1 /* 2 * Aeroflex Gaisler GRETH 10/100/1G Ethernet MAC. 3 * 4 * 2005-2010 (c) Aeroflex Gaisler AB 5 * 6 * This driver supports GRETH 10/100 and GRETH 10/100/1G Ethernet MACs 7 * available in the GRLIB VHDL IP core library. 8 * 9 * Full documentation of both cores can be found here: 10 * http://www.gaisler.com/products/grlib/grip.pdf 11 * 12 * The Gigabit version supports scatter/gather DMA, any alignment of 13 * buffers and checksum offloading. 14 * 15 * This program is free software; you can redistribute it and/or modify it 16 * under the terms of the GNU General Public License as published by the 17 * Free Software Foundation; either version 2 of the License, or (at your 18 * option) any later version. 19 * 20 * Contributors: Kristoffer Glembo 21 * Daniel Hellstrom 22 * Marko Isomaki 23 */ 24 25 #include <linux/dma-mapping.h> 26 #include <linux/module.h> 27 #include <linux/uaccess.h> 28 #include <linux/interrupt.h> 29 #include <linux/netdevice.h> 30 #include <linux/etherdevice.h> 31 #include <linux/ethtool.h> 32 #include <linux/skbuff.h> 33 #include <linux/io.h> 34 #include <linux/crc32.h> 35 #include <linux/mii.h> 36 #include <linux/of_device.h> 37 #include <linux/of_platform.h> 38 #include <linux/slab.h> 39 #include <asm/cacheflush.h> 40 #include <asm/byteorder.h> 41 42 #ifdef CONFIG_SPARC 43 #include <asm/idprom.h> 44 #endif 45 46 #include "greth.h" 47 48 #define GRETH_DEF_MSG_ENABLE \ 49 (NETIF_MSG_DRV | \ 50 NETIF_MSG_PROBE | \ 51 NETIF_MSG_LINK | \ 52 NETIF_MSG_IFDOWN | \ 53 NETIF_MSG_IFUP | \ 54 NETIF_MSG_RX_ERR | \ 55 NETIF_MSG_TX_ERR) 56 57 static int greth_debug = -1; /* -1 == use GRETH_DEF_MSG_ENABLE as value */ 58 module_param(greth_debug, int, 0); 59 MODULE_PARM_DESC(greth_debug, "GRETH bitmapped debugging message enable value"); 60 61 /* Accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */ 62 static int macaddr[6]; 63 module_param_array(macaddr, int, NULL, 0); 64 MODULE_PARM_DESC(macaddr, "GRETH Ethernet MAC address"); 65 66 static int greth_edcl = 1; 67 module_param(greth_edcl, int, 0); 68 MODULE_PARM_DESC(greth_edcl, "GRETH EDCL usage indicator. Set to 1 if EDCL is used."); 69 70 static int greth_open(struct net_device *dev); 71 static netdev_tx_t greth_start_xmit(struct sk_buff *skb, 72 struct net_device *dev); 73 static netdev_tx_t greth_start_xmit_gbit(struct sk_buff *skb, 74 struct net_device *dev); 75 static int greth_rx(struct net_device *dev, int limit); 76 static int greth_rx_gbit(struct net_device *dev, int limit); 77 static void greth_clean_tx(struct net_device *dev); 78 static void greth_clean_tx_gbit(struct net_device *dev); 79 static irqreturn_t greth_interrupt(int irq, void *dev_id); 80 static int greth_close(struct net_device *dev); 81 static int greth_set_mac_add(struct net_device *dev, void *p); 82 static void greth_set_multicast_list(struct net_device *dev); 83 84 #define GRETH_REGLOAD(a) (be32_to_cpu(__raw_readl(&(a)))) 85 #define GRETH_REGSAVE(a, v) (__raw_writel(cpu_to_be32(v), &(a))) 86 #define GRETH_REGORIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) | (v)))) 87 #define GRETH_REGANDIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) & (v)))) 88 89 #define NEXT_TX(N) (((N) + 1) & GRETH_TXBD_NUM_MASK) 90 #define SKIP_TX(N, C) (((N) + C) & GRETH_TXBD_NUM_MASK) 91 #define NEXT_RX(N) (((N) + 1) & GRETH_RXBD_NUM_MASK) 92 93 static void greth_print_rx_packet(void *addr, int len) 94 { 95 print_hex_dump(KERN_DEBUG, "RX: ", DUMP_PREFIX_OFFSET, 16, 1, 96 addr, len, true); 97 } 98 99 static void greth_print_tx_packet(struct sk_buff *skb) 100 { 101 int i; 102 int length; 103 104 if (skb_shinfo(skb)->nr_frags == 0) 105 length = skb->len; 106 else 107 length = skb_headlen(skb); 108 109 print_hex_dump(KERN_DEBUG, "TX: ", DUMP_PREFIX_OFFSET, 16, 1, 110 skb->data, length, true); 111 112 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 113 114 print_hex_dump(KERN_DEBUG, "TX: ", DUMP_PREFIX_OFFSET, 16, 1, 115 skb_frag_address(&skb_shinfo(skb)->frags[i]), 116 skb_shinfo(skb)->frags[i].size, true); 117 } 118 } 119 120 static inline void greth_enable_tx(struct greth_private *greth) 121 { 122 wmb(); 123 GRETH_REGORIN(greth->regs->control, GRETH_TXEN); 124 } 125 126 static inline void greth_enable_tx_and_irq(struct greth_private *greth) 127 { 128 wmb(); /* BDs must been written to memory before enabling TX */ 129 GRETH_REGORIN(greth->regs->control, GRETH_TXEN | GRETH_TXI); 130 } 131 132 static inline void greth_disable_tx(struct greth_private *greth) 133 { 134 GRETH_REGANDIN(greth->regs->control, ~GRETH_TXEN); 135 } 136 137 static inline void greth_enable_rx(struct greth_private *greth) 138 { 139 wmb(); 140 GRETH_REGORIN(greth->regs->control, GRETH_RXEN); 141 } 142 143 static inline void greth_disable_rx(struct greth_private *greth) 144 { 145 GRETH_REGANDIN(greth->regs->control, ~GRETH_RXEN); 146 } 147 148 static inline void greth_enable_irqs(struct greth_private *greth) 149 { 150 GRETH_REGORIN(greth->regs->control, GRETH_RXI | GRETH_TXI); 151 } 152 153 static inline void greth_disable_irqs(struct greth_private *greth) 154 { 155 GRETH_REGANDIN(greth->regs->control, ~(GRETH_RXI|GRETH_TXI)); 156 } 157 158 static inline void greth_write_bd(u32 *bd, u32 val) 159 { 160 __raw_writel(cpu_to_be32(val), bd); 161 } 162 163 static inline u32 greth_read_bd(u32 *bd) 164 { 165 return be32_to_cpu(__raw_readl(bd)); 166 } 167 168 static void greth_clean_rings(struct greth_private *greth) 169 { 170 int i; 171 struct greth_bd *rx_bdp = greth->rx_bd_base; 172 struct greth_bd *tx_bdp = greth->tx_bd_base; 173 174 if (greth->gbit_mac) { 175 176 /* Free and unmap RX buffers */ 177 for (i = 0; i < GRETH_RXBD_NUM; i++, rx_bdp++) { 178 if (greth->rx_skbuff[i] != NULL) { 179 dev_kfree_skb(greth->rx_skbuff[i]); 180 dma_unmap_single(greth->dev, 181 greth_read_bd(&rx_bdp->addr), 182 MAX_FRAME_SIZE+NET_IP_ALIGN, 183 DMA_FROM_DEVICE); 184 } 185 } 186 187 /* TX buffers */ 188 while (greth->tx_free < GRETH_TXBD_NUM) { 189 190 struct sk_buff *skb = greth->tx_skbuff[greth->tx_last]; 191 int nr_frags = skb_shinfo(skb)->nr_frags; 192 tx_bdp = greth->tx_bd_base + greth->tx_last; 193 greth->tx_last = NEXT_TX(greth->tx_last); 194 195 dma_unmap_single(greth->dev, 196 greth_read_bd(&tx_bdp->addr), 197 skb_headlen(skb), 198 DMA_TO_DEVICE); 199 200 for (i = 0; i < nr_frags; i++) { 201 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 202 tx_bdp = greth->tx_bd_base + greth->tx_last; 203 204 dma_unmap_page(greth->dev, 205 greth_read_bd(&tx_bdp->addr), 206 skb_frag_size(frag), 207 DMA_TO_DEVICE); 208 209 greth->tx_last = NEXT_TX(greth->tx_last); 210 } 211 greth->tx_free += nr_frags+1; 212 dev_kfree_skb(skb); 213 } 214 215 216 } else { /* 10/100 Mbps MAC */ 217 218 for (i = 0; i < GRETH_RXBD_NUM; i++, rx_bdp++) { 219 kfree(greth->rx_bufs[i]); 220 dma_unmap_single(greth->dev, 221 greth_read_bd(&rx_bdp->addr), 222 MAX_FRAME_SIZE, 223 DMA_FROM_DEVICE); 224 } 225 for (i = 0; i < GRETH_TXBD_NUM; i++, tx_bdp++) { 226 kfree(greth->tx_bufs[i]); 227 dma_unmap_single(greth->dev, 228 greth_read_bd(&tx_bdp->addr), 229 MAX_FRAME_SIZE, 230 DMA_TO_DEVICE); 231 } 232 } 233 } 234 235 static int greth_init_rings(struct greth_private *greth) 236 { 237 struct sk_buff *skb; 238 struct greth_bd *rx_bd, *tx_bd; 239 u32 dma_addr; 240 int i; 241 242 rx_bd = greth->rx_bd_base; 243 tx_bd = greth->tx_bd_base; 244 245 /* Initialize descriptor rings and buffers */ 246 if (greth->gbit_mac) { 247 248 for (i = 0; i < GRETH_RXBD_NUM; i++) { 249 skb = netdev_alloc_skb(greth->netdev, MAX_FRAME_SIZE+NET_IP_ALIGN); 250 if (skb == NULL) { 251 if (netif_msg_ifup(greth)) 252 dev_err(greth->dev, "Error allocating DMA ring.\n"); 253 goto cleanup; 254 } 255 skb_reserve(skb, NET_IP_ALIGN); 256 dma_addr = dma_map_single(greth->dev, 257 skb->data, 258 MAX_FRAME_SIZE+NET_IP_ALIGN, 259 DMA_FROM_DEVICE); 260 261 if (dma_mapping_error(greth->dev, dma_addr)) { 262 if (netif_msg_ifup(greth)) 263 dev_err(greth->dev, "Could not create initial DMA mapping\n"); 264 goto cleanup; 265 } 266 greth->rx_skbuff[i] = skb; 267 greth_write_bd(&rx_bd[i].addr, dma_addr); 268 greth_write_bd(&rx_bd[i].stat, GRETH_BD_EN | GRETH_BD_IE); 269 } 270 271 } else { 272 273 /* 10/100 MAC uses a fixed set of buffers and copy to/from SKBs */ 274 for (i = 0; i < GRETH_RXBD_NUM; i++) { 275 276 greth->rx_bufs[i] = kmalloc(MAX_FRAME_SIZE, GFP_KERNEL); 277 278 if (greth->rx_bufs[i] == NULL) { 279 if (netif_msg_ifup(greth)) 280 dev_err(greth->dev, "Error allocating DMA ring.\n"); 281 goto cleanup; 282 } 283 284 dma_addr = dma_map_single(greth->dev, 285 greth->rx_bufs[i], 286 MAX_FRAME_SIZE, 287 DMA_FROM_DEVICE); 288 289 if (dma_mapping_error(greth->dev, dma_addr)) { 290 if (netif_msg_ifup(greth)) 291 dev_err(greth->dev, "Could not create initial DMA mapping\n"); 292 goto cleanup; 293 } 294 greth_write_bd(&rx_bd[i].addr, dma_addr); 295 greth_write_bd(&rx_bd[i].stat, GRETH_BD_EN | GRETH_BD_IE); 296 } 297 for (i = 0; i < GRETH_TXBD_NUM; i++) { 298 299 greth->tx_bufs[i] = kmalloc(MAX_FRAME_SIZE, GFP_KERNEL); 300 301 if (greth->tx_bufs[i] == NULL) { 302 if (netif_msg_ifup(greth)) 303 dev_err(greth->dev, "Error allocating DMA ring.\n"); 304 goto cleanup; 305 } 306 307 dma_addr = dma_map_single(greth->dev, 308 greth->tx_bufs[i], 309 MAX_FRAME_SIZE, 310 DMA_TO_DEVICE); 311 312 if (dma_mapping_error(greth->dev, dma_addr)) { 313 if (netif_msg_ifup(greth)) 314 dev_err(greth->dev, "Could not create initial DMA mapping\n"); 315 goto cleanup; 316 } 317 greth_write_bd(&tx_bd[i].addr, dma_addr); 318 greth_write_bd(&tx_bd[i].stat, 0); 319 } 320 } 321 greth_write_bd(&rx_bd[GRETH_RXBD_NUM - 1].stat, 322 greth_read_bd(&rx_bd[GRETH_RXBD_NUM - 1].stat) | GRETH_BD_WR); 323 324 /* Initialize pointers. */ 325 greth->rx_cur = 0; 326 greth->tx_next = 0; 327 greth->tx_last = 0; 328 greth->tx_free = GRETH_TXBD_NUM; 329 330 /* Initialize descriptor base address */ 331 GRETH_REGSAVE(greth->regs->tx_desc_p, greth->tx_bd_base_phys); 332 GRETH_REGSAVE(greth->regs->rx_desc_p, greth->rx_bd_base_phys); 333 334 return 0; 335 336 cleanup: 337 greth_clean_rings(greth); 338 return -ENOMEM; 339 } 340 341 static int greth_open(struct net_device *dev) 342 { 343 struct greth_private *greth = netdev_priv(dev); 344 int err; 345 346 err = greth_init_rings(greth); 347 if (err) { 348 if (netif_msg_ifup(greth)) 349 dev_err(&dev->dev, "Could not allocate memory for DMA rings\n"); 350 return err; 351 } 352 353 err = request_irq(greth->irq, greth_interrupt, 0, "eth", (void *) dev); 354 if (err) { 355 if (netif_msg_ifup(greth)) 356 dev_err(&dev->dev, "Could not allocate interrupt %d\n", dev->irq); 357 greth_clean_rings(greth); 358 return err; 359 } 360 361 if (netif_msg_ifup(greth)) 362 dev_dbg(&dev->dev, " starting queue\n"); 363 netif_start_queue(dev); 364 365 GRETH_REGSAVE(greth->regs->status, 0xFF); 366 367 napi_enable(&greth->napi); 368 369 greth_enable_irqs(greth); 370 greth_enable_tx(greth); 371 greth_enable_rx(greth); 372 return 0; 373 374 } 375 376 static int greth_close(struct net_device *dev) 377 { 378 struct greth_private *greth = netdev_priv(dev); 379 380 napi_disable(&greth->napi); 381 382 greth_disable_irqs(greth); 383 greth_disable_tx(greth); 384 greth_disable_rx(greth); 385 386 netif_stop_queue(dev); 387 388 free_irq(greth->irq, (void *) dev); 389 390 greth_clean_rings(greth); 391 392 return 0; 393 } 394 395 static netdev_tx_t 396 greth_start_xmit(struct sk_buff *skb, struct net_device *dev) 397 { 398 struct greth_private *greth = netdev_priv(dev); 399 struct greth_bd *bdp; 400 int err = NETDEV_TX_OK; 401 u32 status, dma_addr, ctrl; 402 unsigned long flags; 403 404 /* Clean TX Ring */ 405 greth_clean_tx(greth->netdev); 406 407 if (unlikely(greth->tx_free <= 0)) { 408 spin_lock_irqsave(&greth->devlock, flags);/*save from poll/irq*/ 409 ctrl = GRETH_REGLOAD(greth->regs->control); 410 /* Enable TX IRQ only if not already in poll() routine */ 411 if (ctrl & GRETH_RXI) 412 GRETH_REGSAVE(greth->regs->control, ctrl | GRETH_TXI); 413 netif_stop_queue(dev); 414 spin_unlock_irqrestore(&greth->devlock, flags); 415 return NETDEV_TX_BUSY; 416 } 417 418 if (netif_msg_pktdata(greth)) 419 greth_print_tx_packet(skb); 420 421 422 if (unlikely(skb->len > MAX_FRAME_SIZE)) { 423 dev->stats.tx_errors++; 424 goto out; 425 } 426 427 bdp = greth->tx_bd_base + greth->tx_next; 428 dma_addr = greth_read_bd(&bdp->addr); 429 430 memcpy((unsigned char *) phys_to_virt(dma_addr), skb->data, skb->len); 431 432 dma_sync_single_for_device(greth->dev, dma_addr, skb->len, DMA_TO_DEVICE); 433 434 status = GRETH_BD_EN | GRETH_BD_IE | (skb->len & GRETH_BD_LEN); 435 greth->tx_bufs_length[greth->tx_next] = skb->len & GRETH_BD_LEN; 436 437 /* Wrap around descriptor ring */ 438 if (greth->tx_next == GRETH_TXBD_NUM_MASK) { 439 status |= GRETH_BD_WR; 440 } 441 442 greth->tx_next = NEXT_TX(greth->tx_next); 443 greth->tx_free--; 444 445 /* Write descriptor control word and enable transmission */ 446 greth_write_bd(&bdp->stat, status); 447 spin_lock_irqsave(&greth->devlock, flags); /*save from poll/irq*/ 448 greth_enable_tx(greth); 449 spin_unlock_irqrestore(&greth->devlock, flags); 450 451 out: 452 dev_kfree_skb(skb); 453 return err; 454 } 455 456 static inline u16 greth_num_free_bds(u16 tx_last, u16 tx_next) 457 { 458 if (tx_next < tx_last) 459 return (tx_last - tx_next) - 1; 460 else 461 return GRETH_TXBD_NUM - (tx_next - tx_last) - 1; 462 } 463 464 static netdev_tx_t 465 greth_start_xmit_gbit(struct sk_buff *skb, struct net_device *dev) 466 { 467 struct greth_private *greth = netdev_priv(dev); 468 struct greth_bd *bdp; 469 u32 status, dma_addr; 470 int curr_tx, nr_frags, i, err = NETDEV_TX_OK; 471 unsigned long flags; 472 u16 tx_last; 473 474 nr_frags = skb_shinfo(skb)->nr_frags; 475 tx_last = greth->tx_last; 476 rmb(); /* tx_last is updated by the poll task */ 477 478 if (greth_num_free_bds(tx_last, greth->tx_next) < nr_frags + 1) { 479 netif_stop_queue(dev); 480 err = NETDEV_TX_BUSY; 481 goto out; 482 } 483 484 if (netif_msg_pktdata(greth)) 485 greth_print_tx_packet(skb); 486 487 if (unlikely(skb->len > MAX_FRAME_SIZE)) { 488 dev->stats.tx_errors++; 489 goto out; 490 } 491 492 /* Save skb pointer. */ 493 greth->tx_skbuff[greth->tx_next] = skb; 494 495 /* Linear buf */ 496 if (nr_frags != 0) 497 status = GRETH_TXBD_MORE; 498 else 499 status = GRETH_BD_IE; 500 501 if (skb->ip_summed == CHECKSUM_PARTIAL) 502 status |= GRETH_TXBD_CSALL; 503 status |= skb_headlen(skb) & GRETH_BD_LEN; 504 if (greth->tx_next == GRETH_TXBD_NUM_MASK) 505 status |= GRETH_BD_WR; 506 507 508 bdp = greth->tx_bd_base + greth->tx_next; 509 greth_write_bd(&bdp->stat, status); 510 dma_addr = dma_map_single(greth->dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); 511 512 if (unlikely(dma_mapping_error(greth->dev, dma_addr))) 513 goto map_error; 514 515 greth_write_bd(&bdp->addr, dma_addr); 516 517 curr_tx = NEXT_TX(greth->tx_next); 518 519 /* Frags */ 520 for (i = 0; i < nr_frags; i++) { 521 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 522 greth->tx_skbuff[curr_tx] = NULL; 523 bdp = greth->tx_bd_base + curr_tx; 524 525 status = GRETH_BD_EN; 526 if (skb->ip_summed == CHECKSUM_PARTIAL) 527 status |= GRETH_TXBD_CSALL; 528 status |= skb_frag_size(frag) & GRETH_BD_LEN; 529 530 /* Wrap around descriptor ring */ 531 if (curr_tx == GRETH_TXBD_NUM_MASK) 532 status |= GRETH_BD_WR; 533 534 /* More fragments left */ 535 if (i < nr_frags - 1) 536 status |= GRETH_TXBD_MORE; 537 else 538 status |= GRETH_BD_IE; /* enable IRQ on last fragment */ 539 540 greth_write_bd(&bdp->stat, status); 541 542 dma_addr = skb_frag_dma_map(greth->dev, frag, 0, skb_frag_size(frag), 543 DMA_TO_DEVICE); 544 545 if (unlikely(dma_mapping_error(greth->dev, dma_addr))) 546 goto frag_map_error; 547 548 greth_write_bd(&bdp->addr, dma_addr); 549 550 curr_tx = NEXT_TX(curr_tx); 551 } 552 553 wmb(); 554 555 /* Enable the descriptor chain by enabling the first descriptor */ 556 bdp = greth->tx_bd_base + greth->tx_next; 557 greth_write_bd(&bdp->stat, 558 greth_read_bd(&bdp->stat) | GRETH_BD_EN); 559 560 spin_lock_irqsave(&greth->devlock, flags); /*save from poll/irq*/ 561 greth->tx_next = curr_tx; 562 greth_enable_tx_and_irq(greth); 563 spin_unlock_irqrestore(&greth->devlock, flags); 564 565 return NETDEV_TX_OK; 566 567 frag_map_error: 568 /* Unmap SKB mappings that succeeded and disable descriptor */ 569 for (i = 0; greth->tx_next + i != curr_tx; i++) { 570 bdp = greth->tx_bd_base + greth->tx_next + i; 571 dma_unmap_single(greth->dev, 572 greth_read_bd(&bdp->addr), 573 greth_read_bd(&bdp->stat) & GRETH_BD_LEN, 574 DMA_TO_DEVICE); 575 greth_write_bd(&bdp->stat, 0); 576 } 577 map_error: 578 if (net_ratelimit()) 579 dev_warn(greth->dev, "Could not create TX DMA mapping\n"); 580 dev_kfree_skb(skb); 581 out: 582 return err; 583 } 584 585 static irqreturn_t greth_interrupt(int irq, void *dev_id) 586 { 587 struct net_device *dev = dev_id; 588 struct greth_private *greth; 589 u32 status, ctrl; 590 irqreturn_t retval = IRQ_NONE; 591 592 greth = netdev_priv(dev); 593 594 spin_lock(&greth->devlock); 595 596 /* Get the interrupt events that caused us to be here. */ 597 status = GRETH_REGLOAD(greth->regs->status); 598 599 /* Must see if interrupts are enabled also, INT_TX|INT_RX flags may be 600 * set regardless of whether IRQ is enabled or not. Especially 601 * important when shared IRQ. 602 */ 603 ctrl = GRETH_REGLOAD(greth->regs->control); 604 605 /* Handle rx and tx interrupts through poll */ 606 if (((status & (GRETH_INT_RE | GRETH_INT_RX)) && (ctrl & GRETH_RXI)) || 607 ((status & (GRETH_INT_TE | GRETH_INT_TX)) && (ctrl & GRETH_TXI))) { 608 retval = IRQ_HANDLED; 609 610 /* Disable interrupts and schedule poll() */ 611 greth_disable_irqs(greth); 612 napi_schedule(&greth->napi); 613 } 614 615 mmiowb(); 616 spin_unlock(&greth->devlock); 617 618 return retval; 619 } 620 621 static void greth_clean_tx(struct net_device *dev) 622 { 623 struct greth_private *greth; 624 struct greth_bd *bdp; 625 u32 stat; 626 627 greth = netdev_priv(dev); 628 629 while (1) { 630 bdp = greth->tx_bd_base + greth->tx_last; 631 GRETH_REGSAVE(greth->regs->status, GRETH_INT_TE | GRETH_INT_TX); 632 mb(); 633 stat = greth_read_bd(&bdp->stat); 634 635 if (unlikely(stat & GRETH_BD_EN)) 636 break; 637 638 if (greth->tx_free == GRETH_TXBD_NUM) 639 break; 640 641 /* Check status for errors */ 642 if (unlikely(stat & GRETH_TXBD_STATUS)) { 643 dev->stats.tx_errors++; 644 if (stat & GRETH_TXBD_ERR_AL) 645 dev->stats.tx_aborted_errors++; 646 if (stat & GRETH_TXBD_ERR_UE) 647 dev->stats.tx_fifo_errors++; 648 } 649 dev->stats.tx_packets++; 650 dev->stats.tx_bytes += greth->tx_bufs_length[greth->tx_last]; 651 greth->tx_last = NEXT_TX(greth->tx_last); 652 greth->tx_free++; 653 } 654 655 if (greth->tx_free > 0) { 656 netif_wake_queue(dev); 657 } 658 } 659 660 static inline void greth_update_tx_stats(struct net_device *dev, u32 stat) 661 { 662 /* Check status for errors */ 663 if (unlikely(stat & GRETH_TXBD_STATUS)) { 664 dev->stats.tx_errors++; 665 if (stat & GRETH_TXBD_ERR_AL) 666 dev->stats.tx_aborted_errors++; 667 if (stat & GRETH_TXBD_ERR_UE) 668 dev->stats.tx_fifo_errors++; 669 if (stat & GRETH_TXBD_ERR_LC) 670 dev->stats.tx_aborted_errors++; 671 } 672 dev->stats.tx_packets++; 673 } 674 675 static void greth_clean_tx_gbit(struct net_device *dev) 676 { 677 struct greth_private *greth; 678 struct greth_bd *bdp, *bdp_last_frag; 679 struct sk_buff *skb = NULL; 680 u32 stat; 681 int nr_frags, i; 682 u16 tx_last; 683 684 greth = netdev_priv(dev); 685 tx_last = greth->tx_last; 686 687 while (tx_last != greth->tx_next) { 688 689 skb = greth->tx_skbuff[tx_last]; 690 691 nr_frags = skb_shinfo(skb)->nr_frags; 692 693 /* We only clean fully completed SKBs */ 694 bdp_last_frag = greth->tx_bd_base + SKIP_TX(tx_last, nr_frags); 695 696 GRETH_REGSAVE(greth->regs->status, GRETH_INT_TE | GRETH_INT_TX); 697 mb(); 698 stat = greth_read_bd(&bdp_last_frag->stat); 699 700 if (stat & GRETH_BD_EN) 701 break; 702 703 greth->tx_skbuff[tx_last] = NULL; 704 705 greth_update_tx_stats(dev, stat); 706 dev->stats.tx_bytes += skb->len; 707 708 bdp = greth->tx_bd_base + tx_last; 709 710 tx_last = NEXT_TX(tx_last); 711 712 dma_unmap_single(greth->dev, 713 greth_read_bd(&bdp->addr), 714 skb_headlen(skb), 715 DMA_TO_DEVICE); 716 717 for (i = 0; i < nr_frags; i++) { 718 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 719 bdp = greth->tx_bd_base + tx_last; 720 721 dma_unmap_page(greth->dev, 722 greth_read_bd(&bdp->addr), 723 skb_frag_size(frag), 724 DMA_TO_DEVICE); 725 726 tx_last = NEXT_TX(tx_last); 727 } 728 dev_kfree_skb(skb); 729 } 730 if (skb) { /* skb is set only if the above while loop was entered */ 731 wmb(); 732 greth->tx_last = tx_last; 733 734 if (netif_queue_stopped(dev) && 735 (greth_num_free_bds(tx_last, greth->tx_next) > 736 (MAX_SKB_FRAGS+1))) 737 netif_wake_queue(dev); 738 } 739 } 740 741 static int greth_rx(struct net_device *dev, int limit) 742 { 743 struct greth_private *greth; 744 struct greth_bd *bdp; 745 struct sk_buff *skb; 746 int pkt_len; 747 int bad, count; 748 u32 status, dma_addr; 749 unsigned long flags; 750 751 greth = netdev_priv(dev); 752 753 for (count = 0; count < limit; ++count) { 754 755 bdp = greth->rx_bd_base + greth->rx_cur; 756 GRETH_REGSAVE(greth->regs->status, GRETH_INT_RE | GRETH_INT_RX); 757 mb(); 758 status = greth_read_bd(&bdp->stat); 759 760 if (unlikely(status & GRETH_BD_EN)) { 761 break; 762 } 763 764 dma_addr = greth_read_bd(&bdp->addr); 765 bad = 0; 766 767 /* Check status for errors. */ 768 if (unlikely(status & GRETH_RXBD_STATUS)) { 769 if (status & GRETH_RXBD_ERR_FT) { 770 dev->stats.rx_length_errors++; 771 bad = 1; 772 } 773 if (status & (GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE)) { 774 dev->stats.rx_frame_errors++; 775 bad = 1; 776 } 777 if (status & GRETH_RXBD_ERR_CRC) { 778 dev->stats.rx_crc_errors++; 779 bad = 1; 780 } 781 } 782 if (unlikely(bad)) { 783 dev->stats.rx_errors++; 784 785 } else { 786 787 pkt_len = status & GRETH_BD_LEN; 788 789 skb = netdev_alloc_skb(dev, pkt_len + NET_IP_ALIGN); 790 791 if (unlikely(skb == NULL)) { 792 793 if (net_ratelimit()) 794 dev_warn(&dev->dev, "low on memory - " "packet dropped\n"); 795 796 dev->stats.rx_dropped++; 797 798 } else { 799 skb_reserve(skb, NET_IP_ALIGN); 800 801 dma_sync_single_for_cpu(greth->dev, 802 dma_addr, 803 pkt_len, 804 DMA_FROM_DEVICE); 805 806 if (netif_msg_pktdata(greth)) 807 greth_print_rx_packet(phys_to_virt(dma_addr), pkt_len); 808 809 memcpy(skb_put(skb, pkt_len), phys_to_virt(dma_addr), pkt_len); 810 811 skb->protocol = eth_type_trans(skb, dev); 812 dev->stats.rx_bytes += pkt_len; 813 dev->stats.rx_packets++; 814 netif_receive_skb(skb); 815 } 816 } 817 818 status = GRETH_BD_EN | GRETH_BD_IE; 819 if (greth->rx_cur == GRETH_RXBD_NUM_MASK) { 820 status |= GRETH_BD_WR; 821 } 822 823 wmb(); 824 greth_write_bd(&bdp->stat, status); 825 826 dma_sync_single_for_device(greth->dev, dma_addr, MAX_FRAME_SIZE, DMA_FROM_DEVICE); 827 828 spin_lock_irqsave(&greth->devlock, flags); /* save from XMIT */ 829 greth_enable_rx(greth); 830 spin_unlock_irqrestore(&greth->devlock, flags); 831 832 greth->rx_cur = NEXT_RX(greth->rx_cur); 833 } 834 835 return count; 836 } 837 838 static inline int hw_checksummed(u32 status) 839 { 840 841 if (status & GRETH_RXBD_IP_FRAG) 842 return 0; 843 844 if (status & GRETH_RXBD_IP && status & GRETH_RXBD_IP_CSERR) 845 return 0; 846 847 if (status & GRETH_RXBD_UDP && status & GRETH_RXBD_UDP_CSERR) 848 return 0; 849 850 if (status & GRETH_RXBD_TCP && status & GRETH_RXBD_TCP_CSERR) 851 return 0; 852 853 return 1; 854 } 855 856 static int greth_rx_gbit(struct net_device *dev, int limit) 857 { 858 struct greth_private *greth; 859 struct greth_bd *bdp; 860 struct sk_buff *skb, *newskb; 861 int pkt_len; 862 int bad, count = 0; 863 u32 status, dma_addr; 864 unsigned long flags; 865 866 greth = netdev_priv(dev); 867 868 for (count = 0; count < limit; ++count) { 869 870 bdp = greth->rx_bd_base + greth->rx_cur; 871 skb = greth->rx_skbuff[greth->rx_cur]; 872 GRETH_REGSAVE(greth->regs->status, GRETH_INT_RE | GRETH_INT_RX); 873 mb(); 874 status = greth_read_bd(&bdp->stat); 875 bad = 0; 876 877 if (status & GRETH_BD_EN) 878 break; 879 880 /* Check status for errors. */ 881 if (unlikely(status & GRETH_RXBD_STATUS)) { 882 883 if (status & GRETH_RXBD_ERR_FT) { 884 dev->stats.rx_length_errors++; 885 bad = 1; 886 } else if (status & 887 (GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE | GRETH_RXBD_ERR_LE)) { 888 dev->stats.rx_frame_errors++; 889 bad = 1; 890 } else if (status & GRETH_RXBD_ERR_CRC) { 891 dev->stats.rx_crc_errors++; 892 bad = 1; 893 } 894 } 895 896 /* Allocate new skb to replace current, not needed if the 897 * current skb can be reused */ 898 if (!bad && (newskb=netdev_alloc_skb(dev, MAX_FRAME_SIZE + NET_IP_ALIGN))) { 899 skb_reserve(newskb, NET_IP_ALIGN); 900 901 dma_addr = dma_map_single(greth->dev, 902 newskb->data, 903 MAX_FRAME_SIZE + NET_IP_ALIGN, 904 DMA_FROM_DEVICE); 905 906 if (!dma_mapping_error(greth->dev, dma_addr)) { 907 /* Process the incoming frame. */ 908 pkt_len = status & GRETH_BD_LEN; 909 910 dma_unmap_single(greth->dev, 911 greth_read_bd(&bdp->addr), 912 MAX_FRAME_SIZE + NET_IP_ALIGN, 913 DMA_FROM_DEVICE); 914 915 if (netif_msg_pktdata(greth)) 916 greth_print_rx_packet(phys_to_virt(greth_read_bd(&bdp->addr)), pkt_len); 917 918 skb_put(skb, pkt_len); 919 920 if (dev->features & NETIF_F_RXCSUM && hw_checksummed(status)) 921 skb->ip_summed = CHECKSUM_UNNECESSARY; 922 else 923 skb_checksum_none_assert(skb); 924 925 skb->protocol = eth_type_trans(skb, dev); 926 dev->stats.rx_packets++; 927 dev->stats.rx_bytes += pkt_len; 928 netif_receive_skb(skb); 929 930 greth->rx_skbuff[greth->rx_cur] = newskb; 931 greth_write_bd(&bdp->addr, dma_addr); 932 } else { 933 if (net_ratelimit()) 934 dev_warn(greth->dev, "Could not create DMA mapping, dropping packet\n"); 935 dev_kfree_skb(newskb); 936 /* reusing current skb, so it is a drop */ 937 dev->stats.rx_dropped++; 938 } 939 } else if (bad) { 940 /* Bad Frame transfer, the skb is reused */ 941 dev->stats.rx_dropped++; 942 } else { 943 /* Failed Allocating a new skb. This is rather stupid 944 * but the current "filled" skb is reused, as if 945 * transfer failure. One could argue that RX descriptor 946 * table handling should be divided into cleaning and 947 * filling as the TX part of the driver 948 */ 949 if (net_ratelimit()) 950 dev_warn(greth->dev, "Could not allocate SKB, dropping packet\n"); 951 /* reusing current skb, so it is a drop */ 952 dev->stats.rx_dropped++; 953 } 954 955 status = GRETH_BD_EN | GRETH_BD_IE; 956 if (greth->rx_cur == GRETH_RXBD_NUM_MASK) { 957 status |= GRETH_BD_WR; 958 } 959 960 wmb(); 961 greth_write_bd(&bdp->stat, status); 962 spin_lock_irqsave(&greth->devlock, flags); 963 greth_enable_rx(greth); 964 spin_unlock_irqrestore(&greth->devlock, flags); 965 greth->rx_cur = NEXT_RX(greth->rx_cur); 966 } 967 968 return count; 969 970 } 971 972 static int greth_poll(struct napi_struct *napi, int budget) 973 { 974 struct greth_private *greth; 975 int work_done = 0; 976 unsigned long flags; 977 u32 mask, ctrl; 978 greth = container_of(napi, struct greth_private, napi); 979 980 restart_txrx_poll: 981 if (greth->gbit_mac) { 982 greth_clean_tx_gbit(greth->netdev); 983 work_done += greth_rx_gbit(greth->netdev, budget - work_done); 984 } else { 985 if (netif_queue_stopped(greth->netdev)) 986 greth_clean_tx(greth->netdev); 987 work_done += greth_rx(greth->netdev, budget - work_done); 988 } 989 990 if (work_done < budget) { 991 992 spin_lock_irqsave(&greth->devlock, flags); 993 994 ctrl = GRETH_REGLOAD(greth->regs->control); 995 if ((greth->gbit_mac && (greth->tx_last != greth->tx_next)) || 996 (!greth->gbit_mac && netif_queue_stopped(greth->netdev))) { 997 GRETH_REGSAVE(greth->regs->control, 998 ctrl | GRETH_TXI | GRETH_RXI); 999 mask = GRETH_INT_RX | GRETH_INT_RE | 1000 GRETH_INT_TX | GRETH_INT_TE; 1001 } else { 1002 GRETH_REGSAVE(greth->regs->control, ctrl | GRETH_RXI); 1003 mask = GRETH_INT_RX | GRETH_INT_RE; 1004 } 1005 1006 if (GRETH_REGLOAD(greth->regs->status) & mask) { 1007 GRETH_REGSAVE(greth->regs->control, ctrl); 1008 spin_unlock_irqrestore(&greth->devlock, flags); 1009 goto restart_txrx_poll; 1010 } else { 1011 __napi_complete(napi); 1012 spin_unlock_irqrestore(&greth->devlock, flags); 1013 } 1014 } 1015 1016 return work_done; 1017 } 1018 1019 static int greth_set_mac_add(struct net_device *dev, void *p) 1020 { 1021 struct sockaddr *addr = p; 1022 struct greth_private *greth; 1023 struct greth_regs *regs; 1024 1025 greth = netdev_priv(dev); 1026 regs = greth->regs; 1027 1028 if (!is_valid_ether_addr(addr->sa_data)) 1029 return -EADDRNOTAVAIL; 1030 1031 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 1032 GRETH_REGSAVE(regs->esa_msb, dev->dev_addr[0] << 8 | dev->dev_addr[1]); 1033 GRETH_REGSAVE(regs->esa_lsb, dev->dev_addr[2] << 24 | dev->dev_addr[3] << 16 | 1034 dev->dev_addr[4] << 8 | dev->dev_addr[5]); 1035 1036 return 0; 1037 } 1038 1039 static u32 greth_hash_get_index(__u8 *addr) 1040 { 1041 return (ether_crc(6, addr)) & 0x3F; 1042 } 1043 1044 static void greth_set_hash_filter(struct net_device *dev) 1045 { 1046 struct netdev_hw_addr *ha; 1047 struct greth_private *greth = netdev_priv(dev); 1048 struct greth_regs *regs = greth->regs; 1049 u32 mc_filter[2]; 1050 unsigned int bitnr; 1051 1052 mc_filter[0] = mc_filter[1] = 0; 1053 1054 netdev_for_each_mc_addr(ha, dev) { 1055 bitnr = greth_hash_get_index(ha->addr); 1056 mc_filter[bitnr >> 5] |= 1 << (bitnr & 31); 1057 } 1058 1059 GRETH_REGSAVE(regs->hash_msb, mc_filter[1]); 1060 GRETH_REGSAVE(regs->hash_lsb, mc_filter[0]); 1061 } 1062 1063 static void greth_set_multicast_list(struct net_device *dev) 1064 { 1065 int cfg; 1066 struct greth_private *greth = netdev_priv(dev); 1067 struct greth_regs *regs = greth->regs; 1068 1069 cfg = GRETH_REGLOAD(regs->control); 1070 if (dev->flags & IFF_PROMISC) 1071 cfg |= GRETH_CTRL_PR; 1072 else 1073 cfg &= ~GRETH_CTRL_PR; 1074 1075 if (greth->multicast) { 1076 if (dev->flags & IFF_ALLMULTI) { 1077 GRETH_REGSAVE(regs->hash_msb, -1); 1078 GRETH_REGSAVE(regs->hash_lsb, -1); 1079 cfg |= GRETH_CTRL_MCEN; 1080 GRETH_REGSAVE(regs->control, cfg); 1081 return; 1082 } 1083 1084 if (netdev_mc_empty(dev)) { 1085 cfg &= ~GRETH_CTRL_MCEN; 1086 GRETH_REGSAVE(regs->control, cfg); 1087 return; 1088 } 1089 1090 /* Setup multicast filter */ 1091 greth_set_hash_filter(dev); 1092 cfg |= GRETH_CTRL_MCEN; 1093 } 1094 GRETH_REGSAVE(regs->control, cfg); 1095 } 1096 1097 static u32 greth_get_msglevel(struct net_device *dev) 1098 { 1099 struct greth_private *greth = netdev_priv(dev); 1100 return greth->msg_enable; 1101 } 1102 1103 static void greth_set_msglevel(struct net_device *dev, u32 value) 1104 { 1105 struct greth_private *greth = netdev_priv(dev); 1106 greth->msg_enable = value; 1107 } 1108 1109 static int greth_get_regs_len(struct net_device *dev) 1110 { 1111 return sizeof(struct greth_regs); 1112 } 1113 1114 static void greth_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1115 { 1116 struct greth_private *greth = netdev_priv(dev); 1117 1118 strlcpy(info->driver, dev_driver_string(greth->dev), 1119 sizeof(info->driver)); 1120 strlcpy(info->version, "revision: 1.0", sizeof(info->version)); 1121 strlcpy(info->bus_info, greth->dev->bus->name, sizeof(info->bus_info)); 1122 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version)); 1123 } 1124 1125 static void greth_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *p) 1126 { 1127 int i; 1128 struct greth_private *greth = netdev_priv(dev); 1129 u32 __iomem *greth_regs = (u32 __iomem *) greth->regs; 1130 u32 *buff = p; 1131 1132 for (i = 0; i < sizeof(struct greth_regs) / sizeof(u32); i++) 1133 buff[i] = greth_read_bd(&greth_regs[i]); 1134 } 1135 1136 static const struct ethtool_ops greth_ethtool_ops = { 1137 .get_msglevel = greth_get_msglevel, 1138 .set_msglevel = greth_set_msglevel, 1139 .get_drvinfo = greth_get_drvinfo, 1140 .get_regs_len = greth_get_regs_len, 1141 .get_regs = greth_get_regs, 1142 .get_link = ethtool_op_get_link, 1143 .get_link_ksettings = phy_ethtool_get_link_ksettings, 1144 .set_link_ksettings = phy_ethtool_set_link_ksettings, 1145 }; 1146 1147 static struct net_device_ops greth_netdev_ops = { 1148 .ndo_open = greth_open, 1149 .ndo_stop = greth_close, 1150 .ndo_start_xmit = greth_start_xmit, 1151 .ndo_set_mac_address = greth_set_mac_add, 1152 .ndo_validate_addr = eth_validate_addr, 1153 }; 1154 1155 static inline int wait_for_mdio(struct greth_private *greth) 1156 { 1157 unsigned long timeout = jiffies + 4*HZ/100; 1158 while (GRETH_REGLOAD(greth->regs->mdio) & GRETH_MII_BUSY) { 1159 if (time_after(jiffies, timeout)) 1160 return 0; 1161 } 1162 return 1; 1163 } 1164 1165 static int greth_mdio_read(struct mii_bus *bus, int phy, int reg) 1166 { 1167 struct greth_private *greth = bus->priv; 1168 int data; 1169 1170 if (!wait_for_mdio(greth)) 1171 return -EBUSY; 1172 1173 GRETH_REGSAVE(greth->regs->mdio, ((phy & 0x1F) << 11) | ((reg & 0x1F) << 6) | 2); 1174 1175 if (!wait_for_mdio(greth)) 1176 return -EBUSY; 1177 1178 if (!(GRETH_REGLOAD(greth->regs->mdio) & GRETH_MII_NVALID)) { 1179 data = (GRETH_REGLOAD(greth->regs->mdio) >> 16) & 0xFFFF; 1180 return data; 1181 1182 } else { 1183 return -1; 1184 } 1185 } 1186 1187 static int greth_mdio_write(struct mii_bus *bus, int phy, int reg, u16 val) 1188 { 1189 struct greth_private *greth = bus->priv; 1190 1191 if (!wait_for_mdio(greth)) 1192 return -EBUSY; 1193 1194 GRETH_REGSAVE(greth->regs->mdio, 1195 ((val & 0xFFFF) << 16) | ((phy & 0x1F) << 11) | ((reg & 0x1F) << 6) | 1); 1196 1197 if (!wait_for_mdio(greth)) 1198 return -EBUSY; 1199 1200 return 0; 1201 } 1202 1203 static void greth_link_change(struct net_device *dev) 1204 { 1205 struct greth_private *greth = netdev_priv(dev); 1206 struct phy_device *phydev = dev->phydev; 1207 unsigned long flags; 1208 int status_change = 0; 1209 u32 ctrl; 1210 1211 spin_lock_irqsave(&greth->devlock, flags); 1212 1213 if (phydev->link) { 1214 1215 if ((greth->speed != phydev->speed) || (greth->duplex != phydev->duplex)) { 1216 ctrl = GRETH_REGLOAD(greth->regs->control) & 1217 ~(GRETH_CTRL_FD | GRETH_CTRL_SP | GRETH_CTRL_GB); 1218 1219 if (phydev->duplex) 1220 ctrl |= GRETH_CTRL_FD; 1221 1222 if (phydev->speed == SPEED_100) 1223 ctrl |= GRETH_CTRL_SP; 1224 else if (phydev->speed == SPEED_1000) 1225 ctrl |= GRETH_CTRL_GB; 1226 1227 GRETH_REGSAVE(greth->regs->control, ctrl); 1228 greth->speed = phydev->speed; 1229 greth->duplex = phydev->duplex; 1230 status_change = 1; 1231 } 1232 } 1233 1234 if (phydev->link != greth->link) { 1235 if (!phydev->link) { 1236 greth->speed = 0; 1237 greth->duplex = -1; 1238 } 1239 greth->link = phydev->link; 1240 1241 status_change = 1; 1242 } 1243 1244 spin_unlock_irqrestore(&greth->devlock, flags); 1245 1246 if (status_change) { 1247 if (phydev->link) 1248 pr_debug("%s: link up (%d/%s)\n", 1249 dev->name, phydev->speed, 1250 DUPLEX_FULL == phydev->duplex ? "Full" : "Half"); 1251 else 1252 pr_debug("%s: link down\n", dev->name); 1253 } 1254 } 1255 1256 static int greth_mdio_probe(struct net_device *dev) 1257 { 1258 struct greth_private *greth = netdev_priv(dev); 1259 struct phy_device *phy = NULL; 1260 int ret; 1261 1262 /* Find the first PHY */ 1263 phy = phy_find_first(greth->mdio); 1264 1265 if (!phy) { 1266 if (netif_msg_probe(greth)) 1267 dev_err(&dev->dev, "no PHY found\n"); 1268 return -ENXIO; 1269 } 1270 1271 ret = phy_connect_direct(dev, phy, &greth_link_change, 1272 greth->gbit_mac ? PHY_INTERFACE_MODE_GMII : PHY_INTERFACE_MODE_MII); 1273 if (ret) { 1274 if (netif_msg_ifup(greth)) 1275 dev_err(&dev->dev, "could not attach to PHY\n"); 1276 return ret; 1277 } 1278 1279 if (greth->gbit_mac) 1280 phy->supported &= PHY_GBIT_FEATURES; 1281 else 1282 phy->supported &= PHY_BASIC_FEATURES; 1283 1284 phy->advertising = phy->supported; 1285 1286 greth->link = 0; 1287 greth->speed = 0; 1288 greth->duplex = -1; 1289 1290 return 0; 1291 } 1292 1293 static inline int phy_aneg_done(struct phy_device *phydev) 1294 { 1295 int retval; 1296 1297 retval = phy_read(phydev, MII_BMSR); 1298 1299 return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE); 1300 } 1301 1302 static int greth_mdio_init(struct greth_private *greth) 1303 { 1304 int ret; 1305 unsigned long timeout; 1306 struct net_device *ndev = greth->netdev; 1307 1308 greth->mdio = mdiobus_alloc(); 1309 if (!greth->mdio) { 1310 return -ENOMEM; 1311 } 1312 1313 greth->mdio->name = "greth-mdio"; 1314 snprintf(greth->mdio->id, MII_BUS_ID_SIZE, "%s-%d", greth->mdio->name, greth->irq); 1315 greth->mdio->read = greth_mdio_read; 1316 greth->mdio->write = greth_mdio_write; 1317 greth->mdio->priv = greth; 1318 1319 ret = mdiobus_register(greth->mdio); 1320 if (ret) { 1321 goto error; 1322 } 1323 1324 ret = greth_mdio_probe(greth->netdev); 1325 if (ret) { 1326 if (netif_msg_probe(greth)) 1327 dev_err(&greth->netdev->dev, "failed to probe MDIO bus\n"); 1328 goto unreg_mdio; 1329 } 1330 1331 phy_start(ndev->phydev); 1332 1333 /* If Ethernet debug link is used make autoneg happen right away */ 1334 if (greth->edcl && greth_edcl == 1) { 1335 phy_start_aneg(ndev->phydev); 1336 timeout = jiffies + 6*HZ; 1337 while (!phy_aneg_done(ndev->phydev) && 1338 time_before(jiffies, timeout)) { 1339 } 1340 phy_read_status(ndev->phydev); 1341 greth_link_change(greth->netdev); 1342 } 1343 1344 return 0; 1345 1346 unreg_mdio: 1347 mdiobus_unregister(greth->mdio); 1348 error: 1349 mdiobus_free(greth->mdio); 1350 return ret; 1351 } 1352 1353 /* Initialize the GRETH MAC */ 1354 static int greth_of_probe(struct platform_device *ofdev) 1355 { 1356 struct net_device *dev; 1357 struct greth_private *greth; 1358 struct greth_regs *regs; 1359 1360 int i; 1361 int err; 1362 int tmp; 1363 unsigned long timeout; 1364 1365 dev = alloc_etherdev(sizeof(struct greth_private)); 1366 1367 if (dev == NULL) 1368 return -ENOMEM; 1369 1370 greth = netdev_priv(dev); 1371 greth->netdev = dev; 1372 greth->dev = &ofdev->dev; 1373 1374 if (greth_debug > 0) 1375 greth->msg_enable = greth_debug; 1376 else 1377 greth->msg_enable = GRETH_DEF_MSG_ENABLE; 1378 1379 spin_lock_init(&greth->devlock); 1380 1381 greth->regs = of_ioremap(&ofdev->resource[0], 0, 1382 resource_size(&ofdev->resource[0]), 1383 "grlib-greth regs"); 1384 1385 if (greth->regs == NULL) { 1386 if (netif_msg_probe(greth)) 1387 dev_err(greth->dev, "ioremap failure.\n"); 1388 err = -EIO; 1389 goto error1; 1390 } 1391 1392 regs = greth->regs; 1393 greth->irq = ofdev->archdata.irqs[0]; 1394 1395 dev_set_drvdata(greth->dev, dev); 1396 SET_NETDEV_DEV(dev, greth->dev); 1397 1398 if (netif_msg_probe(greth)) 1399 dev_dbg(greth->dev, "resetting controller.\n"); 1400 1401 /* Reset the controller. */ 1402 GRETH_REGSAVE(regs->control, GRETH_RESET); 1403 1404 /* Wait for MAC to reset itself */ 1405 timeout = jiffies + HZ/100; 1406 while (GRETH_REGLOAD(regs->control) & GRETH_RESET) { 1407 if (time_after(jiffies, timeout)) { 1408 err = -EIO; 1409 if (netif_msg_probe(greth)) 1410 dev_err(greth->dev, "timeout when waiting for reset.\n"); 1411 goto error2; 1412 } 1413 } 1414 1415 /* Get default PHY address */ 1416 greth->phyaddr = (GRETH_REGLOAD(regs->mdio) >> 11) & 0x1F; 1417 1418 /* Check if we have GBIT capable MAC */ 1419 tmp = GRETH_REGLOAD(regs->control); 1420 greth->gbit_mac = (tmp >> 27) & 1; 1421 1422 /* Check for multicast capability */ 1423 greth->multicast = (tmp >> 25) & 1; 1424 1425 greth->edcl = (tmp >> 31) & 1; 1426 1427 /* If we have EDCL we disable the EDCL speed-duplex FSM so 1428 * it doesn't interfere with the software */ 1429 if (greth->edcl != 0) 1430 GRETH_REGORIN(regs->control, GRETH_CTRL_DISDUPLEX); 1431 1432 /* Check if MAC can handle MDIO interrupts */ 1433 greth->mdio_int_en = (tmp >> 26) & 1; 1434 1435 err = greth_mdio_init(greth); 1436 if (err) { 1437 if (netif_msg_probe(greth)) 1438 dev_err(greth->dev, "failed to register MDIO bus\n"); 1439 goto error2; 1440 } 1441 1442 /* Allocate TX descriptor ring in coherent memory */ 1443 greth->tx_bd_base = dma_zalloc_coherent(greth->dev, 1024, 1444 &greth->tx_bd_base_phys, 1445 GFP_KERNEL); 1446 if (!greth->tx_bd_base) { 1447 err = -ENOMEM; 1448 goto error3; 1449 } 1450 1451 /* Allocate RX descriptor ring in coherent memory */ 1452 greth->rx_bd_base = dma_zalloc_coherent(greth->dev, 1024, 1453 &greth->rx_bd_base_phys, 1454 GFP_KERNEL); 1455 if (!greth->rx_bd_base) { 1456 err = -ENOMEM; 1457 goto error4; 1458 } 1459 1460 /* Get MAC address from: module param, OF property or ID prom */ 1461 for (i = 0; i < 6; i++) { 1462 if (macaddr[i] != 0) 1463 break; 1464 } 1465 if (i == 6) { 1466 const unsigned char *addr; 1467 int len; 1468 addr = of_get_property(ofdev->dev.of_node, "local-mac-address", 1469 &len); 1470 if (addr != NULL && len == 6) { 1471 for (i = 0; i < 6; i++) 1472 macaddr[i] = (unsigned int) addr[i]; 1473 } else { 1474 #ifdef CONFIG_SPARC 1475 for (i = 0; i < 6; i++) 1476 macaddr[i] = (unsigned int) idprom->id_ethaddr[i]; 1477 #endif 1478 } 1479 } 1480 1481 for (i = 0; i < 6; i++) 1482 dev->dev_addr[i] = macaddr[i]; 1483 1484 macaddr[5]++; 1485 1486 if (!is_valid_ether_addr(&dev->dev_addr[0])) { 1487 if (netif_msg_probe(greth)) 1488 dev_err(greth->dev, "no valid ethernet address, aborting.\n"); 1489 err = -EINVAL; 1490 goto error5; 1491 } 1492 1493 GRETH_REGSAVE(regs->esa_msb, dev->dev_addr[0] << 8 | dev->dev_addr[1]); 1494 GRETH_REGSAVE(regs->esa_lsb, dev->dev_addr[2] << 24 | dev->dev_addr[3] << 16 | 1495 dev->dev_addr[4] << 8 | dev->dev_addr[5]); 1496 1497 /* Clear all pending interrupts except PHY irq */ 1498 GRETH_REGSAVE(regs->status, 0xFF); 1499 1500 if (greth->gbit_mac) { 1501 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | 1502 NETIF_F_RXCSUM; 1503 dev->features = dev->hw_features | NETIF_F_HIGHDMA; 1504 greth_netdev_ops.ndo_start_xmit = greth_start_xmit_gbit; 1505 } 1506 1507 if (greth->multicast) { 1508 greth_netdev_ops.ndo_set_rx_mode = greth_set_multicast_list; 1509 dev->flags |= IFF_MULTICAST; 1510 } else { 1511 dev->flags &= ~IFF_MULTICAST; 1512 } 1513 1514 dev->netdev_ops = &greth_netdev_ops; 1515 dev->ethtool_ops = &greth_ethtool_ops; 1516 1517 err = register_netdev(dev); 1518 if (err) { 1519 if (netif_msg_probe(greth)) 1520 dev_err(greth->dev, "netdevice registration failed.\n"); 1521 goto error5; 1522 } 1523 1524 /* setup NAPI */ 1525 netif_napi_add(dev, &greth->napi, greth_poll, 64); 1526 1527 return 0; 1528 1529 error5: 1530 dma_free_coherent(greth->dev, 1024, greth->rx_bd_base, greth->rx_bd_base_phys); 1531 error4: 1532 dma_free_coherent(greth->dev, 1024, greth->tx_bd_base, greth->tx_bd_base_phys); 1533 error3: 1534 mdiobus_unregister(greth->mdio); 1535 error2: 1536 of_iounmap(&ofdev->resource[0], greth->regs, resource_size(&ofdev->resource[0])); 1537 error1: 1538 free_netdev(dev); 1539 return err; 1540 } 1541 1542 static int greth_of_remove(struct platform_device *of_dev) 1543 { 1544 struct net_device *ndev = platform_get_drvdata(of_dev); 1545 struct greth_private *greth = netdev_priv(ndev); 1546 1547 /* Free descriptor areas */ 1548 dma_free_coherent(&of_dev->dev, 1024, greth->rx_bd_base, greth->rx_bd_base_phys); 1549 1550 dma_free_coherent(&of_dev->dev, 1024, greth->tx_bd_base, greth->tx_bd_base_phys); 1551 1552 if (ndev->phydev) 1553 phy_stop(ndev->phydev); 1554 mdiobus_unregister(greth->mdio); 1555 1556 unregister_netdev(ndev); 1557 free_netdev(ndev); 1558 1559 of_iounmap(&of_dev->resource[0], greth->regs, resource_size(&of_dev->resource[0])); 1560 1561 return 0; 1562 } 1563 1564 static const struct of_device_id greth_of_match[] = { 1565 { 1566 .name = "GAISLER_ETHMAC", 1567 }, 1568 { 1569 .name = "01_01d", 1570 }, 1571 {}, 1572 }; 1573 1574 MODULE_DEVICE_TABLE(of, greth_of_match); 1575 1576 static struct platform_driver greth_of_driver = { 1577 .driver = { 1578 .name = "grlib-greth", 1579 .of_match_table = greth_of_match, 1580 }, 1581 .probe = greth_of_probe, 1582 .remove = greth_of_remove, 1583 }; 1584 1585 module_platform_driver(greth_of_driver); 1586 1587 MODULE_AUTHOR("Aeroflex Gaisler AB."); 1588 MODULE_DESCRIPTION("Aeroflex Gaisler Ethernet MAC driver"); 1589 MODULE_LICENSE("GPL"); 1590