1 /* Agere Systems Inc. 2 * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs 3 * 4 * Copyright © 2005 Agere Systems Inc. 5 * All rights reserved. 6 * http://www.agere.com 7 * 8 * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com> 9 * 10 *------------------------------------------------------------------------------ 11 * 12 * SOFTWARE LICENSE 13 * 14 * This software is provided subject to the following terms and conditions, 15 * which you should read carefully before using the software. Using this 16 * software indicates your acceptance of these terms and conditions. If you do 17 * not agree with these terms and conditions, do not use the software. 18 * 19 * Copyright © 2005 Agere Systems Inc. 20 * All rights reserved. 21 * 22 * Redistribution and use in source or binary forms, with or without 23 * modifications, are permitted provided that the following conditions are met: 24 * 25 * . Redistributions of source code must retain the above copyright notice, this 26 * list of conditions and the following Disclaimer as comments in the code as 27 * well as in the documentation and/or other materials provided with the 28 * distribution. 29 * 30 * . Redistributions in binary form must reproduce the above copyright notice, 31 * this list of conditions and the following Disclaimer in the documentation 32 * and/or other materials provided with the distribution. 33 * 34 * . Neither the name of Agere Systems Inc. nor the names of the contributors 35 * may be used to endorse or promote products derived from this software 36 * without specific prior written permission. 37 * 38 * Disclaimer 39 * 40 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, 41 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF 42 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY 43 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN 44 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY 45 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 46 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 47 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 48 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT 49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 50 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 51 * DAMAGE. 52 */ 53 54 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 55 56 #include <linux/pci.h> 57 #include <linux/module.h> 58 #include <linux/types.h> 59 #include <linux/kernel.h> 60 61 #include <linux/sched.h> 62 #include <linux/ptrace.h> 63 #include <linux/slab.h> 64 #include <linux/ctype.h> 65 #include <linux/string.h> 66 #include <linux/timer.h> 67 #include <linux/interrupt.h> 68 #include <linux/in.h> 69 #include <linux/delay.h> 70 #include <linux/bitops.h> 71 #include <linux/io.h> 72 73 #include <linux/netdevice.h> 74 #include <linux/etherdevice.h> 75 #include <linux/skbuff.h> 76 #include <linux/if_arp.h> 77 #include <linux/ioport.h> 78 #include <linux/crc32.h> 79 #include <linux/random.h> 80 #include <linux/phy.h> 81 82 #include "et131x.h" 83 84 MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>"); 85 MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>"); 86 MODULE_LICENSE("Dual BSD/GPL"); 87 MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver for the ET1310 by Agere Systems"); 88 89 /* EEPROM defines */ 90 #define MAX_NUM_REGISTER_POLLS 1000 91 #define MAX_NUM_WRITE_RETRIES 2 92 93 /* MAC defines */ 94 #define COUNTER_WRAP_16_BIT 0x10000 95 #define COUNTER_WRAP_12_BIT 0x1000 96 97 /* PCI defines */ 98 #define INTERNAL_MEM_SIZE 0x400 /* 1024 of internal memory */ 99 #define INTERNAL_MEM_RX_OFFSET 0x1FF /* 50% Tx, 50% Rx */ 100 101 /* ISR defines */ 102 /* For interrupts, normal running is: 103 * rxdma_xfr_done, phy_interrupt, mac_stat_interrupt, 104 * watchdog_interrupt & txdma_xfer_done 105 * 106 * In both cases, when flow control is enabled for either Tx or bi-direction, 107 * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the 108 * buffer rings are running low. 109 */ 110 #define INT_MASK_DISABLE 0xffffffff 111 112 /* NOTE: Masking out MAC_STAT Interrupt for now... 113 * #define INT_MASK_ENABLE 0xfff6bf17 114 * #define INT_MASK_ENABLE_NO_FLOW 0xfff6bfd7 115 */ 116 #define INT_MASK_ENABLE 0xfffebf17 117 #define INT_MASK_ENABLE_NO_FLOW 0xfffebfd7 118 119 /* General defines */ 120 /* Packet and header sizes */ 121 #define NIC_MIN_PACKET_SIZE 60 122 123 /* Multicast list size */ 124 #define NIC_MAX_MCAST_LIST 128 125 126 /* Supported Filters */ 127 #define ET131X_PACKET_TYPE_DIRECTED 0x0001 128 #define ET131X_PACKET_TYPE_MULTICAST 0x0002 129 #define ET131X_PACKET_TYPE_BROADCAST 0x0004 130 #define ET131X_PACKET_TYPE_PROMISCUOUS 0x0008 131 #define ET131X_PACKET_TYPE_ALL_MULTICAST 0x0010 132 133 /* Tx Timeout */ 134 #define ET131X_TX_TIMEOUT (1 * HZ) 135 #define NIC_SEND_HANG_THRESHOLD 0 136 137 /* MP_ADAPTER flags */ 138 #define FMP_ADAPTER_INTERRUPT_IN_USE 0x00000008 139 140 /* MP_SHARED flags */ 141 #define FMP_ADAPTER_LOWER_POWER 0x00200000 142 143 #define FMP_ADAPTER_NON_RECOVER_ERROR 0x00800000 144 #define FMP_ADAPTER_HARDWARE_ERROR 0x04000000 145 146 #define FMP_ADAPTER_FAIL_SEND_MASK 0x3ff00000 147 148 /* Some offsets in PCI config space that are actually used. */ 149 #define ET1310_PCI_MAC_ADDRESS 0xA4 150 #define ET1310_PCI_EEPROM_STATUS 0xB2 151 #define ET1310_PCI_ACK_NACK 0xC0 152 #define ET1310_PCI_REPLAY 0xC2 153 #define ET1310_PCI_L0L1LATENCY 0xCF 154 155 /* PCI Product IDs */ 156 #define ET131X_PCI_DEVICE_ID_GIG 0xED00 /* ET1310 1000 Base-T 8 */ 157 #define ET131X_PCI_DEVICE_ID_FAST 0xED01 /* ET1310 100 Base-T */ 158 159 /* Define order of magnitude converter */ 160 #define NANO_IN_A_MICRO 1000 161 162 #define PARM_RX_NUM_BUFS_DEF 4 163 #define PARM_RX_TIME_INT_DEF 10 164 #define PARM_RX_MEM_END_DEF 0x2bc 165 #define PARM_TX_TIME_INT_DEF 40 166 #define PARM_TX_NUM_BUFS_DEF 4 167 #define PARM_DMA_CACHE_DEF 0 168 169 /* RX defines */ 170 #define FBR_CHUNKS 32 171 #define MAX_DESC_PER_RING_RX 1024 172 173 /* number of RFDs - default and min */ 174 #define RFD_LOW_WATER_MARK 40 175 #define NIC_DEFAULT_NUM_RFD 1024 176 #define NUM_FBRS 2 177 178 #define MAX_PACKETS_HANDLED 256 179 180 #define ALCATEL_MULTICAST_PKT 0x01000000 181 #define ALCATEL_BROADCAST_PKT 0x02000000 182 183 /* typedefs for Free Buffer Descriptors */ 184 struct fbr_desc { 185 u32 addr_lo; 186 u32 addr_hi; 187 u32 word2; /* Bits 10-31 reserved, 0-9 descriptor */ 188 }; 189 190 /* Packet Status Ring Descriptors 191 * 192 * Word 0: 193 * 194 * top 16 bits are from the Alcatel Status Word as enumerated in 195 * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2) 196 * 197 * 0: hp hash pass 198 * 1: ipa IP checksum assist 199 * 2: ipp IP checksum pass 200 * 3: tcpa TCP checksum assist 201 * 4: tcpp TCP checksum pass 202 * 5: wol WOL Event 203 * 6: rxmac_error RXMAC Error Indicator 204 * 7: drop Drop packet 205 * 8: ft Frame Truncated 206 * 9: jp Jumbo Packet 207 * 10: vp VLAN Packet 208 * 11-15: unused 209 * 16: asw_prev_pkt_dropped e.g. IFG too small on previous 210 * 17: asw_RX_DV_event short receive event detected 211 * 18: asw_false_carrier_event bad carrier since last good packet 212 * 19: asw_code_err one or more nibbles signalled as errors 213 * 20: asw_CRC_err CRC error 214 * 21: asw_len_chk_err frame length field incorrect 215 * 22: asw_too_long frame length > 1518 bytes 216 * 23: asw_OK valid CRC + no code error 217 * 24: asw_multicast has a multicast address 218 * 25: asw_broadcast has a broadcast address 219 * 26: asw_dribble_nibble spurious bits after EOP 220 * 27: asw_control_frame is a control frame 221 * 28: asw_pause_frame is a pause frame 222 * 29: asw_unsupported_op unsupported OP code 223 * 30: asw_VLAN_tag VLAN tag detected 224 * 31: asw_long_evt Rx long event 225 * 226 * Word 1: 227 * 0-15: length length in bytes 228 * 16-25: bi Buffer Index 229 * 26-27: ri Ring Index 230 * 28-31: reserved 231 */ 232 struct pkt_stat_desc { 233 u32 word0; 234 u32 word1; 235 }; 236 237 /* Typedefs for the RX DMA status word */ 238 239 /* rx status word 0 holds part of the status bits of the Rx DMA engine 240 * that get copied out to memory by the ET-1310. Word 0 is a 32 bit word 241 * which contains the Free Buffer ring 0 and 1 available offset. 242 * 243 * bit 0-9 FBR1 offset 244 * bit 10 Wrap flag for FBR1 245 * bit 16-25 FBR0 offset 246 * bit 26 Wrap flag for FBR0 247 */ 248 249 /* RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine 250 * that get copied out to memory by the ET-1310. Word 3 is a 32 bit word 251 * which contains the Packet Status Ring available offset. 252 * 253 * bit 0-15 reserved 254 * bit 16-27 PSRoffset 255 * bit 28 PSRwrap 256 * bit 29-31 unused 257 */ 258 259 /* struct rx_status_block is a structure representing the status of the Rx 260 * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020 261 */ 262 struct rx_status_block { 263 u32 word0; 264 u32 word1; 265 }; 266 267 /* Structure for look-up table holding free buffer ring pointers, addresses 268 * and state. 269 */ 270 struct fbr_lookup { 271 void *virt[MAX_DESC_PER_RING_RX]; 272 u32 bus_high[MAX_DESC_PER_RING_RX]; 273 u32 bus_low[MAX_DESC_PER_RING_RX]; 274 void *ring_virtaddr; 275 dma_addr_t ring_physaddr; 276 void *mem_virtaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS]; 277 dma_addr_t mem_physaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS]; 278 u32 local_full; 279 u32 num_entries; 280 dma_addr_t buffsize; 281 }; 282 283 /* struct rx_ring is the structure representing the adaptor's local 284 * reference(s) to the rings 285 */ 286 struct rx_ring { 287 struct fbr_lookup *fbr[NUM_FBRS]; 288 void *ps_ring_virtaddr; 289 dma_addr_t ps_ring_physaddr; 290 u32 local_psr_full; 291 u32 psr_entries; 292 293 struct rx_status_block *rx_status_block; 294 dma_addr_t rx_status_bus; 295 296 struct list_head recv_list; 297 u32 num_ready_recv; 298 299 u32 num_rfd; 300 301 bool unfinished_receives; 302 }; 303 304 /* TX defines */ 305 /* word 2 of the control bits in the Tx Descriptor ring for the ET-1310 306 * 307 * 0-15: length of packet 308 * 16-27: VLAN tag 309 * 28: VLAN CFI 310 * 29-31: VLAN priority 311 * 312 * word 3 of the control bits in the Tx Descriptor ring for the ET-1310 313 * 314 * 0: last packet in the sequence 315 * 1: first packet in the sequence 316 * 2: interrupt the processor when this pkt sent 317 * 3: Control word - no packet data 318 * 4: Issue half-duplex backpressure : XON/XOFF 319 * 5: send pause frame 320 * 6: Tx frame has error 321 * 7: append CRC 322 * 8: MAC override 323 * 9: pad packet 324 * 10: Packet is a Huge packet 325 * 11: append VLAN tag 326 * 12: IP checksum assist 327 * 13: TCP checksum assist 328 * 14: UDP checksum assist 329 */ 330 #define TXDESC_FLAG_LASTPKT 0x0001 331 #define TXDESC_FLAG_FIRSTPKT 0x0002 332 #define TXDESC_FLAG_INTPROC 0x0004 333 334 /* struct tx_desc represents each descriptor on the ring */ 335 struct tx_desc { 336 u32 addr_hi; 337 u32 addr_lo; 338 u32 len_vlan; /* control words how to xmit the */ 339 u32 flags; /* data (detailed above) */ 340 }; 341 342 /* The status of the Tx DMA engine it sits in free memory, and is pointed to 343 * by 0x101c / 0x1020. This is a DMA10 type 344 */ 345 346 /* TCB (Transmit Control Block: Host Side) */ 347 struct tcb { 348 struct tcb *next; /* Next entry in ring */ 349 u32 count; /* Used to spot stuck/lost packets */ 350 u32 stale; /* Used to spot stuck/lost packets */ 351 struct sk_buff *skb; /* Network skb we are tied to */ 352 u32 index; /* Ring indexes */ 353 u32 index_start; 354 }; 355 356 /* Structure representing our local reference(s) to the ring */ 357 struct tx_ring { 358 /* TCB (Transmit Control Block) memory and lists */ 359 struct tcb *tcb_ring; 360 361 /* List of TCBs that are ready to be used */ 362 struct tcb *tcb_qhead; 363 struct tcb *tcb_qtail; 364 365 /* list of TCBs that are currently being sent. */ 366 struct tcb *send_head; 367 struct tcb *send_tail; 368 int used; 369 370 /* The actual descriptor ring */ 371 struct tx_desc *tx_desc_ring; 372 dma_addr_t tx_desc_ring_pa; 373 374 /* send_idx indicates where we last wrote to in the descriptor ring. */ 375 u32 send_idx; 376 377 /* The location of the write-back status block */ 378 u32 *tx_status; 379 dma_addr_t tx_status_pa; 380 381 /* Packets since the last IRQ: used for interrupt coalescing */ 382 int since_irq; 383 }; 384 385 /* Do not change these values: if changed, then change also in respective 386 * TXdma and Rxdma engines 387 */ 388 #define NUM_DESC_PER_RING_TX 512 /* TX Do not change these values */ 389 #define NUM_TCB 64 390 391 /* These values are all superseded by registry entries to facilitate tuning. 392 * Once the desired performance has been achieved, the optimal registry values 393 * should be re-populated to these #defines: 394 */ 395 #define TX_ERROR_PERIOD 1000 396 397 #define LO_MARK_PERCENT_FOR_PSR 15 398 #define LO_MARK_PERCENT_FOR_RX 15 399 400 /* RFD (Receive Frame Descriptor) */ 401 struct rfd { 402 struct list_head list_node; 403 struct sk_buff *skb; 404 u32 len; /* total size of receive frame */ 405 u16 bufferindex; 406 u8 ringindex; 407 }; 408 409 /* Flow Control */ 410 #define FLOW_BOTH 0 411 #define FLOW_TXONLY 1 412 #define FLOW_RXONLY 2 413 #define FLOW_NONE 3 414 415 /* Struct to define some device statistics */ 416 struct ce_stats { 417 u32 multicast_pkts_rcvd; 418 u32 rcvd_pkts_dropped; 419 420 u32 tx_underflows; 421 u32 tx_collisions; 422 u32 tx_excessive_collisions; 423 u32 tx_first_collisions; 424 u32 tx_late_collisions; 425 u32 tx_max_pkt_errs; 426 u32 tx_deferred; 427 428 u32 rx_overflows; 429 u32 rx_length_errs; 430 u32 rx_align_errs; 431 u32 rx_crc_errs; 432 u32 rx_code_violations; 433 u32 rx_other_errs; 434 435 u32 interrupt_status; 436 }; 437 438 /* The private adapter structure */ 439 struct et131x_adapter { 440 struct net_device *netdev; 441 struct pci_dev *pdev; 442 struct mii_bus *mii_bus; 443 struct phy_device *phydev; 444 struct napi_struct napi; 445 446 /* Flags that indicate current state of the adapter */ 447 u32 flags; 448 449 /* local link state, to determine if a state change has occurred */ 450 int link; 451 452 /* Configuration */ 453 u8 rom_addr[ETH_ALEN]; 454 u8 addr[ETH_ALEN]; 455 bool has_eeprom; 456 u8 eeprom_data[2]; 457 458 spinlock_t tcb_send_qlock; /* protects the tx_ring send tcb list */ 459 spinlock_t tcb_ready_qlock; /* protects the tx_ring ready tcb list */ 460 spinlock_t rcv_lock; /* protects the rx_ring receive list */ 461 462 /* Packet Filter and look ahead size */ 463 u32 packet_filter; 464 465 /* multicast list */ 466 u32 multicast_addr_count; 467 u8 multicast_list[NIC_MAX_MCAST_LIST][ETH_ALEN]; 468 469 /* Pointer to the device's PCI register space */ 470 struct address_map __iomem *regs; 471 472 /* Registry parameters */ 473 u8 wanted_flow; /* Flow we want for 802.3x flow control */ 474 u32 registry_jumbo_packet; /* Max supported ethernet packet size */ 475 476 /* Derived from the registry: */ 477 u8 flow; /* flow control validated by the far-end */ 478 479 /* Minimize init-time */ 480 struct timer_list error_timer; 481 482 /* variable putting the phy into coma mode when boot up with no cable 483 * plugged in after 5 seconds 484 */ 485 u8 boot_coma; 486 487 /* Tx Memory Variables */ 488 struct tx_ring tx_ring; 489 490 /* Rx Memory Variables */ 491 struct rx_ring rx_ring; 492 493 struct ce_stats stats; 494 }; 495 496 static int eeprom_wait_ready(struct pci_dev *pdev, u32 *status) 497 { 498 u32 reg; 499 int i; 500 501 /* 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and 502 * bits 7,1:0 both equal to 1, at least once after reset. 503 * Subsequent operations need only to check that bits 1:0 are equal 504 * to 1 prior to starting a single byte read/write 505 */ 506 for (i = 0; i < MAX_NUM_REGISTER_POLLS; i++) { 507 if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP, ®)) 508 return -EIO; 509 510 /* I2C idle and Phy Queue Avail both true */ 511 if ((reg & 0x3000) == 0x3000) { 512 if (status) 513 *status = reg; 514 return reg & 0xFF; 515 } 516 } 517 return -ETIMEDOUT; 518 } 519 520 static int eeprom_write(struct et131x_adapter *adapter, u32 addr, u8 data) 521 { 522 struct pci_dev *pdev = adapter->pdev; 523 int index = 0; 524 int retries; 525 int err = 0; 526 int writeok = 0; 527 u32 status; 528 u32 val = 0; 529 530 /* For an EEPROM, an I2C single byte write is defined as a START 531 * condition followed by the device address, EEPROM address, one byte 532 * of data and a STOP condition. The STOP condition will trigger the 533 * EEPROM's internally timed write cycle to the nonvolatile memory. 534 * All inputs are disabled during this write cycle and the EEPROM will 535 * not respond to any access until the internal write is complete. 536 */ 537 err = eeprom_wait_ready(pdev, NULL); 538 if (err < 0) 539 return err; 540 541 /* 2. Write to the LBCIF Control Register: bit 7=1, bit 6=1, bit 3=0, 542 * and bits 1:0 both =0. Bit 5 should be set according to the 543 * type of EEPROM being accessed (1=two byte addressing, 0=one 544 * byte addressing). 545 */ 546 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER, 547 LBCIF_CONTROL_LBCIF_ENABLE | 548 LBCIF_CONTROL_I2C_WRITE)) 549 return -EIO; 550 551 /* Prepare EEPROM address for Step 3 */ 552 for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) { 553 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr)) 554 break; 555 /* Write the data to the LBCIF Data Register (the I2C write 556 * will begin). 557 */ 558 if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER, data)) 559 break; 560 /* Monitor bit 1:0 of the LBCIF Status Register. When bits 561 * 1:0 are both equal to 1, the I2C write has completed and the 562 * internal write cycle of the EEPROM is about to start. 563 * (bits 1:0 = 01 is a legal state while waiting from both 564 * equal to 1, but bits 1:0 = 10 is invalid and implies that 565 * something is broken). 566 */ 567 err = eeprom_wait_ready(pdev, &status); 568 if (err < 0) 569 return 0; 570 571 /* Check bit 3 of the LBCIF Status Register. If equal to 1, 572 * an error has occurred.Don't break here if we are revision 573 * 1, this is so we do a blind write for load bug. 574 */ 575 if ((status & LBCIF_STATUS_GENERAL_ERROR) && 576 adapter->pdev->revision == 0) 577 break; 578 579 /* Check bit 2 of the LBCIF Status Register. If equal to 1 an 580 * ACK error has occurred on the address phase of the write. 581 * This could be due to an actual hardware failure or the 582 * EEPROM may still be in its internal write cycle from a 583 * previous write. This write operation was ignored and must be 584 *repeated later. 585 */ 586 if (status & LBCIF_STATUS_ACK_ERROR) { 587 /* This could be due to an actual hardware failure 588 * or the EEPROM may still be in its internal write 589 * cycle from a previous write. This write operation 590 * was ignored and must be repeated later. 591 */ 592 udelay(10); 593 continue; 594 } 595 596 writeok = 1; 597 break; 598 } 599 600 udelay(10); 601 602 while (1) { 603 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER, 604 LBCIF_CONTROL_LBCIF_ENABLE)) 605 writeok = 0; 606 607 /* Do read until internal ACK_ERROR goes away meaning write 608 * completed 609 */ 610 do { 611 pci_write_config_dword(pdev, 612 LBCIF_ADDRESS_REGISTER, 613 addr); 614 do { 615 pci_read_config_dword(pdev, 616 LBCIF_DATA_REGISTER, 617 &val); 618 } while ((val & 0x00010000) == 0); 619 } while (val & 0x00040000); 620 621 if ((val & 0xFF00) != 0xC000 || index == 10000) 622 break; 623 index++; 624 } 625 return writeok ? 0 : -EIO; 626 } 627 628 static int eeprom_read(struct et131x_adapter *adapter, u32 addr, u8 *pdata) 629 { 630 struct pci_dev *pdev = adapter->pdev; 631 int err; 632 u32 status; 633 634 /* A single byte read is similar to the single byte write, with the 635 * exception of the data flow: 636 */ 637 err = eeprom_wait_ready(pdev, NULL); 638 if (err < 0) 639 return err; 640 /* Write to the LBCIF Control Register: bit 7=1, bit 6=0, bit 3=0, 641 * and bits 1:0 both =0. Bit 5 should be set according to the type 642 * of EEPROM being accessed (1=two byte addressing, 0=one byte 643 * addressing). 644 */ 645 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER, 646 LBCIF_CONTROL_LBCIF_ENABLE)) 647 return -EIO; 648 /* Write the address to the LBCIF Address Register (I2C read will 649 * begin). 650 */ 651 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr)) 652 return -EIO; 653 /* Monitor bit 0 of the LBCIF Status Register. When = 1, I2C read 654 * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure 655 * has occurred). 656 */ 657 err = eeprom_wait_ready(pdev, &status); 658 if (err < 0) 659 return err; 660 /* Regardless of error status, read data byte from LBCIF Data 661 * Register. 662 */ 663 *pdata = err; 664 665 return (status & LBCIF_STATUS_ACK_ERROR) ? -EIO : 0; 666 } 667 668 static int et131x_init_eeprom(struct et131x_adapter *adapter) 669 { 670 struct pci_dev *pdev = adapter->pdev; 671 u8 eestatus; 672 673 pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus); 674 675 /* THIS IS A WORKAROUND: 676 * I need to call this function twice to get my card in a 677 * LG M1 Express Dual running. I tried also a msleep before this 678 * function, because I thought there could be some time conditions 679 * but it didn't work. Call the whole function twice also work. 680 */ 681 if (pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus)) { 682 dev_err(&pdev->dev, 683 "Could not read PCI config space for EEPROM Status\n"); 684 return -EIO; 685 } 686 687 /* Determine if the error(s) we care about are present. If they are 688 * present we need to fail. 689 */ 690 if (eestatus & 0x4C) { 691 int write_failed = 0; 692 693 if (pdev->revision == 0x01) { 694 int i; 695 static const u8 eedata[4] = { 0xFE, 0x13, 0x10, 0xFF }; 696 697 /* Re-write the first 4 bytes if we have an eeprom 698 * present and the revision id is 1, this fixes the 699 * corruption seen with 1310 B Silicon 700 */ 701 for (i = 0; i < 3; i++) 702 if (eeprom_write(adapter, i, eedata[i]) < 0) 703 write_failed = 1; 704 } 705 if (pdev->revision != 0x01 || write_failed) { 706 dev_err(&pdev->dev, 707 "Fatal EEPROM Status Error - 0x%04x\n", 708 eestatus); 709 710 /* This error could mean that there was an error 711 * reading the eeprom or that the eeprom doesn't exist. 712 * We will treat each case the same and not try to 713 * gather additional information that normally would 714 * come from the eeprom, like MAC Address 715 */ 716 adapter->has_eeprom = 0; 717 return -EIO; 718 } 719 } 720 adapter->has_eeprom = 1; 721 722 /* Read the EEPROM for information regarding LED behavior. Refer to 723 * et131x_xcvr_init() for its use. 724 */ 725 eeprom_read(adapter, 0x70, &adapter->eeprom_data[0]); 726 eeprom_read(adapter, 0x71, &adapter->eeprom_data[1]); 727 728 if (adapter->eeprom_data[0] != 0xcd) 729 /* Disable all optional features */ 730 adapter->eeprom_data[1] = 0x00; 731 732 return 0; 733 } 734 735 static void et131x_rx_dma_enable(struct et131x_adapter *adapter) 736 { 737 /* Setup the receive dma configuration register for normal operation */ 738 u32 csr = ET_RXDMA_CSR_FBR1_ENABLE; 739 struct rx_ring *rx_ring = &adapter->rx_ring; 740 741 if (rx_ring->fbr[1]->buffsize == 4096) 742 csr |= ET_RXDMA_CSR_FBR1_SIZE_LO; 743 else if (rx_ring->fbr[1]->buffsize == 8192) 744 csr |= ET_RXDMA_CSR_FBR1_SIZE_HI; 745 else if (rx_ring->fbr[1]->buffsize == 16384) 746 csr |= ET_RXDMA_CSR_FBR1_SIZE_LO | ET_RXDMA_CSR_FBR1_SIZE_HI; 747 748 csr |= ET_RXDMA_CSR_FBR0_ENABLE; 749 if (rx_ring->fbr[0]->buffsize == 256) 750 csr |= ET_RXDMA_CSR_FBR0_SIZE_LO; 751 else if (rx_ring->fbr[0]->buffsize == 512) 752 csr |= ET_RXDMA_CSR_FBR0_SIZE_HI; 753 else if (rx_ring->fbr[0]->buffsize == 1024) 754 csr |= ET_RXDMA_CSR_FBR0_SIZE_LO | ET_RXDMA_CSR_FBR0_SIZE_HI; 755 writel(csr, &adapter->regs->rxdma.csr); 756 757 csr = readl(&adapter->regs->rxdma.csr); 758 if (csr & ET_RXDMA_CSR_HALT_STATUS) { 759 udelay(5); 760 csr = readl(&adapter->regs->rxdma.csr); 761 if (csr & ET_RXDMA_CSR_HALT_STATUS) { 762 dev_err(&adapter->pdev->dev, 763 "RX Dma failed to exit halt state. CSR 0x%08x\n", 764 csr); 765 } 766 } 767 } 768 769 static void et131x_rx_dma_disable(struct et131x_adapter *adapter) 770 { 771 u32 csr; 772 /* Setup the receive dma configuration register */ 773 writel(ET_RXDMA_CSR_HALT | ET_RXDMA_CSR_FBR1_ENABLE, 774 &adapter->regs->rxdma.csr); 775 csr = readl(&adapter->regs->rxdma.csr); 776 if (!(csr & ET_RXDMA_CSR_HALT_STATUS)) { 777 udelay(5); 778 csr = readl(&adapter->regs->rxdma.csr); 779 if (!(csr & ET_RXDMA_CSR_HALT_STATUS)) 780 dev_err(&adapter->pdev->dev, 781 "RX Dma failed to enter halt state. CSR 0x%08x\n", 782 csr); 783 } 784 } 785 786 static void et131x_tx_dma_enable(struct et131x_adapter *adapter) 787 { 788 /* Setup the transmit dma configuration register for normal 789 * operation 790 */ 791 writel(ET_TXDMA_SNGL_EPKT | (PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT), 792 &adapter->regs->txdma.csr); 793 } 794 795 static inline void add_10bit(u32 *v, int n) 796 { 797 *v = INDEX10(*v + n) | (*v & ET_DMA10_WRAP); 798 } 799 800 static inline void add_12bit(u32 *v, int n) 801 { 802 *v = INDEX12(*v + n) | (*v & ET_DMA12_WRAP); 803 } 804 805 static void et1310_config_mac_regs1(struct et131x_adapter *adapter) 806 { 807 struct mac_regs __iomem *macregs = &adapter->regs->mac; 808 u32 station1; 809 u32 station2; 810 u32 ipg; 811 812 /* First we need to reset everything. Write to MAC configuration 813 * register 1 to perform reset. 814 */ 815 writel(ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET | 816 ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC | 817 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC, 818 ¯egs->cfg1); 819 820 /* Next lets configure the MAC Inter-packet gap register */ 821 ipg = 0x38005860; /* IPG1 0x38 IPG2 0x58 B2B 0x60 */ 822 ipg |= 0x50 << 8; /* ifg enforce 0x50 */ 823 writel(ipg, ¯egs->ipg); 824 825 /* Next lets configure the MAC Half Duplex register */ 826 /* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */ 827 writel(0x00A1F037, ¯egs->hfdp); 828 829 /* Next lets configure the MAC Interface Control register */ 830 writel(0, ¯egs->if_ctrl); 831 832 writel(ET_MAC_MIIMGMT_CLK_RST, ¯egs->mii_mgmt_cfg); 833 834 /* Next lets configure the MAC Station Address register. These 835 * values are read from the EEPROM during initialization and stored 836 * in the adapter structure. We write what is stored in the adapter 837 * structure to the MAC Station Address registers high and low. This 838 * station address is used for generating and checking pause control 839 * packets. 840 */ 841 station2 = (adapter->addr[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT) | 842 (adapter->addr[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT); 843 station1 = (adapter->addr[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT) | 844 (adapter->addr[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT) | 845 (adapter->addr[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT) | 846 adapter->addr[2]; 847 writel(station1, ¯egs->station_addr_1); 848 writel(station2, ¯egs->station_addr_2); 849 850 /* Max ethernet packet in bytes that will be passed by the mac without 851 * being truncated. Allow the MAC to pass 4 more than our max packet 852 * size. This is 4 for the Ethernet CRC. 853 * 854 * Packets larger than (registry_jumbo_packet) that do not contain a 855 * VLAN ID will be dropped by the Rx function. 856 */ 857 writel(adapter->registry_jumbo_packet + 4, ¯egs->max_fm_len); 858 859 /* clear out MAC config reset */ 860 writel(0, ¯egs->cfg1); 861 } 862 863 static void et1310_config_mac_regs2(struct et131x_adapter *adapter) 864 { 865 int32_t delay = 0; 866 struct mac_regs __iomem *mac = &adapter->regs->mac; 867 struct phy_device *phydev = adapter->phydev; 868 u32 cfg1; 869 u32 cfg2; 870 u32 ifctrl; 871 u32 ctl; 872 873 ctl = readl(&adapter->regs->txmac.ctl); 874 cfg1 = readl(&mac->cfg1); 875 cfg2 = readl(&mac->cfg2); 876 ifctrl = readl(&mac->if_ctrl); 877 878 /* Set up the if mode bits */ 879 cfg2 &= ~ET_MAC_CFG2_IFMODE_MASK; 880 if (phydev->speed == SPEED_1000) { 881 cfg2 |= ET_MAC_CFG2_IFMODE_1000; 882 ifctrl &= ~ET_MAC_IFCTRL_PHYMODE; 883 } else { 884 cfg2 |= ET_MAC_CFG2_IFMODE_100; 885 ifctrl |= ET_MAC_IFCTRL_PHYMODE; 886 } 887 888 cfg1 |= ET_MAC_CFG1_RX_ENABLE | ET_MAC_CFG1_TX_ENABLE | 889 ET_MAC_CFG1_TX_FLOW; 890 891 cfg1 &= ~(ET_MAC_CFG1_LOOPBACK | ET_MAC_CFG1_RX_FLOW); 892 if (adapter->flow == FLOW_RXONLY || adapter->flow == FLOW_BOTH) 893 cfg1 |= ET_MAC_CFG1_RX_FLOW; 894 writel(cfg1, &mac->cfg1); 895 896 /* Now we need to initialize the MAC Configuration 2 register */ 897 /* preamble 7, check length, huge frame off, pad crc, crc enable 898 * full duplex off 899 */ 900 cfg2 |= 0x7 << ET_MAC_CFG2_PREAMBLE_SHIFT; 901 cfg2 |= ET_MAC_CFG2_IFMODE_LEN_CHECK; 902 cfg2 |= ET_MAC_CFG2_IFMODE_PAD_CRC; 903 cfg2 |= ET_MAC_CFG2_IFMODE_CRC_ENABLE; 904 cfg2 &= ~ET_MAC_CFG2_IFMODE_HUGE_FRAME; 905 cfg2 &= ~ET_MAC_CFG2_IFMODE_FULL_DPLX; 906 907 if (phydev->duplex == DUPLEX_FULL) 908 cfg2 |= ET_MAC_CFG2_IFMODE_FULL_DPLX; 909 910 ifctrl &= ~ET_MAC_IFCTRL_GHDMODE; 911 if (phydev->duplex == DUPLEX_HALF) 912 ifctrl |= ET_MAC_IFCTRL_GHDMODE; 913 914 writel(ifctrl, &mac->if_ctrl); 915 writel(cfg2, &mac->cfg2); 916 917 do { 918 udelay(10); 919 delay++; 920 cfg1 = readl(&mac->cfg1); 921 } while ((cfg1 & ET_MAC_CFG1_WAIT) != ET_MAC_CFG1_WAIT && delay < 100); 922 923 if (delay == 100) { 924 dev_warn(&adapter->pdev->dev, 925 "Syncd bits did not respond correctly cfg1 word 0x%08x\n", 926 cfg1); 927 } 928 929 ctl |= ET_TX_CTRL_TXMAC_ENABLE | ET_TX_CTRL_FC_DISABLE; 930 writel(ctl, &adapter->regs->txmac.ctl); 931 932 if (adapter->flags & FMP_ADAPTER_LOWER_POWER) { 933 et131x_rx_dma_enable(adapter); 934 et131x_tx_dma_enable(adapter); 935 } 936 } 937 938 static int et1310_in_phy_coma(struct et131x_adapter *adapter) 939 { 940 u32 pmcsr = readl(&adapter->regs->global.pm_csr); 941 942 return ET_PM_PHY_SW_COMA & pmcsr ? 1 : 0; 943 } 944 945 static void et1310_setup_device_for_multicast(struct et131x_adapter *adapter) 946 { 947 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac; 948 u32 hash1 = 0; 949 u32 hash2 = 0; 950 u32 hash3 = 0; 951 u32 hash4 = 0; 952 u32 pm_csr; 953 954 /* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision 955 * the multi-cast LIST. If it is NOT specified, (and "ALL" is not 956 * specified) then we should pass NO multi-cast addresses to the 957 * driver. 958 */ 959 if (adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST) { 960 int i; 961 962 /* Loop through our multicast array and set up the device */ 963 for (i = 0; i < adapter->multicast_addr_count; i++) { 964 u32 result; 965 966 result = ether_crc(6, adapter->multicast_list[i]); 967 968 result = (result & 0x3F800000) >> 23; 969 970 if (result < 32) { 971 hash1 |= (1 << result); 972 } else if ((31 < result) && (result < 64)) { 973 result -= 32; 974 hash2 |= (1 << result); 975 } else if ((63 < result) && (result < 96)) { 976 result -= 64; 977 hash3 |= (1 << result); 978 } else { 979 result -= 96; 980 hash4 |= (1 << result); 981 } 982 } 983 } 984 985 /* Write out the new hash to the device */ 986 pm_csr = readl(&adapter->regs->global.pm_csr); 987 if (!et1310_in_phy_coma(adapter)) { 988 writel(hash1, &rxmac->multi_hash1); 989 writel(hash2, &rxmac->multi_hash2); 990 writel(hash3, &rxmac->multi_hash3); 991 writel(hash4, &rxmac->multi_hash4); 992 } 993 } 994 995 static void et1310_setup_device_for_unicast(struct et131x_adapter *adapter) 996 { 997 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac; 998 u32 uni_pf1; 999 u32 uni_pf2; 1000 u32 uni_pf3; 1001 u32 pm_csr; 1002 1003 /* Set up unicast packet filter reg 3 to be the first two octets of 1004 * the MAC address for both address 1005 * 1006 * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the 1007 * MAC address for second address 1008 * 1009 * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the 1010 * MAC address for first address 1011 */ 1012 uni_pf3 = (adapter->addr[0] << ET_RX_UNI_PF_ADDR2_1_SHIFT) | 1013 (adapter->addr[1] << ET_RX_UNI_PF_ADDR2_2_SHIFT) | 1014 (adapter->addr[0] << ET_RX_UNI_PF_ADDR1_1_SHIFT) | 1015 adapter->addr[1]; 1016 1017 uni_pf2 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR2_3_SHIFT) | 1018 (adapter->addr[3] << ET_RX_UNI_PF_ADDR2_4_SHIFT) | 1019 (adapter->addr[4] << ET_RX_UNI_PF_ADDR2_5_SHIFT) | 1020 adapter->addr[5]; 1021 1022 uni_pf1 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR1_3_SHIFT) | 1023 (adapter->addr[3] << ET_RX_UNI_PF_ADDR1_4_SHIFT) | 1024 (adapter->addr[4] << ET_RX_UNI_PF_ADDR1_5_SHIFT) | 1025 adapter->addr[5]; 1026 1027 pm_csr = readl(&adapter->regs->global.pm_csr); 1028 if (!et1310_in_phy_coma(adapter)) { 1029 writel(uni_pf1, &rxmac->uni_pf_addr1); 1030 writel(uni_pf2, &rxmac->uni_pf_addr2); 1031 writel(uni_pf3, &rxmac->uni_pf_addr3); 1032 } 1033 } 1034 1035 static void et1310_config_rxmac_regs(struct et131x_adapter *adapter) 1036 { 1037 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac; 1038 struct phy_device *phydev = adapter->phydev; 1039 u32 sa_lo; 1040 u32 sa_hi = 0; 1041 u32 pf_ctrl = 0; 1042 u32 __iomem *wolw; 1043 1044 /* Disable the MAC while it is being configured (also disable WOL) */ 1045 writel(0x8, &rxmac->ctrl); 1046 1047 /* Initialize WOL to disabled. */ 1048 writel(0, &rxmac->crc0); 1049 writel(0, &rxmac->crc12); 1050 writel(0, &rxmac->crc34); 1051 1052 /* We need to set the WOL mask0 - mask4 next. We initialize it to 1053 * its default Values of 0x00000000 because there are not WOL masks 1054 * as of this time. 1055 */ 1056 for (wolw = &rxmac->mask0_word0; wolw <= &rxmac->mask4_word3; wolw++) 1057 writel(0, wolw); 1058 1059 /* Lets setup the WOL Source Address */ 1060 sa_lo = (adapter->addr[2] << ET_RX_WOL_LO_SA3_SHIFT) | 1061 (adapter->addr[3] << ET_RX_WOL_LO_SA4_SHIFT) | 1062 (adapter->addr[4] << ET_RX_WOL_LO_SA5_SHIFT) | 1063 adapter->addr[5]; 1064 writel(sa_lo, &rxmac->sa_lo); 1065 1066 sa_hi = (u32)(adapter->addr[0] << ET_RX_WOL_HI_SA1_SHIFT) | 1067 adapter->addr[1]; 1068 writel(sa_hi, &rxmac->sa_hi); 1069 1070 /* Disable all Packet Filtering */ 1071 writel(0, &rxmac->pf_ctrl); 1072 1073 /* Let's initialize the Unicast Packet filtering address */ 1074 if (adapter->packet_filter & ET131X_PACKET_TYPE_DIRECTED) { 1075 et1310_setup_device_for_unicast(adapter); 1076 pf_ctrl |= ET_RX_PFCTRL_UNICST_FILTER_ENABLE; 1077 } else { 1078 writel(0, &rxmac->uni_pf_addr1); 1079 writel(0, &rxmac->uni_pf_addr2); 1080 writel(0, &rxmac->uni_pf_addr3); 1081 } 1082 1083 /* Let's initialize the Multicast hash */ 1084 if (!(adapter->packet_filter & ET131X_PACKET_TYPE_ALL_MULTICAST)) { 1085 pf_ctrl |= ET_RX_PFCTRL_MLTCST_FILTER_ENABLE; 1086 et1310_setup_device_for_multicast(adapter); 1087 } 1088 1089 /* Runt packet filtering. Didn't work in version A silicon. */ 1090 pf_ctrl |= (NIC_MIN_PACKET_SIZE + 4) << ET_RX_PFCTRL_MIN_PKT_SZ_SHIFT; 1091 pf_ctrl |= ET_RX_PFCTRL_FRAG_FILTER_ENABLE; 1092 1093 if (adapter->registry_jumbo_packet > 8192) 1094 /* In order to transmit jumbo packets greater than 8k, the 1095 * FIFO between RxMAC and RxDMA needs to be reduced in size 1096 * to (16k - Jumbo packet size). In order to implement this, 1097 * we must use "cut through" mode in the RxMAC, which chops 1098 * packets down into segments which are (max_size * 16). In 1099 * this case we selected 256 bytes, since this is the size of 1100 * the PCI-Express TLP's that the 1310 uses. 1101 * 1102 * seg_en on, fc_en off, size 0x10 1103 */ 1104 writel(0x41, &rxmac->mcif_ctrl_max_seg); 1105 else 1106 writel(0, &rxmac->mcif_ctrl_max_seg); 1107 1108 writel(0, &rxmac->mcif_water_mark); 1109 writel(0, &rxmac->mif_ctrl); 1110 writel(0, &rxmac->space_avail); 1111 1112 /* Initialize the the mif_ctrl register 1113 * bit 3: Receive code error. One or more nibbles were signaled as 1114 * errors during the reception of the packet. Clear this 1115 * bit in Gigabit, set it in 100Mbit. This was derived 1116 * experimentally at UNH. 1117 * bit 4: Receive CRC error. The packet's CRC did not match the 1118 * internally generated CRC. 1119 * bit 5: Receive length check error. Indicates that frame length 1120 * field value in the packet does not match the actual data 1121 * byte length and is not a type field. 1122 * bit 16: Receive frame truncated. 1123 * bit 17: Drop packet enable 1124 */ 1125 if (phydev && phydev->speed == SPEED_100) 1126 writel(0x30038, &rxmac->mif_ctrl); 1127 else 1128 writel(0x30030, &rxmac->mif_ctrl); 1129 1130 /* Finally we initialize RxMac to be enabled & WOL disabled. Packet 1131 * filter is always enabled since it is where the runt packets are 1132 * supposed to be dropped. For version A silicon, runt packet 1133 * dropping doesn't work, so it is disabled in the pf_ctrl register, 1134 * but we still leave the packet filter on. 1135 */ 1136 writel(pf_ctrl, &rxmac->pf_ctrl); 1137 writel(ET_RX_CTRL_RXMAC_ENABLE | ET_RX_CTRL_WOL_DISABLE, &rxmac->ctrl); 1138 } 1139 1140 static void et1310_config_txmac_regs(struct et131x_adapter *adapter) 1141 { 1142 struct txmac_regs __iomem *txmac = &adapter->regs->txmac; 1143 1144 /* We need to update the Control Frame Parameters 1145 * cfpt - control frame pause timer set to 64 (0x40) 1146 * cfep - control frame extended pause timer set to 0x0 1147 */ 1148 if (adapter->flow == FLOW_NONE) 1149 writel(0, &txmac->cf_param); 1150 else 1151 writel(0x40, &txmac->cf_param); 1152 } 1153 1154 static void et1310_config_macstat_regs(struct et131x_adapter *adapter) 1155 { 1156 struct macstat_regs __iomem *macstat = &adapter->regs->macstat; 1157 u32 __iomem *reg; 1158 1159 /* initialize all the macstat registers to zero on the device */ 1160 for (reg = &macstat->txrx_0_64_byte_frames; 1161 reg <= &macstat->carry_reg2; reg++) 1162 writel(0, reg); 1163 1164 /* Unmask any counters that we want to track the overflow of. 1165 * Initially this will be all counters. It may become clear later 1166 * that we do not need to track all counters. 1167 */ 1168 writel(0xFFFFBE32, &macstat->carry_reg1_mask); 1169 writel(0xFFFE7E8B, &macstat->carry_reg2_mask); 1170 } 1171 1172 static int et131x_phy_mii_read(struct et131x_adapter *adapter, u8 addr, 1173 u8 reg, u16 *value) 1174 { 1175 struct mac_regs __iomem *mac = &adapter->regs->mac; 1176 int status = 0; 1177 u32 delay = 0; 1178 u32 mii_addr; 1179 u32 mii_cmd; 1180 u32 mii_indicator; 1181 1182 /* Save a local copy of the registers we are dealing with so we can 1183 * set them back 1184 */ 1185 mii_addr = readl(&mac->mii_mgmt_addr); 1186 mii_cmd = readl(&mac->mii_mgmt_cmd); 1187 1188 /* Stop the current operation */ 1189 writel(0, &mac->mii_mgmt_cmd); 1190 1191 /* Set up the register we need to read from on the correct PHY */ 1192 writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr); 1193 1194 writel(0x1, &mac->mii_mgmt_cmd); 1195 1196 do { 1197 udelay(50); 1198 delay++; 1199 mii_indicator = readl(&mac->mii_mgmt_indicator); 1200 } while ((mii_indicator & ET_MAC_MGMT_WAIT) && delay < 50); 1201 1202 /* If we hit the max delay, we could not read the register */ 1203 if (delay == 50) { 1204 dev_warn(&adapter->pdev->dev, 1205 "reg 0x%08x could not be read\n", reg); 1206 dev_warn(&adapter->pdev->dev, "status is 0x%08x\n", 1207 mii_indicator); 1208 1209 status = -EIO; 1210 goto out; 1211 } 1212 1213 /* If we hit here we were able to read the register and we need to 1214 * return the value to the caller 1215 */ 1216 *value = readl(&mac->mii_mgmt_stat) & ET_MAC_MIIMGMT_STAT_PHYCRTL_MASK; 1217 1218 out: 1219 /* Stop the read operation */ 1220 writel(0, &mac->mii_mgmt_cmd); 1221 1222 /* set the registers we touched back to the state at which we entered 1223 * this function 1224 */ 1225 writel(mii_addr, &mac->mii_mgmt_addr); 1226 writel(mii_cmd, &mac->mii_mgmt_cmd); 1227 1228 return status; 1229 } 1230 1231 static int et131x_mii_read(struct et131x_adapter *adapter, u8 reg, u16 *value) 1232 { 1233 struct phy_device *phydev = adapter->phydev; 1234 1235 if (!phydev) 1236 return -EIO; 1237 1238 return et131x_phy_mii_read(adapter, phydev->addr, reg, value); 1239 } 1240 1241 static int et131x_mii_write(struct et131x_adapter *adapter, u8 addr, u8 reg, 1242 u16 value) 1243 { 1244 struct mac_regs __iomem *mac = &adapter->regs->mac; 1245 int status = 0; 1246 u32 delay = 0; 1247 u32 mii_addr; 1248 u32 mii_cmd; 1249 u32 mii_indicator; 1250 1251 /* Save a local copy of the registers we are dealing with so we can 1252 * set them back 1253 */ 1254 mii_addr = readl(&mac->mii_mgmt_addr); 1255 mii_cmd = readl(&mac->mii_mgmt_cmd); 1256 1257 /* Stop the current operation */ 1258 writel(0, &mac->mii_mgmt_cmd); 1259 1260 /* Set up the register we need to write to on the correct PHY */ 1261 writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr); 1262 1263 /* Add the value to write to the registers to the mac */ 1264 writel(value, &mac->mii_mgmt_ctrl); 1265 1266 do { 1267 udelay(50); 1268 delay++; 1269 mii_indicator = readl(&mac->mii_mgmt_indicator); 1270 } while ((mii_indicator & ET_MAC_MGMT_BUSY) && delay < 100); 1271 1272 /* If we hit the max delay, we could not write the register */ 1273 if (delay == 100) { 1274 u16 tmp; 1275 1276 dev_warn(&adapter->pdev->dev, 1277 "reg 0x%08x could not be written", reg); 1278 dev_warn(&adapter->pdev->dev, "status is 0x%08x\n", 1279 mii_indicator); 1280 dev_warn(&adapter->pdev->dev, "command is 0x%08x\n", 1281 readl(&mac->mii_mgmt_cmd)); 1282 1283 et131x_mii_read(adapter, reg, &tmp); 1284 1285 status = -EIO; 1286 } 1287 /* Stop the write operation */ 1288 writel(0, &mac->mii_mgmt_cmd); 1289 1290 /* set the registers we touched back to the state at which we entered 1291 * this function 1292 */ 1293 writel(mii_addr, &mac->mii_mgmt_addr); 1294 writel(mii_cmd, &mac->mii_mgmt_cmd); 1295 1296 return status; 1297 } 1298 1299 static void et1310_phy_read_mii_bit(struct et131x_adapter *adapter, 1300 u16 regnum, 1301 u16 bitnum, 1302 u8 *value) 1303 { 1304 u16 reg; 1305 u16 mask = 1 << bitnum; 1306 1307 et131x_mii_read(adapter, regnum, ®); 1308 1309 *value = (reg & mask) >> bitnum; 1310 } 1311 1312 static void et1310_config_flow_control(struct et131x_adapter *adapter) 1313 { 1314 struct phy_device *phydev = adapter->phydev; 1315 1316 if (phydev->duplex == DUPLEX_HALF) { 1317 adapter->flow = FLOW_NONE; 1318 } else { 1319 char remote_pause, remote_async_pause; 1320 1321 et1310_phy_read_mii_bit(adapter, 5, 10, &remote_pause); 1322 et1310_phy_read_mii_bit(adapter, 5, 11, &remote_async_pause); 1323 1324 if (remote_pause && remote_async_pause) { 1325 adapter->flow = adapter->wanted_flow; 1326 } else if (remote_pause && !remote_async_pause) { 1327 if (adapter->wanted_flow == FLOW_BOTH) 1328 adapter->flow = FLOW_BOTH; 1329 else 1330 adapter->flow = FLOW_NONE; 1331 } else if (!remote_pause && !remote_async_pause) { 1332 adapter->flow = FLOW_NONE; 1333 } else { 1334 if (adapter->wanted_flow == FLOW_BOTH) 1335 adapter->flow = FLOW_RXONLY; 1336 else 1337 adapter->flow = FLOW_NONE; 1338 } 1339 } 1340 } 1341 1342 /* et1310_update_macstat_host_counters - Update local copy of the statistics */ 1343 static void et1310_update_macstat_host_counters(struct et131x_adapter *adapter) 1344 { 1345 struct ce_stats *stats = &adapter->stats; 1346 struct macstat_regs __iomem *macstat = 1347 &adapter->regs->macstat; 1348 1349 stats->tx_collisions += readl(&macstat->tx_total_collisions); 1350 stats->tx_first_collisions += readl(&macstat->tx_single_collisions); 1351 stats->tx_deferred += readl(&macstat->tx_deferred); 1352 stats->tx_excessive_collisions += 1353 readl(&macstat->tx_multiple_collisions); 1354 stats->tx_late_collisions += readl(&macstat->tx_late_collisions); 1355 stats->tx_underflows += readl(&macstat->tx_undersize_frames); 1356 stats->tx_max_pkt_errs += readl(&macstat->tx_oversize_frames); 1357 1358 stats->rx_align_errs += readl(&macstat->rx_align_errs); 1359 stats->rx_crc_errs += readl(&macstat->rx_code_errs); 1360 stats->rcvd_pkts_dropped += readl(&macstat->rx_drops); 1361 stats->rx_overflows += readl(&macstat->rx_oversize_packets); 1362 stats->rx_code_violations += readl(&macstat->rx_fcs_errs); 1363 stats->rx_length_errs += readl(&macstat->rx_frame_len_errs); 1364 stats->rx_other_errs += readl(&macstat->rx_fragment_packets); 1365 } 1366 1367 /* et1310_handle_macstat_interrupt 1368 * 1369 * One of the MACSTAT counters has wrapped. Update the local copy of 1370 * the statistics held in the adapter structure, checking the "wrap" 1371 * bit for each counter. 1372 */ 1373 static void et1310_handle_macstat_interrupt(struct et131x_adapter *adapter) 1374 { 1375 u32 carry_reg1; 1376 u32 carry_reg2; 1377 1378 /* Read the interrupt bits from the register(s). These are Clear On 1379 * Write. 1380 */ 1381 carry_reg1 = readl(&adapter->regs->macstat.carry_reg1); 1382 carry_reg2 = readl(&adapter->regs->macstat.carry_reg2); 1383 1384 writel(carry_reg1, &adapter->regs->macstat.carry_reg1); 1385 writel(carry_reg2, &adapter->regs->macstat.carry_reg2); 1386 1387 /* We need to do update the host copy of all the MAC_STAT counters. 1388 * For each counter, check it's overflow bit. If the overflow bit is 1389 * set, then increment the host version of the count by one complete 1390 * revolution of the counter. This routine is called when the counter 1391 * block indicates that one of the counters has wrapped. 1392 */ 1393 if (carry_reg1 & (1 << 14)) 1394 adapter->stats.rx_code_violations += COUNTER_WRAP_16_BIT; 1395 if (carry_reg1 & (1 << 8)) 1396 adapter->stats.rx_align_errs += COUNTER_WRAP_12_BIT; 1397 if (carry_reg1 & (1 << 7)) 1398 adapter->stats.rx_length_errs += COUNTER_WRAP_16_BIT; 1399 if (carry_reg1 & (1 << 2)) 1400 adapter->stats.rx_other_errs += COUNTER_WRAP_16_BIT; 1401 if (carry_reg1 & (1 << 6)) 1402 adapter->stats.rx_crc_errs += COUNTER_WRAP_16_BIT; 1403 if (carry_reg1 & (1 << 3)) 1404 adapter->stats.rx_overflows += COUNTER_WRAP_16_BIT; 1405 if (carry_reg1 & (1 << 0)) 1406 adapter->stats.rcvd_pkts_dropped += COUNTER_WRAP_16_BIT; 1407 if (carry_reg2 & (1 << 16)) 1408 adapter->stats.tx_max_pkt_errs += COUNTER_WRAP_12_BIT; 1409 if (carry_reg2 & (1 << 15)) 1410 adapter->stats.tx_underflows += COUNTER_WRAP_12_BIT; 1411 if (carry_reg2 & (1 << 6)) 1412 adapter->stats.tx_first_collisions += COUNTER_WRAP_12_BIT; 1413 if (carry_reg2 & (1 << 8)) 1414 adapter->stats.tx_deferred += COUNTER_WRAP_12_BIT; 1415 if (carry_reg2 & (1 << 5)) 1416 adapter->stats.tx_excessive_collisions += COUNTER_WRAP_12_BIT; 1417 if (carry_reg2 & (1 << 4)) 1418 adapter->stats.tx_late_collisions += COUNTER_WRAP_12_BIT; 1419 if (carry_reg2 & (1 << 2)) 1420 adapter->stats.tx_collisions += COUNTER_WRAP_12_BIT; 1421 } 1422 1423 static int et131x_mdio_read(struct mii_bus *bus, int phy_addr, int reg) 1424 { 1425 struct net_device *netdev = bus->priv; 1426 struct et131x_adapter *adapter = netdev_priv(netdev); 1427 u16 value; 1428 int ret; 1429 1430 ret = et131x_phy_mii_read(adapter, phy_addr, reg, &value); 1431 1432 if (ret < 0) 1433 return ret; 1434 1435 return value; 1436 } 1437 1438 static int et131x_mdio_write(struct mii_bus *bus, int phy_addr, 1439 int reg, u16 value) 1440 { 1441 struct net_device *netdev = bus->priv; 1442 struct et131x_adapter *adapter = netdev_priv(netdev); 1443 1444 return et131x_mii_write(adapter, phy_addr, reg, value); 1445 } 1446 1447 /* et1310_phy_power_switch - PHY power control 1448 * @adapter: device to control 1449 * @down: true for off/false for back on 1450 * 1451 * one hundred, ten, one thousand megs 1452 * How would you like to have your LAN accessed 1453 * Can't you see that this code processed 1454 * Phy power, phy power.. 1455 */ 1456 static void et1310_phy_power_switch(struct et131x_adapter *adapter, bool down) 1457 { 1458 u16 data; 1459 struct phy_device *phydev = adapter->phydev; 1460 1461 et131x_mii_read(adapter, MII_BMCR, &data); 1462 data &= ~BMCR_PDOWN; 1463 if (down) 1464 data |= BMCR_PDOWN; 1465 et131x_mii_write(adapter, phydev->addr, MII_BMCR, data); 1466 } 1467 1468 /* et131x_xcvr_init - Init the phy if we are setting it into force mode */ 1469 static void et131x_xcvr_init(struct et131x_adapter *adapter) 1470 { 1471 u16 lcr2; 1472 struct phy_device *phydev = adapter->phydev; 1473 1474 /* Set the LED behavior such that LED 1 indicates speed (off = 1475 * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates 1476 * link and activity (on for link, blink off for activity). 1477 * 1478 * NOTE: Some customizations have been added here for specific 1479 * vendors; The LED behavior is now determined by vendor data in the 1480 * EEPROM. However, the above description is the default. 1481 */ 1482 if ((adapter->eeprom_data[1] & 0x4) == 0) { 1483 et131x_mii_read(adapter, PHY_LED_2, &lcr2); 1484 1485 lcr2 &= (ET_LED2_LED_100TX | ET_LED2_LED_1000T); 1486 lcr2 |= (LED_VAL_LINKON_ACTIVE << LED_LINK_SHIFT); 1487 1488 if ((adapter->eeprom_data[1] & 0x8) == 0) 1489 lcr2 |= (LED_VAL_1000BT_100BTX << LED_TXRX_SHIFT); 1490 else 1491 lcr2 |= (LED_VAL_LINKON << LED_TXRX_SHIFT); 1492 1493 et131x_mii_write(adapter, phydev->addr, PHY_LED_2, lcr2); 1494 } 1495 } 1496 1497 /* et131x_configure_global_regs - configure JAGCore global regs */ 1498 static void et131x_configure_global_regs(struct et131x_adapter *adapter) 1499 { 1500 struct global_regs __iomem *regs = &adapter->regs->global; 1501 1502 writel(0, ®s->rxq_start_addr); 1503 writel(INTERNAL_MEM_SIZE - 1, ®s->txq_end_addr); 1504 1505 if (adapter->registry_jumbo_packet < 2048) { 1506 /* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word 1507 * block of RAM that the driver can split between Tx 1508 * and Rx as it desires. Our default is to split it 1509 * 50/50: 1510 */ 1511 writel(PARM_RX_MEM_END_DEF, ®s->rxq_end_addr); 1512 writel(PARM_RX_MEM_END_DEF + 1, ®s->txq_start_addr); 1513 } else if (adapter->registry_jumbo_packet < 8192) { 1514 /* For jumbo packets > 2k but < 8k, split 50-50. */ 1515 writel(INTERNAL_MEM_RX_OFFSET, ®s->rxq_end_addr); 1516 writel(INTERNAL_MEM_RX_OFFSET + 1, ®s->txq_start_addr); 1517 } else { 1518 /* 9216 is the only packet size greater than 8k that 1519 * is available. The Tx buffer has to be big enough 1520 * for one whole packet on the Tx side. We'll make 1521 * the Tx 9408, and give the rest to Rx 1522 */ 1523 writel(0x01b3, ®s->rxq_end_addr); 1524 writel(0x01b4, ®s->txq_start_addr); 1525 } 1526 1527 /* Initialize the loopback register. Disable all loopbacks. */ 1528 writel(0, ®s->loopback); 1529 1530 writel(0, ®s->msi_config); 1531 1532 /* By default, disable the watchdog timer. It will be enabled when 1533 * a packet is queued. 1534 */ 1535 writel(0, ®s->watchdog_timer); 1536 } 1537 1538 /* et131x_config_rx_dma_regs - Start of Rx_DMA init sequence */ 1539 static void et131x_config_rx_dma_regs(struct et131x_adapter *adapter) 1540 { 1541 struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma; 1542 struct rx_ring *rx_local = &adapter->rx_ring; 1543 struct fbr_desc *fbr_entry; 1544 u32 entry; 1545 u32 psr_num_des; 1546 unsigned long flags; 1547 u8 id; 1548 1549 et131x_rx_dma_disable(adapter); 1550 1551 /* Load the completion writeback physical address */ 1552 writel(upper_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_hi); 1553 writel(lower_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_lo); 1554 1555 memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block)); 1556 1557 /* Set the address and parameters of the packet status ring */ 1558 writel(upper_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_hi); 1559 writel(lower_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_lo); 1560 writel(rx_local->psr_entries - 1, &rx_dma->psr_num_des); 1561 writel(0, &rx_dma->psr_full_offset); 1562 1563 psr_num_des = readl(&rx_dma->psr_num_des) & ET_RXDMA_PSR_NUM_DES_MASK; 1564 writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100, 1565 &rx_dma->psr_min_des); 1566 1567 spin_lock_irqsave(&adapter->rcv_lock, flags); 1568 1569 /* These local variables track the PSR in the adapter structure */ 1570 rx_local->local_psr_full = 0; 1571 1572 for (id = 0; id < NUM_FBRS; id++) { 1573 u32 __iomem *num_des; 1574 u32 __iomem *full_offset; 1575 u32 __iomem *min_des; 1576 u32 __iomem *base_hi; 1577 u32 __iomem *base_lo; 1578 struct fbr_lookup *fbr = rx_local->fbr[id]; 1579 1580 if (id == 0) { 1581 num_des = &rx_dma->fbr0_num_des; 1582 full_offset = &rx_dma->fbr0_full_offset; 1583 min_des = &rx_dma->fbr0_min_des; 1584 base_hi = &rx_dma->fbr0_base_hi; 1585 base_lo = &rx_dma->fbr0_base_lo; 1586 } else { 1587 num_des = &rx_dma->fbr1_num_des; 1588 full_offset = &rx_dma->fbr1_full_offset; 1589 min_des = &rx_dma->fbr1_min_des; 1590 base_hi = &rx_dma->fbr1_base_hi; 1591 base_lo = &rx_dma->fbr1_base_lo; 1592 } 1593 1594 /* Now's the best time to initialize FBR contents */ 1595 fbr_entry = fbr->ring_virtaddr; 1596 for (entry = 0; entry < fbr->num_entries; entry++) { 1597 fbr_entry->addr_hi = fbr->bus_high[entry]; 1598 fbr_entry->addr_lo = fbr->bus_low[entry]; 1599 fbr_entry->word2 = entry; 1600 fbr_entry++; 1601 } 1602 1603 /* Set the address and parameters of Free buffer ring 1 and 0 */ 1604 writel(upper_32_bits(fbr->ring_physaddr), base_hi); 1605 writel(lower_32_bits(fbr->ring_physaddr), base_lo); 1606 writel(fbr->num_entries - 1, num_des); 1607 writel(ET_DMA10_WRAP, full_offset); 1608 1609 /* This variable tracks the free buffer ring 1 full position, 1610 * so it has to match the above. 1611 */ 1612 fbr->local_full = ET_DMA10_WRAP; 1613 writel(((fbr->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1, 1614 min_des); 1615 } 1616 1617 /* Program the number of packets we will receive before generating an 1618 * interrupt. 1619 * For version B silicon, this value gets updated once autoneg is 1620 *complete. 1621 */ 1622 writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done); 1623 1624 /* The "time_done" is not working correctly to coalesce interrupts 1625 * after a given time period, but rather is giving us an interrupt 1626 * regardless of whether we have received packets. 1627 * This value gets updated once autoneg is complete. 1628 */ 1629 writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time); 1630 1631 spin_unlock_irqrestore(&adapter->rcv_lock, flags); 1632 } 1633 1634 /* et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore. 1635 * 1636 * Configure the transmit engine with the ring buffers we have created 1637 * and prepare it for use. 1638 */ 1639 static void et131x_config_tx_dma_regs(struct et131x_adapter *adapter) 1640 { 1641 struct txdma_regs __iomem *txdma = &adapter->regs->txdma; 1642 struct tx_ring *tx_ring = &adapter->tx_ring; 1643 1644 /* Load the hardware with the start of the transmit descriptor ring. */ 1645 writel(upper_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_hi); 1646 writel(lower_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_lo); 1647 1648 /* Initialise the transmit DMA engine */ 1649 writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des); 1650 1651 /* Load the completion writeback physical address */ 1652 writel(upper_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_hi); 1653 writel(lower_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_lo); 1654 1655 *tx_ring->tx_status = 0; 1656 1657 writel(0, &txdma->service_request); 1658 tx_ring->send_idx = 0; 1659 } 1660 1661 /* et131x_adapter_setup - Set the adapter up as per cassini+ documentation */ 1662 static void et131x_adapter_setup(struct et131x_adapter *adapter) 1663 { 1664 et131x_configure_global_regs(adapter); 1665 et1310_config_mac_regs1(adapter); 1666 1667 /* Configure the MMC registers */ 1668 /* All we need to do is initialize the Memory Control Register */ 1669 writel(ET_MMC_ENABLE, &adapter->regs->mmc.mmc_ctrl); 1670 1671 et1310_config_rxmac_regs(adapter); 1672 et1310_config_txmac_regs(adapter); 1673 1674 et131x_config_rx_dma_regs(adapter); 1675 et131x_config_tx_dma_regs(adapter); 1676 1677 et1310_config_macstat_regs(adapter); 1678 1679 et1310_phy_power_switch(adapter, 0); 1680 et131x_xcvr_init(adapter); 1681 } 1682 1683 /* et131x_soft_reset - Issue soft reset to the hardware, complete for ET1310 */ 1684 static void et131x_soft_reset(struct et131x_adapter *adapter) 1685 { 1686 u32 reg; 1687 1688 /* Disable MAC Core */ 1689 reg = ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET | 1690 ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC | 1691 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC; 1692 writel(reg, &adapter->regs->mac.cfg1); 1693 1694 reg = ET_RESET_ALL; 1695 writel(reg, &adapter->regs->global.sw_reset); 1696 1697 reg = ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC | 1698 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC; 1699 writel(reg, &adapter->regs->mac.cfg1); 1700 writel(0, &adapter->regs->mac.cfg1); 1701 } 1702 1703 static void et131x_enable_interrupts(struct et131x_adapter *adapter) 1704 { 1705 u32 mask; 1706 1707 if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH) 1708 mask = INT_MASK_ENABLE; 1709 else 1710 mask = INT_MASK_ENABLE_NO_FLOW; 1711 1712 writel(mask, &adapter->regs->global.int_mask); 1713 } 1714 1715 static void et131x_disable_interrupts(struct et131x_adapter *adapter) 1716 { 1717 writel(INT_MASK_DISABLE, &adapter->regs->global.int_mask); 1718 } 1719 1720 static void et131x_tx_dma_disable(struct et131x_adapter *adapter) 1721 { 1722 /* Setup the transmit dma configuration register */ 1723 writel(ET_TXDMA_CSR_HALT | ET_TXDMA_SNGL_EPKT, 1724 &adapter->regs->txdma.csr); 1725 } 1726 1727 static void et131x_enable_txrx(struct net_device *netdev) 1728 { 1729 struct et131x_adapter *adapter = netdev_priv(netdev); 1730 1731 et131x_rx_dma_enable(adapter); 1732 et131x_tx_dma_enable(adapter); 1733 1734 if (adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE) 1735 et131x_enable_interrupts(adapter); 1736 1737 netif_start_queue(netdev); 1738 } 1739 1740 static void et131x_disable_txrx(struct net_device *netdev) 1741 { 1742 struct et131x_adapter *adapter = netdev_priv(netdev); 1743 1744 netif_stop_queue(netdev); 1745 1746 et131x_rx_dma_disable(adapter); 1747 et131x_tx_dma_disable(adapter); 1748 1749 et131x_disable_interrupts(adapter); 1750 } 1751 1752 static void et131x_init_send(struct et131x_adapter *adapter) 1753 { 1754 int i; 1755 struct tx_ring *tx_ring = &adapter->tx_ring; 1756 struct tcb *tcb = tx_ring->tcb_ring; 1757 1758 tx_ring->tcb_qhead = tcb; 1759 1760 memset(tcb, 0, sizeof(struct tcb) * NUM_TCB); 1761 1762 for (i = 0; i < NUM_TCB; i++) { 1763 tcb->next = tcb + 1; 1764 tcb++; 1765 } 1766 1767 tcb--; 1768 tx_ring->tcb_qtail = tcb; 1769 tcb->next = NULL; 1770 /* Curr send queue should now be empty */ 1771 tx_ring->send_head = NULL; 1772 tx_ring->send_tail = NULL; 1773 } 1774 1775 /* et1310_enable_phy_coma 1776 * 1777 * driver receive an phy status change interrupt while in D0 and check that 1778 * phy_status is down. 1779 * 1780 * -- gate off JAGCore; 1781 * -- set gigE PHY in Coma mode 1782 * -- wake on phy_interrupt; Perform software reset JAGCore, 1783 * re-initialize jagcore and gigE PHY 1784 */ 1785 static void et1310_enable_phy_coma(struct et131x_adapter *adapter) 1786 { 1787 u32 pmcsr = readl(&adapter->regs->global.pm_csr); 1788 1789 /* Stop sending packets. */ 1790 adapter->flags |= FMP_ADAPTER_LOWER_POWER; 1791 1792 /* Wait for outstanding Receive packets */ 1793 et131x_disable_txrx(adapter->netdev); 1794 1795 /* Gate off JAGCore 3 clock domains */ 1796 pmcsr &= ~ET_PMCSR_INIT; 1797 writel(pmcsr, &adapter->regs->global.pm_csr); 1798 1799 /* Program gigE PHY in to Coma mode */ 1800 pmcsr |= ET_PM_PHY_SW_COMA; 1801 writel(pmcsr, &adapter->regs->global.pm_csr); 1802 } 1803 1804 static void et1310_disable_phy_coma(struct et131x_adapter *adapter) 1805 { 1806 u32 pmcsr; 1807 1808 pmcsr = readl(&adapter->regs->global.pm_csr); 1809 1810 /* Disable phy_sw_coma register and re-enable JAGCore clocks */ 1811 pmcsr |= ET_PMCSR_INIT; 1812 pmcsr &= ~ET_PM_PHY_SW_COMA; 1813 writel(pmcsr, &adapter->regs->global.pm_csr); 1814 1815 /* Restore the GbE PHY speed and duplex modes; 1816 * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY 1817 */ 1818 1819 /* Re-initialize the send structures */ 1820 et131x_init_send(adapter); 1821 1822 /* Bring the device back to the state it was during init prior to 1823 * autonegotiation being complete. This way, when we get the auto-neg 1824 * complete interrupt, we can complete init by calling ConfigMacREGS2. 1825 */ 1826 et131x_soft_reset(adapter); 1827 1828 et131x_adapter_setup(adapter); 1829 1830 /* Allow Tx to restart */ 1831 adapter->flags &= ~FMP_ADAPTER_LOWER_POWER; 1832 1833 et131x_enable_txrx(adapter->netdev); 1834 } 1835 1836 static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit) 1837 { 1838 u32 tmp_free_buff_ring = *free_buff_ring; 1839 1840 tmp_free_buff_ring++; 1841 /* This works for all cases where limit < 1024. The 1023 case 1842 * works because 1023++ is 1024 which means the if condition is not 1843 * taken but the carry of the bit into the wrap bit toggles the wrap 1844 * value correctly 1845 */ 1846 if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) { 1847 tmp_free_buff_ring &= ~ET_DMA10_MASK; 1848 tmp_free_buff_ring ^= ET_DMA10_WRAP; 1849 } 1850 /* For the 1023 case */ 1851 tmp_free_buff_ring &= (ET_DMA10_MASK | ET_DMA10_WRAP); 1852 *free_buff_ring = tmp_free_buff_ring; 1853 return tmp_free_buff_ring; 1854 } 1855 1856 /* et131x_rx_dma_memory_alloc 1857 * 1858 * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required, 1859 * and the Packet Status Ring. 1860 */ 1861 static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter) 1862 { 1863 u8 id; 1864 u32 i, j; 1865 u32 bufsize; 1866 u32 psr_size; 1867 u32 fbr_chunksize; 1868 struct rx_ring *rx_ring = &adapter->rx_ring; 1869 struct fbr_lookup *fbr; 1870 1871 /* Alloc memory for the lookup table */ 1872 rx_ring->fbr[0] = kzalloc(sizeof(*fbr), GFP_KERNEL); 1873 if (rx_ring->fbr[0] == NULL) 1874 return -ENOMEM; 1875 rx_ring->fbr[1] = kzalloc(sizeof(*fbr), GFP_KERNEL); 1876 if (rx_ring->fbr[1] == NULL) 1877 return -ENOMEM; 1878 1879 /* The first thing we will do is configure the sizes of the buffer 1880 * rings. These will change based on jumbo packet support. Larger 1881 * jumbo packets increases the size of each entry in FBR0, and the 1882 * number of entries in FBR0, while at the same time decreasing the 1883 * number of entries in FBR1. 1884 * 1885 * FBR1 holds "large" frames, FBR0 holds "small" frames. If FBR1 1886 * entries are huge in order to accommodate a "jumbo" frame, then it 1887 * will have less entries. Conversely, FBR1 will now be relied upon 1888 * to carry more "normal" frames, thus it's entry size also increases 1889 * and the number of entries goes up too (since it now carries 1890 * "small" + "regular" packets. 1891 * 1892 * In this scheme, we try to maintain 512 entries between the two 1893 * rings. Also, FBR1 remains a constant size - when it's size doubles 1894 * the number of entries halves. FBR0 increases in size, however. 1895 */ 1896 if (adapter->registry_jumbo_packet < 2048) { 1897 rx_ring->fbr[0]->buffsize = 256; 1898 rx_ring->fbr[0]->num_entries = 512; 1899 rx_ring->fbr[1]->buffsize = 2048; 1900 rx_ring->fbr[1]->num_entries = 512; 1901 } else if (adapter->registry_jumbo_packet < 4096) { 1902 rx_ring->fbr[0]->buffsize = 512; 1903 rx_ring->fbr[0]->num_entries = 1024; 1904 rx_ring->fbr[1]->buffsize = 4096; 1905 rx_ring->fbr[1]->num_entries = 512; 1906 } else { 1907 rx_ring->fbr[0]->buffsize = 1024; 1908 rx_ring->fbr[0]->num_entries = 768; 1909 rx_ring->fbr[1]->buffsize = 16384; 1910 rx_ring->fbr[1]->num_entries = 128; 1911 } 1912 1913 rx_ring->psr_entries = rx_ring->fbr[0]->num_entries + 1914 rx_ring->fbr[1]->num_entries; 1915 1916 for (id = 0; id < NUM_FBRS; id++) { 1917 fbr = rx_ring->fbr[id]; 1918 /* Allocate an area of memory for Free Buffer Ring */ 1919 bufsize = sizeof(struct fbr_desc) * fbr->num_entries; 1920 fbr->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev, 1921 bufsize, 1922 &fbr->ring_physaddr, 1923 GFP_KERNEL); 1924 if (!fbr->ring_virtaddr) { 1925 dev_err(&adapter->pdev->dev, 1926 "Cannot alloc memory for Free Buffer Ring %d\n", 1927 id); 1928 return -ENOMEM; 1929 } 1930 } 1931 1932 for (id = 0; id < NUM_FBRS; id++) { 1933 fbr = rx_ring->fbr[id]; 1934 fbr_chunksize = (FBR_CHUNKS * fbr->buffsize); 1935 1936 for (i = 0; i < fbr->num_entries / FBR_CHUNKS; i++) { 1937 dma_addr_t fbr_physaddr; 1938 1939 fbr->mem_virtaddrs[i] = dma_alloc_coherent( 1940 &adapter->pdev->dev, fbr_chunksize, 1941 &fbr->mem_physaddrs[i], 1942 GFP_KERNEL); 1943 1944 if (!fbr->mem_virtaddrs[i]) { 1945 dev_err(&adapter->pdev->dev, 1946 "Could not alloc memory\n"); 1947 return -ENOMEM; 1948 } 1949 1950 /* See NOTE in "Save Physical Address" comment above */ 1951 fbr_physaddr = fbr->mem_physaddrs[i]; 1952 1953 for (j = 0; j < FBR_CHUNKS; j++) { 1954 u32 k = (i * FBR_CHUNKS) + j; 1955 1956 /* Save the Virtual address of this index for 1957 * quick access later 1958 */ 1959 fbr->virt[k] = (u8 *)fbr->mem_virtaddrs[i] + 1960 (j * fbr->buffsize); 1961 1962 /* now store the physical address in the 1963 * descriptor so the device can access it 1964 */ 1965 fbr->bus_high[k] = upper_32_bits(fbr_physaddr); 1966 fbr->bus_low[k] = lower_32_bits(fbr_physaddr); 1967 fbr_physaddr += fbr->buffsize; 1968 } 1969 } 1970 } 1971 1972 /* Allocate an area of memory for FIFO of Packet Status ring entries */ 1973 psr_size = sizeof(struct pkt_stat_desc) * rx_ring->psr_entries; 1974 1975 rx_ring->ps_ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev, 1976 psr_size, 1977 &rx_ring->ps_ring_physaddr, 1978 GFP_KERNEL); 1979 1980 if (!rx_ring->ps_ring_virtaddr) { 1981 dev_err(&adapter->pdev->dev, 1982 "Cannot alloc memory for Packet Status Ring\n"); 1983 return -ENOMEM; 1984 } 1985 1986 /* Allocate an area of memory for writeback of status information */ 1987 rx_ring->rx_status_block = dma_alloc_coherent(&adapter->pdev->dev, 1988 sizeof(struct rx_status_block), 1989 &rx_ring->rx_status_bus, 1990 GFP_KERNEL); 1991 if (!rx_ring->rx_status_block) { 1992 dev_err(&adapter->pdev->dev, 1993 "Cannot alloc memory for Status Block\n"); 1994 return -ENOMEM; 1995 } 1996 rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD; 1997 1998 /* The RFDs are going to be put on lists later on, so initialize the 1999 * lists now. 2000 */ 2001 INIT_LIST_HEAD(&rx_ring->recv_list); 2002 return 0; 2003 } 2004 2005 static void et131x_rx_dma_memory_free(struct et131x_adapter *adapter) 2006 { 2007 u8 id; 2008 u32 ii; 2009 u32 bufsize; 2010 u32 psr_size; 2011 struct rfd *rfd; 2012 struct rx_ring *rx_ring = &adapter->rx_ring; 2013 struct fbr_lookup *fbr; 2014 2015 /* Free RFDs and associated packet descriptors */ 2016 WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd); 2017 2018 while (!list_empty(&rx_ring->recv_list)) { 2019 rfd = list_entry(rx_ring->recv_list.next, 2020 struct rfd, list_node); 2021 2022 list_del(&rfd->list_node); 2023 rfd->skb = NULL; 2024 kfree(rfd); 2025 } 2026 2027 /* Free Free Buffer Rings */ 2028 for (id = 0; id < NUM_FBRS; id++) { 2029 fbr = rx_ring->fbr[id]; 2030 2031 if (!fbr || !fbr->ring_virtaddr) 2032 continue; 2033 2034 /* First the packet memory */ 2035 for (ii = 0; ii < fbr->num_entries / FBR_CHUNKS; ii++) { 2036 if (fbr->mem_virtaddrs[ii]) { 2037 bufsize = fbr->buffsize * FBR_CHUNKS; 2038 2039 dma_free_coherent(&adapter->pdev->dev, 2040 bufsize, 2041 fbr->mem_virtaddrs[ii], 2042 fbr->mem_physaddrs[ii]); 2043 2044 fbr->mem_virtaddrs[ii] = NULL; 2045 } 2046 } 2047 2048 bufsize = sizeof(struct fbr_desc) * fbr->num_entries; 2049 2050 dma_free_coherent(&adapter->pdev->dev, 2051 bufsize, 2052 fbr->ring_virtaddr, 2053 fbr->ring_physaddr); 2054 2055 fbr->ring_virtaddr = NULL; 2056 } 2057 2058 /* Free Packet Status Ring */ 2059 if (rx_ring->ps_ring_virtaddr) { 2060 psr_size = sizeof(struct pkt_stat_desc) * rx_ring->psr_entries; 2061 2062 dma_free_coherent(&adapter->pdev->dev, psr_size, 2063 rx_ring->ps_ring_virtaddr, 2064 rx_ring->ps_ring_physaddr); 2065 2066 rx_ring->ps_ring_virtaddr = NULL; 2067 } 2068 2069 /* Free area of memory for the writeback of status information */ 2070 if (rx_ring->rx_status_block) { 2071 dma_free_coherent(&adapter->pdev->dev, 2072 sizeof(struct rx_status_block), 2073 rx_ring->rx_status_block, 2074 rx_ring->rx_status_bus); 2075 rx_ring->rx_status_block = NULL; 2076 } 2077 2078 /* Free the FBR Lookup Table */ 2079 kfree(rx_ring->fbr[0]); 2080 kfree(rx_ring->fbr[1]); 2081 2082 /* Reset Counters */ 2083 rx_ring->num_ready_recv = 0; 2084 } 2085 2086 /* et131x_init_recv - Initialize receive data structures */ 2087 static int et131x_init_recv(struct et131x_adapter *adapter) 2088 { 2089 struct rfd *rfd; 2090 u32 rfdct; 2091 struct rx_ring *rx_ring = &adapter->rx_ring; 2092 2093 /* Setup each RFD */ 2094 for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) { 2095 rfd = kzalloc(sizeof(*rfd), GFP_ATOMIC | GFP_DMA); 2096 if (!rfd) 2097 return -ENOMEM; 2098 2099 rfd->skb = NULL; 2100 2101 /* Add this RFD to the recv_list */ 2102 list_add_tail(&rfd->list_node, &rx_ring->recv_list); 2103 2104 /* Increment the available RFD's */ 2105 rx_ring->num_ready_recv++; 2106 } 2107 2108 return 0; 2109 } 2110 2111 /* et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate */ 2112 static void et131x_set_rx_dma_timer(struct et131x_adapter *adapter) 2113 { 2114 struct phy_device *phydev = adapter->phydev; 2115 2116 /* For version B silicon, we do not use the RxDMA timer for 10 and 100 2117 * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing. 2118 */ 2119 if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) { 2120 writel(0, &adapter->regs->rxdma.max_pkt_time); 2121 writel(1, &adapter->regs->rxdma.num_pkt_done); 2122 } 2123 } 2124 2125 /* nic_return_rfd - Recycle a RFD and put it back onto the receive list */ 2126 static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd) 2127 { 2128 struct rx_ring *rx_local = &adapter->rx_ring; 2129 struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma; 2130 u16 buff_index = rfd->bufferindex; 2131 u8 ring_index = rfd->ringindex; 2132 unsigned long flags; 2133 struct fbr_lookup *fbr = rx_local->fbr[ring_index]; 2134 2135 /* We don't use any of the OOB data besides status. Otherwise, we 2136 * need to clean up OOB data 2137 */ 2138 if (buff_index < fbr->num_entries) { 2139 u32 free_buff_ring; 2140 u32 __iomem *offset; 2141 struct fbr_desc *next; 2142 2143 if (ring_index == 0) 2144 offset = &rx_dma->fbr0_full_offset; 2145 else 2146 offset = &rx_dma->fbr1_full_offset; 2147 2148 next = (struct fbr_desc *)(fbr->ring_virtaddr) + 2149 INDEX10(fbr->local_full); 2150 2151 /* Handle the Free Buffer Ring advancement here. Write 2152 * the PA / Buffer Index for the returned buffer into 2153 * the oldest (next to be freed)FBR entry 2154 */ 2155 next->addr_hi = fbr->bus_high[buff_index]; 2156 next->addr_lo = fbr->bus_low[buff_index]; 2157 next->word2 = buff_index; 2158 2159 free_buff_ring = bump_free_buff_ring(&fbr->local_full, 2160 fbr->num_entries - 1); 2161 writel(free_buff_ring, offset); 2162 } else { 2163 dev_err(&adapter->pdev->dev, 2164 "%s illegal Buffer Index returned\n", __func__); 2165 } 2166 2167 /* The processing on this RFD is done, so put it back on the tail of 2168 * our list 2169 */ 2170 spin_lock_irqsave(&adapter->rcv_lock, flags); 2171 list_add_tail(&rfd->list_node, &rx_local->recv_list); 2172 rx_local->num_ready_recv++; 2173 spin_unlock_irqrestore(&adapter->rcv_lock, flags); 2174 2175 WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd); 2176 } 2177 2178 /* nic_rx_pkts - Checks the hardware for available packets 2179 * 2180 * Checks the hardware for available packets, using completion ring 2181 * If packets are available, it gets an RFD from the recv_list, attaches 2182 * the packet to it, puts the RFD in the RecvPendList, and also returns 2183 * the pointer to the RFD. 2184 */ 2185 static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter) 2186 { 2187 struct rx_ring *rx_local = &adapter->rx_ring; 2188 struct rx_status_block *status; 2189 struct pkt_stat_desc *psr; 2190 struct rfd *rfd; 2191 unsigned long flags; 2192 struct list_head *element; 2193 u8 ring_index; 2194 u16 buff_index; 2195 u32 len; 2196 u32 word0; 2197 u32 word1; 2198 struct sk_buff *skb; 2199 struct fbr_lookup *fbr; 2200 2201 /* RX Status block is written by the DMA engine prior to every 2202 * interrupt. It contains the next to be used entry in the Packet 2203 * Status Ring, and also the two Free Buffer rings. 2204 */ 2205 status = rx_local->rx_status_block; 2206 word1 = status->word1 >> 16; 2207 2208 /* Check the PSR and wrap bits do not match */ 2209 if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF)) 2210 return NULL; /* Looks like this ring is not updated yet */ 2211 2212 /* The packet status ring indicates that data is available. */ 2213 psr = (struct pkt_stat_desc *)(rx_local->ps_ring_virtaddr) + 2214 (rx_local->local_psr_full & 0xFFF); 2215 2216 /* Grab any information that is required once the PSR is advanced, 2217 * since we can no longer rely on the memory being accurate 2218 */ 2219 len = psr->word1 & 0xFFFF; 2220 ring_index = (psr->word1 >> 26) & 0x03; 2221 fbr = rx_local->fbr[ring_index]; 2222 buff_index = (psr->word1 >> 16) & 0x3FF; 2223 word0 = psr->word0; 2224 2225 /* Indicate that we have used this PSR entry. */ 2226 /* FIXME wrap 12 */ 2227 add_12bit(&rx_local->local_psr_full, 1); 2228 if ((rx_local->local_psr_full & 0xFFF) > rx_local->psr_entries - 1) { 2229 /* Clear psr full and toggle the wrap bit */ 2230 rx_local->local_psr_full &= ~0xFFF; 2231 rx_local->local_psr_full ^= 0x1000; 2232 } 2233 2234 writel(rx_local->local_psr_full, &adapter->regs->rxdma.psr_full_offset); 2235 2236 if (ring_index > 1 || buff_index > fbr->num_entries - 1) { 2237 /* Illegal buffer or ring index cannot be used by S/W*/ 2238 dev_err(&adapter->pdev->dev, 2239 "NICRxPkts PSR Entry %d indicates length of %d and/or bad bi(%d)\n", 2240 rx_local->local_psr_full & 0xFFF, len, buff_index); 2241 return NULL; 2242 } 2243 2244 /* Get and fill the RFD. */ 2245 spin_lock_irqsave(&adapter->rcv_lock, flags); 2246 2247 element = rx_local->recv_list.next; 2248 rfd = list_entry(element, struct rfd, list_node); 2249 2250 if (!rfd) { 2251 spin_unlock_irqrestore(&adapter->rcv_lock, flags); 2252 return NULL; 2253 } 2254 2255 list_del(&rfd->list_node); 2256 rx_local->num_ready_recv--; 2257 2258 spin_unlock_irqrestore(&adapter->rcv_lock, flags); 2259 2260 rfd->bufferindex = buff_index; 2261 rfd->ringindex = ring_index; 2262 2263 /* In V1 silicon, there is a bug which screws up filtering of runt 2264 * packets. Therefore runt packet filtering is disabled in the MAC and 2265 * the packets are dropped here. They are also counted here. 2266 */ 2267 if (len < (NIC_MIN_PACKET_SIZE + 4)) { 2268 adapter->stats.rx_other_errs++; 2269 rfd->len = 0; 2270 goto out; 2271 } 2272 2273 if ((word0 & ALCATEL_MULTICAST_PKT) && !(word0 & ALCATEL_BROADCAST_PKT)) 2274 adapter->stats.multicast_pkts_rcvd++; 2275 2276 rfd->len = len; 2277 2278 skb = dev_alloc_skb(rfd->len + 2); 2279 if (!skb) 2280 return NULL; 2281 2282 adapter->netdev->stats.rx_bytes += rfd->len; 2283 2284 memcpy(skb_put(skb, rfd->len), fbr->virt[buff_index], rfd->len); 2285 2286 skb->protocol = eth_type_trans(skb, adapter->netdev); 2287 skb->ip_summed = CHECKSUM_NONE; 2288 netif_receive_skb(skb); 2289 2290 out: 2291 nic_return_rfd(adapter, rfd); 2292 return rfd; 2293 } 2294 2295 static int et131x_handle_recv_pkts(struct et131x_adapter *adapter, int budget) 2296 { 2297 struct rfd *rfd = NULL; 2298 int count = 0; 2299 int limit = budget; 2300 bool done = true; 2301 struct rx_ring *rx_ring = &adapter->rx_ring; 2302 2303 if (budget > MAX_PACKETS_HANDLED) 2304 limit = MAX_PACKETS_HANDLED; 2305 2306 /* Process up to available RFD's */ 2307 while (count < limit) { 2308 if (list_empty(&rx_ring->recv_list)) { 2309 WARN_ON(rx_ring->num_ready_recv != 0); 2310 done = false; 2311 break; 2312 } 2313 2314 rfd = nic_rx_pkts(adapter); 2315 2316 if (rfd == NULL) 2317 break; 2318 2319 /* Do not receive any packets until a filter has been set. 2320 * Do not receive any packets until we have link. 2321 * If length is zero, return the RFD in order to advance the 2322 * Free buffer ring. 2323 */ 2324 if (!adapter->packet_filter || 2325 !netif_carrier_ok(adapter->netdev) || 2326 rfd->len == 0) 2327 continue; 2328 2329 adapter->netdev->stats.rx_packets++; 2330 2331 if (rx_ring->num_ready_recv < RFD_LOW_WATER_MARK) 2332 dev_warn(&adapter->pdev->dev, "RFD's are running out\n"); 2333 2334 count++; 2335 } 2336 2337 if (count == limit || !done) { 2338 rx_ring->unfinished_receives = true; 2339 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO, 2340 &adapter->regs->global.watchdog_timer); 2341 } else { 2342 /* Watchdog timer will disable itself if appropriate. */ 2343 rx_ring->unfinished_receives = false; 2344 } 2345 2346 return count; 2347 } 2348 2349 /* et131x_tx_dma_memory_alloc 2350 * 2351 * Allocates memory that will be visible both to the device and to the CPU. 2352 * The OS will pass us packets, pointers to which we will insert in the Tx 2353 * Descriptor queue. The device will read this queue to find the packets in 2354 * memory. The device will update the "status" in memory each time it xmits a 2355 * packet. 2356 */ 2357 static int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter) 2358 { 2359 int desc_size = 0; 2360 struct tx_ring *tx_ring = &adapter->tx_ring; 2361 2362 /* Allocate memory for the TCB's (Transmit Control Block) */ 2363 tx_ring->tcb_ring = kcalloc(NUM_TCB, sizeof(struct tcb), 2364 GFP_ATOMIC | GFP_DMA); 2365 if (!tx_ring->tcb_ring) 2366 return -ENOMEM; 2367 2368 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX); 2369 tx_ring->tx_desc_ring = dma_alloc_coherent(&adapter->pdev->dev, 2370 desc_size, 2371 &tx_ring->tx_desc_ring_pa, 2372 GFP_KERNEL); 2373 if (!tx_ring->tx_desc_ring) { 2374 dev_err(&adapter->pdev->dev, 2375 "Cannot alloc memory for Tx Ring\n"); 2376 return -ENOMEM; 2377 } 2378 2379 tx_ring->tx_status = dma_alloc_coherent(&adapter->pdev->dev, 2380 sizeof(u32), 2381 &tx_ring->tx_status_pa, 2382 GFP_KERNEL); 2383 if (!tx_ring->tx_status_pa) { 2384 dev_err(&adapter->pdev->dev, 2385 "Cannot alloc memory for Tx status block\n"); 2386 return -ENOMEM; 2387 } 2388 return 0; 2389 } 2390 2391 static void et131x_tx_dma_memory_free(struct et131x_adapter *adapter) 2392 { 2393 int desc_size = 0; 2394 struct tx_ring *tx_ring = &adapter->tx_ring; 2395 2396 if (tx_ring->tx_desc_ring) { 2397 /* Free memory relating to Tx rings here */ 2398 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX); 2399 dma_free_coherent(&adapter->pdev->dev, 2400 desc_size, 2401 tx_ring->tx_desc_ring, 2402 tx_ring->tx_desc_ring_pa); 2403 tx_ring->tx_desc_ring = NULL; 2404 } 2405 2406 /* Free memory for the Tx status block */ 2407 if (tx_ring->tx_status) { 2408 dma_free_coherent(&adapter->pdev->dev, 2409 sizeof(u32), 2410 tx_ring->tx_status, 2411 tx_ring->tx_status_pa); 2412 2413 tx_ring->tx_status = NULL; 2414 } 2415 /* Free the memory for the tcb structures */ 2416 kfree(tx_ring->tcb_ring); 2417 } 2418 2419 /* nic_send_packet - NIC specific send handler for version B silicon. */ 2420 static int nic_send_packet(struct et131x_adapter *adapter, struct tcb *tcb) 2421 { 2422 u32 i; 2423 struct tx_desc desc[24]; 2424 u32 frag = 0; 2425 u32 thiscopy, remainder; 2426 struct sk_buff *skb = tcb->skb; 2427 u32 nr_frags = skb_shinfo(skb)->nr_frags + 1; 2428 struct skb_frag_struct *frags = &skb_shinfo(skb)->frags[0]; 2429 struct phy_device *phydev = adapter->phydev; 2430 dma_addr_t dma_addr; 2431 struct tx_ring *tx_ring = &adapter->tx_ring; 2432 2433 /* Part of the optimizations of this send routine restrict us to 2434 * sending 24 fragments at a pass. In practice we should never see 2435 * more than 5 fragments. 2436 */ 2437 2438 /* nr_frags should be no more than 18. */ 2439 BUILD_BUG_ON(MAX_SKB_FRAGS + 1 > 23); 2440 2441 memset(desc, 0, sizeof(struct tx_desc) * (nr_frags + 1)); 2442 2443 for (i = 0; i < nr_frags; i++) { 2444 /* If there is something in this element, lets get a 2445 * descriptor from the ring and get the necessary data 2446 */ 2447 if (i == 0) { 2448 /* If the fragments are smaller than a standard MTU, 2449 * then map them to a single descriptor in the Tx 2450 * Desc ring. However, if they're larger, as is 2451 * possible with support for jumbo packets, then 2452 * split them each across 2 descriptors. 2453 * 2454 * This will work until we determine why the hardware 2455 * doesn't seem to like large fragments. 2456 */ 2457 if (skb_headlen(skb) <= 1514) { 2458 /* Low 16bits are length, high is vlan and 2459 * unused currently so zero 2460 */ 2461 desc[frag].len_vlan = skb_headlen(skb); 2462 dma_addr = dma_map_single(&adapter->pdev->dev, 2463 skb->data, 2464 skb_headlen(skb), 2465 DMA_TO_DEVICE); 2466 desc[frag].addr_lo = lower_32_bits(dma_addr); 2467 desc[frag].addr_hi = upper_32_bits(dma_addr); 2468 frag++; 2469 } else { 2470 desc[frag].len_vlan = skb_headlen(skb) / 2; 2471 dma_addr = dma_map_single(&adapter->pdev->dev, 2472 skb->data, 2473 skb_headlen(skb) / 2, 2474 DMA_TO_DEVICE); 2475 desc[frag].addr_lo = lower_32_bits(dma_addr); 2476 desc[frag].addr_hi = upper_32_bits(dma_addr); 2477 frag++; 2478 2479 desc[frag].len_vlan = skb_headlen(skb) / 2; 2480 dma_addr = dma_map_single(&adapter->pdev->dev, 2481 skb->data + 2482 skb_headlen(skb) / 2, 2483 skb_headlen(skb) / 2, 2484 DMA_TO_DEVICE); 2485 desc[frag].addr_lo = lower_32_bits(dma_addr); 2486 desc[frag].addr_hi = upper_32_bits(dma_addr); 2487 frag++; 2488 } 2489 } else { 2490 desc[frag].len_vlan = frags[i - 1].size; 2491 dma_addr = skb_frag_dma_map(&adapter->pdev->dev, 2492 &frags[i - 1], 2493 0, 2494 frags[i - 1].size, 2495 DMA_TO_DEVICE); 2496 desc[frag].addr_lo = lower_32_bits(dma_addr); 2497 desc[frag].addr_hi = upper_32_bits(dma_addr); 2498 frag++; 2499 } 2500 } 2501 2502 if (phydev && phydev->speed == SPEED_1000) { 2503 if (++tx_ring->since_irq == PARM_TX_NUM_BUFS_DEF) { 2504 /* Last element & Interrupt flag */ 2505 desc[frag - 1].flags = 2506 TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT; 2507 tx_ring->since_irq = 0; 2508 } else { /* Last element */ 2509 desc[frag - 1].flags = TXDESC_FLAG_LASTPKT; 2510 } 2511 } else { 2512 desc[frag - 1].flags = 2513 TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT; 2514 } 2515 2516 desc[0].flags |= TXDESC_FLAG_FIRSTPKT; 2517 2518 tcb->index_start = tx_ring->send_idx; 2519 tcb->stale = 0; 2520 2521 thiscopy = NUM_DESC_PER_RING_TX - INDEX10(tx_ring->send_idx); 2522 2523 if (thiscopy >= frag) { 2524 remainder = 0; 2525 thiscopy = frag; 2526 } else { 2527 remainder = frag - thiscopy; 2528 } 2529 2530 memcpy(tx_ring->tx_desc_ring + INDEX10(tx_ring->send_idx), 2531 desc, 2532 sizeof(struct tx_desc) * thiscopy); 2533 2534 add_10bit(&tx_ring->send_idx, thiscopy); 2535 2536 if (INDEX10(tx_ring->send_idx) == 0 || 2537 INDEX10(tx_ring->send_idx) == NUM_DESC_PER_RING_TX) { 2538 tx_ring->send_idx &= ~ET_DMA10_MASK; 2539 tx_ring->send_idx ^= ET_DMA10_WRAP; 2540 } 2541 2542 if (remainder) { 2543 memcpy(tx_ring->tx_desc_ring, 2544 desc + thiscopy, 2545 sizeof(struct tx_desc) * remainder); 2546 2547 add_10bit(&tx_ring->send_idx, remainder); 2548 } 2549 2550 if (INDEX10(tx_ring->send_idx) == 0) { 2551 if (tx_ring->send_idx) 2552 tcb->index = NUM_DESC_PER_RING_TX - 1; 2553 else 2554 tcb->index = ET_DMA10_WRAP|(NUM_DESC_PER_RING_TX - 1); 2555 } else { 2556 tcb->index = tx_ring->send_idx - 1; 2557 } 2558 2559 spin_lock(&adapter->tcb_send_qlock); 2560 2561 if (tx_ring->send_tail) 2562 tx_ring->send_tail->next = tcb; 2563 else 2564 tx_ring->send_head = tcb; 2565 2566 tx_ring->send_tail = tcb; 2567 2568 WARN_ON(tcb->next != NULL); 2569 2570 tx_ring->used++; 2571 2572 spin_unlock(&adapter->tcb_send_qlock); 2573 2574 /* Write the new write pointer back to the device. */ 2575 writel(tx_ring->send_idx, &adapter->regs->txdma.service_request); 2576 2577 /* For Gig only, we use Tx Interrupt coalescing. Enable the software 2578 * timer to wake us up if this packet isn't followed by N more. 2579 */ 2580 if (phydev && phydev->speed == SPEED_1000) { 2581 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO, 2582 &adapter->regs->global.watchdog_timer); 2583 } 2584 return 0; 2585 } 2586 2587 static int send_packet(struct sk_buff *skb, struct et131x_adapter *adapter) 2588 { 2589 int status; 2590 struct tcb *tcb; 2591 unsigned long flags; 2592 struct tx_ring *tx_ring = &adapter->tx_ring; 2593 2594 /* All packets must have at least a MAC address and a protocol type */ 2595 if (skb->len < ETH_HLEN) 2596 return -EIO; 2597 2598 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags); 2599 2600 tcb = tx_ring->tcb_qhead; 2601 2602 if (tcb == NULL) { 2603 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags); 2604 return -ENOMEM; 2605 } 2606 2607 tx_ring->tcb_qhead = tcb->next; 2608 2609 if (tx_ring->tcb_qhead == NULL) 2610 tx_ring->tcb_qtail = NULL; 2611 2612 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags); 2613 2614 tcb->skb = skb; 2615 tcb->next = NULL; 2616 2617 status = nic_send_packet(adapter, tcb); 2618 2619 if (status != 0) { 2620 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags); 2621 2622 if (tx_ring->tcb_qtail) 2623 tx_ring->tcb_qtail->next = tcb; 2624 else 2625 /* Apparently ready Q is empty. */ 2626 tx_ring->tcb_qhead = tcb; 2627 2628 tx_ring->tcb_qtail = tcb; 2629 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags); 2630 return status; 2631 } 2632 WARN_ON(tx_ring->used > NUM_TCB); 2633 return 0; 2634 } 2635 2636 /* free_send_packet - Recycle a struct tcb */ 2637 static inline void free_send_packet(struct et131x_adapter *adapter, 2638 struct tcb *tcb) 2639 { 2640 unsigned long flags; 2641 struct tx_desc *desc = NULL; 2642 struct net_device_stats *stats = &adapter->netdev->stats; 2643 struct tx_ring *tx_ring = &adapter->tx_ring; 2644 u64 dma_addr; 2645 2646 if (tcb->skb) { 2647 stats->tx_bytes += tcb->skb->len; 2648 2649 /* Iterate through the TX descriptors on the ring 2650 * corresponding to this packet and umap the fragments 2651 * they point to 2652 */ 2653 do { 2654 desc = tx_ring->tx_desc_ring + 2655 INDEX10(tcb->index_start); 2656 2657 dma_addr = desc->addr_lo; 2658 dma_addr |= (u64)desc->addr_hi << 32; 2659 2660 dma_unmap_single(&adapter->pdev->dev, 2661 dma_addr, 2662 desc->len_vlan, DMA_TO_DEVICE); 2663 2664 add_10bit(&tcb->index_start, 1); 2665 if (INDEX10(tcb->index_start) >= 2666 NUM_DESC_PER_RING_TX) { 2667 tcb->index_start &= ~ET_DMA10_MASK; 2668 tcb->index_start ^= ET_DMA10_WRAP; 2669 } 2670 } while (desc != tx_ring->tx_desc_ring + INDEX10(tcb->index)); 2671 2672 dev_kfree_skb_any(tcb->skb); 2673 } 2674 2675 memset(tcb, 0, sizeof(struct tcb)); 2676 2677 /* Add the TCB to the Ready Q */ 2678 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags); 2679 2680 stats->tx_packets++; 2681 2682 if (tx_ring->tcb_qtail) 2683 tx_ring->tcb_qtail->next = tcb; 2684 else /* Apparently ready Q is empty. */ 2685 tx_ring->tcb_qhead = tcb; 2686 2687 tx_ring->tcb_qtail = tcb; 2688 2689 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags); 2690 WARN_ON(tx_ring->used < 0); 2691 } 2692 2693 /* et131x_free_busy_send_packets - Free and complete the stopped active sends */ 2694 static void et131x_free_busy_send_packets(struct et131x_adapter *adapter) 2695 { 2696 struct tcb *tcb; 2697 unsigned long flags; 2698 u32 freed = 0; 2699 struct tx_ring *tx_ring = &adapter->tx_ring; 2700 2701 /* Any packets being sent? Check the first TCB on the send list */ 2702 spin_lock_irqsave(&adapter->tcb_send_qlock, flags); 2703 2704 tcb = tx_ring->send_head; 2705 2706 while (tcb != NULL && freed < NUM_TCB) { 2707 struct tcb *next = tcb->next; 2708 2709 tx_ring->send_head = next; 2710 2711 if (next == NULL) 2712 tx_ring->send_tail = NULL; 2713 2714 tx_ring->used--; 2715 2716 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags); 2717 2718 freed++; 2719 free_send_packet(adapter, tcb); 2720 2721 spin_lock_irqsave(&adapter->tcb_send_qlock, flags); 2722 2723 tcb = tx_ring->send_head; 2724 } 2725 2726 WARN_ON(freed == NUM_TCB); 2727 2728 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags); 2729 2730 tx_ring->used = 0; 2731 } 2732 2733 /* et131x_handle_send_pkts 2734 * 2735 * Re-claim the send resources, complete sends and get more to send from 2736 * the send wait queue. 2737 */ 2738 static void et131x_handle_send_pkts(struct et131x_adapter *adapter) 2739 { 2740 unsigned long flags; 2741 u32 serviced; 2742 struct tcb *tcb; 2743 u32 index; 2744 struct tx_ring *tx_ring = &adapter->tx_ring; 2745 2746 serviced = readl(&adapter->regs->txdma.new_service_complete); 2747 index = INDEX10(serviced); 2748 2749 /* Has the ring wrapped? Process any descriptors that do not have 2750 * the same "wrap" indicator as the current completion indicator 2751 */ 2752 spin_lock_irqsave(&adapter->tcb_send_qlock, flags); 2753 2754 tcb = tx_ring->send_head; 2755 2756 while (tcb && 2757 ((serviced ^ tcb->index) & ET_DMA10_WRAP) && 2758 index < INDEX10(tcb->index)) { 2759 tx_ring->used--; 2760 tx_ring->send_head = tcb->next; 2761 if (tcb->next == NULL) 2762 tx_ring->send_tail = NULL; 2763 2764 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags); 2765 free_send_packet(adapter, tcb); 2766 spin_lock_irqsave(&adapter->tcb_send_qlock, flags); 2767 2768 /* Goto the next packet */ 2769 tcb = tx_ring->send_head; 2770 } 2771 while (tcb && 2772 !((serviced ^ tcb->index) & ET_DMA10_WRAP) && 2773 index > (tcb->index & ET_DMA10_MASK)) { 2774 tx_ring->used--; 2775 tx_ring->send_head = tcb->next; 2776 if (tcb->next == NULL) 2777 tx_ring->send_tail = NULL; 2778 2779 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags); 2780 free_send_packet(adapter, tcb); 2781 spin_lock_irqsave(&adapter->tcb_send_qlock, flags); 2782 2783 /* Goto the next packet */ 2784 tcb = tx_ring->send_head; 2785 } 2786 2787 /* Wake up the queue when we hit a low-water mark */ 2788 if (tx_ring->used <= NUM_TCB / 3) 2789 netif_wake_queue(adapter->netdev); 2790 2791 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags); 2792 } 2793 2794 static int et131x_get_settings(struct net_device *netdev, 2795 struct ethtool_cmd *cmd) 2796 { 2797 struct et131x_adapter *adapter = netdev_priv(netdev); 2798 2799 return phy_ethtool_gset(adapter->phydev, cmd); 2800 } 2801 2802 static int et131x_set_settings(struct net_device *netdev, 2803 struct ethtool_cmd *cmd) 2804 { 2805 struct et131x_adapter *adapter = netdev_priv(netdev); 2806 2807 return phy_ethtool_sset(adapter->phydev, cmd); 2808 } 2809 2810 static int et131x_get_regs_len(struct net_device *netdev) 2811 { 2812 #define ET131X_REGS_LEN 256 2813 return ET131X_REGS_LEN * sizeof(u32); 2814 } 2815 2816 static void et131x_get_regs(struct net_device *netdev, 2817 struct ethtool_regs *regs, void *regs_data) 2818 { 2819 struct et131x_adapter *adapter = netdev_priv(netdev); 2820 struct address_map __iomem *aregs = adapter->regs; 2821 u32 *regs_buff = regs_data; 2822 u32 num = 0; 2823 u16 tmp; 2824 2825 memset(regs_data, 0, et131x_get_regs_len(netdev)); 2826 2827 regs->version = (1 << 24) | (adapter->pdev->revision << 16) | 2828 adapter->pdev->device; 2829 2830 /* PHY regs */ 2831 et131x_mii_read(adapter, MII_BMCR, &tmp); 2832 regs_buff[num++] = tmp; 2833 et131x_mii_read(adapter, MII_BMSR, &tmp); 2834 regs_buff[num++] = tmp; 2835 et131x_mii_read(adapter, MII_PHYSID1, &tmp); 2836 regs_buff[num++] = tmp; 2837 et131x_mii_read(adapter, MII_PHYSID2, &tmp); 2838 regs_buff[num++] = tmp; 2839 et131x_mii_read(adapter, MII_ADVERTISE, &tmp); 2840 regs_buff[num++] = tmp; 2841 et131x_mii_read(adapter, MII_LPA, &tmp); 2842 regs_buff[num++] = tmp; 2843 et131x_mii_read(adapter, MII_EXPANSION, &tmp); 2844 regs_buff[num++] = tmp; 2845 /* Autoneg next page transmit reg */ 2846 et131x_mii_read(adapter, 0x07, &tmp); 2847 regs_buff[num++] = tmp; 2848 /* Link partner next page reg */ 2849 et131x_mii_read(adapter, 0x08, &tmp); 2850 regs_buff[num++] = tmp; 2851 et131x_mii_read(adapter, MII_CTRL1000, &tmp); 2852 regs_buff[num++] = tmp; 2853 et131x_mii_read(adapter, MII_STAT1000, &tmp); 2854 regs_buff[num++] = tmp; 2855 et131x_mii_read(adapter, 0x0b, &tmp); 2856 regs_buff[num++] = tmp; 2857 et131x_mii_read(adapter, 0x0c, &tmp); 2858 regs_buff[num++] = tmp; 2859 et131x_mii_read(adapter, MII_MMD_CTRL, &tmp); 2860 regs_buff[num++] = tmp; 2861 et131x_mii_read(adapter, MII_MMD_DATA, &tmp); 2862 regs_buff[num++] = tmp; 2863 et131x_mii_read(adapter, MII_ESTATUS, &tmp); 2864 regs_buff[num++] = tmp; 2865 2866 et131x_mii_read(adapter, PHY_INDEX_REG, &tmp); 2867 regs_buff[num++] = tmp; 2868 et131x_mii_read(adapter, PHY_DATA_REG, &tmp); 2869 regs_buff[num++] = tmp; 2870 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG, &tmp); 2871 regs_buff[num++] = tmp; 2872 et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL, &tmp); 2873 regs_buff[num++] = tmp; 2874 et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL + 1, &tmp); 2875 regs_buff[num++] = tmp; 2876 2877 et131x_mii_read(adapter, PHY_REGISTER_MGMT_CONTROL, &tmp); 2878 regs_buff[num++] = tmp; 2879 et131x_mii_read(adapter, PHY_CONFIG, &tmp); 2880 regs_buff[num++] = tmp; 2881 et131x_mii_read(adapter, PHY_PHY_CONTROL, &tmp); 2882 regs_buff[num++] = tmp; 2883 et131x_mii_read(adapter, PHY_INTERRUPT_MASK, &tmp); 2884 regs_buff[num++] = tmp; 2885 et131x_mii_read(adapter, PHY_INTERRUPT_STATUS, &tmp); 2886 regs_buff[num++] = tmp; 2887 et131x_mii_read(adapter, PHY_PHY_STATUS, &tmp); 2888 regs_buff[num++] = tmp; 2889 et131x_mii_read(adapter, PHY_LED_1, &tmp); 2890 regs_buff[num++] = tmp; 2891 et131x_mii_read(adapter, PHY_LED_2, &tmp); 2892 regs_buff[num++] = tmp; 2893 2894 /* Global regs */ 2895 regs_buff[num++] = readl(&aregs->global.txq_start_addr); 2896 regs_buff[num++] = readl(&aregs->global.txq_end_addr); 2897 regs_buff[num++] = readl(&aregs->global.rxq_start_addr); 2898 regs_buff[num++] = readl(&aregs->global.rxq_end_addr); 2899 regs_buff[num++] = readl(&aregs->global.pm_csr); 2900 regs_buff[num++] = adapter->stats.interrupt_status; 2901 regs_buff[num++] = readl(&aregs->global.int_mask); 2902 regs_buff[num++] = readl(&aregs->global.int_alias_clr_en); 2903 regs_buff[num++] = readl(&aregs->global.int_status_alias); 2904 regs_buff[num++] = readl(&aregs->global.sw_reset); 2905 regs_buff[num++] = readl(&aregs->global.slv_timer); 2906 regs_buff[num++] = readl(&aregs->global.msi_config); 2907 regs_buff[num++] = readl(&aregs->global.loopback); 2908 regs_buff[num++] = readl(&aregs->global.watchdog_timer); 2909 2910 /* TXDMA regs */ 2911 regs_buff[num++] = readl(&aregs->txdma.csr); 2912 regs_buff[num++] = readl(&aregs->txdma.pr_base_hi); 2913 regs_buff[num++] = readl(&aregs->txdma.pr_base_lo); 2914 regs_buff[num++] = readl(&aregs->txdma.pr_num_des); 2915 regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr); 2916 regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr_ext); 2917 regs_buff[num++] = readl(&aregs->txdma.txq_rd_addr); 2918 regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_hi); 2919 regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_lo); 2920 regs_buff[num++] = readl(&aregs->txdma.service_request); 2921 regs_buff[num++] = readl(&aregs->txdma.service_complete); 2922 regs_buff[num++] = readl(&aregs->txdma.cache_rd_index); 2923 regs_buff[num++] = readl(&aregs->txdma.cache_wr_index); 2924 regs_buff[num++] = readl(&aregs->txdma.tx_dma_error); 2925 regs_buff[num++] = readl(&aregs->txdma.desc_abort_cnt); 2926 regs_buff[num++] = readl(&aregs->txdma.payload_abort_cnt); 2927 regs_buff[num++] = readl(&aregs->txdma.writeback_abort_cnt); 2928 regs_buff[num++] = readl(&aregs->txdma.desc_timeout_cnt); 2929 regs_buff[num++] = readl(&aregs->txdma.payload_timeout_cnt); 2930 regs_buff[num++] = readl(&aregs->txdma.writeback_timeout_cnt); 2931 regs_buff[num++] = readl(&aregs->txdma.desc_error_cnt); 2932 regs_buff[num++] = readl(&aregs->txdma.payload_error_cnt); 2933 regs_buff[num++] = readl(&aregs->txdma.writeback_error_cnt); 2934 regs_buff[num++] = readl(&aregs->txdma.dropped_tlp_cnt); 2935 regs_buff[num++] = readl(&aregs->txdma.new_service_complete); 2936 regs_buff[num++] = readl(&aregs->txdma.ethernet_packet_cnt); 2937 2938 /* RXDMA regs */ 2939 regs_buff[num++] = readl(&aregs->rxdma.csr); 2940 regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_hi); 2941 regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_lo); 2942 regs_buff[num++] = readl(&aregs->rxdma.num_pkt_done); 2943 regs_buff[num++] = readl(&aregs->rxdma.max_pkt_time); 2944 regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr); 2945 regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr_ext); 2946 regs_buff[num++] = readl(&aregs->rxdma.rxq_wr_addr); 2947 regs_buff[num++] = readl(&aregs->rxdma.psr_base_hi); 2948 regs_buff[num++] = readl(&aregs->rxdma.psr_base_lo); 2949 regs_buff[num++] = readl(&aregs->rxdma.psr_num_des); 2950 regs_buff[num++] = readl(&aregs->rxdma.psr_avail_offset); 2951 regs_buff[num++] = readl(&aregs->rxdma.psr_full_offset); 2952 regs_buff[num++] = readl(&aregs->rxdma.psr_access_index); 2953 regs_buff[num++] = readl(&aregs->rxdma.psr_min_des); 2954 regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_lo); 2955 regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_hi); 2956 regs_buff[num++] = readl(&aregs->rxdma.fbr0_num_des); 2957 regs_buff[num++] = readl(&aregs->rxdma.fbr0_avail_offset); 2958 regs_buff[num++] = readl(&aregs->rxdma.fbr0_full_offset); 2959 regs_buff[num++] = readl(&aregs->rxdma.fbr0_rd_index); 2960 regs_buff[num++] = readl(&aregs->rxdma.fbr0_min_des); 2961 regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_lo); 2962 regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_hi); 2963 regs_buff[num++] = readl(&aregs->rxdma.fbr1_num_des); 2964 regs_buff[num++] = readl(&aregs->rxdma.fbr1_avail_offset); 2965 regs_buff[num++] = readl(&aregs->rxdma.fbr1_full_offset); 2966 regs_buff[num++] = readl(&aregs->rxdma.fbr1_rd_index); 2967 regs_buff[num++] = readl(&aregs->rxdma.fbr1_min_des); 2968 } 2969 2970 static void et131x_get_drvinfo(struct net_device *netdev, 2971 struct ethtool_drvinfo *info) 2972 { 2973 struct et131x_adapter *adapter = netdev_priv(netdev); 2974 2975 strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver)); 2976 strlcpy(info->version, DRIVER_VERSION, sizeof(info->version)); 2977 strlcpy(info->bus_info, pci_name(adapter->pdev), 2978 sizeof(info->bus_info)); 2979 } 2980 2981 static struct ethtool_ops et131x_ethtool_ops = { 2982 .get_settings = et131x_get_settings, 2983 .set_settings = et131x_set_settings, 2984 .get_drvinfo = et131x_get_drvinfo, 2985 .get_regs_len = et131x_get_regs_len, 2986 .get_regs = et131x_get_regs, 2987 .get_link = ethtool_op_get_link, 2988 }; 2989 2990 /* et131x_hwaddr_init - set up the MAC Address */ 2991 static void et131x_hwaddr_init(struct et131x_adapter *adapter) 2992 { 2993 /* If have our default mac from init and no mac address from 2994 * EEPROM then we need to generate the last octet and set it on the 2995 * device 2996 */ 2997 if (is_zero_ether_addr(adapter->rom_addr)) { 2998 /* We need to randomly generate the last octet so we 2999 * decrease our chances of setting the mac address to 3000 * same as another one of our cards in the system 3001 */ 3002 get_random_bytes(&adapter->addr[5], 1); 3003 /* We have the default value in the register we are 3004 * working with so we need to copy the current 3005 * address into the permanent address 3006 */ 3007 ether_addr_copy(adapter->rom_addr, adapter->addr); 3008 } else { 3009 /* We do not have an override address, so set the 3010 * current address to the permanent address and add 3011 * it to the device 3012 */ 3013 ether_addr_copy(adapter->addr, adapter->rom_addr); 3014 } 3015 } 3016 3017 static int et131x_pci_init(struct et131x_adapter *adapter, 3018 struct pci_dev *pdev) 3019 { 3020 u16 max_payload; 3021 int i, rc; 3022 3023 rc = et131x_init_eeprom(adapter); 3024 if (rc < 0) 3025 goto out; 3026 3027 if (!pci_is_pcie(pdev)) { 3028 dev_err(&pdev->dev, "Missing PCIe capabilities\n"); 3029 goto err_out; 3030 } 3031 3032 /* Program the Ack/Nak latency and replay timers */ 3033 max_payload = pdev->pcie_mpss; 3034 3035 if (max_payload < 2) { 3036 static const u16 acknak[2] = { 0x76, 0xD0 }; 3037 static const u16 replay[2] = { 0x1E0, 0x2ED }; 3038 3039 if (pci_write_config_word(pdev, ET1310_PCI_ACK_NACK, 3040 acknak[max_payload])) { 3041 dev_err(&pdev->dev, 3042 "Could not write PCI config space for ACK/NAK\n"); 3043 goto err_out; 3044 } 3045 if (pci_write_config_word(pdev, ET1310_PCI_REPLAY, 3046 replay[max_payload])) { 3047 dev_err(&pdev->dev, 3048 "Could not write PCI config space for Replay Timer\n"); 3049 goto err_out; 3050 } 3051 } 3052 3053 /* l0s and l1 latency timers. We are using default values. 3054 * Representing 001 for L0s and 010 for L1 3055 */ 3056 if (pci_write_config_byte(pdev, ET1310_PCI_L0L1LATENCY, 0x11)) { 3057 dev_err(&pdev->dev, 3058 "Could not write PCI config space for Latency Timers\n"); 3059 goto err_out; 3060 } 3061 3062 /* Change the max read size to 2k */ 3063 if (pcie_set_readrq(pdev, 2048)) { 3064 dev_err(&pdev->dev, 3065 "Couldn't change PCI config space for Max read size\n"); 3066 goto err_out; 3067 } 3068 3069 /* Get MAC address from config space if an eeprom exists, otherwise 3070 * the MAC address there will not be valid 3071 */ 3072 if (!adapter->has_eeprom) { 3073 et131x_hwaddr_init(adapter); 3074 return 0; 3075 } 3076 3077 for (i = 0; i < ETH_ALEN; i++) { 3078 if (pci_read_config_byte(pdev, ET1310_PCI_MAC_ADDRESS + i, 3079 adapter->rom_addr + i)) { 3080 dev_err(&pdev->dev, "Could not read PCI config space for MAC address\n"); 3081 goto err_out; 3082 } 3083 } 3084 ether_addr_copy(adapter->addr, adapter->rom_addr); 3085 out: 3086 return rc; 3087 err_out: 3088 rc = -EIO; 3089 goto out; 3090 } 3091 3092 /* et131x_error_timer_handler 3093 * @data: timer-specific variable; here a pointer to our adapter structure 3094 * 3095 * The routine called when the error timer expires, to track the number of 3096 * recurring errors. 3097 */ 3098 static void et131x_error_timer_handler(unsigned long data) 3099 { 3100 struct et131x_adapter *adapter = (struct et131x_adapter *)data; 3101 struct phy_device *phydev = adapter->phydev; 3102 3103 if (et1310_in_phy_coma(adapter)) { 3104 /* Bring the device immediately out of coma, to 3105 * prevent it from sleeping indefinitely, this 3106 * mechanism could be improved! 3107 */ 3108 et1310_disable_phy_coma(adapter); 3109 adapter->boot_coma = 20; 3110 } else { 3111 et1310_update_macstat_host_counters(adapter); 3112 } 3113 3114 if (!phydev->link && adapter->boot_coma < 11) 3115 adapter->boot_coma++; 3116 3117 if (adapter->boot_coma == 10) { 3118 if (!phydev->link) { 3119 if (!et1310_in_phy_coma(adapter)) { 3120 /* NOTE - This was originally a 'sync with 3121 * interrupt'. How to do that under Linux? 3122 */ 3123 et131x_enable_interrupts(adapter); 3124 et1310_enable_phy_coma(adapter); 3125 } 3126 } 3127 } 3128 3129 /* This is a periodic timer, so reschedule */ 3130 mod_timer(&adapter->error_timer, jiffies + 3131 msecs_to_jiffies(TX_ERROR_PERIOD)); 3132 } 3133 3134 static void et131x_adapter_memory_free(struct et131x_adapter *adapter) 3135 { 3136 et131x_tx_dma_memory_free(adapter); 3137 et131x_rx_dma_memory_free(adapter); 3138 } 3139 3140 static int et131x_adapter_memory_alloc(struct et131x_adapter *adapter) 3141 { 3142 int status; 3143 3144 status = et131x_tx_dma_memory_alloc(adapter); 3145 if (status) { 3146 dev_err(&adapter->pdev->dev, 3147 "et131x_tx_dma_memory_alloc FAILED\n"); 3148 et131x_tx_dma_memory_free(adapter); 3149 return status; 3150 } 3151 3152 status = et131x_rx_dma_memory_alloc(adapter); 3153 if (status) { 3154 dev_err(&adapter->pdev->dev, 3155 "et131x_rx_dma_memory_alloc FAILED\n"); 3156 et131x_adapter_memory_free(adapter); 3157 return status; 3158 } 3159 3160 status = et131x_init_recv(adapter); 3161 if (status) { 3162 dev_err(&adapter->pdev->dev, "et131x_init_recv FAILED\n"); 3163 et131x_adapter_memory_free(adapter); 3164 } 3165 return status; 3166 } 3167 3168 static void et131x_adjust_link(struct net_device *netdev) 3169 { 3170 struct et131x_adapter *adapter = netdev_priv(netdev); 3171 struct phy_device *phydev = adapter->phydev; 3172 3173 if (!phydev) 3174 return; 3175 if (phydev->link == adapter->link) 3176 return; 3177 3178 /* Check to see if we are in coma mode and if 3179 * so, disable it because we will not be able 3180 * to read PHY values until we are out. 3181 */ 3182 if (et1310_in_phy_coma(adapter)) 3183 et1310_disable_phy_coma(adapter); 3184 3185 adapter->link = phydev->link; 3186 phy_print_status(phydev); 3187 3188 if (phydev->link) { 3189 adapter->boot_coma = 20; 3190 if (phydev->speed == SPEED_10) { 3191 u16 register18; 3192 3193 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG, 3194 ®ister18); 3195 et131x_mii_write(adapter, phydev->addr, 3196 PHY_MPHY_CONTROL_REG, 3197 register18 | 0x4); 3198 et131x_mii_write(adapter, phydev->addr, PHY_INDEX_REG, 3199 register18 | 0x8402); 3200 et131x_mii_write(adapter, phydev->addr, PHY_DATA_REG, 3201 register18 | 511); 3202 et131x_mii_write(adapter, phydev->addr, 3203 PHY_MPHY_CONTROL_REG, register18); 3204 } 3205 3206 et1310_config_flow_control(adapter); 3207 3208 if (phydev->speed == SPEED_1000 && 3209 adapter->registry_jumbo_packet > 2048) { 3210 u16 reg; 3211 3212 et131x_mii_read(adapter, PHY_CONFIG, ®); 3213 reg &= ~ET_PHY_CONFIG_TX_FIFO_DEPTH; 3214 reg |= ET_PHY_CONFIG_FIFO_DEPTH_32; 3215 et131x_mii_write(adapter, phydev->addr, PHY_CONFIG, 3216 reg); 3217 } 3218 3219 et131x_set_rx_dma_timer(adapter); 3220 et1310_config_mac_regs2(adapter); 3221 } else { 3222 adapter->boot_coma = 0; 3223 3224 if (phydev->speed == SPEED_10) { 3225 u16 register18; 3226 3227 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG, 3228 ®ister18); 3229 et131x_mii_write(adapter, phydev->addr, 3230 PHY_MPHY_CONTROL_REG, 3231 register18 | 0x4); 3232 et131x_mii_write(adapter, phydev->addr, 3233 PHY_INDEX_REG, register18 | 0x8402); 3234 et131x_mii_write(adapter, phydev->addr, 3235 PHY_DATA_REG, register18 | 511); 3236 et131x_mii_write(adapter, phydev->addr, 3237 PHY_MPHY_CONTROL_REG, register18); 3238 } 3239 3240 et131x_free_busy_send_packets(adapter); 3241 et131x_init_send(adapter); 3242 3243 /* Bring the device back to the state it was during 3244 * init prior to autonegotiation being complete. This 3245 * way, when we get the auto-neg complete interrupt, 3246 * we can complete init by calling config_mac_regs2. 3247 */ 3248 et131x_soft_reset(adapter); 3249 3250 et131x_adapter_setup(adapter); 3251 3252 et131x_disable_txrx(netdev); 3253 et131x_enable_txrx(netdev); 3254 } 3255 } 3256 3257 static int et131x_mii_probe(struct net_device *netdev) 3258 { 3259 struct et131x_adapter *adapter = netdev_priv(netdev); 3260 struct phy_device *phydev = NULL; 3261 3262 phydev = phy_find_first(adapter->mii_bus); 3263 if (!phydev) { 3264 dev_err(&adapter->pdev->dev, "no PHY found\n"); 3265 return -ENODEV; 3266 } 3267 3268 phydev = phy_connect(netdev, dev_name(&phydev->dev), 3269 &et131x_adjust_link, PHY_INTERFACE_MODE_MII); 3270 3271 if (IS_ERR(phydev)) { 3272 dev_err(&adapter->pdev->dev, "Could not attach to PHY\n"); 3273 return PTR_ERR(phydev); 3274 } 3275 3276 phydev->supported &= (SUPPORTED_10baseT_Half | 3277 SUPPORTED_10baseT_Full | 3278 SUPPORTED_100baseT_Half | 3279 SUPPORTED_100baseT_Full | 3280 SUPPORTED_Autoneg | 3281 SUPPORTED_MII | 3282 SUPPORTED_TP); 3283 3284 if (adapter->pdev->device != ET131X_PCI_DEVICE_ID_FAST) 3285 phydev->supported |= SUPPORTED_1000baseT_Half | 3286 SUPPORTED_1000baseT_Full; 3287 3288 phydev->advertising = phydev->supported; 3289 phydev->autoneg = AUTONEG_ENABLE; 3290 adapter->phydev = phydev; 3291 3292 dev_info(&adapter->pdev->dev, 3293 "attached PHY driver [%s] (mii_bus:phy_addr=%s)\n", 3294 phydev->drv->name, dev_name(&phydev->dev)); 3295 3296 return 0; 3297 } 3298 3299 static struct et131x_adapter *et131x_adapter_init(struct net_device *netdev, 3300 struct pci_dev *pdev) 3301 { 3302 static const u8 default_mac[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 }; 3303 3304 struct et131x_adapter *adapter; 3305 3306 adapter = netdev_priv(netdev); 3307 adapter->pdev = pci_dev_get(pdev); 3308 adapter->netdev = netdev; 3309 3310 spin_lock_init(&adapter->tcb_send_qlock); 3311 spin_lock_init(&adapter->tcb_ready_qlock); 3312 spin_lock_init(&adapter->rcv_lock); 3313 3314 adapter->registry_jumbo_packet = 1514; /* 1514-9216 */ 3315 3316 ether_addr_copy(adapter->addr, default_mac); 3317 3318 return adapter; 3319 } 3320 3321 static void et131x_pci_remove(struct pci_dev *pdev) 3322 { 3323 struct net_device *netdev = pci_get_drvdata(pdev); 3324 struct et131x_adapter *adapter = netdev_priv(netdev); 3325 3326 unregister_netdev(netdev); 3327 netif_napi_del(&adapter->napi); 3328 phy_disconnect(adapter->phydev); 3329 mdiobus_unregister(adapter->mii_bus); 3330 kfree(adapter->mii_bus->irq); 3331 mdiobus_free(adapter->mii_bus); 3332 3333 et131x_adapter_memory_free(adapter); 3334 iounmap(adapter->regs); 3335 pci_dev_put(pdev); 3336 3337 free_netdev(netdev); 3338 pci_release_regions(pdev); 3339 pci_disable_device(pdev); 3340 } 3341 3342 static void et131x_up(struct net_device *netdev) 3343 { 3344 struct et131x_adapter *adapter = netdev_priv(netdev); 3345 3346 et131x_enable_txrx(netdev); 3347 phy_start(adapter->phydev); 3348 } 3349 3350 static void et131x_down(struct net_device *netdev) 3351 { 3352 struct et131x_adapter *adapter = netdev_priv(netdev); 3353 3354 /* Save the timestamp for the TX watchdog, prevent a timeout */ 3355 netdev->trans_start = jiffies; 3356 3357 phy_stop(adapter->phydev); 3358 et131x_disable_txrx(netdev); 3359 } 3360 3361 #ifdef CONFIG_PM_SLEEP 3362 static int et131x_suspend(struct device *dev) 3363 { 3364 struct pci_dev *pdev = to_pci_dev(dev); 3365 struct net_device *netdev = pci_get_drvdata(pdev); 3366 3367 if (netif_running(netdev)) { 3368 netif_device_detach(netdev); 3369 et131x_down(netdev); 3370 pci_save_state(pdev); 3371 } 3372 3373 return 0; 3374 } 3375 3376 static int et131x_resume(struct device *dev) 3377 { 3378 struct pci_dev *pdev = to_pci_dev(dev); 3379 struct net_device *netdev = pci_get_drvdata(pdev); 3380 3381 if (netif_running(netdev)) { 3382 pci_restore_state(pdev); 3383 et131x_up(netdev); 3384 netif_device_attach(netdev); 3385 } 3386 3387 return 0; 3388 } 3389 #endif 3390 3391 static SIMPLE_DEV_PM_OPS(et131x_pm_ops, et131x_suspend, et131x_resume); 3392 3393 static irqreturn_t et131x_isr(int irq, void *dev_id) 3394 { 3395 bool handled = true; 3396 bool enable_interrupts = true; 3397 struct net_device *netdev = dev_id; 3398 struct et131x_adapter *adapter = netdev_priv(netdev); 3399 struct address_map __iomem *iomem = adapter->regs; 3400 struct rx_ring *rx_ring = &adapter->rx_ring; 3401 struct tx_ring *tx_ring = &adapter->tx_ring; 3402 u32 status; 3403 3404 if (!netif_device_present(netdev)) { 3405 handled = false; 3406 enable_interrupts = false; 3407 goto out; 3408 } 3409 3410 et131x_disable_interrupts(adapter); 3411 3412 status = readl(&adapter->regs->global.int_status); 3413 3414 if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH) 3415 status &= ~INT_MASK_ENABLE; 3416 else 3417 status &= ~INT_MASK_ENABLE_NO_FLOW; 3418 3419 /* Make sure this is our interrupt */ 3420 if (!status) { 3421 handled = false; 3422 et131x_enable_interrupts(adapter); 3423 goto out; 3424 } 3425 3426 /* This is our interrupt, so process accordingly */ 3427 if (status & ET_INTR_WATCHDOG) { 3428 struct tcb *tcb = tx_ring->send_head; 3429 3430 if (tcb) 3431 if (++tcb->stale > 1) 3432 status |= ET_INTR_TXDMA_ISR; 3433 3434 if (rx_ring->unfinished_receives) 3435 status |= ET_INTR_RXDMA_XFR_DONE; 3436 else if (tcb == NULL) 3437 writel(0, &adapter->regs->global.watchdog_timer); 3438 3439 status &= ~ET_INTR_WATCHDOG; 3440 } 3441 3442 if (status & (ET_INTR_RXDMA_XFR_DONE | ET_INTR_TXDMA_ISR)) { 3443 enable_interrupts = false; 3444 napi_schedule(&adapter->napi); 3445 } 3446 3447 status &= ~(ET_INTR_TXDMA_ISR | ET_INTR_RXDMA_XFR_DONE); 3448 3449 if (!status) 3450 goto out; 3451 3452 if (status & ET_INTR_TXDMA_ERR) { 3453 /* Following read also clears the register (COR) */ 3454 u32 txdma_err = readl(&iomem->txdma.tx_dma_error); 3455 3456 dev_warn(&adapter->pdev->dev, 3457 "TXDMA_ERR interrupt, error = %d\n", 3458 txdma_err); 3459 } 3460 3461 if (status & (ET_INTR_RXDMA_FB_R0_LOW | ET_INTR_RXDMA_FB_R1_LOW)) { 3462 /* This indicates the number of unused buffers in RXDMA free 3463 * buffer ring 0 is <= the limit you programmed. Free buffer 3464 * resources need to be returned. Free buffers are consumed as 3465 * packets are passed from the network to the host. The host 3466 * becomes aware of the packets from the contents of the packet 3467 * status ring. This ring is queried when the packet done 3468 * interrupt occurs. Packets are then passed to the OS. When 3469 * the OS is done with the packets the resources can be 3470 * returned to the ET1310 for re-use. This interrupt is one 3471 * method of returning resources. 3472 */ 3473 3474 /* If the user has flow control on, then we will 3475 * send a pause packet, otherwise just exit 3476 */ 3477 if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH) { 3478 u32 pm_csr; 3479 3480 /* Tell the device to send a pause packet via the back 3481 * pressure register (bp req and bp xon/xoff) 3482 */ 3483 pm_csr = readl(&iomem->global.pm_csr); 3484 if (!et1310_in_phy_coma(adapter)) 3485 writel(3, &iomem->txmac.bp_ctrl); 3486 } 3487 } 3488 3489 /* Handle Packet Status Ring Low Interrupt */ 3490 if (status & ET_INTR_RXDMA_STAT_LOW) { 3491 /* Same idea as with the two Free Buffer Rings. Packets going 3492 * from the network to the host each consume a free buffer 3493 * resource and a packet status resource. These resources are 3494 * passed to the OS. When the OS is done with the resources, 3495 * they need to be returned to the ET1310. This is one method 3496 * of returning the resources. 3497 */ 3498 } 3499 3500 if (status & ET_INTR_RXDMA_ERR) { 3501 /* The rxdma_error interrupt is sent when a time-out on a 3502 * request issued by the JAGCore has occurred or a completion is 3503 * returned with an un-successful status. In both cases the 3504 * request is considered complete. The JAGCore will 3505 * automatically re-try the request in question. Normally 3506 * information on events like these are sent to the host using 3507 * the "Advanced Error Reporting" capability. This interrupt is 3508 * another way of getting similar information. The only thing 3509 * required is to clear the interrupt by reading the ISR in the 3510 * global resources. The JAGCore will do a re-try on the 3511 * request. Normally you should never see this interrupt. If 3512 * you start to see this interrupt occurring frequently then 3513 * something bad has occurred. A reset might be the thing to do. 3514 */ 3515 /* TRAP();*/ 3516 3517 dev_warn(&adapter->pdev->dev, "RxDMA_ERR interrupt, error %x\n", 3518 readl(&iomem->txmac.tx_test)); 3519 } 3520 3521 /* Handle the Wake on LAN Event */ 3522 if (status & ET_INTR_WOL) { 3523 /* This is a secondary interrupt for wake on LAN. The driver 3524 * should never see this, if it does, something serious is 3525 * wrong. 3526 */ 3527 dev_err(&adapter->pdev->dev, "WAKE_ON_LAN interrupt\n"); 3528 } 3529 3530 if (status & ET_INTR_TXMAC) { 3531 u32 err = readl(&iomem->txmac.err); 3532 3533 /* When any of the errors occur and TXMAC generates an 3534 * interrupt to report these errors, it usually means that 3535 * TXMAC has detected an error in the data stream retrieved 3536 * from the on-chip Tx Q. All of these errors are catastrophic 3537 * and TXMAC won't be able to recover data when these errors 3538 * occur. In a nutshell, the whole Tx path will have to be reset 3539 * and re-configured afterwards. 3540 */ 3541 dev_warn(&adapter->pdev->dev, "TXMAC interrupt, error 0x%08x\n", 3542 err); 3543 3544 /* If we are debugging, we want to see this error, otherwise we 3545 * just want the device to be reset and continue 3546 */ 3547 } 3548 3549 if (status & ET_INTR_RXMAC) { 3550 /* These interrupts are catastrophic to the device, what we need 3551 * to do is disable the interrupts and set the flag to cause us 3552 * to reset so we can solve this issue. 3553 */ 3554 dev_warn(&adapter->pdev->dev, 3555 "RXMAC interrupt, error 0x%08x. Requesting reset\n", 3556 readl(&iomem->rxmac.err_reg)); 3557 3558 dev_warn(&adapter->pdev->dev, 3559 "Enable 0x%08x, Diag 0x%08x\n", 3560 readl(&iomem->rxmac.ctrl), 3561 readl(&iomem->rxmac.rxq_diag)); 3562 3563 /* If we are debugging, we want to see this error, otherwise we 3564 * just want the device to be reset and continue 3565 */ 3566 } 3567 3568 if (status & ET_INTR_MAC_STAT) { 3569 /* This means at least one of the un-masked counters in the 3570 * MAC_STAT block has rolled over. Use this to maintain the top, 3571 * software managed bits of the counter(s). 3572 */ 3573 et1310_handle_macstat_interrupt(adapter); 3574 } 3575 3576 if (status & ET_INTR_SLV_TIMEOUT) { 3577 /* This means a timeout has occurred on a read or write request 3578 * to one of the JAGCore registers. The Global Resources block 3579 * has terminated the request and on a read request, returned a 3580 * "fake" value. The most likely reasons are: Bad Address or the 3581 * addressed module is in a power-down state and can't respond. 3582 */ 3583 } 3584 3585 out: 3586 if (enable_interrupts) 3587 et131x_enable_interrupts(adapter); 3588 3589 return IRQ_RETVAL(handled); 3590 } 3591 3592 static int et131x_poll(struct napi_struct *napi, int budget) 3593 { 3594 struct et131x_adapter *adapter = 3595 container_of(napi, struct et131x_adapter, napi); 3596 int work_done = et131x_handle_recv_pkts(adapter, budget); 3597 3598 et131x_handle_send_pkts(adapter); 3599 3600 if (work_done < budget) { 3601 napi_complete(&adapter->napi); 3602 et131x_enable_interrupts(adapter); 3603 } 3604 3605 return work_done; 3606 } 3607 3608 /* et131x_stats - Return the current device statistics */ 3609 static struct net_device_stats *et131x_stats(struct net_device *netdev) 3610 { 3611 struct et131x_adapter *adapter = netdev_priv(netdev); 3612 struct net_device_stats *stats = &adapter->netdev->stats; 3613 struct ce_stats *devstat = &adapter->stats; 3614 3615 stats->rx_errors = devstat->rx_length_errs + 3616 devstat->rx_align_errs + 3617 devstat->rx_crc_errs + 3618 devstat->rx_code_violations + 3619 devstat->rx_other_errs; 3620 stats->tx_errors = devstat->tx_max_pkt_errs; 3621 stats->multicast = devstat->multicast_pkts_rcvd; 3622 stats->collisions = devstat->tx_collisions; 3623 3624 stats->rx_length_errors = devstat->rx_length_errs; 3625 stats->rx_over_errors = devstat->rx_overflows; 3626 stats->rx_crc_errors = devstat->rx_crc_errs; 3627 stats->rx_dropped = devstat->rcvd_pkts_dropped; 3628 3629 /* NOTE: Not used, can't find analogous statistics */ 3630 /* stats->rx_frame_errors = devstat->; */ 3631 /* stats->rx_fifo_errors = devstat->; */ 3632 /* stats->rx_missed_errors = devstat->; */ 3633 3634 /* stats->tx_aborted_errors = devstat->; */ 3635 /* stats->tx_carrier_errors = devstat->; */ 3636 /* stats->tx_fifo_errors = devstat->; */ 3637 /* stats->tx_heartbeat_errors = devstat->; */ 3638 /* stats->tx_window_errors = devstat->; */ 3639 return stats; 3640 } 3641 3642 static int et131x_open(struct net_device *netdev) 3643 { 3644 struct et131x_adapter *adapter = netdev_priv(netdev); 3645 struct pci_dev *pdev = adapter->pdev; 3646 unsigned int irq = pdev->irq; 3647 int result; 3648 3649 /* Start the timer to track NIC errors */ 3650 init_timer(&adapter->error_timer); 3651 adapter->error_timer.expires = jiffies + 3652 msecs_to_jiffies(TX_ERROR_PERIOD); 3653 adapter->error_timer.function = et131x_error_timer_handler; 3654 adapter->error_timer.data = (unsigned long)adapter; 3655 add_timer(&adapter->error_timer); 3656 3657 result = request_irq(irq, et131x_isr, 3658 IRQF_SHARED, netdev->name, netdev); 3659 if (result) { 3660 dev_err(&pdev->dev, "could not register IRQ %d\n", irq); 3661 return result; 3662 } 3663 3664 adapter->flags |= FMP_ADAPTER_INTERRUPT_IN_USE; 3665 3666 napi_enable(&adapter->napi); 3667 3668 et131x_up(netdev); 3669 3670 return result; 3671 } 3672 3673 static int et131x_close(struct net_device *netdev) 3674 { 3675 struct et131x_adapter *adapter = netdev_priv(netdev); 3676 3677 et131x_down(netdev); 3678 napi_disable(&adapter->napi); 3679 3680 adapter->flags &= ~FMP_ADAPTER_INTERRUPT_IN_USE; 3681 free_irq(adapter->pdev->irq, netdev); 3682 3683 /* Stop the error timer */ 3684 return del_timer_sync(&adapter->error_timer); 3685 } 3686 3687 static int et131x_ioctl(struct net_device *netdev, struct ifreq *reqbuf, 3688 int cmd) 3689 { 3690 struct et131x_adapter *adapter = netdev_priv(netdev); 3691 3692 if (!adapter->phydev) 3693 return -EINVAL; 3694 3695 return phy_mii_ioctl(adapter->phydev, reqbuf, cmd); 3696 } 3697 3698 /* et131x_set_packet_filter - Configures the Rx Packet filtering */ 3699 static int et131x_set_packet_filter(struct et131x_adapter *adapter) 3700 { 3701 int filter = adapter->packet_filter; 3702 u32 ctrl; 3703 u32 pf_ctrl; 3704 3705 ctrl = readl(&adapter->regs->rxmac.ctrl); 3706 pf_ctrl = readl(&adapter->regs->rxmac.pf_ctrl); 3707 3708 /* Default to disabled packet filtering */ 3709 ctrl |= 0x04; 3710 3711 /* Set us to be in promiscuous mode so we receive everything, this 3712 * is also true when we get a packet filter of 0 3713 */ 3714 if ((filter & ET131X_PACKET_TYPE_PROMISCUOUS) || filter == 0) 3715 pf_ctrl &= ~7; /* Clear filter bits */ 3716 else { 3717 /* Set us up with Multicast packet filtering. Three cases are 3718 * possible - (1) we have a multi-cast list, (2) we receive ALL 3719 * multicast entries or (3) we receive none. 3720 */ 3721 if (filter & ET131X_PACKET_TYPE_ALL_MULTICAST) 3722 pf_ctrl &= ~2; /* Multicast filter bit */ 3723 else { 3724 et1310_setup_device_for_multicast(adapter); 3725 pf_ctrl |= 2; 3726 ctrl &= ~0x04; 3727 } 3728 3729 /* Set us up with Unicast packet filtering */ 3730 if (filter & ET131X_PACKET_TYPE_DIRECTED) { 3731 et1310_setup_device_for_unicast(adapter); 3732 pf_ctrl |= 4; 3733 ctrl &= ~0x04; 3734 } 3735 3736 /* Set us up with Broadcast packet filtering */ 3737 if (filter & ET131X_PACKET_TYPE_BROADCAST) { 3738 pf_ctrl |= 1; /* Broadcast filter bit */ 3739 ctrl &= ~0x04; 3740 } else { 3741 pf_ctrl &= ~1; 3742 } 3743 3744 /* Setup the receive mac configuration registers - Packet 3745 * Filter control + the enable / disable for packet filter 3746 * in the control reg. 3747 */ 3748 writel(pf_ctrl, &adapter->regs->rxmac.pf_ctrl); 3749 writel(ctrl, &adapter->regs->rxmac.ctrl); 3750 } 3751 return 0; 3752 } 3753 3754 static void et131x_multicast(struct net_device *netdev) 3755 { 3756 struct et131x_adapter *adapter = netdev_priv(netdev); 3757 int packet_filter; 3758 struct netdev_hw_addr *ha; 3759 int i; 3760 3761 /* Before we modify the platform-independent filter flags, store them 3762 * locally. This allows us to determine if anything's changed and if 3763 * we even need to bother the hardware 3764 */ 3765 packet_filter = adapter->packet_filter; 3766 3767 /* Clear the 'multicast' flag locally; because we only have a single 3768 * flag to check multicast, and multiple multicast addresses can be 3769 * set, this is the easiest way to determine if more than one 3770 * multicast address is being set. 3771 */ 3772 packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST; 3773 3774 /* Check the net_device flags and set the device independent flags 3775 * accordingly 3776 */ 3777 if (netdev->flags & IFF_PROMISC) 3778 adapter->packet_filter |= ET131X_PACKET_TYPE_PROMISCUOUS; 3779 else 3780 adapter->packet_filter &= ~ET131X_PACKET_TYPE_PROMISCUOUS; 3781 3782 if ((netdev->flags & IFF_ALLMULTI) || 3783 (netdev_mc_count(netdev) > NIC_MAX_MCAST_LIST)) 3784 adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST; 3785 3786 if (netdev_mc_count(netdev) < 1) { 3787 adapter->packet_filter &= ~ET131X_PACKET_TYPE_ALL_MULTICAST; 3788 adapter->packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST; 3789 } else { 3790 adapter->packet_filter |= ET131X_PACKET_TYPE_MULTICAST; 3791 } 3792 3793 /* Set values in the private adapter struct */ 3794 i = 0; 3795 netdev_for_each_mc_addr(ha, netdev) { 3796 if (i == NIC_MAX_MCAST_LIST) 3797 break; 3798 ether_addr_copy(adapter->multicast_list[i++], ha->addr); 3799 } 3800 adapter->multicast_addr_count = i; 3801 3802 /* Are the new flags different from the previous ones? If not, then no 3803 * action is required 3804 * 3805 * NOTE - This block will always update the multicast_list with the 3806 * hardware, even if the addresses aren't the same. 3807 */ 3808 if (packet_filter != adapter->packet_filter) 3809 et131x_set_packet_filter(adapter); 3810 } 3811 3812 static netdev_tx_t et131x_tx(struct sk_buff *skb, struct net_device *netdev) 3813 { 3814 struct et131x_adapter *adapter = netdev_priv(netdev); 3815 struct tx_ring *tx_ring = &adapter->tx_ring; 3816 3817 /* stop the queue if it's getting full */ 3818 if (tx_ring->used >= NUM_TCB - 1 && !netif_queue_stopped(netdev)) 3819 netif_stop_queue(netdev); 3820 3821 /* Save the timestamp for the TX timeout watchdog */ 3822 netdev->trans_start = jiffies; 3823 3824 /* TCB is not available */ 3825 if (tx_ring->used >= NUM_TCB) 3826 goto drop_err; 3827 3828 if ((adapter->flags & FMP_ADAPTER_FAIL_SEND_MASK) || 3829 !netif_carrier_ok(netdev)) 3830 goto drop_err; 3831 3832 if (send_packet(skb, adapter)) 3833 goto drop_err; 3834 3835 return NETDEV_TX_OK; 3836 3837 drop_err: 3838 dev_kfree_skb_any(skb); 3839 adapter->netdev->stats.tx_dropped++; 3840 return NETDEV_TX_OK; 3841 } 3842 3843 /* et131x_tx_timeout - Timeout handler 3844 * 3845 * The handler called when a Tx request times out. The timeout period is 3846 * specified by the 'tx_timeo" element in the net_device structure (see 3847 * et131x_alloc_device() to see how this value is set). 3848 */ 3849 static void et131x_tx_timeout(struct net_device *netdev) 3850 { 3851 struct et131x_adapter *adapter = netdev_priv(netdev); 3852 struct tx_ring *tx_ring = &adapter->tx_ring; 3853 struct tcb *tcb; 3854 unsigned long flags; 3855 3856 /* If the device is closed, ignore the timeout */ 3857 if (~(adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE)) 3858 return; 3859 3860 /* Any nonrecoverable hardware error? 3861 * Checks adapter->flags for any failure in phy reading 3862 */ 3863 if (adapter->flags & FMP_ADAPTER_NON_RECOVER_ERROR) 3864 return; 3865 3866 /* Hardware failure? */ 3867 if (adapter->flags & FMP_ADAPTER_HARDWARE_ERROR) { 3868 dev_err(&adapter->pdev->dev, "hardware error - reset\n"); 3869 return; 3870 } 3871 3872 /* Is send stuck? */ 3873 spin_lock_irqsave(&adapter->tcb_send_qlock, flags); 3874 tcb = tx_ring->send_head; 3875 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags); 3876 3877 if (tcb) { 3878 tcb->count++; 3879 3880 if (tcb->count > NIC_SEND_HANG_THRESHOLD) { 3881 dev_warn(&adapter->pdev->dev, 3882 "Send stuck - reset. tcb->WrIndex %x\n", 3883 tcb->index); 3884 3885 adapter->netdev->stats.tx_errors++; 3886 3887 /* perform reset of tx/rx */ 3888 et131x_disable_txrx(netdev); 3889 et131x_enable_txrx(netdev); 3890 } 3891 } 3892 } 3893 3894 static int et131x_change_mtu(struct net_device *netdev, int new_mtu) 3895 { 3896 int result = 0; 3897 struct et131x_adapter *adapter = netdev_priv(netdev); 3898 3899 if (new_mtu < 64 || new_mtu > 9216) 3900 return -EINVAL; 3901 3902 et131x_disable_txrx(netdev); 3903 3904 netdev->mtu = new_mtu; 3905 3906 et131x_adapter_memory_free(adapter); 3907 3908 /* Set the config parameter for Jumbo Packet support */ 3909 adapter->registry_jumbo_packet = new_mtu + 14; 3910 et131x_soft_reset(adapter); 3911 3912 result = et131x_adapter_memory_alloc(adapter); 3913 if (result != 0) { 3914 dev_warn(&adapter->pdev->dev, 3915 "Change MTU failed; couldn't re-alloc DMA memory\n"); 3916 return result; 3917 } 3918 3919 et131x_init_send(adapter); 3920 et131x_hwaddr_init(adapter); 3921 ether_addr_copy(netdev->dev_addr, adapter->addr); 3922 3923 /* Init the device with the new settings */ 3924 et131x_adapter_setup(adapter); 3925 et131x_enable_txrx(netdev); 3926 3927 return result; 3928 } 3929 3930 static const struct net_device_ops et131x_netdev_ops = { 3931 .ndo_open = et131x_open, 3932 .ndo_stop = et131x_close, 3933 .ndo_start_xmit = et131x_tx, 3934 .ndo_set_rx_mode = et131x_multicast, 3935 .ndo_tx_timeout = et131x_tx_timeout, 3936 .ndo_change_mtu = et131x_change_mtu, 3937 .ndo_set_mac_address = eth_mac_addr, 3938 .ndo_validate_addr = eth_validate_addr, 3939 .ndo_get_stats = et131x_stats, 3940 .ndo_do_ioctl = et131x_ioctl, 3941 }; 3942 3943 static int et131x_pci_setup(struct pci_dev *pdev, 3944 const struct pci_device_id *ent) 3945 { 3946 struct net_device *netdev; 3947 struct et131x_adapter *adapter; 3948 int rc; 3949 int ii; 3950 3951 rc = pci_enable_device(pdev); 3952 if (rc < 0) { 3953 dev_err(&pdev->dev, "pci_enable_device() failed\n"); 3954 goto out; 3955 } 3956 3957 /* Perform some basic PCI checks */ 3958 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 3959 dev_err(&pdev->dev, "Can't find PCI device's base address\n"); 3960 rc = -ENODEV; 3961 goto err_disable; 3962 } 3963 3964 rc = pci_request_regions(pdev, DRIVER_NAME); 3965 if (rc < 0) { 3966 dev_err(&pdev->dev, "Can't get PCI resources\n"); 3967 goto err_disable; 3968 } 3969 3970 pci_set_master(pdev); 3971 3972 /* Check the DMA addressing support of this device */ 3973 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) && 3974 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32))) { 3975 dev_err(&pdev->dev, "No usable DMA addressing method\n"); 3976 rc = -EIO; 3977 goto err_release_res; 3978 } 3979 3980 netdev = alloc_etherdev(sizeof(struct et131x_adapter)); 3981 if (!netdev) { 3982 dev_err(&pdev->dev, "Couldn't alloc netdev struct\n"); 3983 rc = -ENOMEM; 3984 goto err_release_res; 3985 } 3986 3987 netdev->watchdog_timeo = ET131X_TX_TIMEOUT; 3988 netdev->netdev_ops = &et131x_netdev_ops; 3989 3990 SET_NETDEV_DEV(netdev, &pdev->dev); 3991 netdev->ethtool_ops = &et131x_ethtool_ops; 3992 3993 adapter = et131x_adapter_init(netdev, pdev); 3994 3995 rc = et131x_pci_init(adapter, pdev); 3996 if (rc < 0) 3997 goto err_free_dev; 3998 3999 /* Map the bus-relative registers to system virtual memory */ 4000 adapter->regs = pci_ioremap_bar(pdev, 0); 4001 if (!adapter->regs) { 4002 dev_err(&pdev->dev, "Cannot map device registers\n"); 4003 rc = -ENOMEM; 4004 goto err_free_dev; 4005 } 4006 4007 /* If Phy COMA mode was enabled when we went down, disable it here. */ 4008 writel(ET_PMCSR_INIT, &adapter->regs->global.pm_csr); 4009 4010 et131x_soft_reset(adapter); 4011 et131x_disable_interrupts(adapter); 4012 4013 rc = et131x_adapter_memory_alloc(adapter); 4014 if (rc < 0) { 4015 dev_err(&pdev->dev, "Could not alloc adapter memory (DMA)\n"); 4016 goto err_iounmap; 4017 } 4018 4019 et131x_init_send(adapter); 4020 4021 netif_napi_add(netdev, &adapter->napi, et131x_poll, 64); 4022 4023 ether_addr_copy(netdev->dev_addr, adapter->addr); 4024 4025 rc = -ENOMEM; 4026 4027 adapter->mii_bus = mdiobus_alloc(); 4028 if (!adapter->mii_bus) { 4029 dev_err(&pdev->dev, "Alloc of mii_bus struct failed\n"); 4030 goto err_mem_free; 4031 } 4032 4033 adapter->mii_bus->name = "et131x_eth_mii"; 4034 snprintf(adapter->mii_bus->id, MII_BUS_ID_SIZE, "%x", 4035 (adapter->pdev->bus->number << 8) | adapter->pdev->devfn); 4036 adapter->mii_bus->priv = netdev; 4037 adapter->mii_bus->read = et131x_mdio_read; 4038 adapter->mii_bus->write = et131x_mdio_write; 4039 adapter->mii_bus->irq = kmalloc_array(PHY_MAX_ADDR, sizeof(int), 4040 GFP_KERNEL); 4041 if (!adapter->mii_bus->irq) 4042 goto err_mdio_free; 4043 4044 for (ii = 0; ii < PHY_MAX_ADDR; ii++) 4045 adapter->mii_bus->irq[ii] = PHY_POLL; 4046 4047 rc = mdiobus_register(adapter->mii_bus); 4048 if (rc < 0) { 4049 dev_err(&pdev->dev, "failed to register MII bus\n"); 4050 goto err_mdio_free_irq; 4051 } 4052 4053 rc = et131x_mii_probe(netdev); 4054 if (rc < 0) { 4055 dev_err(&pdev->dev, "failed to probe MII bus\n"); 4056 goto err_mdio_unregister; 4057 } 4058 4059 et131x_adapter_setup(adapter); 4060 4061 /* Init variable for counting how long we do not have link status */ 4062 adapter->boot_coma = 0; 4063 et1310_disable_phy_coma(adapter); 4064 4065 /* We can enable interrupts now 4066 * 4067 * NOTE - Because registration of interrupt handler is done in the 4068 * device's open(), defer enabling device interrupts to that 4069 * point 4070 */ 4071 4072 rc = register_netdev(netdev); 4073 if (rc < 0) { 4074 dev_err(&pdev->dev, "register_netdev() failed\n"); 4075 goto err_phy_disconnect; 4076 } 4077 4078 /* Register the net_device struct with the PCI subsystem. Save a copy 4079 * of the PCI config space for this device now that the device has 4080 * been initialized, just in case it needs to be quickly restored. 4081 */ 4082 pci_set_drvdata(pdev, netdev); 4083 out: 4084 return rc; 4085 4086 err_phy_disconnect: 4087 phy_disconnect(adapter->phydev); 4088 err_mdio_unregister: 4089 mdiobus_unregister(adapter->mii_bus); 4090 err_mdio_free_irq: 4091 kfree(adapter->mii_bus->irq); 4092 err_mdio_free: 4093 mdiobus_free(adapter->mii_bus); 4094 err_mem_free: 4095 et131x_adapter_memory_free(adapter); 4096 err_iounmap: 4097 iounmap(adapter->regs); 4098 err_free_dev: 4099 pci_dev_put(pdev); 4100 free_netdev(netdev); 4101 err_release_res: 4102 pci_release_regions(pdev); 4103 err_disable: 4104 pci_disable_device(pdev); 4105 goto out; 4106 } 4107 4108 static const struct pci_device_id et131x_pci_table[] = { 4109 { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_GIG), 0UL}, 4110 { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_FAST), 0UL}, 4111 { 0,} 4112 }; 4113 MODULE_DEVICE_TABLE(pci, et131x_pci_table); 4114 4115 static struct pci_driver et131x_driver = { 4116 .name = DRIVER_NAME, 4117 .id_table = et131x_pci_table, 4118 .probe = et131x_pci_setup, 4119 .remove = et131x_pci_remove, 4120 .driver.pm = &et131x_pm_ops, 4121 }; 4122 4123 module_pci_driver(et131x_driver); 4124