1 /* 2 * Aeroflex Gaisler GRETH 10/100/1G Ethernet MAC. 3 * 4 * 2005-2010 (c) Aeroflex Gaisler AB 5 * 6 * This driver supports GRETH 10/100 and GRETH 10/100/1G Ethernet MACs 7 * available in the GRLIB VHDL IP core library. 8 * 9 * Full documentation of both cores can be found here: 10 * http://www.gaisler.com/products/grlib/grip.pdf 11 * 12 * The Gigabit version supports scatter/gather DMA, any alignment of 13 * buffers and checksum offloading. 14 * 15 * This program is free software; you can redistribute it and/or modify it 16 * under the terms of the GNU General Public License as published by the 17 * Free Software Foundation; either version 2 of the License, or (at your 18 * option) any later version. 19 * 20 * Contributors: Kristoffer Glembo 21 * Daniel Hellstrom 22 * Marko Isomaki 23 */ 24 25 #include <linux/dma-mapping.h> 26 #include <linux/module.h> 27 #include <linux/uaccess.h> 28 #include <linux/interrupt.h> 29 #include <linux/netdevice.h> 30 #include <linux/etherdevice.h> 31 #include <linux/ethtool.h> 32 #include <linux/skbuff.h> 33 #include <linux/io.h> 34 #include <linux/crc32.h> 35 #include <linux/mii.h> 36 #include <linux/of_device.h> 37 #include <linux/of_platform.h> 38 #include <linux/slab.h> 39 #include <asm/cacheflush.h> 40 #include <asm/byteorder.h> 41 42 #ifdef CONFIG_SPARC 43 #include <asm/idprom.h> 44 #endif 45 46 #include "greth.h" 47 48 #define GRETH_DEF_MSG_ENABLE \ 49 (NETIF_MSG_DRV | \ 50 NETIF_MSG_PROBE | \ 51 NETIF_MSG_LINK | \ 52 NETIF_MSG_IFDOWN | \ 53 NETIF_MSG_IFUP | \ 54 NETIF_MSG_RX_ERR | \ 55 NETIF_MSG_TX_ERR) 56 57 static int greth_debug = -1; /* -1 == use GRETH_DEF_MSG_ENABLE as value */ 58 module_param(greth_debug, int, 0); 59 MODULE_PARM_DESC(greth_debug, "GRETH bitmapped debugging message enable value"); 60 61 /* Accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */ 62 static int macaddr[6]; 63 module_param_array(macaddr, int, NULL, 0); 64 MODULE_PARM_DESC(macaddr, "GRETH Ethernet MAC address"); 65 66 static int greth_edcl = 1; 67 module_param(greth_edcl, int, 0); 68 MODULE_PARM_DESC(greth_edcl, "GRETH EDCL usage indicator. Set to 1 if EDCL is used."); 69 70 static int greth_open(struct net_device *dev); 71 static netdev_tx_t greth_start_xmit(struct sk_buff *skb, 72 struct net_device *dev); 73 static netdev_tx_t greth_start_xmit_gbit(struct sk_buff *skb, 74 struct net_device *dev); 75 static int greth_rx(struct net_device *dev, int limit); 76 static int greth_rx_gbit(struct net_device *dev, int limit); 77 static void greth_clean_tx(struct net_device *dev); 78 static void greth_clean_tx_gbit(struct net_device *dev); 79 static irqreturn_t greth_interrupt(int irq, void *dev_id); 80 static int greth_close(struct net_device *dev); 81 static int greth_set_mac_add(struct net_device *dev, void *p); 82 static void greth_set_multicast_list(struct net_device *dev); 83 84 #define GRETH_REGLOAD(a) (be32_to_cpu(__raw_readl(&(a)))) 85 #define GRETH_REGSAVE(a, v) (__raw_writel(cpu_to_be32(v), &(a))) 86 #define GRETH_REGORIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) | (v)))) 87 #define GRETH_REGANDIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) & (v)))) 88 89 #define NEXT_TX(N) (((N) + 1) & GRETH_TXBD_NUM_MASK) 90 #define SKIP_TX(N, C) (((N) + C) & GRETH_TXBD_NUM_MASK) 91 #define NEXT_RX(N) (((N) + 1) & GRETH_RXBD_NUM_MASK) 92 93 static void greth_print_rx_packet(void *addr, int len) 94 { 95 print_hex_dump(KERN_DEBUG, "RX: ", DUMP_PREFIX_OFFSET, 16, 1, 96 addr, len, true); 97 } 98 99 static void greth_print_tx_packet(struct sk_buff *skb) 100 { 101 int i; 102 int length; 103 104 if (skb_shinfo(skb)->nr_frags == 0) 105 length = skb->len; 106 else 107 length = skb_headlen(skb); 108 109 print_hex_dump(KERN_DEBUG, "TX: ", DUMP_PREFIX_OFFSET, 16, 1, 110 skb->data, length, true); 111 112 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 113 114 print_hex_dump(KERN_DEBUG, "TX: ", DUMP_PREFIX_OFFSET, 16, 1, 115 skb_frag_address(&skb_shinfo(skb)->frags[i]), 116 skb_shinfo(skb)->frags[i].size, true); 117 } 118 } 119 120 static inline void greth_enable_tx(struct greth_private *greth) 121 { 122 wmb(); 123 GRETH_REGORIN(greth->regs->control, GRETH_TXEN); 124 } 125 126 static inline void greth_disable_tx(struct greth_private *greth) 127 { 128 GRETH_REGANDIN(greth->regs->control, ~GRETH_TXEN); 129 } 130 131 static inline void greth_enable_rx(struct greth_private *greth) 132 { 133 wmb(); 134 GRETH_REGORIN(greth->regs->control, GRETH_RXEN); 135 } 136 137 static inline void greth_disable_rx(struct greth_private *greth) 138 { 139 GRETH_REGANDIN(greth->regs->control, ~GRETH_RXEN); 140 } 141 142 static inline void greth_enable_irqs(struct greth_private *greth) 143 { 144 GRETH_REGORIN(greth->regs->control, GRETH_RXI | GRETH_TXI); 145 } 146 147 static inline void greth_disable_irqs(struct greth_private *greth) 148 { 149 GRETH_REGANDIN(greth->regs->control, ~(GRETH_RXI|GRETH_TXI)); 150 } 151 152 static inline void greth_write_bd(u32 *bd, u32 val) 153 { 154 __raw_writel(cpu_to_be32(val), bd); 155 } 156 157 static inline u32 greth_read_bd(u32 *bd) 158 { 159 return be32_to_cpu(__raw_readl(bd)); 160 } 161 162 static void greth_clean_rings(struct greth_private *greth) 163 { 164 int i; 165 struct greth_bd *rx_bdp = greth->rx_bd_base; 166 struct greth_bd *tx_bdp = greth->tx_bd_base; 167 168 if (greth->gbit_mac) { 169 170 /* Free and unmap RX buffers */ 171 for (i = 0; i < GRETH_RXBD_NUM; i++, rx_bdp++) { 172 if (greth->rx_skbuff[i] != NULL) { 173 dev_kfree_skb(greth->rx_skbuff[i]); 174 dma_unmap_single(greth->dev, 175 greth_read_bd(&rx_bdp->addr), 176 MAX_FRAME_SIZE+NET_IP_ALIGN, 177 DMA_FROM_DEVICE); 178 } 179 } 180 181 /* TX buffers */ 182 while (greth->tx_free < GRETH_TXBD_NUM) { 183 184 struct sk_buff *skb = greth->tx_skbuff[greth->tx_last]; 185 int nr_frags = skb_shinfo(skb)->nr_frags; 186 tx_bdp = greth->tx_bd_base + greth->tx_last; 187 greth->tx_last = NEXT_TX(greth->tx_last); 188 189 dma_unmap_single(greth->dev, 190 greth_read_bd(&tx_bdp->addr), 191 skb_headlen(skb), 192 DMA_TO_DEVICE); 193 194 for (i = 0; i < nr_frags; i++) { 195 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 196 tx_bdp = greth->tx_bd_base + greth->tx_last; 197 198 dma_unmap_page(greth->dev, 199 greth_read_bd(&tx_bdp->addr), 200 skb_frag_size(frag), 201 DMA_TO_DEVICE); 202 203 greth->tx_last = NEXT_TX(greth->tx_last); 204 } 205 greth->tx_free += nr_frags+1; 206 dev_kfree_skb(skb); 207 } 208 209 210 } else { /* 10/100 Mbps MAC */ 211 212 for (i = 0; i < GRETH_RXBD_NUM; i++, rx_bdp++) { 213 kfree(greth->rx_bufs[i]); 214 dma_unmap_single(greth->dev, 215 greth_read_bd(&rx_bdp->addr), 216 MAX_FRAME_SIZE, 217 DMA_FROM_DEVICE); 218 } 219 for (i = 0; i < GRETH_TXBD_NUM; i++, tx_bdp++) { 220 kfree(greth->tx_bufs[i]); 221 dma_unmap_single(greth->dev, 222 greth_read_bd(&tx_bdp->addr), 223 MAX_FRAME_SIZE, 224 DMA_TO_DEVICE); 225 } 226 } 227 } 228 229 static int greth_init_rings(struct greth_private *greth) 230 { 231 struct sk_buff *skb; 232 struct greth_bd *rx_bd, *tx_bd; 233 u32 dma_addr; 234 int i; 235 236 rx_bd = greth->rx_bd_base; 237 tx_bd = greth->tx_bd_base; 238 239 /* Initialize descriptor rings and buffers */ 240 if (greth->gbit_mac) { 241 242 for (i = 0; i < GRETH_RXBD_NUM; i++) { 243 skb = netdev_alloc_skb(greth->netdev, MAX_FRAME_SIZE+NET_IP_ALIGN); 244 if (skb == NULL) { 245 if (netif_msg_ifup(greth)) 246 dev_err(greth->dev, "Error allocating DMA ring.\n"); 247 goto cleanup; 248 } 249 skb_reserve(skb, NET_IP_ALIGN); 250 dma_addr = dma_map_single(greth->dev, 251 skb->data, 252 MAX_FRAME_SIZE+NET_IP_ALIGN, 253 DMA_FROM_DEVICE); 254 255 if (dma_mapping_error(greth->dev, dma_addr)) { 256 if (netif_msg_ifup(greth)) 257 dev_err(greth->dev, "Could not create initial DMA mapping\n"); 258 goto cleanup; 259 } 260 greth->rx_skbuff[i] = skb; 261 greth_write_bd(&rx_bd[i].addr, dma_addr); 262 greth_write_bd(&rx_bd[i].stat, GRETH_BD_EN | GRETH_BD_IE); 263 } 264 265 } else { 266 267 /* 10/100 MAC uses a fixed set of buffers and copy to/from SKBs */ 268 for (i = 0; i < GRETH_RXBD_NUM; i++) { 269 270 greth->rx_bufs[i] = kmalloc(MAX_FRAME_SIZE, GFP_KERNEL); 271 272 if (greth->rx_bufs[i] == NULL) { 273 if (netif_msg_ifup(greth)) 274 dev_err(greth->dev, "Error allocating DMA ring.\n"); 275 goto cleanup; 276 } 277 278 dma_addr = dma_map_single(greth->dev, 279 greth->rx_bufs[i], 280 MAX_FRAME_SIZE, 281 DMA_FROM_DEVICE); 282 283 if (dma_mapping_error(greth->dev, dma_addr)) { 284 if (netif_msg_ifup(greth)) 285 dev_err(greth->dev, "Could not create initial DMA mapping\n"); 286 goto cleanup; 287 } 288 greth_write_bd(&rx_bd[i].addr, dma_addr); 289 greth_write_bd(&rx_bd[i].stat, GRETH_BD_EN | GRETH_BD_IE); 290 } 291 for (i = 0; i < GRETH_TXBD_NUM; i++) { 292 293 greth->tx_bufs[i] = kmalloc(MAX_FRAME_SIZE, GFP_KERNEL); 294 295 if (greth->tx_bufs[i] == NULL) { 296 if (netif_msg_ifup(greth)) 297 dev_err(greth->dev, "Error allocating DMA ring.\n"); 298 goto cleanup; 299 } 300 301 dma_addr = dma_map_single(greth->dev, 302 greth->tx_bufs[i], 303 MAX_FRAME_SIZE, 304 DMA_TO_DEVICE); 305 306 if (dma_mapping_error(greth->dev, dma_addr)) { 307 if (netif_msg_ifup(greth)) 308 dev_err(greth->dev, "Could not create initial DMA mapping\n"); 309 goto cleanup; 310 } 311 greth_write_bd(&tx_bd[i].addr, dma_addr); 312 greth_write_bd(&tx_bd[i].stat, 0); 313 } 314 } 315 greth_write_bd(&rx_bd[GRETH_RXBD_NUM - 1].stat, 316 greth_read_bd(&rx_bd[GRETH_RXBD_NUM - 1].stat) | GRETH_BD_WR); 317 318 /* Initialize pointers. */ 319 greth->rx_cur = 0; 320 greth->tx_next = 0; 321 greth->tx_last = 0; 322 greth->tx_free = GRETH_TXBD_NUM; 323 324 /* Initialize descriptor base address */ 325 GRETH_REGSAVE(greth->regs->tx_desc_p, greth->tx_bd_base_phys); 326 GRETH_REGSAVE(greth->regs->rx_desc_p, greth->rx_bd_base_phys); 327 328 return 0; 329 330 cleanup: 331 greth_clean_rings(greth); 332 return -ENOMEM; 333 } 334 335 static int greth_open(struct net_device *dev) 336 { 337 struct greth_private *greth = netdev_priv(dev); 338 int err; 339 340 err = greth_init_rings(greth); 341 if (err) { 342 if (netif_msg_ifup(greth)) 343 dev_err(&dev->dev, "Could not allocate memory for DMA rings\n"); 344 return err; 345 } 346 347 err = request_irq(greth->irq, greth_interrupt, 0, "eth", (void *) dev); 348 if (err) { 349 if (netif_msg_ifup(greth)) 350 dev_err(&dev->dev, "Could not allocate interrupt %d\n", dev->irq); 351 greth_clean_rings(greth); 352 return err; 353 } 354 355 if (netif_msg_ifup(greth)) 356 dev_dbg(&dev->dev, " starting queue\n"); 357 netif_start_queue(dev); 358 359 GRETH_REGSAVE(greth->regs->status, 0xFF); 360 361 napi_enable(&greth->napi); 362 363 greth_enable_irqs(greth); 364 greth_enable_tx(greth); 365 greth_enable_rx(greth); 366 return 0; 367 368 } 369 370 static int greth_close(struct net_device *dev) 371 { 372 struct greth_private *greth = netdev_priv(dev); 373 374 napi_disable(&greth->napi); 375 376 greth_disable_irqs(greth); 377 greth_disable_tx(greth); 378 greth_disable_rx(greth); 379 380 netif_stop_queue(dev); 381 382 free_irq(greth->irq, (void *) dev); 383 384 greth_clean_rings(greth); 385 386 return 0; 387 } 388 389 static netdev_tx_t 390 greth_start_xmit(struct sk_buff *skb, struct net_device *dev) 391 { 392 struct greth_private *greth = netdev_priv(dev); 393 struct greth_bd *bdp; 394 int err = NETDEV_TX_OK; 395 u32 status, dma_addr, ctrl; 396 unsigned long flags; 397 398 /* Clean TX Ring */ 399 greth_clean_tx(greth->netdev); 400 401 if (unlikely(greth->tx_free <= 0)) { 402 spin_lock_irqsave(&greth->devlock, flags);/*save from poll/irq*/ 403 ctrl = GRETH_REGLOAD(greth->regs->control); 404 /* Enable TX IRQ only if not already in poll() routine */ 405 if (ctrl & GRETH_RXI) 406 GRETH_REGSAVE(greth->regs->control, ctrl | GRETH_TXI); 407 netif_stop_queue(dev); 408 spin_unlock_irqrestore(&greth->devlock, flags); 409 return NETDEV_TX_BUSY; 410 } 411 412 if (netif_msg_pktdata(greth)) 413 greth_print_tx_packet(skb); 414 415 416 if (unlikely(skb->len > MAX_FRAME_SIZE)) { 417 dev->stats.tx_errors++; 418 goto out; 419 } 420 421 bdp = greth->tx_bd_base + greth->tx_next; 422 dma_addr = greth_read_bd(&bdp->addr); 423 424 memcpy((unsigned char *) phys_to_virt(dma_addr), skb->data, skb->len); 425 426 dma_sync_single_for_device(greth->dev, dma_addr, skb->len, DMA_TO_DEVICE); 427 428 status = GRETH_BD_EN | GRETH_BD_IE | (skb->len & GRETH_BD_LEN); 429 greth->tx_bufs_length[greth->tx_next] = skb->len & GRETH_BD_LEN; 430 431 /* Wrap around descriptor ring */ 432 if (greth->tx_next == GRETH_TXBD_NUM_MASK) { 433 status |= GRETH_BD_WR; 434 } 435 436 greth->tx_next = NEXT_TX(greth->tx_next); 437 greth->tx_free--; 438 439 /* Write descriptor control word and enable transmission */ 440 greth_write_bd(&bdp->stat, status); 441 spin_lock_irqsave(&greth->devlock, flags); /*save from poll/irq*/ 442 greth_enable_tx(greth); 443 spin_unlock_irqrestore(&greth->devlock, flags); 444 445 out: 446 dev_kfree_skb(skb); 447 return err; 448 } 449 450 451 static netdev_tx_t 452 greth_start_xmit_gbit(struct sk_buff *skb, struct net_device *dev) 453 { 454 struct greth_private *greth = netdev_priv(dev); 455 struct greth_bd *bdp; 456 u32 status = 0, dma_addr, ctrl; 457 int curr_tx, nr_frags, i, err = NETDEV_TX_OK; 458 unsigned long flags; 459 460 nr_frags = skb_shinfo(skb)->nr_frags; 461 462 /* Clean TX Ring */ 463 greth_clean_tx_gbit(dev); 464 465 if (greth->tx_free < nr_frags + 1) { 466 spin_lock_irqsave(&greth->devlock, flags);/*save from poll/irq*/ 467 ctrl = GRETH_REGLOAD(greth->regs->control); 468 /* Enable TX IRQ only if not already in poll() routine */ 469 if (ctrl & GRETH_RXI) 470 GRETH_REGSAVE(greth->regs->control, ctrl | GRETH_TXI); 471 netif_stop_queue(dev); 472 spin_unlock_irqrestore(&greth->devlock, flags); 473 err = NETDEV_TX_BUSY; 474 goto out; 475 } 476 477 if (netif_msg_pktdata(greth)) 478 greth_print_tx_packet(skb); 479 480 if (unlikely(skb->len > MAX_FRAME_SIZE)) { 481 dev->stats.tx_errors++; 482 goto out; 483 } 484 485 /* Save skb pointer. */ 486 greth->tx_skbuff[greth->tx_next] = skb; 487 488 /* Linear buf */ 489 if (nr_frags != 0) 490 status = GRETH_TXBD_MORE; 491 492 if (skb->ip_summed == CHECKSUM_PARTIAL) 493 status |= GRETH_TXBD_CSALL; 494 status |= skb_headlen(skb) & GRETH_BD_LEN; 495 if (greth->tx_next == GRETH_TXBD_NUM_MASK) 496 status |= GRETH_BD_WR; 497 498 499 bdp = greth->tx_bd_base + greth->tx_next; 500 greth_write_bd(&bdp->stat, status); 501 dma_addr = dma_map_single(greth->dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); 502 503 if (unlikely(dma_mapping_error(greth->dev, dma_addr))) 504 goto map_error; 505 506 greth_write_bd(&bdp->addr, dma_addr); 507 508 curr_tx = NEXT_TX(greth->tx_next); 509 510 /* Frags */ 511 for (i = 0; i < nr_frags; i++) { 512 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 513 greth->tx_skbuff[curr_tx] = NULL; 514 bdp = greth->tx_bd_base + curr_tx; 515 516 status = GRETH_BD_EN; 517 if (skb->ip_summed == CHECKSUM_PARTIAL) 518 status |= GRETH_TXBD_CSALL; 519 status |= skb_frag_size(frag) & GRETH_BD_LEN; 520 521 /* Wrap around descriptor ring */ 522 if (curr_tx == GRETH_TXBD_NUM_MASK) 523 status |= GRETH_BD_WR; 524 525 /* More fragments left */ 526 if (i < nr_frags - 1) 527 status |= GRETH_TXBD_MORE; 528 else 529 status |= GRETH_BD_IE; /* enable IRQ on last fragment */ 530 531 greth_write_bd(&bdp->stat, status); 532 533 dma_addr = skb_frag_dma_map(greth->dev, frag, 0, skb_frag_size(frag), 534 DMA_TO_DEVICE); 535 536 if (unlikely(dma_mapping_error(greth->dev, dma_addr))) 537 goto frag_map_error; 538 539 greth_write_bd(&bdp->addr, dma_addr); 540 541 curr_tx = NEXT_TX(curr_tx); 542 } 543 544 wmb(); 545 546 /* Enable the descriptor chain by enabling the first descriptor */ 547 bdp = greth->tx_bd_base + greth->tx_next; 548 greth_write_bd(&bdp->stat, greth_read_bd(&bdp->stat) | GRETH_BD_EN); 549 greth->tx_next = curr_tx; 550 greth->tx_free -= nr_frags + 1; 551 552 wmb(); 553 554 spin_lock_irqsave(&greth->devlock, flags); /*save from poll/irq*/ 555 greth_enable_tx(greth); 556 spin_unlock_irqrestore(&greth->devlock, flags); 557 558 return NETDEV_TX_OK; 559 560 frag_map_error: 561 /* Unmap SKB mappings that succeeded and disable descriptor */ 562 for (i = 0; greth->tx_next + i != curr_tx; i++) { 563 bdp = greth->tx_bd_base + greth->tx_next + i; 564 dma_unmap_single(greth->dev, 565 greth_read_bd(&bdp->addr), 566 greth_read_bd(&bdp->stat) & GRETH_BD_LEN, 567 DMA_TO_DEVICE); 568 greth_write_bd(&bdp->stat, 0); 569 } 570 map_error: 571 if (net_ratelimit()) 572 dev_warn(greth->dev, "Could not create TX DMA mapping\n"); 573 dev_kfree_skb(skb); 574 out: 575 return err; 576 } 577 578 static irqreturn_t greth_interrupt(int irq, void *dev_id) 579 { 580 struct net_device *dev = dev_id; 581 struct greth_private *greth; 582 u32 status, ctrl; 583 irqreturn_t retval = IRQ_NONE; 584 585 greth = netdev_priv(dev); 586 587 spin_lock(&greth->devlock); 588 589 /* Get the interrupt events that caused us to be here. */ 590 status = GRETH_REGLOAD(greth->regs->status); 591 592 /* Must see if interrupts are enabled also, INT_TX|INT_RX flags may be 593 * set regardless of whether IRQ is enabled or not. Especially 594 * important when shared IRQ. 595 */ 596 ctrl = GRETH_REGLOAD(greth->regs->control); 597 598 /* Handle rx and tx interrupts through poll */ 599 if (((status & (GRETH_INT_RE | GRETH_INT_RX)) && (ctrl & GRETH_RXI)) || 600 ((status & (GRETH_INT_TE | GRETH_INT_TX)) && (ctrl & GRETH_TXI))) { 601 retval = IRQ_HANDLED; 602 603 /* Disable interrupts and schedule poll() */ 604 greth_disable_irqs(greth); 605 napi_schedule(&greth->napi); 606 } 607 608 mmiowb(); 609 spin_unlock(&greth->devlock); 610 611 return retval; 612 } 613 614 static void greth_clean_tx(struct net_device *dev) 615 { 616 struct greth_private *greth; 617 struct greth_bd *bdp; 618 u32 stat; 619 620 greth = netdev_priv(dev); 621 622 while (1) { 623 bdp = greth->tx_bd_base + greth->tx_last; 624 GRETH_REGSAVE(greth->regs->status, GRETH_INT_TE | GRETH_INT_TX); 625 mb(); 626 stat = greth_read_bd(&bdp->stat); 627 628 if (unlikely(stat & GRETH_BD_EN)) 629 break; 630 631 if (greth->tx_free == GRETH_TXBD_NUM) 632 break; 633 634 /* Check status for errors */ 635 if (unlikely(stat & GRETH_TXBD_STATUS)) { 636 dev->stats.tx_errors++; 637 if (stat & GRETH_TXBD_ERR_AL) 638 dev->stats.tx_aborted_errors++; 639 if (stat & GRETH_TXBD_ERR_UE) 640 dev->stats.tx_fifo_errors++; 641 } 642 dev->stats.tx_packets++; 643 dev->stats.tx_bytes += greth->tx_bufs_length[greth->tx_last]; 644 greth->tx_last = NEXT_TX(greth->tx_last); 645 greth->tx_free++; 646 } 647 648 if (greth->tx_free > 0) { 649 netif_wake_queue(dev); 650 } 651 652 } 653 654 static inline void greth_update_tx_stats(struct net_device *dev, u32 stat) 655 { 656 /* Check status for errors */ 657 if (unlikely(stat & GRETH_TXBD_STATUS)) { 658 dev->stats.tx_errors++; 659 if (stat & GRETH_TXBD_ERR_AL) 660 dev->stats.tx_aborted_errors++; 661 if (stat & GRETH_TXBD_ERR_UE) 662 dev->stats.tx_fifo_errors++; 663 if (stat & GRETH_TXBD_ERR_LC) 664 dev->stats.tx_aborted_errors++; 665 } 666 dev->stats.tx_packets++; 667 } 668 669 static void greth_clean_tx_gbit(struct net_device *dev) 670 { 671 struct greth_private *greth; 672 struct greth_bd *bdp, *bdp_last_frag; 673 struct sk_buff *skb; 674 u32 stat; 675 int nr_frags, i; 676 677 greth = netdev_priv(dev); 678 679 while (greth->tx_free < GRETH_TXBD_NUM) { 680 681 skb = greth->tx_skbuff[greth->tx_last]; 682 683 nr_frags = skb_shinfo(skb)->nr_frags; 684 685 /* We only clean fully completed SKBs */ 686 bdp_last_frag = greth->tx_bd_base + SKIP_TX(greth->tx_last, nr_frags); 687 688 GRETH_REGSAVE(greth->regs->status, GRETH_INT_TE | GRETH_INT_TX); 689 mb(); 690 stat = greth_read_bd(&bdp_last_frag->stat); 691 692 if (stat & GRETH_BD_EN) 693 break; 694 695 greth->tx_skbuff[greth->tx_last] = NULL; 696 697 greth_update_tx_stats(dev, stat); 698 dev->stats.tx_bytes += skb->len; 699 700 bdp = greth->tx_bd_base + greth->tx_last; 701 702 greth->tx_last = NEXT_TX(greth->tx_last); 703 704 dma_unmap_single(greth->dev, 705 greth_read_bd(&bdp->addr), 706 skb_headlen(skb), 707 DMA_TO_DEVICE); 708 709 for (i = 0; i < nr_frags; i++) { 710 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 711 bdp = greth->tx_bd_base + greth->tx_last; 712 713 dma_unmap_page(greth->dev, 714 greth_read_bd(&bdp->addr), 715 skb_frag_size(frag), 716 DMA_TO_DEVICE); 717 718 greth->tx_last = NEXT_TX(greth->tx_last); 719 } 720 greth->tx_free += nr_frags+1; 721 dev_kfree_skb(skb); 722 } 723 724 if (netif_queue_stopped(dev) && (greth->tx_free > (MAX_SKB_FRAGS+1))) 725 netif_wake_queue(dev); 726 } 727 728 static int greth_rx(struct net_device *dev, int limit) 729 { 730 struct greth_private *greth; 731 struct greth_bd *bdp; 732 struct sk_buff *skb; 733 int pkt_len; 734 int bad, count; 735 u32 status, dma_addr; 736 unsigned long flags; 737 738 greth = netdev_priv(dev); 739 740 for (count = 0; count < limit; ++count) { 741 742 bdp = greth->rx_bd_base + greth->rx_cur; 743 GRETH_REGSAVE(greth->regs->status, GRETH_INT_RE | GRETH_INT_RX); 744 mb(); 745 status = greth_read_bd(&bdp->stat); 746 747 if (unlikely(status & GRETH_BD_EN)) { 748 break; 749 } 750 751 dma_addr = greth_read_bd(&bdp->addr); 752 bad = 0; 753 754 /* Check status for errors. */ 755 if (unlikely(status & GRETH_RXBD_STATUS)) { 756 if (status & GRETH_RXBD_ERR_FT) { 757 dev->stats.rx_length_errors++; 758 bad = 1; 759 } 760 if (status & (GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE)) { 761 dev->stats.rx_frame_errors++; 762 bad = 1; 763 } 764 if (status & GRETH_RXBD_ERR_CRC) { 765 dev->stats.rx_crc_errors++; 766 bad = 1; 767 } 768 } 769 if (unlikely(bad)) { 770 dev->stats.rx_errors++; 771 772 } else { 773 774 pkt_len = status & GRETH_BD_LEN; 775 776 skb = netdev_alloc_skb(dev, pkt_len + NET_IP_ALIGN); 777 778 if (unlikely(skb == NULL)) { 779 780 if (net_ratelimit()) 781 dev_warn(&dev->dev, "low on memory - " "packet dropped\n"); 782 783 dev->stats.rx_dropped++; 784 785 } else { 786 skb_reserve(skb, NET_IP_ALIGN); 787 788 dma_sync_single_for_cpu(greth->dev, 789 dma_addr, 790 pkt_len, 791 DMA_FROM_DEVICE); 792 793 if (netif_msg_pktdata(greth)) 794 greth_print_rx_packet(phys_to_virt(dma_addr), pkt_len); 795 796 memcpy(skb_put(skb, pkt_len), phys_to_virt(dma_addr), pkt_len); 797 798 skb->protocol = eth_type_trans(skb, dev); 799 dev->stats.rx_bytes += pkt_len; 800 dev->stats.rx_packets++; 801 netif_receive_skb(skb); 802 } 803 } 804 805 status = GRETH_BD_EN | GRETH_BD_IE; 806 if (greth->rx_cur == GRETH_RXBD_NUM_MASK) { 807 status |= GRETH_BD_WR; 808 } 809 810 wmb(); 811 greth_write_bd(&bdp->stat, status); 812 813 dma_sync_single_for_device(greth->dev, dma_addr, MAX_FRAME_SIZE, DMA_FROM_DEVICE); 814 815 spin_lock_irqsave(&greth->devlock, flags); /* save from XMIT */ 816 greth_enable_rx(greth); 817 spin_unlock_irqrestore(&greth->devlock, flags); 818 819 greth->rx_cur = NEXT_RX(greth->rx_cur); 820 } 821 822 return count; 823 } 824 825 static inline int hw_checksummed(u32 status) 826 { 827 828 if (status & GRETH_RXBD_IP_FRAG) 829 return 0; 830 831 if (status & GRETH_RXBD_IP && status & GRETH_RXBD_IP_CSERR) 832 return 0; 833 834 if (status & GRETH_RXBD_UDP && status & GRETH_RXBD_UDP_CSERR) 835 return 0; 836 837 if (status & GRETH_RXBD_TCP && status & GRETH_RXBD_TCP_CSERR) 838 return 0; 839 840 return 1; 841 } 842 843 static int greth_rx_gbit(struct net_device *dev, int limit) 844 { 845 struct greth_private *greth; 846 struct greth_bd *bdp; 847 struct sk_buff *skb, *newskb; 848 int pkt_len; 849 int bad, count = 0; 850 u32 status, dma_addr; 851 unsigned long flags; 852 853 greth = netdev_priv(dev); 854 855 for (count = 0; count < limit; ++count) { 856 857 bdp = greth->rx_bd_base + greth->rx_cur; 858 skb = greth->rx_skbuff[greth->rx_cur]; 859 GRETH_REGSAVE(greth->regs->status, GRETH_INT_RE | GRETH_INT_RX); 860 mb(); 861 status = greth_read_bd(&bdp->stat); 862 bad = 0; 863 864 if (status & GRETH_BD_EN) 865 break; 866 867 /* Check status for errors. */ 868 if (unlikely(status & GRETH_RXBD_STATUS)) { 869 870 if (status & GRETH_RXBD_ERR_FT) { 871 dev->stats.rx_length_errors++; 872 bad = 1; 873 } else if (status & 874 (GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE | GRETH_RXBD_ERR_LE)) { 875 dev->stats.rx_frame_errors++; 876 bad = 1; 877 } else if (status & GRETH_RXBD_ERR_CRC) { 878 dev->stats.rx_crc_errors++; 879 bad = 1; 880 } 881 } 882 883 /* Allocate new skb to replace current, not needed if the 884 * current skb can be reused */ 885 if (!bad && (newskb=netdev_alloc_skb(dev, MAX_FRAME_SIZE + NET_IP_ALIGN))) { 886 skb_reserve(newskb, NET_IP_ALIGN); 887 888 dma_addr = dma_map_single(greth->dev, 889 newskb->data, 890 MAX_FRAME_SIZE + NET_IP_ALIGN, 891 DMA_FROM_DEVICE); 892 893 if (!dma_mapping_error(greth->dev, dma_addr)) { 894 /* Process the incoming frame. */ 895 pkt_len = status & GRETH_BD_LEN; 896 897 dma_unmap_single(greth->dev, 898 greth_read_bd(&bdp->addr), 899 MAX_FRAME_SIZE + NET_IP_ALIGN, 900 DMA_FROM_DEVICE); 901 902 if (netif_msg_pktdata(greth)) 903 greth_print_rx_packet(phys_to_virt(greth_read_bd(&bdp->addr)), pkt_len); 904 905 skb_put(skb, pkt_len); 906 907 if (dev->features & NETIF_F_RXCSUM && hw_checksummed(status)) 908 skb->ip_summed = CHECKSUM_UNNECESSARY; 909 else 910 skb_checksum_none_assert(skb); 911 912 skb->protocol = eth_type_trans(skb, dev); 913 dev->stats.rx_packets++; 914 dev->stats.rx_bytes += pkt_len; 915 netif_receive_skb(skb); 916 917 greth->rx_skbuff[greth->rx_cur] = newskb; 918 greth_write_bd(&bdp->addr, dma_addr); 919 } else { 920 if (net_ratelimit()) 921 dev_warn(greth->dev, "Could not create DMA mapping, dropping packet\n"); 922 dev_kfree_skb(newskb); 923 /* reusing current skb, so it is a drop */ 924 dev->stats.rx_dropped++; 925 } 926 } else if (bad) { 927 /* Bad Frame transfer, the skb is reused */ 928 dev->stats.rx_dropped++; 929 } else { 930 /* Failed Allocating a new skb. This is rather stupid 931 * but the current "filled" skb is reused, as if 932 * transfer failure. One could argue that RX descriptor 933 * table handling should be divided into cleaning and 934 * filling as the TX part of the driver 935 */ 936 if (net_ratelimit()) 937 dev_warn(greth->dev, "Could not allocate SKB, dropping packet\n"); 938 /* reusing current skb, so it is a drop */ 939 dev->stats.rx_dropped++; 940 } 941 942 status = GRETH_BD_EN | GRETH_BD_IE; 943 if (greth->rx_cur == GRETH_RXBD_NUM_MASK) { 944 status |= GRETH_BD_WR; 945 } 946 947 wmb(); 948 greth_write_bd(&bdp->stat, status); 949 spin_lock_irqsave(&greth->devlock, flags); 950 greth_enable_rx(greth); 951 spin_unlock_irqrestore(&greth->devlock, flags); 952 greth->rx_cur = NEXT_RX(greth->rx_cur); 953 } 954 955 return count; 956 957 } 958 959 static int greth_poll(struct napi_struct *napi, int budget) 960 { 961 struct greth_private *greth; 962 int work_done = 0; 963 unsigned long flags; 964 u32 mask, ctrl; 965 greth = container_of(napi, struct greth_private, napi); 966 967 restart_txrx_poll: 968 if (netif_queue_stopped(greth->netdev)) { 969 if (greth->gbit_mac) 970 greth_clean_tx_gbit(greth->netdev); 971 else 972 greth_clean_tx(greth->netdev); 973 } 974 975 if (greth->gbit_mac) { 976 work_done += greth_rx_gbit(greth->netdev, budget - work_done); 977 } else { 978 work_done += greth_rx(greth->netdev, budget - work_done); 979 } 980 981 if (work_done < budget) { 982 983 spin_lock_irqsave(&greth->devlock, flags); 984 985 ctrl = GRETH_REGLOAD(greth->regs->control); 986 if (netif_queue_stopped(greth->netdev)) { 987 GRETH_REGSAVE(greth->regs->control, 988 ctrl | GRETH_TXI | GRETH_RXI); 989 mask = GRETH_INT_RX | GRETH_INT_RE | 990 GRETH_INT_TX | GRETH_INT_TE; 991 } else { 992 GRETH_REGSAVE(greth->regs->control, ctrl | GRETH_RXI); 993 mask = GRETH_INT_RX | GRETH_INT_RE; 994 } 995 996 if (GRETH_REGLOAD(greth->regs->status) & mask) { 997 GRETH_REGSAVE(greth->regs->control, ctrl); 998 spin_unlock_irqrestore(&greth->devlock, flags); 999 goto restart_txrx_poll; 1000 } else { 1001 __napi_complete(napi); 1002 spin_unlock_irqrestore(&greth->devlock, flags); 1003 } 1004 } 1005 1006 return work_done; 1007 } 1008 1009 static int greth_set_mac_add(struct net_device *dev, void *p) 1010 { 1011 struct sockaddr *addr = p; 1012 struct greth_private *greth; 1013 struct greth_regs *regs; 1014 1015 greth = netdev_priv(dev); 1016 regs = greth->regs; 1017 1018 if (!is_valid_ether_addr(addr->sa_data)) 1019 return -EADDRNOTAVAIL; 1020 1021 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 1022 GRETH_REGSAVE(regs->esa_msb, dev->dev_addr[0] << 8 | dev->dev_addr[1]); 1023 GRETH_REGSAVE(regs->esa_lsb, dev->dev_addr[2] << 24 | dev->dev_addr[3] << 16 | 1024 dev->dev_addr[4] << 8 | dev->dev_addr[5]); 1025 1026 return 0; 1027 } 1028 1029 static u32 greth_hash_get_index(__u8 *addr) 1030 { 1031 return (ether_crc(6, addr)) & 0x3F; 1032 } 1033 1034 static void greth_set_hash_filter(struct net_device *dev) 1035 { 1036 struct netdev_hw_addr *ha; 1037 struct greth_private *greth = netdev_priv(dev); 1038 struct greth_regs *regs = greth->regs; 1039 u32 mc_filter[2]; 1040 unsigned int bitnr; 1041 1042 mc_filter[0] = mc_filter[1] = 0; 1043 1044 netdev_for_each_mc_addr(ha, dev) { 1045 bitnr = greth_hash_get_index(ha->addr); 1046 mc_filter[bitnr >> 5] |= 1 << (bitnr & 31); 1047 } 1048 1049 GRETH_REGSAVE(regs->hash_msb, mc_filter[1]); 1050 GRETH_REGSAVE(regs->hash_lsb, mc_filter[0]); 1051 } 1052 1053 static void greth_set_multicast_list(struct net_device *dev) 1054 { 1055 int cfg; 1056 struct greth_private *greth = netdev_priv(dev); 1057 struct greth_regs *regs = greth->regs; 1058 1059 cfg = GRETH_REGLOAD(regs->control); 1060 if (dev->flags & IFF_PROMISC) 1061 cfg |= GRETH_CTRL_PR; 1062 else 1063 cfg &= ~GRETH_CTRL_PR; 1064 1065 if (greth->multicast) { 1066 if (dev->flags & IFF_ALLMULTI) { 1067 GRETH_REGSAVE(regs->hash_msb, -1); 1068 GRETH_REGSAVE(regs->hash_lsb, -1); 1069 cfg |= GRETH_CTRL_MCEN; 1070 GRETH_REGSAVE(regs->control, cfg); 1071 return; 1072 } 1073 1074 if (netdev_mc_empty(dev)) { 1075 cfg &= ~GRETH_CTRL_MCEN; 1076 GRETH_REGSAVE(regs->control, cfg); 1077 return; 1078 } 1079 1080 /* Setup multicast filter */ 1081 greth_set_hash_filter(dev); 1082 cfg |= GRETH_CTRL_MCEN; 1083 } 1084 GRETH_REGSAVE(regs->control, cfg); 1085 } 1086 1087 static u32 greth_get_msglevel(struct net_device *dev) 1088 { 1089 struct greth_private *greth = netdev_priv(dev); 1090 return greth->msg_enable; 1091 } 1092 1093 static void greth_set_msglevel(struct net_device *dev, u32 value) 1094 { 1095 struct greth_private *greth = netdev_priv(dev); 1096 greth->msg_enable = value; 1097 } 1098 static int greth_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 1099 { 1100 struct greth_private *greth = netdev_priv(dev); 1101 struct phy_device *phy = greth->phy; 1102 1103 if (!phy) 1104 return -ENODEV; 1105 1106 return phy_ethtool_gset(phy, cmd); 1107 } 1108 1109 static int greth_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 1110 { 1111 struct greth_private *greth = netdev_priv(dev); 1112 struct phy_device *phy = greth->phy; 1113 1114 if (!phy) 1115 return -ENODEV; 1116 1117 return phy_ethtool_sset(phy, cmd); 1118 } 1119 1120 static int greth_get_regs_len(struct net_device *dev) 1121 { 1122 return sizeof(struct greth_regs); 1123 } 1124 1125 static void greth_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1126 { 1127 struct greth_private *greth = netdev_priv(dev); 1128 1129 strlcpy(info->driver, dev_driver_string(greth->dev), 1130 sizeof(info->driver)); 1131 strlcpy(info->version, "revision: 1.0", sizeof(info->version)); 1132 strlcpy(info->bus_info, greth->dev->bus->name, sizeof(info->bus_info)); 1133 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version)); 1134 info->eedump_len = 0; 1135 info->regdump_len = sizeof(struct greth_regs); 1136 } 1137 1138 static void greth_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *p) 1139 { 1140 int i; 1141 struct greth_private *greth = netdev_priv(dev); 1142 u32 __iomem *greth_regs = (u32 __iomem *) greth->regs; 1143 u32 *buff = p; 1144 1145 for (i = 0; i < sizeof(struct greth_regs) / sizeof(u32); i++) 1146 buff[i] = greth_read_bd(&greth_regs[i]); 1147 } 1148 1149 static const struct ethtool_ops greth_ethtool_ops = { 1150 .get_msglevel = greth_get_msglevel, 1151 .set_msglevel = greth_set_msglevel, 1152 .get_settings = greth_get_settings, 1153 .set_settings = greth_set_settings, 1154 .get_drvinfo = greth_get_drvinfo, 1155 .get_regs_len = greth_get_regs_len, 1156 .get_regs = greth_get_regs, 1157 .get_link = ethtool_op_get_link, 1158 }; 1159 1160 static struct net_device_ops greth_netdev_ops = { 1161 .ndo_open = greth_open, 1162 .ndo_stop = greth_close, 1163 .ndo_start_xmit = greth_start_xmit, 1164 .ndo_set_mac_address = greth_set_mac_add, 1165 .ndo_validate_addr = eth_validate_addr, 1166 }; 1167 1168 static inline int wait_for_mdio(struct greth_private *greth) 1169 { 1170 unsigned long timeout = jiffies + 4*HZ/100; 1171 while (GRETH_REGLOAD(greth->regs->mdio) & GRETH_MII_BUSY) { 1172 if (time_after(jiffies, timeout)) 1173 return 0; 1174 } 1175 return 1; 1176 } 1177 1178 static int greth_mdio_read(struct mii_bus *bus, int phy, int reg) 1179 { 1180 struct greth_private *greth = bus->priv; 1181 int data; 1182 1183 if (!wait_for_mdio(greth)) 1184 return -EBUSY; 1185 1186 GRETH_REGSAVE(greth->regs->mdio, ((phy & 0x1F) << 11) | ((reg & 0x1F) << 6) | 2); 1187 1188 if (!wait_for_mdio(greth)) 1189 return -EBUSY; 1190 1191 if (!(GRETH_REGLOAD(greth->regs->mdio) & GRETH_MII_NVALID)) { 1192 data = (GRETH_REGLOAD(greth->regs->mdio) >> 16) & 0xFFFF; 1193 return data; 1194 1195 } else { 1196 return -1; 1197 } 1198 } 1199 1200 static int greth_mdio_write(struct mii_bus *bus, int phy, int reg, u16 val) 1201 { 1202 struct greth_private *greth = bus->priv; 1203 1204 if (!wait_for_mdio(greth)) 1205 return -EBUSY; 1206 1207 GRETH_REGSAVE(greth->regs->mdio, 1208 ((val & 0xFFFF) << 16) | ((phy & 0x1F) << 11) | ((reg & 0x1F) << 6) | 1); 1209 1210 if (!wait_for_mdio(greth)) 1211 return -EBUSY; 1212 1213 return 0; 1214 } 1215 1216 static void greth_link_change(struct net_device *dev) 1217 { 1218 struct greth_private *greth = netdev_priv(dev); 1219 struct phy_device *phydev = greth->phy; 1220 unsigned long flags; 1221 int status_change = 0; 1222 u32 ctrl; 1223 1224 spin_lock_irqsave(&greth->devlock, flags); 1225 1226 if (phydev->link) { 1227 1228 if ((greth->speed != phydev->speed) || (greth->duplex != phydev->duplex)) { 1229 ctrl = GRETH_REGLOAD(greth->regs->control) & 1230 ~(GRETH_CTRL_FD | GRETH_CTRL_SP | GRETH_CTRL_GB); 1231 1232 if (phydev->duplex) 1233 ctrl |= GRETH_CTRL_FD; 1234 1235 if (phydev->speed == SPEED_100) 1236 ctrl |= GRETH_CTRL_SP; 1237 else if (phydev->speed == SPEED_1000) 1238 ctrl |= GRETH_CTRL_GB; 1239 1240 GRETH_REGSAVE(greth->regs->control, ctrl); 1241 greth->speed = phydev->speed; 1242 greth->duplex = phydev->duplex; 1243 status_change = 1; 1244 } 1245 } 1246 1247 if (phydev->link != greth->link) { 1248 if (!phydev->link) { 1249 greth->speed = 0; 1250 greth->duplex = -1; 1251 } 1252 greth->link = phydev->link; 1253 1254 status_change = 1; 1255 } 1256 1257 spin_unlock_irqrestore(&greth->devlock, flags); 1258 1259 if (status_change) { 1260 if (phydev->link) 1261 pr_debug("%s: link up (%d/%s)\n", 1262 dev->name, phydev->speed, 1263 DUPLEX_FULL == phydev->duplex ? "Full" : "Half"); 1264 else 1265 pr_debug("%s: link down\n", dev->name); 1266 } 1267 } 1268 1269 static int greth_mdio_probe(struct net_device *dev) 1270 { 1271 struct greth_private *greth = netdev_priv(dev); 1272 struct phy_device *phy = NULL; 1273 int ret; 1274 1275 /* Find the first PHY */ 1276 phy = phy_find_first(greth->mdio); 1277 1278 if (!phy) { 1279 if (netif_msg_probe(greth)) 1280 dev_err(&dev->dev, "no PHY found\n"); 1281 return -ENXIO; 1282 } 1283 1284 ret = phy_connect_direct(dev, phy, &greth_link_change, 1285 greth->gbit_mac ? PHY_INTERFACE_MODE_GMII : PHY_INTERFACE_MODE_MII); 1286 if (ret) { 1287 if (netif_msg_ifup(greth)) 1288 dev_err(&dev->dev, "could not attach to PHY\n"); 1289 return ret; 1290 } 1291 1292 if (greth->gbit_mac) 1293 phy->supported &= PHY_GBIT_FEATURES; 1294 else 1295 phy->supported &= PHY_BASIC_FEATURES; 1296 1297 phy->advertising = phy->supported; 1298 1299 greth->link = 0; 1300 greth->speed = 0; 1301 greth->duplex = -1; 1302 greth->phy = phy; 1303 1304 return 0; 1305 } 1306 1307 static inline int phy_aneg_done(struct phy_device *phydev) 1308 { 1309 int retval; 1310 1311 retval = phy_read(phydev, MII_BMSR); 1312 1313 return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE); 1314 } 1315 1316 static int greth_mdio_init(struct greth_private *greth) 1317 { 1318 int ret, phy; 1319 unsigned long timeout; 1320 1321 greth->mdio = mdiobus_alloc(); 1322 if (!greth->mdio) { 1323 return -ENOMEM; 1324 } 1325 1326 greth->mdio->name = "greth-mdio"; 1327 snprintf(greth->mdio->id, MII_BUS_ID_SIZE, "%s-%d", greth->mdio->name, greth->irq); 1328 greth->mdio->read = greth_mdio_read; 1329 greth->mdio->write = greth_mdio_write; 1330 greth->mdio->priv = greth; 1331 1332 greth->mdio->irq = greth->mdio_irqs; 1333 1334 for (phy = 0; phy < PHY_MAX_ADDR; phy++) 1335 greth->mdio->irq[phy] = PHY_POLL; 1336 1337 ret = mdiobus_register(greth->mdio); 1338 if (ret) { 1339 goto error; 1340 } 1341 1342 ret = greth_mdio_probe(greth->netdev); 1343 if (ret) { 1344 if (netif_msg_probe(greth)) 1345 dev_err(&greth->netdev->dev, "failed to probe MDIO bus\n"); 1346 goto unreg_mdio; 1347 } 1348 1349 phy_start(greth->phy); 1350 1351 /* If Ethernet debug link is used make autoneg happen right away */ 1352 if (greth->edcl && greth_edcl == 1) { 1353 phy_start_aneg(greth->phy); 1354 timeout = jiffies + 6*HZ; 1355 while (!phy_aneg_done(greth->phy) && time_before(jiffies, timeout)) { 1356 } 1357 phy_read_status(greth->phy); 1358 greth_link_change(greth->netdev); 1359 } 1360 1361 return 0; 1362 1363 unreg_mdio: 1364 mdiobus_unregister(greth->mdio); 1365 error: 1366 mdiobus_free(greth->mdio); 1367 return ret; 1368 } 1369 1370 /* Initialize the GRETH MAC */ 1371 static int greth_of_probe(struct platform_device *ofdev) 1372 { 1373 struct net_device *dev; 1374 struct greth_private *greth; 1375 struct greth_regs *regs; 1376 1377 int i; 1378 int err; 1379 int tmp; 1380 unsigned long timeout; 1381 1382 dev = alloc_etherdev(sizeof(struct greth_private)); 1383 1384 if (dev == NULL) 1385 return -ENOMEM; 1386 1387 greth = netdev_priv(dev); 1388 greth->netdev = dev; 1389 greth->dev = &ofdev->dev; 1390 1391 if (greth_debug > 0) 1392 greth->msg_enable = greth_debug; 1393 else 1394 greth->msg_enable = GRETH_DEF_MSG_ENABLE; 1395 1396 spin_lock_init(&greth->devlock); 1397 1398 greth->regs = of_ioremap(&ofdev->resource[0], 0, 1399 resource_size(&ofdev->resource[0]), 1400 "grlib-greth regs"); 1401 1402 if (greth->regs == NULL) { 1403 if (netif_msg_probe(greth)) 1404 dev_err(greth->dev, "ioremap failure.\n"); 1405 err = -EIO; 1406 goto error1; 1407 } 1408 1409 regs = greth->regs; 1410 greth->irq = ofdev->archdata.irqs[0]; 1411 1412 dev_set_drvdata(greth->dev, dev); 1413 SET_NETDEV_DEV(dev, greth->dev); 1414 1415 if (netif_msg_probe(greth)) 1416 dev_dbg(greth->dev, "resetting controller.\n"); 1417 1418 /* Reset the controller. */ 1419 GRETH_REGSAVE(regs->control, GRETH_RESET); 1420 1421 /* Wait for MAC to reset itself */ 1422 timeout = jiffies + HZ/100; 1423 while (GRETH_REGLOAD(regs->control) & GRETH_RESET) { 1424 if (time_after(jiffies, timeout)) { 1425 err = -EIO; 1426 if (netif_msg_probe(greth)) 1427 dev_err(greth->dev, "timeout when waiting for reset.\n"); 1428 goto error2; 1429 } 1430 } 1431 1432 /* Get default PHY address */ 1433 greth->phyaddr = (GRETH_REGLOAD(regs->mdio) >> 11) & 0x1F; 1434 1435 /* Check if we have GBIT capable MAC */ 1436 tmp = GRETH_REGLOAD(regs->control); 1437 greth->gbit_mac = (tmp >> 27) & 1; 1438 1439 /* Check for multicast capability */ 1440 greth->multicast = (tmp >> 25) & 1; 1441 1442 greth->edcl = (tmp >> 31) & 1; 1443 1444 /* If we have EDCL we disable the EDCL speed-duplex FSM so 1445 * it doesn't interfere with the software */ 1446 if (greth->edcl != 0) 1447 GRETH_REGORIN(regs->control, GRETH_CTRL_DISDUPLEX); 1448 1449 /* Check if MAC can handle MDIO interrupts */ 1450 greth->mdio_int_en = (tmp >> 26) & 1; 1451 1452 err = greth_mdio_init(greth); 1453 if (err) { 1454 if (netif_msg_probe(greth)) 1455 dev_err(greth->dev, "failed to register MDIO bus\n"); 1456 goto error2; 1457 } 1458 1459 /* Allocate TX descriptor ring in coherent memory */ 1460 greth->tx_bd_base = dma_zalloc_coherent(greth->dev, 1024, 1461 &greth->tx_bd_base_phys, 1462 GFP_KERNEL); 1463 if (!greth->tx_bd_base) { 1464 err = -ENOMEM; 1465 goto error3; 1466 } 1467 1468 /* Allocate RX descriptor ring in coherent memory */ 1469 greth->rx_bd_base = dma_zalloc_coherent(greth->dev, 1024, 1470 &greth->rx_bd_base_phys, 1471 GFP_KERNEL); 1472 if (!greth->rx_bd_base) { 1473 err = -ENOMEM; 1474 goto error4; 1475 } 1476 1477 /* Get MAC address from: module param, OF property or ID prom */ 1478 for (i = 0; i < 6; i++) { 1479 if (macaddr[i] != 0) 1480 break; 1481 } 1482 if (i == 6) { 1483 const unsigned char *addr; 1484 int len; 1485 addr = of_get_property(ofdev->dev.of_node, "local-mac-address", 1486 &len); 1487 if (addr != NULL && len == 6) { 1488 for (i = 0; i < 6; i++) 1489 macaddr[i] = (unsigned int) addr[i]; 1490 } else { 1491 #ifdef CONFIG_SPARC 1492 for (i = 0; i < 6; i++) 1493 macaddr[i] = (unsigned int) idprom->id_ethaddr[i]; 1494 #endif 1495 } 1496 } 1497 1498 for (i = 0; i < 6; i++) 1499 dev->dev_addr[i] = macaddr[i]; 1500 1501 macaddr[5]++; 1502 1503 if (!is_valid_ether_addr(&dev->dev_addr[0])) { 1504 if (netif_msg_probe(greth)) 1505 dev_err(greth->dev, "no valid ethernet address, aborting.\n"); 1506 err = -EINVAL; 1507 goto error5; 1508 } 1509 1510 GRETH_REGSAVE(regs->esa_msb, dev->dev_addr[0] << 8 | dev->dev_addr[1]); 1511 GRETH_REGSAVE(regs->esa_lsb, dev->dev_addr[2] << 24 | dev->dev_addr[3] << 16 | 1512 dev->dev_addr[4] << 8 | dev->dev_addr[5]); 1513 1514 /* Clear all pending interrupts except PHY irq */ 1515 GRETH_REGSAVE(regs->status, 0xFF); 1516 1517 if (greth->gbit_mac) { 1518 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | 1519 NETIF_F_RXCSUM; 1520 dev->features = dev->hw_features | NETIF_F_HIGHDMA; 1521 greth_netdev_ops.ndo_start_xmit = greth_start_xmit_gbit; 1522 } 1523 1524 if (greth->multicast) { 1525 greth_netdev_ops.ndo_set_rx_mode = greth_set_multicast_list; 1526 dev->flags |= IFF_MULTICAST; 1527 } else { 1528 dev->flags &= ~IFF_MULTICAST; 1529 } 1530 1531 dev->netdev_ops = &greth_netdev_ops; 1532 dev->ethtool_ops = &greth_ethtool_ops; 1533 1534 err = register_netdev(dev); 1535 if (err) { 1536 if (netif_msg_probe(greth)) 1537 dev_err(greth->dev, "netdevice registration failed.\n"); 1538 goto error5; 1539 } 1540 1541 /* setup NAPI */ 1542 netif_napi_add(dev, &greth->napi, greth_poll, 64); 1543 1544 return 0; 1545 1546 error5: 1547 dma_free_coherent(greth->dev, 1024, greth->rx_bd_base, greth->rx_bd_base_phys); 1548 error4: 1549 dma_free_coherent(greth->dev, 1024, greth->tx_bd_base, greth->tx_bd_base_phys); 1550 error3: 1551 mdiobus_unregister(greth->mdio); 1552 error2: 1553 of_iounmap(&ofdev->resource[0], greth->regs, resource_size(&ofdev->resource[0])); 1554 error1: 1555 free_netdev(dev); 1556 return err; 1557 } 1558 1559 static int greth_of_remove(struct platform_device *of_dev) 1560 { 1561 struct net_device *ndev = platform_get_drvdata(of_dev); 1562 struct greth_private *greth = netdev_priv(ndev); 1563 1564 /* Free descriptor areas */ 1565 dma_free_coherent(&of_dev->dev, 1024, greth->rx_bd_base, greth->rx_bd_base_phys); 1566 1567 dma_free_coherent(&of_dev->dev, 1024, greth->tx_bd_base, greth->tx_bd_base_phys); 1568 1569 if (greth->phy) 1570 phy_stop(greth->phy); 1571 mdiobus_unregister(greth->mdio); 1572 1573 unregister_netdev(ndev); 1574 free_netdev(ndev); 1575 1576 of_iounmap(&of_dev->resource[0], greth->regs, resource_size(&of_dev->resource[0])); 1577 1578 return 0; 1579 } 1580 1581 static struct of_device_id greth_of_match[] = { 1582 { 1583 .name = "GAISLER_ETHMAC", 1584 }, 1585 { 1586 .name = "01_01d", 1587 }, 1588 {}, 1589 }; 1590 1591 MODULE_DEVICE_TABLE(of, greth_of_match); 1592 1593 static struct platform_driver greth_of_driver = { 1594 .driver = { 1595 .name = "grlib-greth", 1596 .owner = THIS_MODULE, 1597 .of_match_table = greth_of_match, 1598 }, 1599 .probe = greth_of_probe, 1600 .remove = greth_of_remove, 1601 }; 1602 1603 module_platform_driver(greth_of_driver); 1604 1605 MODULE_AUTHOR("Aeroflex Gaisler AB."); 1606 MODULE_DESCRIPTION("Aeroflex Gaisler Ethernet MAC driver"); 1607 MODULE_LICENSE("GPL"); 1608