1 /* 2 * Aeroflex Gaisler GRETH 10/100/1G Ethernet MAC. 3 * 4 * 2005-2010 (c) Aeroflex Gaisler AB 5 * 6 * This driver supports GRETH 10/100 and GRETH 10/100/1G Ethernet MACs 7 * available in the GRLIB VHDL IP core library. 8 * 9 * Full documentation of both cores can be found here: 10 * http://www.gaisler.com/products/grlib/grip.pdf 11 * 12 * The Gigabit version supports scatter/gather DMA, any alignment of 13 * buffers and checksum offloading. 14 * 15 * This program is free software; you can redistribute it and/or modify it 16 * under the terms of the GNU General Public License as published by the 17 * Free Software Foundation; either version 2 of the License, or (at your 18 * option) any later version. 19 * 20 * Contributors: Kristoffer Glembo 21 * Daniel Hellstrom 22 * Marko Isomaki 23 */ 24 25 #include <linux/dma-mapping.h> 26 #include <linux/module.h> 27 #include <linux/uaccess.h> 28 #include <linux/interrupt.h> 29 #include <linux/netdevice.h> 30 #include <linux/etherdevice.h> 31 #include <linux/ethtool.h> 32 #include <linux/skbuff.h> 33 #include <linux/io.h> 34 #include <linux/crc32.h> 35 #include <linux/mii.h> 36 #include <linux/of_device.h> 37 #include <linux/of_net.h> 38 #include <linux/of_platform.h> 39 #include <linux/slab.h> 40 #include <asm/cacheflush.h> 41 #include <asm/byteorder.h> 42 43 #ifdef CONFIG_SPARC 44 #include <asm/idprom.h> 45 #endif 46 47 #include "greth.h" 48 49 #define GRETH_DEF_MSG_ENABLE \ 50 (NETIF_MSG_DRV | \ 51 NETIF_MSG_PROBE | \ 52 NETIF_MSG_LINK | \ 53 NETIF_MSG_IFDOWN | \ 54 NETIF_MSG_IFUP | \ 55 NETIF_MSG_RX_ERR | \ 56 NETIF_MSG_TX_ERR) 57 58 static int greth_debug = -1; /* -1 == use GRETH_DEF_MSG_ENABLE as value */ 59 module_param(greth_debug, int, 0); 60 MODULE_PARM_DESC(greth_debug, "GRETH bitmapped debugging message enable value"); 61 62 /* Accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */ 63 static int macaddr[6]; 64 module_param_array(macaddr, int, NULL, 0); 65 MODULE_PARM_DESC(macaddr, "GRETH Ethernet MAC address"); 66 67 static int greth_edcl = 1; 68 module_param(greth_edcl, int, 0); 69 MODULE_PARM_DESC(greth_edcl, "GRETH EDCL usage indicator. Set to 1 if EDCL is used."); 70 71 static int greth_open(struct net_device *dev); 72 static netdev_tx_t greth_start_xmit(struct sk_buff *skb, 73 struct net_device *dev); 74 static netdev_tx_t greth_start_xmit_gbit(struct sk_buff *skb, 75 struct net_device *dev); 76 static int greth_rx(struct net_device *dev, int limit); 77 static int greth_rx_gbit(struct net_device *dev, int limit); 78 static void greth_clean_tx(struct net_device *dev); 79 static void greth_clean_tx_gbit(struct net_device *dev); 80 static irqreturn_t greth_interrupt(int irq, void *dev_id); 81 static int greth_close(struct net_device *dev); 82 static int greth_set_mac_add(struct net_device *dev, void *p); 83 static void greth_set_multicast_list(struct net_device *dev); 84 85 #define GRETH_REGLOAD(a) (be32_to_cpu(__raw_readl(&(a)))) 86 #define GRETH_REGSAVE(a, v) (__raw_writel(cpu_to_be32(v), &(a))) 87 #define GRETH_REGORIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) | (v)))) 88 #define GRETH_REGANDIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) & (v)))) 89 90 #define NEXT_TX(N) (((N) + 1) & GRETH_TXBD_NUM_MASK) 91 #define SKIP_TX(N, C) (((N) + C) & GRETH_TXBD_NUM_MASK) 92 #define NEXT_RX(N) (((N) + 1) & GRETH_RXBD_NUM_MASK) 93 94 static void greth_print_rx_packet(void *addr, int len) 95 { 96 print_hex_dump(KERN_DEBUG, "RX: ", DUMP_PREFIX_OFFSET, 16, 1, 97 addr, len, true); 98 } 99 100 static void greth_print_tx_packet(struct sk_buff *skb) 101 { 102 int i; 103 int length; 104 105 if (skb_shinfo(skb)->nr_frags == 0) 106 length = skb->len; 107 else 108 length = skb_headlen(skb); 109 110 print_hex_dump(KERN_DEBUG, "TX: ", DUMP_PREFIX_OFFSET, 16, 1, 111 skb->data, length, true); 112 113 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 114 115 print_hex_dump(KERN_DEBUG, "TX: ", DUMP_PREFIX_OFFSET, 16, 1, 116 skb_frag_address(&skb_shinfo(skb)->frags[i]), 117 skb_shinfo(skb)->frags[i].size, true); 118 } 119 } 120 121 static inline void greth_enable_tx(struct greth_private *greth) 122 { 123 wmb(); 124 GRETH_REGORIN(greth->regs->control, GRETH_TXEN); 125 } 126 127 static inline void greth_enable_tx_and_irq(struct greth_private *greth) 128 { 129 wmb(); /* BDs must been written to memory before enabling TX */ 130 GRETH_REGORIN(greth->regs->control, GRETH_TXEN | GRETH_TXI); 131 } 132 133 static inline void greth_disable_tx(struct greth_private *greth) 134 { 135 GRETH_REGANDIN(greth->regs->control, ~GRETH_TXEN); 136 } 137 138 static inline void greth_enable_rx(struct greth_private *greth) 139 { 140 wmb(); 141 GRETH_REGORIN(greth->regs->control, GRETH_RXEN); 142 } 143 144 static inline void greth_disable_rx(struct greth_private *greth) 145 { 146 GRETH_REGANDIN(greth->regs->control, ~GRETH_RXEN); 147 } 148 149 static inline void greth_enable_irqs(struct greth_private *greth) 150 { 151 GRETH_REGORIN(greth->regs->control, GRETH_RXI | GRETH_TXI); 152 } 153 154 static inline void greth_disable_irqs(struct greth_private *greth) 155 { 156 GRETH_REGANDIN(greth->regs->control, ~(GRETH_RXI|GRETH_TXI)); 157 } 158 159 static inline void greth_write_bd(u32 *bd, u32 val) 160 { 161 __raw_writel(cpu_to_be32(val), bd); 162 } 163 164 static inline u32 greth_read_bd(u32 *bd) 165 { 166 return be32_to_cpu(__raw_readl(bd)); 167 } 168 169 static void greth_clean_rings(struct greth_private *greth) 170 { 171 int i; 172 struct greth_bd *rx_bdp = greth->rx_bd_base; 173 struct greth_bd *tx_bdp = greth->tx_bd_base; 174 175 if (greth->gbit_mac) { 176 177 /* Free and unmap RX buffers */ 178 for (i = 0; i < GRETH_RXBD_NUM; i++, rx_bdp++) { 179 if (greth->rx_skbuff[i] != NULL) { 180 dev_kfree_skb(greth->rx_skbuff[i]); 181 dma_unmap_single(greth->dev, 182 greth_read_bd(&rx_bdp->addr), 183 MAX_FRAME_SIZE+NET_IP_ALIGN, 184 DMA_FROM_DEVICE); 185 } 186 } 187 188 /* TX buffers */ 189 while (greth->tx_free < GRETH_TXBD_NUM) { 190 191 struct sk_buff *skb = greth->tx_skbuff[greth->tx_last]; 192 int nr_frags = skb_shinfo(skb)->nr_frags; 193 tx_bdp = greth->tx_bd_base + greth->tx_last; 194 greth->tx_last = NEXT_TX(greth->tx_last); 195 196 dma_unmap_single(greth->dev, 197 greth_read_bd(&tx_bdp->addr), 198 skb_headlen(skb), 199 DMA_TO_DEVICE); 200 201 for (i = 0; i < nr_frags; i++) { 202 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 203 tx_bdp = greth->tx_bd_base + greth->tx_last; 204 205 dma_unmap_page(greth->dev, 206 greth_read_bd(&tx_bdp->addr), 207 skb_frag_size(frag), 208 DMA_TO_DEVICE); 209 210 greth->tx_last = NEXT_TX(greth->tx_last); 211 } 212 greth->tx_free += nr_frags+1; 213 dev_kfree_skb(skb); 214 } 215 216 217 } else { /* 10/100 Mbps MAC */ 218 219 for (i = 0; i < GRETH_RXBD_NUM; i++, rx_bdp++) { 220 kfree(greth->rx_bufs[i]); 221 dma_unmap_single(greth->dev, 222 greth_read_bd(&rx_bdp->addr), 223 MAX_FRAME_SIZE, 224 DMA_FROM_DEVICE); 225 } 226 for (i = 0; i < GRETH_TXBD_NUM; i++, tx_bdp++) { 227 kfree(greth->tx_bufs[i]); 228 dma_unmap_single(greth->dev, 229 greth_read_bd(&tx_bdp->addr), 230 MAX_FRAME_SIZE, 231 DMA_TO_DEVICE); 232 } 233 } 234 } 235 236 static int greth_init_rings(struct greth_private *greth) 237 { 238 struct sk_buff *skb; 239 struct greth_bd *rx_bd, *tx_bd; 240 u32 dma_addr; 241 int i; 242 243 rx_bd = greth->rx_bd_base; 244 tx_bd = greth->tx_bd_base; 245 246 /* Initialize descriptor rings and buffers */ 247 if (greth->gbit_mac) { 248 249 for (i = 0; i < GRETH_RXBD_NUM; i++) { 250 skb = netdev_alloc_skb(greth->netdev, MAX_FRAME_SIZE+NET_IP_ALIGN); 251 if (skb == NULL) { 252 if (netif_msg_ifup(greth)) 253 dev_err(greth->dev, "Error allocating DMA ring.\n"); 254 goto cleanup; 255 } 256 skb_reserve(skb, NET_IP_ALIGN); 257 dma_addr = dma_map_single(greth->dev, 258 skb->data, 259 MAX_FRAME_SIZE+NET_IP_ALIGN, 260 DMA_FROM_DEVICE); 261 262 if (dma_mapping_error(greth->dev, dma_addr)) { 263 if (netif_msg_ifup(greth)) 264 dev_err(greth->dev, "Could not create initial DMA mapping\n"); 265 goto cleanup; 266 } 267 greth->rx_skbuff[i] = skb; 268 greth_write_bd(&rx_bd[i].addr, dma_addr); 269 greth_write_bd(&rx_bd[i].stat, GRETH_BD_EN | GRETH_BD_IE); 270 } 271 272 } else { 273 274 /* 10/100 MAC uses a fixed set of buffers and copy to/from SKBs */ 275 for (i = 0; i < GRETH_RXBD_NUM; i++) { 276 277 greth->rx_bufs[i] = kmalloc(MAX_FRAME_SIZE, GFP_KERNEL); 278 279 if (greth->rx_bufs[i] == NULL) { 280 if (netif_msg_ifup(greth)) 281 dev_err(greth->dev, "Error allocating DMA ring.\n"); 282 goto cleanup; 283 } 284 285 dma_addr = dma_map_single(greth->dev, 286 greth->rx_bufs[i], 287 MAX_FRAME_SIZE, 288 DMA_FROM_DEVICE); 289 290 if (dma_mapping_error(greth->dev, dma_addr)) { 291 if (netif_msg_ifup(greth)) 292 dev_err(greth->dev, "Could not create initial DMA mapping\n"); 293 goto cleanup; 294 } 295 greth_write_bd(&rx_bd[i].addr, dma_addr); 296 greth_write_bd(&rx_bd[i].stat, GRETH_BD_EN | GRETH_BD_IE); 297 } 298 for (i = 0; i < GRETH_TXBD_NUM; i++) { 299 300 greth->tx_bufs[i] = kmalloc(MAX_FRAME_SIZE, GFP_KERNEL); 301 302 if (greth->tx_bufs[i] == NULL) { 303 if (netif_msg_ifup(greth)) 304 dev_err(greth->dev, "Error allocating DMA ring.\n"); 305 goto cleanup; 306 } 307 308 dma_addr = dma_map_single(greth->dev, 309 greth->tx_bufs[i], 310 MAX_FRAME_SIZE, 311 DMA_TO_DEVICE); 312 313 if (dma_mapping_error(greth->dev, dma_addr)) { 314 if (netif_msg_ifup(greth)) 315 dev_err(greth->dev, "Could not create initial DMA mapping\n"); 316 goto cleanup; 317 } 318 greth_write_bd(&tx_bd[i].addr, dma_addr); 319 greth_write_bd(&tx_bd[i].stat, 0); 320 } 321 } 322 greth_write_bd(&rx_bd[GRETH_RXBD_NUM - 1].stat, 323 greth_read_bd(&rx_bd[GRETH_RXBD_NUM - 1].stat) | GRETH_BD_WR); 324 325 /* Initialize pointers. */ 326 greth->rx_cur = 0; 327 greth->tx_next = 0; 328 greth->tx_last = 0; 329 greth->tx_free = GRETH_TXBD_NUM; 330 331 /* Initialize descriptor base address */ 332 GRETH_REGSAVE(greth->regs->tx_desc_p, greth->tx_bd_base_phys); 333 GRETH_REGSAVE(greth->regs->rx_desc_p, greth->rx_bd_base_phys); 334 335 return 0; 336 337 cleanup: 338 greth_clean_rings(greth); 339 return -ENOMEM; 340 } 341 342 static int greth_open(struct net_device *dev) 343 { 344 struct greth_private *greth = netdev_priv(dev); 345 int err; 346 347 err = greth_init_rings(greth); 348 if (err) { 349 if (netif_msg_ifup(greth)) 350 dev_err(&dev->dev, "Could not allocate memory for DMA rings\n"); 351 return err; 352 } 353 354 err = request_irq(greth->irq, greth_interrupt, 0, "eth", (void *) dev); 355 if (err) { 356 if (netif_msg_ifup(greth)) 357 dev_err(&dev->dev, "Could not allocate interrupt %d\n", dev->irq); 358 greth_clean_rings(greth); 359 return err; 360 } 361 362 if (netif_msg_ifup(greth)) 363 dev_dbg(&dev->dev, " starting queue\n"); 364 netif_start_queue(dev); 365 366 GRETH_REGSAVE(greth->regs->status, 0xFF); 367 368 napi_enable(&greth->napi); 369 370 greth_enable_irqs(greth); 371 greth_enable_tx(greth); 372 greth_enable_rx(greth); 373 return 0; 374 375 } 376 377 static int greth_close(struct net_device *dev) 378 { 379 struct greth_private *greth = netdev_priv(dev); 380 381 napi_disable(&greth->napi); 382 383 greth_disable_irqs(greth); 384 greth_disable_tx(greth); 385 greth_disable_rx(greth); 386 387 netif_stop_queue(dev); 388 389 free_irq(greth->irq, (void *) dev); 390 391 greth_clean_rings(greth); 392 393 return 0; 394 } 395 396 static netdev_tx_t 397 greth_start_xmit(struct sk_buff *skb, struct net_device *dev) 398 { 399 struct greth_private *greth = netdev_priv(dev); 400 struct greth_bd *bdp; 401 int err = NETDEV_TX_OK; 402 u32 status, dma_addr, ctrl; 403 unsigned long flags; 404 405 /* Clean TX Ring */ 406 greth_clean_tx(greth->netdev); 407 408 if (unlikely(greth->tx_free <= 0)) { 409 spin_lock_irqsave(&greth->devlock, flags);/*save from poll/irq*/ 410 ctrl = GRETH_REGLOAD(greth->regs->control); 411 /* Enable TX IRQ only if not already in poll() routine */ 412 if (ctrl & GRETH_RXI) 413 GRETH_REGSAVE(greth->regs->control, ctrl | GRETH_TXI); 414 netif_stop_queue(dev); 415 spin_unlock_irqrestore(&greth->devlock, flags); 416 return NETDEV_TX_BUSY; 417 } 418 419 if (netif_msg_pktdata(greth)) 420 greth_print_tx_packet(skb); 421 422 423 if (unlikely(skb->len > MAX_FRAME_SIZE)) { 424 dev->stats.tx_errors++; 425 goto out; 426 } 427 428 bdp = greth->tx_bd_base + greth->tx_next; 429 dma_addr = greth_read_bd(&bdp->addr); 430 431 memcpy((unsigned char *) phys_to_virt(dma_addr), skb->data, skb->len); 432 433 dma_sync_single_for_device(greth->dev, dma_addr, skb->len, DMA_TO_DEVICE); 434 435 status = GRETH_BD_EN | GRETH_BD_IE | (skb->len & GRETH_BD_LEN); 436 greth->tx_bufs_length[greth->tx_next] = skb->len & GRETH_BD_LEN; 437 438 /* Wrap around descriptor ring */ 439 if (greth->tx_next == GRETH_TXBD_NUM_MASK) { 440 status |= GRETH_BD_WR; 441 } 442 443 greth->tx_next = NEXT_TX(greth->tx_next); 444 greth->tx_free--; 445 446 /* Write descriptor control word and enable transmission */ 447 greth_write_bd(&bdp->stat, status); 448 spin_lock_irqsave(&greth->devlock, flags); /*save from poll/irq*/ 449 greth_enable_tx(greth); 450 spin_unlock_irqrestore(&greth->devlock, flags); 451 452 out: 453 dev_kfree_skb(skb); 454 return err; 455 } 456 457 static inline u16 greth_num_free_bds(u16 tx_last, u16 tx_next) 458 { 459 if (tx_next < tx_last) 460 return (tx_last - tx_next) - 1; 461 else 462 return GRETH_TXBD_NUM - (tx_next - tx_last) - 1; 463 } 464 465 static netdev_tx_t 466 greth_start_xmit_gbit(struct sk_buff *skb, struct net_device *dev) 467 { 468 struct greth_private *greth = netdev_priv(dev); 469 struct greth_bd *bdp; 470 u32 status, dma_addr; 471 int curr_tx, nr_frags, i, err = NETDEV_TX_OK; 472 unsigned long flags; 473 u16 tx_last; 474 475 nr_frags = skb_shinfo(skb)->nr_frags; 476 tx_last = greth->tx_last; 477 rmb(); /* tx_last is updated by the poll task */ 478 479 if (greth_num_free_bds(tx_last, greth->tx_next) < nr_frags + 1) { 480 netif_stop_queue(dev); 481 err = NETDEV_TX_BUSY; 482 goto out; 483 } 484 485 if (netif_msg_pktdata(greth)) 486 greth_print_tx_packet(skb); 487 488 if (unlikely(skb->len > MAX_FRAME_SIZE)) { 489 dev->stats.tx_errors++; 490 goto out; 491 } 492 493 /* Save skb pointer. */ 494 greth->tx_skbuff[greth->tx_next] = skb; 495 496 /* Linear buf */ 497 if (nr_frags != 0) 498 status = GRETH_TXBD_MORE; 499 else 500 status = GRETH_BD_IE; 501 502 if (skb->ip_summed == CHECKSUM_PARTIAL) 503 status |= GRETH_TXBD_CSALL; 504 status |= skb_headlen(skb) & GRETH_BD_LEN; 505 if (greth->tx_next == GRETH_TXBD_NUM_MASK) 506 status |= GRETH_BD_WR; 507 508 509 bdp = greth->tx_bd_base + greth->tx_next; 510 greth_write_bd(&bdp->stat, status); 511 dma_addr = dma_map_single(greth->dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); 512 513 if (unlikely(dma_mapping_error(greth->dev, dma_addr))) 514 goto map_error; 515 516 greth_write_bd(&bdp->addr, dma_addr); 517 518 curr_tx = NEXT_TX(greth->tx_next); 519 520 /* Frags */ 521 for (i = 0; i < nr_frags; i++) { 522 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 523 greth->tx_skbuff[curr_tx] = NULL; 524 bdp = greth->tx_bd_base + curr_tx; 525 526 status = GRETH_BD_EN; 527 if (skb->ip_summed == CHECKSUM_PARTIAL) 528 status |= GRETH_TXBD_CSALL; 529 status |= skb_frag_size(frag) & GRETH_BD_LEN; 530 531 /* Wrap around descriptor ring */ 532 if (curr_tx == GRETH_TXBD_NUM_MASK) 533 status |= GRETH_BD_WR; 534 535 /* More fragments left */ 536 if (i < nr_frags - 1) 537 status |= GRETH_TXBD_MORE; 538 else 539 status |= GRETH_BD_IE; /* enable IRQ on last fragment */ 540 541 greth_write_bd(&bdp->stat, status); 542 543 dma_addr = skb_frag_dma_map(greth->dev, frag, 0, skb_frag_size(frag), 544 DMA_TO_DEVICE); 545 546 if (unlikely(dma_mapping_error(greth->dev, dma_addr))) 547 goto frag_map_error; 548 549 greth_write_bd(&bdp->addr, dma_addr); 550 551 curr_tx = NEXT_TX(curr_tx); 552 } 553 554 wmb(); 555 556 /* Enable the descriptor chain by enabling the first descriptor */ 557 bdp = greth->tx_bd_base + greth->tx_next; 558 greth_write_bd(&bdp->stat, 559 greth_read_bd(&bdp->stat) | GRETH_BD_EN); 560 561 spin_lock_irqsave(&greth->devlock, flags); /*save from poll/irq*/ 562 greth->tx_next = curr_tx; 563 greth_enable_tx_and_irq(greth); 564 spin_unlock_irqrestore(&greth->devlock, flags); 565 566 return NETDEV_TX_OK; 567 568 frag_map_error: 569 /* Unmap SKB mappings that succeeded and disable descriptor */ 570 for (i = 0; greth->tx_next + i != curr_tx; i++) { 571 bdp = greth->tx_bd_base + greth->tx_next + i; 572 dma_unmap_single(greth->dev, 573 greth_read_bd(&bdp->addr), 574 greth_read_bd(&bdp->stat) & GRETH_BD_LEN, 575 DMA_TO_DEVICE); 576 greth_write_bd(&bdp->stat, 0); 577 } 578 map_error: 579 if (net_ratelimit()) 580 dev_warn(greth->dev, "Could not create TX DMA mapping\n"); 581 dev_kfree_skb(skb); 582 out: 583 return err; 584 } 585 586 static irqreturn_t greth_interrupt(int irq, void *dev_id) 587 { 588 struct net_device *dev = dev_id; 589 struct greth_private *greth; 590 u32 status, ctrl; 591 irqreturn_t retval = IRQ_NONE; 592 593 greth = netdev_priv(dev); 594 595 spin_lock(&greth->devlock); 596 597 /* Get the interrupt events that caused us to be here. */ 598 status = GRETH_REGLOAD(greth->regs->status); 599 600 /* Must see if interrupts are enabled also, INT_TX|INT_RX flags may be 601 * set regardless of whether IRQ is enabled or not. Especially 602 * important when shared IRQ. 603 */ 604 ctrl = GRETH_REGLOAD(greth->regs->control); 605 606 /* Handle rx and tx interrupts through poll */ 607 if (((status & (GRETH_INT_RE | GRETH_INT_RX)) && (ctrl & GRETH_RXI)) || 608 ((status & (GRETH_INT_TE | GRETH_INT_TX)) && (ctrl & GRETH_TXI))) { 609 retval = IRQ_HANDLED; 610 611 /* Disable interrupts and schedule poll() */ 612 greth_disable_irqs(greth); 613 napi_schedule(&greth->napi); 614 } 615 616 mmiowb(); 617 spin_unlock(&greth->devlock); 618 619 return retval; 620 } 621 622 static void greth_clean_tx(struct net_device *dev) 623 { 624 struct greth_private *greth; 625 struct greth_bd *bdp; 626 u32 stat; 627 628 greth = netdev_priv(dev); 629 630 while (1) { 631 bdp = greth->tx_bd_base + greth->tx_last; 632 GRETH_REGSAVE(greth->regs->status, GRETH_INT_TE | GRETH_INT_TX); 633 mb(); 634 stat = greth_read_bd(&bdp->stat); 635 636 if (unlikely(stat & GRETH_BD_EN)) 637 break; 638 639 if (greth->tx_free == GRETH_TXBD_NUM) 640 break; 641 642 /* Check status for errors */ 643 if (unlikely(stat & GRETH_TXBD_STATUS)) { 644 dev->stats.tx_errors++; 645 if (stat & GRETH_TXBD_ERR_AL) 646 dev->stats.tx_aborted_errors++; 647 if (stat & GRETH_TXBD_ERR_UE) 648 dev->stats.tx_fifo_errors++; 649 } 650 dev->stats.tx_packets++; 651 dev->stats.tx_bytes += greth->tx_bufs_length[greth->tx_last]; 652 greth->tx_last = NEXT_TX(greth->tx_last); 653 greth->tx_free++; 654 } 655 656 if (greth->tx_free > 0) { 657 netif_wake_queue(dev); 658 } 659 } 660 661 static inline void greth_update_tx_stats(struct net_device *dev, u32 stat) 662 { 663 /* Check status for errors */ 664 if (unlikely(stat & GRETH_TXBD_STATUS)) { 665 dev->stats.tx_errors++; 666 if (stat & GRETH_TXBD_ERR_AL) 667 dev->stats.tx_aborted_errors++; 668 if (stat & GRETH_TXBD_ERR_UE) 669 dev->stats.tx_fifo_errors++; 670 if (stat & GRETH_TXBD_ERR_LC) 671 dev->stats.tx_aborted_errors++; 672 } 673 dev->stats.tx_packets++; 674 } 675 676 static void greth_clean_tx_gbit(struct net_device *dev) 677 { 678 struct greth_private *greth; 679 struct greth_bd *bdp, *bdp_last_frag; 680 struct sk_buff *skb = NULL; 681 u32 stat; 682 int nr_frags, i; 683 u16 tx_last; 684 685 greth = netdev_priv(dev); 686 tx_last = greth->tx_last; 687 688 while (tx_last != greth->tx_next) { 689 690 skb = greth->tx_skbuff[tx_last]; 691 692 nr_frags = skb_shinfo(skb)->nr_frags; 693 694 /* We only clean fully completed SKBs */ 695 bdp_last_frag = greth->tx_bd_base + SKIP_TX(tx_last, nr_frags); 696 697 GRETH_REGSAVE(greth->regs->status, GRETH_INT_TE | GRETH_INT_TX); 698 mb(); 699 stat = greth_read_bd(&bdp_last_frag->stat); 700 701 if (stat & GRETH_BD_EN) 702 break; 703 704 greth->tx_skbuff[tx_last] = NULL; 705 706 greth_update_tx_stats(dev, stat); 707 dev->stats.tx_bytes += skb->len; 708 709 bdp = greth->tx_bd_base + tx_last; 710 711 tx_last = NEXT_TX(tx_last); 712 713 dma_unmap_single(greth->dev, 714 greth_read_bd(&bdp->addr), 715 skb_headlen(skb), 716 DMA_TO_DEVICE); 717 718 for (i = 0; i < nr_frags; i++) { 719 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 720 bdp = greth->tx_bd_base + tx_last; 721 722 dma_unmap_page(greth->dev, 723 greth_read_bd(&bdp->addr), 724 skb_frag_size(frag), 725 DMA_TO_DEVICE); 726 727 tx_last = NEXT_TX(tx_last); 728 } 729 dev_kfree_skb(skb); 730 } 731 if (skb) { /* skb is set only if the above while loop was entered */ 732 wmb(); 733 greth->tx_last = tx_last; 734 735 if (netif_queue_stopped(dev) && 736 (greth_num_free_bds(tx_last, greth->tx_next) > 737 (MAX_SKB_FRAGS+1))) 738 netif_wake_queue(dev); 739 } 740 } 741 742 static int greth_rx(struct net_device *dev, int limit) 743 { 744 struct greth_private *greth; 745 struct greth_bd *bdp; 746 struct sk_buff *skb; 747 int pkt_len; 748 int bad, count; 749 u32 status, dma_addr; 750 unsigned long flags; 751 752 greth = netdev_priv(dev); 753 754 for (count = 0; count < limit; ++count) { 755 756 bdp = greth->rx_bd_base + greth->rx_cur; 757 GRETH_REGSAVE(greth->regs->status, GRETH_INT_RE | GRETH_INT_RX); 758 mb(); 759 status = greth_read_bd(&bdp->stat); 760 761 if (unlikely(status & GRETH_BD_EN)) { 762 break; 763 } 764 765 dma_addr = greth_read_bd(&bdp->addr); 766 bad = 0; 767 768 /* Check status for errors. */ 769 if (unlikely(status & GRETH_RXBD_STATUS)) { 770 if (status & GRETH_RXBD_ERR_FT) { 771 dev->stats.rx_length_errors++; 772 bad = 1; 773 } 774 if (status & (GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE)) { 775 dev->stats.rx_frame_errors++; 776 bad = 1; 777 } 778 if (status & GRETH_RXBD_ERR_CRC) { 779 dev->stats.rx_crc_errors++; 780 bad = 1; 781 } 782 } 783 if (unlikely(bad)) { 784 dev->stats.rx_errors++; 785 786 } else { 787 788 pkt_len = status & GRETH_BD_LEN; 789 790 skb = netdev_alloc_skb(dev, pkt_len + NET_IP_ALIGN); 791 792 if (unlikely(skb == NULL)) { 793 794 if (net_ratelimit()) 795 dev_warn(&dev->dev, "low on memory - " "packet dropped\n"); 796 797 dev->stats.rx_dropped++; 798 799 } else { 800 skb_reserve(skb, NET_IP_ALIGN); 801 802 dma_sync_single_for_cpu(greth->dev, 803 dma_addr, 804 pkt_len, 805 DMA_FROM_DEVICE); 806 807 if (netif_msg_pktdata(greth)) 808 greth_print_rx_packet(phys_to_virt(dma_addr), pkt_len); 809 810 skb_put_data(skb, phys_to_virt(dma_addr), 811 pkt_len); 812 813 skb->protocol = eth_type_trans(skb, dev); 814 dev->stats.rx_bytes += pkt_len; 815 dev->stats.rx_packets++; 816 netif_receive_skb(skb); 817 } 818 } 819 820 status = GRETH_BD_EN | GRETH_BD_IE; 821 if (greth->rx_cur == GRETH_RXBD_NUM_MASK) { 822 status |= GRETH_BD_WR; 823 } 824 825 wmb(); 826 greth_write_bd(&bdp->stat, status); 827 828 dma_sync_single_for_device(greth->dev, dma_addr, MAX_FRAME_SIZE, DMA_FROM_DEVICE); 829 830 spin_lock_irqsave(&greth->devlock, flags); /* save from XMIT */ 831 greth_enable_rx(greth); 832 spin_unlock_irqrestore(&greth->devlock, flags); 833 834 greth->rx_cur = NEXT_RX(greth->rx_cur); 835 } 836 837 return count; 838 } 839 840 static inline int hw_checksummed(u32 status) 841 { 842 843 if (status & GRETH_RXBD_IP_FRAG) 844 return 0; 845 846 if (status & GRETH_RXBD_IP && status & GRETH_RXBD_IP_CSERR) 847 return 0; 848 849 if (status & GRETH_RXBD_UDP && status & GRETH_RXBD_UDP_CSERR) 850 return 0; 851 852 if (status & GRETH_RXBD_TCP && status & GRETH_RXBD_TCP_CSERR) 853 return 0; 854 855 return 1; 856 } 857 858 static int greth_rx_gbit(struct net_device *dev, int limit) 859 { 860 struct greth_private *greth; 861 struct greth_bd *bdp; 862 struct sk_buff *skb, *newskb; 863 int pkt_len; 864 int bad, count = 0; 865 u32 status, dma_addr; 866 unsigned long flags; 867 868 greth = netdev_priv(dev); 869 870 for (count = 0; count < limit; ++count) { 871 872 bdp = greth->rx_bd_base + greth->rx_cur; 873 skb = greth->rx_skbuff[greth->rx_cur]; 874 GRETH_REGSAVE(greth->regs->status, GRETH_INT_RE | GRETH_INT_RX); 875 mb(); 876 status = greth_read_bd(&bdp->stat); 877 bad = 0; 878 879 if (status & GRETH_BD_EN) 880 break; 881 882 /* Check status for errors. */ 883 if (unlikely(status & GRETH_RXBD_STATUS)) { 884 885 if (status & GRETH_RXBD_ERR_FT) { 886 dev->stats.rx_length_errors++; 887 bad = 1; 888 } else if (status & 889 (GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE | GRETH_RXBD_ERR_LE)) { 890 dev->stats.rx_frame_errors++; 891 bad = 1; 892 } else if (status & GRETH_RXBD_ERR_CRC) { 893 dev->stats.rx_crc_errors++; 894 bad = 1; 895 } 896 } 897 898 /* Allocate new skb to replace current, not needed if the 899 * current skb can be reused */ 900 if (!bad && (newskb=netdev_alloc_skb(dev, MAX_FRAME_SIZE + NET_IP_ALIGN))) { 901 skb_reserve(newskb, NET_IP_ALIGN); 902 903 dma_addr = dma_map_single(greth->dev, 904 newskb->data, 905 MAX_FRAME_SIZE + NET_IP_ALIGN, 906 DMA_FROM_DEVICE); 907 908 if (!dma_mapping_error(greth->dev, dma_addr)) { 909 /* Process the incoming frame. */ 910 pkt_len = status & GRETH_BD_LEN; 911 912 dma_unmap_single(greth->dev, 913 greth_read_bd(&bdp->addr), 914 MAX_FRAME_SIZE + NET_IP_ALIGN, 915 DMA_FROM_DEVICE); 916 917 if (netif_msg_pktdata(greth)) 918 greth_print_rx_packet(phys_to_virt(greth_read_bd(&bdp->addr)), pkt_len); 919 920 skb_put(skb, pkt_len); 921 922 if (dev->features & NETIF_F_RXCSUM && hw_checksummed(status)) 923 skb->ip_summed = CHECKSUM_UNNECESSARY; 924 else 925 skb_checksum_none_assert(skb); 926 927 skb->protocol = eth_type_trans(skb, dev); 928 dev->stats.rx_packets++; 929 dev->stats.rx_bytes += pkt_len; 930 netif_receive_skb(skb); 931 932 greth->rx_skbuff[greth->rx_cur] = newskb; 933 greth_write_bd(&bdp->addr, dma_addr); 934 } else { 935 if (net_ratelimit()) 936 dev_warn(greth->dev, "Could not create DMA mapping, dropping packet\n"); 937 dev_kfree_skb(newskb); 938 /* reusing current skb, so it is a drop */ 939 dev->stats.rx_dropped++; 940 } 941 } else if (bad) { 942 /* Bad Frame transfer, the skb is reused */ 943 dev->stats.rx_dropped++; 944 } else { 945 /* Failed Allocating a new skb. This is rather stupid 946 * but the current "filled" skb is reused, as if 947 * transfer failure. One could argue that RX descriptor 948 * table handling should be divided into cleaning and 949 * filling as the TX part of the driver 950 */ 951 if (net_ratelimit()) 952 dev_warn(greth->dev, "Could not allocate SKB, dropping packet\n"); 953 /* reusing current skb, so it is a drop */ 954 dev->stats.rx_dropped++; 955 } 956 957 status = GRETH_BD_EN | GRETH_BD_IE; 958 if (greth->rx_cur == GRETH_RXBD_NUM_MASK) { 959 status |= GRETH_BD_WR; 960 } 961 962 wmb(); 963 greth_write_bd(&bdp->stat, status); 964 spin_lock_irqsave(&greth->devlock, flags); 965 greth_enable_rx(greth); 966 spin_unlock_irqrestore(&greth->devlock, flags); 967 greth->rx_cur = NEXT_RX(greth->rx_cur); 968 } 969 970 return count; 971 972 } 973 974 static int greth_poll(struct napi_struct *napi, int budget) 975 { 976 struct greth_private *greth; 977 int work_done = 0; 978 unsigned long flags; 979 u32 mask, ctrl; 980 greth = container_of(napi, struct greth_private, napi); 981 982 restart_txrx_poll: 983 if (greth->gbit_mac) { 984 greth_clean_tx_gbit(greth->netdev); 985 work_done += greth_rx_gbit(greth->netdev, budget - work_done); 986 } else { 987 if (netif_queue_stopped(greth->netdev)) 988 greth_clean_tx(greth->netdev); 989 work_done += greth_rx(greth->netdev, budget - work_done); 990 } 991 992 if (work_done < budget) { 993 994 spin_lock_irqsave(&greth->devlock, flags); 995 996 ctrl = GRETH_REGLOAD(greth->regs->control); 997 if ((greth->gbit_mac && (greth->tx_last != greth->tx_next)) || 998 (!greth->gbit_mac && netif_queue_stopped(greth->netdev))) { 999 GRETH_REGSAVE(greth->regs->control, 1000 ctrl | GRETH_TXI | GRETH_RXI); 1001 mask = GRETH_INT_RX | GRETH_INT_RE | 1002 GRETH_INT_TX | GRETH_INT_TE; 1003 } else { 1004 GRETH_REGSAVE(greth->regs->control, ctrl | GRETH_RXI); 1005 mask = GRETH_INT_RX | GRETH_INT_RE; 1006 } 1007 1008 if (GRETH_REGLOAD(greth->regs->status) & mask) { 1009 GRETH_REGSAVE(greth->regs->control, ctrl); 1010 spin_unlock_irqrestore(&greth->devlock, flags); 1011 goto restart_txrx_poll; 1012 } else { 1013 napi_complete_done(napi, work_done); 1014 spin_unlock_irqrestore(&greth->devlock, flags); 1015 } 1016 } 1017 1018 return work_done; 1019 } 1020 1021 static int greth_set_mac_add(struct net_device *dev, void *p) 1022 { 1023 struct sockaddr *addr = p; 1024 struct greth_private *greth; 1025 struct greth_regs *regs; 1026 1027 greth = netdev_priv(dev); 1028 regs = greth->regs; 1029 1030 if (!is_valid_ether_addr(addr->sa_data)) 1031 return -EADDRNOTAVAIL; 1032 1033 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 1034 GRETH_REGSAVE(regs->esa_msb, dev->dev_addr[0] << 8 | dev->dev_addr[1]); 1035 GRETH_REGSAVE(regs->esa_lsb, dev->dev_addr[2] << 24 | dev->dev_addr[3] << 16 | 1036 dev->dev_addr[4] << 8 | dev->dev_addr[5]); 1037 1038 return 0; 1039 } 1040 1041 static u32 greth_hash_get_index(__u8 *addr) 1042 { 1043 return (ether_crc(6, addr)) & 0x3F; 1044 } 1045 1046 static void greth_set_hash_filter(struct net_device *dev) 1047 { 1048 struct netdev_hw_addr *ha; 1049 struct greth_private *greth = netdev_priv(dev); 1050 struct greth_regs *regs = greth->regs; 1051 u32 mc_filter[2]; 1052 unsigned int bitnr; 1053 1054 mc_filter[0] = mc_filter[1] = 0; 1055 1056 netdev_for_each_mc_addr(ha, dev) { 1057 bitnr = greth_hash_get_index(ha->addr); 1058 mc_filter[bitnr >> 5] |= 1 << (bitnr & 31); 1059 } 1060 1061 GRETH_REGSAVE(regs->hash_msb, mc_filter[1]); 1062 GRETH_REGSAVE(regs->hash_lsb, mc_filter[0]); 1063 } 1064 1065 static void greth_set_multicast_list(struct net_device *dev) 1066 { 1067 int cfg; 1068 struct greth_private *greth = netdev_priv(dev); 1069 struct greth_regs *regs = greth->regs; 1070 1071 cfg = GRETH_REGLOAD(regs->control); 1072 if (dev->flags & IFF_PROMISC) 1073 cfg |= GRETH_CTRL_PR; 1074 else 1075 cfg &= ~GRETH_CTRL_PR; 1076 1077 if (greth->multicast) { 1078 if (dev->flags & IFF_ALLMULTI) { 1079 GRETH_REGSAVE(regs->hash_msb, -1); 1080 GRETH_REGSAVE(regs->hash_lsb, -1); 1081 cfg |= GRETH_CTRL_MCEN; 1082 GRETH_REGSAVE(regs->control, cfg); 1083 return; 1084 } 1085 1086 if (netdev_mc_empty(dev)) { 1087 cfg &= ~GRETH_CTRL_MCEN; 1088 GRETH_REGSAVE(regs->control, cfg); 1089 return; 1090 } 1091 1092 /* Setup multicast filter */ 1093 greth_set_hash_filter(dev); 1094 cfg |= GRETH_CTRL_MCEN; 1095 } 1096 GRETH_REGSAVE(regs->control, cfg); 1097 } 1098 1099 static u32 greth_get_msglevel(struct net_device *dev) 1100 { 1101 struct greth_private *greth = netdev_priv(dev); 1102 return greth->msg_enable; 1103 } 1104 1105 static void greth_set_msglevel(struct net_device *dev, u32 value) 1106 { 1107 struct greth_private *greth = netdev_priv(dev); 1108 greth->msg_enable = value; 1109 } 1110 1111 static int greth_get_regs_len(struct net_device *dev) 1112 { 1113 return sizeof(struct greth_regs); 1114 } 1115 1116 static void greth_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1117 { 1118 struct greth_private *greth = netdev_priv(dev); 1119 1120 strlcpy(info->driver, dev_driver_string(greth->dev), 1121 sizeof(info->driver)); 1122 strlcpy(info->version, "revision: 1.0", sizeof(info->version)); 1123 strlcpy(info->bus_info, greth->dev->bus->name, sizeof(info->bus_info)); 1124 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version)); 1125 } 1126 1127 static void greth_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *p) 1128 { 1129 int i; 1130 struct greth_private *greth = netdev_priv(dev); 1131 u32 __iomem *greth_regs = (u32 __iomem *) greth->regs; 1132 u32 *buff = p; 1133 1134 for (i = 0; i < sizeof(struct greth_regs) / sizeof(u32); i++) 1135 buff[i] = greth_read_bd(&greth_regs[i]); 1136 } 1137 1138 static const struct ethtool_ops greth_ethtool_ops = { 1139 .get_msglevel = greth_get_msglevel, 1140 .set_msglevel = greth_set_msglevel, 1141 .get_drvinfo = greth_get_drvinfo, 1142 .get_regs_len = greth_get_regs_len, 1143 .get_regs = greth_get_regs, 1144 .get_link = ethtool_op_get_link, 1145 .get_link_ksettings = phy_ethtool_get_link_ksettings, 1146 .set_link_ksettings = phy_ethtool_set_link_ksettings, 1147 }; 1148 1149 static struct net_device_ops greth_netdev_ops = { 1150 .ndo_open = greth_open, 1151 .ndo_stop = greth_close, 1152 .ndo_start_xmit = greth_start_xmit, 1153 .ndo_set_mac_address = greth_set_mac_add, 1154 .ndo_validate_addr = eth_validate_addr, 1155 }; 1156 1157 static inline int wait_for_mdio(struct greth_private *greth) 1158 { 1159 unsigned long timeout = jiffies + 4*HZ/100; 1160 while (GRETH_REGLOAD(greth->regs->mdio) & GRETH_MII_BUSY) { 1161 if (time_after(jiffies, timeout)) 1162 return 0; 1163 } 1164 return 1; 1165 } 1166 1167 static int greth_mdio_read(struct mii_bus *bus, int phy, int reg) 1168 { 1169 struct greth_private *greth = bus->priv; 1170 int data; 1171 1172 if (!wait_for_mdio(greth)) 1173 return -EBUSY; 1174 1175 GRETH_REGSAVE(greth->regs->mdio, ((phy & 0x1F) << 11) | ((reg & 0x1F) << 6) | 2); 1176 1177 if (!wait_for_mdio(greth)) 1178 return -EBUSY; 1179 1180 if (!(GRETH_REGLOAD(greth->regs->mdio) & GRETH_MII_NVALID)) { 1181 data = (GRETH_REGLOAD(greth->regs->mdio) >> 16) & 0xFFFF; 1182 return data; 1183 1184 } else { 1185 return -1; 1186 } 1187 } 1188 1189 static int greth_mdio_write(struct mii_bus *bus, int phy, int reg, u16 val) 1190 { 1191 struct greth_private *greth = bus->priv; 1192 1193 if (!wait_for_mdio(greth)) 1194 return -EBUSY; 1195 1196 GRETH_REGSAVE(greth->regs->mdio, 1197 ((val & 0xFFFF) << 16) | ((phy & 0x1F) << 11) | ((reg & 0x1F) << 6) | 1); 1198 1199 if (!wait_for_mdio(greth)) 1200 return -EBUSY; 1201 1202 return 0; 1203 } 1204 1205 static void greth_link_change(struct net_device *dev) 1206 { 1207 struct greth_private *greth = netdev_priv(dev); 1208 struct phy_device *phydev = dev->phydev; 1209 unsigned long flags; 1210 int status_change = 0; 1211 u32 ctrl; 1212 1213 spin_lock_irqsave(&greth->devlock, flags); 1214 1215 if (phydev->link) { 1216 1217 if ((greth->speed != phydev->speed) || (greth->duplex != phydev->duplex)) { 1218 ctrl = GRETH_REGLOAD(greth->regs->control) & 1219 ~(GRETH_CTRL_FD | GRETH_CTRL_SP | GRETH_CTRL_GB); 1220 1221 if (phydev->duplex) 1222 ctrl |= GRETH_CTRL_FD; 1223 1224 if (phydev->speed == SPEED_100) 1225 ctrl |= GRETH_CTRL_SP; 1226 else if (phydev->speed == SPEED_1000) 1227 ctrl |= GRETH_CTRL_GB; 1228 1229 GRETH_REGSAVE(greth->regs->control, ctrl); 1230 greth->speed = phydev->speed; 1231 greth->duplex = phydev->duplex; 1232 status_change = 1; 1233 } 1234 } 1235 1236 if (phydev->link != greth->link) { 1237 if (!phydev->link) { 1238 greth->speed = 0; 1239 greth->duplex = -1; 1240 } 1241 greth->link = phydev->link; 1242 1243 status_change = 1; 1244 } 1245 1246 spin_unlock_irqrestore(&greth->devlock, flags); 1247 1248 if (status_change) { 1249 if (phydev->link) 1250 pr_debug("%s: link up (%d/%s)\n", 1251 dev->name, phydev->speed, 1252 DUPLEX_FULL == phydev->duplex ? "Full" : "Half"); 1253 else 1254 pr_debug("%s: link down\n", dev->name); 1255 } 1256 } 1257 1258 static int greth_mdio_probe(struct net_device *dev) 1259 { 1260 struct greth_private *greth = netdev_priv(dev); 1261 struct phy_device *phy = NULL; 1262 int ret; 1263 1264 /* Find the first PHY */ 1265 phy = phy_find_first(greth->mdio); 1266 1267 if (!phy) { 1268 if (netif_msg_probe(greth)) 1269 dev_err(&dev->dev, "no PHY found\n"); 1270 return -ENXIO; 1271 } 1272 1273 ret = phy_connect_direct(dev, phy, &greth_link_change, 1274 greth->gbit_mac ? PHY_INTERFACE_MODE_GMII : PHY_INTERFACE_MODE_MII); 1275 if (ret) { 1276 if (netif_msg_ifup(greth)) 1277 dev_err(&dev->dev, "could not attach to PHY\n"); 1278 return ret; 1279 } 1280 1281 if (greth->gbit_mac) 1282 phy->supported &= PHY_GBIT_FEATURES; 1283 else 1284 phy->supported &= PHY_BASIC_FEATURES; 1285 1286 phy->advertising = phy->supported; 1287 1288 greth->link = 0; 1289 greth->speed = 0; 1290 greth->duplex = -1; 1291 1292 return 0; 1293 } 1294 1295 static int greth_mdio_init(struct greth_private *greth) 1296 { 1297 int ret; 1298 unsigned long timeout; 1299 struct net_device *ndev = greth->netdev; 1300 1301 greth->mdio = mdiobus_alloc(); 1302 if (!greth->mdio) { 1303 return -ENOMEM; 1304 } 1305 1306 greth->mdio->name = "greth-mdio"; 1307 snprintf(greth->mdio->id, MII_BUS_ID_SIZE, "%s-%d", greth->mdio->name, greth->irq); 1308 greth->mdio->read = greth_mdio_read; 1309 greth->mdio->write = greth_mdio_write; 1310 greth->mdio->priv = greth; 1311 1312 ret = mdiobus_register(greth->mdio); 1313 if (ret) { 1314 goto error; 1315 } 1316 1317 ret = greth_mdio_probe(greth->netdev); 1318 if (ret) { 1319 if (netif_msg_probe(greth)) 1320 dev_err(&greth->netdev->dev, "failed to probe MDIO bus\n"); 1321 goto unreg_mdio; 1322 } 1323 1324 phy_start(ndev->phydev); 1325 1326 /* If Ethernet debug link is used make autoneg happen right away */ 1327 if (greth->edcl && greth_edcl == 1) { 1328 phy_start_aneg(ndev->phydev); 1329 timeout = jiffies + 6*HZ; 1330 while (!phy_aneg_done(ndev->phydev) && 1331 time_before(jiffies, timeout)) { 1332 } 1333 phy_read_status(ndev->phydev); 1334 greth_link_change(greth->netdev); 1335 } 1336 1337 return 0; 1338 1339 unreg_mdio: 1340 mdiobus_unregister(greth->mdio); 1341 error: 1342 mdiobus_free(greth->mdio); 1343 return ret; 1344 } 1345 1346 /* Initialize the GRETH MAC */ 1347 static int greth_of_probe(struct platform_device *ofdev) 1348 { 1349 struct net_device *dev; 1350 struct greth_private *greth; 1351 struct greth_regs *regs; 1352 1353 int i; 1354 int err; 1355 int tmp; 1356 unsigned long timeout; 1357 1358 dev = alloc_etherdev(sizeof(struct greth_private)); 1359 1360 if (dev == NULL) 1361 return -ENOMEM; 1362 1363 greth = netdev_priv(dev); 1364 greth->netdev = dev; 1365 greth->dev = &ofdev->dev; 1366 1367 if (greth_debug > 0) 1368 greth->msg_enable = greth_debug; 1369 else 1370 greth->msg_enable = GRETH_DEF_MSG_ENABLE; 1371 1372 spin_lock_init(&greth->devlock); 1373 1374 greth->regs = of_ioremap(&ofdev->resource[0], 0, 1375 resource_size(&ofdev->resource[0]), 1376 "grlib-greth regs"); 1377 1378 if (greth->regs == NULL) { 1379 if (netif_msg_probe(greth)) 1380 dev_err(greth->dev, "ioremap failure.\n"); 1381 err = -EIO; 1382 goto error1; 1383 } 1384 1385 regs = greth->regs; 1386 greth->irq = ofdev->archdata.irqs[0]; 1387 1388 dev_set_drvdata(greth->dev, dev); 1389 SET_NETDEV_DEV(dev, greth->dev); 1390 1391 if (netif_msg_probe(greth)) 1392 dev_dbg(greth->dev, "resetting controller.\n"); 1393 1394 /* Reset the controller. */ 1395 GRETH_REGSAVE(regs->control, GRETH_RESET); 1396 1397 /* Wait for MAC to reset itself */ 1398 timeout = jiffies + HZ/100; 1399 while (GRETH_REGLOAD(regs->control) & GRETH_RESET) { 1400 if (time_after(jiffies, timeout)) { 1401 err = -EIO; 1402 if (netif_msg_probe(greth)) 1403 dev_err(greth->dev, "timeout when waiting for reset.\n"); 1404 goto error2; 1405 } 1406 } 1407 1408 /* Get default PHY address */ 1409 greth->phyaddr = (GRETH_REGLOAD(regs->mdio) >> 11) & 0x1F; 1410 1411 /* Check if we have GBIT capable MAC */ 1412 tmp = GRETH_REGLOAD(regs->control); 1413 greth->gbit_mac = (tmp >> 27) & 1; 1414 1415 /* Check for multicast capability */ 1416 greth->multicast = (tmp >> 25) & 1; 1417 1418 greth->edcl = (tmp >> 31) & 1; 1419 1420 /* If we have EDCL we disable the EDCL speed-duplex FSM so 1421 * it doesn't interfere with the software */ 1422 if (greth->edcl != 0) 1423 GRETH_REGORIN(regs->control, GRETH_CTRL_DISDUPLEX); 1424 1425 /* Check if MAC can handle MDIO interrupts */ 1426 greth->mdio_int_en = (tmp >> 26) & 1; 1427 1428 err = greth_mdio_init(greth); 1429 if (err) { 1430 if (netif_msg_probe(greth)) 1431 dev_err(greth->dev, "failed to register MDIO bus\n"); 1432 goto error2; 1433 } 1434 1435 /* Allocate TX descriptor ring in coherent memory */ 1436 greth->tx_bd_base = dma_zalloc_coherent(greth->dev, 1024, 1437 &greth->tx_bd_base_phys, 1438 GFP_KERNEL); 1439 if (!greth->tx_bd_base) { 1440 err = -ENOMEM; 1441 goto error3; 1442 } 1443 1444 /* Allocate RX descriptor ring in coherent memory */ 1445 greth->rx_bd_base = dma_zalloc_coherent(greth->dev, 1024, 1446 &greth->rx_bd_base_phys, 1447 GFP_KERNEL); 1448 if (!greth->rx_bd_base) { 1449 err = -ENOMEM; 1450 goto error4; 1451 } 1452 1453 /* Get MAC address from: module param, OF property or ID prom */ 1454 for (i = 0; i < 6; i++) { 1455 if (macaddr[i] != 0) 1456 break; 1457 } 1458 if (i == 6) { 1459 const u8 *addr; 1460 1461 addr = of_get_mac_address(ofdev->dev.of_node); 1462 if (addr) { 1463 for (i = 0; i < 6; i++) 1464 macaddr[i] = (unsigned int) addr[i]; 1465 } else { 1466 #ifdef CONFIG_SPARC 1467 for (i = 0; i < 6; i++) 1468 macaddr[i] = (unsigned int) idprom->id_ethaddr[i]; 1469 #endif 1470 } 1471 } 1472 1473 for (i = 0; i < 6; i++) 1474 dev->dev_addr[i] = macaddr[i]; 1475 1476 macaddr[5]++; 1477 1478 if (!is_valid_ether_addr(&dev->dev_addr[0])) { 1479 if (netif_msg_probe(greth)) 1480 dev_err(greth->dev, "no valid ethernet address, aborting.\n"); 1481 err = -EINVAL; 1482 goto error5; 1483 } 1484 1485 GRETH_REGSAVE(regs->esa_msb, dev->dev_addr[0] << 8 | dev->dev_addr[1]); 1486 GRETH_REGSAVE(regs->esa_lsb, dev->dev_addr[2] << 24 | dev->dev_addr[3] << 16 | 1487 dev->dev_addr[4] << 8 | dev->dev_addr[5]); 1488 1489 /* Clear all pending interrupts except PHY irq */ 1490 GRETH_REGSAVE(regs->status, 0xFF); 1491 1492 if (greth->gbit_mac) { 1493 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | 1494 NETIF_F_RXCSUM; 1495 dev->features = dev->hw_features | NETIF_F_HIGHDMA; 1496 greth_netdev_ops.ndo_start_xmit = greth_start_xmit_gbit; 1497 } 1498 1499 if (greth->multicast) { 1500 greth_netdev_ops.ndo_set_rx_mode = greth_set_multicast_list; 1501 dev->flags |= IFF_MULTICAST; 1502 } else { 1503 dev->flags &= ~IFF_MULTICAST; 1504 } 1505 1506 dev->netdev_ops = &greth_netdev_ops; 1507 dev->ethtool_ops = &greth_ethtool_ops; 1508 1509 err = register_netdev(dev); 1510 if (err) { 1511 if (netif_msg_probe(greth)) 1512 dev_err(greth->dev, "netdevice registration failed.\n"); 1513 goto error5; 1514 } 1515 1516 /* setup NAPI */ 1517 netif_napi_add(dev, &greth->napi, greth_poll, 64); 1518 1519 return 0; 1520 1521 error5: 1522 dma_free_coherent(greth->dev, 1024, greth->rx_bd_base, greth->rx_bd_base_phys); 1523 error4: 1524 dma_free_coherent(greth->dev, 1024, greth->tx_bd_base, greth->tx_bd_base_phys); 1525 error3: 1526 mdiobus_unregister(greth->mdio); 1527 error2: 1528 of_iounmap(&ofdev->resource[0], greth->regs, resource_size(&ofdev->resource[0])); 1529 error1: 1530 free_netdev(dev); 1531 return err; 1532 } 1533 1534 static int greth_of_remove(struct platform_device *of_dev) 1535 { 1536 struct net_device *ndev = platform_get_drvdata(of_dev); 1537 struct greth_private *greth = netdev_priv(ndev); 1538 1539 /* Free descriptor areas */ 1540 dma_free_coherent(&of_dev->dev, 1024, greth->rx_bd_base, greth->rx_bd_base_phys); 1541 1542 dma_free_coherent(&of_dev->dev, 1024, greth->tx_bd_base, greth->tx_bd_base_phys); 1543 1544 if (ndev->phydev) 1545 phy_stop(ndev->phydev); 1546 mdiobus_unregister(greth->mdio); 1547 1548 unregister_netdev(ndev); 1549 free_netdev(ndev); 1550 1551 of_iounmap(&of_dev->resource[0], greth->regs, resource_size(&of_dev->resource[0])); 1552 1553 return 0; 1554 } 1555 1556 static const struct of_device_id greth_of_match[] = { 1557 { 1558 .name = "GAISLER_ETHMAC", 1559 }, 1560 { 1561 .name = "01_01d", 1562 }, 1563 {}, 1564 }; 1565 1566 MODULE_DEVICE_TABLE(of, greth_of_match); 1567 1568 static struct platform_driver greth_of_driver = { 1569 .driver = { 1570 .name = "grlib-greth", 1571 .of_match_table = greth_of_match, 1572 }, 1573 .probe = greth_of_probe, 1574 .remove = greth_of_remove, 1575 }; 1576 1577 module_platform_driver(greth_of_driver); 1578 1579 MODULE_AUTHOR("Aeroflex Gaisler AB."); 1580 MODULE_DESCRIPTION("Aeroflex Gaisler Ethernet MAC driver"); 1581 MODULE_LICENSE("GPL"); 1582