1 /* Agere Systems Inc.
2  * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs
3  *
4  * Copyright © 2005 Agere Systems Inc.
5  * All rights reserved.
6  *   http://www.agere.com
7  *
8  * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com>
9  *
10  *------------------------------------------------------------------------------
11  *
12  * SOFTWARE LICENSE
13  *
14  * This software is provided subject to the following terms and conditions,
15  * which you should read carefully before using the software.  Using this
16  * software indicates your acceptance of these terms and conditions.  If you do
17  * not agree with these terms and conditions, do not use the software.
18  *
19  * Copyright © 2005 Agere Systems Inc.
20  * All rights reserved.
21  *
22  * Redistribution and use in source or binary forms, with or without
23  * modifications, are permitted provided that the following conditions are met:
24  *
25  * . Redistributions of source code must retain the above copyright notice, this
26  *    list of conditions and the following Disclaimer as comments in the code as
27  *    well as in the documentation and/or other materials provided with the
28  *    distribution.
29  *
30  * . Redistributions in binary form must reproduce the above copyright notice,
31  *    this list of conditions and the following Disclaimer in the documentation
32  *    and/or other materials provided with the distribution.
33  *
34  * . Neither the name of Agere Systems Inc. nor the names of the contributors
35  *    may be used to endorse or promote products derived from this software
36  *    without specific prior written permission.
37  *
38  * Disclaimer
39  *
40  * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES,
41  * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF
42  * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED.  ANY
43  * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN
44  * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY
45  * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
46  * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
47  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
48  * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT
49  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT
50  * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH
51  * DAMAGE.
52  */
53 
54 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
55 
56 #include <linux/pci.h>
57 #include <linux/module.h>
58 #include <linux/types.h>
59 #include <linux/kernel.h>
60 
61 #include <linux/sched.h>
62 #include <linux/ptrace.h>
63 #include <linux/slab.h>
64 #include <linux/ctype.h>
65 #include <linux/string.h>
66 #include <linux/timer.h>
67 #include <linux/interrupt.h>
68 #include <linux/in.h>
69 #include <linux/delay.h>
70 #include <linux/bitops.h>
71 #include <linux/io.h>
72 
73 #include <linux/netdevice.h>
74 #include <linux/etherdevice.h>
75 #include <linux/skbuff.h>
76 #include <linux/if_arp.h>
77 #include <linux/ioport.h>
78 #include <linux/crc32.h>
79 #include <linux/random.h>
80 #include <linux/phy.h>
81 
82 #include "et131x.h"
83 
84 MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>");
85 MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>");
86 MODULE_LICENSE("Dual BSD/GPL");
87 MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver for the ET1310 by Agere Systems");
88 
89 /* EEPROM defines */
90 #define MAX_NUM_REGISTER_POLLS          1000
91 #define MAX_NUM_WRITE_RETRIES           2
92 
93 /* MAC defines */
94 #define COUNTER_WRAP_16_BIT 0x10000
95 #define COUNTER_WRAP_12_BIT 0x1000
96 
97 /* PCI defines */
98 #define INTERNAL_MEM_SIZE       0x400	/* 1024 of internal memory */
99 #define INTERNAL_MEM_RX_OFFSET  0x1FF	/* 50%   Tx, 50%   Rx */
100 
101 /* ISR defines */
102 /* For interrupts, normal running is:
103  *       rxdma_xfr_done, phy_interrupt, mac_stat_interrupt,
104  *       watchdog_interrupt & txdma_xfer_done
105  *
106  * In both cases, when flow control is enabled for either Tx or bi-direction,
107  * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the
108  * buffer rings are running low.
109  */
110 #define INT_MASK_DISABLE            0xffffffff
111 
112 /* NOTE: Masking out MAC_STAT Interrupt for now...
113  * #define INT_MASK_ENABLE             0xfff6bf17
114  * #define INT_MASK_ENABLE_NO_FLOW     0xfff6bfd7
115  */
116 #define INT_MASK_ENABLE             0xfffebf17
117 #define INT_MASK_ENABLE_NO_FLOW     0xfffebfd7
118 
119 /* General defines */
120 /* Packet and header sizes */
121 #define NIC_MIN_PACKET_SIZE	60
122 
123 /* Multicast list size */
124 #define NIC_MAX_MCAST_LIST	128
125 
126 /* Supported Filters */
127 #define ET131X_PACKET_TYPE_DIRECTED		0x0001
128 #define ET131X_PACKET_TYPE_MULTICAST		0x0002
129 #define ET131X_PACKET_TYPE_BROADCAST		0x0004
130 #define ET131X_PACKET_TYPE_PROMISCUOUS		0x0008
131 #define ET131X_PACKET_TYPE_ALL_MULTICAST	0x0010
132 
133 /* Tx Timeout */
134 #define ET131X_TX_TIMEOUT	(1 * HZ)
135 #define NIC_SEND_HANG_THRESHOLD	0
136 
137 /* MP_ADAPTER flags */
138 #define FMP_ADAPTER_INTERRUPT_IN_USE	0x00000008
139 
140 /* MP_SHARED flags */
141 #define FMP_ADAPTER_LOWER_POWER		0x00200000
142 
143 #define FMP_ADAPTER_NON_RECOVER_ERROR	0x00800000
144 #define FMP_ADAPTER_HARDWARE_ERROR	0x04000000
145 
146 #define FMP_ADAPTER_FAIL_SEND_MASK	0x3ff00000
147 
148 /* Some offsets in PCI config space that are actually used. */
149 #define ET1310_PCI_MAC_ADDRESS		0xA4
150 #define ET1310_PCI_EEPROM_STATUS	0xB2
151 #define ET1310_PCI_ACK_NACK		0xC0
152 #define ET1310_PCI_REPLAY		0xC2
153 #define ET1310_PCI_L0L1LATENCY		0xCF
154 
155 /* PCI Product IDs */
156 #define ET131X_PCI_DEVICE_ID_GIG	0xED00	/* ET1310 1000 Base-T 8 */
157 #define ET131X_PCI_DEVICE_ID_FAST	0xED01	/* ET1310 100  Base-T */
158 
159 /* Define order of magnitude converter */
160 #define NANO_IN_A_MICRO	1000
161 
162 #define PARM_RX_NUM_BUFS_DEF    4
163 #define PARM_RX_TIME_INT_DEF    10
164 #define PARM_RX_MEM_END_DEF     0x2bc
165 #define PARM_TX_TIME_INT_DEF    40
166 #define PARM_TX_NUM_BUFS_DEF    4
167 #define PARM_DMA_CACHE_DEF      0
168 
169 /* RX defines */
170 #define FBR_CHUNKS		32
171 #define MAX_DESC_PER_RING_RX	1024
172 
173 /* number of RFDs - default and min */
174 #define RFD_LOW_WATER_MARK	40
175 #define NIC_DEFAULT_NUM_RFD	1024
176 #define NUM_FBRS		2
177 
178 #define MAX_PACKETS_HANDLED	256
179 
180 #define ALCATEL_MULTICAST_PKT	0x01000000
181 #define ALCATEL_BROADCAST_PKT	0x02000000
182 
183 /* typedefs for Free Buffer Descriptors */
184 struct fbr_desc {
185 	u32 addr_lo;
186 	u32 addr_hi;
187 	u32 word2;		/* Bits 10-31 reserved, 0-9 descriptor */
188 };
189 
190 /* Packet Status Ring Descriptors
191  *
192  * Word 0:
193  *
194  * top 16 bits are from the Alcatel Status Word as enumerated in
195  * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2)
196  *
197  * 0: hp			hash pass
198  * 1: ipa			IP checksum assist
199  * 2: ipp			IP checksum pass
200  * 3: tcpa			TCP checksum assist
201  * 4: tcpp			TCP checksum pass
202  * 5: wol			WOL Event
203  * 6: rxmac_error		RXMAC Error Indicator
204  * 7: drop			Drop packet
205  * 8: ft			Frame Truncated
206  * 9: jp			Jumbo Packet
207  * 10: vp			VLAN Packet
208  * 11-15: unused
209  * 16: asw_prev_pkt_dropped	e.g. IFG too small on previous
210  * 17: asw_RX_DV_event		short receive event detected
211  * 18: asw_false_carrier_event	bad carrier since last good packet
212  * 19: asw_code_err		one or more nibbles signalled as errors
213  * 20: asw_CRC_err		CRC error
214  * 21: asw_len_chk_err		frame length field incorrect
215  * 22: asw_too_long		frame length > 1518 bytes
216  * 23: asw_OK			valid CRC + no code error
217  * 24: asw_multicast		has a multicast address
218  * 25: asw_broadcast		has a broadcast address
219  * 26: asw_dribble_nibble	spurious bits after EOP
220  * 27: asw_control_frame	is a control frame
221  * 28: asw_pause_frame		is a pause frame
222  * 29: asw_unsupported_op	unsupported OP code
223  * 30: asw_VLAN_tag		VLAN tag detected
224  * 31: asw_long_evt		Rx long event
225  *
226  * Word 1:
227  * 0-15: length			length in bytes
228  * 16-25: bi			Buffer Index
229  * 26-27: ri			Ring Index
230  * 28-31: reserved
231  */
232 struct pkt_stat_desc {
233 	u32 word0;
234 	u32 word1;
235 };
236 
237 /* Typedefs for the RX DMA status word */
238 
239 /* rx status word 0 holds part of the status bits of the Rx DMA engine
240  * that get copied out to memory by the ET-1310.  Word 0 is a 32 bit word
241  * which contains the Free Buffer ring 0 and 1 available offset.
242  *
243  * bit 0-9 FBR1 offset
244  * bit 10 Wrap flag for FBR1
245  * bit 16-25 FBR0 offset
246  * bit 26 Wrap flag for FBR0
247  */
248 
249 /* RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine
250  * that get copied out to memory by the ET-1310.  Word 3 is a 32 bit word
251  * which contains the Packet Status Ring available offset.
252  *
253  * bit 0-15 reserved
254  * bit 16-27 PSRoffset
255  * bit 28 PSRwrap
256  * bit 29-31 unused
257  */
258 
259 /* struct rx_status_block is a structure representing the status of the Rx
260  * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020
261  */
262 struct rx_status_block {
263 	u32 word0;
264 	u32 word1;
265 };
266 
267 /* Structure for look-up table holding free buffer ring pointers, addresses
268  * and state.
269  */
270 struct fbr_lookup {
271 	void		*virt[MAX_DESC_PER_RING_RX];
272 	u32		 bus_high[MAX_DESC_PER_RING_RX];
273 	u32		 bus_low[MAX_DESC_PER_RING_RX];
274 	void		*ring_virtaddr;
275 	dma_addr_t	 ring_physaddr;
276 	void		*mem_virtaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
277 	dma_addr_t	 mem_physaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS];
278 	u32		 local_full;
279 	u32		 num_entries;
280 	dma_addr_t	 buffsize;
281 };
282 
283 /* struct rx_ring is the structure representing the adaptor's local
284  * reference(s) to the rings
285  */
286 struct rx_ring {
287 	struct fbr_lookup *fbr[NUM_FBRS];
288 	void *ps_ring_virtaddr;
289 	dma_addr_t ps_ring_physaddr;
290 	u32 local_psr_full;
291 	u32 psr_entries;
292 
293 	struct rx_status_block *rx_status_block;
294 	dma_addr_t rx_status_bus;
295 
296 	struct list_head recv_list;
297 	u32 num_ready_recv;
298 
299 	u32 num_rfd;
300 
301 	bool unfinished_receives;
302 };
303 
304 /* TX defines */
305 /* word 2 of the control bits in the Tx Descriptor ring for the ET-1310
306  *
307  * 0-15: length of packet
308  * 16-27: VLAN tag
309  * 28: VLAN CFI
310  * 29-31: VLAN priority
311  *
312  * word 3 of the control bits in the Tx Descriptor ring for the ET-1310
313  *
314  * 0: last packet in the sequence
315  * 1: first packet in the sequence
316  * 2: interrupt the processor when this pkt sent
317  * 3: Control word - no packet data
318  * 4: Issue half-duplex backpressure : XON/XOFF
319  * 5: send pause frame
320  * 6: Tx frame has error
321  * 7: append CRC
322  * 8: MAC override
323  * 9: pad packet
324  * 10: Packet is a Huge packet
325  * 11: append VLAN tag
326  * 12: IP checksum assist
327  * 13: TCP checksum assist
328  * 14: UDP checksum assist
329  */
330 #define TXDESC_FLAG_LASTPKT		0x0001
331 #define TXDESC_FLAG_FIRSTPKT		0x0002
332 #define TXDESC_FLAG_INTPROC		0x0004
333 
334 /* struct tx_desc represents each descriptor on the ring */
335 struct tx_desc {
336 	u32 addr_hi;
337 	u32 addr_lo;
338 	u32 len_vlan;	/* control words how to xmit the */
339 	u32 flags;	/* data (detailed above) */
340 };
341 
342 /* The status of the Tx DMA engine it sits in free memory, and is pointed to
343  * by 0x101c / 0x1020. This is a DMA10 type
344  */
345 
346 /* TCB (Transmit Control Block: Host Side) */
347 struct tcb {
348 	struct tcb *next;	/* Next entry in ring */
349 	u32 count;		/* Used to spot stuck/lost packets */
350 	u32 stale;		/* Used to spot stuck/lost packets */
351 	struct sk_buff *skb;	/* Network skb we are tied to */
352 	u32 index;		/* Ring indexes */
353 	u32 index_start;
354 };
355 
356 /* Structure representing our local reference(s) to the ring */
357 struct tx_ring {
358 	/* TCB (Transmit Control Block) memory and lists */
359 	struct tcb *tcb_ring;
360 
361 	/* List of TCBs that are ready to be used */
362 	struct tcb *tcb_qhead;
363 	struct tcb *tcb_qtail;
364 
365 	/* list of TCBs that are currently being sent. */
366 	struct tcb *send_head;
367 	struct tcb *send_tail;
368 	int used;
369 
370 	/* The actual descriptor ring */
371 	struct tx_desc *tx_desc_ring;
372 	dma_addr_t tx_desc_ring_pa;
373 
374 	/* send_idx indicates where we last wrote to in the descriptor ring. */
375 	u32 send_idx;
376 
377 	/* The location of the write-back status block */
378 	u32 *tx_status;
379 	dma_addr_t tx_status_pa;
380 
381 	/* Packets since the last IRQ: used for interrupt coalescing */
382 	int since_irq;
383 };
384 
385 /* Do not change these values: if changed, then change also in respective
386  * TXdma and Rxdma engines
387  */
388 #define NUM_DESC_PER_RING_TX         512    /* TX Do not change these values */
389 #define NUM_TCB                      64
390 
391 /* These values are all superseded by registry entries to facilitate tuning.
392  * Once the desired performance has been achieved, the optimal registry values
393  * should be re-populated to these #defines:
394  */
395 #define TX_ERROR_PERIOD             1000
396 
397 #define LO_MARK_PERCENT_FOR_PSR     15
398 #define LO_MARK_PERCENT_FOR_RX      15
399 
400 /* RFD (Receive Frame Descriptor) */
401 struct rfd {
402 	struct list_head list_node;
403 	struct sk_buff *skb;
404 	u32 len;	/* total size of receive frame */
405 	u16 bufferindex;
406 	u8 ringindex;
407 };
408 
409 /* Flow Control */
410 #define FLOW_BOTH	0
411 #define FLOW_TXONLY	1
412 #define FLOW_RXONLY	2
413 #define FLOW_NONE	3
414 
415 /* Struct to define some device statistics */
416 struct ce_stats {
417 	u32		multicast_pkts_rcvd;
418 	u32		rcvd_pkts_dropped;
419 
420 	u32		tx_underflows;
421 	u32		tx_collisions;
422 	u32		tx_excessive_collisions;
423 	u32		tx_first_collisions;
424 	u32		tx_late_collisions;
425 	u32		tx_max_pkt_errs;
426 	u32		tx_deferred;
427 
428 	u32		rx_overflows;
429 	u32		rx_length_errs;
430 	u32		rx_align_errs;
431 	u32		rx_crc_errs;
432 	u32		rx_code_violations;
433 	u32		rx_other_errs;
434 
435 	u32		interrupt_status;
436 };
437 
438 /* The private adapter structure */
439 struct et131x_adapter {
440 	struct net_device *netdev;
441 	struct pci_dev *pdev;
442 	struct mii_bus *mii_bus;
443 	struct napi_struct napi;
444 
445 	/* Flags that indicate current state of the adapter */
446 	u32 flags;
447 
448 	/* local link state, to determine if a state change has occurred */
449 	int link;
450 
451 	/* Configuration  */
452 	u8 rom_addr[ETH_ALEN];
453 	u8 addr[ETH_ALEN];
454 	bool has_eeprom;
455 	u8 eeprom_data[2];
456 
457 	spinlock_t tcb_send_qlock; /* protects the tx_ring send tcb list */
458 	spinlock_t tcb_ready_qlock; /* protects the tx_ring ready tcb list */
459 	spinlock_t rcv_lock; /* protects the rx_ring receive list */
460 
461 	/* Packet Filter and look ahead size */
462 	u32 packet_filter;
463 
464 	/* multicast list */
465 	u32 multicast_addr_count;
466 	u8 multicast_list[NIC_MAX_MCAST_LIST][ETH_ALEN];
467 
468 	/* Pointer to the device's PCI register space */
469 	struct address_map __iomem *regs;
470 
471 	/* Registry parameters */
472 	u8 wanted_flow;		/* Flow we want for 802.3x flow control */
473 	u32 registry_jumbo_packet;	/* Max supported ethernet packet size */
474 
475 	/* Derived from the registry: */
476 	u8 flow;		/* flow control validated by the far-end */
477 
478 	/* Minimize init-time */
479 	struct timer_list error_timer;
480 
481 	/* variable putting the phy into coma mode when boot up with no cable
482 	 * plugged in after 5 seconds
483 	 */
484 	u8 boot_coma;
485 
486 	/* Tx Memory Variables */
487 	struct tx_ring tx_ring;
488 
489 	/* Rx Memory Variables */
490 	struct rx_ring rx_ring;
491 
492 	struct ce_stats stats;
493 };
494 
495 static int eeprom_wait_ready(struct pci_dev *pdev, u32 *status)
496 {
497 	u32 reg;
498 	int i;
499 
500 	/* 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and
501 	 *    bits 7,1:0 both equal to 1, at least once after reset.
502 	 *    Subsequent operations need only to check that bits 1:0 are equal
503 	 *    to 1 prior to starting a single byte read/write
504 	 */
505 	for (i = 0; i < MAX_NUM_REGISTER_POLLS; i++) {
506 		if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP, &reg))
507 			return -EIO;
508 
509 		/* I2C idle and Phy Queue Avail both true */
510 		if ((reg & 0x3000) == 0x3000) {
511 			if (status)
512 				*status = reg;
513 			return reg & 0xFF;
514 		}
515 	}
516 	return -ETIMEDOUT;
517 }
518 
519 static int eeprom_write(struct et131x_adapter *adapter, u32 addr, u8 data)
520 {
521 	struct pci_dev *pdev = adapter->pdev;
522 	int index = 0;
523 	int retries;
524 	int err = 0;
525 	int writeok = 0;
526 	u32 status;
527 	u32 val = 0;
528 
529 	/* For an EEPROM, an I2C single byte write is defined as a START
530 	 * condition followed by the device address, EEPROM address, one byte
531 	 * of data and a STOP condition.  The STOP condition will trigger the
532 	 * EEPROM's internally timed write cycle to the nonvolatile memory.
533 	 * All inputs are disabled during this write cycle and the EEPROM will
534 	 * not respond to any access until the internal write is complete.
535 	 */
536 	err = eeprom_wait_ready(pdev, NULL);
537 	if (err < 0)
538 		return err;
539 
540 	 /* 2. Write to the LBCIF Control Register:  bit 7=1, bit 6=1, bit 3=0,
541 	  *    and bits 1:0 both =0.  Bit 5 should be set according to the
542 	  *    type of EEPROM being accessed (1=two byte addressing, 0=one
543 	  *    byte addressing).
544 	  */
545 	if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
546 				  LBCIF_CONTROL_LBCIF_ENABLE |
547 					LBCIF_CONTROL_I2C_WRITE))
548 		return -EIO;
549 
550 	/* Prepare EEPROM address for Step 3 */
551 	for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) {
552 		if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
553 			break;
554 		/* Write the data to the LBCIF Data Register (the I2C write
555 		 * will begin).
556 		 */
557 		if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER, data))
558 			break;
559 		/* Monitor bit 1:0 of the LBCIF Status Register.  When bits
560 		 * 1:0 are both equal to 1, the I2C write has completed and the
561 		 * internal write cycle of the EEPROM is about to start.
562 		 * (bits 1:0 = 01 is a legal state while waiting from both
563 		 * equal to 1, but bits 1:0 = 10 is invalid and implies that
564 		 * something is broken).
565 		 */
566 		err = eeprom_wait_ready(pdev, &status);
567 		if (err < 0)
568 			return 0;
569 
570 		/* Check bit 3 of the LBCIF Status Register.  If  equal to 1,
571 		 * an error has occurred.Don't break here if we are revision
572 		 * 1, this is so we do a blind write for load bug.
573 		 */
574 		if ((status & LBCIF_STATUS_GENERAL_ERROR) &&
575 		    adapter->pdev->revision == 0)
576 			break;
577 
578 		/* Check bit 2 of the LBCIF Status Register.  If equal to 1 an
579 		 * ACK error has occurred on the address phase of the write.
580 		 * This could be due to an actual hardware failure or the
581 		 * EEPROM may still be in its internal write cycle from a
582 		 * previous write. This write operation was ignored and must be
583 		  *repeated later.
584 		 */
585 		if (status & LBCIF_STATUS_ACK_ERROR) {
586 			/* This could be due to an actual hardware failure
587 			 * or the EEPROM may still be in its internal write
588 			 * cycle from a previous write. This write operation
589 			 * was ignored and must be repeated later.
590 			 */
591 			udelay(10);
592 			continue;
593 		}
594 
595 		writeok = 1;
596 		break;
597 	}
598 
599 	udelay(10);
600 
601 	while (1) {
602 		if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
603 					  LBCIF_CONTROL_LBCIF_ENABLE))
604 			writeok = 0;
605 
606 		/* Do read until internal ACK_ERROR goes away meaning write
607 		 * completed
608 		 */
609 		do {
610 			pci_write_config_dword(pdev,
611 					       LBCIF_ADDRESS_REGISTER,
612 					       addr);
613 			do {
614 				pci_read_config_dword(pdev,
615 						      LBCIF_DATA_REGISTER,
616 						      &val);
617 			} while ((val & 0x00010000) == 0);
618 		} while (val & 0x00040000);
619 
620 		if ((val & 0xFF00) != 0xC000 || index == 10000)
621 			break;
622 		index++;
623 	}
624 	return writeok ? 0 : -EIO;
625 }
626 
627 static int eeprom_read(struct et131x_adapter *adapter, u32 addr, u8 *pdata)
628 {
629 	struct pci_dev *pdev = adapter->pdev;
630 	int err;
631 	u32 status;
632 
633 	/* A single byte read is similar to the single byte write, with the
634 	 * exception of the data flow:
635 	 */
636 	err = eeprom_wait_ready(pdev, NULL);
637 	if (err < 0)
638 		return err;
639 	/* Write to the LBCIF Control Register:  bit 7=1, bit 6=0, bit 3=0,
640 	 * and bits 1:0 both =0.  Bit 5 should be set according to the type
641 	 * of EEPROM being accessed (1=two byte addressing, 0=one byte
642 	 * addressing).
643 	 */
644 	if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER,
645 				  LBCIF_CONTROL_LBCIF_ENABLE))
646 		return -EIO;
647 	/* Write the address to the LBCIF Address Register (I2C read will
648 	 * begin).
649 	 */
650 	if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr))
651 		return -EIO;
652 	/* Monitor bit 0 of the LBCIF Status Register.  When = 1, I2C read
653 	 * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure
654 	 * has occurred).
655 	 */
656 	err = eeprom_wait_ready(pdev, &status);
657 	if (err < 0)
658 		return err;
659 	/* Regardless of error status, read data byte from LBCIF Data
660 	 * Register.
661 	 */
662 	*pdata = err;
663 
664 	return (status & LBCIF_STATUS_ACK_ERROR) ? -EIO : 0;
665 }
666 
667 static int et131x_init_eeprom(struct et131x_adapter *adapter)
668 {
669 	struct pci_dev *pdev = adapter->pdev;
670 	u8 eestatus;
671 
672 	pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus);
673 
674 	/* THIS IS A WORKAROUND:
675 	 * I need to call this function twice to get my card in a
676 	 * LG M1 Express Dual running. I tried also a msleep before this
677 	 * function, because I thought there could be some time conditions
678 	 * but it didn't work. Call the whole function twice also work.
679 	 */
680 	if (pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus)) {
681 		dev_err(&pdev->dev,
682 			"Could not read PCI config space for EEPROM Status\n");
683 		return -EIO;
684 	}
685 
686 	/* Determine if the error(s) we care about are present. If they are
687 	 * present we need to fail.
688 	 */
689 	if (eestatus & 0x4C) {
690 		int write_failed = 0;
691 
692 		if (pdev->revision == 0x01) {
693 			int	i;
694 			static const u8 eedata[4] = { 0xFE, 0x13, 0x10, 0xFF };
695 
696 			/* Re-write the first 4 bytes if we have an eeprom
697 			 * present and the revision id is 1, this fixes the
698 			 * corruption seen with 1310 B Silicon
699 			 */
700 			for (i = 0; i < 3; i++)
701 				if (eeprom_write(adapter, i, eedata[i]) < 0)
702 					write_failed = 1;
703 		}
704 		if (pdev->revision  != 0x01 || write_failed) {
705 			dev_err(&pdev->dev,
706 				"Fatal EEPROM Status Error - 0x%04x\n",
707 				eestatus);
708 
709 			/* This error could mean that there was an error
710 			 * reading the eeprom or that the eeprom doesn't exist.
711 			 * We will treat each case the same and not try to
712 			 * gather additional information that normally would
713 			 * come from the eeprom, like MAC Address
714 			 */
715 			adapter->has_eeprom = 0;
716 			return -EIO;
717 		}
718 	}
719 	adapter->has_eeprom = 1;
720 
721 	/* Read the EEPROM for information regarding LED behavior. Refer to
722 	 * et131x_xcvr_init() for its use.
723 	 */
724 	eeprom_read(adapter, 0x70, &adapter->eeprom_data[0]);
725 	eeprom_read(adapter, 0x71, &adapter->eeprom_data[1]);
726 
727 	if (adapter->eeprom_data[0] != 0xcd)
728 		/* Disable all optional features */
729 		adapter->eeprom_data[1] = 0x00;
730 
731 	return 0;
732 }
733 
734 static void et131x_rx_dma_enable(struct et131x_adapter *adapter)
735 {
736 	/* Setup the receive dma configuration register for normal operation */
737 	u32 csr =  ET_RXDMA_CSR_FBR1_ENABLE;
738 	struct rx_ring *rx_ring = &adapter->rx_ring;
739 
740 	if (rx_ring->fbr[1]->buffsize == 4096)
741 		csr |= ET_RXDMA_CSR_FBR1_SIZE_LO;
742 	else if (rx_ring->fbr[1]->buffsize == 8192)
743 		csr |= ET_RXDMA_CSR_FBR1_SIZE_HI;
744 	else if (rx_ring->fbr[1]->buffsize == 16384)
745 		csr |= ET_RXDMA_CSR_FBR1_SIZE_LO | ET_RXDMA_CSR_FBR1_SIZE_HI;
746 
747 	csr |= ET_RXDMA_CSR_FBR0_ENABLE;
748 	if (rx_ring->fbr[0]->buffsize == 256)
749 		csr |= ET_RXDMA_CSR_FBR0_SIZE_LO;
750 	else if (rx_ring->fbr[0]->buffsize == 512)
751 		csr |= ET_RXDMA_CSR_FBR0_SIZE_HI;
752 	else if (rx_ring->fbr[0]->buffsize == 1024)
753 		csr |= ET_RXDMA_CSR_FBR0_SIZE_LO | ET_RXDMA_CSR_FBR0_SIZE_HI;
754 	writel(csr, &adapter->regs->rxdma.csr);
755 
756 	csr = readl(&adapter->regs->rxdma.csr);
757 	if (csr & ET_RXDMA_CSR_HALT_STATUS) {
758 		udelay(5);
759 		csr = readl(&adapter->regs->rxdma.csr);
760 		if (csr & ET_RXDMA_CSR_HALT_STATUS) {
761 			dev_err(&adapter->pdev->dev,
762 				"RX Dma failed to exit halt state. CSR 0x%08x\n",
763 				csr);
764 		}
765 	}
766 }
767 
768 static void et131x_rx_dma_disable(struct et131x_adapter *adapter)
769 {
770 	u32 csr;
771 	/* Setup the receive dma configuration register */
772 	writel(ET_RXDMA_CSR_HALT | ET_RXDMA_CSR_FBR1_ENABLE,
773 	       &adapter->regs->rxdma.csr);
774 	csr = readl(&adapter->regs->rxdma.csr);
775 	if (!(csr & ET_RXDMA_CSR_HALT_STATUS)) {
776 		udelay(5);
777 		csr = readl(&adapter->regs->rxdma.csr);
778 		if (!(csr & ET_RXDMA_CSR_HALT_STATUS))
779 			dev_err(&adapter->pdev->dev,
780 				"RX Dma failed to enter halt state. CSR 0x%08x\n",
781 				csr);
782 	}
783 }
784 
785 static void et131x_tx_dma_enable(struct et131x_adapter *adapter)
786 {
787 	/* Setup the transmit dma configuration register for normal
788 	 * operation
789 	 */
790 	writel(ET_TXDMA_SNGL_EPKT | (PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT),
791 	       &adapter->regs->txdma.csr);
792 }
793 
794 static inline void add_10bit(u32 *v, int n)
795 {
796 	*v = INDEX10(*v + n) | (*v & ET_DMA10_WRAP);
797 }
798 
799 static inline void add_12bit(u32 *v, int n)
800 {
801 	*v = INDEX12(*v + n) | (*v & ET_DMA12_WRAP);
802 }
803 
804 static void et1310_config_mac_regs1(struct et131x_adapter *adapter)
805 {
806 	struct mac_regs __iomem *macregs = &adapter->regs->mac;
807 	u32 station1;
808 	u32 station2;
809 	u32 ipg;
810 
811 	/* First we need to reset everything.  Write to MAC configuration
812 	 * register 1 to perform reset.
813 	 */
814 	writel(ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET  |
815 	       ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
816 	       ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC,
817 	       &macregs->cfg1);
818 
819 	/* Next lets configure the MAC Inter-packet gap register */
820 	ipg = 0x38005860;		/* IPG1 0x38 IPG2 0x58 B2B 0x60 */
821 	ipg |= 0x50 << 8;		/* ifg enforce 0x50 */
822 	writel(ipg, &macregs->ipg);
823 
824 	/* Next lets configure the MAC Half Duplex register */
825 	/* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */
826 	writel(0x00A1F037, &macregs->hfdp);
827 
828 	/* Next lets configure the MAC Interface Control register */
829 	writel(0, &macregs->if_ctrl);
830 
831 	writel(ET_MAC_MIIMGMT_CLK_RST, &macregs->mii_mgmt_cfg);
832 
833 	/* Next lets configure the MAC Station Address register.  These
834 	 * values are read from the EEPROM during initialization and stored
835 	 * in the adapter structure.  We write what is stored in the adapter
836 	 * structure to the MAC Station Address registers high and low.  This
837 	 * station address is used for generating and checking pause control
838 	 * packets.
839 	 */
840 	station2 = (adapter->addr[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT) |
841 		   (adapter->addr[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT);
842 	station1 = (adapter->addr[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT) |
843 		   (adapter->addr[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT) |
844 		   (adapter->addr[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT) |
845 		    adapter->addr[2];
846 	writel(station1, &macregs->station_addr_1);
847 	writel(station2, &macregs->station_addr_2);
848 
849 	/* Max ethernet packet in bytes that will be passed by the mac without
850 	 * being truncated.  Allow the MAC to pass 4 more than our max packet
851 	 * size.  This is 4 for the Ethernet CRC.
852 	 *
853 	 * Packets larger than (registry_jumbo_packet) that do not contain a
854 	 * VLAN ID will be dropped by the Rx function.
855 	 */
856 	writel(adapter->registry_jumbo_packet + 4, &macregs->max_fm_len);
857 
858 	/* clear out MAC config reset */
859 	writel(0, &macregs->cfg1);
860 }
861 
862 static void et1310_config_mac_regs2(struct et131x_adapter *adapter)
863 {
864 	int32_t delay = 0;
865 	struct mac_regs __iomem *mac = &adapter->regs->mac;
866 	struct phy_device *phydev = adapter->netdev->phydev;
867 	u32 cfg1;
868 	u32 cfg2;
869 	u32 ifctrl;
870 	u32 ctl;
871 
872 	ctl = readl(&adapter->regs->txmac.ctl);
873 	cfg1 = readl(&mac->cfg1);
874 	cfg2 = readl(&mac->cfg2);
875 	ifctrl = readl(&mac->if_ctrl);
876 
877 	/* Set up the if mode bits */
878 	cfg2 &= ~ET_MAC_CFG2_IFMODE_MASK;
879 	if (phydev->speed == SPEED_1000) {
880 		cfg2 |= ET_MAC_CFG2_IFMODE_1000;
881 		ifctrl &= ~ET_MAC_IFCTRL_PHYMODE;
882 	} else {
883 		cfg2 |= ET_MAC_CFG2_IFMODE_100;
884 		ifctrl |= ET_MAC_IFCTRL_PHYMODE;
885 	}
886 
887 	cfg1 |= ET_MAC_CFG1_RX_ENABLE | ET_MAC_CFG1_TX_ENABLE |
888 							ET_MAC_CFG1_TX_FLOW;
889 
890 	cfg1 &= ~(ET_MAC_CFG1_LOOPBACK | ET_MAC_CFG1_RX_FLOW);
891 	if (adapter->flow == FLOW_RXONLY || adapter->flow == FLOW_BOTH)
892 		cfg1 |= ET_MAC_CFG1_RX_FLOW;
893 	writel(cfg1, &mac->cfg1);
894 
895 	/* Now we need to initialize the MAC Configuration 2 register */
896 	/* preamble 7, check length, huge frame off, pad crc, crc enable
897 	 * full duplex off
898 	 */
899 	cfg2 |= 0x7 << ET_MAC_CFG2_PREAMBLE_SHIFT;
900 	cfg2 |= ET_MAC_CFG2_IFMODE_LEN_CHECK;
901 	cfg2 |= ET_MAC_CFG2_IFMODE_PAD_CRC;
902 	cfg2 |=	ET_MAC_CFG2_IFMODE_CRC_ENABLE;
903 	cfg2 &= ~ET_MAC_CFG2_IFMODE_HUGE_FRAME;
904 	cfg2 &= ~ET_MAC_CFG2_IFMODE_FULL_DPLX;
905 
906 	if (phydev->duplex == DUPLEX_FULL)
907 		cfg2 |= ET_MAC_CFG2_IFMODE_FULL_DPLX;
908 
909 	ifctrl &= ~ET_MAC_IFCTRL_GHDMODE;
910 	if (phydev->duplex == DUPLEX_HALF)
911 		ifctrl |= ET_MAC_IFCTRL_GHDMODE;
912 
913 	writel(ifctrl, &mac->if_ctrl);
914 	writel(cfg2, &mac->cfg2);
915 
916 	do {
917 		udelay(10);
918 		delay++;
919 		cfg1 = readl(&mac->cfg1);
920 	} while ((cfg1 & ET_MAC_CFG1_WAIT) != ET_MAC_CFG1_WAIT && delay < 100);
921 
922 	if (delay == 100) {
923 		dev_warn(&adapter->pdev->dev,
924 			 "Syncd bits did not respond correctly cfg1 word 0x%08x\n",
925 			 cfg1);
926 	}
927 
928 	ctl |= ET_TX_CTRL_TXMAC_ENABLE | ET_TX_CTRL_FC_DISABLE;
929 	writel(ctl, &adapter->regs->txmac.ctl);
930 
931 	if (adapter->flags & FMP_ADAPTER_LOWER_POWER) {
932 		et131x_rx_dma_enable(adapter);
933 		et131x_tx_dma_enable(adapter);
934 	}
935 }
936 
937 static int et1310_in_phy_coma(struct et131x_adapter *adapter)
938 {
939 	u32 pmcsr = readl(&adapter->regs->global.pm_csr);
940 
941 	return ET_PM_PHY_SW_COMA & pmcsr ? 1 : 0;
942 }
943 
944 static void et1310_setup_device_for_multicast(struct et131x_adapter *adapter)
945 {
946 	struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
947 	u32 hash1 = 0;
948 	u32 hash2 = 0;
949 	u32 hash3 = 0;
950 	u32 hash4 = 0;
951 	u32 pm_csr;
952 
953 	/* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision
954 	 * the multi-cast LIST.  If it is NOT specified, (and "ALL" is not
955 	 * specified) then we should pass NO multi-cast addresses to the
956 	 * driver.
957 	 */
958 	if (adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST) {
959 		int i;
960 
961 		/* Loop through our multicast array and set up the device */
962 		for (i = 0; i < adapter->multicast_addr_count; i++) {
963 			u32 result;
964 
965 			result = ether_crc(6, adapter->multicast_list[i]);
966 
967 			result = (result & 0x3F800000) >> 23;
968 
969 			if (result < 32) {
970 				hash1 |= (1 << result);
971 			} else if ((31 < result) && (result < 64)) {
972 				result -= 32;
973 				hash2 |= (1 << result);
974 			} else if ((63 < result) && (result < 96)) {
975 				result -= 64;
976 				hash3 |= (1 << result);
977 			} else {
978 				result -= 96;
979 				hash4 |= (1 << result);
980 			}
981 		}
982 	}
983 
984 	/* Write out the new hash to the device */
985 	pm_csr = readl(&adapter->regs->global.pm_csr);
986 	if (!et1310_in_phy_coma(adapter)) {
987 		writel(hash1, &rxmac->multi_hash1);
988 		writel(hash2, &rxmac->multi_hash2);
989 		writel(hash3, &rxmac->multi_hash3);
990 		writel(hash4, &rxmac->multi_hash4);
991 	}
992 }
993 
994 static void et1310_setup_device_for_unicast(struct et131x_adapter *adapter)
995 {
996 	struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
997 	u32 uni_pf1;
998 	u32 uni_pf2;
999 	u32 uni_pf3;
1000 	u32 pm_csr;
1001 
1002 	/* Set up unicast packet filter reg 3 to be the first two octets of
1003 	 * the MAC address for both address
1004 	 *
1005 	 * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the
1006 	 * MAC address for second address
1007 	 *
1008 	 * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the
1009 	 * MAC address for first address
1010 	 */
1011 	uni_pf3 = (adapter->addr[0] << ET_RX_UNI_PF_ADDR2_1_SHIFT) |
1012 		  (adapter->addr[1] << ET_RX_UNI_PF_ADDR2_2_SHIFT) |
1013 		  (adapter->addr[0] << ET_RX_UNI_PF_ADDR1_1_SHIFT) |
1014 		   adapter->addr[1];
1015 
1016 	uni_pf2 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR2_3_SHIFT) |
1017 		  (adapter->addr[3] << ET_RX_UNI_PF_ADDR2_4_SHIFT) |
1018 		  (adapter->addr[4] << ET_RX_UNI_PF_ADDR2_5_SHIFT) |
1019 		   adapter->addr[5];
1020 
1021 	uni_pf1 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR1_3_SHIFT) |
1022 		  (adapter->addr[3] << ET_RX_UNI_PF_ADDR1_4_SHIFT) |
1023 		  (adapter->addr[4] << ET_RX_UNI_PF_ADDR1_5_SHIFT) |
1024 		   adapter->addr[5];
1025 
1026 	pm_csr = readl(&adapter->regs->global.pm_csr);
1027 	if (!et1310_in_phy_coma(adapter)) {
1028 		writel(uni_pf1, &rxmac->uni_pf_addr1);
1029 		writel(uni_pf2, &rxmac->uni_pf_addr2);
1030 		writel(uni_pf3, &rxmac->uni_pf_addr3);
1031 	}
1032 }
1033 
1034 static void et1310_config_rxmac_regs(struct et131x_adapter *adapter)
1035 {
1036 	struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac;
1037 	struct phy_device *phydev = adapter->netdev->phydev;
1038 	u32 sa_lo;
1039 	u32 sa_hi = 0;
1040 	u32 pf_ctrl = 0;
1041 	u32 __iomem *wolw;
1042 
1043 	/* Disable the MAC while it is being configured (also disable WOL) */
1044 	writel(0x8, &rxmac->ctrl);
1045 
1046 	/* Initialize WOL to disabled. */
1047 	writel(0, &rxmac->crc0);
1048 	writel(0, &rxmac->crc12);
1049 	writel(0, &rxmac->crc34);
1050 
1051 	/* We need to set the WOL mask0 - mask4 next.  We initialize it to
1052 	 * its default Values of 0x00000000 because there are not WOL masks
1053 	 * as of this time.
1054 	 */
1055 	for (wolw = &rxmac->mask0_word0; wolw <= &rxmac->mask4_word3; wolw++)
1056 		writel(0, wolw);
1057 
1058 	/* Lets setup the WOL Source Address */
1059 	sa_lo = (adapter->addr[2] << ET_RX_WOL_LO_SA3_SHIFT) |
1060 		(adapter->addr[3] << ET_RX_WOL_LO_SA4_SHIFT) |
1061 		(adapter->addr[4] << ET_RX_WOL_LO_SA5_SHIFT) |
1062 		 adapter->addr[5];
1063 	writel(sa_lo, &rxmac->sa_lo);
1064 
1065 	sa_hi = (u32)(adapter->addr[0] << ET_RX_WOL_HI_SA1_SHIFT) |
1066 		       adapter->addr[1];
1067 	writel(sa_hi, &rxmac->sa_hi);
1068 
1069 	/* Disable all Packet Filtering */
1070 	writel(0, &rxmac->pf_ctrl);
1071 
1072 	/* Let's initialize the Unicast Packet filtering address */
1073 	if (adapter->packet_filter & ET131X_PACKET_TYPE_DIRECTED) {
1074 		et1310_setup_device_for_unicast(adapter);
1075 		pf_ctrl |= ET_RX_PFCTRL_UNICST_FILTER_ENABLE;
1076 	} else {
1077 		writel(0, &rxmac->uni_pf_addr1);
1078 		writel(0, &rxmac->uni_pf_addr2);
1079 		writel(0, &rxmac->uni_pf_addr3);
1080 	}
1081 
1082 	/* Let's initialize the Multicast hash */
1083 	if (!(adapter->packet_filter & ET131X_PACKET_TYPE_ALL_MULTICAST)) {
1084 		pf_ctrl |= ET_RX_PFCTRL_MLTCST_FILTER_ENABLE;
1085 		et1310_setup_device_for_multicast(adapter);
1086 	}
1087 
1088 	/* Runt packet filtering.  Didn't work in version A silicon. */
1089 	pf_ctrl |= (NIC_MIN_PACKET_SIZE + 4) << ET_RX_PFCTRL_MIN_PKT_SZ_SHIFT;
1090 	pf_ctrl |= ET_RX_PFCTRL_FRAG_FILTER_ENABLE;
1091 
1092 	if (adapter->registry_jumbo_packet > 8192)
1093 		/* In order to transmit jumbo packets greater than 8k, the
1094 		 * FIFO between RxMAC and RxDMA needs to be reduced in size
1095 		 * to (16k - Jumbo packet size).  In order to implement this,
1096 		 * we must use "cut through" mode in the RxMAC, which chops
1097 		 * packets down into segments which are (max_size * 16).  In
1098 		 * this case we selected 256 bytes, since this is the size of
1099 		 * the PCI-Express TLP's that the 1310 uses.
1100 		 *
1101 		 * seg_en on, fc_en off, size 0x10
1102 		 */
1103 		writel(0x41, &rxmac->mcif_ctrl_max_seg);
1104 	else
1105 		writel(0, &rxmac->mcif_ctrl_max_seg);
1106 
1107 	writel(0, &rxmac->mcif_water_mark);
1108 	writel(0, &rxmac->mif_ctrl);
1109 	writel(0, &rxmac->space_avail);
1110 
1111 	/* Initialize the the mif_ctrl register
1112 	 * bit 3:  Receive code error. One or more nibbles were signaled as
1113 	 *	   errors  during the reception of the packet.  Clear this
1114 	 *	   bit in Gigabit, set it in 100Mbit.  This was derived
1115 	 *	   experimentally at UNH.
1116 	 * bit 4:  Receive CRC error. The packet's CRC did not match the
1117 	 *	   internally generated CRC.
1118 	 * bit 5:  Receive length check error. Indicates that frame length
1119 	 *	   field value in the packet does not match the actual data
1120 	 *	   byte length and is not a type field.
1121 	 * bit 16: Receive frame truncated.
1122 	 * bit 17: Drop packet enable
1123 	 */
1124 	if (phydev && phydev->speed == SPEED_100)
1125 		writel(0x30038, &rxmac->mif_ctrl);
1126 	else
1127 		writel(0x30030, &rxmac->mif_ctrl);
1128 
1129 	/* Finally we initialize RxMac to be enabled & WOL disabled.  Packet
1130 	 * filter is always enabled since it is where the runt packets are
1131 	 * supposed to be dropped.  For version A silicon, runt packet
1132 	 * dropping doesn't work, so it is disabled in the pf_ctrl register,
1133 	 * but we still leave the packet filter on.
1134 	 */
1135 	writel(pf_ctrl, &rxmac->pf_ctrl);
1136 	writel(ET_RX_CTRL_RXMAC_ENABLE | ET_RX_CTRL_WOL_DISABLE, &rxmac->ctrl);
1137 }
1138 
1139 static void et1310_config_txmac_regs(struct et131x_adapter *adapter)
1140 {
1141 	struct txmac_regs __iomem *txmac = &adapter->regs->txmac;
1142 
1143 	/* We need to update the Control Frame Parameters
1144 	 * cfpt - control frame pause timer set to 64 (0x40)
1145 	 * cfep - control frame extended pause timer set to 0x0
1146 	 */
1147 	if (adapter->flow == FLOW_NONE)
1148 		writel(0, &txmac->cf_param);
1149 	else
1150 		writel(0x40, &txmac->cf_param);
1151 }
1152 
1153 static void et1310_config_macstat_regs(struct et131x_adapter *adapter)
1154 {
1155 	struct macstat_regs __iomem *macstat = &adapter->regs->macstat;
1156 	u32 __iomem *reg;
1157 
1158 	/* initialize all the macstat registers to zero on the device  */
1159 	for (reg = &macstat->txrx_0_64_byte_frames;
1160 	     reg <= &macstat->carry_reg2; reg++)
1161 		writel(0, reg);
1162 
1163 	/* Unmask any counters that we want to track the overflow of.
1164 	 * Initially this will be all counters.  It may become clear later
1165 	 * that we do not need to track all counters.
1166 	 */
1167 	writel(0xFFFFBE32, &macstat->carry_reg1_mask);
1168 	writel(0xFFFE7E8B, &macstat->carry_reg2_mask);
1169 }
1170 
1171 static int et131x_phy_mii_read(struct et131x_adapter *adapter, u8 addr,
1172 			       u8 reg, u16 *value)
1173 {
1174 	struct mac_regs __iomem *mac = &adapter->regs->mac;
1175 	int status = 0;
1176 	u32 delay = 0;
1177 	u32 mii_addr;
1178 	u32 mii_cmd;
1179 	u32 mii_indicator;
1180 
1181 	/* Save a local copy of the registers we are dealing with so we can
1182 	 * set them back
1183 	 */
1184 	mii_addr = readl(&mac->mii_mgmt_addr);
1185 	mii_cmd = readl(&mac->mii_mgmt_cmd);
1186 
1187 	/* Stop the current operation */
1188 	writel(0, &mac->mii_mgmt_cmd);
1189 
1190 	/* Set up the register we need to read from on the correct PHY */
1191 	writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1192 
1193 	writel(0x1, &mac->mii_mgmt_cmd);
1194 
1195 	do {
1196 		udelay(50);
1197 		delay++;
1198 		mii_indicator = readl(&mac->mii_mgmt_indicator);
1199 	} while ((mii_indicator & ET_MAC_MGMT_WAIT) && delay < 50);
1200 
1201 	/* If we hit the max delay, we could not read the register */
1202 	if (delay == 50) {
1203 		dev_warn(&adapter->pdev->dev,
1204 			 "reg 0x%08x could not be read\n", reg);
1205 		dev_warn(&adapter->pdev->dev, "status is  0x%08x\n",
1206 			 mii_indicator);
1207 
1208 		status = -EIO;
1209 		goto out;
1210 	}
1211 
1212 	/* If we hit here we were able to read the register and we need to
1213 	 * return the value to the caller
1214 	 */
1215 	*value = readl(&mac->mii_mgmt_stat) & ET_MAC_MIIMGMT_STAT_PHYCRTL_MASK;
1216 
1217 out:
1218 	/* Stop the read operation */
1219 	writel(0, &mac->mii_mgmt_cmd);
1220 
1221 	/* set the registers we touched back to the state at which we entered
1222 	 * this function
1223 	 */
1224 	writel(mii_addr, &mac->mii_mgmt_addr);
1225 	writel(mii_cmd, &mac->mii_mgmt_cmd);
1226 
1227 	return status;
1228 }
1229 
1230 static int et131x_mii_read(struct et131x_adapter *adapter, u8 reg, u16 *value)
1231 {
1232 	struct phy_device *phydev = adapter->netdev->phydev;
1233 
1234 	if (!phydev)
1235 		return -EIO;
1236 
1237 	return et131x_phy_mii_read(adapter, phydev->mdio.addr, reg, value);
1238 }
1239 
1240 static int et131x_mii_write(struct et131x_adapter *adapter, u8 addr, u8 reg,
1241 			    u16 value)
1242 {
1243 	struct mac_regs __iomem *mac = &adapter->regs->mac;
1244 	int status = 0;
1245 	u32 delay = 0;
1246 	u32 mii_addr;
1247 	u32 mii_cmd;
1248 	u32 mii_indicator;
1249 
1250 	/* Save a local copy of the registers we are dealing with so we can
1251 	 * set them back
1252 	 */
1253 	mii_addr = readl(&mac->mii_mgmt_addr);
1254 	mii_cmd = readl(&mac->mii_mgmt_cmd);
1255 
1256 	/* Stop the current operation */
1257 	writel(0, &mac->mii_mgmt_cmd);
1258 
1259 	/* Set up the register we need to write to on the correct PHY */
1260 	writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr);
1261 
1262 	/* Add the value to write to the registers to the mac */
1263 	writel(value, &mac->mii_mgmt_ctrl);
1264 
1265 	do {
1266 		udelay(50);
1267 		delay++;
1268 		mii_indicator = readl(&mac->mii_mgmt_indicator);
1269 	} while ((mii_indicator & ET_MAC_MGMT_BUSY) && delay < 100);
1270 
1271 	/* If we hit the max delay, we could not write the register */
1272 	if (delay == 100) {
1273 		u16 tmp;
1274 
1275 		dev_warn(&adapter->pdev->dev,
1276 			 "reg 0x%08x could not be written", reg);
1277 		dev_warn(&adapter->pdev->dev, "status is  0x%08x\n",
1278 			 mii_indicator);
1279 		dev_warn(&adapter->pdev->dev, "command is  0x%08x\n",
1280 			 readl(&mac->mii_mgmt_cmd));
1281 
1282 		et131x_mii_read(adapter, reg, &tmp);
1283 
1284 		status = -EIO;
1285 	}
1286 	/* Stop the write operation */
1287 	writel(0, &mac->mii_mgmt_cmd);
1288 
1289 	/* set the registers we touched back to the state at which we entered
1290 	 * this function
1291 	 */
1292 	writel(mii_addr, &mac->mii_mgmt_addr);
1293 	writel(mii_cmd, &mac->mii_mgmt_cmd);
1294 
1295 	return status;
1296 }
1297 
1298 static void et1310_phy_read_mii_bit(struct et131x_adapter *adapter,
1299 				    u16 regnum,
1300 				    u16 bitnum,
1301 				    u8 *value)
1302 {
1303 	u16 reg;
1304 	u16 mask = 1 << bitnum;
1305 
1306 	et131x_mii_read(adapter, regnum, &reg);
1307 
1308 	*value = (reg & mask) >> bitnum;
1309 }
1310 
1311 static void et1310_config_flow_control(struct et131x_adapter *adapter)
1312 {
1313 	struct phy_device *phydev = adapter->netdev->phydev;
1314 
1315 	if (phydev->duplex == DUPLEX_HALF) {
1316 		adapter->flow = FLOW_NONE;
1317 	} else {
1318 		char remote_pause, remote_async_pause;
1319 
1320 		et1310_phy_read_mii_bit(adapter, 5, 10, &remote_pause);
1321 		et1310_phy_read_mii_bit(adapter, 5, 11, &remote_async_pause);
1322 
1323 		if (remote_pause && remote_async_pause) {
1324 			adapter->flow = adapter->wanted_flow;
1325 		} else if (remote_pause && !remote_async_pause) {
1326 			if (adapter->wanted_flow == FLOW_BOTH)
1327 				adapter->flow = FLOW_BOTH;
1328 			else
1329 				adapter->flow = FLOW_NONE;
1330 		} else if (!remote_pause && !remote_async_pause) {
1331 			adapter->flow = FLOW_NONE;
1332 		} else {
1333 			if (adapter->wanted_flow == FLOW_BOTH)
1334 				adapter->flow = FLOW_RXONLY;
1335 			else
1336 				adapter->flow = FLOW_NONE;
1337 		}
1338 	}
1339 }
1340 
1341 /* et1310_update_macstat_host_counters - Update local copy of the statistics */
1342 static void et1310_update_macstat_host_counters(struct et131x_adapter *adapter)
1343 {
1344 	struct ce_stats *stats = &adapter->stats;
1345 	struct macstat_regs __iomem *macstat =
1346 		&adapter->regs->macstat;
1347 
1348 	stats->tx_collisions	       += readl(&macstat->tx_total_collisions);
1349 	stats->tx_first_collisions     += readl(&macstat->tx_single_collisions);
1350 	stats->tx_deferred	       += readl(&macstat->tx_deferred);
1351 	stats->tx_excessive_collisions +=
1352 				readl(&macstat->tx_multiple_collisions);
1353 	stats->tx_late_collisions      += readl(&macstat->tx_late_collisions);
1354 	stats->tx_underflows	       += readl(&macstat->tx_undersize_frames);
1355 	stats->tx_max_pkt_errs	       += readl(&macstat->tx_oversize_frames);
1356 
1357 	stats->rx_align_errs        += readl(&macstat->rx_align_errs);
1358 	stats->rx_crc_errs          += readl(&macstat->rx_code_errs);
1359 	stats->rcvd_pkts_dropped    += readl(&macstat->rx_drops);
1360 	stats->rx_overflows         += readl(&macstat->rx_oversize_packets);
1361 	stats->rx_code_violations   += readl(&macstat->rx_fcs_errs);
1362 	stats->rx_length_errs       += readl(&macstat->rx_frame_len_errs);
1363 	stats->rx_other_errs        += readl(&macstat->rx_fragment_packets);
1364 }
1365 
1366 /* et1310_handle_macstat_interrupt
1367  *
1368  * One of the MACSTAT counters has wrapped.  Update the local copy of
1369  * the statistics held in the adapter structure, checking the "wrap"
1370  * bit for each counter.
1371  */
1372 static void et1310_handle_macstat_interrupt(struct et131x_adapter *adapter)
1373 {
1374 	u32 carry_reg1;
1375 	u32 carry_reg2;
1376 
1377 	/* Read the interrupt bits from the register(s).  These are Clear On
1378 	 * Write.
1379 	 */
1380 	carry_reg1 = readl(&adapter->regs->macstat.carry_reg1);
1381 	carry_reg2 = readl(&adapter->regs->macstat.carry_reg2);
1382 
1383 	writel(carry_reg1, &adapter->regs->macstat.carry_reg1);
1384 	writel(carry_reg2, &adapter->regs->macstat.carry_reg2);
1385 
1386 	/* We need to do update the host copy of all the MAC_STAT counters.
1387 	 * For each counter, check it's overflow bit.  If the overflow bit is
1388 	 * set, then increment the host version of the count by one complete
1389 	 * revolution of the counter.  This routine is called when the counter
1390 	 * block indicates that one of the counters has wrapped.
1391 	 */
1392 	if (carry_reg1 & (1 << 14))
1393 		adapter->stats.rx_code_violations	+= COUNTER_WRAP_16_BIT;
1394 	if (carry_reg1 & (1 << 8))
1395 		adapter->stats.rx_align_errs	+= COUNTER_WRAP_12_BIT;
1396 	if (carry_reg1 & (1 << 7))
1397 		adapter->stats.rx_length_errs	+= COUNTER_WRAP_16_BIT;
1398 	if (carry_reg1 & (1 << 2))
1399 		adapter->stats.rx_other_errs	+= COUNTER_WRAP_16_BIT;
1400 	if (carry_reg1 & (1 << 6))
1401 		adapter->stats.rx_crc_errs	+= COUNTER_WRAP_16_BIT;
1402 	if (carry_reg1 & (1 << 3))
1403 		adapter->stats.rx_overflows	+= COUNTER_WRAP_16_BIT;
1404 	if (carry_reg1 & (1 << 0))
1405 		adapter->stats.rcvd_pkts_dropped	+= COUNTER_WRAP_16_BIT;
1406 	if (carry_reg2 & (1 << 16))
1407 		adapter->stats.tx_max_pkt_errs	+= COUNTER_WRAP_12_BIT;
1408 	if (carry_reg2 & (1 << 15))
1409 		adapter->stats.tx_underflows	+= COUNTER_WRAP_12_BIT;
1410 	if (carry_reg2 & (1 << 6))
1411 		adapter->stats.tx_first_collisions += COUNTER_WRAP_12_BIT;
1412 	if (carry_reg2 & (1 << 8))
1413 		adapter->stats.tx_deferred	+= COUNTER_WRAP_12_BIT;
1414 	if (carry_reg2 & (1 << 5))
1415 		adapter->stats.tx_excessive_collisions += COUNTER_WRAP_12_BIT;
1416 	if (carry_reg2 & (1 << 4))
1417 		adapter->stats.tx_late_collisions	+= COUNTER_WRAP_12_BIT;
1418 	if (carry_reg2 & (1 << 2))
1419 		adapter->stats.tx_collisions	+= COUNTER_WRAP_12_BIT;
1420 }
1421 
1422 static int et131x_mdio_read(struct mii_bus *bus, int phy_addr, int reg)
1423 {
1424 	struct net_device *netdev = bus->priv;
1425 	struct et131x_adapter *adapter = netdev_priv(netdev);
1426 	u16 value;
1427 	int ret;
1428 
1429 	ret = et131x_phy_mii_read(adapter, phy_addr, reg, &value);
1430 
1431 	if (ret < 0)
1432 		return ret;
1433 
1434 	return value;
1435 }
1436 
1437 static int et131x_mdio_write(struct mii_bus *bus, int phy_addr,
1438 			     int reg, u16 value)
1439 {
1440 	struct net_device *netdev = bus->priv;
1441 	struct et131x_adapter *adapter = netdev_priv(netdev);
1442 
1443 	return et131x_mii_write(adapter, phy_addr, reg, value);
1444 }
1445 
1446 /*	et1310_phy_power_switch	-	PHY power control
1447  *	@adapter: device to control
1448  *	@down: true for off/false for back on
1449  *
1450  *	one hundred, ten, one thousand megs
1451  *	How would you like to have your LAN accessed
1452  *	Can't you see that this code processed
1453  *	Phy power, phy power..
1454  */
1455 static void et1310_phy_power_switch(struct et131x_adapter *adapter, bool down)
1456 {
1457 	u16 data;
1458 	struct  phy_device *phydev = adapter->netdev->phydev;
1459 
1460 	et131x_mii_read(adapter, MII_BMCR, &data);
1461 	data &= ~BMCR_PDOWN;
1462 	if (down)
1463 		data |= BMCR_PDOWN;
1464 	et131x_mii_write(adapter, phydev->mdio.addr, MII_BMCR, data);
1465 }
1466 
1467 /* et131x_xcvr_init - Init the phy if we are setting it into force mode */
1468 static void et131x_xcvr_init(struct et131x_adapter *adapter)
1469 {
1470 	u16 lcr2;
1471 	struct  phy_device *phydev = adapter->netdev->phydev;
1472 
1473 	/* Set the LED behavior such that LED 1 indicates speed (off =
1474 	 * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates
1475 	 * link and activity (on for link, blink off for activity).
1476 	 *
1477 	 * NOTE: Some customizations have been added here for specific
1478 	 * vendors; The LED behavior is now determined by vendor data in the
1479 	 * EEPROM. However, the above description is the default.
1480 	 */
1481 	if ((adapter->eeprom_data[1] & 0x4) == 0) {
1482 		et131x_mii_read(adapter, PHY_LED_2, &lcr2);
1483 
1484 		lcr2 &= (ET_LED2_LED_100TX | ET_LED2_LED_1000T);
1485 		lcr2 |= (LED_VAL_LINKON_ACTIVE << LED_LINK_SHIFT);
1486 
1487 		if ((adapter->eeprom_data[1] & 0x8) == 0)
1488 			lcr2 |= (LED_VAL_1000BT_100BTX << LED_TXRX_SHIFT);
1489 		else
1490 			lcr2 |= (LED_VAL_LINKON << LED_TXRX_SHIFT);
1491 
1492 		et131x_mii_write(adapter, phydev->mdio.addr, PHY_LED_2, lcr2);
1493 	}
1494 }
1495 
1496 /* et131x_configure_global_regs	- configure JAGCore global regs */
1497 static void et131x_configure_global_regs(struct et131x_adapter *adapter)
1498 {
1499 	struct global_regs __iomem *regs = &adapter->regs->global;
1500 
1501 	writel(0, &regs->rxq_start_addr);
1502 	writel(INTERNAL_MEM_SIZE - 1, &regs->txq_end_addr);
1503 
1504 	if (adapter->registry_jumbo_packet < 2048) {
1505 		/* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word
1506 		 * block of RAM that the driver can split between Tx
1507 		 * and Rx as it desires.  Our default is to split it
1508 		 * 50/50:
1509 		 */
1510 		writel(PARM_RX_MEM_END_DEF, &regs->rxq_end_addr);
1511 		writel(PARM_RX_MEM_END_DEF + 1, &regs->txq_start_addr);
1512 	} else if (adapter->registry_jumbo_packet < 8192) {
1513 		/* For jumbo packets > 2k but < 8k, split 50-50. */
1514 		writel(INTERNAL_MEM_RX_OFFSET, &regs->rxq_end_addr);
1515 		writel(INTERNAL_MEM_RX_OFFSET + 1, &regs->txq_start_addr);
1516 	} else {
1517 		/* 9216 is the only packet size greater than 8k that
1518 		 * is available. The Tx buffer has to be big enough
1519 		 * for one whole packet on the Tx side. We'll make
1520 		 * the Tx 9408, and give the rest to Rx
1521 		 */
1522 		writel(0x01b3, &regs->rxq_end_addr);
1523 		writel(0x01b4, &regs->txq_start_addr);
1524 	}
1525 
1526 	/* Initialize the loopback register. Disable all loopbacks. */
1527 	writel(0, &regs->loopback);
1528 
1529 	writel(0, &regs->msi_config);
1530 
1531 	/* By default, disable the watchdog timer.  It will be enabled when
1532 	 * a packet is queued.
1533 	 */
1534 	writel(0, &regs->watchdog_timer);
1535 }
1536 
1537 /* et131x_config_rx_dma_regs - Start of Rx_DMA init sequence */
1538 static void et131x_config_rx_dma_regs(struct et131x_adapter *adapter)
1539 {
1540 	struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
1541 	struct rx_ring *rx_local = &adapter->rx_ring;
1542 	struct fbr_desc *fbr_entry;
1543 	u32 entry;
1544 	u32 psr_num_des;
1545 	unsigned long flags;
1546 	u8 id;
1547 
1548 	et131x_rx_dma_disable(adapter);
1549 
1550 	/* Load the completion writeback physical address */
1551 	writel(upper_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_hi);
1552 	writel(lower_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_lo);
1553 
1554 	memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block));
1555 
1556 	/* Set the address and parameters of the packet status ring */
1557 	writel(upper_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_hi);
1558 	writel(lower_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_lo);
1559 	writel(rx_local->psr_entries - 1, &rx_dma->psr_num_des);
1560 	writel(0, &rx_dma->psr_full_offset);
1561 
1562 	psr_num_des = readl(&rx_dma->psr_num_des) & ET_RXDMA_PSR_NUM_DES_MASK;
1563 	writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100,
1564 	       &rx_dma->psr_min_des);
1565 
1566 	spin_lock_irqsave(&adapter->rcv_lock, flags);
1567 
1568 	/* These local variables track the PSR in the adapter structure */
1569 	rx_local->local_psr_full = 0;
1570 
1571 	for (id = 0; id < NUM_FBRS; id++) {
1572 		u32 __iomem *num_des;
1573 		u32 __iomem *full_offset;
1574 		u32 __iomem *min_des;
1575 		u32 __iomem *base_hi;
1576 		u32 __iomem *base_lo;
1577 		struct fbr_lookup *fbr = rx_local->fbr[id];
1578 
1579 		if (id == 0) {
1580 			num_des = &rx_dma->fbr0_num_des;
1581 			full_offset = &rx_dma->fbr0_full_offset;
1582 			min_des = &rx_dma->fbr0_min_des;
1583 			base_hi = &rx_dma->fbr0_base_hi;
1584 			base_lo = &rx_dma->fbr0_base_lo;
1585 		} else {
1586 			num_des = &rx_dma->fbr1_num_des;
1587 			full_offset = &rx_dma->fbr1_full_offset;
1588 			min_des = &rx_dma->fbr1_min_des;
1589 			base_hi = &rx_dma->fbr1_base_hi;
1590 			base_lo = &rx_dma->fbr1_base_lo;
1591 		}
1592 
1593 		/* Now's the best time to initialize FBR contents */
1594 		fbr_entry = fbr->ring_virtaddr;
1595 		for (entry = 0; entry < fbr->num_entries; entry++) {
1596 			fbr_entry->addr_hi = fbr->bus_high[entry];
1597 			fbr_entry->addr_lo = fbr->bus_low[entry];
1598 			fbr_entry->word2 = entry;
1599 			fbr_entry++;
1600 		}
1601 
1602 		/* Set the address and parameters of Free buffer ring 1 and 0 */
1603 		writel(upper_32_bits(fbr->ring_physaddr), base_hi);
1604 		writel(lower_32_bits(fbr->ring_physaddr), base_lo);
1605 		writel(fbr->num_entries - 1, num_des);
1606 		writel(ET_DMA10_WRAP, full_offset);
1607 
1608 		/* This variable tracks the free buffer ring 1 full position,
1609 		 * so it has to match the above.
1610 		 */
1611 		fbr->local_full = ET_DMA10_WRAP;
1612 		writel(((fbr->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1,
1613 		       min_des);
1614 	}
1615 
1616 	/* Program the number of packets we will receive before generating an
1617 	 * interrupt.
1618 	 * For version B silicon, this value gets updated once autoneg is
1619 	 *complete.
1620 	 */
1621 	writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done);
1622 
1623 	/* The "time_done" is not working correctly to coalesce interrupts
1624 	 * after a given time period, but rather is giving us an interrupt
1625 	 * regardless of whether we have received packets.
1626 	 * This value gets updated once autoneg is complete.
1627 	 */
1628 	writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time);
1629 
1630 	spin_unlock_irqrestore(&adapter->rcv_lock, flags);
1631 }
1632 
1633 /* et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore.
1634  *
1635  * Configure the transmit engine with the ring buffers we have created
1636  * and prepare it for use.
1637  */
1638 static void et131x_config_tx_dma_regs(struct et131x_adapter *adapter)
1639 {
1640 	struct txdma_regs __iomem *txdma = &adapter->regs->txdma;
1641 	struct tx_ring *tx_ring = &adapter->tx_ring;
1642 
1643 	/* Load the hardware with the start of the transmit descriptor ring. */
1644 	writel(upper_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_hi);
1645 	writel(lower_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_lo);
1646 
1647 	/* Initialise the transmit DMA engine */
1648 	writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des);
1649 
1650 	/* Load the completion writeback physical address */
1651 	writel(upper_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_hi);
1652 	writel(lower_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_lo);
1653 
1654 	*tx_ring->tx_status = 0;
1655 
1656 	writel(0, &txdma->service_request);
1657 	tx_ring->send_idx = 0;
1658 }
1659 
1660 /* et131x_adapter_setup - Set the adapter up as per cassini+ documentation */
1661 static void et131x_adapter_setup(struct et131x_adapter *adapter)
1662 {
1663 	et131x_configure_global_regs(adapter);
1664 	et1310_config_mac_regs1(adapter);
1665 
1666 	/* Configure the MMC registers */
1667 	/* All we need to do is initialize the Memory Control Register */
1668 	writel(ET_MMC_ENABLE, &adapter->regs->mmc.mmc_ctrl);
1669 
1670 	et1310_config_rxmac_regs(adapter);
1671 	et1310_config_txmac_regs(adapter);
1672 
1673 	et131x_config_rx_dma_regs(adapter);
1674 	et131x_config_tx_dma_regs(adapter);
1675 
1676 	et1310_config_macstat_regs(adapter);
1677 
1678 	et1310_phy_power_switch(adapter, 0);
1679 	et131x_xcvr_init(adapter);
1680 }
1681 
1682 /* et131x_soft_reset - Issue soft reset to the hardware, complete for ET1310 */
1683 static void et131x_soft_reset(struct et131x_adapter *adapter)
1684 {
1685 	u32 reg;
1686 
1687 	/* Disable MAC Core */
1688 	reg = ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET |
1689 	      ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1690 	      ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1691 	writel(reg, &adapter->regs->mac.cfg1);
1692 
1693 	reg = ET_RESET_ALL;
1694 	writel(reg, &adapter->regs->global.sw_reset);
1695 
1696 	reg = ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC |
1697 	      ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC;
1698 	writel(reg, &adapter->regs->mac.cfg1);
1699 	writel(0, &adapter->regs->mac.cfg1);
1700 }
1701 
1702 static void et131x_enable_interrupts(struct et131x_adapter *adapter)
1703 {
1704 	u32 mask;
1705 
1706 	if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH)
1707 		mask = INT_MASK_ENABLE;
1708 	else
1709 		mask = INT_MASK_ENABLE_NO_FLOW;
1710 
1711 	writel(mask, &adapter->regs->global.int_mask);
1712 }
1713 
1714 static void et131x_disable_interrupts(struct et131x_adapter *adapter)
1715 {
1716 	writel(INT_MASK_DISABLE, &adapter->regs->global.int_mask);
1717 }
1718 
1719 static void et131x_tx_dma_disable(struct et131x_adapter *adapter)
1720 {
1721 	/* Setup the transmit dma configuration register */
1722 	writel(ET_TXDMA_CSR_HALT | ET_TXDMA_SNGL_EPKT,
1723 	       &adapter->regs->txdma.csr);
1724 }
1725 
1726 static void et131x_enable_txrx(struct net_device *netdev)
1727 {
1728 	struct et131x_adapter *adapter = netdev_priv(netdev);
1729 
1730 	et131x_rx_dma_enable(adapter);
1731 	et131x_tx_dma_enable(adapter);
1732 
1733 	if (adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE)
1734 		et131x_enable_interrupts(adapter);
1735 
1736 	netif_start_queue(netdev);
1737 }
1738 
1739 static void et131x_disable_txrx(struct net_device *netdev)
1740 {
1741 	struct et131x_adapter *adapter = netdev_priv(netdev);
1742 
1743 	netif_stop_queue(netdev);
1744 
1745 	et131x_rx_dma_disable(adapter);
1746 	et131x_tx_dma_disable(adapter);
1747 
1748 	et131x_disable_interrupts(adapter);
1749 }
1750 
1751 static void et131x_init_send(struct et131x_adapter *adapter)
1752 {
1753 	int i;
1754 	struct tx_ring *tx_ring = &adapter->tx_ring;
1755 	struct tcb *tcb = tx_ring->tcb_ring;
1756 
1757 	tx_ring->tcb_qhead = tcb;
1758 
1759 	memset(tcb, 0, sizeof(struct tcb) * NUM_TCB);
1760 
1761 	for (i = 0; i < NUM_TCB; i++) {
1762 		tcb->next = tcb + 1;
1763 		tcb++;
1764 	}
1765 
1766 	tcb--;
1767 	tx_ring->tcb_qtail = tcb;
1768 	tcb->next = NULL;
1769 	/* Curr send queue should now be empty */
1770 	tx_ring->send_head = NULL;
1771 	tx_ring->send_tail = NULL;
1772 }
1773 
1774 /* et1310_enable_phy_coma
1775  *
1776  * driver receive an phy status change interrupt while in D0 and check that
1777  * phy_status is down.
1778  *
1779  *          -- gate off JAGCore;
1780  *          -- set gigE PHY in Coma mode
1781  *          -- wake on phy_interrupt; Perform software reset JAGCore,
1782  *             re-initialize jagcore and gigE PHY
1783  */
1784 static void et1310_enable_phy_coma(struct et131x_adapter *adapter)
1785 {
1786 	u32 pmcsr = readl(&adapter->regs->global.pm_csr);
1787 
1788 	/* Stop sending packets. */
1789 	adapter->flags |= FMP_ADAPTER_LOWER_POWER;
1790 
1791 	/* Wait for outstanding Receive packets */
1792 	et131x_disable_txrx(adapter->netdev);
1793 
1794 	/* Gate off JAGCore 3 clock domains */
1795 	pmcsr &= ~ET_PMCSR_INIT;
1796 	writel(pmcsr, &adapter->regs->global.pm_csr);
1797 
1798 	/* Program gigE PHY in to Coma mode */
1799 	pmcsr |= ET_PM_PHY_SW_COMA;
1800 	writel(pmcsr, &adapter->regs->global.pm_csr);
1801 }
1802 
1803 static void et1310_disable_phy_coma(struct et131x_adapter *adapter)
1804 {
1805 	u32 pmcsr;
1806 
1807 	pmcsr = readl(&adapter->regs->global.pm_csr);
1808 
1809 	/* Disable phy_sw_coma register and re-enable JAGCore clocks */
1810 	pmcsr |= ET_PMCSR_INIT;
1811 	pmcsr &= ~ET_PM_PHY_SW_COMA;
1812 	writel(pmcsr, &adapter->regs->global.pm_csr);
1813 
1814 	/* Restore the GbE PHY speed and duplex modes;
1815 	 * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY
1816 	 */
1817 
1818 	/* Re-initialize the send structures */
1819 	et131x_init_send(adapter);
1820 
1821 	/* Bring the device back to the state it was during init prior to
1822 	 * autonegotiation being complete.  This way, when we get the auto-neg
1823 	 * complete interrupt, we can complete init by calling ConfigMacREGS2.
1824 	 */
1825 	et131x_soft_reset(adapter);
1826 
1827 	et131x_adapter_setup(adapter);
1828 
1829 	/* Allow Tx to restart */
1830 	adapter->flags &= ~FMP_ADAPTER_LOWER_POWER;
1831 
1832 	et131x_enable_txrx(adapter->netdev);
1833 }
1834 
1835 static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit)
1836 {
1837 	u32 tmp_free_buff_ring = *free_buff_ring;
1838 
1839 	tmp_free_buff_ring++;
1840 	/* This works for all cases where limit < 1024. The 1023 case
1841 	 * works because 1023++ is 1024 which means the if condition is not
1842 	 * taken but the carry of the bit into the wrap bit toggles the wrap
1843 	 * value correctly
1844 	 */
1845 	if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) {
1846 		tmp_free_buff_ring &= ~ET_DMA10_MASK;
1847 		tmp_free_buff_ring ^= ET_DMA10_WRAP;
1848 	}
1849 	/* For the 1023 case */
1850 	tmp_free_buff_ring &= (ET_DMA10_MASK | ET_DMA10_WRAP);
1851 	*free_buff_ring = tmp_free_buff_ring;
1852 	return tmp_free_buff_ring;
1853 }
1854 
1855 /* et131x_rx_dma_memory_alloc
1856  *
1857  * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required,
1858  * and the Packet Status Ring.
1859  */
1860 static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter)
1861 {
1862 	u8 id;
1863 	u32 i, j;
1864 	u32 bufsize;
1865 	u32 psr_size;
1866 	u32 fbr_chunksize;
1867 	struct rx_ring *rx_ring = &adapter->rx_ring;
1868 	struct fbr_lookup *fbr;
1869 
1870 	/* Alloc memory for the lookup table */
1871 	rx_ring->fbr[0] = kzalloc(sizeof(*fbr), GFP_KERNEL);
1872 	if (rx_ring->fbr[0] == NULL)
1873 		return -ENOMEM;
1874 	rx_ring->fbr[1] = kzalloc(sizeof(*fbr), GFP_KERNEL);
1875 	if (rx_ring->fbr[1] == NULL)
1876 		return -ENOMEM;
1877 
1878 	/* The first thing we will do is configure the sizes of the buffer
1879 	 * rings. These will change based on jumbo packet support.  Larger
1880 	 * jumbo packets increases the size of each entry in FBR0, and the
1881 	 * number of entries in FBR0, while at the same time decreasing the
1882 	 * number of entries in FBR1.
1883 	 *
1884 	 * FBR1 holds "large" frames, FBR0 holds "small" frames.  If FBR1
1885 	 * entries are huge in order to accommodate a "jumbo" frame, then it
1886 	 * will have less entries.  Conversely, FBR1 will now be relied upon
1887 	 * to carry more "normal" frames, thus it's entry size also increases
1888 	 * and the number of entries goes up too (since it now carries
1889 	 * "small" + "regular" packets.
1890 	 *
1891 	 * In this scheme, we try to maintain 512 entries between the two
1892 	 * rings. Also, FBR1 remains a constant size - when it's size doubles
1893 	 * the number of entries halves.  FBR0 increases in size, however.
1894 	 */
1895 	if (adapter->registry_jumbo_packet < 2048) {
1896 		rx_ring->fbr[0]->buffsize = 256;
1897 		rx_ring->fbr[0]->num_entries = 512;
1898 		rx_ring->fbr[1]->buffsize = 2048;
1899 		rx_ring->fbr[1]->num_entries = 512;
1900 	} else if (adapter->registry_jumbo_packet < 4096) {
1901 		rx_ring->fbr[0]->buffsize = 512;
1902 		rx_ring->fbr[0]->num_entries = 1024;
1903 		rx_ring->fbr[1]->buffsize = 4096;
1904 		rx_ring->fbr[1]->num_entries = 512;
1905 	} else {
1906 		rx_ring->fbr[0]->buffsize = 1024;
1907 		rx_ring->fbr[0]->num_entries = 768;
1908 		rx_ring->fbr[1]->buffsize = 16384;
1909 		rx_ring->fbr[1]->num_entries = 128;
1910 	}
1911 
1912 	rx_ring->psr_entries = rx_ring->fbr[0]->num_entries +
1913 			       rx_ring->fbr[1]->num_entries;
1914 
1915 	for (id = 0; id < NUM_FBRS; id++) {
1916 		fbr = rx_ring->fbr[id];
1917 		/* Allocate an area of memory for Free Buffer Ring */
1918 		bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
1919 		fbr->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
1920 							bufsize,
1921 							&fbr->ring_physaddr,
1922 							GFP_KERNEL);
1923 		if (!fbr->ring_virtaddr) {
1924 			dev_err(&adapter->pdev->dev,
1925 				"Cannot alloc memory for Free Buffer Ring %d\n",
1926 				id);
1927 			return -ENOMEM;
1928 		}
1929 	}
1930 
1931 	for (id = 0; id < NUM_FBRS; id++) {
1932 		fbr = rx_ring->fbr[id];
1933 		fbr_chunksize = (FBR_CHUNKS * fbr->buffsize);
1934 
1935 		for (i = 0; i < fbr->num_entries / FBR_CHUNKS; i++) {
1936 			dma_addr_t fbr_physaddr;
1937 
1938 			fbr->mem_virtaddrs[i] = dma_alloc_coherent(
1939 					&adapter->pdev->dev, fbr_chunksize,
1940 					&fbr->mem_physaddrs[i],
1941 					GFP_KERNEL);
1942 
1943 			if (!fbr->mem_virtaddrs[i]) {
1944 				dev_err(&adapter->pdev->dev,
1945 					"Could not alloc memory\n");
1946 				return -ENOMEM;
1947 			}
1948 
1949 			/* See NOTE in "Save Physical Address" comment above */
1950 			fbr_physaddr = fbr->mem_physaddrs[i];
1951 
1952 			for (j = 0; j < FBR_CHUNKS; j++) {
1953 				u32 k = (i * FBR_CHUNKS) + j;
1954 
1955 				/* Save the Virtual address of this index for
1956 				 * quick access later
1957 				 */
1958 				fbr->virt[k] = (u8 *)fbr->mem_virtaddrs[i] +
1959 						   (j * fbr->buffsize);
1960 
1961 				/* now store the physical address in the
1962 				 * descriptor so the device can access it
1963 				 */
1964 				fbr->bus_high[k] = upper_32_bits(fbr_physaddr);
1965 				fbr->bus_low[k] = lower_32_bits(fbr_physaddr);
1966 				fbr_physaddr += fbr->buffsize;
1967 			}
1968 		}
1969 	}
1970 
1971 	/* Allocate an area of memory for FIFO of Packet Status ring entries */
1972 	psr_size = sizeof(struct pkt_stat_desc) * rx_ring->psr_entries;
1973 
1974 	rx_ring->ps_ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev,
1975 						  psr_size,
1976 						  &rx_ring->ps_ring_physaddr,
1977 						  GFP_KERNEL);
1978 
1979 	if (!rx_ring->ps_ring_virtaddr) {
1980 		dev_err(&adapter->pdev->dev,
1981 			"Cannot alloc memory for Packet Status Ring\n");
1982 		return -ENOMEM;
1983 	}
1984 
1985 	/* Allocate an area of memory for writeback of status information */
1986 	rx_ring->rx_status_block = dma_alloc_coherent(&adapter->pdev->dev,
1987 					    sizeof(struct rx_status_block),
1988 					    &rx_ring->rx_status_bus,
1989 					    GFP_KERNEL);
1990 	if (!rx_ring->rx_status_block) {
1991 		dev_err(&adapter->pdev->dev,
1992 			"Cannot alloc memory for Status Block\n");
1993 		return -ENOMEM;
1994 	}
1995 	rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD;
1996 
1997 	/* The RFDs are going to be put on lists later on, so initialize the
1998 	 * lists now.
1999 	 */
2000 	INIT_LIST_HEAD(&rx_ring->recv_list);
2001 	return 0;
2002 }
2003 
2004 static void et131x_rx_dma_memory_free(struct et131x_adapter *adapter)
2005 {
2006 	u8 id;
2007 	u32 ii;
2008 	u32 bufsize;
2009 	u32 psr_size;
2010 	struct rfd *rfd;
2011 	struct rx_ring *rx_ring = &adapter->rx_ring;
2012 	struct fbr_lookup *fbr;
2013 
2014 	/* Free RFDs and associated packet descriptors */
2015 	WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd);
2016 
2017 	while (!list_empty(&rx_ring->recv_list)) {
2018 		rfd = list_entry(rx_ring->recv_list.next,
2019 				 struct rfd, list_node);
2020 
2021 		list_del(&rfd->list_node);
2022 		rfd->skb = NULL;
2023 		kfree(rfd);
2024 	}
2025 
2026 	/* Free Free Buffer Rings */
2027 	for (id = 0; id < NUM_FBRS; id++) {
2028 		fbr = rx_ring->fbr[id];
2029 
2030 		if (!fbr || !fbr->ring_virtaddr)
2031 			continue;
2032 
2033 		/* First the packet memory */
2034 		for (ii = 0; ii < fbr->num_entries / FBR_CHUNKS; ii++) {
2035 			if (fbr->mem_virtaddrs[ii]) {
2036 				bufsize = fbr->buffsize * FBR_CHUNKS;
2037 
2038 				dma_free_coherent(&adapter->pdev->dev,
2039 						  bufsize,
2040 						  fbr->mem_virtaddrs[ii],
2041 						  fbr->mem_physaddrs[ii]);
2042 
2043 				fbr->mem_virtaddrs[ii] = NULL;
2044 			}
2045 		}
2046 
2047 		bufsize = sizeof(struct fbr_desc) * fbr->num_entries;
2048 
2049 		dma_free_coherent(&adapter->pdev->dev,
2050 				  bufsize,
2051 				  fbr->ring_virtaddr,
2052 				  fbr->ring_physaddr);
2053 
2054 		fbr->ring_virtaddr = NULL;
2055 	}
2056 
2057 	/* Free Packet Status Ring */
2058 	if (rx_ring->ps_ring_virtaddr) {
2059 		psr_size = sizeof(struct pkt_stat_desc) * rx_ring->psr_entries;
2060 
2061 		dma_free_coherent(&adapter->pdev->dev, psr_size,
2062 				  rx_ring->ps_ring_virtaddr,
2063 				  rx_ring->ps_ring_physaddr);
2064 
2065 		rx_ring->ps_ring_virtaddr = NULL;
2066 	}
2067 
2068 	/* Free area of memory for the writeback of status information */
2069 	if (rx_ring->rx_status_block) {
2070 		dma_free_coherent(&adapter->pdev->dev,
2071 				  sizeof(struct rx_status_block),
2072 				  rx_ring->rx_status_block,
2073 				  rx_ring->rx_status_bus);
2074 		rx_ring->rx_status_block = NULL;
2075 	}
2076 
2077 	/* Free the FBR Lookup Table */
2078 	kfree(rx_ring->fbr[0]);
2079 	kfree(rx_ring->fbr[1]);
2080 
2081 	/* Reset Counters */
2082 	rx_ring->num_ready_recv = 0;
2083 }
2084 
2085 /* et131x_init_recv - Initialize receive data structures */
2086 static int et131x_init_recv(struct et131x_adapter *adapter)
2087 {
2088 	struct rfd *rfd;
2089 	u32 rfdct;
2090 	struct rx_ring *rx_ring = &adapter->rx_ring;
2091 
2092 	/* Setup each RFD */
2093 	for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) {
2094 		rfd = kzalloc(sizeof(*rfd), GFP_ATOMIC | GFP_DMA);
2095 		if (!rfd)
2096 			return -ENOMEM;
2097 
2098 		rfd->skb = NULL;
2099 
2100 		/* Add this RFD to the recv_list */
2101 		list_add_tail(&rfd->list_node, &rx_ring->recv_list);
2102 
2103 		/* Increment the available RFD's */
2104 		rx_ring->num_ready_recv++;
2105 	}
2106 
2107 	return 0;
2108 }
2109 
2110 /* et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate */
2111 static void et131x_set_rx_dma_timer(struct et131x_adapter *adapter)
2112 {
2113 	struct phy_device *phydev = adapter->netdev->phydev;
2114 
2115 	/* For version B silicon, we do not use the RxDMA timer for 10 and 100
2116 	 * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing.
2117 	 */
2118 	if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) {
2119 		writel(0, &adapter->regs->rxdma.max_pkt_time);
2120 		writel(1, &adapter->regs->rxdma.num_pkt_done);
2121 	}
2122 }
2123 
2124 /* nic_return_rfd - Recycle a RFD and put it back onto the receive list */
2125 static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd)
2126 {
2127 	struct rx_ring *rx_local = &adapter->rx_ring;
2128 	struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma;
2129 	u16 buff_index = rfd->bufferindex;
2130 	u8 ring_index = rfd->ringindex;
2131 	unsigned long flags;
2132 	struct fbr_lookup *fbr = rx_local->fbr[ring_index];
2133 
2134 	/* We don't use any of the OOB data besides status. Otherwise, we
2135 	 * need to clean up OOB data
2136 	 */
2137 	if (buff_index < fbr->num_entries) {
2138 		u32 free_buff_ring;
2139 		u32 __iomem *offset;
2140 		struct fbr_desc *next;
2141 
2142 		if (ring_index == 0)
2143 			offset = &rx_dma->fbr0_full_offset;
2144 		else
2145 			offset = &rx_dma->fbr1_full_offset;
2146 
2147 		next = (struct fbr_desc *)(fbr->ring_virtaddr) +
2148 		       INDEX10(fbr->local_full);
2149 
2150 		/* Handle the Free Buffer Ring advancement here. Write
2151 		 * the PA / Buffer Index for the returned buffer into
2152 		 * the oldest (next to be freed)FBR entry
2153 		 */
2154 		next->addr_hi = fbr->bus_high[buff_index];
2155 		next->addr_lo = fbr->bus_low[buff_index];
2156 		next->word2 = buff_index;
2157 
2158 		free_buff_ring = bump_free_buff_ring(&fbr->local_full,
2159 						     fbr->num_entries - 1);
2160 		writel(free_buff_ring, offset);
2161 	} else {
2162 		dev_err(&adapter->pdev->dev,
2163 			"%s illegal Buffer Index returned\n", __func__);
2164 	}
2165 
2166 	/* The processing on this RFD is done, so put it back on the tail of
2167 	 * our list
2168 	 */
2169 	spin_lock_irqsave(&adapter->rcv_lock, flags);
2170 	list_add_tail(&rfd->list_node, &rx_local->recv_list);
2171 	rx_local->num_ready_recv++;
2172 	spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2173 
2174 	WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd);
2175 }
2176 
2177 /* nic_rx_pkts - Checks the hardware for available packets
2178  *
2179  * Checks the hardware for available packets, using completion ring
2180  * If packets are available, it gets an RFD from the recv_list, attaches
2181  * the packet to it, puts the RFD in the RecvPendList, and also returns
2182  * the pointer to the RFD.
2183  */
2184 static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter)
2185 {
2186 	struct rx_ring *rx_local = &adapter->rx_ring;
2187 	struct rx_status_block *status;
2188 	struct pkt_stat_desc *psr;
2189 	struct rfd *rfd;
2190 	unsigned long flags;
2191 	struct list_head *element;
2192 	u8 ring_index;
2193 	u16 buff_index;
2194 	u32 len;
2195 	u32 word0;
2196 	u32 word1;
2197 	struct sk_buff *skb;
2198 	struct fbr_lookup *fbr;
2199 
2200 	/* RX Status block is written by the DMA engine prior to every
2201 	 * interrupt. It contains the next to be used entry in the Packet
2202 	 * Status Ring, and also the two Free Buffer rings.
2203 	 */
2204 	status = rx_local->rx_status_block;
2205 	word1 = status->word1 >> 16;
2206 
2207 	/* Check the PSR and wrap bits do not match */
2208 	if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF))
2209 		return NULL; /* Looks like this ring is not updated yet */
2210 
2211 	/* The packet status ring indicates that data is available. */
2212 	psr = (struct pkt_stat_desc *)(rx_local->ps_ring_virtaddr) +
2213 			(rx_local->local_psr_full & 0xFFF);
2214 
2215 	/* Grab any information that is required once the PSR is advanced,
2216 	 * since we can no longer rely on the memory being accurate
2217 	 */
2218 	len = psr->word1 & 0xFFFF;
2219 	ring_index = (psr->word1 >> 26) & 0x03;
2220 	fbr = rx_local->fbr[ring_index];
2221 	buff_index = (psr->word1 >> 16) & 0x3FF;
2222 	word0 = psr->word0;
2223 
2224 	/* Indicate that we have used this PSR entry. */
2225 	/* FIXME wrap 12 */
2226 	add_12bit(&rx_local->local_psr_full, 1);
2227 	if ((rx_local->local_psr_full & 0xFFF) > rx_local->psr_entries - 1) {
2228 		/* Clear psr full and toggle the wrap bit */
2229 		rx_local->local_psr_full &=  ~0xFFF;
2230 		rx_local->local_psr_full ^= 0x1000;
2231 	}
2232 
2233 	writel(rx_local->local_psr_full, &adapter->regs->rxdma.psr_full_offset);
2234 
2235 	if (ring_index > 1 || buff_index > fbr->num_entries - 1) {
2236 		/* Illegal buffer or ring index cannot be used by S/W*/
2237 		dev_err(&adapter->pdev->dev,
2238 			"NICRxPkts PSR Entry %d indicates length of %d and/or bad bi(%d)\n",
2239 			rx_local->local_psr_full & 0xFFF, len, buff_index);
2240 		return NULL;
2241 	}
2242 
2243 	/* Get and fill the RFD. */
2244 	spin_lock_irqsave(&adapter->rcv_lock, flags);
2245 
2246 	element = rx_local->recv_list.next;
2247 	rfd = list_entry(element, struct rfd, list_node);
2248 
2249 	if (!rfd) {
2250 		spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2251 		return NULL;
2252 	}
2253 
2254 	list_del(&rfd->list_node);
2255 	rx_local->num_ready_recv--;
2256 
2257 	spin_unlock_irqrestore(&adapter->rcv_lock, flags);
2258 
2259 	rfd->bufferindex = buff_index;
2260 	rfd->ringindex = ring_index;
2261 
2262 	/* In V1 silicon, there is a bug which screws up filtering of runt
2263 	 * packets. Therefore runt packet filtering is disabled in the MAC and
2264 	 * the packets are dropped here. They are also counted here.
2265 	 */
2266 	if (len < (NIC_MIN_PACKET_SIZE + 4)) {
2267 		adapter->stats.rx_other_errs++;
2268 		rfd->len = 0;
2269 		goto out;
2270 	}
2271 
2272 	if ((word0 & ALCATEL_MULTICAST_PKT) && !(word0 & ALCATEL_BROADCAST_PKT))
2273 		adapter->stats.multicast_pkts_rcvd++;
2274 
2275 	rfd->len = len;
2276 
2277 	skb = dev_alloc_skb(rfd->len + 2);
2278 	if (!skb)
2279 		return NULL;
2280 
2281 	adapter->netdev->stats.rx_bytes += rfd->len;
2282 
2283 	memcpy(skb_put(skb, rfd->len), fbr->virt[buff_index], rfd->len);
2284 
2285 	skb->protocol = eth_type_trans(skb, adapter->netdev);
2286 	skb->ip_summed = CHECKSUM_NONE;
2287 	netif_receive_skb(skb);
2288 
2289 out:
2290 	nic_return_rfd(adapter, rfd);
2291 	return rfd;
2292 }
2293 
2294 static int et131x_handle_recv_pkts(struct et131x_adapter *adapter, int budget)
2295 {
2296 	struct rfd *rfd = NULL;
2297 	int count = 0;
2298 	int limit = budget;
2299 	bool done = true;
2300 	struct rx_ring *rx_ring = &adapter->rx_ring;
2301 
2302 	if (budget > MAX_PACKETS_HANDLED)
2303 		limit = MAX_PACKETS_HANDLED;
2304 
2305 	/* Process up to available RFD's */
2306 	while (count < limit) {
2307 		if (list_empty(&rx_ring->recv_list)) {
2308 			WARN_ON(rx_ring->num_ready_recv != 0);
2309 			done = false;
2310 			break;
2311 		}
2312 
2313 		rfd = nic_rx_pkts(adapter);
2314 
2315 		if (rfd == NULL)
2316 			break;
2317 
2318 		/* Do not receive any packets until a filter has been set.
2319 		 * Do not receive any packets until we have link.
2320 		 * If length is zero, return the RFD in order to advance the
2321 		 * Free buffer ring.
2322 		 */
2323 		if (!adapter->packet_filter ||
2324 		    !netif_carrier_ok(adapter->netdev) ||
2325 		    rfd->len == 0)
2326 			continue;
2327 
2328 		adapter->netdev->stats.rx_packets++;
2329 
2330 		if (rx_ring->num_ready_recv < RFD_LOW_WATER_MARK)
2331 			dev_warn(&adapter->pdev->dev, "RFD's are running out\n");
2332 
2333 		count++;
2334 	}
2335 
2336 	if (count == limit || !done) {
2337 		rx_ring->unfinished_receives = true;
2338 		writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2339 		       &adapter->regs->global.watchdog_timer);
2340 	} else {
2341 		/* Watchdog timer will disable itself if appropriate. */
2342 		rx_ring->unfinished_receives = false;
2343 	}
2344 
2345 	return count;
2346 }
2347 
2348 /* et131x_tx_dma_memory_alloc
2349  *
2350  * Allocates memory that will be visible both to the device and to the CPU.
2351  * The OS will pass us packets, pointers to which we will insert in the Tx
2352  * Descriptor queue. The device will read this queue to find the packets in
2353  * memory. The device will update the "status" in memory each time it xmits a
2354  * packet.
2355  */
2356 static int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter)
2357 {
2358 	int desc_size = 0;
2359 	struct tx_ring *tx_ring = &adapter->tx_ring;
2360 
2361 	/* Allocate memory for the TCB's (Transmit Control Block) */
2362 	tx_ring->tcb_ring = kcalloc(NUM_TCB, sizeof(struct tcb),
2363 				    GFP_ATOMIC | GFP_DMA);
2364 	if (!tx_ring->tcb_ring)
2365 		return -ENOMEM;
2366 
2367 	desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
2368 	tx_ring->tx_desc_ring = dma_alloc_coherent(&adapter->pdev->dev,
2369 						   desc_size,
2370 						   &tx_ring->tx_desc_ring_pa,
2371 						   GFP_KERNEL);
2372 	if (!tx_ring->tx_desc_ring) {
2373 		dev_err(&adapter->pdev->dev,
2374 			"Cannot alloc memory for Tx Ring\n");
2375 		return -ENOMEM;
2376 	}
2377 
2378 	tx_ring->tx_status = dma_alloc_coherent(&adapter->pdev->dev,
2379 						    sizeof(u32),
2380 						    &tx_ring->tx_status_pa,
2381 						    GFP_KERNEL);
2382 	if (!tx_ring->tx_status) {
2383 		dev_err(&adapter->pdev->dev,
2384 			"Cannot alloc memory for Tx status block\n");
2385 		return -ENOMEM;
2386 	}
2387 	return 0;
2388 }
2389 
2390 static void et131x_tx_dma_memory_free(struct et131x_adapter *adapter)
2391 {
2392 	int desc_size = 0;
2393 	struct tx_ring *tx_ring = &adapter->tx_ring;
2394 
2395 	if (tx_ring->tx_desc_ring) {
2396 		/* Free memory relating to Tx rings here */
2397 		desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX);
2398 		dma_free_coherent(&adapter->pdev->dev,
2399 				  desc_size,
2400 				  tx_ring->tx_desc_ring,
2401 				  tx_ring->tx_desc_ring_pa);
2402 		tx_ring->tx_desc_ring = NULL;
2403 	}
2404 
2405 	/* Free memory for the Tx status block */
2406 	if (tx_ring->tx_status) {
2407 		dma_free_coherent(&adapter->pdev->dev,
2408 				  sizeof(u32),
2409 				  tx_ring->tx_status,
2410 				  tx_ring->tx_status_pa);
2411 
2412 		tx_ring->tx_status = NULL;
2413 	}
2414 	/* Free the memory for the tcb structures */
2415 	kfree(tx_ring->tcb_ring);
2416 }
2417 
2418 /* nic_send_packet - NIC specific send handler for version B silicon. */
2419 static int nic_send_packet(struct et131x_adapter *adapter, struct tcb *tcb)
2420 {
2421 	u32 i;
2422 	struct tx_desc desc[24];
2423 	u32 frag = 0;
2424 	u32 thiscopy, remainder;
2425 	struct sk_buff *skb = tcb->skb;
2426 	u32 nr_frags = skb_shinfo(skb)->nr_frags + 1;
2427 	struct skb_frag_struct *frags = &skb_shinfo(skb)->frags[0];
2428 	struct phy_device *phydev = adapter->netdev->phydev;
2429 	dma_addr_t dma_addr;
2430 	struct tx_ring *tx_ring = &adapter->tx_ring;
2431 
2432 	/* Part of the optimizations of this send routine restrict us to
2433 	 * sending 24 fragments at a pass.  In practice we should never see
2434 	 * more than 5 fragments.
2435 	 */
2436 
2437 	/* nr_frags should be no more than 18. */
2438 	BUILD_BUG_ON(MAX_SKB_FRAGS + 1 > 23);
2439 
2440 	memset(desc, 0, sizeof(struct tx_desc) * (nr_frags + 1));
2441 
2442 	for (i = 0; i < nr_frags; i++) {
2443 		/* If there is something in this element, lets get a
2444 		 * descriptor from the ring and get the necessary data
2445 		 */
2446 		if (i == 0) {
2447 			/* If the fragments are smaller than a standard MTU,
2448 			 * then map them to a single descriptor in the Tx
2449 			 * Desc ring. However, if they're larger, as is
2450 			 * possible with support for jumbo packets, then
2451 			 * split them each across 2 descriptors.
2452 			 *
2453 			 * This will work until we determine why the hardware
2454 			 * doesn't seem to like large fragments.
2455 			 */
2456 			if (skb_headlen(skb) <= 1514) {
2457 				/* Low 16bits are length, high is vlan and
2458 				 * unused currently so zero
2459 				 */
2460 				desc[frag].len_vlan = skb_headlen(skb);
2461 				dma_addr = dma_map_single(&adapter->pdev->dev,
2462 							  skb->data,
2463 							  skb_headlen(skb),
2464 							  DMA_TO_DEVICE);
2465 				desc[frag].addr_lo = lower_32_bits(dma_addr);
2466 				desc[frag].addr_hi = upper_32_bits(dma_addr);
2467 				frag++;
2468 			} else {
2469 				desc[frag].len_vlan = skb_headlen(skb) / 2;
2470 				dma_addr = dma_map_single(&adapter->pdev->dev,
2471 							  skb->data,
2472 							  skb_headlen(skb) / 2,
2473 							  DMA_TO_DEVICE);
2474 				desc[frag].addr_lo = lower_32_bits(dma_addr);
2475 				desc[frag].addr_hi = upper_32_bits(dma_addr);
2476 				frag++;
2477 
2478 				desc[frag].len_vlan = skb_headlen(skb) / 2;
2479 				dma_addr = dma_map_single(&adapter->pdev->dev,
2480 							  skb->data +
2481 							  skb_headlen(skb) / 2,
2482 							  skb_headlen(skb) / 2,
2483 							  DMA_TO_DEVICE);
2484 				desc[frag].addr_lo = lower_32_bits(dma_addr);
2485 				desc[frag].addr_hi = upper_32_bits(dma_addr);
2486 				frag++;
2487 			}
2488 		} else {
2489 			desc[frag].len_vlan = frags[i - 1].size;
2490 			dma_addr = skb_frag_dma_map(&adapter->pdev->dev,
2491 						    &frags[i - 1],
2492 						    0,
2493 						    frags[i - 1].size,
2494 						    DMA_TO_DEVICE);
2495 			desc[frag].addr_lo = lower_32_bits(dma_addr);
2496 			desc[frag].addr_hi = upper_32_bits(dma_addr);
2497 			frag++;
2498 		}
2499 	}
2500 
2501 	if (phydev && phydev->speed == SPEED_1000) {
2502 		if (++tx_ring->since_irq == PARM_TX_NUM_BUFS_DEF) {
2503 			/* Last element & Interrupt flag */
2504 			desc[frag - 1].flags =
2505 				    TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
2506 			tx_ring->since_irq = 0;
2507 		} else { /* Last element */
2508 			desc[frag - 1].flags = TXDESC_FLAG_LASTPKT;
2509 		}
2510 	} else {
2511 		desc[frag - 1].flags =
2512 				    TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT;
2513 	}
2514 
2515 	desc[0].flags |= TXDESC_FLAG_FIRSTPKT;
2516 
2517 	tcb->index_start = tx_ring->send_idx;
2518 	tcb->stale = 0;
2519 
2520 	thiscopy = NUM_DESC_PER_RING_TX - INDEX10(tx_ring->send_idx);
2521 
2522 	if (thiscopy >= frag) {
2523 		remainder = 0;
2524 		thiscopy = frag;
2525 	} else {
2526 		remainder = frag - thiscopy;
2527 	}
2528 
2529 	memcpy(tx_ring->tx_desc_ring + INDEX10(tx_ring->send_idx),
2530 	       desc,
2531 	       sizeof(struct tx_desc) * thiscopy);
2532 
2533 	add_10bit(&tx_ring->send_idx, thiscopy);
2534 
2535 	if (INDEX10(tx_ring->send_idx) == 0 ||
2536 	    INDEX10(tx_ring->send_idx) == NUM_DESC_PER_RING_TX) {
2537 		tx_ring->send_idx &= ~ET_DMA10_MASK;
2538 		tx_ring->send_idx ^= ET_DMA10_WRAP;
2539 	}
2540 
2541 	if (remainder) {
2542 		memcpy(tx_ring->tx_desc_ring,
2543 		       desc + thiscopy,
2544 		       sizeof(struct tx_desc) * remainder);
2545 
2546 		add_10bit(&tx_ring->send_idx, remainder);
2547 	}
2548 
2549 	if (INDEX10(tx_ring->send_idx) == 0) {
2550 		if (tx_ring->send_idx)
2551 			tcb->index = NUM_DESC_PER_RING_TX - 1;
2552 		else
2553 			tcb->index = ET_DMA10_WRAP|(NUM_DESC_PER_RING_TX - 1);
2554 	} else {
2555 		tcb->index = tx_ring->send_idx - 1;
2556 	}
2557 
2558 	spin_lock(&adapter->tcb_send_qlock);
2559 
2560 	if (tx_ring->send_tail)
2561 		tx_ring->send_tail->next = tcb;
2562 	else
2563 		tx_ring->send_head = tcb;
2564 
2565 	tx_ring->send_tail = tcb;
2566 
2567 	WARN_ON(tcb->next != NULL);
2568 
2569 	tx_ring->used++;
2570 
2571 	spin_unlock(&adapter->tcb_send_qlock);
2572 
2573 	/* Write the new write pointer back to the device. */
2574 	writel(tx_ring->send_idx, &adapter->regs->txdma.service_request);
2575 
2576 	/* For Gig only, we use Tx Interrupt coalescing.  Enable the software
2577 	 * timer to wake us up if this packet isn't followed by N more.
2578 	 */
2579 	if (phydev && phydev->speed == SPEED_1000) {
2580 		writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO,
2581 		       &adapter->regs->global.watchdog_timer);
2582 	}
2583 	return 0;
2584 }
2585 
2586 static int send_packet(struct sk_buff *skb, struct et131x_adapter *adapter)
2587 {
2588 	int status;
2589 	struct tcb *tcb;
2590 	unsigned long flags;
2591 	struct tx_ring *tx_ring = &adapter->tx_ring;
2592 
2593 	/* All packets must have at least a MAC address and a protocol type */
2594 	if (skb->len < ETH_HLEN)
2595 		return -EIO;
2596 
2597 	spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2598 
2599 	tcb = tx_ring->tcb_qhead;
2600 
2601 	if (tcb == NULL) {
2602 		spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2603 		return -ENOMEM;
2604 	}
2605 
2606 	tx_ring->tcb_qhead = tcb->next;
2607 
2608 	if (tx_ring->tcb_qhead == NULL)
2609 		tx_ring->tcb_qtail = NULL;
2610 
2611 	spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2612 
2613 	tcb->skb = skb;
2614 	tcb->next = NULL;
2615 
2616 	status = nic_send_packet(adapter, tcb);
2617 
2618 	if (status != 0) {
2619 		spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2620 
2621 		if (tx_ring->tcb_qtail)
2622 			tx_ring->tcb_qtail->next = tcb;
2623 		else
2624 			/* Apparently ready Q is empty. */
2625 			tx_ring->tcb_qhead = tcb;
2626 
2627 		tx_ring->tcb_qtail = tcb;
2628 		spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2629 		return status;
2630 	}
2631 	WARN_ON(tx_ring->used > NUM_TCB);
2632 	return 0;
2633 }
2634 
2635 /* free_send_packet - Recycle a struct tcb */
2636 static inline void free_send_packet(struct et131x_adapter *adapter,
2637 				    struct tcb *tcb)
2638 {
2639 	unsigned long flags;
2640 	struct tx_desc *desc = NULL;
2641 	struct net_device_stats *stats = &adapter->netdev->stats;
2642 	struct tx_ring *tx_ring = &adapter->tx_ring;
2643 	u64  dma_addr;
2644 
2645 	if (tcb->skb) {
2646 		stats->tx_bytes += tcb->skb->len;
2647 
2648 		/* Iterate through the TX descriptors on the ring
2649 		 * corresponding to this packet and umap the fragments
2650 		 * they point to
2651 		 */
2652 		do {
2653 			desc = tx_ring->tx_desc_ring +
2654 			       INDEX10(tcb->index_start);
2655 
2656 			dma_addr = desc->addr_lo;
2657 			dma_addr |= (u64)desc->addr_hi << 32;
2658 
2659 			dma_unmap_single(&adapter->pdev->dev,
2660 					 dma_addr,
2661 					 desc->len_vlan, DMA_TO_DEVICE);
2662 
2663 			add_10bit(&tcb->index_start, 1);
2664 			if (INDEX10(tcb->index_start) >=
2665 							NUM_DESC_PER_RING_TX) {
2666 				tcb->index_start &= ~ET_DMA10_MASK;
2667 				tcb->index_start ^= ET_DMA10_WRAP;
2668 			}
2669 		} while (desc != tx_ring->tx_desc_ring + INDEX10(tcb->index));
2670 
2671 		dev_kfree_skb_any(tcb->skb);
2672 	}
2673 
2674 	memset(tcb, 0, sizeof(struct tcb));
2675 
2676 	/* Add the TCB to the Ready Q */
2677 	spin_lock_irqsave(&adapter->tcb_ready_qlock, flags);
2678 
2679 	stats->tx_packets++;
2680 
2681 	if (tx_ring->tcb_qtail)
2682 		tx_ring->tcb_qtail->next = tcb;
2683 	else /* Apparently ready Q is empty. */
2684 		tx_ring->tcb_qhead = tcb;
2685 
2686 	tx_ring->tcb_qtail = tcb;
2687 
2688 	spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags);
2689 	WARN_ON(tx_ring->used < 0);
2690 }
2691 
2692 /* et131x_free_busy_send_packets - Free and complete the stopped active sends */
2693 static void et131x_free_busy_send_packets(struct et131x_adapter *adapter)
2694 {
2695 	struct tcb *tcb;
2696 	unsigned long flags;
2697 	u32 freed = 0;
2698 	struct tx_ring *tx_ring = &adapter->tx_ring;
2699 
2700 	/* Any packets being sent? Check the first TCB on the send list */
2701 	spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2702 
2703 	tcb = tx_ring->send_head;
2704 
2705 	while (tcb != NULL && freed < NUM_TCB) {
2706 		struct tcb *next = tcb->next;
2707 
2708 		tx_ring->send_head = next;
2709 
2710 		if (next == NULL)
2711 			tx_ring->send_tail = NULL;
2712 
2713 		tx_ring->used--;
2714 
2715 		spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2716 
2717 		freed++;
2718 		free_send_packet(adapter, tcb);
2719 
2720 		spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2721 
2722 		tcb = tx_ring->send_head;
2723 	}
2724 
2725 	WARN_ON(freed == NUM_TCB);
2726 
2727 	spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2728 
2729 	tx_ring->used = 0;
2730 }
2731 
2732 /* et131x_handle_send_pkts
2733  *
2734  * Re-claim the send resources, complete sends and get more to send from
2735  * the send wait queue.
2736  */
2737 static void et131x_handle_send_pkts(struct et131x_adapter *adapter)
2738 {
2739 	unsigned long flags;
2740 	u32 serviced;
2741 	struct tcb *tcb;
2742 	u32 index;
2743 	struct tx_ring *tx_ring = &adapter->tx_ring;
2744 
2745 	serviced = readl(&adapter->regs->txdma.new_service_complete);
2746 	index = INDEX10(serviced);
2747 
2748 	/* Has the ring wrapped?  Process any descriptors that do not have
2749 	 * the same "wrap" indicator as the current completion indicator
2750 	 */
2751 	spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2752 
2753 	tcb = tx_ring->send_head;
2754 
2755 	while (tcb &&
2756 	       ((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
2757 	       index < INDEX10(tcb->index)) {
2758 		tx_ring->used--;
2759 		tx_ring->send_head = tcb->next;
2760 		if (tcb->next == NULL)
2761 			tx_ring->send_tail = NULL;
2762 
2763 		spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2764 		free_send_packet(adapter, tcb);
2765 		spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2766 
2767 		/* Goto the next packet */
2768 		tcb = tx_ring->send_head;
2769 	}
2770 	while (tcb &&
2771 	       !((serviced ^ tcb->index) & ET_DMA10_WRAP) &&
2772 	       index > (tcb->index & ET_DMA10_MASK)) {
2773 		tx_ring->used--;
2774 		tx_ring->send_head = tcb->next;
2775 		if (tcb->next == NULL)
2776 			tx_ring->send_tail = NULL;
2777 
2778 		spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2779 		free_send_packet(adapter, tcb);
2780 		spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
2781 
2782 		/* Goto the next packet */
2783 		tcb = tx_ring->send_head;
2784 	}
2785 
2786 	/* Wake up the queue when we hit a low-water mark */
2787 	if (tx_ring->used <= NUM_TCB / 3)
2788 		netif_wake_queue(adapter->netdev);
2789 
2790 	spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
2791 }
2792 
2793 static int et131x_get_regs_len(struct net_device *netdev)
2794 {
2795 #define ET131X_REGS_LEN 256
2796 	return ET131X_REGS_LEN * sizeof(u32);
2797 }
2798 
2799 static void et131x_get_regs(struct net_device *netdev,
2800 			    struct ethtool_regs *regs, void *regs_data)
2801 {
2802 	struct et131x_adapter *adapter = netdev_priv(netdev);
2803 	struct address_map __iomem *aregs = adapter->regs;
2804 	u32 *regs_buff = regs_data;
2805 	u32 num = 0;
2806 	u16 tmp;
2807 
2808 	memset(regs_data, 0, et131x_get_regs_len(netdev));
2809 
2810 	regs->version = (1 << 24) | (adapter->pdev->revision << 16) |
2811 			adapter->pdev->device;
2812 
2813 	/* PHY regs */
2814 	et131x_mii_read(adapter, MII_BMCR, &tmp);
2815 	regs_buff[num++] = tmp;
2816 	et131x_mii_read(adapter, MII_BMSR, &tmp);
2817 	regs_buff[num++] = tmp;
2818 	et131x_mii_read(adapter, MII_PHYSID1, &tmp);
2819 	regs_buff[num++] = tmp;
2820 	et131x_mii_read(adapter, MII_PHYSID2, &tmp);
2821 	regs_buff[num++] = tmp;
2822 	et131x_mii_read(adapter, MII_ADVERTISE, &tmp);
2823 	regs_buff[num++] = tmp;
2824 	et131x_mii_read(adapter, MII_LPA, &tmp);
2825 	regs_buff[num++] = tmp;
2826 	et131x_mii_read(adapter, MII_EXPANSION, &tmp);
2827 	regs_buff[num++] = tmp;
2828 	/* Autoneg next page transmit reg */
2829 	et131x_mii_read(adapter, 0x07, &tmp);
2830 	regs_buff[num++] = tmp;
2831 	/* Link partner next page reg */
2832 	et131x_mii_read(adapter, 0x08, &tmp);
2833 	regs_buff[num++] = tmp;
2834 	et131x_mii_read(adapter, MII_CTRL1000, &tmp);
2835 	regs_buff[num++] = tmp;
2836 	et131x_mii_read(adapter, MII_STAT1000, &tmp);
2837 	regs_buff[num++] = tmp;
2838 	et131x_mii_read(adapter, 0x0b, &tmp);
2839 	regs_buff[num++] = tmp;
2840 	et131x_mii_read(adapter, 0x0c, &tmp);
2841 	regs_buff[num++] = tmp;
2842 	et131x_mii_read(adapter, MII_MMD_CTRL, &tmp);
2843 	regs_buff[num++] = tmp;
2844 	et131x_mii_read(adapter, MII_MMD_DATA, &tmp);
2845 	regs_buff[num++] = tmp;
2846 	et131x_mii_read(adapter, MII_ESTATUS, &tmp);
2847 	regs_buff[num++] = tmp;
2848 
2849 	et131x_mii_read(adapter, PHY_INDEX_REG, &tmp);
2850 	regs_buff[num++] = tmp;
2851 	et131x_mii_read(adapter, PHY_DATA_REG, &tmp);
2852 	regs_buff[num++] = tmp;
2853 	et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG, &tmp);
2854 	regs_buff[num++] = tmp;
2855 	et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL, &tmp);
2856 	regs_buff[num++] = tmp;
2857 	et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL + 1, &tmp);
2858 	regs_buff[num++] = tmp;
2859 
2860 	et131x_mii_read(adapter, PHY_REGISTER_MGMT_CONTROL, &tmp);
2861 	regs_buff[num++] = tmp;
2862 	et131x_mii_read(adapter, PHY_CONFIG, &tmp);
2863 	regs_buff[num++] = tmp;
2864 	et131x_mii_read(adapter, PHY_PHY_CONTROL, &tmp);
2865 	regs_buff[num++] = tmp;
2866 	et131x_mii_read(adapter, PHY_INTERRUPT_MASK, &tmp);
2867 	regs_buff[num++] = tmp;
2868 	et131x_mii_read(adapter, PHY_INTERRUPT_STATUS, &tmp);
2869 	regs_buff[num++] = tmp;
2870 	et131x_mii_read(adapter, PHY_PHY_STATUS, &tmp);
2871 	regs_buff[num++] = tmp;
2872 	et131x_mii_read(adapter, PHY_LED_1, &tmp);
2873 	regs_buff[num++] = tmp;
2874 	et131x_mii_read(adapter, PHY_LED_2, &tmp);
2875 	regs_buff[num++] = tmp;
2876 
2877 	/* Global regs */
2878 	regs_buff[num++] = readl(&aregs->global.txq_start_addr);
2879 	regs_buff[num++] = readl(&aregs->global.txq_end_addr);
2880 	regs_buff[num++] = readl(&aregs->global.rxq_start_addr);
2881 	regs_buff[num++] = readl(&aregs->global.rxq_end_addr);
2882 	regs_buff[num++] = readl(&aregs->global.pm_csr);
2883 	regs_buff[num++] = adapter->stats.interrupt_status;
2884 	regs_buff[num++] = readl(&aregs->global.int_mask);
2885 	regs_buff[num++] = readl(&aregs->global.int_alias_clr_en);
2886 	regs_buff[num++] = readl(&aregs->global.int_status_alias);
2887 	regs_buff[num++] = readl(&aregs->global.sw_reset);
2888 	regs_buff[num++] = readl(&aregs->global.slv_timer);
2889 	regs_buff[num++] = readl(&aregs->global.msi_config);
2890 	regs_buff[num++] = readl(&aregs->global.loopback);
2891 	regs_buff[num++] = readl(&aregs->global.watchdog_timer);
2892 
2893 	/* TXDMA regs */
2894 	regs_buff[num++] = readl(&aregs->txdma.csr);
2895 	regs_buff[num++] = readl(&aregs->txdma.pr_base_hi);
2896 	regs_buff[num++] = readl(&aregs->txdma.pr_base_lo);
2897 	regs_buff[num++] = readl(&aregs->txdma.pr_num_des);
2898 	regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr);
2899 	regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr_ext);
2900 	regs_buff[num++] = readl(&aregs->txdma.txq_rd_addr);
2901 	regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_hi);
2902 	regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_lo);
2903 	regs_buff[num++] = readl(&aregs->txdma.service_request);
2904 	regs_buff[num++] = readl(&aregs->txdma.service_complete);
2905 	regs_buff[num++] = readl(&aregs->txdma.cache_rd_index);
2906 	regs_buff[num++] = readl(&aregs->txdma.cache_wr_index);
2907 	regs_buff[num++] = readl(&aregs->txdma.tx_dma_error);
2908 	regs_buff[num++] = readl(&aregs->txdma.desc_abort_cnt);
2909 	regs_buff[num++] = readl(&aregs->txdma.payload_abort_cnt);
2910 	regs_buff[num++] = readl(&aregs->txdma.writeback_abort_cnt);
2911 	regs_buff[num++] = readl(&aregs->txdma.desc_timeout_cnt);
2912 	regs_buff[num++] = readl(&aregs->txdma.payload_timeout_cnt);
2913 	regs_buff[num++] = readl(&aregs->txdma.writeback_timeout_cnt);
2914 	regs_buff[num++] = readl(&aregs->txdma.desc_error_cnt);
2915 	regs_buff[num++] = readl(&aregs->txdma.payload_error_cnt);
2916 	regs_buff[num++] = readl(&aregs->txdma.writeback_error_cnt);
2917 	regs_buff[num++] = readl(&aregs->txdma.dropped_tlp_cnt);
2918 	regs_buff[num++] = readl(&aregs->txdma.new_service_complete);
2919 	regs_buff[num++] = readl(&aregs->txdma.ethernet_packet_cnt);
2920 
2921 	/* RXDMA regs */
2922 	regs_buff[num++] = readl(&aregs->rxdma.csr);
2923 	regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_hi);
2924 	regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_lo);
2925 	regs_buff[num++] = readl(&aregs->rxdma.num_pkt_done);
2926 	regs_buff[num++] = readl(&aregs->rxdma.max_pkt_time);
2927 	regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr);
2928 	regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr_ext);
2929 	regs_buff[num++] = readl(&aregs->rxdma.rxq_wr_addr);
2930 	regs_buff[num++] = readl(&aregs->rxdma.psr_base_hi);
2931 	regs_buff[num++] = readl(&aregs->rxdma.psr_base_lo);
2932 	regs_buff[num++] = readl(&aregs->rxdma.psr_num_des);
2933 	regs_buff[num++] = readl(&aregs->rxdma.psr_avail_offset);
2934 	regs_buff[num++] = readl(&aregs->rxdma.psr_full_offset);
2935 	regs_buff[num++] = readl(&aregs->rxdma.psr_access_index);
2936 	regs_buff[num++] = readl(&aregs->rxdma.psr_min_des);
2937 	regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_lo);
2938 	regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_hi);
2939 	regs_buff[num++] = readl(&aregs->rxdma.fbr0_num_des);
2940 	regs_buff[num++] = readl(&aregs->rxdma.fbr0_avail_offset);
2941 	regs_buff[num++] = readl(&aregs->rxdma.fbr0_full_offset);
2942 	regs_buff[num++] = readl(&aregs->rxdma.fbr0_rd_index);
2943 	regs_buff[num++] = readl(&aregs->rxdma.fbr0_min_des);
2944 	regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_lo);
2945 	regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_hi);
2946 	regs_buff[num++] = readl(&aregs->rxdma.fbr1_num_des);
2947 	regs_buff[num++] = readl(&aregs->rxdma.fbr1_avail_offset);
2948 	regs_buff[num++] = readl(&aregs->rxdma.fbr1_full_offset);
2949 	regs_buff[num++] = readl(&aregs->rxdma.fbr1_rd_index);
2950 	regs_buff[num++] = readl(&aregs->rxdma.fbr1_min_des);
2951 }
2952 
2953 static void et131x_get_drvinfo(struct net_device *netdev,
2954 			       struct ethtool_drvinfo *info)
2955 {
2956 	struct et131x_adapter *adapter = netdev_priv(netdev);
2957 
2958 	strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver));
2959 	strlcpy(info->version, DRIVER_VERSION, sizeof(info->version));
2960 	strlcpy(info->bus_info, pci_name(adapter->pdev),
2961 		sizeof(info->bus_info));
2962 }
2963 
2964 static struct ethtool_ops et131x_ethtool_ops = {
2965 	.get_drvinfo	= et131x_get_drvinfo,
2966 	.get_regs_len	= et131x_get_regs_len,
2967 	.get_regs	= et131x_get_regs,
2968 	.get_link	= ethtool_op_get_link,
2969 	.get_link_ksettings = phy_ethtool_get_link_ksettings,
2970 	.set_link_ksettings = phy_ethtool_set_link_ksettings,
2971 };
2972 
2973 /* et131x_hwaddr_init - set up the MAC Address */
2974 static void et131x_hwaddr_init(struct et131x_adapter *adapter)
2975 {
2976 	/* If have our default mac from init and no mac address from
2977 	 * EEPROM then we need to generate the last octet and set it on the
2978 	 * device
2979 	 */
2980 	if (is_zero_ether_addr(adapter->rom_addr)) {
2981 		/* We need to randomly generate the last octet so we
2982 		 * decrease our chances of setting the mac address to
2983 		 * same as another one of our cards in the system
2984 		 */
2985 		get_random_bytes(&adapter->addr[5], 1);
2986 		/* We have the default value in the register we are
2987 		 * working with so we need to copy the current
2988 		 * address into the permanent address
2989 		 */
2990 		ether_addr_copy(adapter->rom_addr, adapter->addr);
2991 	} else {
2992 		/* We do not have an override address, so set the
2993 		 * current address to the permanent address and add
2994 		 * it to the device
2995 		 */
2996 		ether_addr_copy(adapter->addr, adapter->rom_addr);
2997 	}
2998 }
2999 
3000 static int et131x_pci_init(struct et131x_adapter *adapter,
3001 			   struct pci_dev *pdev)
3002 {
3003 	u16 max_payload;
3004 	int i, rc;
3005 
3006 	rc = et131x_init_eeprom(adapter);
3007 	if (rc < 0)
3008 		goto out;
3009 
3010 	if (!pci_is_pcie(pdev)) {
3011 		dev_err(&pdev->dev, "Missing PCIe capabilities\n");
3012 		goto err_out;
3013 	}
3014 
3015 	/* Program the Ack/Nak latency and replay timers */
3016 	max_payload = pdev->pcie_mpss;
3017 
3018 	if (max_payload < 2) {
3019 		static const u16 acknak[2] = { 0x76, 0xD0 };
3020 		static const u16 replay[2] = { 0x1E0, 0x2ED };
3021 
3022 		if (pci_write_config_word(pdev, ET1310_PCI_ACK_NACK,
3023 					  acknak[max_payload])) {
3024 			dev_err(&pdev->dev,
3025 				"Could not write PCI config space for ACK/NAK\n");
3026 			goto err_out;
3027 		}
3028 		if (pci_write_config_word(pdev, ET1310_PCI_REPLAY,
3029 					  replay[max_payload])) {
3030 			dev_err(&pdev->dev,
3031 				"Could not write PCI config space for Replay Timer\n");
3032 			goto err_out;
3033 		}
3034 	}
3035 
3036 	/* l0s and l1 latency timers.  We are using default values.
3037 	 * Representing 001 for L0s and 010 for L1
3038 	 */
3039 	if (pci_write_config_byte(pdev, ET1310_PCI_L0L1LATENCY, 0x11)) {
3040 		dev_err(&pdev->dev,
3041 			"Could not write PCI config space for Latency Timers\n");
3042 		goto err_out;
3043 	}
3044 
3045 	/* Change the max read size to 2k */
3046 	if (pcie_set_readrq(pdev, 2048)) {
3047 		dev_err(&pdev->dev,
3048 			"Couldn't change PCI config space for Max read size\n");
3049 		goto err_out;
3050 	}
3051 
3052 	/* Get MAC address from config space if an eeprom exists, otherwise
3053 	 * the MAC address there will not be valid
3054 	 */
3055 	if (!adapter->has_eeprom) {
3056 		et131x_hwaddr_init(adapter);
3057 		return 0;
3058 	}
3059 
3060 	for (i = 0; i < ETH_ALEN; i++) {
3061 		if (pci_read_config_byte(pdev, ET1310_PCI_MAC_ADDRESS + i,
3062 					 adapter->rom_addr + i)) {
3063 			dev_err(&pdev->dev, "Could not read PCI config space for MAC address\n");
3064 			goto err_out;
3065 		}
3066 	}
3067 	ether_addr_copy(adapter->addr, adapter->rom_addr);
3068 out:
3069 	return rc;
3070 err_out:
3071 	rc = -EIO;
3072 	goto out;
3073 }
3074 
3075 /* et131x_error_timer_handler
3076  * @data: timer-specific variable; here a pointer to our adapter structure
3077  *
3078  * The routine called when the error timer expires, to track the number of
3079  * recurring errors.
3080  */
3081 static void et131x_error_timer_handler(unsigned long data)
3082 {
3083 	struct et131x_adapter *adapter = (struct et131x_adapter *)data;
3084 	struct phy_device *phydev = adapter->netdev->phydev;
3085 
3086 	if (et1310_in_phy_coma(adapter)) {
3087 		/* Bring the device immediately out of coma, to
3088 		 * prevent it from sleeping indefinitely, this
3089 		 * mechanism could be improved!
3090 		 */
3091 		et1310_disable_phy_coma(adapter);
3092 		adapter->boot_coma = 20;
3093 	} else {
3094 		et1310_update_macstat_host_counters(adapter);
3095 	}
3096 
3097 	if (!phydev->link && adapter->boot_coma < 11)
3098 		adapter->boot_coma++;
3099 
3100 	if (adapter->boot_coma == 10) {
3101 		if (!phydev->link) {
3102 			if (!et1310_in_phy_coma(adapter)) {
3103 				/* NOTE - This was originally a 'sync with
3104 				 *  interrupt'. How to do that under Linux?
3105 				 */
3106 				et131x_enable_interrupts(adapter);
3107 				et1310_enable_phy_coma(adapter);
3108 			}
3109 		}
3110 	}
3111 
3112 	/* This is a periodic timer, so reschedule */
3113 	mod_timer(&adapter->error_timer, jiffies +
3114 		  msecs_to_jiffies(TX_ERROR_PERIOD));
3115 }
3116 
3117 static void et131x_adapter_memory_free(struct et131x_adapter *adapter)
3118 {
3119 	et131x_tx_dma_memory_free(adapter);
3120 	et131x_rx_dma_memory_free(adapter);
3121 }
3122 
3123 static int et131x_adapter_memory_alloc(struct et131x_adapter *adapter)
3124 {
3125 	int status;
3126 
3127 	status = et131x_tx_dma_memory_alloc(adapter);
3128 	if (status) {
3129 		dev_err(&adapter->pdev->dev,
3130 			"et131x_tx_dma_memory_alloc FAILED\n");
3131 		et131x_tx_dma_memory_free(adapter);
3132 		return status;
3133 	}
3134 
3135 	status = et131x_rx_dma_memory_alloc(adapter);
3136 	if (status) {
3137 		dev_err(&adapter->pdev->dev,
3138 			"et131x_rx_dma_memory_alloc FAILED\n");
3139 		et131x_adapter_memory_free(adapter);
3140 		return status;
3141 	}
3142 
3143 	status = et131x_init_recv(adapter);
3144 	if (status) {
3145 		dev_err(&adapter->pdev->dev, "et131x_init_recv FAILED\n");
3146 		et131x_adapter_memory_free(adapter);
3147 	}
3148 	return status;
3149 }
3150 
3151 static void et131x_adjust_link(struct net_device *netdev)
3152 {
3153 	struct et131x_adapter *adapter = netdev_priv(netdev);
3154 	struct  phy_device *phydev = netdev->phydev;
3155 
3156 	if (!phydev)
3157 		return;
3158 	if (phydev->link == adapter->link)
3159 		return;
3160 
3161 	/* Check to see if we are in coma mode and if
3162 	 * so, disable it because we will not be able
3163 	 * to read PHY values until we are out.
3164 	 */
3165 	if (et1310_in_phy_coma(adapter))
3166 		et1310_disable_phy_coma(adapter);
3167 
3168 	adapter->link = phydev->link;
3169 	phy_print_status(phydev);
3170 
3171 	if (phydev->link) {
3172 		adapter->boot_coma = 20;
3173 		if (phydev->speed == SPEED_10) {
3174 			u16 register18;
3175 
3176 			et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3177 					&register18);
3178 			et131x_mii_write(adapter, phydev->mdio.addr,
3179 					 PHY_MPHY_CONTROL_REG,
3180 					 register18 | 0x4);
3181 			et131x_mii_write(adapter, phydev->mdio.addr,
3182 					 PHY_INDEX_REG, register18 | 0x8402);
3183 			et131x_mii_write(adapter, phydev->mdio.addr,
3184 					 PHY_DATA_REG, register18 | 511);
3185 			et131x_mii_write(adapter, phydev->mdio.addr,
3186 					 PHY_MPHY_CONTROL_REG, register18);
3187 		}
3188 
3189 		et1310_config_flow_control(adapter);
3190 
3191 		if (phydev->speed == SPEED_1000 &&
3192 		    adapter->registry_jumbo_packet > 2048) {
3193 			u16 reg;
3194 
3195 			et131x_mii_read(adapter, PHY_CONFIG, &reg);
3196 			reg &= ~ET_PHY_CONFIG_TX_FIFO_DEPTH;
3197 			reg |= ET_PHY_CONFIG_FIFO_DEPTH_32;
3198 			et131x_mii_write(adapter, phydev->mdio.addr,
3199 					 PHY_CONFIG, reg);
3200 		}
3201 
3202 		et131x_set_rx_dma_timer(adapter);
3203 		et1310_config_mac_regs2(adapter);
3204 	} else {
3205 		adapter->boot_coma = 0;
3206 
3207 		if (phydev->speed == SPEED_10) {
3208 			u16 register18;
3209 
3210 			et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG,
3211 					&register18);
3212 			et131x_mii_write(adapter, phydev->mdio.addr,
3213 					 PHY_MPHY_CONTROL_REG,
3214 					 register18 | 0x4);
3215 			et131x_mii_write(adapter, phydev->mdio.addr,
3216 					 PHY_INDEX_REG, register18 | 0x8402);
3217 			et131x_mii_write(adapter, phydev->mdio.addr,
3218 					 PHY_DATA_REG, register18 | 511);
3219 			et131x_mii_write(adapter, phydev->mdio.addr,
3220 					 PHY_MPHY_CONTROL_REG, register18);
3221 		}
3222 
3223 		et131x_free_busy_send_packets(adapter);
3224 		et131x_init_send(adapter);
3225 
3226 		/* Bring the device back to the state it was during
3227 		 * init prior to autonegotiation being complete. This
3228 		 * way, when we get the auto-neg complete interrupt,
3229 		 * we can complete init by calling config_mac_regs2.
3230 		 */
3231 		et131x_soft_reset(adapter);
3232 
3233 		et131x_adapter_setup(adapter);
3234 
3235 		et131x_disable_txrx(netdev);
3236 		et131x_enable_txrx(netdev);
3237 	}
3238 }
3239 
3240 static int et131x_mii_probe(struct net_device *netdev)
3241 {
3242 	struct et131x_adapter *adapter = netdev_priv(netdev);
3243 	struct  phy_device *phydev = NULL;
3244 
3245 	phydev = phy_find_first(adapter->mii_bus);
3246 	if (!phydev) {
3247 		dev_err(&adapter->pdev->dev, "no PHY found\n");
3248 		return -ENODEV;
3249 	}
3250 
3251 	phydev = phy_connect(netdev, phydev_name(phydev),
3252 			     &et131x_adjust_link, PHY_INTERFACE_MODE_MII);
3253 
3254 	if (IS_ERR(phydev)) {
3255 		dev_err(&adapter->pdev->dev, "Could not attach to PHY\n");
3256 		return PTR_ERR(phydev);
3257 	}
3258 
3259 	phydev->supported &= (SUPPORTED_10baseT_Half |
3260 			      SUPPORTED_10baseT_Full |
3261 			      SUPPORTED_100baseT_Half |
3262 			      SUPPORTED_100baseT_Full |
3263 			      SUPPORTED_Autoneg |
3264 			      SUPPORTED_MII |
3265 			      SUPPORTED_TP);
3266 
3267 	if (adapter->pdev->device != ET131X_PCI_DEVICE_ID_FAST)
3268 		phydev->supported |= SUPPORTED_1000baseT_Half |
3269 				     SUPPORTED_1000baseT_Full;
3270 
3271 	phydev->advertising = phydev->supported;
3272 	phydev->autoneg = AUTONEG_ENABLE;
3273 
3274 	phy_attached_info(phydev);
3275 
3276 	return 0;
3277 }
3278 
3279 static struct et131x_adapter *et131x_adapter_init(struct net_device *netdev,
3280 						  struct pci_dev *pdev)
3281 {
3282 	static const u8 default_mac[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 };
3283 
3284 	struct et131x_adapter *adapter;
3285 
3286 	adapter = netdev_priv(netdev);
3287 	adapter->pdev = pci_dev_get(pdev);
3288 	adapter->netdev = netdev;
3289 
3290 	spin_lock_init(&adapter->tcb_send_qlock);
3291 	spin_lock_init(&adapter->tcb_ready_qlock);
3292 	spin_lock_init(&adapter->rcv_lock);
3293 
3294 	adapter->registry_jumbo_packet = 1514;	/* 1514-9216 */
3295 
3296 	ether_addr_copy(adapter->addr, default_mac);
3297 
3298 	return adapter;
3299 }
3300 
3301 static void et131x_pci_remove(struct pci_dev *pdev)
3302 {
3303 	struct net_device *netdev = pci_get_drvdata(pdev);
3304 	struct et131x_adapter *adapter = netdev_priv(netdev);
3305 
3306 	unregister_netdev(netdev);
3307 	netif_napi_del(&adapter->napi);
3308 	phy_disconnect(netdev->phydev);
3309 	mdiobus_unregister(adapter->mii_bus);
3310 	mdiobus_free(adapter->mii_bus);
3311 
3312 	et131x_adapter_memory_free(adapter);
3313 	iounmap(adapter->regs);
3314 	pci_dev_put(pdev);
3315 
3316 	free_netdev(netdev);
3317 	pci_release_regions(pdev);
3318 	pci_disable_device(pdev);
3319 }
3320 
3321 static void et131x_up(struct net_device *netdev)
3322 {
3323 	et131x_enable_txrx(netdev);
3324 	phy_start(netdev->phydev);
3325 }
3326 
3327 static void et131x_down(struct net_device *netdev)
3328 {
3329 	/* Save the timestamp for the TX watchdog, prevent a timeout */
3330 	netif_trans_update(netdev);
3331 
3332 	phy_stop(netdev->phydev);
3333 	et131x_disable_txrx(netdev);
3334 }
3335 
3336 #ifdef CONFIG_PM_SLEEP
3337 static int et131x_suspend(struct device *dev)
3338 {
3339 	struct pci_dev *pdev = to_pci_dev(dev);
3340 	struct net_device *netdev = pci_get_drvdata(pdev);
3341 
3342 	if (netif_running(netdev)) {
3343 		netif_device_detach(netdev);
3344 		et131x_down(netdev);
3345 		pci_save_state(pdev);
3346 	}
3347 
3348 	return 0;
3349 }
3350 
3351 static int et131x_resume(struct device *dev)
3352 {
3353 	struct pci_dev *pdev = to_pci_dev(dev);
3354 	struct net_device *netdev = pci_get_drvdata(pdev);
3355 
3356 	if (netif_running(netdev)) {
3357 		pci_restore_state(pdev);
3358 		et131x_up(netdev);
3359 		netif_device_attach(netdev);
3360 	}
3361 
3362 	return 0;
3363 }
3364 #endif
3365 
3366 static SIMPLE_DEV_PM_OPS(et131x_pm_ops, et131x_suspend, et131x_resume);
3367 
3368 static irqreturn_t et131x_isr(int irq, void *dev_id)
3369 {
3370 	bool handled = true;
3371 	bool enable_interrupts = true;
3372 	struct net_device *netdev = dev_id;
3373 	struct et131x_adapter *adapter = netdev_priv(netdev);
3374 	struct address_map __iomem *iomem = adapter->regs;
3375 	struct rx_ring *rx_ring = &adapter->rx_ring;
3376 	struct tx_ring *tx_ring = &adapter->tx_ring;
3377 	u32 status;
3378 
3379 	if (!netif_device_present(netdev)) {
3380 		handled = false;
3381 		enable_interrupts = false;
3382 		goto out;
3383 	}
3384 
3385 	et131x_disable_interrupts(adapter);
3386 
3387 	status = readl(&adapter->regs->global.int_status);
3388 
3389 	if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH)
3390 		status &= ~INT_MASK_ENABLE;
3391 	else
3392 		status &= ~INT_MASK_ENABLE_NO_FLOW;
3393 
3394 	/* Make sure this is our interrupt */
3395 	if (!status) {
3396 		handled = false;
3397 		et131x_enable_interrupts(adapter);
3398 		goto out;
3399 	}
3400 
3401 	/* This is our interrupt, so process accordingly */
3402 	if (status & ET_INTR_WATCHDOG) {
3403 		struct tcb *tcb = tx_ring->send_head;
3404 
3405 		if (tcb)
3406 			if (++tcb->stale > 1)
3407 				status |= ET_INTR_TXDMA_ISR;
3408 
3409 		if (rx_ring->unfinished_receives)
3410 			status |= ET_INTR_RXDMA_XFR_DONE;
3411 		else if (tcb == NULL)
3412 			writel(0, &adapter->regs->global.watchdog_timer);
3413 
3414 		status &= ~ET_INTR_WATCHDOG;
3415 	}
3416 
3417 	if (status & (ET_INTR_RXDMA_XFR_DONE | ET_INTR_TXDMA_ISR)) {
3418 		enable_interrupts = false;
3419 		napi_schedule(&adapter->napi);
3420 	}
3421 
3422 	status &= ~(ET_INTR_TXDMA_ISR | ET_INTR_RXDMA_XFR_DONE);
3423 
3424 	if (!status)
3425 		goto out;
3426 
3427 	if (status & ET_INTR_TXDMA_ERR) {
3428 		/* Following read also clears the register (COR) */
3429 		u32 txdma_err = readl(&iomem->txdma.tx_dma_error);
3430 
3431 		dev_warn(&adapter->pdev->dev,
3432 			 "TXDMA_ERR interrupt, error = %d\n",
3433 			 txdma_err);
3434 	}
3435 
3436 	if (status & (ET_INTR_RXDMA_FB_R0_LOW | ET_INTR_RXDMA_FB_R1_LOW)) {
3437 		/* This indicates the number of unused buffers in RXDMA free
3438 		 * buffer ring 0 is <= the limit you programmed. Free buffer
3439 		 * resources need to be returned.  Free buffers are consumed as
3440 		 * packets are passed from the network to the host. The host
3441 		 * becomes aware of the packets from the contents of the packet
3442 		 * status ring. This ring is queried when the packet done
3443 		 * interrupt occurs. Packets are then passed to the OS. When
3444 		 * the OS is done with the packets the resources can be
3445 		 * returned to the ET1310 for re-use. This interrupt is one
3446 		 * method of returning resources.
3447 		 */
3448 
3449 		/*  If the user has flow control on, then we will
3450 		 * send a pause packet, otherwise just exit
3451 		 */
3452 		if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH) {
3453 			u32 pm_csr;
3454 
3455 			/* Tell the device to send a pause packet via the back
3456 			 * pressure register (bp req and bp xon/xoff)
3457 			 */
3458 			pm_csr = readl(&iomem->global.pm_csr);
3459 			if (!et1310_in_phy_coma(adapter))
3460 				writel(3, &iomem->txmac.bp_ctrl);
3461 		}
3462 	}
3463 
3464 	/* Handle Packet Status Ring Low Interrupt */
3465 	if (status & ET_INTR_RXDMA_STAT_LOW) {
3466 		/* Same idea as with the two Free Buffer Rings. Packets going
3467 		 * from the network to the host each consume a free buffer
3468 		 * resource and a packet status resource. These resources are
3469 		 * passed to the OS. When the OS is done with the resources,
3470 		 * they need to be returned to the ET1310. This is one method
3471 		 * of returning the resources.
3472 		 */
3473 	}
3474 
3475 	if (status & ET_INTR_RXDMA_ERR) {
3476 		/* The rxdma_error interrupt is sent when a time-out on a
3477 		 * request issued by the JAGCore has occurred or a completion is
3478 		 * returned with an un-successful status. In both cases the
3479 		 * request is considered complete. The JAGCore will
3480 		 * automatically re-try the request in question. Normally
3481 		 * information on events like these are sent to the host using
3482 		 * the "Advanced Error Reporting" capability. This interrupt is
3483 		 * another way of getting similar information. The only thing
3484 		 * required is to clear the interrupt by reading the ISR in the
3485 		 * global resources. The JAGCore will do a re-try on the
3486 		 * request. Normally you should never see this interrupt. If
3487 		 * you start to see this interrupt occurring frequently then
3488 		 * something bad has occurred. A reset might be the thing to do.
3489 		 */
3490 		/* TRAP();*/
3491 
3492 		dev_warn(&adapter->pdev->dev, "RxDMA_ERR interrupt, error %x\n",
3493 			 readl(&iomem->txmac.tx_test));
3494 	}
3495 
3496 	/* Handle the Wake on LAN Event */
3497 	if (status & ET_INTR_WOL) {
3498 		/* This is a secondary interrupt for wake on LAN. The driver
3499 		 * should never see this, if it does, something serious is
3500 		 * wrong.
3501 		 */
3502 		dev_err(&adapter->pdev->dev, "WAKE_ON_LAN interrupt\n");
3503 	}
3504 
3505 	if (status & ET_INTR_TXMAC) {
3506 		u32 err = readl(&iomem->txmac.err);
3507 
3508 		/* When any of the errors occur and TXMAC generates an
3509 		 * interrupt to report these errors, it usually means that
3510 		 * TXMAC has detected an error in the data stream retrieved
3511 		 * from the on-chip Tx Q. All of these errors are catastrophic
3512 		 * and TXMAC won't be able to recover data when these errors
3513 		 * occur. In a nutshell, the whole Tx path will have to be reset
3514 		 * and re-configured afterwards.
3515 		 */
3516 		dev_warn(&adapter->pdev->dev, "TXMAC interrupt, error 0x%08x\n",
3517 			 err);
3518 
3519 		/* If we are debugging, we want to see this error, otherwise we
3520 		 * just want the device to be reset and continue
3521 		 */
3522 	}
3523 
3524 	if (status & ET_INTR_RXMAC) {
3525 		/* These interrupts are catastrophic to the device, what we need
3526 		 * to do is disable the interrupts and set the flag to cause us
3527 		 * to reset so we can solve this issue.
3528 		 */
3529 		dev_warn(&adapter->pdev->dev,
3530 			 "RXMAC interrupt, error 0x%08x.  Requesting reset\n",
3531 			 readl(&iomem->rxmac.err_reg));
3532 
3533 		dev_warn(&adapter->pdev->dev,
3534 			 "Enable 0x%08x, Diag 0x%08x\n",
3535 			 readl(&iomem->rxmac.ctrl),
3536 			 readl(&iomem->rxmac.rxq_diag));
3537 
3538 		/* If we are debugging, we want to see this error, otherwise we
3539 		 * just want the device to be reset and continue
3540 		 */
3541 	}
3542 
3543 	if (status & ET_INTR_MAC_STAT) {
3544 		/* This means at least one of the un-masked counters in the
3545 		 * MAC_STAT block has rolled over. Use this to maintain the top,
3546 		 * software managed bits of the counter(s).
3547 		 */
3548 		et1310_handle_macstat_interrupt(adapter);
3549 	}
3550 
3551 	if (status & ET_INTR_SLV_TIMEOUT) {
3552 		/* This means a timeout has occurred on a read or write request
3553 		 * to one of the JAGCore registers. The Global Resources block
3554 		 * has terminated the request and on a read request, returned a
3555 		 * "fake" value. The most likely reasons are: Bad Address or the
3556 		 * addressed module is in a power-down state and can't respond.
3557 		 */
3558 	}
3559 
3560 out:
3561 	if (enable_interrupts)
3562 		et131x_enable_interrupts(adapter);
3563 
3564 	return IRQ_RETVAL(handled);
3565 }
3566 
3567 static int et131x_poll(struct napi_struct *napi, int budget)
3568 {
3569 	struct et131x_adapter *adapter =
3570 		container_of(napi, struct et131x_adapter, napi);
3571 	int work_done = et131x_handle_recv_pkts(adapter, budget);
3572 
3573 	et131x_handle_send_pkts(adapter);
3574 
3575 	if (work_done < budget) {
3576 		napi_complete(&adapter->napi);
3577 		et131x_enable_interrupts(adapter);
3578 	}
3579 
3580 	return work_done;
3581 }
3582 
3583 /* et131x_stats - Return the current device statistics  */
3584 static struct net_device_stats *et131x_stats(struct net_device *netdev)
3585 {
3586 	struct et131x_adapter *adapter = netdev_priv(netdev);
3587 	struct net_device_stats *stats = &adapter->netdev->stats;
3588 	struct ce_stats *devstat = &adapter->stats;
3589 
3590 	stats->rx_errors = devstat->rx_length_errs +
3591 			   devstat->rx_align_errs +
3592 			   devstat->rx_crc_errs +
3593 			   devstat->rx_code_violations +
3594 			   devstat->rx_other_errs;
3595 	stats->tx_errors = devstat->tx_max_pkt_errs;
3596 	stats->multicast = devstat->multicast_pkts_rcvd;
3597 	stats->collisions = devstat->tx_collisions;
3598 
3599 	stats->rx_length_errors = devstat->rx_length_errs;
3600 	stats->rx_over_errors = devstat->rx_overflows;
3601 	stats->rx_crc_errors = devstat->rx_crc_errs;
3602 	stats->rx_dropped = devstat->rcvd_pkts_dropped;
3603 
3604 	/* NOTE: Not used, can't find analogous statistics */
3605 	/* stats->rx_frame_errors     = devstat->; */
3606 	/* stats->rx_fifo_errors      = devstat->; */
3607 	/* stats->rx_missed_errors    = devstat->; */
3608 
3609 	/* stats->tx_aborted_errors   = devstat->; */
3610 	/* stats->tx_carrier_errors   = devstat->; */
3611 	/* stats->tx_fifo_errors      = devstat->; */
3612 	/* stats->tx_heartbeat_errors = devstat->; */
3613 	/* stats->tx_window_errors    = devstat->; */
3614 	return stats;
3615 }
3616 
3617 static int et131x_open(struct net_device *netdev)
3618 {
3619 	struct et131x_adapter *adapter = netdev_priv(netdev);
3620 	struct pci_dev *pdev = adapter->pdev;
3621 	unsigned int irq = pdev->irq;
3622 	int result;
3623 
3624 	/* Start the timer to track NIC errors */
3625 	init_timer(&adapter->error_timer);
3626 	adapter->error_timer.expires = jiffies +
3627 		msecs_to_jiffies(TX_ERROR_PERIOD);
3628 	adapter->error_timer.function = et131x_error_timer_handler;
3629 	adapter->error_timer.data = (unsigned long)adapter;
3630 	add_timer(&adapter->error_timer);
3631 
3632 	result = request_irq(irq, et131x_isr,
3633 			     IRQF_SHARED, netdev->name, netdev);
3634 	if (result) {
3635 		dev_err(&pdev->dev, "could not register IRQ %d\n", irq);
3636 		return result;
3637 	}
3638 
3639 	adapter->flags |= FMP_ADAPTER_INTERRUPT_IN_USE;
3640 
3641 	napi_enable(&adapter->napi);
3642 
3643 	et131x_up(netdev);
3644 
3645 	return result;
3646 }
3647 
3648 static int et131x_close(struct net_device *netdev)
3649 {
3650 	struct et131x_adapter *adapter = netdev_priv(netdev);
3651 
3652 	et131x_down(netdev);
3653 	napi_disable(&adapter->napi);
3654 
3655 	adapter->flags &= ~FMP_ADAPTER_INTERRUPT_IN_USE;
3656 	free_irq(adapter->pdev->irq, netdev);
3657 
3658 	/* Stop the error timer */
3659 	return del_timer_sync(&adapter->error_timer);
3660 }
3661 
3662 static int et131x_ioctl(struct net_device *netdev, struct ifreq *reqbuf,
3663 			int cmd)
3664 {
3665 	if (!netdev->phydev)
3666 		return -EINVAL;
3667 
3668 	return phy_mii_ioctl(netdev->phydev, reqbuf, cmd);
3669 }
3670 
3671 /* et131x_set_packet_filter - Configures the Rx Packet filtering */
3672 static int et131x_set_packet_filter(struct et131x_adapter *adapter)
3673 {
3674 	int filter = adapter->packet_filter;
3675 	u32 ctrl;
3676 	u32 pf_ctrl;
3677 
3678 	ctrl = readl(&adapter->regs->rxmac.ctrl);
3679 	pf_ctrl = readl(&adapter->regs->rxmac.pf_ctrl);
3680 
3681 	/* Default to disabled packet filtering */
3682 	ctrl |= 0x04;
3683 
3684 	/* Set us to be in promiscuous mode so we receive everything, this
3685 	 * is also true when we get a packet filter of 0
3686 	 */
3687 	if ((filter & ET131X_PACKET_TYPE_PROMISCUOUS) || filter == 0)
3688 		pf_ctrl &= ~7;	/* Clear filter bits */
3689 	else {
3690 		/* Set us up with Multicast packet filtering.  Three cases are
3691 		 * possible - (1) we have a multi-cast list, (2) we receive ALL
3692 		 * multicast entries or (3) we receive none.
3693 		 */
3694 		if (filter & ET131X_PACKET_TYPE_ALL_MULTICAST)
3695 			pf_ctrl &= ~2;	/* Multicast filter bit */
3696 		else {
3697 			et1310_setup_device_for_multicast(adapter);
3698 			pf_ctrl |= 2;
3699 			ctrl &= ~0x04;
3700 		}
3701 
3702 		/* Set us up with Unicast packet filtering */
3703 		if (filter & ET131X_PACKET_TYPE_DIRECTED) {
3704 			et1310_setup_device_for_unicast(adapter);
3705 			pf_ctrl |= 4;
3706 			ctrl &= ~0x04;
3707 		}
3708 
3709 		/* Set us up with Broadcast packet filtering */
3710 		if (filter & ET131X_PACKET_TYPE_BROADCAST) {
3711 			pf_ctrl |= 1;	/* Broadcast filter bit */
3712 			ctrl &= ~0x04;
3713 		} else {
3714 			pf_ctrl &= ~1;
3715 		}
3716 
3717 		/* Setup the receive mac configuration registers - Packet
3718 		 * Filter control + the enable / disable for packet filter
3719 		 * in the control reg.
3720 		 */
3721 		writel(pf_ctrl, &adapter->regs->rxmac.pf_ctrl);
3722 		writel(ctrl, &adapter->regs->rxmac.ctrl);
3723 	}
3724 	return 0;
3725 }
3726 
3727 static void et131x_multicast(struct net_device *netdev)
3728 {
3729 	struct et131x_adapter *adapter = netdev_priv(netdev);
3730 	int packet_filter;
3731 	struct netdev_hw_addr *ha;
3732 	int i;
3733 
3734 	/* Before we modify the platform-independent filter flags, store them
3735 	 * locally. This allows us to determine if anything's changed and if
3736 	 * we even need to bother the hardware
3737 	 */
3738 	packet_filter = adapter->packet_filter;
3739 
3740 	/* Clear the 'multicast' flag locally; because we only have a single
3741 	 * flag to check multicast, and multiple multicast addresses can be
3742 	 * set, this is the easiest way to determine if more than one
3743 	 * multicast address is being set.
3744 	 */
3745 	packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
3746 
3747 	/* Check the net_device flags and set the device independent flags
3748 	 * accordingly
3749 	 */
3750 	if (netdev->flags & IFF_PROMISC)
3751 		adapter->packet_filter |= ET131X_PACKET_TYPE_PROMISCUOUS;
3752 	else
3753 		adapter->packet_filter &= ~ET131X_PACKET_TYPE_PROMISCUOUS;
3754 
3755 	if ((netdev->flags & IFF_ALLMULTI) ||
3756 	    (netdev_mc_count(netdev) > NIC_MAX_MCAST_LIST))
3757 		adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST;
3758 
3759 	if (netdev_mc_count(netdev) < 1) {
3760 		adapter->packet_filter &= ~ET131X_PACKET_TYPE_ALL_MULTICAST;
3761 		adapter->packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST;
3762 	} else {
3763 		adapter->packet_filter |= ET131X_PACKET_TYPE_MULTICAST;
3764 	}
3765 
3766 	/* Set values in the private adapter struct */
3767 	i = 0;
3768 	netdev_for_each_mc_addr(ha, netdev) {
3769 		if (i == NIC_MAX_MCAST_LIST)
3770 			break;
3771 		ether_addr_copy(adapter->multicast_list[i++], ha->addr);
3772 	}
3773 	adapter->multicast_addr_count = i;
3774 
3775 	/* Are the new flags different from the previous ones? If not, then no
3776 	 * action is required
3777 	 *
3778 	 * NOTE - This block will always update the multicast_list with the
3779 	 *        hardware, even if the addresses aren't the same.
3780 	 */
3781 	if (packet_filter != adapter->packet_filter)
3782 		et131x_set_packet_filter(adapter);
3783 }
3784 
3785 static netdev_tx_t et131x_tx(struct sk_buff *skb, struct net_device *netdev)
3786 {
3787 	struct et131x_adapter *adapter = netdev_priv(netdev);
3788 	struct tx_ring *tx_ring = &adapter->tx_ring;
3789 
3790 	/* stop the queue if it's getting full */
3791 	if (tx_ring->used >= NUM_TCB - 1 && !netif_queue_stopped(netdev))
3792 		netif_stop_queue(netdev);
3793 
3794 	/* Save the timestamp for the TX timeout watchdog */
3795 	netif_trans_update(netdev);
3796 
3797 	/* TCB is not available */
3798 	if (tx_ring->used >= NUM_TCB)
3799 		goto drop_err;
3800 
3801 	if ((adapter->flags & FMP_ADAPTER_FAIL_SEND_MASK) ||
3802 	    !netif_carrier_ok(netdev))
3803 		goto drop_err;
3804 
3805 	if (send_packet(skb, adapter))
3806 		goto drop_err;
3807 
3808 	return NETDEV_TX_OK;
3809 
3810 drop_err:
3811 	dev_kfree_skb_any(skb);
3812 	adapter->netdev->stats.tx_dropped++;
3813 	return NETDEV_TX_OK;
3814 }
3815 
3816 /* et131x_tx_timeout - Timeout handler
3817  *
3818  * The handler called when a Tx request times out. The timeout period is
3819  * specified by the 'tx_timeo" element in the net_device structure (see
3820  * et131x_alloc_device() to see how this value is set).
3821  */
3822 static void et131x_tx_timeout(struct net_device *netdev)
3823 {
3824 	struct et131x_adapter *adapter = netdev_priv(netdev);
3825 	struct tx_ring *tx_ring = &adapter->tx_ring;
3826 	struct tcb *tcb;
3827 	unsigned long flags;
3828 
3829 	/* If the device is closed, ignore the timeout */
3830 	if (!(adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE))
3831 		return;
3832 
3833 	/* Any nonrecoverable hardware error?
3834 	 * Checks adapter->flags for any failure in phy reading
3835 	 */
3836 	if (adapter->flags & FMP_ADAPTER_NON_RECOVER_ERROR)
3837 		return;
3838 
3839 	/* Hardware failure? */
3840 	if (adapter->flags & FMP_ADAPTER_HARDWARE_ERROR) {
3841 		dev_err(&adapter->pdev->dev, "hardware error - reset\n");
3842 		return;
3843 	}
3844 
3845 	/* Is send stuck? */
3846 	spin_lock_irqsave(&adapter->tcb_send_qlock, flags);
3847 	tcb = tx_ring->send_head;
3848 	spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags);
3849 
3850 	if (tcb) {
3851 		tcb->count++;
3852 
3853 		if (tcb->count > NIC_SEND_HANG_THRESHOLD) {
3854 			dev_warn(&adapter->pdev->dev,
3855 				 "Send stuck - reset. tcb->WrIndex %x\n",
3856 				 tcb->index);
3857 
3858 			adapter->netdev->stats.tx_errors++;
3859 
3860 			/* perform reset of tx/rx */
3861 			et131x_disable_txrx(netdev);
3862 			et131x_enable_txrx(netdev);
3863 		}
3864 	}
3865 }
3866 
3867 static int et131x_change_mtu(struct net_device *netdev, int new_mtu)
3868 {
3869 	int result = 0;
3870 	struct et131x_adapter *adapter = netdev_priv(netdev);
3871 
3872 	if (new_mtu < 64 || new_mtu > 9216)
3873 		return -EINVAL;
3874 
3875 	et131x_disable_txrx(netdev);
3876 
3877 	netdev->mtu = new_mtu;
3878 
3879 	et131x_adapter_memory_free(adapter);
3880 
3881 	/* Set the config parameter for Jumbo Packet support */
3882 	adapter->registry_jumbo_packet = new_mtu + 14;
3883 	et131x_soft_reset(adapter);
3884 
3885 	result = et131x_adapter_memory_alloc(adapter);
3886 	if (result != 0) {
3887 		dev_warn(&adapter->pdev->dev,
3888 			 "Change MTU failed; couldn't re-alloc DMA memory\n");
3889 		return result;
3890 	}
3891 
3892 	et131x_init_send(adapter);
3893 	et131x_hwaddr_init(adapter);
3894 	ether_addr_copy(netdev->dev_addr, adapter->addr);
3895 
3896 	/* Init the device with the new settings */
3897 	et131x_adapter_setup(adapter);
3898 	et131x_enable_txrx(netdev);
3899 
3900 	return result;
3901 }
3902 
3903 static const struct net_device_ops et131x_netdev_ops = {
3904 	.ndo_open		= et131x_open,
3905 	.ndo_stop		= et131x_close,
3906 	.ndo_start_xmit		= et131x_tx,
3907 	.ndo_set_rx_mode	= et131x_multicast,
3908 	.ndo_tx_timeout		= et131x_tx_timeout,
3909 	.ndo_change_mtu		= et131x_change_mtu,
3910 	.ndo_set_mac_address	= eth_mac_addr,
3911 	.ndo_validate_addr	= eth_validate_addr,
3912 	.ndo_get_stats		= et131x_stats,
3913 	.ndo_do_ioctl		= et131x_ioctl,
3914 };
3915 
3916 static int et131x_pci_setup(struct pci_dev *pdev,
3917 			    const struct pci_device_id *ent)
3918 {
3919 	struct net_device *netdev;
3920 	struct et131x_adapter *adapter;
3921 	int rc;
3922 
3923 	rc = pci_enable_device(pdev);
3924 	if (rc < 0) {
3925 		dev_err(&pdev->dev, "pci_enable_device() failed\n");
3926 		goto out;
3927 	}
3928 
3929 	/* Perform some basic PCI checks */
3930 	if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) {
3931 		dev_err(&pdev->dev, "Can't find PCI device's base address\n");
3932 		rc = -ENODEV;
3933 		goto err_disable;
3934 	}
3935 
3936 	rc = pci_request_regions(pdev, DRIVER_NAME);
3937 	if (rc < 0) {
3938 		dev_err(&pdev->dev, "Can't get PCI resources\n");
3939 		goto err_disable;
3940 	}
3941 
3942 	pci_set_master(pdev);
3943 
3944 	/* Check the DMA addressing support of this device */
3945 	if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) &&
3946 	    dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32))) {
3947 		dev_err(&pdev->dev, "No usable DMA addressing method\n");
3948 		rc = -EIO;
3949 		goto err_release_res;
3950 	}
3951 
3952 	netdev = alloc_etherdev(sizeof(struct et131x_adapter));
3953 	if (!netdev) {
3954 		dev_err(&pdev->dev, "Couldn't alloc netdev struct\n");
3955 		rc = -ENOMEM;
3956 		goto err_release_res;
3957 	}
3958 
3959 	netdev->watchdog_timeo = ET131X_TX_TIMEOUT;
3960 	netdev->netdev_ops     = &et131x_netdev_ops;
3961 
3962 	SET_NETDEV_DEV(netdev, &pdev->dev);
3963 	netdev->ethtool_ops = &et131x_ethtool_ops;
3964 
3965 	adapter = et131x_adapter_init(netdev, pdev);
3966 
3967 	rc = et131x_pci_init(adapter, pdev);
3968 	if (rc < 0)
3969 		goto err_free_dev;
3970 
3971 	/* Map the bus-relative registers to system virtual memory */
3972 	adapter->regs = pci_ioremap_bar(pdev, 0);
3973 	if (!adapter->regs) {
3974 		dev_err(&pdev->dev, "Cannot map device registers\n");
3975 		rc = -ENOMEM;
3976 		goto err_free_dev;
3977 	}
3978 
3979 	/* If Phy COMA mode was enabled when we went down, disable it here. */
3980 	writel(ET_PMCSR_INIT,  &adapter->regs->global.pm_csr);
3981 
3982 	et131x_soft_reset(adapter);
3983 	et131x_disable_interrupts(adapter);
3984 
3985 	rc = et131x_adapter_memory_alloc(adapter);
3986 	if (rc < 0) {
3987 		dev_err(&pdev->dev, "Could not alloc adapter memory (DMA)\n");
3988 		goto err_iounmap;
3989 	}
3990 
3991 	et131x_init_send(adapter);
3992 
3993 	netif_napi_add(netdev, &adapter->napi, et131x_poll, 64);
3994 
3995 	ether_addr_copy(netdev->dev_addr, adapter->addr);
3996 
3997 	rc = -ENOMEM;
3998 
3999 	adapter->mii_bus = mdiobus_alloc();
4000 	if (!adapter->mii_bus) {
4001 		dev_err(&pdev->dev, "Alloc of mii_bus struct failed\n");
4002 		goto err_mem_free;
4003 	}
4004 
4005 	adapter->mii_bus->name = "et131x_eth_mii";
4006 	snprintf(adapter->mii_bus->id, MII_BUS_ID_SIZE, "%x",
4007 		 (adapter->pdev->bus->number << 8) | adapter->pdev->devfn);
4008 	adapter->mii_bus->priv = netdev;
4009 	adapter->mii_bus->read = et131x_mdio_read;
4010 	adapter->mii_bus->write = et131x_mdio_write;
4011 
4012 	rc = mdiobus_register(adapter->mii_bus);
4013 	if (rc < 0) {
4014 		dev_err(&pdev->dev, "failed to register MII bus\n");
4015 		goto err_mdio_free;
4016 	}
4017 
4018 	rc = et131x_mii_probe(netdev);
4019 	if (rc < 0) {
4020 		dev_err(&pdev->dev, "failed to probe MII bus\n");
4021 		goto err_mdio_unregister;
4022 	}
4023 
4024 	et131x_adapter_setup(adapter);
4025 
4026 	/* Init variable for counting how long we do not have link status */
4027 	adapter->boot_coma = 0;
4028 	et1310_disable_phy_coma(adapter);
4029 
4030 	/* We can enable interrupts now
4031 	 *
4032 	 *  NOTE - Because registration of interrupt handler is done in the
4033 	 *         device's open(), defer enabling device interrupts to that
4034 	 *         point
4035 	 */
4036 
4037 	rc = register_netdev(netdev);
4038 	if (rc < 0) {
4039 		dev_err(&pdev->dev, "register_netdev() failed\n");
4040 		goto err_phy_disconnect;
4041 	}
4042 
4043 	/* Register the net_device struct with the PCI subsystem. Save a copy
4044 	 * of the PCI config space for this device now that the device has
4045 	 * been initialized, just in case it needs to be quickly restored.
4046 	 */
4047 	pci_set_drvdata(pdev, netdev);
4048 out:
4049 	return rc;
4050 
4051 err_phy_disconnect:
4052 	phy_disconnect(netdev->phydev);
4053 err_mdio_unregister:
4054 	mdiobus_unregister(adapter->mii_bus);
4055 err_mdio_free:
4056 	mdiobus_free(adapter->mii_bus);
4057 err_mem_free:
4058 	et131x_adapter_memory_free(adapter);
4059 err_iounmap:
4060 	iounmap(adapter->regs);
4061 err_free_dev:
4062 	pci_dev_put(pdev);
4063 	free_netdev(netdev);
4064 err_release_res:
4065 	pci_release_regions(pdev);
4066 err_disable:
4067 	pci_disable_device(pdev);
4068 	goto out;
4069 }
4070 
4071 static const struct pci_device_id et131x_pci_table[] = {
4072 	{ PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_GIG), 0UL},
4073 	{ PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_FAST), 0UL},
4074 	{ 0,}
4075 };
4076 MODULE_DEVICE_TABLE(pci, et131x_pci_table);
4077 
4078 static struct pci_driver et131x_driver = {
4079 	.name		= DRIVER_NAME,
4080 	.id_table	= et131x_pci_table,
4081 	.probe		= et131x_pci_setup,
4082 	.remove		= et131x_pci_remove,
4083 	.driver.pm	= &et131x_pm_ops,
4084 };
4085 
4086 module_pci_driver(et131x_driver);
4087