1 /* Agere Systems Inc. 2 * 10/100/1000 Base-T Ethernet Driver for the ET1301 and ET131x series MACs 3 * 4 * Copyright © 2005 Agere Systems Inc. 5 * All rights reserved. 6 * http://www.agere.com 7 * 8 * Copyright (c) 2011 Mark Einon <mark.einon@gmail.com> 9 * 10 *------------------------------------------------------------------------------ 11 * 12 * SOFTWARE LICENSE 13 * 14 * This software is provided subject to the following terms and conditions, 15 * which you should read carefully before using the software. Using this 16 * software indicates your acceptance of these terms and conditions. If you do 17 * not agree with these terms and conditions, do not use the software. 18 * 19 * Copyright © 2005 Agere Systems Inc. 20 * All rights reserved. 21 * 22 * Redistribution and use in source or binary forms, with or without 23 * modifications, are permitted provided that the following conditions are met: 24 * 25 * . Redistributions of source code must retain the above copyright notice, this 26 * list of conditions and the following Disclaimer as comments in the code as 27 * well as in the documentation and/or other materials provided with the 28 * distribution. 29 * 30 * . Redistributions in binary form must reproduce the above copyright notice, 31 * this list of conditions and the following Disclaimer in the documentation 32 * and/or other materials provided with the distribution. 33 * 34 * . Neither the name of Agere Systems Inc. nor the names of the contributors 35 * may be used to endorse or promote products derived from this software 36 * without specific prior written permission. 37 * 38 * Disclaimer 39 * 40 * THIS SOFTWARE IS PROVIDED "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, 41 * INCLUDING, BUT NOT LIMITED TO, INFRINGEMENT AND THE IMPLIED WARRANTIES OF 42 * MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. ANY 43 * USE, MODIFICATION OR DISTRIBUTION OF THIS SOFTWARE IS SOLELY AT THE USERS OWN 44 * RISK. IN NO EVENT SHALL AGERE SYSTEMS INC. OR CONTRIBUTORS BE LIABLE FOR ANY 45 * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES 46 * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; 47 * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND 48 * ON ANY THEORY OF LIABILITY, INCLUDING, BUT NOT LIMITED TO, CONTRACT, STRICT 49 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT 50 * OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH 51 * DAMAGE. 52 */ 53 54 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 55 56 #include <linux/pci.h> 57 #include <linux/module.h> 58 #include <linux/types.h> 59 #include <linux/kernel.h> 60 61 #include <linux/sched.h> 62 #include <linux/ptrace.h> 63 #include <linux/slab.h> 64 #include <linux/ctype.h> 65 #include <linux/string.h> 66 #include <linux/timer.h> 67 #include <linux/interrupt.h> 68 #include <linux/in.h> 69 #include <linux/delay.h> 70 #include <linux/bitops.h> 71 #include <linux/io.h> 72 73 #include <linux/netdevice.h> 74 #include <linux/etherdevice.h> 75 #include <linux/skbuff.h> 76 #include <linux/if_arp.h> 77 #include <linux/ioport.h> 78 #include <linux/crc32.h> 79 #include <linux/random.h> 80 #include <linux/phy.h> 81 82 #include "et131x.h" 83 84 MODULE_AUTHOR("Victor Soriano <vjsoriano@agere.com>"); 85 MODULE_AUTHOR("Mark Einon <mark.einon@gmail.com>"); 86 MODULE_LICENSE("Dual BSD/GPL"); 87 MODULE_DESCRIPTION("10/100/1000 Base-T Ethernet Driver for the ET1310 by Agere Systems"); 88 89 /* EEPROM defines */ 90 #define MAX_NUM_REGISTER_POLLS 1000 91 #define MAX_NUM_WRITE_RETRIES 2 92 93 /* MAC defines */ 94 #define COUNTER_WRAP_16_BIT 0x10000 95 #define COUNTER_WRAP_12_BIT 0x1000 96 97 /* PCI defines */ 98 #define INTERNAL_MEM_SIZE 0x400 /* 1024 of internal memory */ 99 #define INTERNAL_MEM_RX_OFFSET 0x1FF /* 50% Tx, 50% Rx */ 100 101 /* ISR defines */ 102 /* For interrupts, normal running is: 103 * rxdma_xfr_done, phy_interrupt, mac_stat_interrupt, 104 * watchdog_interrupt & txdma_xfer_done 105 * 106 * In both cases, when flow control is enabled for either Tx or bi-direction, 107 * we additional enable rx_fbr0_low and rx_fbr1_low, so we know when the 108 * buffer rings are running low. 109 */ 110 #define INT_MASK_DISABLE 0xffffffff 111 112 /* NOTE: Masking out MAC_STAT Interrupt for now... 113 * #define INT_MASK_ENABLE 0xfff6bf17 114 * #define INT_MASK_ENABLE_NO_FLOW 0xfff6bfd7 115 */ 116 #define INT_MASK_ENABLE 0xfffebf17 117 #define INT_MASK_ENABLE_NO_FLOW 0xfffebfd7 118 119 /* General defines */ 120 /* Packet and header sizes */ 121 #define NIC_MIN_PACKET_SIZE 60 122 123 /* Multicast list size */ 124 #define NIC_MAX_MCAST_LIST 128 125 126 /* Supported Filters */ 127 #define ET131X_PACKET_TYPE_DIRECTED 0x0001 128 #define ET131X_PACKET_TYPE_MULTICAST 0x0002 129 #define ET131X_PACKET_TYPE_BROADCAST 0x0004 130 #define ET131X_PACKET_TYPE_PROMISCUOUS 0x0008 131 #define ET131X_PACKET_TYPE_ALL_MULTICAST 0x0010 132 133 /* Tx Timeout */ 134 #define ET131X_TX_TIMEOUT (1 * HZ) 135 #define NIC_SEND_HANG_THRESHOLD 0 136 137 /* MP_ADAPTER flags */ 138 #define FMP_ADAPTER_INTERRUPT_IN_USE 0x00000008 139 140 /* MP_SHARED flags */ 141 #define FMP_ADAPTER_LOWER_POWER 0x00200000 142 143 #define FMP_ADAPTER_NON_RECOVER_ERROR 0x00800000 144 #define FMP_ADAPTER_HARDWARE_ERROR 0x04000000 145 146 #define FMP_ADAPTER_FAIL_SEND_MASK 0x3ff00000 147 148 /* Some offsets in PCI config space that are actually used. */ 149 #define ET1310_PCI_MAC_ADDRESS 0xA4 150 #define ET1310_PCI_EEPROM_STATUS 0xB2 151 #define ET1310_PCI_ACK_NACK 0xC0 152 #define ET1310_PCI_REPLAY 0xC2 153 #define ET1310_PCI_L0L1LATENCY 0xCF 154 155 /* PCI Product IDs */ 156 #define ET131X_PCI_DEVICE_ID_GIG 0xED00 /* ET1310 1000 Base-T 8 */ 157 #define ET131X_PCI_DEVICE_ID_FAST 0xED01 /* ET1310 100 Base-T */ 158 159 /* Define order of magnitude converter */ 160 #define NANO_IN_A_MICRO 1000 161 162 #define PARM_RX_NUM_BUFS_DEF 4 163 #define PARM_RX_TIME_INT_DEF 10 164 #define PARM_RX_MEM_END_DEF 0x2bc 165 #define PARM_TX_TIME_INT_DEF 40 166 #define PARM_TX_NUM_BUFS_DEF 4 167 #define PARM_DMA_CACHE_DEF 0 168 169 /* RX defines */ 170 #define FBR_CHUNKS 32 171 #define MAX_DESC_PER_RING_RX 1024 172 173 /* number of RFDs - default and min */ 174 #define RFD_LOW_WATER_MARK 40 175 #define NIC_DEFAULT_NUM_RFD 1024 176 #define NUM_FBRS 2 177 178 #define MAX_PACKETS_HANDLED 256 179 #define ET131X_MIN_MTU 64 180 #define ET131X_MAX_MTU 9216 181 182 #define ALCATEL_MULTICAST_PKT 0x01000000 183 #define ALCATEL_BROADCAST_PKT 0x02000000 184 185 /* typedefs for Free Buffer Descriptors */ 186 struct fbr_desc { 187 u32 addr_lo; 188 u32 addr_hi; 189 u32 word2; /* Bits 10-31 reserved, 0-9 descriptor */ 190 }; 191 192 /* Packet Status Ring Descriptors 193 * 194 * Word 0: 195 * 196 * top 16 bits are from the Alcatel Status Word as enumerated in 197 * PE-MCXMAC Data Sheet IPD DS54 0210-1 (also IPD-DS80 0205-2) 198 * 199 * 0: hp hash pass 200 * 1: ipa IP checksum assist 201 * 2: ipp IP checksum pass 202 * 3: tcpa TCP checksum assist 203 * 4: tcpp TCP checksum pass 204 * 5: wol WOL Event 205 * 6: rxmac_error RXMAC Error Indicator 206 * 7: drop Drop packet 207 * 8: ft Frame Truncated 208 * 9: jp Jumbo Packet 209 * 10: vp VLAN Packet 210 * 11-15: unused 211 * 16: asw_prev_pkt_dropped e.g. IFG too small on previous 212 * 17: asw_RX_DV_event short receive event detected 213 * 18: asw_false_carrier_event bad carrier since last good packet 214 * 19: asw_code_err one or more nibbles signalled as errors 215 * 20: asw_CRC_err CRC error 216 * 21: asw_len_chk_err frame length field incorrect 217 * 22: asw_too_long frame length > 1518 bytes 218 * 23: asw_OK valid CRC + no code error 219 * 24: asw_multicast has a multicast address 220 * 25: asw_broadcast has a broadcast address 221 * 26: asw_dribble_nibble spurious bits after EOP 222 * 27: asw_control_frame is a control frame 223 * 28: asw_pause_frame is a pause frame 224 * 29: asw_unsupported_op unsupported OP code 225 * 30: asw_VLAN_tag VLAN tag detected 226 * 31: asw_long_evt Rx long event 227 * 228 * Word 1: 229 * 0-15: length length in bytes 230 * 16-25: bi Buffer Index 231 * 26-27: ri Ring Index 232 * 28-31: reserved 233 */ 234 struct pkt_stat_desc { 235 u32 word0; 236 u32 word1; 237 }; 238 239 /* Typedefs for the RX DMA status word */ 240 241 /* rx status word 0 holds part of the status bits of the Rx DMA engine 242 * that get copied out to memory by the ET-1310. Word 0 is a 32 bit word 243 * which contains the Free Buffer ring 0 and 1 available offset. 244 * 245 * bit 0-9 FBR1 offset 246 * bit 10 Wrap flag for FBR1 247 * bit 16-25 FBR0 offset 248 * bit 26 Wrap flag for FBR0 249 */ 250 251 /* RXSTAT_WORD1_t structure holds part of the status bits of the Rx DMA engine 252 * that get copied out to memory by the ET-1310. Word 3 is a 32 bit word 253 * which contains the Packet Status Ring available offset. 254 * 255 * bit 0-15 reserved 256 * bit 16-27 PSRoffset 257 * bit 28 PSRwrap 258 * bit 29-31 unused 259 */ 260 261 /* struct rx_status_block is a structure representing the status of the Rx 262 * DMA engine it sits in free memory, and is pointed to by 0x101c / 0x1020 263 */ 264 struct rx_status_block { 265 u32 word0; 266 u32 word1; 267 }; 268 269 /* Structure for look-up table holding free buffer ring pointers, addresses 270 * and state. 271 */ 272 struct fbr_lookup { 273 void *virt[MAX_DESC_PER_RING_RX]; 274 u32 bus_high[MAX_DESC_PER_RING_RX]; 275 u32 bus_low[MAX_DESC_PER_RING_RX]; 276 void *ring_virtaddr; 277 dma_addr_t ring_physaddr; 278 void *mem_virtaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS]; 279 dma_addr_t mem_physaddrs[MAX_DESC_PER_RING_RX / FBR_CHUNKS]; 280 u32 local_full; 281 u32 num_entries; 282 dma_addr_t buffsize; 283 }; 284 285 /* struct rx_ring is the structure representing the adaptor's local 286 * reference(s) to the rings 287 */ 288 struct rx_ring { 289 struct fbr_lookup *fbr[NUM_FBRS]; 290 void *ps_ring_virtaddr; 291 dma_addr_t ps_ring_physaddr; 292 u32 local_psr_full; 293 u32 psr_entries; 294 295 struct rx_status_block *rx_status_block; 296 dma_addr_t rx_status_bus; 297 298 struct list_head recv_list; 299 u32 num_ready_recv; 300 301 u32 num_rfd; 302 303 bool unfinished_receives; 304 }; 305 306 /* TX defines */ 307 /* word 2 of the control bits in the Tx Descriptor ring for the ET-1310 308 * 309 * 0-15: length of packet 310 * 16-27: VLAN tag 311 * 28: VLAN CFI 312 * 29-31: VLAN priority 313 * 314 * word 3 of the control bits in the Tx Descriptor ring for the ET-1310 315 * 316 * 0: last packet in the sequence 317 * 1: first packet in the sequence 318 * 2: interrupt the processor when this pkt sent 319 * 3: Control word - no packet data 320 * 4: Issue half-duplex backpressure : XON/XOFF 321 * 5: send pause frame 322 * 6: Tx frame has error 323 * 7: append CRC 324 * 8: MAC override 325 * 9: pad packet 326 * 10: Packet is a Huge packet 327 * 11: append VLAN tag 328 * 12: IP checksum assist 329 * 13: TCP checksum assist 330 * 14: UDP checksum assist 331 */ 332 #define TXDESC_FLAG_LASTPKT 0x0001 333 #define TXDESC_FLAG_FIRSTPKT 0x0002 334 #define TXDESC_FLAG_INTPROC 0x0004 335 336 /* struct tx_desc represents each descriptor on the ring */ 337 struct tx_desc { 338 u32 addr_hi; 339 u32 addr_lo; 340 u32 len_vlan; /* control words how to xmit the */ 341 u32 flags; /* data (detailed above) */ 342 }; 343 344 /* The status of the Tx DMA engine it sits in free memory, and is pointed to 345 * by 0x101c / 0x1020. This is a DMA10 type 346 */ 347 348 /* TCB (Transmit Control Block: Host Side) */ 349 struct tcb { 350 struct tcb *next; /* Next entry in ring */ 351 u32 count; /* Used to spot stuck/lost packets */ 352 u32 stale; /* Used to spot stuck/lost packets */ 353 struct sk_buff *skb; /* Network skb we are tied to */ 354 u32 index; /* Ring indexes */ 355 u32 index_start; 356 }; 357 358 /* Structure representing our local reference(s) to the ring */ 359 struct tx_ring { 360 /* TCB (Transmit Control Block) memory and lists */ 361 struct tcb *tcb_ring; 362 363 /* List of TCBs that are ready to be used */ 364 struct tcb *tcb_qhead; 365 struct tcb *tcb_qtail; 366 367 /* list of TCBs that are currently being sent. */ 368 struct tcb *send_head; 369 struct tcb *send_tail; 370 int used; 371 372 /* The actual descriptor ring */ 373 struct tx_desc *tx_desc_ring; 374 dma_addr_t tx_desc_ring_pa; 375 376 /* send_idx indicates where we last wrote to in the descriptor ring. */ 377 u32 send_idx; 378 379 /* The location of the write-back status block */ 380 u32 *tx_status; 381 dma_addr_t tx_status_pa; 382 383 /* Packets since the last IRQ: used for interrupt coalescing */ 384 int since_irq; 385 }; 386 387 /* Do not change these values: if changed, then change also in respective 388 * TXdma and Rxdma engines 389 */ 390 #define NUM_DESC_PER_RING_TX 512 /* TX Do not change these values */ 391 #define NUM_TCB 64 392 393 /* These values are all superseded by registry entries to facilitate tuning. 394 * Once the desired performance has been achieved, the optimal registry values 395 * should be re-populated to these #defines: 396 */ 397 #define TX_ERROR_PERIOD 1000 398 399 #define LO_MARK_PERCENT_FOR_PSR 15 400 #define LO_MARK_PERCENT_FOR_RX 15 401 402 /* RFD (Receive Frame Descriptor) */ 403 struct rfd { 404 struct list_head list_node; 405 struct sk_buff *skb; 406 u32 len; /* total size of receive frame */ 407 u16 bufferindex; 408 u8 ringindex; 409 }; 410 411 /* Flow Control */ 412 #define FLOW_BOTH 0 413 #define FLOW_TXONLY 1 414 #define FLOW_RXONLY 2 415 #define FLOW_NONE 3 416 417 /* Struct to define some device statistics */ 418 struct ce_stats { 419 u32 multicast_pkts_rcvd; 420 u32 rcvd_pkts_dropped; 421 422 u32 tx_underflows; 423 u32 tx_collisions; 424 u32 tx_excessive_collisions; 425 u32 tx_first_collisions; 426 u32 tx_late_collisions; 427 u32 tx_max_pkt_errs; 428 u32 tx_deferred; 429 430 u32 rx_overflows; 431 u32 rx_length_errs; 432 u32 rx_align_errs; 433 u32 rx_crc_errs; 434 u32 rx_code_violations; 435 u32 rx_other_errs; 436 437 u32 interrupt_status; 438 }; 439 440 /* The private adapter structure */ 441 struct et131x_adapter { 442 struct net_device *netdev; 443 struct pci_dev *pdev; 444 struct mii_bus *mii_bus; 445 struct napi_struct napi; 446 447 /* Flags that indicate current state of the adapter */ 448 u32 flags; 449 450 /* local link state, to determine if a state change has occurred */ 451 int link; 452 453 /* Configuration */ 454 u8 rom_addr[ETH_ALEN]; 455 u8 addr[ETH_ALEN]; 456 bool has_eeprom; 457 u8 eeprom_data[2]; 458 459 spinlock_t tcb_send_qlock; /* protects the tx_ring send tcb list */ 460 spinlock_t tcb_ready_qlock; /* protects the tx_ring ready tcb list */ 461 spinlock_t rcv_lock; /* protects the rx_ring receive list */ 462 463 /* Packet Filter and look ahead size */ 464 u32 packet_filter; 465 466 /* multicast list */ 467 u32 multicast_addr_count; 468 u8 multicast_list[NIC_MAX_MCAST_LIST][ETH_ALEN]; 469 470 /* Pointer to the device's PCI register space */ 471 struct address_map __iomem *regs; 472 473 /* Registry parameters */ 474 u8 wanted_flow; /* Flow we want for 802.3x flow control */ 475 u32 registry_jumbo_packet; /* Max supported ethernet packet size */ 476 477 /* Derived from the registry: */ 478 u8 flow; /* flow control validated by the far-end */ 479 480 /* Minimize init-time */ 481 struct timer_list error_timer; 482 483 /* variable putting the phy into coma mode when boot up with no cable 484 * plugged in after 5 seconds 485 */ 486 u8 boot_coma; 487 488 /* Tx Memory Variables */ 489 struct tx_ring tx_ring; 490 491 /* Rx Memory Variables */ 492 struct rx_ring rx_ring; 493 494 struct ce_stats stats; 495 }; 496 497 static int eeprom_wait_ready(struct pci_dev *pdev, u32 *status) 498 { 499 u32 reg; 500 int i; 501 502 /* 1. Check LBCIF Status Register for bits 6 & 3:2 all equal to 0 and 503 * bits 7,1:0 both equal to 1, at least once after reset. 504 * Subsequent operations need only to check that bits 1:0 are equal 505 * to 1 prior to starting a single byte read/write 506 */ 507 for (i = 0; i < MAX_NUM_REGISTER_POLLS; i++) { 508 if (pci_read_config_dword(pdev, LBCIF_DWORD1_GROUP, ®)) 509 return -EIO; 510 511 /* I2C idle and Phy Queue Avail both true */ 512 if ((reg & 0x3000) == 0x3000) { 513 if (status) 514 *status = reg; 515 return reg & 0xFF; 516 } 517 } 518 return -ETIMEDOUT; 519 } 520 521 static int eeprom_write(struct et131x_adapter *adapter, u32 addr, u8 data) 522 { 523 struct pci_dev *pdev = adapter->pdev; 524 int index = 0; 525 int retries; 526 int err = 0; 527 int writeok = 0; 528 u32 status; 529 u32 val = 0; 530 531 /* For an EEPROM, an I2C single byte write is defined as a START 532 * condition followed by the device address, EEPROM address, one byte 533 * of data and a STOP condition. The STOP condition will trigger the 534 * EEPROM's internally timed write cycle to the nonvolatile memory. 535 * All inputs are disabled during this write cycle and the EEPROM will 536 * not respond to any access until the internal write is complete. 537 */ 538 err = eeprom_wait_ready(pdev, NULL); 539 if (err < 0) 540 return err; 541 542 /* 2. Write to the LBCIF Control Register: bit 7=1, bit 6=1, bit 3=0, 543 * and bits 1:0 both =0. Bit 5 should be set according to the 544 * type of EEPROM being accessed (1=two byte addressing, 0=one 545 * byte addressing). 546 */ 547 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER, 548 LBCIF_CONTROL_LBCIF_ENABLE | 549 LBCIF_CONTROL_I2C_WRITE)) 550 return -EIO; 551 552 /* Prepare EEPROM address for Step 3 */ 553 for (retries = 0; retries < MAX_NUM_WRITE_RETRIES; retries++) { 554 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr)) 555 break; 556 /* Write the data to the LBCIF Data Register (the I2C write 557 * will begin). 558 */ 559 if (pci_write_config_byte(pdev, LBCIF_DATA_REGISTER, data)) 560 break; 561 /* Monitor bit 1:0 of the LBCIF Status Register. When bits 562 * 1:0 are both equal to 1, the I2C write has completed and the 563 * internal write cycle of the EEPROM is about to start. 564 * (bits 1:0 = 01 is a legal state while waiting from both 565 * equal to 1, but bits 1:0 = 10 is invalid and implies that 566 * something is broken). 567 */ 568 err = eeprom_wait_ready(pdev, &status); 569 if (err < 0) 570 return 0; 571 572 /* Check bit 3 of the LBCIF Status Register. If equal to 1, 573 * an error has occurred.Don't break here if we are revision 574 * 1, this is so we do a blind write for load bug. 575 */ 576 if ((status & LBCIF_STATUS_GENERAL_ERROR) && 577 adapter->pdev->revision == 0) 578 break; 579 580 /* Check bit 2 of the LBCIF Status Register. If equal to 1 an 581 * ACK error has occurred on the address phase of the write. 582 * This could be due to an actual hardware failure or the 583 * EEPROM may still be in its internal write cycle from a 584 * previous write. This write operation was ignored and must be 585 *repeated later. 586 */ 587 if (status & LBCIF_STATUS_ACK_ERROR) { 588 /* This could be due to an actual hardware failure 589 * or the EEPROM may still be in its internal write 590 * cycle from a previous write. This write operation 591 * was ignored and must be repeated later. 592 */ 593 udelay(10); 594 continue; 595 } 596 597 writeok = 1; 598 break; 599 } 600 601 udelay(10); 602 603 while (1) { 604 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER, 605 LBCIF_CONTROL_LBCIF_ENABLE)) 606 writeok = 0; 607 608 /* Do read until internal ACK_ERROR goes away meaning write 609 * completed 610 */ 611 do { 612 pci_write_config_dword(pdev, 613 LBCIF_ADDRESS_REGISTER, 614 addr); 615 do { 616 pci_read_config_dword(pdev, 617 LBCIF_DATA_REGISTER, 618 &val); 619 } while ((val & 0x00010000) == 0); 620 } while (val & 0x00040000); 621 622 if ((val & 0xFF00) != 0xC000 || index == 10000) 623 break; 624 index++; 625 } 626 return writeok ? 0 : -EIO; 627 } 628 629 static int eeprom_read(struct et131x_adapter *adapter, u32 addr, u8 *pdata) 630 { 631 struct pci_dev *pdev = adapter->pdev; 632 int err; 633 u32 status; 634 635 /* A single byte read is similar to the single byte write, with the 636 * exception of the data flow: 637 */ 638 err = eeprom_wait_ready(pdev, NULL); 639 if (err < 0) 640 return err; 641 /* Write to the LBCIF Control Register: bit 7=1, bit 6=0, bit 3=0, 642 * and bits 1:0 both =0. Bit 5 should be set according to the type 643 * of EEPROM being accessed (1=two byte addressing, 0=one byte 644 * addressing). 645 */ 646 if (pci_write_config_byte(pdev, LBCIF_CONTROL_REGISTER, 647 LBCIF_CONTROL_LBCIF_ENABLE)) 648 return -EIO; 649 /* Write the address to the LBCIF Address Register (I2C read will 650 * begin). 651 */ 652 if (pci_write_config_dword(pdev, LBCIF_ADDRESS_REGISTER, addr)) 653 return -EIO; 654 /* Monitor bit 0 of the LBCIF Status Register. When = 1, I2C read 655 * is complete. (if bit 1 =1 and bit 0 stays = 0, a hardware failure 656 * has occurred). 657 */ 658 err = eeprom_wait_ready(pdev, &status); 659 if (err < 0) 660 return err; 661 /* Regardless of error status, read data byte from LBCIF Data 662 * Register. 663 */ 664 *pdata = err; 665 666 return (status & LBCIF_STATUS_ACK_ERROR) ? -EIO : 0; 667 } 668 669 static int et131x_init_eeprom(struct et131x_adapter *adapter) 670 { 671 struct pci_dev *pdev = adapter->pdev; 672 u8 eestatus; 673 674 pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus); 675 676 /* THIS IS A WORKAROUND: 677 * I need to call this function twice to get my card in a 678 * LG M1 Express Dual running. I tried also a msleep before this 679 * function, because I thought there could be some time conditions 680 * but it didn't work. Call the whole function twice also work. 681 */ 682 if (pci_read_config_byte(pdev, ET1310_PCI_EEPROM_STATUS, &eestatus)) { 683 dev_err(&pdev->dev, 684 "Could not read PCI config space for EEPROM Status\n"); 685 return -EIO; 686 } 687 688 /* Determine if the error(s) we care about are present. If they are 689 * present we need to fail. 690 */ 691 if (eestatus & 0x4C) { 692 int write_failed = 0; 693 694 if (pdev->revision == 0x01) { 695 int i; 696 static const u8 eedata[4] = { 0xFE, 0x13, 0x10, 0xFF }; 697 698 /* Re-write the first 4 bytes if we have an eeprom 699 * present and the revision id is 1, this fixes the 700 * corruption seen with 1310 B Silicon 701 */ 702 for (i = 0; i < 3; i++) 703 if (eeprom_write(adapter, i, eedata[i]) < 0) 704 write_failed = 1; 705 } 706 if (pdev->revision != 0x01 || write_failed) { 707 dev_err(&pdev->dev, 708 "Fatal EEPROM Status Error - 0x%04x\n", 709 eestatus); 710 711 /* This error could mean that there was an error 712 * reading the eeprom or that the eeprom doesn't exist. 713 * We will treat each case the same and not try to 714 * gather additional information that normally would 715 * come from the eeprom, like MAC Address 716 */ 717 adapter->has_eeprom = false; 718 return -EIO; 719 } 720 } 721 adapter->has_eeprom = true; 722 723 /* Read the EEPROM for information regarding LED behavior. Refer to 724 * et131x_xcvr_init() for its use. 725 */ 726 eeprom_read(adapter, 0x70, &adapter->eeprom_data[0]); 727 eeprom_read(adapter, 0x71, &adapter->eeprom_data[1]); 728 729 if (adapter->eeprom_data[0] != 0xcd) 730 /* Disable all optional features */ 731 adapter->eeprom_data[1] = 0x00; 732 733 return 0; 734 } 735 736 static void et131x_rx_dma_enable(struct et131x_adapter *adapter) 737 { 738 /* Setup the receive dma configuration register for normal operation */ 739 u32 csr = ET_RXDMA_CSR_FBR1_ENABLE; 740 struct rx_ring *rx_ring = &adapter->rx_ring; 741 742 if (rx_ring->fbr[1]->buffsize == 4096) 743 csr |= ET_RXDMA_CSR_FBR1_SIZE_LO; 744 else if (rx_ring->fbr[1]->buffsize == 8192) 745 csr |= ET_RXDMA_CSR_FBR1_SIZE_HI; 746 else if (rx_ring->fbr[1]->buffsize == 16384) 747 csr |= ET_RXDMA_CSR_FBR1_SIZE_LO | ET_RXDMA_CSR_FBR1_SIZE_HI; 748 749 csr |= ET_RXDMA_CSR_FBR0_ENABLE; 750 if (rx_ring->fbr[0]->buffsize == 256) 751 csr |= ET_RXDMA_CSR_FBR0_SIZE_LO; 752 else if (rx_ring->fbr[0]->buffsize == 512) 753 csr |= ET_RXDMA_CSR_FBR0_SIZE_HI; 754 else if (rx_ring->fbr[0]->buffsize == 1024) 755 csr |= ET_RXDMA_CSR_FBR0_SIZE_LO | ET_RXDMA_CSR_FBR0_SIZE_HI; 756 writel(csr, &adapter->regs->rxdma.csr); 757 758 csr = readl(&adapter->regs->rxdma.csr); 759 if (csr & ET_RXDMA_CSR_HALT_STATUS) { 760 udelay(5); 761 csr = readl(&adapter->regs->rxdma.csr); 762 if (csr & ET_RXDMA_CSR_HALT_STATUS) { 763 dev_err(&adapter->pdev->dev, 764 "RX Dma failed to exit halt state. CSR 0x%08x\n", 765 csr); 766 } 767 } 768 } 769 770 static void et131x_rx_dma_disable(struct et131x_adapter *adapter) 771 { 772 u32 csr; 773 /* Setup the receive dma configuration register */ 774 writel(ET_RXDMA_CSR_HALT | ET_RXDMA_CSR_FBR1_ENABLE, 775 &adapter->regs->rxdma.csr); 776 csr = readl(&adapter->regs->rxdma.csr); 777 if (!(csr & ET_RXDMA_CSR_HALT_STATUS)) { 778 udelay(5); 779 csr = readl(&adapter->regs->rxdma.csr); 780 if (!(csr & ET_RXDMA_CSR_HALT_STATUS)) 781 dev_err(&adapter->pdev->dev, 782 "RX Dma failed to enter halt state. CSR 0x%08x\n", 783 csr); 784 } 785 } 786 787 static void et131x_tx_dma_enable(struct et131x_adapter *adapter) 788 { 789 /* Setup the transmit dma configuration register for normal 790 * operation 791 */ 792 writel(ET_TXDMA_SNGL_EPKT | (PARM_DMA_CACHE_DEF << ET_TXDMA_CACHE_SHIFT), 793 &adapter->regs->txdma.csr); 794 } 795 796 static inline void add_10bit(u32 *v, int n) 797 { 798 *v = INDEX10(*v + n) | (*v & ET_DMA10_WRAP); 799 } 800 801 static inline void add_12bit(u32 *v, int n) 802 { 803 *v = INDEX12(*v + n) | (*v & ET_DMA12_WRAP); 804 } 805 806 static void et1310_config_mac_regs1(struct et131x_adapter *adapter) 807 { 808 struct mac_regs __iomem *macregs = &adapter->regs->mac; 809 u32 station1; 810 u32 station2; 811 u32 ipg; 812 813 /* First we need to reset everything. Write to MAC configuration 814 * register 1 to perform reset. 815 */ 816 writel(ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET | 817 ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC | 818 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC, 819 ¯egs->cfg1); 820 821 /* Next lets configure the MAC Inter-packet gap register */ 822 ipg = 0x38005860; /* IPG1 0x38 IPG2 0x58 B2B 0x60 */ 823 ipg |= 0x50 << 8; /* ifg enforce 0x50 */ 824 writel(ipg, ¯egs->ipg); 825 826 /* Next lets configure the MAC Half Duplex register */ 827 /* BEB trunc 0xA, Ex Defer, Rexmit 0xF Coll 0x37 */ 828 writel(0x00A1F037, ¯egs->hfdp); 829 830 /* Next lets configure the MAC Interface Control register */ 831 writel(0, ¯egs->if_ctrl); 832 833 writel(ET_MAC_MIIMGMT_CLK_RST, ¯egs->mii_mgmt_cfg); 834 835 /* Next lets configure the MAC Station Address register. These 836 * values are read from the EEPROM during initialization and stored 837 * in the adapter structure. We write what is stored in the adapter 838 * structure to the MAC Station Address registers high and low. This 839 * station address is used for generating and checking pause control 840 * packets. 841 */ 842 station2 = (adapter->addr[1] << ET_MAC_STATION_ADDR2_OC2_SHIFT) | 843 (adapter->addr[0] << ET_MAC_STATION_ADDR2_OC1_SHIFT); 844 station1 = (adapter->addr[5] << ET_MAC_STATION_ADDR1_OC6_SHIFT) | 845 (adapter->addr[4] << ET_MAC_STATION_ADDR1_OC5_SHIFT) | 846 (adapter->addr[3] << ET_MAC_STATION_ADDR1_OC4_SHIFT) | 847 adapter->addr[2]; 848 writel(station1, ¯egs->station_addr_1); 849 writel(station2, ¯egs->station_addr_2); 850 851 /* Max ethernet packet in bytes that will be passed by the mac without 852 * being truncated. Allow the MAC to pass 4 more than our max packet 853 * size. This is 4 for the Ethernet CRC. 854 * 855 * Packets larger than (registry_jumbo_packet) that do not contain a 856 * VLAN ID will be dropped by the Rx function. 857 */ 858 writel(adapter->registry_jumbo_packet + 4, ¯egs->max_fm_len); 859 860 /* clear out MAC config reset */ 861 writel(0, ¯egs->cfg1); 862 } 863 864 static void et1310_config_mac_regs2(struct et131x_adapter *adapter) 865 { 866 int32_t delay = 0; 867 struct mac_regs __iomem *mac = &adapter->regs->mac; 868 struct phy_device *phydev = adapter->netdev->phydev; 869 u32 cfg1; 870 u32 cfg2; 871 u32 ifctrl; 872 u32 ctl; 873 874 ctl = readl(&adapter->regs->txmac.ctl); 875 cfg1 = readl(&mac->cfg1); 876 cfg2 = readl(&mac->cfg2); 877 ifctrl = readl(&mac->if_ctrl); 878 879 /* Set up the if mode bits */ 880 cfg2 &= ~ET_MAC_CFG2_IFMODE_MASK; 881 if (phydev->speed == SPEED_1000) { 882 cfg2 |= ET_MAC_CFG2_IFMODE_1000; 883 ifctrl &= ~ET_MAC_IFCTRL_PHYMODE; 884 } else { 885 cfg2 |= ET_MAC_CFG2_IFMODE_100; 886 ifctrl |= ET_MAC_IFCTRL_PHYMODE; 887 } 888 889 cfg1 |= ET_MAC_CFG1_RX_ENABLE | ET_MAC_CFG1_TX_ENABLE | 890 ET_MAC_CFG1_TX_FLOW; 891 892 cfg1 &= ~(ET_MAC_CFG1_LOOPBACK | ET_MAC_CFG1_RX_FLOW); 893 if (adapter->flow == FLOW_RXONLY || adapter->flow == FLOW_BOTH) 894 cfg1 |= ET_MAC_CFG1_RX_FLOW; 895 writel(cfg1, &mac->cfg1); 896 897 /* Now we need to initialize the MAC Configuration 2 register */ 898 /* preamble 7, check length, huge frame off, pad crc, crc enable 899 * full duplex off 900 */ 901 cfg2 |= 0x7 << ET_MAC_CFG2_PREAMBLE_SHIFT; 902 cfg2 |= ET_MAC_CFG2_IFMODE_LEN_CHECK; 903 cfg2 |= ET_MAC_CFG2_IFMODE_PAD_CRC; 904 cfg2 |= ET_MAC_CFG2_IFMODE_CRC_ENABLE; 905 cfg2 &= ~ET_MAC_CFG2_IFMODE_HUGE_FRAME; 906 cfg2 &= ~ET_MAC_CFG2_IFMODE_FULL_DPLX; 907 908 if (phydev->duplex == DUPLEX_FULL) 909 cfg2 |= ET_MAC_CFG2_IFMODE_FULL_DPLX; 910 911 ifctrl &= ~ET_MAC_IFCTRL_GHDMODE; 912 if (phydev->duplex == DUPLEX_HALF) 913 ifctrl |= ET_MAC_IFCTRL_GHDMODE; 914 915 writel(ifctrl, &mac->if_ctrl); 916 writel(cfg2, &mac->cfg2); 917 918 do { 919 udelay(10); 920 delay++; 921 cfg1 = readl(&mac->cfg1); 922 } while ((cfg1 & ET_MAC_CFG1_WAIT) != ET_MAC_CFG1_WAIT && delay < 100); 923 924 if (delay == 100) { 925 dev_warn(&adapter->pdev->dev, 926 "Syncd bits did not respond correctly cfg1 word 0x%08x\n", 927 cfg1); 928 } 929 930 ctl |= ET_TX_CTRL_TXMAC_ENABLE | ET_TX_CTRL_FC_DISABLE; 931 writel(ctl, &adapter->regs->txmac.ctl); 932 933 if (adapter->flags & FMP_ADAPTER_LOWER_POWER) { 934 et131x_rx_dma_enable(adapter); 935 et131x_tx_dma_enable(adapter); 936 } 937 } 938 939 static int et1310_in_phy_coma(struct et131x_adapter *adapter) 940 { 941 u32 pmcsr = readl(&adapter->regs->global.pm_csr); 942 943 return ET_PM_PHY_SW_COMA & pmcsr ? 1 : 0; 944 } 945 946 static void et1310_setup_device_for_multicast(struct et131x_adapter *adapter) 947 { 948 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac; 949 u32 hash1 = 0; 950 u32 hash2 = 0; 951 u32 hash3 = 0; 952 u32 hash4 = 0; 953 u32 pm_csr; 954 955 /* If ET131X_PACKET_TYPE_MULTICAST is specified, then we provision 956 * the multi-cast LIST. If it is NOT specified, (and "ALL" is not 957 * specified) then we should pass NO multi-cast addresses to the 958 * driver. 959 */ 960 if (adapter->packet_filter & ET131X_PACKET_TYPE_MULTICAST) { 961 int i; 962 963 /* Loop through our multicast array and set up the device */ 964 for (i = 0; i < adapter->multicast_addr_count; i++) { 965 u32 result; 966 967 result = ether_crc(6, adapter->multicast_list[i]); 968 969 result = (result & 0x3F800000) >> 23; 970 971 if (result < 32) { 972 hash1 |= (1 << result); 973 } else if ((31 < result) && (result < 64)) { 974 result -= 32; 975 hash2 |= (1 << result); 976 } else if ((63 < result) && (result < 96)) { 977 result -= 64; 978 hash3 |= (1 << result); 979 } else { 980 result -= 96; 981 hash4 |= (1 << result); 982 } 983 } 984 } 985 986 /* Write out the new hash to the device */ 987 pm_csr = readl(&adapter->regs->global.pm_csr); 988 if (!et1310_in_phy_coma(adapter)) { 989 writel(hash1, &rxmac->multi_hash1); 990 writel(hash2, &rxmac->multi_hash2); 991 writel(hash3, &rxmac->multi_hash3); 992 writel(hash4, &rxmac->multi_hash4); 993 } 994 } 995 996 static void et1310_setup_device_for_unicast(struct et131x_adapter *adapter) 997 { 998 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac; 999 u32 uni_pf1; 1000 u32 uni_pf2; 1001 u32 uni_pf3; 1002 u32 pm_csr; 1003 1004 /* Set up unicast packet filter reg 3 to be the first two octets of 1005 * the MAC address for both address 1006 * 1007 * Set up unicast packet filter reg 2 to be the octets 2 - 5 of the 1008 * MAC address for second address 1009 * 1010 * Set up unicast packet filter reg 3 to be the octets 2 - 5 of the 1011 * MAC address for first address 1012 */ 1013 uni_pf3 = (adapter->addr[0] << ET_RX_UNI_PF_ADDR2_1_SHIFT) | 1014 (adapter->addr[1] << ET_RX_UNI_PF_ADDR2_2_SHIFT) | 1015 (adapter->addr[0] << ET_RX_UNI_PF_ADDR1_1_SHIFT) | 1016 adapter->addr[1]; 1017 1018 uni_pf2 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR2_3_SHIFT) | 1019 (adapter->addr[3] << ET_RX_UNI_PF_ADDR2_4_SHIFT) | 1020 (adapter->addr[4] << ET_RX_UNI_PF_ADDR2_5_SHIFT) | 1021 adapter->addr[5]; 1022 1023 uni_pf1 = (adapter->addr[2] << ET_RX_UNI_PF_ADDR1_3_SHIFT) | 1024 (adapter->addr[3] << ET_RX_UNI_PF_ADDR1_4_SHIFT) | 1025 (adapter->addr[4] << ET_RX_UNI_PF_ADDR1_5_SHIFT) | 1026 adapter->addr[5]; 1027 1028 pm_csr = readl(&adapter->regs->global.pm_csr); 1029 if (!et1310_in_phy_coma(adapter)) { 1030 writel(uni_pf1, &rxmac->uni_pf_addr1); 1031 writel(uni_pf2, &rxmac->uni_pf_addr2); 1032 writel(uni_pf3, &rxmac->uni_pf_addr3); 1033 } 1034 } 1035 1036 static void et1310_config_rxmac_regs(struct et131x_adapter *adapter) 1037 { 1038 struct rxmac_regs __iomem *rxmac = &adapter->regs->rxmac; 1039 struct phy_device *phydev = adapter->netdev->phydev; 1040 u32 sa_lo; 1041 u32 sa_hi = 0; 1042 u32 pf_ctrl = 0; 1043 u32 __iomem *wolw; 1044 1045 /* Disable the MAC while it is being configured (also disable WOL) */ 1046 writel(0x8, &rxmac->ctrl); 1047 1048 /* Initialize WOL to disabled. */ 1049 writel(0, &rxmac->crc0); 1050 writel(0, &rxmac->crc12); 1051 writel(0, &rxmac->crc34); 1052 1053 /* We need to set the WOL mask0 - mask4 next. We initialize it to 1054 * its default Values of 0x00000000 because there are not WOL masks 1055 * as of this time. 1056 */ 1057 for (wolw = &rxmac->mask0_word0; wolw <= &rxmac->mask4_word3; wolw++) 1058 writel(0, wolw); 1059 1060 /* Lets setup the WOL Source Address */ 1061 sa_lo = (adapter->addr[2] << ET_RX_WOL_LO_SA3_SHIFT) | 1062 (adapter->addr[3] << ET_RX_WOL_LO_SA4_SHIFT) | 1063 (adapter->addr[4] << ET_RX_WOL_LO_SA5_SHIFT) | 1064 adapter->addr[5]; 1065 writel(sa_lo, &rxmac->sa_lo); 1066 1067 sa_hi = (u32)(adapter->addr[0] << ET_RX_WOL_HI_SA1_SHIFT) | 1068 adapter->addr[1]; 1069 writel(sa_hi, &rxmac->sa_hi); 1070 1071 /* Disable all Packet Filtering */ 1072 writel(0, &rxmac->pf_ctrl); 1073 1074 /* Let's initialize the Unicast Packet filtering address */ 1075 if (adapter->packet_filter & ET131X_PACKET_TYPE_DIRECTED) { 1076 et1310_setup_device_for_unicast(adapter); 1077 pf_ctrl |= ET_RX_PFCTRL_UNICST_FILTER_ENABLE; 1078 } else { 1079 writel(0, &rxmac->uni_pf_addr1); 1080 writel(0, &rxmac->uni_pf_addr2); 1081 writel(0, &rxmac->uni_pf_addr3); 1082 } 1083 1084 /* Let's initialize the Multicast hash */ 1085 if (!(adapter->packet_filter & ET131X_PACKET_TYPE_ALL_MULTICAST)) { 1086 pf_ctrl |= ET_RX_PFCTRL_MLTCST_FILTER_ENABLE; 1087 et1310_setup_device_for_multicast(adapter); 1088 } 1089 1090 /* Runt packet filtering. Didn't work in version A silicon. */ 1091 pf_ctrl |= (NIC_MIN_PACKET_SIZE + 4) << ET_RX_PFCTRL_MIN_PKT_SZ_SHIFT; 1092 pf_ctrl |= ET_RX_PFCTRL_FRAG_FILTER_ENABLE; 1093 1094 if (adapter->registry_jumbo_packet > 8192) 1095 /* In order to transmit jumbo packets greater than 8k, the 1096 * FIFO between RxMAC and RxDMA needs to be reduced in size 1097 * to (16k - Jumbo packet size). In order to implement this, 1098 * we must use "cut through" mode in the RxMAC, which chops 1099 * packets down into segments which are (max_size * 16). In 1100 * this case we selected 256 bytes, since this is the size of 1101 * the PCI-Express TLP's that the 1310 uses. 1102 * 1103 * seg_en on, fc_en off, size 0x10 1104 */ 1105 writel(0x41, &rxmac->mcif_ctrl_max_seg); 1106 else 1107 writel(0, &rxmac->mcif_ctrl_max_seg); 1108 1109 writel(0, &rxmac->mcif_water_mark); 1110 writel(0, &rxmac->mif_ctrl); 1111 writel(0, &rxmac->space_avail); 1112 1113 /* Initialize the the mif_ctrl register 1114 * bit 3: Receive code error. One or more nibbles were signaled as 1115 * errors during the reception of the packet. Clear this 1116 * bit in Gigabit, set it in 100Mbit. This was derived 1117 * experimentally at UNH. 1118 * bit 4: Receive CRC error. The packet's CRC did not match the 1119 * internally generated CRC. 1120 * bit 5: Receive length check error. Indicates that frame length 1121 * field value in the packet does not match the actual data 1122 * byte length and is not a type field. 1123 * bit 16: Receive frame truncated. 1124 * bit 17: Drop packet enable 1125 */ 1126 if (phydev && phydev->speed == SPEED_100) 1127 writel(0x30038, &rxmac->mif_ctrl); 1128 else 1129 writel(0x30030, &rxmac->mif_ctrl); 1130 1131 /* Finally we initialize RxMac to be enabled & WOL disabled. Packet 1132 * filter is always enabled since it is where the runt packets are 1133 * supposed to be dropped. For version A silicon, runt packet 1134 * dropping doesn't work, so it is disabled in the pf_ctrl register, 1135 * but we still leave the packet filter on. 1136 */ 1137 writel(pf_ctrl, &rxmac->pf_ctrl); 1138 writel(ET_RX_CTRL_RXMAC_ENABLE | ET_RX_CTRL_WOL_DISABLE, &rxmac->ctrl); 1139 } 1140 1141 static void et1310_config_txmac_regs(struct et131x_adapter *adapter) 1142 { 1143 struct txmac_regs __iomem *txmac = &adapter->regs->txmac; 1144 1145 /* We need to update the Control Frame Parameters 1146 * cfpt - control frame pause timer set to 64 (0x40) 1147 * cfep - control frame extended pause timer set to 0x0 1148 */ 1149 if (adapter->flow == FLOW_NONE) 1150 writel(0, &txmac->cf_param); 1151 else 1152 writel(0x40, &txmac->cf_param); 1153 } 1154 1155 static void et1310_config_macstat_regs(struct et131x_adapter *adapter) 1156 { 1157 struct macstat_regs __iomem *macstat = &adapter->regs->macstat; 1158 u32 __iomem *reg; 1159 1160 /* initialize all the macstat registers to zero on the device */ 1161 for (reg = &macstat->txrx_0_64_byte_frames; 1162 reg <= &macstat->carry_reg2; reg++) 1163 writel(0, reg); 1164 1165 /* Unmask any counters that we want to track the overflow of. 1166 * Initially this will be all counters. It may become clear later 1167 * that we do not need to track all counters. 1168 */ 1169 writel(0xFFFFBE32, &macstat->carry_reg1_mask); 1170 writel(0xFFFE7E8B, &macstat->carry_reg2_mask); 1171 } 1172 1173 static int et131x_phy_mii_read(struct et131x_adapter *adapter, u8 addr, 1174 u8 reg, u16 *value) 1175 { 1176 struct mac_regs __iomem *mac = &adapter->regs->mac; 1177 int status = 0; 1178 u32 delay = 0; 1179 u32 mii_addr; 1180 u32 mii_cmd; 1181 u32 mii_indicator; 1182 1183 /* Save a local copy of the registers we are dealing with so we can 1184 * set them back 1185 */ 1186 mii_addr = readl(&mac->mii_mgmt_addr); 1187 mii_cmd = readl(&mac->mii_mgmt_cmd); 1188 1189 /* Stop the current operation */ 1190 writel(0, &mac->mii_mgmt_cmd); 1191 1192 /* Set up the register we need to read from on the correct PHY */ 1193 writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr); 1194 1195 writel(0x1, &mac->mii_mgmt_cmd); 1196 1197 do { 1198 udelay(50); 1199 delay++; 1200 mii_indicator = readl(&mac->mii_mgmt_indicator); 1201 } while ((mii_indicator & ET_MAC_MGMT_WAIT) && delay < 50); 1202 1203 /* If we hit the max delay, we could not read the register */ 1204 if (delay == 50) { 1205 dev_warn(&adapter->pdev->dev, 1206 "reg 0x%08x could not be read\n", reg); 1207 dev_warn(&adapter->pdev->dev, "status is 0x%08x\n", 1208 mii_indicator); 1209 1210 status = -EIO; 1211 goto out; 1212 } 1213 1214 /* If we hit here we were able to read the register and we need to 1215 * return the value to the caller 1216 */ 1217 *value = readl(&mac->mii_mgmt_stat) & ET_MAC_MIIMGMT_STAT_PHYCRTL_MASK; 1218 1219 out: 1220 /* Stop the read operation */ 1221 writel(0, &mac->mii_mgmt_cmd); 1222 1223 /* set the registers we touched back to the state at which we entered 1224 * this function 1225 */ 1226 writel(mii_addr, &mac->mii_mgmt_addr); 1227 writel(mii_cmd, &mac->mii_mgmt_cmd); 1228 1229 return status; 1230 } 1231 1232 static int et131x_mii_read(struct et131x_adapter *adapter, u8 reg, u16 *value) 1233 { 1234 struct phy_device *phydev = adapter->netdev->phydev; 1235 1236 if (!phydev) 1237 return -EIO; 1238 1239 return et131x_phy_mii_read(adapter, phydev->mdio.addr, reg, value); 1240 } 1241 1242 static int et131x_mii_write(struct et131x_adapter *adapter, u8 addr, u8 reg, 1243 u16 value) 1244 { 1245 struct mac_regs __iomem *mac = &adapter->regs->mac; 1246 int status = 0; 1247 u32 delay = 0; 1248 u32 mii_addr; 1249 u32 mii_cmd; 1250 u32 mii_indicator; 1251 1252 /* Save a local copy of the registers we are dealing with so we can 1253 * set them back 1254 */ 1255 mii_addr = readl(&mac->mii_mgmt_addr); 1256 mii_cmd = readl(&mac->mii_mgmt_cmd); 1257 1258 /* Stop the current operation */ 1259 writel(0, &mac->mii_mgmt_cmd); 1260 1261 /* Set up the register we need to write to on the correct PHY */ 1262 writel(ET_MAC_MII_ADDR(addr, reg), &mac->mii_mgmt_addr); 1263 1264 /* Add the value to write to the registers to the mac */ 1265 writel(value, &mac->mii_mgmt_ctrl); 1266 1267 do { 1268 udelay(50); 1269 delay++; 1270 mii_indicator = readl(&mac->mii_mgmt_indicator); 1271 } while ((mii_indicator & ET_MAC_MGMT_BUSY) && delay < 100); 1272 1273 /* If we hit the max delay, we could not write the register */ 1274 if (delay == 100) { 1275 u16 tmp; 1276 1277 dev_warn(&adapter->pdev->dev, 1278 "reg 0x%08x could not be written", reg); 1279 dev_warn(&adapter->pdev->dev, "status is 0x%08x\n", 1280 mii_indicator); 1281 dev_warn(&adapter->pdev->dev, "command is 0x%08x\n", 1282 readl(&mac->mii_mgmt_cmd)); 1283 1284 et131x_mii_read(adapter, reg, &tmp); 1285 1286 status = -EIO; 1287 } 1288 /* Stop the write operation */ 1289 writel(0, &mac->mii_mgmt_cmd); 1290 1291 /* set the registers we touched back to the state at which we entered 1292 * this function 1293 */ 1294 writel(mii_addr, &mac->mii_mgmt_addr); 1295 writel(mii_cmd, &mac->mii_mgmt_cmd); 1296 1297 return status; 1298 } 1299 1300 static void et1310_phy_read_mii_bit(struct et131x_adapter *adapter, 1301 u16 regnum, 1302 u16 bitnum, 1303 u8 *value) 1304 { 1305 u16 reg; 1306 u16 mask = 1 << bitnum; 1307 1308 et131x_mii_read(adapter, regnum, ®); 1309 1310 *value = (reg & mask) >> bitnum; 1311 } 1312 1313 static void et1310_config_flow_control(struct et131x_adapter *adapter) 1314 { 1315 struct phy_device *phydev = adapter->netdev->phydev; 1316 1317 if (phydev->duplex == DUPLEX_HALF) { 1318 adapter->flow = FLOW_NONE; 1319 } else { 1320 char remote_pause, remote_async_pause; 1321 1322 et1310_phy_read_mii_bit(adapter, 5, 10, &remote_pause); 1323 et1310_phy_read_mii_bit(adapter, 5, 11, &remote_async_pause); 1324 1325 if (remote_pause && remote_async_pause) { 1326 adapter->flow = adapter->wanted_flow; 1327 } else if (remote_pause && !remote_async_pause) { 1328 if (adapter->wanted_flow == FLOW_BOTH) 1329 adapter->flow = FLOW_BOTH; 1330 else 1331 adapter->flow = FLOW_NONE; 1332 } else if (!remote_pause && !remote_async_pause) { 1333 adapter->flow = FLOW_NONE; 1334 } else { 1335 if (adapter->wanted_flow == FLOW_BOTH) 1336 adapter->flow = FLOW_RXONLY; 1337 else 1338 adapter->flow = FLOW_NONE; 1339 } 1340 } 1341 } 1342 1343 /* et1310_update_macstat_host_counters - Update local copy of the statistics */ 1344 static void et1310_update_macstat_host_counters(struct et131x_adapter *adapter) 1345 { 1346 struct ce_stats *stats = &adapter->stats; 1347 struct macstat_regs __iomem *macstat = 1348 &adapter->regs->macstat; 1349 1350 stats->tx_collisions += readl(&macstat->tx_total_collisions); 1351 stats->tx_first_collisions += readl(&macstat->tx_single_collisions); 1352 stats->tx_deferred += readl(&macstat->tx_deferred); 1353 stats->tx_excessive_collisions += 1354 readl(&macstat->tx_multiple_collisions); 1355 stats->tx_late_collisions += readl(&macstat->tx_late_collisions); 1356 stats->tx_underflows += readl(&macstat->tx_undersize_frames); 1357 stats->tx_max_pkt_errs += readl(&macstat->tx_oversize_frames); 1358 1359 stats->rx_align_errs += readl(&macstat->rx_align_errs); 1360 stats->rx_crc_errs += readl(&macstat->rx_code_errs); 1361 stats->rcvd_pkts_dropped += readl(&macstat->rx_drops); 1362 stats->rx_overflows += readl(&macstat->rx_oversize_packets); 1363 stats->rx_code_violations += readl(&macstat->rx_fcs_errs); 1364 stats->rx_length_errs += readl(&macstat->rx_frame_len_errs); 1365 stats->rx_other_errs += readl(&macstat->rx_fragment_packets); 1366 } 1367 1368 /* et1310_handle_macstat_interrupt 1369 * 1370 * One of the MACSTAT counters has wrapped. Update the local copy of 1371 * the statistics held in the adapter structure, checking the "wrap" 1372 * bit for each counter. 1373 */ 1374 static void et1310_handle_macstat_interrupt(struct et131x_adapter *adapter) 1375 { 1376 u32 carry_reg1; 1377 u32 carry_reg2; 1378 1379 /* Read the interrupt bits from the register(s). These are Clear On 1380 * Write. 1381 */ 1382 carry_reg1 = readl(&adapter->regs->macstat.carry_reg1); 1383 carry_reg2 = readl(&adapter->regs->macstat.carry_reg2); 1384 1385 writel(carry_reg1, &adapter->regs->macstat.carry_reg1); 1386 writel(carry_reg2, &adapter->regs->macstat.carry_reg2); 1387 1388 /* We need to do update the host copy of all the MAC_STAT counters. 1389 * For each counter, check it's overflow bit. If the overflow bit is 1390 * set, then increment the host version of the count by one complete 1391 * revolution of the counter. This routine is called when the counter 1392 * block indicates that one of the counters has wrapped. 1393 */ 1394 if (carry_reg1 & (1 << 14)) 1395 adapter->stats.rx_code_violations += COUNTER_WRAP_16_BIT; 1396 if (carry_reg1 & (1 << 8)) 1397 adapter->stats.rx_align_errs += COUNTER_WRAP_12_BIT; 1398 if (carry_reg1 & (1 << 7)) 1399 adapter->stats.rx_length_errs += COUNTER_WRAP_16_BIT; 1400 if (carry_reg1 & (1 << 2)) 1401 adapter->stats.rx_other_errs += COUNTER_WRAP_16_BIT; 1402 if (carry_reg1 & (1 << 6)) 1403 adapter->stats.rx_crc_errs += COUNTER_WRAP_16_BIT; 1404 if (carry_reg1 & (1 << 3)) 1405 adapter->stats.rx_overflows += COUNTER_WRAP_16_BIT; 1406 if (carry_reg1 & (1 << 0)) 1407 adapter->stats.rcvd_pkts_dropped += COUNTER_WRAP_16_BIT; 1408 if (carry_reg2 & (1 << 16)) 1409 adapter->stats.tx_max_pkt_errs += COUNTER_WRAP_12_BIT; 1410 if (carry_reg2 & (1 << 15)) 1411 adapter->stats.tx_underflows += COUNTER_WRAP_12_BIT; 1412 if (carry_reg2 & (1 << 6)) 1413 adapter->stats.tx_first_collisions += COUNTER_WRAP_12_BIT; 1414 if (carry_reg2 & (1 << 8)) 1415 adapter->stats.tx_deferred += COUNTER_WRAP_12_BIT; 1416 if (carry_reg2 & (1 << 5)) 1417 adapter->stats.tx_excessive_collisions += COUNTER_WRAP_12_BIT; 1418 if (carry_reg2 & (1 << 4)) 1419 adapter->stats.tx_late_collisions += COUNTER_WRAP_12_BIT; 1420 if (carry_reg2 & (1 << 2)) 1421 adapter->stats.tx_collisions += COUNTER_WRAP_12_BIT; 1422 } 1423 1424 static int et131x_mdio_read(struct mii_bus *bus, int phy_addr, int reg) 1425 { 1426 struct net_device *netdev = bus->priv; 1427 struct et131x_adapter *adapter = netdev_priv(netdev); 1428 u16 value; 1429 int ret; 1430 1431 ret = et131x_phy_mii_read(adapter, phy_addr, reg, &value); 1432 1433 if (ret < 0) 1434 return ret; 1435 1436 return value; 1437 } 1438 1439 static int et131x_mdio_write(struct mii_bus *bus, int phy_addr, 1440 int reg, u16 value) 1441 { 1442 struct net_device *netdev = bus->priv; 1443 struct et131x_adapter *adapter = netdev_priv(netdev); 1444 1445 return et131x_mii_write(adapter, phy_addr, reg, value); 1446 } 1447 1448 /* et1310_phy_power_switch - PHY power control 1449 * @adapter: device to control 1450 * @down: true for off/false for back on 1451 * 1452 * one hundred, ten, one thousand megs 1453 * How would you like to have your LAN accessed 1454 * Can't you see that this code processed 1455 * Phy power, phy power.. 1456 */ 1457 static void et1310_phy_power_switch(struct et131x_adapter *adapter, bool down) 1458 { 1459 u16 data; 1460 struct phy_device *phydev = adapter->netdev->phydev; 1461 1462 et131x_mii_read(adapter, MII_BMCR, &data); 1463 data &= ~BMCR_PDOWN; 1464 if (down) 1465 data |= BMCR_PDOWN; 1466 et131x_mii_write(adapter, phydev->mdio.addr, MII_BMCR, data); 1467 } 1468 1469 /* et131x_xcvr_init - Init the phy if we are setting it into force mode */ 1470 static void et131x_xcvr_init(struct et131x_adapter *adapter) 1471 { 1472 u16 lcr2; 1473 struct phy_device *phydev = adapter->netdev->phydev; 1474 1475 /* Set the LED behavior such that LED 1 indicates speed (off = 1476 * 10Mbits, blink = 100Mbits, on = 1000Mbits) and LED 2 indicates 1477 * link and activity (on for link, blink off for activity). 1478 * 1479 * NOTE: Some customizations have been added here for specific 1480 * vendors; The LED behavior is now determined by vendor data in the 1481 * EEPROM. However, the above description is the default. 1482 */ 1483 if ((adapter->eeprom_data[1] & 0x4) == 0) { 1484 et131x_mii_read(adapter, PHY_LED_2, &lcr2); 1485 1486 lcr2 &= (ET_LED2_LED_100TX | ET_LED2_LED_1000T); 1487 lcr2 |= (LED_VAL_LINKON_ACTIVE << LED_LINK_SHIFT); 1488 1489 if ((adapter->eeprom_data[1] & 0x8) == 0) 1490 lcr2 |= (LED_VAL_1000BT_100BTX << LED_TXRX_SHIFT); 1491 else 1492 lcr2 |= (LED_VAL_LINKON << LED_TXRX_SHIFT); 1493 1494 et131x_mii_write(adapter, phydev->mdio.addr, PHY_LED_2, lcr2); 1495 } 1496 } 1497 1498 /* et131x_configure_global_regs - configure JAGCore global regs */ 1499 static void et131x_configure_global_regs(struct et131x_adapter *adapter) 1500 { 1501 struct global_regs __iomem *regs = &adapter->regs->global; 1502 1503 writel(0, ®s->rxq_start_addr); 1504 writel(INTERNAL_MEM_SIZE - 1, ®s->txq_end_addr); 1505 1506 if (adapter->registry_jumbo_packet < 2048) { 1507 /* Tx / RxDMA and Tx/Rx MAC interfaces have a 1k word 1508 * block of RAM that the driver can split between Tx 1509 * and Rx as it desires. Our default is to split it 1510 * 50/50: 1511 */ 1512 writel(PARM_RX_MEM_END_DEF, ®s->rxq_end_addr); 1513 writel(PARM_RX_MEM_END_DEF + 1, ®s->txq_start_addr); 1514 } else if (adapter->registry_jumbo_packet < 8192) { 1515 /* For jumbo packets > 2k but < 8k, split 50-50. */ 1516 writel(INTERNAL_MEM_RX_OFFSET, ®s->rxq_end_addr); 1517 writel(INTERNAL_MEM_RX_OFFSET + 1, ®s->txq_start_addr); 1518 } else { 1519 /* 9216 is the only packet size greater than 8k that 1520 * is available. The Tx buffer has to be big enough 1521 * for one whole packet on the Tx side. We'll make 1522 * the Tx 9408, and give the rest to Rx 1523 */ 1524 writel(0x01b3, ®s->rxq_end_addr); 1525 writel(0x01b4, ®s->txq_start_addr); 1526 } 1527 1528 /* Initialize the loopback register. Disable all loopbacks. */ 1529 writel(0, ®s->loopback); 1530 1531 writel(0, ®s->msi_config); 1532 1533 /* By default, disable the watchdog timer. It will be enabled when 1534 * a packet is queued. 1535 */ 1536 writel(0, ®s->watchdog_timer); 1537 } 1538 1539 /* et131x_config_rx_dma_regs - Start of Rx_DMA init sequence */ 1540 static void et131x_config_rx_dma_regs(struct et131x_adapter *adapter) 1541 { 1542 struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma; 1543 struct rx_ring *rx_local = &adapter->rx_ring; 1544 struct fbr_desc *fbr_entry; 1545 u32 entry; 1546 u32 psr_num_des; 1547 unsigned long flags; 1548 u8 id; 1549 1550 et131x_rx_dma_disable(adapter); 1551 1552 /* Load the completion writeback physical address */ 1553 writel(upper_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_hi); 1554 writel(lower_32_bits(rx_local->rx_status_bus), &rx_dma->dma_wb_base_lo); 1555 1556 memset(rx_local->rx_status_block, 0, sizeof(struct rx_status_block)); 1557 1558 /* Set the address and parameters of the packet status ring */ 1559 writel(upper_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_hi); 1560 writel(lower_32_bits(rx_local->ps_ring_physaddr), &rx_dma->psr_base_lo); 1561 writel(rx_local->psr_entries - 1, &rx_dma->psr_num_des); 1562 writel(0, &rx_dma->psr_full_offset); 1563 1564 psr_num_des = readl(&rx_dma->psr_num_des) & ET_RXDMA_PSR_NUM_DES_MASK; 1565 writel((psr_num_des * LO_MARK_PERCENT_FOR_PSR) / 100, 1566 &rx_dma->psr_min_des); 1567 1568 spin_lock_irqsave(&adapter->rcv_lock, flags); 1569 1570 /* These local variables track the PSR in the adapter structure */ 1571 rx_local->local_psr_full = 0; 1572 1573 for (id = 0; id < NUM_FBRS; id++) { 1574 u32 __iomem *num_des; 1575 u32 __iomem *full_offset; 1576 u32 __iomem *min_des; 1577 u32 __iomem *base_hi; 1578 u32 __iomem *base_lo; 1579 struct fbr_lookup *fbr = rx_local->fbr[id]; 1580 1581 if (id == 0) { 1582 num_des = &rx_dma->fbr0_num_des; 1583 full_offset = &rx_dma->fbr0_full_offset; 1584 min_des = &rx_dma->fbr0_min_des; 1585 base_hi = &rx_dma->fbr0_base_hi; 1586 base_lo = &rx_dma->fbr0_base_lo; 1587 } else { 1588 num_des = &rx_dma->fbr1_num_des; 1589 full_offset = &rx_dma->fbr1_full_offset; 1590 min_des = &rx_dma->fbr1_min_des; 1591 base_hi = &rx_dma->fbr1_base_hi; 1592 base_lo = &rx_dma->fbr1_base_lo; 1593 } 1594 1595 /* Now's the best time to initialize FBR contents */ 1596 fbr_entry = fbr->ring_virtaddr; 1597 for (entry = 0; entry < fbr->num_entries; entry++) { 1598 fbr_entry->addr_hi = fbr->bus_high[entry]; 1599 fbr_entry->addr_lo = fbr->bus_low[entry]; 1600 fbr_entry->word2 = entry; 1601 fbr_entry++; 1602 } 1603 1604 /* Set the address and parameters of Free buffer ring 1 and 0 */ 1605 writel(upper_32_bits(fbr->ring_physaddr), base_hi); 1606 writel(lower_32_bits(fbr->ring_physaddr), base_lo); 1607 writel(fbr->num_entries - 1, num_des); 1608 writel(ET_DMA10_WRAP, full_offset); 1609 1610 /* This variable tracks the free buffer ring 1 full position, 1611 * so it has to match the above. 1612 */ 1613 fbr->local_full = ET_DMA10_WRAP; 1614 writel(((fbr->num_entries * LO_MARK_PERCENT_FOR_RX) / 100) - 1, 1615 min_des); 1616 } 1617 1618 /* Program the number of packets we will receive before generating an 1619 * interrupt. 1620 * For version B silicon, this value gets updated once autoneg is 1621 *complete. 1622 */ 1623 writel(PARM_RX_NUM_BUFS_DEF, &rx_dma->num_pkt_done); 1624 1625 /* The "time_done" is not working correctly to coalesce interrupts 1626 * after a given time period, but rather is giving us an interrupt 1627 * regardless of whether we have received packets. 1628 * This value gets updated once autoneg is complete. 1629 */ 1630 writel(PARM_RX_TIME_INT_DEF, &rx_dma->max_pkt_time); 1631 1632 spin_unlock_irqrestore(&adapter->rcv_lock, flags); 1633 } 1634 1635 /* et131x_config_tx_dma_regs - Set up the tx dma section of the JAGCore. 1636 * 1637 * Configure the transmit engine with the ring buffers we have created 1638 * and prepare it for use. 1639 */ 1640 static void et131x_config_tx_dma_regs(struct et131x_adapter *adapter) 1641 { 1642 struct txdma_regs __iomem *txdma = &adapter->regs->txdma; 1643 struct tx_ring *tx_ring = &adapter->tx_ring; 1644 1645 /* Load the hardware with the start of the transmit descriptor ring. */ 1646 writel(upper_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_hi); 1647 writel(lower_32_bits(tx_ring->tx_desc_ring_pa), &txdma->pr_base_lo); 1648 1649 /* Initialise the transmit DMA engine */ 1650 writel(NUM_DESC_PER_RING_TX - 1, &txdma->pr_num_des); 1651 1652 /* Load the completion writeback physical address */ 1653 writel(upper_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_hi); 1654 writel(lower_32_bits(tx_ring->tx_status_pa), &txdma->dma_wb_base_lo); 1655 1656 *tx_ring->tx_status = 0; 1657 1658 writel(0, &txdma->service_request); 1659 tx_ring->send_idx = 0; 1660 } 1661 1662 /* et131x_adapter_setup - Set the adapter up as per cassini+ documentation */ 1663 static void et131x_adapter_setup(struct et131x_adapter *adapter) 1664 { 1665 et131x_configure_global_regs(adapter); 1666 et1310_config_mac_regs1(adapter); 1667 1668 /* Configure the MMC registers */ 1669 /* All we need to do is initialize the Memory Control Register */ 1670 writel(ET_MMC_ENABLE, &adapter->regs->mmc.mmc_ctrl); 1671 1672 et1310_config_rxmac_regs(adapter); 1673 et1310_config_txmac_regs(adapter); 1674 1675 et131x_config_rx_dma_regs(adapter); 1676 et131x_config_tx_dma_regs(adapter); 1677 1678 et1310_config_macstat_regs(adapter); 1679 1680 et1310_phy_power_switch(adapter, 0); 1681 et131x_xcvr_init(adapter); 1682 } 1683 1684 /* et131x_soft_reset - Issue soft reset to the hardware, complete for ET1310 */ 1685 static void et131x_soft_reset(struct et131x_adapter *adapter) 1686 { 1687 u32 reg; 1688 1689 /* Disable MAC Core */ 1690 reg = ET_MAC_CFG1_SOFT_RESET | ET_MAC_CFG1_SIM_RESET | 1691 ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC | 1692 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC; 1693 writel(reg, &adapter->regs->mac.cfg1); 1694 1695 reg = ET_RESET_ALL; 1696 writel(reg, &adapter->regs->global.sw_reset); 1697 1698 reg = ET_MAC_CFG1_RESET_RXMC | ET_MAC_CFG1_RESET_TXMC | 1699 ET_MAC_CFG1_RESET_RXFUNC | ET_MAC_CFG1_RESET_TXFUNC; 1700 writel(reg, &adapter->regs->mac.cfg1); 1701 writel(0, &adapter->regs->mac.cfg1); 1702 } 1703 1704 static void et131x_enable_interrupts(struct et131x_adapter *adapter) 1705 { 1706 u32 mask; 1707 1708 if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH) 1709 mask = INT_MASK_ENABLE; 1710 else 1711 mask = INT_MASK_ENABLE_NO_FLOW; 1712 1713 writel(mask, &adapter->regs->global.int_mask); 1714 } 1715 1716 static void et131x_disable_interrupts(struct et131x_adapter *adapter) 1717 { 1718 writel(INT_MASK_DISABLE, &adapter->regs->global.int_mask); 1719 } 1720 1721 static void et131x_tx_dma_disable(struct et131x_adapter *adapter) 1722 { 1723 /* Setup the transmit dma configuration register */ 1724 writel(ET_TXDMA_CSR_HALT | ET_TXDMA_SNGL_EPKT, 1725 &adapter->regs->txdma.csr); 1726 } 1727 1728 static void et131x_enable_txrx(struct net_device *netdev) 1729 { 1730 struct et131x_adapter *adapter = netdev_priv(netdev); 1731 1732 et131x_rx_dma_enable(adapter); 1733 et131x_tx_dma_enable(adapter); 1734 1735 if (adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE) 1736 et131x_enable_interrupts(adapter); 1737 1738 netif_start_queue(netdev); 1739 } 1740 1741 static void et131x_disable_txrx(struct net_device *netdev) 1742 { 1743 struct et131x_adapter *adapter = netdev_priv(netdev); 1744 1745 netif_stop_queue(netdev); 1746 1747 et131x_rx_dma_disable(adapter); 1748 et131x_tx_dma_disable(adapter); 1749 1750 et131x_disable_interrupts(adapter); 1751 } 1752 1753 static void et131x_init_send(struct et131x_adapter *adapter) 1754 { 1755 int i; 1756 struct tx_ring *tx_ring = &adapter->tx_ring; 1757 struct tcb *tcb = tx_ring->tcb_ring; 1758 1759 tx_ring->tcb_qhead = tcb; 1760 1761 memset(tcb, 0, sizeof(struct tcb) * NUM_TCB); 1762 1763 for (i = 0; i < NUM_TCB; i++) { 1764 tcb->next = tcb + 1; 1765 tcb++; 1766 } 1767 1768 tcb--; 1769 tx_ring->tcb_qtail = tcb; 1770 tcb->next = NULL; 1771 /* Curr send queue should now be empty */ 1772 tx_ring->send_head = NULL; 1773 tx_ring->send_tail = NULL; 1774 } 1775 1776 /* et1310_enable_phy_coma 1777 * 1778 * driver receive an phy status change interrupt while in D0 and check that 1779 * phy_status is down. 1780 * 1781 * -- gate off JAGCore; 1782 * -- set gigE PHY in Coma mode 1783 * -- wake on phy_interrupt; Perform software reset JAGCore, 1784 * re-initialize jagcore and gigE PHY 1785 */ 1786 static void et1310_enable_phy_coma(struct et131x_adapter *adapter) 1787 { 1788 u32 pmcsr = readl(&adapter->regs->global.pm_csr); 1789 1790 /* Stop sending packets. */ 1791 adapter->flags |= FMP_ADAPTER_LOWER_POWER; 1792 1793 /* Wait for outstanding Receive packets */ 1794 et131x_disable_txrx(adapter->netdev); 1795 1796 /* Gate off JAGCore 3 clock domains */ 1797 pmcsr &= ~ET_PMCSR_INIT; 1798 writel(pmcsr, &adapter->regs->global.pm_csr); 1799 1800 /* Program gigE PHY in to Coma mode */ 1801 pmcsr |= ET_PM_PHY_SW_COMA; 1802 writel(pmcsr, &adapter->regs->global.pm_csr); 1803 } 1804 1805 static void et1310_disable_phy_coma(struct et131x_adapter *adapter) 1806 { 1807 u32 pmcsr; 1808 1809 pmcsr = readl(&adapter->regs->global.pm_csr); 1810 1811 /* Disable phy_sw_coma register and re-enable JAGCore clocks */ 1812 pmcsr |= ET_PMCSR_INIT; 1813 pmcsr &= ~ET_PM_PHY_SW_COMA; 1814 writel(pmcsr, &adapter->regs->global.pm_csr); 1815 1816 /* Restore the GbE PHY speed and duplex modes; 1817 * Reset JAGCore; re-configure and initialize JAGCore and gigE PHY 1818 */ 1819 1820 /* Re-initialize the send structures */ 1821 et131x_init_send(adapter); 1822 1823 /* Bring the device back to the state it was during init prior to 1824 * autonegotiation being complete. This way, when we get the auto-neg 1825 * complete interrupt, we can complete init by calling ConfigMacREGS2. 1826 */ 1827 et131x_soft_reset(adapter); 1828 1829 et131x_adapter_setup(adapter); 1830 1831 /* Allow Tx to restart */ 1832 adapter->flags &= ~FMP_ADAPTER_LOWER_POWER; 1833 1834 et131x_enable_txrx(adapter->netdev); 1835 } 1836 1837 static inline u32 bump_free_buff_ring(u32 *free_buff_ring, u32 limit) 1838 { 1839 u32 tmp_free_buff_ring = *free_buff_ring; 1840 1841 tmp_free_buff_ring++; 1842 /* This works for all cases where limit < 1024. The 1023 case 1843 * works because 1023++ is 1024 which means the if condition is not 1844 * taken but the carry of the bit into the wrap bit toggles the wrap 1845 * value correctly 1846 */ 1847 if ((tmp_free_buff_ring & ET_DMA10_MASK) > limit) { 1848 tmp_free_buff_ring &= ~ET_DMA10_MASK; 1849 tmp_free_buff_ring ^= ET_DMA10_WRAP; 1850 } 1851 /* For the 1023 case */ 1852 tmp_free_buff_ring &= (ET_DMA10_MASK | ET_DMA10_WRAP); 1853 *free_buff_ring = tmp_free_buff_ring; 1854 return tmp_free_buff_ring; 1855 } 1856 1857 /* et131x_rx_dma_memory_alloc 1858 * 1859 * Allocates Free buffer ring 1 for sure, free buffer ring 0 if required, 1860 * and the Packet Status Ring. 1861 */ 1862 static int et131x_rx_dma_memory_alloc(struct et131x_adapter *adapter) 1863 { 1864 u8 id; 1865 u32 i, j; 1866 u32 bufsize; 1867 u32 psr_size; 1868 u32 fbr_chunksize; 1869 struct rx_ring *rx_ring = &adapter->rx_ring; 1870 struct fbr_lookup *fbr; 1871 1872 /* Alloc memory for the lookup table */ 1873 rx_ring->fbr[0] = kzalloc(sizeof(*fbr), GFP_KERNEL); 1874 if (rx_ring->fbr[0] == NULL) 1875 return -ENOMEM; 1876 rx_ring->fbr[1] = kzalloc(sizeof(*fbr), GFP_KERNEL); 1877 if (rx_ring->fbr[1] == NULL) 1878 return -ENOMEM; 1879 1880 /* The first thing we will do is configure the sizes of the buffer 1881 * rings. These will change based on jumbo packet support. Larger 1882 * jumbo packets increases the size of each entry in FBR0, and the 1883 * number of entries in FBR0, while at the same time decreasing the 1884 * number of entries in FBR1. 1885 * 1886 * FBR1 holds "large" frames, FBR0 holds "small" frames. If FBR1 1887 * entries are huge in order to accommodate a "jumbo" frame, then it 1888 * will have less entries. Conversely, FBR1 will now be relied upon 1889 * to carry more "normal" frames, thus it's entry size also increases 1890 * and the number of entries goes up too (since it now carries 1891 * "small" + "regular" packets. 1892 * 1893 * In this scheme, we try to maintain 512 entries between the two 1894 * rings. Also, FBR1 remains a constant size - when it's size doubles 1895 * the number of entries halves. FBR0 increases in size, however. 1896 */ 1897 if (adapter->registry_jumbo_packet < 2048) { 1898 rx_ring->fbr[0]->buffsize = 256; 1899 rx_ring->fbr[0]->num_entries = 512; 1900 rx_ring->fbr[1]->buffsize = 2048; 1901 rx_ring->fbr[1]->num_entries = 512; 1902 } else if (adapter->registry_jumbo_packet < 4096) { 1903 rx_ring->fbr[0]->buffsize = 512; 1904 rx_ring->fbr[0]->num_entries = 1024; 1905 rx_ring->fbr[1]->buffsize = 4096; 1906 rx_ring->fbr[1]->num_entries = 512; 1907 } else { 1908 rx_ring->fbr[0]->buffsize = 1024; 1909 rx_ring->fbr[0]->num_entries = 768; 1910 rx_ring->fbr[1]->buffsize = 16384; 1911 rx_ring->fbr[1]->num_entries = 128; 1912 } 1913 1914 rx_ring->psr_entries = rx_ring->fbr[0]->num_entries + 1915 rx_ring->fbr[1]->num_entries; 1916 1917 for (id = 0; id < NUM_FBRS; id++) { 1918 fbr = rx_ring->fbr[id]; 1919 /* Allocate an area of memory for Free Buffer Ring */ 1920 bufsize = sizeof(struct fbr_desc) * fbr->num_entries; 1921 fbr->ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev, 1922 bufsize, 1923 &fbr->ring_physaddr, 1924 GFP_KERNEL); 1925 if (!fbr->ring_virtaddr) { 1926 dev_err(&adapter->pdev->dev, 1927 "Cannot alloc memory for Free Buffer Ring %d\n", 1928 id); 1929 return -ENOMEM; 1930 } 1931 } 1932 1933 for (id = 0; id < NUM_FBRS; id++) { 1934 fbr = rx_ring->fbr[id]; 1935 fbr_chunksize = (FBR_CHUNKS * fbr->buffsize); 1936 1937 for (i = 0; i < fbr->num_entries / FBR_CHUNKS; i++) { 1938 dma_addr_t fbr_physaddr; 1939 1940 fbr->mem_virtaddrs[i] = dma_alloc_coherent( 1941 &adapter->pdev->dev, fbr_chunksize, 1942 &fbr->mem_physaddrs[i], 1943 GFP_KERNEL); 1944 1945 if (!fbr->mem_virtaddrs[i]) { 1946 dev_err(&adapter->pdev->dev, 1947 "Could not alloc memory\n"); 1948 return -ENOMEM; 1949 } 1950 1951 /* See NOTE in "Save Physical Address" comment above */ 1952 fbr_physaddr = fbr->mem_physaddrs[i]; 1953 1954 for (j = 0; j < FBR_CHUNKS; j++) { 1955 u32 k = (i * FBR_CHUNKS) + j; 1956 1957 /* Save the Virtual address of this index for 1958 * quick access later 1959 */ 1960 fbr->virt[k] = (u8 *)fbr->mem_virtaddrs[i] + 1961 (j * fbr->buffsize); 1962 1963 /* now store the physical address in the 1964 * descriptor so the device can access it 1965 */ 1966 fbr->bus_high[k] = upper_32_bits(fbr_physaddr); 1967 fbr->bus_low[k] = lower_32_bits(fbr_physaddr); 1968 fbr_physaddr += fbr->buffsize; 1969 } 1970 } 1971 } 1972 1973 /* Allocate an area of memory for FIFO of Packet Status ring entries */ 1974 psr_size = sizeof(struct pkt_stat_desc) * rx_ring->psr_entries; 1975 1976 rx_ring->ps_ring_virtaddr = dma_alloc_coherent(&adapter->pdev->dev, 1977 psr_size, 1978 &rx_ring->ps_ring_physaddr, 1979 GFP_KERNEL); 1980 1981 if (!rx_ring->ps_ring_virtaddr) { 1982 dev_err(&adapter->pdev->dev, 1983 "Cannot alloc memory for Packet Status Ring\n"); 1984 return -ENOMEM; 1985 } 1986 1987 /* Allocate an area of memory for writeback of status information */ 1988 rx_ring->rx_status_block = dma_alloc_coherent(&adapter->pdev->dev, 1989 sizeof(struct rx_status_block), 1990 &rx_ring->rx_status_bus, 1991 GFP_KERNEL); 1992 if (!rx_ring->rx_status_block) { 1993 dev_err(&adapter->pdev->dev, 1994 "Cannot alloc memory for Status Block\n"); 1995 return -ENOMEM; 1996 } 1997 rx_ring->num_rfd = NIC_DEFAULT_NUM_RFD; 1998 1999 /* The RFDs are going to be put on lists later on, so initialize the 2000 * lists now. 2001 */ 2002 INIT_LIST_HEAD(&rx_ring->recv_list); 2003 return 0; 2004 } 2005 2006 static void et131x_rx_dma_memory_free(struct et131x_adapter *adapter) 2007 { 2008 u8 id; 2009 u32 ii; 2010 u32 bufsize; 2011 u32 psr_size; 2012 struct rfd *rfd; 2013 struct rx_ring *rx_ring = &adapter->rx_ring; 2014 struct fbr_lookup *fbr; 2015 2016 /* Free RFDs and associated packet descriptors */ 2017 WARN_ON(rx_ring->num_ready_recv != rx_ring->num_rfd); 2018 2019 while (!list_empty(&rx_ring->recv_list)) { 2020 rfd = list_entry(rx_ring->recv_list.next, 2021 struct rfd, list_node); 2022 2023 list_del(&rfd->list_node); 2024 rfd->skb = NULL; 2025 kfree(rfd); 2026 } 2027 2028 /* Free Free Buffer Rings */ 2029 for (id = 0; id < NUM_FBRS; id++) { 2030 fbr = rx_ring->fbr[id]; 2031 2032 if (!fbr || !fbr->ring_virtaddr) 2033 continue; 2034 2035 /* First the packet memory */ 2036 for (ii = 0; ii < fbr->num_entries / FBR_CHUNKS; ii++) { 2037 if (fbr->mem_virtaddrs[ii]) { 2038 bufsize = fbr->buffsize * FBR_CHUNKS; 2039 2040 dma_free_coherent(&adapter->pdev->dev, 2041 bufsize, 2042 fbr->mem_virtaddrs[ii], 2043 fbr->mem_physaddrs[ii]); 2044 2045 fbr->mem_virtaddrs[ii] = NULL; 2046 } 2047 } 2048 2049 bufsize = sizeof(struct fbr_desc) * fbr->num_entries; 2050 2051 dma_free_coherent(&adapter->pdev->dev, 2052 bufsize, 2053 fbr->ring_virtaddr, 2054 fbr->ring_physaddr); 2055 2056 fbr->ring_virtaddr = NULL; 2057 } 2058 2059 /* Free Packet Status Ring */ 2060 if (rx_ring->ps_ring_virtaddr) { 2061 psr_size = sizeof(struct pkt_stat_desc) * rx_ring->psr_entries; 2062 2063 dma_free_coherent(&adapter->pdev->dev, psr_size, 2064 rx_ring->ps_ring_virtaddr, 2065 rx_ring->ps_ring_physaddr); 2066 2067 rx_ring->ps_ring_virtaddr = NULL; 2068 } 2069 2070 /* Free area of memory for the writeback of status information */ 2071 if (rx_ring->rx_status_block) { 2072 dma_free_coherent(&adapter->pdev->dev, 2073 sizeof(struct rx_status_block), 2074 rx_ring->rx_status_block, 2075 rx_ring->rx_status_bus); 2076 rx_ring->rx_status_block = NULL; 2077 } 2078 2079 /* Free the FBR Lookup Table */ 2080 kfree(rx_ring->fbr[0]); 2081 kfree(rx_ring->fbr[1]); 2082 2083 /* Reset Counters */ 2084 rx_ring->num_ready_recv = 0; 2085 } 2086 2087 /* et131x_init_recv - Initialize receive data structures */ 2088 static int et131x_init_recv(struct et131x_adapter *adapter) 2089 { 2090 struct rfd *rfd; 2091 u32 rfdct; 2092 struct rx_ring *rx_ring = &adapter->rx_ring; 2093 2094 /* Setup each RFD */ 2095 for (rfdct = 0; rfdct < rx_ring->num_rfd; rfdct++) { 2096 rfd = kzalloc(sizeof(*rfd), GFP_ATOMIC | GFP_DMA); 2097 if (!rfd) 2098 return -ENOMEM; 2099 2100 rfd->skb = NULL; 2101 2102 /* Add this RFD to the recv_list */ 2103 list_add_tail(&rfd->list_node, &rx_ring->recv_list); 2104 2105 /* Increment the available RFD's */ 2106 rx_ring->num_ready_recv++; 2107 } 2108 2109 return 0; 2110 } 2111 2112 /* et131x_set_rx_dma_timer - Set the heartbeat timer according to line rate */ 2113 static void et131x_set_rx_dma_timer(struct et131x_adapter *adapter) 2114 { 2115 struct phy_device *phydev = adapter->netdev->phydev; 2116 2117 /* For version B silicon, we do not use the RxDMA timer for 10 and 100 2118 * Mbits/s line rates. We do not enable and RxDMA interrupt coalescing. 2119 */ 2120 if ((phydev->speed == SPEED_100) || (phydev->speed == SPEED_10)) { 2121 writel(0, &adapter->regs->rxdma.max_pkt_time); 2122 writel(1, &adapter->regs->rxdma.num_pkt_done); 2123 } 2124 } 2125 2126 /* nic_return_rfd - Recycle a RFD and put it back onto the receive list */ 2127 static void nic_return_rfd(struct et131x_adapter *adapter, struct rfd *rfd) 2128 { 2129 struct rx_ring *rx_local = &adapter->rx_ring; 2130 struct rxdma_regs __iomem *rx_dma = &adapter->regs->rxdma; 2131 u16 buff_index = rfd->bufferindex; 2132 u8 ring_index = rfd->ringindex; 2133 unsigned long flags; 2134 struct fbr_lookup *fbr = rx_local->fbr[ring_index]; 2135 2136 /* We don't use any of the OOB data besides status. Otherwise, we 2137 * need to clean up OOB data 2138 */ 2139 if (buff_index < fbr->num_entries) { 2140 u32 free_buff_ring; 2141 u32 __iomem *offset; 2142 struct fbr_desc *next; 2143 2144 if (ring_index == 0) 2145 offset = &rx_dma->fbr0_full_offset; 2146 else 2147 offset = &rx_dma->fbr1_full_offset; 2148 2149 next = (struct fbr_desc *)(fbr->ring_virtaddr) + 2150 INDEX10(fbr->local_full); 2151 2152 /* Handle the Free Buffer Ring advancement here. Write 2153 * the PA / Buffer Index for the returned buffer into 2154 * the oldest (next to be freed)FBR entry 2155 */ 2156 next->addr_hi = fbr->bus_high[buff_index]; 2157 next->addr_lo = fbr->bus_low[buff_index]; 2158 next->word2 = buff_index; 2159 2160 free_buff_ring = bump_free_buff_ring(&fbr->local_full, 2161 fbr->num_entries - 1); 2162 writel(free_buff_ring, offset); 2163 } else { 2164 dev_err(&adapter->pdev->dev, 2165 "%s illegal Buffer Index returned\n", __func__); 2166 } 2167 2168 /* The processing on this RFD is done, so put it back on the tail of 2169 * our list 2170 */ 2171 spin_lock_irqsave(&adapter->rcv_lock, flags); 2172 list_add_tail(&rfd->list_node, &rx_local->recv_list); 2173 rx_local->num_ready_recv++; 2174 spin_unlock_irqrestore(&adapter->rcv_lock, flags); 2175 2176 WARN_ON(rx_local->num_ready_recv > rx_local->num_rfd); 2177 } 2178 2179 /* nic_rx_pkts - Checks the hardware for available packets 2180 * 2181 * Checks the hardware for available packets, using completion ring 2182 * If packets are available, it gets an RFD from the recv_list, attaches 2183 * the packet to it, puts the RFD in the RecvPendList, and also returns 2184 * the pointer to the RFD. 2185 */ 2186 static struct rfd *nic_rx_pkts(struct et131x_adapter *adapter) 2187 { 2188 struct rx_ring *rx_local = &adapter->rx_ring; 2189 struct rx_status_block *status; 2190 struct pkt_stat_desc *psr; 2191 struct rfd *rfd; 2192 unsigned long flags; 2193 struct list_head *element; 2194 u8 ring_index; 2195 u16 buff_index; 2196 u32 len; 2197 u32 word0; 2198 u32 word1; 2199 struct sk_buff *skb; 2200 struct fbr_lookup *fbr; 2201 2202 /* RX Status block is written by the DMA engine prior to every 2203 * interrupt. It contains the next to be used entry in the Packet 2204 * Status Ring, and also the two Free Buffer rings. 2205 */ 2206 status = rx_local->rx_status_block; 2207 word1 = status->word1 >> 16; 2208 2209 /* Check the PSR and wrap bits do not match */ 2210 if ((word1 & 0x1FFF) == (rx_local->local_psr_full & 0x1FFF)) 2211 return NULL; /* Looks like this ring is not updated yet */ 2212 2213 /* The packet status ring indicates that data is available. */ 2214 psr = (struct pkt_stat_desc *)(rx_local->ps_ring_virtaddr) + 2215 (rx_local->local_psr_full & 0xFFF); 2216 2217 /* Grab any information that is required once the PSR is advanced, 2218 * since we can no longer rely on the memory being accurate 2219 */ 2220 len = psr->word1 & 0xFFFF; 2221 ring_index = (psr->word1 >> 26) & 0x03; 2222 fbr = rx_local->fbr[ring_index]; 2223 buff_index = (psr->word1 >> 16) & 0x3FF; 2224 word0 = psr->word0; 2225 2226 /* Indicate that we have used this PSR entry. */ 2227 /* FIXME wrap 12 */ 2228 add_12bit(&rx_local->local_psr_full, 1); 2229 if ((rx_local->local_psr_full & 0xFFF) > rx_local->psr_entries - 1) { 2230 /* Clear psr full and toggle the wrap bit */ 2231 rx_local->local_psr_full &= ~0xFFF; 2232 rx_local->local_psr_full ^= 0x1000; 2233 } 2234 2235 writel(rx_local->local_psr_full, &adapter->regs->rxdma.psr_full_offset); 2236 2237 if (ring_index > 1 || buff_index > fbr->num_entries - 1) { 2238 /* Illegal buffer or ring index cannot be used by S/W*/ 2239 dev_err(&adapter->pdev->dev, 2240 "NICRxPkts PSR Entry %d indicates length of %d and/or bad bi(%d)\n", 2241 rx_local->local_psr_full & 0xFFF, len, buff_index); 2242 return NULL; 2243 } 2244 2245 /* Get and fill the RFD. */ 2246 spin_lock_irqsave(&adapter->rcv_lock, flags); 2247 2248 element = rx_local->recv_list.next; 2249 rfd = list_entry(element, struct rfd, list_node); 2250 2251 if (!rfd) { 2252 spin_unlock_irqrestore(&adapter->rcv_lock, flags); 2253 return NULL; 2254 } 2255 2256 list_del(&rfd->list_node); 2257 rx_local->num_ready_recv--; 2258 2259 spin_unlock_irqrestore(&adapter->rcv_lock, flags); 2260 2261 rfd->bufferindex = buff_index; 2262 rfd->ringindex = ring_index; 2263 2264 /* In V1 silicon, there is a bug which screws up filtering of runt 2265 * packets. Therefore runt packet filtering is disabled in the MAC and 2266 * the packets are dropped here. They are also counted here. 2267 */ 2268 if (len < (NIC_MIN_PACKET_SIZE + 4)) { 2269 adapter->stats.rx_other_errs++; 2270 rfd->len = 0; 2271 goto out; 2272 } 2273 2274 if ((word0 & ALCATEL_MULTICAST_PKT) && !(word0 & ALCATEL_BROADCAST_PKT)) 2275 adapter->stats.multicast_pkts_rcvd++; 2276 2277 rfd->len = len; 2278 2279 skb = dev_alloc_skb(rfd->len + 2); 2280 if (!skb) 2281 return NULL; 2282 2283 adapter->netdev->stats.rx_bytes += rfd->len; 2284 2285 skb_put_data(skb, fbr->virt[buff_index], rfd->len); 2286 2287 skb->protocol = eth_type_trans(skb, adapter->netdev); 2288 skb->ip_summed = CHECKSUM_NONE; 2289 netif_receive_skb(skb); 2290 2291 out: 2292 nic_return_rfd(adapter, rfd); 2293 return rfd; 2294 } 2295 2296 static int et131x_handle_recv_pkts(struct et131x_adapter *adapter, int budget) 2297 { 2298 struct rfd *rfd = NULL; 2299 int count = 0; 2300 int limit = budget; 2301 bool done = true; 2302 struct rx_ring *rx_ring = &adapter->rx_ring; 2303 2304 if (budget > MAX_PACKETS_HANDLED) 2305 limit = MAX_PACKETS_HANDLED; 2306 2307 /* Process up to available RFD's */ 2308 while (count < limit) { 2309 if (list_empty(&rx_ring->recv_list)) { 2310 WARN_ON(rx_ring->num_ready_recv != 0); 2311 done = false; 2312 break; 2313 } 2314 2315 rfd = nic_rx_pkts(adapter); 2316 2317 if (rfd == NULL) 2318 break; 2319 2320 /* Do not receive any packets until a filter has been set. 2321 * Do not receive any packets until we have link. 2322 * If length is zero, return the RFD in order to advance the 2323 * Free buffer ring. 2324 */ 2325 if (!adapter->packet_filter || 2326 !netif_carrier_ok(adapter->netdev) || 2327 rfd->len == 0) 2328 continue; 2329 2330 adapter->netdev->stats.rx_packets++; 2331 2332 if (rx_ring->num_ready_recv < RFD_LOW_WATER_MARK) 2333 dev_warn(&adapter->pdev->dev, "RFD's are running out\n"); 2334 2335 count++; 2336 } 2337 2338 if (count == limit || !done) { 2339 rx_ring->unfinished_receives = true; 2340 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO, 2341 &adapter->regs->global.watchdog_timer); 2342 } else { 2343 /* Watchdog timer will disable itself if appropriate. */ 2344 rx_ring->unfinished_receives = false; 2345 } 2346 2347 return count; 2348 } 2349 2350 /* et131x_tx_dma_memory_alloc 2351 * 2352 * Allocates memory that will be visible both to the device and to the CPU. 2353 * The OS will pass us packets, pointers to which we will insert in the Tx 2354 * Descriptor queue. The device will read this queue to find the packets in 2355 * memory. The device will update the "status" in memory each time it xmits a 2356 * packet. 2357 */ 2358 static int et131x_tx_dma_memory_alloc(struct et131x_adapter *adapter) 2359 { 2360 int desc_size = 0; 2361 struct tx_ring *tx_ring = &adapter->tx_ring; 2362 2363 /* Allocate memory for the TCB's (Transmit Control Block) */ 2364 tx_ring->tcb_ring = kcalloc(NUM_TCB, sizeof(struct tcb), 2365 GFP_KERNEL | GFP_DMA); 2366 if (!tx_ring->tcb_ring) 2367 return -ENOMEM; 2368 2369 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX); 2370 tx_ring->tx_desc_ring = dma_alloc_coherent(&adapter->pdev->dev, 2371 desc_size, 2372 &tx_ring->tx_desc_ring_pa, 2373 GFP_KERNEL); 2374 if (!tx_ring->tx_desc_ring) { 2375 dev_err(&adapter->pdev->dev, 2376 "Cannot alloc memory for Tx Ring\n"); 2377 return -ENOMEM; 2378 } 2379 2380 tx_ring->tx_status = dma_alloc_coherent(&adapter->pdev->dev, 2381 sizeof(u32), 2382 &tx_ring->tx_status_pa, 2383 GFP_KERNEL); 2384 if (!tx_ring->tx_status) { 2385 dev_err(&adapter->pdev->dev, 2386 "Cannot alloc memory for Tx status block\n"); 2387 return -ENOMEM; 2388 } 2389 return 0; 2390 } 2391 2392 static void et131x_tx_dma_memory_free(struct et131x_adapter *adapter) 2393 { 2394 int desc_size = 0; 2395 struct tx_ring *tx_ring = &adapter->tx_ring; 2396 2397 if (tx_ring->tx_desc_ring) { 2398 /* Free memory relating to Tx rings here */ 2399 desc_size = (sizeof(struct tx_desc) * NUM_DESC_PER_RING_TX); 2400 dma_free_coherent(&adapter->pdev->dev, 2401 desc_size, 2402 tx_ring->tx_desc_ring, 2403 tx_ring->tx_desc_ring_pa); 2404 tx_ring->tx_desc_ring = NULL; 2405 } 2406 2407 /* Free memory for the Tx status block */ 2408 if (tx_ring->tx_status) { 2409 dma_free_coherent(&adapter->pdev->dev, 2410 sizeof(u32), 2411 tx_ring->tx_status, 2412 tx_ring->tx_status_pa); 2413 2414 tx_ring->tx_status = NULL; 2415 } 2416 /* Free the memory for the tcb structures */ 2417 kfree(tx_ring->tcb_ring); 2418 } 2419 2420 /* nic_send_packet - NIC specific send handler for version B silicon. */ 2421 static int nic_send_packet(struct et131x_adapter *adapter, struct tcb *tcb) 2422 { 2423 u32 i; 2424 struct tx_desc desc[24]; 2425 u32 frag = 0; 2426 u32 thiscopy, remainder; 2427 struct sk_buff *skb = tcb->skb; 2428 u32 nr_frags = skb_shinfo(skb)->nr_frags + 1; 2429 skb_frag_t *frags = &skb_shinfo(skb)->frags[0]; 2430 struct phy_device *phydev = adapter->netdev->phydev; 2431 dma_addr_t dma_addr; 2432 struct tx_ring *tx_ring = &adapter->tx_ring; 2433 2434 /* Part of the optimizations of this send routine restrict us to 2435 * sending 24 fragments at a pass. In practice we should never see 2436 * more than 5 fragments. 2437 */ 2438 2439 /* nr_frags should be no more than 18. */ 2440 BUILD_BUG_ON(MAX_SKB_FRAGS + 1 > 23); 2441 2442 memset(desc, 0, sizeof(struct tx_desc) * (nr_frags + 1)); 2443 2444 for (i = 0; i < nr_frags; i++) { 2445 /* If there is something in this element, lets get a 2446 * descriptor from the ring and get the necessary data 2447 */ 2448 if (i == 0) { 2449 /* If the fragments are smaller than a standard MTU, 2450 * then map them to a single descriptor in the Tx 2451 * Desc ring. However, if they're larger, as is 2452 * possible with support for jumbo packets, then 2453 * split them each across 2 descriptors. 2454 * 2455 * This will work until we determine why the hardware 2456 * doesn't seem to like large fragments. 2457 */ 2458 if (skb_headlen(skb) <= 1514) { 2459 /* Low 16bits are length, high is vlan and 2460 * unused currently so zero 2461 */ 2462 desc[frag].len_vlan = skb_headlen(skb); 2463 dma_addr = dma_map_single(&adapter->pdev->dev, 2464 skb->data, 2465 skb_headlen(skb), 2466 DMA_TO_DEVICE); 2467 desc[frag].addr_lo = lower_32_bits(dma_addr); 2468 desc[frag].addr_hi = upper_32_bits(dma_addr); 2469 frag++; 2470 } else { 2471 desc[frag].len_vlan = skb_headlen(skb) / 2; 2472 dma_addr = dma_map_single(&adapter->pdev->dev, 2473 skb->data, 2474 skb_headlen(skb) / 2, 2475 DMA_TO_DEVICE); 2476 desc[frag].addr_lo = lower_32_bits(dma_addr); 2477 desc[frag].addr_hi = upper_32_bits(dma_addr); 2478 frag++; 2479 2480 desc[frag].len_vlan = skb_headlen(skb) / 2; 2481 dma_addr = dma_map_single(&adapter->pdev->dev, 2482 skb->data + 2483 skb_headlen(skb) / 2, 2484 skb_headlen(skb) / 2, 2485 DMA_TO_DEVICE); 2486 desc[frag].addr_lo = lower_32_bits(dma_addr); 2487 desc[frag].addr_hi = upper_32_bits(dma_addr); 2488 frag++; 2489 } 2490 } else { 2491 desc[frag].len_vlan = skb_frag_size(&frags[i - 1]); 2492 dma_addr = skb_frag_dma_map(&adapter->pdev->dev, 2493 &frags[i - 1], 2494 0, 2495 desc[frag].len_vlan, 2496 DMA_TO_DEVICE); 2497 desc[frag].addr_lo = lower_32_bits(dma_addr); 2498 desc[frag].addr_hi = upper_32_bits(dma_addr); 2499 frag++; 2500 } 2501 } 2502 2503 if (phydev && phydev->speed == SPEED_1000) { 2504 if (++tx_ring->since_irq == PARM_TX_NUM_BUFS_DEF) { 2505 /* Last element & Interrupt flag */ 2506 desc[frag - 1].flags = 2507 TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT; 2508 tx_ring->since_irq = 0; 2509 } else { /* Last element */ 2510 desc[frag - 1].flags = TXDESC_FLAG_LASTPKT; 2511 } 2512 } else { 2513 desc[frag - 1].flags = 2514 TXDESC_FLAG_INTPROC | TXDESC_FLAG_LASTPKT; 2515 } 2516 2517 desc[0].flags |= TXDESC_FLAG_FIRSTPKT; 2518 2519 tcb->index_start = tx_ring->send_idx; 2520 tcb->stale = 0; 2521 2522 thiscopy = NUM_DESC_PER_RING_TX - INDEX10(tx_ring->send_idx); 2523 2524 if (thiscopy >= frag) { 2525 remainder = 0; 2526 thiscopy = frag; 2527 } else { 2528 remainder = frag - thiscopy; 2529 } 2530 2531 memcpy(tx_ring->tx_desc_ring + INDEX10(tx_ring->send_idx), 2532 desc, 2533 sizeof(struct tx_desc) * thiscopy); 2534 2535 add_10bit(&tx_ring->send_idx, thiscopy); 2536 2537 if (INDEX10(tx_ring->send_idx) == 0 || 2538 INDEX10(tx_ring->send_idx) == NUM_DESC_PER_RING_TX) { 2539 tx_ring->send_idx &= ~ET_DMA10_MASK; 2540 tx_ring->send_idx ^= ET_DMA10_WRAP; 2541 } 2542 2543 if (remainder) { 2544 memcpy(tx_ring->tx_desc_ring, 2545 desc + thiscopy, 2546 sizeof(struct tx_desc) * remainder); 2547 2548 add_10bit(&tx_ring->send_idx, remainder); 2549 } 2550 2551 if (INDEX10(tx_ring->send_idx) == 0) { 2552 if (tx_ring->send_idx) 2553 tcb->index = NUM_DESC_PER_RING_TX - 1; 2554 else 2555 tcb->index = ET_DMA10_WRAP|(NUM_DESC_PER_RING_TX - 1); 2556 } else { 2557 tcb->index = tx_ring->send_idx - 1; 2558 } 2559 2560 spin_lock(&adapter->tcb_send_qlock); 2561 2562 if (tx_ring->send_tail) 2563 tx_ring->send_tail->next = tcb; 2564 else 2565 tx_ring->send_head = tcb; 2566 2567 tx_ring->send_tail = tcb; 2568 2569 WARN_ON(tcb->next != NULL); 2570 2571 tx_ring->used++; 2572 2573 spin_unlock(&adapter->tcb_send_qlock); 2574 2575 /* Write the new write pointer back to the device. */ 2576 writel(tx_ring->send_idx, &adapter->regs->txdma.service_request); 2577 2578 /* For Gig only, we use Tx Interrupt coalescing. Enable the software 2579 * timer to wake us up if this packet isn't followed by N more. 2580 */ 2581 if (phydev && phydev->speed == SPEED_1000) { 2582 writel(PARM_TX_TIME_INT_DEF * NANO_IN_A_MICRO, 2583 &adapter->regs->global.watchdog_timer); 2584 } 2585 return 0; 2586 } 2587 2588 static int send_packet(struct sk_buff *skb, struct et131x_adapter *adapter) 2589 { 2590 int status; 2591 struct tcb *tcb; 2592 unsigned long flags; 2593 struct tx_ring *tx_ring = &adapter->tx_ring; 2594 2595 /* All packets must have at least a MAC address and a protocol type */ 2596 if (skb->len < ETH_HLEN) 2597 return -EIO; 2598 2599 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags); 2600 2601 tcb = tx_ring->tcb_qhead; 2602 2603 if (tcb == NULL) { 2604 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags); 2605 return -ENOMEM; 2606 } 2607 2608 tx_ring->tcb_qhead = tcb->next; 2609 2610 if (tx_ring->tcb_qhead == NULL) 2611 tx_ring->tcb_qtail = NULL; 2612 2613 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags); 2614 2615 tcb->skb = skb; 2616 tcb->next = NULL; 2617 2618 status = nic_send_packet(adapter, tcb); 2619 2620 if (status != 0) { 2621 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags); 2622 2623 if (tx_ring->tcb_qtail) 2624 tx_ring->tcb_qtail->next = tcb; 2625 else 2626 /* Apparently ready Q is empty. */ 2627 tx_ring->tcb_qhead = tcb; 2628 2629 tx_ring->tcb_qtail = tcb; 2630 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags); 2631 return status; 2632 } 2633 WARN_ON(tx_ring->used > NUM_TCB); 2634 return 0; 2635 } 2636 2637 /* free_send_packet - Recycle a struct tcb */ 2638 static inline void free_send_packet(struct et131x_adapter *adapter, 2639 struct tcb *tcb) 2640 { 2641 unsigned long flags; 2642 struct tx_desc *desc = NULL; 2643 struct net_device_stats *stats = &adapter->netdev->stats; 2644 struct tx_ring *tx_ring = &adapter->tx_ring; 2645 u64 dma_addr; 2646 2647 if (tcb->skb) { 2648 stats->tx_bytes += tcb->skb->len; 2649 2650 /* Iterate through the TX descriptors on the ring 2651 * corresponding to this packet and umap the fragments 2652 * they point to 2653 */ 2654 do { 2655 desc = tx_ring->tx_desc_ring + 2656 INDEX10(tcb->index_start); 2657 2658 dma_addr = desc->addr_lo; 2659 dma_addr |= (u64)desc->addr_hi << 32; 2660 2661 dma_unmap_single(&adapter->pdev->dev, 2662 dma_addr, 2663 desc->len_vlan, DMA_TO_DEVICE); 2664 2665 add_10bit(&tcb->index_start, 1); 2666 if (INDEX10(tcb->index_start) >= 2667 NUM_DESC_PER_RING_TX) { 2668 tcb->index_start &= ~ET_DMA10_MASK; 2669 tcb->index_start ^= ET_DMA10_WRAP; 2670 } 2671 } while (desc != tx_ring->tx_desc_ring + INDEX10(tcb->index)); 2672 2673 dev_kfree_skb_any(tcb->skb); 2674 } 2675 2676 memset(tcb, 0, sizeof(struct tcb)); 2677 2678 /* Add the TCB to the Ready Q */ 2679 spin_lock_irqsave(&adapter->tcb_ready_qlock, flags); 2680 2681 stats->tx_packets++; 2682 2683 if (tx_ring->tcb_qtail) 2684 tx_ring->tcb_qtail->next = tcb; 2685 else /* Apparently ready Q is empty. */ 2686 tx_ring->tcb_qhead = tcb; 2687 2688 tx_ring->tcb_qtail = tcb; 2689 2690 spin_unlock_irqrestore(&adapter->tcb_ready_qlock, flags); 2691 WARN_ON(tx_ring->used < 0); 2692 } 2693 2694 /* et131x_free_busy_send_packets - Free and complete the stopped active sends */ 2695 static void et131x_free_busy_send_packets(struct et131x_adapter *adapter) 2696 { 2697 struct tcb *tcb; 2698 unsigned long flags; 2699 u32 freed = 0; 2700 struct tx_ring *tx_ring = &adapter->tx_ring; 2701 2702 /* Any packets being sent? Check the first TCB on the send list */ 2703 spin_lock_irqsave(&adapter->tcb_send_qlock, flags); 2704 2705 tcb = tx_ring->send_head; 2706 2707 while (tcb != NULL && freed < NUM_TCB) { 2708 struct tcb *next = tcb->next; 2709 2710 tx_ring->send_head = next; 2711 2712 if (next == NULL) 2713 tx_ring->send_tail = NULL; 2714 2715 tx_ring->used--; 2716 2717 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags); 2718 2719 freed++; 2720 free_send_packet(adapter, tcb); 2721 2722 spin_lock_irqsave(&adapter->tcb_send_qlock, flags); 2723 2724 tcb = tx_ring->send_head; 2725 } 2726 2727 WARN_ON(freed == NUM_TCB); 2728 2729 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags); 2730 2731 tx_ring->used = 0; 2732 } 2733 2734 /* et131x_handle_send_pkts 2735 * 2736 * Re-claim the send resources, complete sends and get more to send from 2737 * the send wait queue. 2738 */ 2739 static void et131x_handle_send_pkts(struct et131x_adapter *adapter) 2740 { 2741 unsigned long flags; 2742 u32 serviced; 2743 struct tcb *tcb; 2744 u32 index; 2745 struct tx_ring *tx_ring = &adapter->tx_ring; 2746 2747 serviced = readl(&adapter->regs->txdma.new_service_complete); 2748 index = INDEX10(serviced); 2749 2750 /* Has the ring wrapped? Process any descriptors that do not have 2751 * the same "wrap" indicator as the current completion indicator 2752 */ 2753 spin_lock_irqsave(&adapter->tcb_send_qlock, flags); 2754 2755 tcb = tx_ring->send_head; 2756 2757 while (tcb && 2758 ((serviced ^ tcb->index) & ET_DMA10_WRAP) && 2759 index < INDEX10(tcb->index)) { 2760 tx_ring->used--; 2761 tx_ring->send_head = tcb->next; 2762 if (tcb->next == NULL) 2763 tx_ring->send_tail = NULL; 2764 2765 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags); 2766 free_send_packet(adapter, tcb); 2767 spin_lock_irqsave(&adapter->tcb_send_qlock, flags); 2768 2769 /* Goto the next packet */ 2770 tcb = tx_ring->send_head; 2771 } 2772 while (tcb && 2773 !((serviced ^ tcb->index) & ET_DMA10_WRAP) && 2774 index > (tcb->index & ET_DMA10_MASK)) { 2775 tx_ring->used--; 2776 tx_ring->send_head = tcb->next; 2777 if (tcb->next == NULL) 2778 tx_ring->send_tail = NULL; 2779 2780 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags); 2781 free_send_packet(adapter, tcb); 2782 spin_lock_irqsave(&adapter->tcb_send_qlock, flags); 2783 2784 /* Goto the next packet */ 2785 tcb = tx_ring->send_head; 2786 } 2787 2788 /* Wake up the queue when we hit a low-water mark */ 2789 if (tx_ring->used <= NUM_TCB / 3) 2790 netif_wake_queue(adapter->netdev); 2791 2792 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags); 2793 } 2794 2795 static int et131x_get_regs_len(struct net_device *netdev) 2796 { 2797 #define ET131X_REGS_LEN 256 2798 return ET131X_REGS_LEN * sizeof(u32); 2799 } 2800 2801 static void et131x_get_regs(struct net_device *netdev, 2802 struct ethtool_regs *regs, void *regs_data) 2803 { 2804 struct et131x_adapter *adapter = netdev_priv(netdev); 2805 struct address_map __iomem *aregs = adapter->regs; 2806 u32 *regs_buff = regs_data; 2807 u32 num = 0; 2808 u16 tmp; 2809 2810 memset(regs_data, 0, et131x_get_regs_len(netdev)); 2811 2812 regs->version = (1 << 24) | (adapter->pdev->revision << 16) | 2813 adapter->pdev->device; 2814 2815 /* PHY regs */ 2816 et131x_mii_read(adapter, MII_BMCR, &tmp); 2817 regs_buff[num++] = tmp; 2818 et131x_mii_read(adapter, MII_BMSR, &tmp); 2819 regs_buff[num++] = tmp; 2820 et131x_mii_read(adapter, MII_PHYSID1, &tmp); 2821 regs_buff[num++] = tmp; 2822 et131x_mii_read(adapter, MII_PHYSID2, &tmp); 2823 regs_buff[num++] = tmp; 2824 et131x_mii_read(adapter, MII_ADVERTISE, &tmp); 2825 regs_buff[num++] = tmp; 2826 et131x_mii_read(adapter, MII_LPA, &tmp); 2827 regs_buff[num++] = tmp; 2828 et131x_mii_read(adapter, MII_EXPANSION, &tmp); 2829 regs_buff[num++] = tmp; 2830 /* Autoneg next page transmit reg */ 2831 et131x_mii_read(adapter, 0x07, &tmp); 2832 regs_buff[num++] = tmp; 2833 /* Link partner next page reg */ 2834 et131x_mii_read(adapter, 0x08, &tmp); 2835 regs_buff[num++] = tmp; 2836 et131x_mii_read(adapter, MII_CTRL1000, &tmp); 2837 regs_buff[num++] = tmp; 2838 et131x_mii_read(adapter, MII_STAT1000, &tmp); 2839 regs_buff[num++] = tmp; 2840 et131x_mii_read(adapter, 0x0b, &tmp); 2841 regs_buff[num++] = tmp; 2842 et131x_mii_read(adapter, 0x0c, &tmp); 2843 regs_buff[num++] = tmp; 2844 et131x_mii_read(adapter, MII_MMD_CTRL, &tmp); 2845 regs_buff[num++] = tmp; 2846 et131x_mii_read(adapter, MII_MMD_DATA, &tmp); 2847 regs_buff[num++] = tmp; 2848 et131x_mii_read(adapter, MII_ESTATUS, &tmp); 2849 regs_buff[num++] = tmp; 2850 2851 et131x_mii_read(adapter, PHY_INDEX_REG, &tmp); 2852 regs_buff[num++] = tmp; 2853 et131x_mii_read(adapter, PHY_DATA_REG, &tmp); 2854 regs_buff[num++] = tmp; 2855 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG, &tmp); 2856 regs_buff[num++] = tmp; 2857 et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL, &tmp); 2858 regs_buff[num++] = tmp; 2859 et131x_mii_read(adapter, PHY_LOOPBACK_CONTROL + 1, &tmp); 2860 regs_buff[num++] = tmp; 2861 2862 et131x_mii_read(adapter, PHY_REGISTER_MGMT_CONTROL, &tmp); 2863 regs_buff[num++] = tmp; 2864 et131x_mii_read(adapter, PHY_CONFIG, &tmp); 2865 regs_buff[num++] = tmp; 2866 et131x_mii_read(adapter, PHY_PHY_CONTROL, &tmp); 2867 regs_buff[num++] = tmp; 2868 et131x_mii_read(adapter, PHY_INTERRUPT_MASK, &tmp); 2869 regs_buff[num++] = tmp; 2870 et131x_mii_read(adapter, PHY_INTERRUPT_STATUS, &tmp); 2871 regs_buff[num++] = tmp; 2872 et131x_mii_read(adapter, PHY_PHY_STATUS, &tmp); 2873 regs_buff[num++] = tmp; 2874 et131x_mii_read(adapter, PHY_LED_1, &tmp); 2875 regs_buff[num++] = tmp; 2876 et131x_mii_read(adapter, PHY_LED_2, &tmp); 2877 regs_buff[num++] = tmp; 2878 2879 /* Global regs */ 2880 regs_buff[num++] = readl(&aregs->global.txq_start_addr); 2881 regs_buff[num++] = readl(&aregs->global.txq_end_addr); 2882 regs_buff[num++] = readl(&aregs->global.rxq_start_addr); 2883 regs_buff[num++] = readl(&aregs->global.rxq_end_addr); 2884 regs_buff[num++] = readl(&aregs->global.pm_csr); 2885 regs_buff[num++] = adapter->stats.interrupt_status; 2886 regs_buff[num++] = readl(&aregs->global.int_mask); 2887 regs_buff[num++] = readl(&aregs->global.int_alias_clr_en); 2888 regs_buff[num++] = readl(&aregs->global.int_status_alias); 2889 regs_buff[num++] = readl(&aregs->global.sw_reset); 2890 regs_buff[num++] = readl(&aregs->global.slv_timer); 2891 regs_buff[num++] = readl(&aregs->global.msi_config); 2892 regs_buff[num++] = readl(&aregs->global.loopback); 2893 regs_buff[num++] = readl(&aregs->global.watchdog_timer); 2894 2895 /* TXDMA regs */ 2896 regs_buff[num++] = readl(&aregs->txdma.csr); 2897 regs_buff[num++] = readl(&aregs->txdma.pr_base_hi); 2898 regs_buff[num++] = readl(&aregs->txdma.pr_base_lo); 2899 regs_buff[num++] = readl(&aregs->txdma.pr_num_des); 2900 regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr); 2901 regs_buff[num++] = readl(&aregs->txdma.txq_wr_addr_ext); 2902 regs_buff[num++] = readl(&aregs->txdma.txq_rd_addr); 2903 regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_hi); 2904 regs_buff[num++] = readl(&aregs->txdma.dma_wb_base_lo); 2905 regs_buff[num++] = readl(&aregs->txdma.service_request); 2906 regs_buff[num++] = readl(&aregs->txdma.service_complete); 2907 regs_buff[num++] = readl(&aregs->txdma.cache_rd_index); 2908 regs_buff[num++] = readl(&aregs->txdma.cache_wr_index); 2909 regs_buff[num++] = readl(&aregs->txdma.tx_dma_error); 2910 regs_buff[num++] = readl(&aregs->txdma.desc_abort_cnt); 2911 regs_buff[num++] = readl(&aregs->txdma.payload_abort_cnt); 2912 regs_buff[num++] = readl(&aregs->txdma.writeback_abort_cnt); 2913 regs_buff[num++] = readl(&aregs->txdma.desc_timeout_cnt); 2914 regs_buff[num++] = readl(&aregs->txdma.payload_timeout_cnt); 2915 regs_buff[num++] = readl(&aregs->txdma.writeback_timeout_cnt); 2916 regs_buff[num++] = readl(&aregs->txdma.desc_error_cnt); 2917 regs_buff[num++] = readl(&aregs->txdma.payload_error_cnt); 2918 regs_buff[num++] = readl(&aregs->txdma.writeback_error_cnt); 2919 regs_buff[num++] = readl(&aregs->txdma.dropped_tlp_cnt); 2920 regs_buff[num++] = readl(&aregs->txdma.new_service_complete); 2921 regs_buff[num++] = readl(&aregs->txdma.ethernet_packet_cnt); 2922 2923 /* RXDMA regs */ 2924 regs_buff[num++] = readl(&aregs->rxdma.csr); 2925 regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_hi); 2926 regs_buff[num++] = readl(&aregs->rxdma.dma_wb_base_lo); 2927 regs_buff[num++] = readl(&aregs->rxdma.num_pkt_done); 2928 regs_buff[num++] = readl(&aregs->rxdma.max_pkt_time); 2929 regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr); 2930 regs_buff[num++] = readl(&aregs->rxdma.rxq_rd_addr_ext); 2931 regs_buff[num++] = readl(&aregs->rxdma.rxq_wr_addr); 2932 regs_buff[num++] = readl(&aregs->rxdma.psr_base_hi); 2933 regs_buff[num++] = readl(&aregs->rxdma.psr_base_lo); 2934 regs_buff[num++] = readl(&aregs->rxdma.psr_num_des); 2935 regs_buff[num++] = readl(&aregs->rxdma.psr_avail_offset); 2936 regs_buff[num++] = readl(&aregs->rxdma.psr_full_offset); 2937 regs_buff[num++] = readl(&aregs->rxdma.psr_access_index); 2938 regs_buff[num++] = readl(&aregs->rxdma.psr_min_des); 2939 regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_lo); 2940 regs_buff[num++] = readl(&aregs->rxdma.fbr0_base_hi); 2941 regs_buff[num++] = readl(&aregs->rxdma.fbr0_num_des); 2942 regs_buff[num++] = readl(&aregs->rxdma.fbr0_avail_offset); 2943 regs_buff[num++] = readl(&aregs->rxdma.fbr0_full_offset); 2944 regs_buff[num++] = readl(&aregs->rxdma.fbr0_rd_index); 2945 regs_buff[num++] = readl(&aregs->rxdma.fbr0_min_des); 2946 regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_lo); 2947 regs_buff[num++] = readl(&aregs->rxdma.fbr1_base_hi); 2948 regs_buff[num++] = readl(&aregs->rxdma.fbr1_num_des); 2949 regs_buff[num++] = readl(&aregs->rxdma.fbr1_avail_offset); 2950 regs_buff[num++] = readl(&aregs->rxdma.fbr1_full_offset); 2951 regs_buff[num++] = readl(&aregs->rxdma.fbr1_rd_index); 2952 regs_buff[num++] = readl(&aregs->rxdma.fbr1_min_des); 2953 } 2954 2955 static void et131x_get_drvinfo(struct net_device *netdev, 2956 struct ethtool_drvinfo *info) 2957 { 2958 struct et131x_adapter *adapter = netdev_priv(netdev); 2959 2960 strlcpy(info->driver, DRIVER_NAME, sizeof(info->driver)); 2961 strlcpy(info->bus_info, pci_name(adapter->pdev), 2962 sizeof(info->bus_info)); 2963 } 2964 2965 static const struct ethtool_ops et131x_ethtool_ops = { 2966 .get_drvinfo = et131x_get_drvinfo, 2967 .get_regs_len = et131x_get_regs_len, 2968 .get_regs = et131x_get_regs, 2969 .get_link = ethtool_op_get_link, 2970 .get_link_ksettings = phy_ethtool_get_link_ksettings, 2971 .set_link_ksettings = phy_ethtool_set_link_ksettings, 2972 }; 2973 2974 /* et131x_hwaddr_init - set up the MAC Address */ 2975 static void et131x_hwaddr_init(struct et131x_adapter *adapter) 2976 { 2977 /* If have our default mac from init and no mac address from 2978 * EEPROM then we need to generate the last octet and set it on the 2979 * device 2980 */ 2981 if (is_zero_ether_addr(adapter->rom_addr)) { 2982 /* We need to randomly generate the last octet so we 2983 * decrease our chances of setting the mac address to 2984 * same as another one of our cards in the system 2985 */ 2986 get_random_bytes(&adapter->addr[5], 1); 2987 /* We have the default value in the register we are 2988 * working with so we need to copy the current 2989 * address into the permanent address 2990 */ 2991 ether_addr_copy(adapter->rom_addr, adapter->addr); 2992 } else { 2993 /* We do not have an override address, so set the 2994 * current address to the permanent address and add 2995 * it to the device 2996 */ 2997 ether_addr_copy(adapter->addr, adapter->rom_addr); 2998 } 2999 } 3000 3001 static int et131x_pci_init(struct et131x_adapter *adapter, 3002 struct pci_dev *pdev) 3003 { 3004 u16 max_payload; 3005 int i, rc; 3006 3007 rc = et131x_init_eeprom(adapter); 3008 if (rc < 0) 3009 goto out; 3010 3011 if (!pci_is_pcie(pdev)) { 3012 dev_err(&pdev->dev, "Missing PCIe capabilities\n"); 3013 goto err_out; 3014 } 3015 3016 /* Program the Ack/Nak latency and replay timers */ 3017 max_payload = pdev->pcie_mpss; 3018 3019 if (max_payload < 2) { 3020 static const u16 acknak[2] = { 0x76, 0xD0 }; 3021 static const u16 replay[2] = { 0x1E0, 0x2ED }; 3022 3023 if (pci_write_config_word(pdev, ET1310_PCI_ACK_NACK, 3024 acknak[max_payload])) { 3025 dev_err(&pdev->dev, 3026 "Could not write PCI config space for ACK/NAK\n"); 3027 goto err_out; 3028 } 3029 if (pci_write_config_word(pdev, ET1310_PCI_REPLAY, 3030 replay[max_payload])) { 3031 dev_err(&pdev->dev, 3032 "Could not write PCI config space for Replay Timer\n"); 3033 goto err_out; 3034 } 3035 } 3036 3037 /* l0s and l1 latency timers. We are using default values. 3038 * Representing 001 for L0s and 010 for L1 3039 */ 3040 if (pci_write_config_byte(pdev, ET1310_PCI_L0L1LATENCY, 0x11)) { 3041 dev_err(&pdev->dev, 3042 "Could not write PCI config space for Latency Timers\n"); 3043 goto err_out; 3044 } 3045 3046 /* Change the max read size to 2k */ 3047 if (pcie_set_readrq(pdev, 2048)) { 3048 dev_err(&pdev->dev, 3049 "Couldn't change PCI config space for Max read size\n"); 3050 goto err_out; 3051 } 3052 3053 /* Get MAC address from config space if an eeprom exists, otherwise 3054 * the MAC address there will not be valid 3055 */ 3056 if (!adapter->has_eeprom) { 3057 et131x_hwaddr_init(adapter); 3058 return 0; 3059 } 3060 3061 for (i = 0; i < ETH_ALEN; i++) { 3062 if (pci_read_config_byte(pdev, ET1310_PCI_MAC_ADDRESS + i, 3063 adapter->rom_addr + i)) { 3064 dev_err(&pdev->dev, "Could not read PCI config space for MAC address\n"); 3065 goto err_out; 3066 } 3067 } 3068 ether_addr_copy(adapter->addr, adapter->rom_addr); 3069 out: 3070 return rc; 3071 err_out: 3072 rc = -EIO; 3073 goto out; 3074 } 3075 3076 /* et131x_error_timer_handler 3077 * @data: timer-specific variable; here a pointer to our adapter structure 3078 * 3079 * The routine called when the error timer expires, to track the number of 3080 * recurring errors. 3081 */ 3082 static void et131x_error_timer_handler(struct timer_list *t) 3083 { 3084 struct et131x_adapter *adapter = from_timer(adapter, t, error_timer); 3085 struct phy_device *phydev = adapter->netdev->phydev; 3086 3087 if (et1310_in_phy_coma(adapter)) { 3088 /* Bring the device immediately out of coma, to 3089 * prevent it from sleeping indefinitely, this 3090 * mechanism could be improved! 3091 */ 3092 et1310_disable_phy_coma(adapter); 3093 adapter->boot_coma = 20; 3094 } else { 3095 et1310_update_macstat_host_counters(adapter); 3096 } 3097 3098 if (!phydev->link && adapter->boot_coma < 11) 3099 adapter->boot_coma++; 3100 3101 if (adapter->boot_coma == 10) { 3102 if (!phydev->link) { 3103 if (!et1310_in_phy_coma(adapter)) { 3104 /* NOTE - This was originally a 'sync with 3105 * interrupt'. How to do that under Linux? 3106 */ 3107 et131x_enable_interrupts(adapter); 3108 et1310_enable_phy_coma(adapter); 3109 } 3110 } 3111 } 3112 3113 /* This is a periodic timer, so reschedule */ 3114 mod_timer(&adapter->error_timer, jiffies + 3115 msecs_to_jiffies(TX_ERROR_PERIOD)); 3116 } 3117 3118 static void et131x_adapter_memory_free(struct et131x_adapter *adapter) 3119 { 3120 et131x_tx_dma_memory_free(adapter); 3121 et131x_rx_dma_memory_free(adapter); 3122 } 3123 3124 static int et131x_adapter_memory_alloc(struct et131x_adapter *adapter) 3125 { 3126 int status; 3127 3128 status = et131x_tx_dma_memory_alloc(adapter); 3129 if (status) { 3130 dev_err(&adapter->pdev->dev, 3131 "et131x_tx_dma_memory_alloc FAILED\n"); 3132 et131x_tx_dma_memory_free(adapter); 3133 return status; 3134 } 3135 3136 status = et131x_rx_dma_memory_alloc(adapter); 3137 if (status) { 3138 dev_err(&adapter->pdev->dev, 3139 "et131x_rx_dma_memory_alloc FAILED\n"); 3140 et131x_adapter_memory_free(adapter); 3141 return status; 3142 } 3143 3144 status = et131x_init_recv(adapter); 3145 if (status) { 3146 dev_err(&adapter->pdev->dev, "et131x_init_recv FAILED\n"); 3147 et131x_adapter_memory_free(adapter); 3148 } 3149 return status; 3150 } 3151 3152 static void et131x_adjust_link(struct net_device *netdev) 3153 { 3154 struct et131x_adapter *adapter = netdev_priv(netdev); 3155 struct phy_device *phydev = netdev->phydev; 3156 3157 if (!phydev) 3158 return; 3159 if (phydev->link == adapter->link) 3160 return; 3161 3162 /* Check to see if we are in coma mode and if 3163 * so, disable it because we will not be able 3164 * to read PHY values until we are out. 3165 */ 3166 if (et1310_in_phy_coma(adapter)) 3167 et1310_disable_phy_coma(adapter); 3168 3169 adapter->link = phydev->link; 3170 phy_print_status(phydev); 3171 3172 if (phydev->link) { 3173 adapter->boot_coma = 20; 3174 if (phydev->speed == SPEED_10) { 3175 u16 register18; 3176 3177 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG, 3178 ®ister18); 3179 et131x_mii_write(adapter, phydev->mdio.addr, 3180 PHY_MPHY_CONTROL_REG, 3181 register18 | 0x4); 3182 et131x_mii_write(adapter, phydev->mdio.addr, 3183 PHY_INDEX_REG, register18 | 0x8402); 3184 et131x_mii_write(adapter, phydev->mdio.addr, 3185 PHY_DATA_REG, register18 | 511); 3186 et131x_mii_write(adapter, phydev->mdio.addr, 3187 PHY_MPHY_CONTROL_REG, register18); 3188 } 3189 3190 et1310_config_flow_control(adapter); 3191 3192 if (phydev->speed == SPEED_1000 && 3193 adapter->registry_jumbo_packet > 2048) { 3194 u16 reg; 3195 3196 et131x_mii_read(adapter, PHY_CONFIG, ®); 3197 reg &= ~ET_PHY_CONFIG_TX_FIFO_DEPTH; 3198 reg |= ET_PHY_CONFIG_FIFO_DEPTH_32; 3199 et131x_mii_write(adapter, phydev->mdio.addr, 3200 PHY_CONFIG, reg); 3201 } 3202 3203 et131x_set_rx_dma_timer(adapter); 3204 et1310_config_mac_regs2(adapter); 3205 } else { 3206 adapter->boot_coma = 0; 3207 3208 if (phydev->speed == SPEED_10) { 3209 u16 register18; 3210 3211 et131x_mii_read(adapter, PHY_MPHY_CONTROL_REG, 3212 ®ister18); 3213 et131x_mii_write(adapter, phydev->mdio.addr, 3214 PHY_MPHY_CONTROL_REG, 3215 register18 | 0x4); 3216 et131x_mii_write(adapter, phydev->mdio.addr, 3217 PHY_INDEX_REG, register18 | 0x8402); 3218 et131x_mii_write(adapter, phydev->mdio.addr, 3219 PHY_DATA_REG, register18 | 511); 3220 et131x_mii_write(adapter, phydev->mdio.addr, 3221 PHY_MPHY_CONTROL_REG, register18); 3222 } 3223 3224 et131x_free_busy_send_packets(adapter); 3225 et131x_init_send(adapter); 3226 3227 /* Bring the device back to the state it was during 3228 * init prior to autonegotiation being complete. This 3229 * way, when we get the auto-neg complete interrupt, 3230 * we can complete init by calling config_mac_regs2. 3231 */ 3232 et131x_soft_reset(adapter); 3233 3234 et131x_adapter_setup(adapter); 3235 3236 et131x_disable_txrx(netdev); 3237 et131x_enable_txrx(netdev); 3238 } 3239 } 3240 3241 static int et131x_mii_probe(struct net_device *netdev) 3242 { 3243 struct et131x_adapter *adapter = netdev_priv(netdev); 3244 struct phy_device *phydev = NULL; 3245 3246 phydev = phy_find_first(adapter->mii_bus); 3247 if (!phydev) { 3248 dev_err(&adapter->pdev->dev, "no PHY found\n"); 3249 return -ENODEV; 3250 } 3251 3252 phydev = phy_connect(netdev, phydev_name(phydev), 3253 &et131x_adjust_link, PHY_INTERFACE_MODE_MII); 3254 3255 if (IS_ERR(phydev)) { 3256 dev_err(&adapter->pdev->dev, "Could not attach to PHY\n"); 3257 return PTR_ERR(phydev); 3258 } 3259 3260 phy_set_max_speed(phydev, SPEED_100); 3261 3262 if (adapter->pdev->device != ET131X_PCI_DEVICE_ID_FAST) 3263 phy_set_max_speed(phydev, SPEED_1000); 3264 3265 phydev->autoneg = AUTONEG_ENABLE; 3266 3267 phy_attached_info(phydev); 3268 3269 return 0; 3270 } 3271 3272 static struct et131x_adapter *et131x_adapter_init(struct net_device *netdev, 3273 struct pci_dev *pdev) 3274 { 3275 static const u8 default_mac[] = { 0x00, 0x05, 0x3d, 0x00, 0x02, 0x00 }; 3276 3277 struct et131x_adapter *adapter; 3278 3279 adapter = netdev_priv(netdev); 3280 adapter->pdev = pci_dev_get(pdev); 3281 adapter->netdev = netdev; 3282 3283 spin_lock_init(&adapter->tcb_send_qlock); 3284 spin_lock_init(&adapter->tcb_ready_qlock); 3285 spin_lock_init(&adapter->rcv_lock); 3286 3287 adapter->registry_jumbo_packet = 1514; /* 1514-9216 */ 3288 3289 ether_addr_copy(adapter->addr, default_mac); 3290 3291 return adapter; 3292 } 3293 3294 static void et131x_pci_remove(struct pci_dev *pdev) 3295 { 3296 struct net_device *netdev = pci_get_drvdata(pdev); 3297 struct et131x_adapter *adapter = netdev_priv(netdev); 3298 3299 unregister_netdev(netdev); 3300 netif_napi_del(&adapter->napi); 3301 phy_disconnect(netdev->phydev); 3302 mdiobus_unregister(adapter->mii_bus); 3303 mdiobus_free(adapter->mii_bus); 3304 3305 et131x_adapter_memory_free(adapter); 3306 iounmap(adapter->regs); 3307 pci_dev_put(pdev); 3308 3309 free_netdev(netdev); 3310 pci_release_regions(pdev); 3311 pci_disable_device(pdev); 3312 } 3313 3314 static void et131x_up(struct net_device *netdev) 3315 { 3316 et131x_enable_txrx(netdev); 3317 phy_start(netdev->phydev); 3318 } 3319 3320 static void et131x_down(struct net_device *netdev) 3321 { 3322 /* Save the timestamp for the TX watchdog, prevent a timeout */ 3323 netif_trans_update(netdev); 3324 3325 phy_stop(netdev->phydev); 3326 et131x_disable_txrx(netdev); 3327 } 3328 3329 #ifdef CONFIG_PM_SLEEP 3330 static int et131x_suspend(struct device *dev) 3331 { 3332 struct pci_dev *pdev = to_pci_dev(dev); 3333 struct net_device *netdev = pci_get_drvdata(pdev); 3334 3335 if (netif_running(netdev)) { 3336 netif_device_detach(netdev); 3337 et131x_down(netdev); 3338 pci_save_state(pdev); 3339 } 3340 3341 return 0; 3342 } 3343 3344 static int et131x_resume(struct device *dev) 3345 { 3346 struct pci_dev *pdev = to_pci_dev(dev); 3347 struct net_device *netdev = pci_get_drvdata(pdev); 3348 3349 if (netif_running(netdev)) { 3350 pci_restore_state(pdev); 3351 et131x_up(netdev); 3352 netif_device_attach(netdev); 3353 } 3354 3355 return 0; 3356 } 3357 #endif 3358 3359 static SIMPLE_DEV_PM_OPS(et131x_pm_ops, et131x_suspend, et131x_resume); 3360 3361 static irqreturn_t et131x_isr(int irq, void *dev_id) 3362 { 3363 bool handled = true; 3364 bool enable_interrupts = true; 3365 struct net_device *netdev = dev_id; 3366 struct et131x_adapter *adapter = netdev_priv(netdev); 3367 struct address_map __iomem *iomem = adapter->regs; 3368 struct rx_ring *rx_ring = &adapter->rx_ring; 3369 struct tx_ring *tx_ring = &adapter->tx_ring; 3370 u32 status; 3371 3372 if (!netif_device_present(netdev)) { 3373 handled = false; 3374 enable_interrupts = false; 3375 goto out; 3376 } 3377 3378 et131x_disable_interrupts(adapter); 3379 3380 status = readl(&adapter->regs->global.int_status); 3381 3382 if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH) 3383 status &= ~INT_MASK_ENABLE; 3384 else 3385 status &= ~INT_MASK_ENABLE_NO_FLOW; 3386 3387 /* Make sure this is our interrupt */ 3388 if (!status) { 3389 handled = false; 3390 et131x_enable_interrupts(adapter); 3391 goto out; 3392 } 3393 3394 /* This is our interrupt, so process accordingly */ 3395 if (status & ET_INTR_WATCHDOG) { 3396 struct tcb *tcb = tx_ring->send_head; 3397 3398 if (tcb) 3399 if (++tcb->stale > 1) 3400 status |= ET_INTR_TXDMA_ISR; 3401 3402 if (rx_ring->unfinished_receives) 3403 status |= ET_INTR_RXDMA_XFR_DONE; 3404 else if (tcb == NULL) 3405 writel(0, &adapter->regs->global.watchdog_timer); 3406 3407 status &= ~ET_INTR_WATCHDOG; 3408 } 3409 3410 if (status & (ET_INTR_RXDMA_XFR_DONE | ET_INTR_TXDMA_ISR)) { 3411 enable_interrupts = false; 3412 napi_schedule(&adapter->napi); 3413 } 3414 3415 status &= ~(ET_INTR_TXDMA_ISR | ET_INTR_RXDMA_XFR_DONE); 3416 3417 if (!status) 3418 goto out; 3419 3420 if (status & ET_INTR_TXDMA_ERR) { 3421 /* Following read also clears the register (COR) */ 3422 u32 txdma_err = readl(&iomem->txdma.tx_dma_error); 3423 3424 dev_warn(&adapter->pdev->dev, 3425 "TXDMA_ERR interrupt, error = %d\n", 3426 txdma_err); 3427 } 3428 3429 if (status & (ET_INTR_RXDMA_FB_R0_LOW | ET_INTR_RXDMA_FB_R1_LOW)) { 3430 /* This indicates the number of unused buffers in RXDMA free 3431 * buffer ring 0 is <= the limit you programmed. Free buffer 3432 * resources need to be returned. Free buffers are consumed as 3433 * packets are passed from the network to the host. The host 3434 * becomes aware of the packets from the contents of the packet 3435 * status ring. This ring is queried when the packet done 3436 * interrupt occurs. Packets are then passed to the OS. When 3437 * the OS is done with the packets the resources can be 3438 * returned to the ET1310 for re-use. This interrupt is one 3439 * method of returning resources. 3440 */ 3441 3442 /* If the user has flow control on, then we will 3443 * send a pause packet, otherwise just exit 3444 */ 3445 if (adapter->flow == FLOW_TXONLY || adapter->flow == FLOW_BOTH) { 3446 u32 pm_csr; 3447 3448 /* Tell the device to send a pause packet via the back 3449 * pressure register (bp req and bp xon/xoff) 3450 */ 3451 pm_csr = readl(&iomem->global.pm_csr); 3452 if (!et1310_in_phy_coma(adapter)) 3453 writel(3, &iomem->txmac.bp_ctrl); 3454 } 3455 } 3456 3457 /* Handle Packet Status Ring Low Interrupt */ 3458 if (status & ET_INTR_RXDMA_STAT_LOW) { 3459 /* Same idea as with the two Free Buffer Rings. Packets going 3460 * from the network to the host each consume a free buffer 3461 * resource and a packet status resource. These resources are 3462 * passed to the OS. When the OS is done with the resources, 3463 * they need to be returned to the ET1310. This is one method 3464 * of returning the resources. 3465 */ 3466 } 3467 3468 if (status & ET_INTR_RXDMA_ERR) { 3469 /* The rxdma_error interrupt is sent when a time-out on a 3470 * request issued by the JAGCore has occurred or a completion is 3471 * returned with an un-successful status. In both cases the 3472 * request is considered complete. The JAGCore will 3473 * automatically re-try the request in question. Normally 3474 * information on events like these are sent to the host using 3475 * the "Advanced Error Reporting" capability. This interrupt is 3476 * another way of getting similar information. The only thing 3477 * required is to clear the interrupt by reading the ISR in the 3478 * global resources. The JAGCore will do a re-try on the 3479 * request. Normally you should never see this interrupt. If 3480 * you start to see this interrupt occurring frequently then 3481 * something bad has occurred. A reset might be the thing to do. 3482 */ 3483 /* TRAP();*/ 3484 3485 dev_warn(&adapter->pdev->dev, "RxDMA_ERR interrupt, error %x\n", 3486 readl(&iomem->txmac.tx_test)); 3487 } 3488 3489 /* Handle the Wake on LAN Event */ 3490 if (status & ET_INTR_WOL) { 3491 /* This is a secondary interrupt for wake on LAN. The driver 3492 * should never see this, if it does, something serious is 3493 * wrong. 3494 */ 3495 dev_err(&adapter->pdev->dev, "WAKE_ON_LAN interrupt\n"); 3496 } 3497 3498 if (status & ET_INTR_TXMAC) { 3499 u32 err = readl(&iomem->txmac.err); 3500 3501 /* When any of the errors occur and TXMAC generates an 3502 * interrupt to report these errors, it usually means that 3503 * TXMAC has detected an error in the data stream retrieved 3504 * from the on-chip Tx Q. All of these errors are catastrophic 3505 * and TXMAC won't be able to recover data when these errors 3506 * occur. In a nutshell, the whole Tx path will have to be reset 3507 * and re-configured afterwards. 3508 */ 3509 dev_warn(&adapter->pdev->dev, "TXMAC interrupt, error 0x%08x\n", 3510 err); 3511 3512 /* If we are debugging, we want to see this error, otherwise we 3513 * just want the device to be reset and continue 3514 */ 3515 } 3516 3517 if (status & ET_INTR_RXMAC) { 3518 /* These interrupts are catastrophic to the device, what we need 3519 * to do is disable the interrupts and set the flag to cause us 3520 * to reset so we can solve this issue. 3521 */ 3522 dev_warn(&adapter->pdev->dev, 3523 "RXMAC interrupt, error 0x%08x. Requesting reset\n", 3524 readl(&iomem->rxmac.err_reg)); 3525 3526 dev_warn(&adapter->pdev->dev, 3527 "Enable 0x%08x, Diag 0x%08x\n", 3528 readl(&iomem->rxmac.ctrl), 3529 readl(&iomem->rxmac.rxq_diag)); 3530 3531 /* If we are debugging, we want to see this error, otherwise we 3532 * just want the device to be reset and continue 3533 */ 3534 } 3535 3536 if (status & ET_INTR_MAC_STAT) { 3537 /* This means at least one of the un-masked counters in the 3538 * MAC_STAT block has rolled over. Use this to maintain the top, 3539 * software managed bits of the counter(s). 3540 */ 3541 et1310_handle_macstat_interrupt(adapter); 3542 } 3543 3544 if (status & ET_INTR_SLV_TIMEOUT) { 3545 /* This means a timeout has occurred on a read or write request 3546 * to one of the JAGCore registers. The Global Resources block 3547 * has terminated the request and on a read request, returned a 3548 * "fake" value. The most likely reasons are: Bad Address or the 3549 * addressed module is in a power-down state and can't respond. 3550 */ 3551 } 3552 3553 out: 3554 if (enable_interrupts) 3555 et131x_enable_interrupts(adapter); 3556 3557 return IRQ_RETVAL(handled); 3558 } 3559 3560 static int et131x_poll(struct napi_struct *napi, int budget) 3561 { 3562 struct et131x_adapter *adapter = 3563 container_of(napi, struct et131x_adapter, napi); 3564 int work_done = et131x_handle_recv_pkts(adapter, budget); 3565 3566 et131x_handle_send_pkts(adapter); 3567 3568 if (work_done < budget) { 3569 napi_complete_done(&adapter->napi, work_done); 3570 et131x_enable_interrupts(adapter); 3571 } 3572 3573 return work_done; 3574 } 3575 3576 /* et131x_stats - Return the current device statistics */ 3577 static struct net_device_stats *et131x_stats(struct net_device *netdev) 3578 { 3579 struct et131x_adapter *adapter = netdev_priv(netdev); 3580 struct net_device_stats *stats = &adapter->netdev->stats; 3581 struct ce_stats *devstat = &adapter->stats; 3582 3583 stats->rx_errors = devstat->rx_length_errs + 3584 devstat->rx_align_errs + 3585 devstat->rx_crc_errs + 3586 devstat->rx_code_violations + 3587 devstat->rx_other_errs; 3588 stats->tx_errors = devstat->tx_max_pkt_errs; 3589 stats->multicast = devstat->multicast_pkts_rcvd; 3590 stats->collisions = devstat->tx_collisions; 3591 3592 stats->rx_length_errors = devstat->rx_length_errs; 3593 stats->rx_over_errors = devstat->rx_overflows; 3594 stats->rx_crc_errors = devstat->rx_crc_errs; 3595 stats->rx_dropped = devstat->rcvd_pkts_dropped; 3596 3597 /* NOTE: Not used, can't find analogous statistics */ 3598 /* stats->rx_frame_errors = devstat->; */ 3599 /* stats->rx_fifo_errors = devstat->; */ 3600 /* stats->rx_missed_errors = devstat->; */ 3601 3602 /* stats->tx_aborted_errors = devstat->; */ 3603 /* stats->tx_carrier_errors = devstat->; */ 3604 /* stats->tx_fifo_errors = devstat->; */ 3605 /* stats->tx_heartbeat_errors = devstat->; */ 3606 /* stats->tx_window_errors = devstat->; */ 3607 return stats; 3608 } 3609 3610 static int et131x_open(struct net_device *netdev) 3611 { 3612 struct et131x_adapter *adapter = netdev_priv(netdev); 3613 struct pci_dev *pdev = adapter->pdev; 3614 unsigned int irq = pdev->irq; 3615 int result; 3616 3617 /* Start the timer to track NIC errors */ 3618 timer_setup(&adapter->error_timer, et131x_error_timer_handler, 0); 3619 adapter->error_timer.expires = jiffies + 3620 msecs_to_jiffies(TX_ERROR_PERIOD); 3621 add_timer(&adapter->error_timer); 3622 3623 result = request_irq(irq, et131x_isr, 3624 IRQF_SHARED, netdev->name, netdev); 3625 if (result) { 3626 dev_err(&pdev->dev, "could not register IRQ %d\n", irq); 3627 return result; 3628 } 3629 3630 adapter->flags |= FMP_ADAPTER_INTERRUPT_IN_USE; 3631 3632 napi_enable(&adapter->napi); 3633 3634 et131x_up(netdev); 3635 3636 return result; 3637 } 3638 3639 static int et131x_close(struct net_device *netdev) 3640 { 3641 struct et131x_adapter *adapter = netdev_priv(netdev); 3642 3643 et131x_down(netdev); 3644 napi_disable(&adapter->napi); 3645 3646 adapter->flags &= ~FMP_ADAPTER_INTERRUPT_IN_USE; 3647 free_irq(adapter->pdev->irq, netdev); 3648 3649 /* Stop the error timer */ 3650 return del_timer_sync(&adapter->error_timer); 3651 } 3652 3653 /* et131x_set_packet_filter - Configures the Rx Packet filtering */ 3654 static int et131x_set_packet_filter(struct et131x_adapter *adapter) 3655 { 3656 int filter = adapter->packet_filter; 3657 u32 ctrl; 3658 u32 pf_ctrl; 3659 3660 ctrl = readl(&adapter->regs->rxmac.ctrl); 3661 pf_ctrl = readl(&adapter->regs->rxmac.pf_ctrl); 3662 3663 /* Default to disabled packet filtering */ 3664 ctrl |= 0x04; 3665 3666 /* Set us to be in promiscuous mode so we receive everything, this 3667 * is also true when we get a packet filter of 0 3668 */ 3669 if ((filter & ET131X_PACKET_TYPE_PROMISCUOUS) || filter == 0) 3670 pf_ctrl &= ~7; /* Clear filter bits */ 3671 else { 3672 /* Set us up with Multicast packet filtering. Three cases are 3673 * possible - (1) we have a multi-cast list, (2) we receive ALL 3674 * multicast entries or (3) we receive none. 3675 */ 3676 if (filter & ET131X_PACKET_TYPE_ALL_MULTICAST) 3677 pf_ctrl &= ~2; /* Multicast filter bit */ 3678 else { 3679 et1310_setup_device_for_multicast(adapter); 3680 pf_ctrl |= 2; 3681 ctrl &= ~0x04; 3682 } 3683 3684 /* Set us up with Unicast packet filtering */ 3685 if (filter & ET131X_PACKET_TYPE_DIRECTED) { 3686 et1310_setup_device_for_unicast(adapter); 3687 pf_ctrl |= 4; 3688 ctrl &= ~0x04; 3689 } 3690 3691 /* Set us up with Broadcast packet filtering */ 3692 if (filter & ET131X_PACKET_TYPE_BROADCAST) { 3693 pf_ctrl |= 1; /* Broadcast filter bit */ 3694 ctrl &= ~0x04; 3695 } else { 3696 pf_ctrl &= ~1; 3697 } 3698 3699 /* Setup the receive mac configuration registers - Packet 3700 * Filter control + the enable / disable for packet filter 3701 * in the control reg. 3702 */ 3703 writel(pf_ctrl, &adapter->regs->rxmac.pf_ctrl); 3704 writel(ctrl, &adapter->regs->rxmac.ctrl); 3705 } 3706 return 0; 3707 } 3708 3709 static void et131x_multicast(struct net_device *netdev) 3710 { 3711 struct et131x_adapter *adapter = netdev_priv(netdev); 3712 int packet_filter; 3713 struct netdev_hw_addr *ha; 3714 int i; 3715 3716 /* Before we modify the platform-independent filter flags, store them 3717 * locally. This allows us to determine if anything's changed and if 3718 * we even need to bother the hardware 3719 */ 3720 packet_filter = adapter->packet_filter; 3721 3722 /* Clear the 'multicast' flag locally; because we only have a single 3723 * flag to check multicast, and multiple multicast addresses can be 3724 * set, this is the easiest way to determine if more than one 3725 * multicast address is being set. 3726 */ 3727 packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST; 3728 3729 /* Check the net_device flags and set the device independent flags 3730 * accordingly 3731 */ 3732 if (netdev->flags & IFF_PROMISC) 3733 adapter->packet_filter |= ET131X_PACKET_TYPE_PROMISCUOUS; 3734 else 3735 adapter->packet_filter &= ~ET131X_PACKET_TYPE_PROMISCUOUS; 3736 3737 if ((netdev->flags & IFF_ALLMULTI) || 3738 (netdev_mc_count(netdev) > NIC_MAX_MCAST_LIST)) 3739 adapter->packet_filter |= ET131X_PACKET_TYPE_ALL_MULTICAST; 3740 3741 if (netdev_mc_count(netdev) < 1) { 3742 adapter->packet_filter &= ~ET131X_PACKET_TYPE_ALL_MULTICAST; 3743 adapter->packet_filter &= ~ET131X_PACKET_TYPE_MULTICAST; 3744 } else { 3745 adapter->packet_filter |= ET131X_PACKET_TYPE_MULTICAST; 3746 } 3747 3748 /* Set values in the private adapter struct */ 3749 i = 0; 3750 netdev_for_each_mc_addr(ha, netdev) { 3751 if (i == NIC_MAX_MCAST_LIST) 3752 break; 3753 ether_addr_copy(adapter->multicast_list[i++], ha->addr); 3754 } 3755 adapter->multicast_addr_count = i; 3756 3757 /* Are the new flags different from the previous ones? If not, then no 3758 * action is required 3759 * 3760 * NOTE - This block will always update the multicast_list with the 3761 * hardware, even if the addresses aren't the same. 3762 */ 3763 if (packet_filter != adapter->packet_filter) 3764 et131x_set_packet_filter(adapter); 3765 } 3766 3767 static netdev_tx_t et131x_tx(struct sk_buff *skb, struct net_device *netdev) 3768 { 3769 struct et131x_adapter *adapter = netdev_priv(netdev); 3770 struct tx_ring *tx_ring = &adapter->tx_ring; 3771 3772 /* stop the queue if it's getting full */ 3773 if (tx_ring->used >= NUM_TCB - 1 && !netif_queue_stopped(netdev)) 3774 netif_stop_queue(netdev); 3775 3776 /* Save the timestamp for the TX timeout watchdog */ 3777 netif_trans_update(netdev); 3778 3779 /* TCB is not available */ 3780 if (tx_ring->used >= NUM_TCB) 3781 goto drop_err; 3782 3783 if ((adapter->flags & FMP_ADAPTER_FAIL_SEND_MASK) || 3784 !netif_carrier_ok(netdev)) 3785 goto drop_err; 3786 3787 if (send_packet(skb, adapter)) 3788 goto drop_err; 3789 3790 return NETDEV_TX_OK; 3791 3792 drop_err: 3793 dev_kfree_skb_any(skb); 3794 adapter->netdev->stats.tx_dropped++; 3795 return NETDEV_TX_OK; 3796 } 3797 3798 /* et131x_tx_timeout - Timeout handler 3799 * 3800 * The handler called when a Tx request times out. The timeout period is 3801 * specified by the 'tx_timeo" element in the net_device structure (see 3802 * et131x_alloc_device() to see how this value is set). 3803 */ 3804 static void et131x_tx_timeout(struct net_device *netdev, unsigned int txqueue) 3805 { 3806 struct et131x_adapter *adapter = netdev_priv(netdev); 3807 struct tx_ring *tx_ring = &adapter->tx_ring; 3808 struct tcb *tcb; 3809 unsigned long flags; 3810 3811 /* If the device is closed, ignore the timeout */ 3812 if (!(adapter->flags & FMP_ADAPTER_INTERRUPT_IN_USE)) 3813 return; 3814 3815 /* Any nonrecoverable hardware error? 3816 * Checks adapter->flags for any failure in phy reading 3817 */ 3818 if (adapter->flags & FMP_ADAPTER_NON_RECOVER_ERROR) 3819 return; 3820 3821 /* Hardware failure? */ 3822 if (adapter->flags & FMP_ADAPTER_HARDWARE_ERROR) { 3823 dev_err(&adapter->pdev->dev, "hardware error - reset\n"); 3824 return; 3825 } 3826 3827 /* Is send stuck? */ 3828 spin_lock_irqsave(&adapter->tcb_send_qlock, flags); 3829 tcb = tx_ring->send_head; 3830 spin_unlock_irqrestore(&adapter->tcb_send_qlock, flags); 3831 3832 if (tcb) { 3833 tcb->count++; 3834 3835 if (tcb->count > NIC_SEND_HANG_THRESHOLD) { 3836 dev_warn(&adapter->pdev->dev, 3837 "Send stuck - reset. tcb->WrIndex %x\n", 3838 tcb->index); 3839 3840 adapter->netdev->stats.tx_errors++; 3841 3842 /* perform reset of tx/rx */ 3843 et131x_disable_txrx(netdev); 3844 et131x_enable_txrx(netdev); 3845 } 3846 } 3847 } 3848 3849 static int et131x_change_mtu(struct net_device *netdev, int new_mtu) 3850 { 3851 int result = 0; 3852 struct et131x_adapter *adapter = netdev_priv(netdev); 3853 3854 et131x_disable_txrx(netdev); 3855 3856 netdev->mtu = new_mtu; 3857 3858 et131x_adapter_memory_free(adapter); 3859 3860 /* Set the config parameter for Jumbo Packet support */ 3861 adapter->registry_jumbo_packet = new_mtu + 14; 3862 et131x_soft_reset(adapter); 3863 3864 result = et131x_adapter_memory_alloc(adapter); 3865 if (result != 0) { 3866 dev_warn(&adapter->pdev->dev, 3867 "Change MTU failed; couldn't re-alloc DMA memory\n"); 3868 return result; 3869 } 3870 3871 et131x_init_send(adapter); 3872 et131x_hwaddr_init(adapter); 3873 ether_addr_copy(netdev->dev_addr, adapter->addr); 3874 3875 /* Init the device with the new settings */ 3876 et131x_adapter_setup(adapter); 3877 et131x_enable_txrx(netdev); 3878 3879 return result; 3880 } 3881 3882 static const struct net_device_ops et131x_netdev_ops = { 3883 .ndo_open = et131x_open, 3884 .ndo_stop = et131x_close, 3885 .ndo_start_xmit = et131x_tx, 3886 .ndo_set_rx_mode = et131x_multicast, 3887 .ndo_tx_timeout = et131x_tx_timeout, 3888 .ndo_change_mtu = et131x_change_mtu, 3889 .ndo_set_mac_address = eth_mac_addr, 3890 .ndo_validate_addr = eth_validate_addr, 3891 .ndo_get_stats = et131x_stats, 3892 .ndo_do_ioctl = phy_do_ioctl, 3893 }; 3894 3895 static int et131x_pci_setup(struct pci_dev *pdev, 3896 const struct pci_device_id *ent) 3897 { 3898 struct net_device *netdev; 3899 struct et131x_adapter *adapter; 3900 int rc; 3901 3902 rc = pci_enable_device(pdev); 3903 if (rc < 0) { 3904 dev_err(&pdev->dev, "pci_enable_device() failed\n"); 3905 goto out; 3906 } 3907 3908 /* Perform some basic PCI checks */ 3909 if (!(pci_resource_flags(pdev, 0) & IORESOURCE_MEM)) { 3910 dev_err(&pdev->dev, "Can't find PCI device's base address\n"); 3911 rc = -ENODEV; 3912 goto err_disable; 3913 } 3914 3915 rc = pci_request_regions(pdev, DRIVER_NAME); 3916 if (rc < 0) { 3917 dev_err(&pdev->dev, "Can't get PCI resources\n"); 3918 goto err_disable; 3919 } 3920 3921 pci_set_master(pdev); 3922 3923 /* Check the DMA addressing support of this device */ 3924 if (dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(64)) && 3925 dma_set_mask_and_coherent(&pdev->dev, DMA_BIT_MASK(32))) { 3926 dev_err(&pdev->dev, "No usable DMA addressing method\n"); 3927 rc = -EIO; 3928 goto err_release_res; 3929 } 3930 3931 netdev = alloc_etherdev(sizeof(struct et131x_adapter)); 3932 if (!netdev) { 3933 dev_err(&pdev->dev, "Couldn't alloc netdev struct\n"); 3934 rc = -ENOMEM; 3935 goto err_release_res; 3936 } 3937 3938 netdev->watchdog_timeo = ET131X_TX_TIMEOUT; 3939 netdev->netdev_ops = &et131x_netdev_ops; 3940 netdev->min_mtu = ET131X_MIN_MTU; 3941 netdev->max_mtu = ET131X_MAX_MTU; 3942 3943 SET_NETDEV_DEV(netdev, &pdev->dev); 3944 netdev->ethtool_ops = &et131x_ethtool_ops; 3945 3946 adapter = et131x_adapter_init(netdev, pdev); 3947 3948 rc = et131x_pci_init(adapter, pdev); 3949 if (rc < 0) 3950 goto err_free_dev; 3951 3952 /* Map the bus-relative registers to system virtual memory */ 3953 adapter->regs = pci_ioremap_bar(pdev, 0); 3954 if (!adapter->regs) { 3955 dev_err(&pdev->dev, "Cannot map device registers\n"); 3956 rc = -ENOMEM; 3957 goto err_free_dev; 3958 } 3959 3960 /* If Phy COMA mode was enabled when we went down, disable it here. */ 3961 writel(ET_PMCSR_INIT, &adapter->regs->global.pm_csr); 3962 3963 et131x_soft_reset(adapter); 3964 et131x_disable_interrupts(adapter); 3965 3966 rc = et131x_adapter_memory_alloc(adapter); 3967 if (rc < 0) { 3968 dev_err(&pdev->dev, "Could not alloc adapter memory (DMA)\n"); 3969 goto err_iounmap; 3970 } 3971 3972 et131x_init_send(adapter); 3973 3974 netif_napi_add(netdev, &adapter->napi, et131x_poll, 64); 3975 3976 ether_addr_copy(netdev->dev_addr, adapter->addr); 3977 3978 rc = -ENOMEM; 3979 3980 adapter->mii_bus = mdiobus_alloc(); 3981 if (!adapter->mii_bus) { 3982 dev_err(&pdev->dev, "Alloc of mii_bus struct failed\n"); 3983 goto err_mem_free; 3984 } 3985 3986 adapter->mii_bus->name = "et131x_eth_mii"; 3987 snprintf(adapter->mii_bus->id, MII_BUS_ID_SIZE, "%x", 3988 (adapter->pdev->bus->number << 8) | adapter->pdev->devfn); 3989 adapter->mii_bus->priv = netdev; 3990 adapter->mii_bus->read = et131x_mdio_read; 3991 adapter->mii_bus->write = et131x_mdio_write; 3992 3993 rc = mdiobus_register(adapter->mii_bus); 3994 if (rc < 0) { 3995 dev_err(&pdev->dev, "failed to register MII bus\n"); 3996 goto err_mdio_free; 3997 } 3998 3999 rc = et131x_mii_probe(netdev); 4000 if (rc < 0) { 4001 dev_err(&pdev->dev, "failed to probe MII bus\n"); 4002 goto err_mdio_unregister; 4003 } 4004 4005 et131x_adapter_setup(adapter); 4006 4007 /* Init variable for counting how long we do not have link status */ 4008 adapter->boot_coma = 0; 4009 et1310_disable_phy_coma(adapter); 4010 4011 /* We can enable interrupts now 4012 * 4013 * NOTE - Because registration of interrupt handler is done in the 4014 * device's open(), defer enabling device interrupts to that 4015 * point 4016 */ 4017 4018 rc = register_netdev(netdev); 4019 if (rc < 0) { 4020 dev_err(&pdev->dev, "register_netdev() failed\n"); 4021 goto err_phy_disconnect; 4022 } 4023 4024 /* Register the net_device struct with the PCI subsystem. Save a copy 4025 * of the PCI config space for this device now that the device has 4026 * been initialized, just in case it needs to be quickly restored. 4027 */ 4028 pci_set_drvdata(pdev, netdev); 4029 out: 4030 return rc; 4031 4032 err_phy_disconnect: 4033 phy_disconnect(netdev->phydev); 4034 err_mdio_unregister: 4035 mdiobus_unregister(adapter->mii_bus); 4036 err_mdio_free: 4037 mdiobus_free(adapter->mii_bus); 4038 err_mem_free: 4039 et131x_adapter_memory_free(adapter); 4040 err_iounmap: 4041 iounmap(adapter->regs); 4042 err_free_dev: 4043 pci_dev_put(pdev); 4044 free_netdev(netdev); 4045 err_release_res: 4046 pci_release_regions(pdev); 4047 err_disable: 4048 pci_disable_device(pdev); 4049 goto out; 4050 } 4051 4052 static const struct pci_device_id et131x_pci_table[] = { 4053 { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_GIG), 0UL}, 4054 { PCI_VDEVICE(ATT, ET131X_PCI_DEVICE_ID_FAST), 0UL}, 4055 { 0,} 4056 }; 4057 MODULE_DEVICE_TABLE(pci, et131x_pci_table); 4058 4059 static struct pci_driver et131x_driver = { 4060 .name = DRIVER_NAME, 4061 .id_table = et131x_pci_table, 4062 .probe = et131x_pci_setup, 4063 .remove = et131x_pci_remove, 4064 .driver.pm = &et131x_pm_ops, 4065 }; 4066 4067 module_pci_driver(et131x_driver); 4068