_carrier_ok(netdev)) 3778 goto drop_err; 3779 3780 if (send_packet(skb, adapter)) 3781 goto drop_err; 3782 3783 return NETDEV_TX_OK; 3784 3785 drop_err: 3786 dev_kfree_skb_any(skb); 3787 adapter->netdev->stats.tx_dropped++; 3788 return NETDEV_TX_OK; 3789 } 3790 3791 /* et131x_tx_timeout - Timeout handler 3792 * 3793 * The handler called when a Tx request times out. The timeout period is 3794 * specified by the 'tx_timeo" element in the net_device structure (see 3795 * et131x_alloc_device() to see how this value is set). 3796 */ 3797 static void et131x_tx_timeout(struct net_device *netdev, unsigned int txqueue) 3798 { 3799 struct et131x_adapter *adapter = netdev_priv(netdev); 3800 struct tx_ring *tx_ring = &adapter->tx_ring; 3801 struct tcb *tcb; 3802 unsigned long flags; 3803 3804 /* If the device is closed, ignore the timeout */ 3805 if (!(adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE)) 3806 return; 3807 3808 /* Any nonrecoverable hardware error? 3809 * Checks adapter->flags for any failure in phy reading 3810 */ 3811 if (adapter->flags & FMP_ADAPTER_NON_RECOVER_ERROR) 3812 return; 3813 3814 /* Hardware failure? */ 3815 if (adapter->flags & FMP_ADAPTER_HARDWARE_ERROR) { 3816 dev_err(&adapter->pdev->dev, "hardware error - reset\n"); 3817 return; 3818 } 3819 3820 /* Is send stuck? */ 3821 spin_lock_irqsave(&adapter->tcb_send_qlock, flags); 3822 tcb = tx_ring->send_head; 3823 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags); 3824 3825 if (tcb) { 3826 tcb->count++; 3827 3828 if (tcb->count > NIC_SEND_HANG_THRESHOLD) { 3829 dev_warn(&adapter->pdev->dev, 3830 "Send stuck - reset. tcb->WrIndex %x\n", 3831 tcb->index); 3832 3833 adapter->netdev->stats.tx_errors++; 3834 3835 /* perform reset of tx/rx */ 3836 et131x_disable_txrx(netdev); 3837 et131x_enable_txrx(netdev); 3838 } 3839 } 3840 } 3841 3842 static int et131x_change_mtu(struct net_device *netdev, int new_mtu) 3843 { 3844 int result = 0; 3845 struct et131x_adapter *adapter = netdev_priv(netdev); 3846 3847 et131x_disable_txrx(netdev); 3848 3849 netdev->mtu = new_mtu; 3850 3851 et131x_adapter_memory_free(adapter); 3852 3853 /* Set the config parameter for Jumbo Packet support */ 3854 adapter->registry_jumbo_packet = new_mtu + 14; 3855 et131x_soft_reset(adapter); 3856 3857 result = et131x_adapter_memory_alloc(adapter); 3858 if (result != 0) { 3859 dev_warn(&adapter->pdev->dev, 3860 "Change MTU failed; couldn't re-alloc DMA memory\n"); 3861 return result; 3862 } 3863 3864 et131x_init_send(adapter); 3865 et131x_hwaddr_init(adapter); 3866 eth_hw_addr_set(netdev, adapter->addr); 3867 3868 /* Init the device with the new settings */ 3869 et131x_adapter_setup(adapter); 3870 et131x_enable_txrx(netdev); 3871 3872 return result; 3873 } 3874 3875 static const struct net_device_ops et131x_netdev_ops = { 3876 .ndo_open = et131x_open, 3877 .ndo_stop = et131x_close, 3878 .ndo_start_xmit = et131x_tx, 3879 .ndo_set_rx_mode = et131x_multicast, 3880 .ndo_tx_timeout = et131x_tx_timeout, 3881 .ndo_change_mtu = et131x_change_mtu, 3882 .ndo_set_mac_address = eth_mac_addr, 3883 .ndo_validate_addr = eth_validate_addr, 3884 .ndo_get_stats = et131x_stats, 3885 .ndo_eth_ioctl = phy_do_ioctl, 3886 }; 3887 3888 static int et131x_pci_setup(struct pci_dev *pdev, 3889 const struct pci_device_id *ent) 3890 { 3891 struct net_device *netdev; 3892 struct et131x_adapter *adapter; 3893 int rc; 3894 3895 rc = pci_enable_device(pdev); 3896 if (rc < 0) { 3897 dev_err(&pdev->dev, "pci_enable_device() failed\n"); 3898 goto out; 3899 } 3900 3901 /* Perform some basic PCI checks */ 3902 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 3903 dev_err(&pdev->dev, "Can't find PCI device's base address\n"); 3904 rc = -ENODEV; 3905 goto err_disable; 3906 } 3907 3908 rc = pci_request_regions(pdev, DRIVER_NAME); 3909 if (rc < 0) { 3910 dev_err(&pdev->dev, "Can't get PCI resources\n"); 3911 goto err_disable; 3912 } 3913 3914 pci_set_master(pdev); 3915 3916 /* Check the DMA addressing support of this device */ 3917 rc = dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)); 3918 if (rc) { 3919 dev_err(&pdev->dev, "No usable DMA addressing method\n"); 3920 goto err_release_res; 3921 } 3922 3923 netdev = alloc_etherdev(sizeof(struct et131x_adapter)); 3924 if (!netdev) { 3925 dev_err(&pdev->dev, "Couldn't alloc netdev struct\n"); 3926 rc = -ENOMEM; 3927 goto err_release_res; 3928 } 3929 3930 netdev->watchdog_timeo = ET131X_TX_TIMEOUT; 3931 netdev->netdev_ops = &et131x_netdev_ops; 3932 netdev->min_mtu = ET131X_MIN_MTU; 3933 netdev->max_mtu = ET131X_MAX_MTU; 3934 3935 SET_NETDEV_DEV(netdev, &pdev->dev); 3936 netdev->ethtool_ops = &et131x_ethtool_ops; 3937 3938 adapter = et131x_adapter_init(netdev, pdev); 3939 3940 rc = et131x_pci_init(adapter, pdev); 3941 if (rc < 0) 3942 goto err_free_dev; 3943 3944 /* Map the bus-relative registers to system virtual memory */ 3945 adapter->regs = pci_ioremap_bar(pdev, 0); 3946 if (!adapter->regs) { 3947 dev_err(&pdev->dev, "Cannot map device registers\n"); 3948 rc = -ENOMEM; 3949 goto err_free_dev; 3950 } 3951 3952 /* If Phy COMA mode was enabled when we went down, disable it here. */ 3953 writel(ET_PMCSR_INIT, &adapter->regs->global.pm_csr); 3954 3955 et131x_soft_reset(adapter); 3956 et131x_disable_interrupts(adapter); 3957 3958 rc = et131x_adapter_memory_alloc(adapter); 3959 if (rc < 0) { 3960 dev_err(&pdev->dev, "Could not alloc adapter memory (DMA)\n"); 3961 goto err_iounmap; 3962 } 3963 3964 et131x_init_send(adapter); 3965 3966 netif_napi_add(netdev, &adapter->napi, et131x_poll, 64); 3967 3968 eth_hw_addr_set(netdev, adapter->addr); 3969 3970 rc = -ENOMEM; 3971 3972 adapter->mii_bus = mdiobus_alloc(); 3973 if (!adapter->mii_bus) { 3974 dev_err(&pdev->dev, "Alloc of mii_bus struct failed\n"); 3975 goto err_mem_free; 3976 } 3977 3978 adapter->mii_bus->name = "et131x_eth_mii"; 3979 snprintf(adapter->mii_bus->id, MII_BUS_ID_SIZE, "%x", 3980 (adapter->pdev->bus->number << 8) | adapter->pdev->devfn); 3981 adapter->mii_bus->priv = netdev; 3982 adapter->mii_bus->read = et131x_mdio_read; 3983 adapter->mii_bus->write = et131x_mdio_write; 3984 3985 rc = mdiobus_register(adapter->mii_bus); 3986 if (rc < 0) { 3987 dev_err(&pdev->dev, "failed to register MII bus\n"); 3988 goto err_mdio_free; 3989 } 3990 3991 rc = et131x_mii_probe(netdev); 3992 if (rc < 0) { 3993 dev_err(&pdev->dev, "failed to probe MII bus\n"); 3994 goto err_mdio_unregister; 3995 } 3996 3997 et131x_adapter_setup(adapter); 3998 3999 /* Init variable for counting how long we do not have link status */ 4000 adapter->boot_coma = 0; 4001 et1310_disable_phy_coma(adapter); 4002 4003 /* We can enable interrupts now 4004 * 4005 * NOTE - Because registration of interrupt handler is done in the 4006 * device's open(), defer enabling device interrupts to that 4007 * point 4008 */ 4009 4010 rc = register_netdev(netdev); 4011 if (rc < 0) { 4012 dev_err(&pdev->dev, "register_netdev() failed\n"); 4013 goto err_phy_disconnect; 4014 } 4015 4016 /* Register the net_device struct with the PCI subsystem. Save a copy 4017 * of the PCI config space for this device now that the device has 4018 * been initialized, just in case it needs to be quickly restored. 4019 */ 4020 pci_set_drvdata(pdev, netdev); 4021 out: 4022 return rc; 4023 4024 err_phy_disconnect: 4025 phy_disconnect(netdev->phydev); 4026 err_mdio_unregister: 4027 mdiobus_unregister(adapter->mii_bus); 4028 err_mdio_free: 4029 mdiobus_free(adapter->mii_bus); 4030 err_mem_free: 4031 et131x_adapter_memory_free(adapter); 4032 err_iounmap: 4033 iounmap(adapter->regs); 4034 err_free_dev: 4035 pci_dev_put(pdev); 4036 free_netdev(netdev); 4037 err_release_res: 4038 pci_release_regions(pdev); 4039 err_disable: 4040 pci_disable_device(pdev); 4041 goto out; 4042 } 4043 4044 static const struct pci_device_id et131x_pci_table[] = { 4045 { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_GIG), 0UL}, 4046 { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_FAST), 0UL}, 4047 { 0,} 4048 }; 4049 MODULE_DEVICE_TABLE(pci, et131x_pci_table); 4050 4051 static struct pci_driver et131x_driver = { 4052 .name = DRIVER_NAME, 4053 .id_table = et131x_pci_table, 4054 .probe = et131x_pci_setup, 4055 .remove = et131x_pci_remove, 4056 .driver.pm = &et131x_pm_ops, 4057 }; 4058 4059 module_pci_driver(et131x_driver); 4060