1 /* 2 * Aeroflex Gaisler GRETH 10/100/1G Ethernet MAC. 3 * 4 * 2005-2010 (c) Aeroflex Gaisler AB 5 * 6 * This driver supports GRETH 10/100 and GRETH 10/100/1G Ethernet MACs 7 * available in the GRLIB VHDL IP core library. 8 * 9 * Full documentation of both cores can be found here: 10 * http://www.gaisler.com/products/grlib/grip.pdf 11 * 12 * The Gigabit version supports scatter/gather DMA, any alignment of 13 * buffers and checksum offloading. 14 * 15 * This program is free software; you can redistribute it and/or modify it 16 * under the terms of the GNU General Public License as published by the 17 * Free Software Foundation; either version 2 of the License, or (at your 18 * option) any later version. 19 * 20 * Contributors: Kristoffer Glembo 21 * Daniel Hellstrom 22 * Marko Isomaki 23 */ 24 25 #include <linux/dma-mapping.h> 26 #include <linux/module.h> 27 #include <linux/uaccess.h> 28 #include <linux/init.h> 29 #include <linux/interrupt.h> 30 #include <linux/netdevice.h> 31 #include <linux/etherdevice.h> 32 #include <linux/ethtool.h> 33 #include <linux/skbuff.h> 34 #include <linux/io.h> 35 #include <linux/crc32.h> 36 #include <linux/mii.h> 37 #include <linux/of_device.h> 38 #include <linux/of_platform.h> 39 #include <linux/slab.h> 40 #include <asm/cacheflush.h> 41 #include <asm/byteorder.h> 42 43 #ifdef CONFIG_SPARC 44 #include <asm/idprom.h> 45 #endif 46 47 #include "greth.h" 48 49 #define GRETH_DEF_MSG_ENABLE \ 50 (NETIF_MSG_DRV | \ 51 NETIF_MSG_PROBE | \ 52 NETIF_MSG_LINK | \ 53 NETIF_MSG_IFDOWN | \ 54 NETIF_MSG_IFUP | \ 55 NETIF_MSG_RX_ERR | \ 56 NETIF_MSG_TX_ERR) 57 58 static int greth_debug = -1; /* -1 == use GRETH_DEF_MSG_ENABLE as value */ 59 module_param(greth_debug, int, 0); 60 MODULE_PARM_DESC(greth_debug, "GRETH bitmapped debugging message enable value"); 61 62 /* Accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */ 63 static int macaddr[6]; 64 module_param_array(macaddr, int, NULL, 0); 65 MODULE_PARM_DESC(macaddr, "GRETH Ethernet MAC address"); 66 67 static int greth_edcl = 1; 68 module_param(greth_edcl, int, 0); 69 MODULE_PARM_DESC(greth_edcl, "GRETH EDCL usage indicator. Set to 1 if EDCL is used."); 70 71 static int greth_open(struct net_device *dev); 72 static netdev_tx_t greth_start_xmit(struct sk_buff *skb, 73 struct net_device *dev); 74 static netdev_tx_t greth_start_xmit_gbit(struct sk_buff *skb, 75 struct net_device *dev); 76 static int greth_rx(struct net_device *dev, int limit); 77 static int greth_rx_gbit(struct net_device *dev, int limit); 78 static void greth_clean_tx(struct net_device *dev); 79 static void greth_clean_tx_gbit(struct net_device *dev); 80 static irqreturn_t greth_interrupt(int irq, void *dev_id); 81 static int greth_close(struct net_device *dev); 82 static int greth_set_mac_add(struct net_device *dev, void *p); 83 static void greth_set_multicast_list(struct net_device *dev); 84 85 #define GRETH_REGLOAD(a) (be32_to_cpu(__raw_readl(&(a)))) 86 #define GRETH_REGSAVE(a, v) (__raw_writel(cpu_to_be32(v), &(a))) 87 #define GRETH_REGORIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) | (v)))) 88 #define GRETH_REGANDIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) & (v)))) 89 90 #define NEXT_TX(N) (((N) + 1) & GRETH_TXBD_NUM_MASK) 91 #define SKIP_TX(N, C) (((N) + C) & GRETH_TXBD_NUM_MASK) 92 #define NEXT_RX(N) (((N) + 1) & GRETH_RXBD_NUM_MASK) 93 94 static void greth_print_rx_packet(void *addr, int len) 95 { 96 print_hex_dump(KERN_DEBUG, "RX: ", DUMP_PREFIX_OFFSET, 16, 1, 97 addr, len, true); 98 } 99 100 static void greth_print_tx_packet(struct sk_buff *skb) 101 { 102 int i; 103 int length; 104 105 if (skb_shinfo(skb)->nr_frags == 0) 106 length = skb->len; 107 else 108 length = skb_headlen(skb); 109 110 print_hex_dump(KERN_DEBUG, "TX: ", DUMP_PREFIX_OFFSET, 16, 1, 111 skb->data, length, true); 112 113 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 114 115 print_hex_dump(KERN_DEBUG, "TX: ", DUMP_PREFIX_OFFSET, 16, 1, 116 skb_frag_address(&skb_shinfo(skb)->frags[i]), 117 skb_shinfo(skb)->frags[i].size, true); 118 } 119 } 120 121 static inline void greth_enable_tx(struct greth_private *greth) 122 { 123 wmb(); 124 GRETH_REGORIN(greth->regs->control, GRETH_TXEN); 125 } 126 127 static inline void greth_disable_tx(struct greth_private *greth) 128 { 129 GRETH_REGANDIN(greth->regs->control, ~GRETH_TXEN); 130 } 131 132 static inline void greth_enable_rx(struct greth_private *greth) 133 { 134 wmb(); 135 GRETH_REGORIN(greth->regs->control, GRETH_RXEN); 136 } 137 138 static inline void greth_disable_rx(struct greth_private *greth) 139 { 140 GRETH_REGANDIN(greth->regs->control, ~GRETH_RXEN); 141 } 142 143 static inline void greth_enable_irqs(struct greth_private *greth) 144 { 145 GRETH_REGORIN(greth->regs->control, GRETH_RXI | GRETH_TXI); 146 } 147 148 static inline void greth_disable_irqs(struct greth_private *greth) 149 { 150 GRETH_REGANDIN(greth->regs->control, ~(GRETH_RXI|GRETH_TXI)); 151 } 152 153 static inline void greth_write_bd(u32 *bd, u32 val) 154 { 155 __raw_writel(cpu_to_be32(val), bd); 156 } 157 158 static inline u32 greth_read_bd(u32 *bd) 159 { 160 return be32_to_cpu(__raw_readl(bd)); 161 } 162 163 static void greth_clean_rings(struct greth_private *greth) 164 { 165 int i; 166 struct greth_bd *rx_bdp = greth->rx_bd_base; 167 struct greth_bd *tx_bdp = greth->tx_bd_base; 168 169 if (greth->gbit_mac) { 170 171 /* Free and unmap RX buffers */ 172 for (i = 0; i < GRETH_RXBD_NUM; i++, rx_bdp++) { 173 if (greth->rx_skbuff[i] != NULL) { 174 dev_kfree_skb(greth->rx_skbuff[i]); 175 dma_unmap_single(greth->dev, 176 greth_read_bd(&rx_bdp->addr), 177 MAX_FRAME_SIZE+NET_IP_ALIGN, 178 DMA_FROM_DEVICE); 179 } 180 } 181 182 /* TX buffers */ 183 while (greth->tx_free < GRETH_TXBD_NUM) { 184 185 struct sk_buff *skb = greth->tx_skbuff[greth->tx_last]; 186 int nr_frags = skb_shinfo(skb)->nr_frags; 187 tx_bdp = greth->tx_bd_base + greth->tx_last; 188 greth->tx_last = NEXT_TX(greth->tx_last); 189 190 dma_unmap_single(greth->dev, 191 greth_read_bd(&tx_bdp->addr), 192 skb_headlen(skb), 193 DMA_TO_DEVICE); 194 195 for (i = 0; i < nr_frags; i++) { 196 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 197 tx_bdp = greth->tx_bd_base + greth->tx_last; 198 199 dma_unmap_page(greth->dev, 200 greth_read_bd(&tx_bdp->addr), 201 skb_frag_size(frag), 202 DMA_TO_DEVICE); 203 204 greth->tx_last = NEXT_TX(greth->tx_last); 205 } 206 greth->tx_free += nr_frags+1; 207 dev_kfree_skb(skb); 208 } 209 210 211 } else { /* 10/100 Mbps MAC */ 212 213 for (i = 0; i < GRETH_RXBD_NUM; i++, rx_bdp++) { 214 kfree(greth->rx_bufs[i]); 215 dma_unmap_single(greth->dev, 216 greth_read_bd(&rx_bdp->addr), 217 MAX_FRAME_SIZE, 218 DMA_FROM_DEVICE); 219 } 220 for (i = 0; i < GRETH_TXBD_NUM; i++, tx_bdp++) { 221 kfree(greth->tx_bufs[i]); 222 dma_unmap_single(greth->dev, 223 greth_read_bd(&tx_bdp->addr), 224 MAX_FRAME_SIZE, 225 DMA_TO_DEVICE); 226 } 227 } 228 } 229 230 static int greth_init_rings(struct greth_private *greth) 231 { 232 struct sk_buff *skb; 233 struct greth_bd *rx_bd, *tx_bd; 234 u32 dma_addr; 235 int i; 236 237 rx_bd = greth->rx_bd_base; 238 tx_bd = greth->tx_bd_base; 239 240 /* Initialize descriptor rings and buffers */ 241 if (greth->gbit_mac) { 242 243 for (i = 0; i < GRETH_RXBD_NUM; i++) { 244 skb = netdev_alloc_skb(greth->netdev, MAX_FRAME_SIZE+NET_IP_ALIGN); 245 if (skb == NULL) { 246 if (netif_msg_ifup(greth)) 247 dev_err(greth->dev, "Error allocating DMA ring.\n"); 248 goto cleanup; 249 } 250 skb_reserve(skb, NET_IP_ALIGN); 251 dma_addr = dma_map_single(greth->dev, 252 skb->data, 253 MAX_FRAME_SIZE+NET_IP_ALIGN, 254 DMA_FROM_DEVICE); 255 256 if (dma_mapping_error(greth->dev, dma_addr)) { 257 if (netif_msg_ifup(greth)) 258 dev_err(greth->dev, "Could not create initial DMA mapping\n"); 259 goto cleanup; 260 } 261 greth->rx_skbuff[i] = skb; 262 greth_write_bd(&rx_bd[i].addr, dma_addr); 263 greth_write_bd(&rx_bd[i].stat, GRETH_BD_EN | GRETH_BD_IE); 264 } 265 266 } else { 267 268 /* 10/100 MAC uses a fixed set of buffers and copy to/from SKBs */ 269 for (i = 0; i < GRETH_RXBD_NUM; i++) { 270 271 greth->rx_bufs[i] = kmalloc(MAX_FRAME_SIZE, GFP_KERNEL); 272 273 if (greth->rx_bufs[i] == NULL) { 274 if (netif_msg_ifup(greth)) 275 dev_err(greth->dev, "Error allocating DMA ring.\n"); 276 goto cleanup; 277 } 278 279 dma_addr = dma_map_single(greth->dev, 280 greth->rx_bufs[i], 281 MAX_FRAME_SIZE, 282 DMA_FROM_DEVICE); 283 284 if (dma_mapping_error(greth->dev, dma_addr)) { 285 if (netif_msg_ifup(greth)) 286 dev_err(greth->dev, "Could not create initial DMA mapping\n"); 287 goto cleanup; 288 } 289 greth_write_bd(&rx_bd[i].addr, dma_addr); 290 greth_write_bd(&rx_bd[i].stat, GRETH_BD_EN | GRETH_BD_IE); 291 } 292 for (i = 0; i < GRETH_TXBD_NUM; i++) { 293 294 greth->tx_bufs[i] = kmalloc(MAX_FRAME_SIZE, GFP_KERNEL); 295 296 if (greth->tx_bufs[i] == NULL) { 297 if (netif_msg_ifup(greth)) 298 dev_err(greth->dev, "Error allocating DMA ring.\n"); 299 goto cleanup; 300 } 301 302 dma_addr = dma_map_single(greth->dev, 303 greth->tx_bufs[i], 304 MAX_FRAME_SIZE, 305 DMA_TO_DEVICE); 306 307 if (dma_mapping_error(greth->dev, dma_addr)) { 308 if (netif_msg_ifup(greth)) 309 dev_err(greth->dev, "Could not create initial DMA mapping\n"); 310 goto cleanup; 311 } 312 greth_write_bd(&tx_bd[i].addr, dma_addr); 313 greth_write_bd(&tx_bd[i].stat, 0); 314 } 315 } 316 greth_write_bd(&rx_bd[GRETH_RXBD_NUM - 1].stat, 317 greth_read_bd(&rx_bd[GRETH_RXBD_NUM - 1].stat) | GRETH_BD_WR); 318 319 /* Initialize pointers. */ 320 greth->rx_cur = 0; 321 greth->tx_next = 0; 322 greth->tx_last = 0; 323 greth->tx_free = GRETH_TXBD_NUM; 324 325 /* Initialize descriptor base address */ 326 GRETH_REGSAVE(greth->regs->tx_desc_p, greth->tx_bd_base_phys); 327 GRETH_REGSAVE(greth->regs->rx_desc_p, greth->rx_bd_base_phys); 328 329 return 0; 330 331 cleanup: 332 greth_clean_rings(greth); 333 return -ENOMEM; 334 } 335 336 static int greth_open(struct net_device *dev) 337 { 338 struct greth_private *greth = netdev_priv(dev); 339 int err; 340 341 err = greth_init_rings(greth); 342 if (err) { 343 if (netif_msg_ifup(greth)) 344 dev_err(&dev->dev, "Could not allocate memory for DMA rings\n"); 345 return err; 346 } 347 348 err = request_irq(greth->irq, greth_interrupt, 0, "eth", (void *) dev); 349 if (err) { 350 if (netif_msg_ifup(greth)) 351 dev_err(&dev->dev, "Could not allocate interrupt %d\n", dev->irq); 352 greth_clean_rings(greth); 353 return err; 354 } 355 356 if (netif_msg_ifup(greth)) 357 dev_dbg(&dev->dev, " starting queue\n"); 358 netif_start_queue(dev); 359 360 GRETH_REGSAVE(greth->regs->status, 0xFF); 361 362 napi_enable(&greth->napi); 363 364 greth_enable_irqs(greth); 365 greth_enable_tx(greth); 366 greth_enable_rx(greth); 367 return 0; 368 369 } 370 371 static int greth_close(struct net_device *dev) 372 { 373 struct greth_private *greth = netdev_priv(dev); 374 375 napi_disable(&greth->napi); 376 377 greth_disable_irqs(greth); 378 greth_disable_tx(greth); 379 greth_disable_rx(greth); 380 381 netif_stop_queue(dev); 382 383 free_irq(greth->irq, (void *) dev); 384 385 greth_clean_rings(greth); 386 387 return 0; 388 } 389 390 static netdev_tx_t 391 greth_start_xmit(struct sk_buff *skb, struct net_device *dev) 392 { 393 struct greth_private *greth = netdev_priv(dev); 394 struct greth_bd *bdp; 395 int err = NETDEV_TX_OK; 396 u32 status, dma_addr, ctrl; 397 unsigned long flags; 398 399 /* Clean TX Ring */ 400 greth_clean_tx(greth->netdev); 401 402 if (unlikely(greth->tx_free <= 0)) { 403 spin_lock_irqsave(&greth->devlock, flags);/*save from poll/irq*/ 404 ctrl = GRETH_REGLOAD(greth->regs->control); 405 /* Enable TX IRQ only if not already in poll() routine */ 406 if (ctrl & GRETH_RXI) 407 GRETH_REGSAVE(greth->regs->control, ctrl | GRETH_TXI); 408 netif_stop_queue(dev); 409 spin_unlock_irqrestore(&greth->devlock, flags); 410 return NETDEV_TX_BUSY; 411 } 412 413 if (netif_msg_pktdata(greth)) 414 greth_print_tx_packet(skb); 415 416 417 if (unlikely(skb->len > MAX_FRAME_SIZE)) { 418 dev->stats.tx_errors++; 419 goto out; 420 } 421 422 bdp = greth->tx_bd_base + greth->tx_next; 423 dma_addr = greth_read_bd(&bdp->addr); 424 425 memcpy((unsigned char *) phys_to_virt(dma_addr), skb->data, skb->len); 426 427 dma_sync_single_for_device(greth->dev, dma_addr, skb->len, DMA_TO_DEVICE); 428 429 status = GRETH_BD_EN | GRETH_BD_IE | (skb->len & GRETH_BD_LEN); 430 greth->tx_bufs_length[greth->tx_next] = skb->len & GRETH_BD_LEN; 431 432 /* Wrap around descriptor ring */ 433 if (greth->tx_next == GRETH_TXBD_NUM_MASK) { 434 status |= GRETH_BD_WR; 435 } 436 437 greth->tx_next = NEXT_TX(greth->tx_next); 438 greth->tx_free--; 439 440 /* Write descriptor control word and enable transmission */ 441 greth_write_bd(&bdp->stat, status); 442 spin_lock_irqsave(&greth->devlock, flags); /*save from poll/irq*/ 443 greth_enable_tx(greth); 444 spin_unlock_irqrestore(&greth->devlock, flags); 445 446 out: 447 dev_kfree_skb(skb); 448 return err; 449 } 450 451 452 static netdev_tx_t 453 greth_start_xmit_gbit(struct sk_buff *skb, struct net_device *dev) 454 { 455 struct greth_private *greth = netdev_priv(dev); 456 struct greth_bd *bdp; 457 u32 status = 0, dma_addr, ctrl; 458 int curr_tx, nr_frags, i, err = NETDEV_TX_OK; 459 unsigned long flags; 460 461 nr_frags = skb_shinfo(skb)->nr_frags; 462 463 /* Clean TX Ring */ 464 greth_clean_tx_gbit(dev); 465 466 if (greth->tx_free < nr_frags + 1) { 467 spin_lock_irqsave(&greth->devlock, flags);/*save from poll/irq*/ 468 ctrl = GRETH_REGLOAD(greth->regs->control); 469 /* Enable TX IRQ only if not already in poll() routine */ 470 if (ctrl & GRETH_RXI) 471 GRETH_REGSAVE(greth->regs->control, ctrl | GRETH_TXI); 472 netif_stop_queue(dev); 473 spin_unlock_irqrestore(&greth->devlock, flags); 474 err = NETDEV_TX_BUSY; 475 goto out; 476 } 477 478 if (netif_msg_pktdata(greth)) 479 greth_print_tx_packet(skb); 480 481 if (unlikely(skb->len > MAX_FRAME_SIZE)) { 482 dev->stats.tx_errors++; 483 goto out; 484 } 485 486 /* Save skb pointer. */ 487 greth->tx_skbuff[greth->tx_next] = skb; 488 489 /* Linear buf */ 490 if (nr_frags != 0) 491 status = GRETH_TXBD_MORE; 492 493 if (skb->ip_summed == CHECKSUM_PARTIAL) 494 status |= GRETH_TXBD_CSALL; 495 status |= skb_headlen(skb) & GRETH_BD_LEN; 496 if (greth->tx_next == GRETH_TXBD_NUM_MASK) 497 status |= GRETH_BD_WR; 498 499 500 bdp = greth->tx_bd_base + greth->tx_next; 501 greth_write_bd(&bdp->stat, status); 502 dma_addr = dma_map_single(greth->dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); 503 504 if (unlikely(dma_mapping_error(greth->dev, dma_addr))) 505 goto map_error; 506 507 greth_write_bd(&bdp->addr, dma_addr); 508 509 curr_tx = NEXT_TX(greth->tx_next); 510 511 /* Frags */ 512 for (i = 0; i < nr_frags; i++) { 513 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 514 greth->tx_skbuff[curr_tx] = NULL; 515 bdp = greth->tx_bd_base + curr_tx; 516 517 status = GRETH_BD_EN; 518 if (skb->ip_summed == CHECKSUM_PARTIAL) 519 status |= GRETH_TXBD_CSALL; 520 status |= skb_frag_size(frag) & GRETH_BD_LEN; 521 522 /* Wrap around descriptor ring */ 523 if (curr_tx == GRETH_TXBD_NUM_MASK) 524 status |= GRETH_BD_WR; 525 526 /* More fragments left */ 527 if (i < nr_frags - 1) 528 status |= GRETH_TXBD_MORE; 529 else 530 status |= GRETH_BD_IE; /* enable IRQ on last fragment */ 531 532 greth_write_bd(&bdp->stat, status); 533 534 dma_addr = skb_frag_dma_map(greth->dev, frag, 0, skb_frag_size(frag), 535 DMA_TO_DEVICE); 536 537 if (unlikely(dma_mapping_error(greth->dev, dma_addr))) 538 goto frag_map_error; 539 540 greth_write_bd(&bdp->addr, dma_addr); 541 542 curr_tx = NEXT_TX(curr_tx); 543 } 544 545 wmb(); 546 547 /* Enable the descriptor chain by enabling the first descriptor */ 548 bdp = greth->tx_bd_base + greth->tx_next; 549 greth_write_bd(&bdp->stat, greth_read_bd(&bdp->stat) | GRETH_BD_EN); 550 greth->tx_next = curr_tx; 551 greth->tx_free -= nr_frags + 1; 552 553 wmb(); 554 555 spin_lock_irqsave(&greth->devlock, flags); /*save from poll/irq*/ 556 greth_enable_tx(greth); 557 spin_unlock_irqrestore(&greth->devlock, flags); 558 559 return NETDEV_TX_OK; 560 561 frag_map_error: 562 /* Unmap SKB mappings that succeeded and disable descriptor */ 563 for (i = 0; greth->tx_next + i != curr_tx; i++) { 564 bdp = greth->tx_bd_base + greth->tx_next + i; 565 dma_unmap_single(greth->dev, 566 greth_read_bd(&bdp->addr), 567 greth_read_bd(&bdp->stat) & GRETH_BD_LEN, 568 DMA_TO_DEVICE); 569 greth_write_bd(&bdp->stat, 0); 570 } 571 map_error: 572 if (net_ratelimit()) 573 dev_warn(greth->dev, "Could not create TX DMA mapping\n"); 574 dev_kfree_skb(skb); 575 out: 576 return err; 577 } 578 579 static irqreturn_t greth_interrupt(int irq, void *dev_id) 580 { 581 struct net_device *dev = dev_id; 582 struct greth_private *greth; 583 u32 status, ctrl; 584 irqreturn_t retval = IRQ_NONE; 585 586 greth = netdev_priv(dev); 587 588 spin_lock(&greth->devlock); 589 590 /* Get the interrupt events that caused us to be here. */ 591 status = GRETH_REGLOAD(greth->regs->status); 592 593 /* Must see if interrupts are enabled also, INT_TX|INT_RX flags may be 594 * set regardless of whether IRQ is enabled or not. Especially 595 * important when shared IRQ. 596 */ 597 ctrl = GRETH_REGLOAD(greth->regs->control); 598 599 /* Handle rx and tx interrupts through poll */ 600 if (((status & (GRETH_INT_RE | GRETH_INT_RX)) && (ctrl & GRETH_RXI)) || 601 ((status & (GRETH_INT_TE | GRETH_INT_TX)) && (ctrl & GRETH_TXI))) { 602 retval = IRQ_HANDLED; 603 604 /* Disable interrupts and schedule poll() */ 605 greth_disable_irqs(greth); 606 napi_schedule(&greth->napi); 607 } 608 609 mmiowb(); 610 spin_unlock(&greth->devlock); 611 612 return retval; 613 } 614 615 static void greth_clean_tx(struct net_device *dev) 616 { 617 struct greth_private *greth; 618 struct greth_bd *bdp; 619 u32 stat; 620 621 greth = netdev_priv(dev); 622 623 while (1) { 624 bdp = greth->tx_bd_base + greth->tx_last; 625 GRETH_REGSAVE(greth->regs->status, GRETH_INT_TE | GRETH_INT_TX); 626 mb(); 627 stat = greth_read_bd(&bdp->stat); 628 629 if (unlikely(stat & GRETH_BD_EN)) 630 break; 631 632 if (greth->tx_free == GRETH_TXBD_NUM) 633 break; 634 635 /* Check status for errors */ 636 if (unlikely(stat & GRETH_TXBD_STATUS)) { 637 dev->stats.tx_errors++; 638 if (stat & GRETH_TXBD_ERR_AL) 639 dev->stats.tx_aborted_errors++; 640 if (stat & GRETH_TXBD_ERR_UE) 641 dev->stats.tx_fifo_errors++; 642 } 643 dev->stats.tx_packets++; 644 dev->stats.tx_bytes += greth->tx_bufs_length[greth->tx_last]; 645 greth->tx_last = NEXT_TX(greth->tx_last); 646 greth->tx_free++; 647 } 648 649 if (greth->tx_free > 0) { 650 netif_wake_queue(dev); 651 } 652 653 } 654 655 static inline void greth_update_tx_stats(struct net_device *dev, u32 stat) 656 { 657 /* Check status for errors */ 658 if (unlikely(stat & GRETH_TXBD_STATUS)) { 659 dev->stats.tx_errors++; 660 if (stat & GRETH_TXBD_ERR_AL) 661 dev->stats.tx_aborted_errors++; 662 if (stat & GRETH_TXBD_ERR_UE) 663 dev->stats.tx_fifo_errors++; 664 if (stat & GRETH_TXBD_ERR_LC) 665 dev->stats.tx_aborted_errors++; 666 } 667 dev->stats.tx_packets++; 668 } 669 670 static void greth_clean_tx_gbit(struct net_device *dev) 671 { 672 struct greth_private *greth; 673 struct greth_bd *bdp, *bdp_last_frag; 674 struct sk_buff *skb; 675 u32 stat; 676 int nr_frags, i; 677 678 greth = netdev_priv(dev); 679 680 while (greth->tx_free < GRETH_TXBD_NUM) { 681 682 skb = greth->tx_skbuff[greth->tx_last]; 683 684 nr_frags = skb_shinfo(skb)->nr_frags; 685 686 /* We only clean fully completed SKBs */ 687 bdp_last_frag = greth->tx_bd_base + SKIP_TX(greth->tx_last, nr_frags); 688 689 GRETH_REGSAVE(greth->regs->status, GRETH_INT_TE | GRETH_INT_TX); 690 mb(); 691 stat = greth_read_bd(&bdp_last_frag->stat); 692 693 if (stat & GRETH_BD_EN) 694 break; 695 696 greth->tx_skbuff[greth->tx_last] = NULL; 697 698 greth_update_tx_stats(dev, stat); 699 dev->stats.tx_bytes += skb->len; 700 701 bdp = greth->tx_bd_base + greth->tx_last; 702 703 greth->tx_last = NEXT_TX(greth->tx_last); 704 705 dma_unmap_single(greth->dev, 706 greth_read_bd(&bdp->addr), 707 skb_headlen(skb), 708 DMA_TO_DEVICE); 709 710 for (i = 0; i < nr_frags; i++) { 711 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 712 bdp = greth->tx_bd_base + greth->tx_last; 713 714 dma_unmap_page(greth->dev, 715 greth_read_bd(&bdp->addr), 716 skb_frag_size(frag), 717 DMA_TO_DEVICE); 718 719 greth->tx_last = NEXT_TX(greth->tx_last); 720 } 721 greth->tx_free += nr_frags+1; 722 dev_kfree_skb(skb); 723 } 724 725 if (netif_queue_stopped(dev) && (greth->tx_free > (MAX_SKB_FRAGS+1))) 726 netif_wake_queue(dev); 727 } 728 729 static int greth_rx(struct net_device *dev, int limit) 730 { 731 struct greth_private *greth; 732 struct greth_bd *bdp; 733 struct sk_buff *skb; 734 int pkt_len; 735 int bad, count; 736 u32 status, dma_addr; 737 unsigned long flags; 738 739 greth = netdev_priv(dev); 740 741 for (count = 0; count < limit; ++count) { 742 743 bdp = greth->rx_bd_base + greth->rx_cur; 744 GRETH_REGSAVE(greth->regs->status, GRETH_INT_RE | GRETH_INT_RX); 745 mb(); 746 status = greth_read_bd(&bdp->stat); 747 748 if (unlikely(status & GRETH_BD_EN)) { 749 break; 750 } 751 752 dma_addr = greth_read_bd(&bdp->addr); 753 bad = 0; 754 755 /* Check status for errors. */ 756 if (unlikely(status & GRETH_RXBD_STATUS)) { 757 if (status & GRETH_RXBD_ERR_FT) { 758 dev->stats.rx_length_errors++; 759 bad = 1; 760 } 761 if (status & (GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE)) { 762 dev->stats.rx_frame_errors++; 763 bad = 1; 764 } 765 if (status & GRETH_RXBD_ERR_CRC) { 766 dev->stats.rx_crc_errors++; 767 bad = 1; 768 } 769 } 770 if (unlikely(bad)) { 771 dev->stats.rx_errors++; 772 773 } else { 774 775 pkt_len = status & GRETH_BD_LEN; 776 777 skb = netdev_alloc_skb(dev, pkt_len + NET_IP_ALIGN); 778 779 if (unlikely(skb == NULL)) { 780 781 if (net_ratelimit()) 782 dev_warn(&dev->dev, "low on memory - " "packet dropped\n"); 783 784 dev->stats.rx_dropped++; 785 786 } else { 787 skb_reserve(skb, NET_IP_ALIGN); 788 789 dma_sync_single_for_cpu(greth->dev, 790 dma_addr, 791 pkt_len, 792 DMA_FROM_DEVICE); 793 794 if (netif_msg_pktdata(greth)) 795 greth_print_rx_packet(phys_to_virt(dma_addr), pkt_len); 796 797 memcpy(skb_put(skb, pkt_len), phys_to_virt(dma_addr), pkt_len); 798 799 skb->protocol = eth_type_trans(skb, dev); 800 dev->stats.rx_bytes += pkt_len; 801 dev->stats.rx_packets++; 802 netif_receive_skb(skb); 803 } 804 } 805 806 status = GRETH_BD_EN | GRETH_BD_IE; 807 if (greth->rx_cur == GRETH_RXBD_NUM_MASK) { 808 status |= GRETH_BD_WR; 809 } 810 811 wmb(); 812 greth_write_bd(&bdp->stat, status); 813 814 dma_sync_single_for_device(greth->dev, dma_addr, MAX_FRAME_SIZE, DMA_FROM_DEVICE); 815 816 spin_lock_irqsave(&greth->devlock, flags); /* save from XMIT */ 817 greth_enable_rx(greth); 818 spin_unlock_irqrestore(&greth->devlock, flags); 819 820 greth->rx_cur = NEXT_RX(greth->rx_cur); 821 } 822 823 return count; 824 } 825 826 static inline int hw_checksummed(u32 status) 827 { 828 829 if (status & GRETH_RXBD_IP_FRAG) 830 return 0; 831 832 if (status & GRETH_RXBD_IP && status & GRETH_RXBD_IP_CSERR) 833 return 0; 834 835 if (status & GRETH_RXBD_UDP && status & GRETH_RXBD_UDP_CSERR) 836 return 0; 837 838 if (status & GRETH_RXBD_TCP && status & GRETH_RXBD_TCP_CSERR) 839 return 0; 840 841 return 1; 842 } 843 844 static int greth_rx_gbit(struct net_device *dev, int limit) 845 { 846 struct greth_private *greth; 847 struct greth_bd *bdp; 848 struct sk_buff *skb, *newskb; 849 int pkt_len; 850 int bad, count = 0; 851 u32 status, dma_addr; 852 unsigned long flags; 853 854 greth = netdev_priv(dev); 855 856 for (count = 0; count < limit; ++count) { 857 858 bdp = greth->rx_bd_base + greth->rx_cur; 859 skb = greth->rx_skbuff[greth->rx_cur]; 860 GRETH_REGSAVE(greth->regs->status, GRETH_INT_RE | GRETH_INT_RX); 861 mb(); 862 status = greth_read_bd(&bdp->stat); 863 bad = 0; 864 865 if (status & GRETH_BD_EN) 866 break; 867 868 /* Check status for errors. */ 869 if (unlikely(status & GRETH_RXBD_STATUS)) { 870 871 if (status & GRETH_RXBD_ERR_FT) { 872 dev->stats.rx_length_errors++; 873 bad = 1; 874 } else if (status & 875 (GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE | GRETH_RXBD_ERR_LE)) { 876 dev->stats.rx_frame_errors++; 877 bad = 1; 878 } else if (status & GRETH_RXBD_ERR_CRC) { 879 dev->stats.rx_crc_errors++; 880 bad = 1; 881 } 882 } 883 884 /* Allocate new skb to replace current, not needed if the 885 * current skb can be reused */ 886 if (!bad && (newskb=netdev_alloc_skb(dev, MAX_FRAME_SIZE + NET_IP_ALIGN))) { 887 skb_reserve(newskb, NET_IP_ALIGN); 888 889 dma_addr = dma_map_single(greth->dev, 890 newskb->data, 891 MAX_FRAME_SIZE + NET_IP_ALIGN, 892 DMA_FROM_DEVICE); 893 894 if (!dma_mapping_error(greth->dev, dma_addr)) { 895 /* Process the incoming frame. */ 896 pkt_len = status & GRETH_BD_LEN; 897 898 dma_unmap_single(greth->dev, 899 greth_read_bd(&bdp->addr), 900 MAX_FRAME_SIZE + NET_IP_ALIGN, 901 DMA_FROM_DEVICE); 902 903 if (netif_msg_pktdata(greth)) 904 greth_print_rx_packet(phys_to_virt(greth_read_bd(&bdp->addr)), pkt_len); 905 906 skb_put(skb, pkt_len); 907 908 if (dev->features & NETIF_F_RXCSUM && hw_checksummed(status)) 909 skb->ip_summed = CHECKSUM_UNNECESSARY; 910 else 911 skb_checksum_none_assert(skb); 912 913 skb->protocol = eth_type_trans(skb, dev); 914 dev->stats.rx_packets++; 915 dev->stats.rx_bytes += pkt_len; 916 netif_receive_skb(skb); 917 918 greth->rx_skbuff[greth->rx_cur] = newskb; 919 greth_write_bd(&bdp->addr, dma_addr); 920 } else { 921 if (net_ratelimit()) 922 dev_warn(greth->dev, "Could not create DMA mapping, dropping packet\n"); 923 dev_kfree_skb(newskb); 924 /* reusing current skb, so it is a drop */ 925 dev->stats.rx_dropped++; 926 } 927 } else if (bad) { 928 /* Bad Frame transfer, the skb is reused */ 929 dev->stats.rx_dropped++; 930 } else { 931 /* Failed Allocating a new skb. This is rather stupid 932 * but the current "filled" skb is reused, as if 933 * transfer failure. One could argue that RX descriptor 934 * table handling should be divided into cleaning and 935 * filling as the TX part of the driver 936 */ 937 if (net_ratelimit()) 938 dev_warn(greth->dev, "Could not allocate SKB, dropping packet\n"); 939 /* reusing current skb, so it is a drop */ 940 dev->stats.rx_dropped++; 941 } 942 943 status = GRETH_BD_EN | GRETH_BD_IE; 944 if (greth->rx_cur == GRETH_RXBD_NUM_MASK) { 945 status |= GRETH_BD_WR; 946 } 947 948 wmb(); 949 greth_write_bd(&bdp->stat, status); 950 spin_lock_irqsave(&greth->devlock, flags); 951 greth_enable_rx(greth); 952 spin_unlock_irqrestore(&greth->devlock, flags); 953 greth->rx_cur = NEXT_RX(greth->rx_cur); 954 } 955 956 return count; 957 958 } 959 960 static int greth_poll(struct napi_struct *napi, int budget) 961 { 962 struct greth_private *greth; 963 int work_done = 0; 964 unsigned long flags; 965 u32 mask, ctrl; 966 greth = container_of(napi, struct greth_private, napi); 967 968 restart_txrx_poll: 969 if (netif_queue_stopped(greth->netdev)) { 970 if (greth->gbit_mac) 971 greth_clean_tx_gbit(greth->netdev); 972 else 973 greth_clean_tx(greth->netdev); 974 } 975 976 if (greth->gbit_mac) { 977 work_done += greth_rx_gbit(greth->netdev, budget - work_done); 978 } else { 979 work_done += greth_rx(greth->netdev, budget - work_done); 980 } 981 982 if (work_done < budget) { 983 984 spin_lock_irqsave(&greth->devlock, flags); 985 986 ctrl = GRETH_REGLOAD(greth->regs->control); 987 if (netif_queue_stopped(greth->netdev)) { 988 GRETH_REGSAVE(greth->regs->control, 989 ctrl | GRETH_TXI | GRETH_RXI); 990 mask = GRETH_INT_RX | GRETH_INT_RE | 991 GRETH_INT_TX | GRETH_INT_TE; 992 } else { 993 GRETH_REGSAVE(greth->regs->control, ctrl | GRETH_RXI); 994 mask = GRETH_INT_RX | GRETH_INT_RE; 995 } 996 997 if (GRETH_REGLOAD(greth->regs->status) & mask) { 998 GRETH_REGSAVE(greth->regs->control, ctrl); 999 spin_unlock_irqrestore(&greth->devlock, flags); 1000 goto restart_txrx_poll; 1001 } else { 1002 __napi_complete(napi); 1003 spin_unlock_irqrestore(&greth->devlock, flags); 1004 } 1005 } 1006 1007 return work_done; 1008 } 1009 1010 static int greth_set_mac_add(struct net_device *dev, void *p) 1011 { 1012 struct sockaddr *addr = p; 1013 struct greth_private *greth; 1014 struct greth_regs *regs; 1015 1016 greth = netdev_priv(dev); 1017 regs = greth->regs; 1018 1019 if (!is_valid_ether_addr(addr->sa_data)) 1020 return -EADDRNOTAVAIL; 1021 1022 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 1023 GRETH_REGSAVE(regs->esa_msb, dev->dev_addr[0] << 8 | dev->dev_addr[1]); 1024 GRETH_REGSAVE(regs->esa_lsb, dev->dev_addr[2] << 24 | dev->dev_addr[3] << 16 | 1025 dev->dev_addr[4] << 8 | dev->dev_addr[5]); 1026 1027 return 0; 1028 } 1029 1030 static u32 greth_hash_get_index(__u8 *addr) 1031 { 1032 return (ether_crc(6, addr)) & 0x3F; 1033 } 1034 1035 static void greth_set_hash_filter(struct net_device *dev) 1036 { 1037 struct netdev_hw_addr *ha; 1038 struct greth_private *greth = netdev_priv(dev); 1039 struct greth_regs *regs = greth->regs; 1040 u32 mc_filter[2]; 1041 unsigned int bitnr; 1042 1043 mc_filter[0] = mc_filter[1] = 0; 1044 1045 netdev_for_each_mc_addr(ha, dev) { 1046 bitnr = greth_hash_get_index(ha->addr); 1047 mc_filter[bitnr >> 5] |= 1 << (bitnr & 31); 1048 } 1049 1050 GRETH_REGSAVE(regs->hash_msb, mc_filter[1]); 1051 GRETH_REGSAVE(regs->hash_lsb, mc_filter[0]); 1052 } 1053 1054 static void greth_set_multicast_list(struct net_device *dev) 1055 { 1056 int cfg; 1057 struct greth_private *greth = netdev_priv(dev); 1058 struct greth_regs *regs = greth->regs; 1059 1060 cfg = GRETH_REGLOAD(regs->control); 1061 if (dev->flags & IFF_PROMISC) 1062 cfg |= GRETH_CTRL_PR; 1063 else 1064 cfg &= ~GRETH_CTRL_PR; 1065 1066 if (greth->multicast) { 1067 if (dev->flags & IFF_ALLMULTI) { 1068 GRETH_REGSAVE(regs->hash_msb, -1); 1069 GRETH_REGSAVE(regs->hash_lsb, -1); 1070 cfg |= GRETH_CTRL_MCEN; 1071 GRETH_REGSAVE(regs->control, cfg); 1072 return; 1073 } 1074 1075 if (netdev_mc_empty(dev)) { 1076 cfg &= ~GRETH_CTRL_MCEN; 1077 GRETH_REGSAVE(regs->control, cfg); 1078 return; 1079 } 1080 1081 /* Setup multicast filter */ 1082 greth_set_hash_filter(dev); 1083 cfg |= GRETH_CTRL_MCEN; 1084 } 1085 GRETH_REGSAVE(regs->control, cfg); 1086 } 1087 1088 static u32 greth_get_msglevel(struct net_device *dev) 1089 { 1090 struct greth_private *greth = netdev_priv(dev); 1091 return greth->msg_enable; 1092 } 1093 1094 static void greth_set_msglevel(struct net_device *dev, u32 value) 1095 { 1096 struct greth_private *greth = netdev_priv(dev); 1097 greth->msg_enable = value; 1098 } 1099 static int greth_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 1100 { 1101 struct greth_private *greth = netdev_priv(dev); 1102 struct phy_device *phy = greth->phy; 1103 1104 if (!phy) 1105 return -ENODEV; 1106 1107 return phy_ethtool_gset(phy, cmd); 1108 } 1109 1110 static int greth_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 1111 { 1112 struct greth_private *greth = netdev_priv(dev); 1113 struct phy_device *phy = greth->phy; 1114 1115 if (!phy) 1116 return -ENODEV; 1117 1118 return phy_ethtool_sset(phy, cmd); 1119 } 1120 1121 static int greth_get_regs_len(struct net_device *dev) 1122 { 1123 return sizeof(struct greth_regs); 1124 } 1125 1126 static void greth_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1127 { 1128 struct greth_private *greth = netdev_priv(dev); 1129 1130 strlcpy(info->driver, dev_driver_string(greth->dev), 1131 sizeof(info->driver)); 1132 strlcpy(info->version, "revision: 1.0", sizeof(info->version)); 1133 strlcpy(info->bus_info, greth->dev->bus->name, sizeof(info->bus_info)); 1134 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version)); 1135 info->eedump_len = 0; 1136 info->regdump_len = sizeof(struct greth_regs); 1137 } 1138 1139 static void greth_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *p) 1140 { 1141 int i; 1142 struct greth_private *greth = netdev_priv(dev); 1143 u32 __iomem *greth_regs = (u32 __iomem *) greth->regs; 1144 u32 *buff = p; 1145 1146 for (i = 0; i < sizeof(struct greth_regs) / sizeof(u32); i++) 1147 buff[i] = greth_read_bd(&greth_regs[i]); 1148 } 1149 1150 static const struct ethtool_ops greth_ethtool_ops = { 1151 .get_msglevel = greth_get_msglevel, 1152 .set_msglevel = greth_set_msglevel, 1153 .get_settings = greth_get_settings, 1154 .set_settings = greth_set_settings, 1155 .get_drvinfo = greth_get_drvinfo, 1156 .get_regs_len = greth_get_regs_len, 1157 .get_regs = greth_get_regs, 1158 .get_link = ethtool_op_get_link, 1159 }; 1160 1161 static struct net_device_ops greth_netdev_ops = { 1162 .ndo_open = greth_open, 1163 .ndo_stop = greth_close, 1164 .ndo_start_xmit = greth_start_xmit, 1165 .ndo_set_mac_address = greth_set_mac_add, 1166 .ndo_validate_addr = eth_validate_addr, 1167 }; 1168 1169 static inline int wait_for_mdio(struct greth_private *greth) 1170 { 1171 unsigned long timeout = jiffies + 4*HZ/100; 1172 while (GRETH_REGLOAD(greth->regs->mdio) & GRETH_MII_BUSY) { 1173 if (time_after(jiffies, timeout)) 1174 return 0; 1175 } 1176 return 1; 1177 } 1178 1179 static int greth_mdio_read(struct mii_bus *bus, int phy, int reg) 1180 { 1181 struct greth_private *greth = bus->priv; 1182 int data; 1183 1184 if (!wait_for_mdio(greth)) 1185 return -EBUSY; 1186 1187 GRETH_REGSAVE(greth->regs->mdio, ((phy & 0x1F) << 11) | ((reg & 0x1F) << 6) | 2); 1188 1189 if (!wait_for_mdio(greth)) 1190 return -EBUSY; 1191 1192 if (!(GRETH_REGLOAD(greth->regs->mdio) & GRETH_MII_NVALID)) { 1193 data = (GRETH_REGLOAD(greth->regs->mdio) >> 16) & 0xFFFF; 1194 return data; 1195 1196 } else { 1197 return -1; 1198 } 1199 } 1200 1201 static int greth_mdio_write(struct mii_bus *bus, int phy, int reg, u16 val) 1202 { 1203 struct greth_private *greth = bus->priv; 1204 1205 if (!wait_for_mdio(greth)) 1206 return -EBUSY; 1207 1208 GRETH_REGSAVE(greth->regs->mdio, 1209 ((val & 0xFFFF) << 16) | ((phy & 0x1F) << 11) | ((reg & 0x1F) << 6) | 1); 1210 1211 if (!wait_for_mdio(greth)) 1212 return -EBUSY; 1213 1214 return 0; 1215 } 1216 1217 static int greth_mdio_reset(struct mii_bus *bus) 1218 { 1219 return 0; 1220 } 1221 1222 static void greth_link_change(struct net_device *dev) 1223 { 1224 struct greth_private *greth = netdev_priv(dev); 1225 struct phy_device *phydev = greth->phy; 1226 unsigned long flags; 1227 int status_change = 0; 1228 u32 ctrl; 1229 1230 spin_lock_irqsave(&greth->devlock, flags); 1231 1232 if (phydev->link) { 1233 1234 if ((greth->speed != phydev->speed) || (greth->duplex != phydev->duplex)) { 1235 ctrl = GRETH_REGLOAD(greth->regs->control) & 1236 ~(GRETH_CTRL_FD | GRETH_CTRL_SP | GRETH_CTRL_GB); 1237 1238 if (phydev->duplex) 1239 ctrl |= GRETH_CTRL_FD; 1240 1241 if (phydev->speed == SPEED_100) 1242 ctrl |= GRETH_CTRL_SP; 1243 else if (phydev->speed == SPEED_1000) 1244 ctrl |= GRETH_CTRL_GB; 1245 1246 GRETH_REGSAVE(greth->regs->control, ctrl); 1247 greth->speed = phydev->speed; 1248 greth->duplex = phydev->duplex; 1249 status_change = 1; 1250 } 1251 } 1252 1253 if (phydev->link != greth->link) { 1254 if (!phydev->link) { 1255 greth->speed = 0; 1256 greth->duplex = -1; 1257 } 1258 greth->link = phydev->link; 1259 1260 status_change = 1; 1261 } 1262 1263 spin_unlock_irqrestore(&greth->devlock, flags); 1264 1265 if (status_change) { 1266 if (phydev->link) 1267 pr_debug("%s: link up (%d/%s)\n", 1268 dev->name, phydev->speed, 1269 DUPLEX_FULL == phydev->duplex ? "Full" : "Half"); 1270 else 1271 pr_debug("%s: link down\n", dev->name); 1272 } 1273 } 1274 1275 static int greth_mdio_probe(struct net_device *dev) 1276 { 1277 struct greth_private *greth = netdev_priv(dev); 1278 struct phy_device *phy = NULL; 1279 int ret; 1280 1281 /* Find the first PHY */ 1282 phy = phy_find_first(greth->mdio); 1283 1284 if (!phy) { 1285 if (netif_msg_probe(greth)) 1286 dev_err(&dev->dev, "no PHY found\n"); 1287 return -ENXIO; 1288 } 1289 1290 ret = phy_connect_direct(dev, phy, &greth_link_change, 1291 greth->gbit_mac ? PHY_INTERFACE_MODE_GMII : PHY_INTERFACE_MODE_MII); 1292 if (ret) { 1293 if (netif_msg_ifup(greth)) 1294 dev_err(&dev->dev, "could not attach to PHY\n"); 1295 return ret; 1296 } 1297 1298 if (greth->gbit_mac) 1299 phy->supported &= PHY_GBIT_FEATURES; 1300 else 1301 phy->supported &= PHY_BASIC_FEATURES; 1302 1303 phy->advertising = phy->supported; 1304 1305 greth->link = 0; 1306 greth->speed = 0; 1307 greth->duplex = -1; 1308 greth->phy = phy; 1309 1310 return 0; 1311 } 1312 1313 static inline int phy_aneg_done(struct phy_device *phydev) 1314 { 1315 int retval; 1316 1317 retval = phy_read(phydev, MII_BMSR); 1318 1319 return (retval < 0) ? retval : (retval & BMSR_ANEGCOMPLETE); 1320 } 1321 1322 static int greth_mdio_init(struct greth_private *greth) 1323 { 1324 int ret, phy; 1325 unsigned long timeout; 1326 1327 greth->mdio = mdiobus_alloc(); 1328 if (!greth->mdio) { 1329 return -ENOMEM; 1330 } 1331 1332 greth->mdio->name = "greth-mdio"; 1333 snprintf(greth->mdio->id, MII_BUS_ID_SIZE, "%s-%d", greth->mdio->name, greth->irq); 1334 greth->mdio->read = greth_mdio_read; 1335 greth->mdio->write = greth_mdio_write; 1336 greth->mdio->reset = greth_mdio_reset; 1337 greth->mdio->priv = greth; 1338 1339 greth->mdio->irq = greth->mdio_irqs; 1340 1341 for (phy = 0; phy < PHY_MAX_ADDR; phy++) 1342 greth->mdio->irq[phy] = PHY_POLL; 1343 1344 ret = mdiobus_register(greth->mdio); 1345 if (ret) { 1346 goto error; 1347 } 1348 1349 ret = greth_mdio_probe(greth->netdev); 1350 if (ret) { 1351 if (netif_msg_probe(greth)) 1352 dev_err(&greth->netdev->dev, "failed to probe MDIO bus\n"); 1353 goto unreg_mdio; 1354 } 1355 1356 phy_start(greth->phy); 1357 1358 /* If Ethernet debug link is used make autoneg happen right away */ 1359 if (greth->edcl && greth_edcl == 1) { 1360 phy_start_aneg(greth->phy); 1361 timeout = jiffies + 6*HZ; 1362 while (!phy_aneg_done(greth->phy) && time_before(jiffies, timeout)) { 1363 } 1364 genphy_read_status(greth->phy); 1365 greth_link_change(greth->netdev); 1366 } 1367 1368 return 0; 1369 1370 unreg_mdio: 1371 mdiobus_unregister(greth->mdio); 1372 error: 1373 mdiobus_free(greth->mdio); 1374 return ret; 1375 } 1376 1377 /* Initialize the GRETH MAC */ 1378 static int greth_of_probe(struct platform_device *ofdev) 1379 { 1380 struct net_device *dev; 1381 struct greth_private *greth; 1382 struct greth_regs *regs; 1383 1384 int i; 1385 int err; 1386 int tmp; 1387 unsigned long timeout; 1388 1389 dev = alloc_etherdev(sizeof(struct greth_private)); 1390 1391 if (dev == NULL) 1392 return -ENOMEM; 1393 1394 greth = netdev_priv(dev); 1395 greth->netdev = dev; 1396 greth->dev = &ofdev->dev; 1397 1398 if (greth_debug > 0) 1399 greth->msg_enable = greth_debug; 1400 else 1401 greth->msg_enable = GRETH_DEF_MSG_ENABLE; 1402 1403 spin_lock_init(&greth->devlock); 1404 1405 greth->regs = of_ioremap(&ofdev->resource[0], 0, 1406 resource_size(&ofdev->resource[0]), 1407 "grlib-greth regs"); 1408 1409 if (greth->regs == NULL) { 1410 if (netif_msg_probe(greth)) 1411 dev_err(greth->dev, "ioremap failure.\n"); 1412 err = -EIO; 1413 goto error1; 1414 } 1415 1416 regs = greth->regs; 1417 greth->irq = ofdev->archdata.irqs[0]; 1418 1419 dev_set_drvdata(greth->dev, dev); 1420 SET_NETDEV_DEV(dev, greth->dev); 1421 1422 if (netif_msg_probe(greth)) 1423 dev_dbg(greth->dev, "resetting controller.\n"); 1424 1425 /* Reset the controller. */ 1426 GRETH_REGSAVE(regs->control, GRETH_RESET); 1427 1428 /* Wait for MAC to reset itself */ 1429 timeout = jiffies + HZ/100; 1430 while (GRETH_REGLOAD(regs->control) & GRETH_RESET) { 1431 if (time_after(jiffies, timeout)) { 1432 err = -EIO; 1433 if (netif_msg_probe(greth)) 1434 dev_err(greth->dev, "timeout when waiting for reset.\n"); 1435 goto error2; 1436 } 1437 } 1438 1439 /* Get default PHY address */ 1440 greth->phyaddr = (GRETH_REGLOAD(regs->mdio) >> 11) & 0x1F; 1441 1442 /* Check if we have GBIT capable MAC */ 1443 tmp = GRETH_REGLOAD(regs->control); 1444 greth->gbit_mac = (tmp >> 27) & 1; 1445 1446 /* Check for multicast capability */ 1447 greth->multicast = (tmp >> 25) & 1; 1448 1449 greth->edcl = (tmp >> 31) & 1; 1450 1451 /* If we have EDCL we disable the EDCL speed-duplex FSM so 1452 * it doesn't interfere with the software */ 1453 if (greth->edcl != 0) 1454 GRETH_REGORIN(regs->control, GRETH_CTRL_DISDUPLEX); 1455 1456 /* Check if MAC can handle MDIO interrupts */ 1457 greth->mdio_int_en = (tmp >> 26) & 1; 1458 1459 err = greth_mdio_init(greth); 1460 if (err) { 1461 if (netif_msg_probe(greth)) 1462 dev_err(greth->dev, "failed to register MDIO bus\n"); 1463 goto error2; 1464 } 1465 1466 /* Allocate TX descriptor ring in coherent memory */ 1467 greth->tx_bd_base = dma_zalloc_coherent(greth->dev, 1024, 1468 &greth->tx_bd_base_phys, 1469 GFP_KERNEL); 1470 if (!greth->tx_bd_base) { 1471 err = -ENOMEM; 1472 goto error3; 1473 } 1474 1475 /* Allocate RX descriptor ring in coherent memory */ 1476 greth->rx_bd_base = dma_zalloc_coherent(greth->dev, 1024, 1477 &greth->rx_bd_base_phys, 1478 GFP_KERNEL); 1479 if (!greth->rx_bd_base) { 1480 err = -ENOMEM; 1481 goto error4; 1482 } 1483 1484 /* Get MAC address from: module param, OF property or ID prom */ 1485 for (i = 0; i < 6; i++) { 1486 if (macaddr[i] != 0) 1487 break; 1488 } 1489 if (i == 6) { 1490 const unsigned char *addr; 1491 int len; 1492 addr = of_get_property(ofdev->dev.of_node, "local-mac-address", 1493 &len); 1494 if (addr != NULL && len == 6) { 1495 for (i = 0; i < 6; i++) 1496 macaddr[i] = (unsigned int) addr[i]; 1497 } else { 1498 #ifdef CONFIG_SPARC 1499 for (i = 0; i < 6; i++) 1500 macaddr[i] = (unsigned int) idprom->id_ethaddr[i]; 1501 #endif 1502 } 1503 } 1504 1505 for (i = 0; i < 6; i++) 1506 dev->dev_addr[i] = macaddr[i]; 1507 1508 macaddr[5]++; 1509 1510 if (!is_valid_ether_addr(&dev->dev_addr[0])) { 1511 if (netif_msg_probe(greth)) 1512 dev_err(greth->dev, "no valid ethernet address, aborting.\n"); 1513 err = -EINVAL; 1514 goto error5; 1515 } 1516 1517 GRETH_REGSAVE(regs->esa_msb, dev->dev_addr[0] << 8 | dev->dev_addr[1]); 1518 GRETH_REGSAVE(regs->esa_lsb, dev->dev_addr[2] << 24 | dev->dev_addr[3] << 16 | 1519 dev->dev_addr[4] << 8 | dev->dev_addr[5]); 1520 1521 /* Clear all pending interrupts except PHY irq */ 1522 GRETH_REGSAVE(regs->status, 0xFF); 1523 1524 if (greth->gbit_mac) { 1525 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | 1526 NETIF_F_RXCSUM; 1527 dev->features = dev->hw_features | NETIF_F_HIGHDMA; 1528 greth_netdev_ops.ndo_start_xmit = greth_start_xmit_gbit; 1529 } 1530 1531 if (greth->multicast) { 1532 greth_netdev_ops.ndo_set_rx_mode = greth_set_multicast_list; 1533 dev->flags |= IFF_MULTICAST; 1534 } else { 1535 dev->flags &= ~IFF_MULTICAST; 1536 } 1537 1538 dev->netdev_ops = &greth_netdev_ops; 1539 dev->ethtool_ops = &greth_ethtool_ops; 1540 1541 err = register_netdev(dev); 1542 if (err) { 1543 if (netif_msg_probe(greth)) 1544 dev_err(greth->dev, "netdevice registration failed.\n"); 1545 goto error5; 1546 } 1547 1548 /* setup NAPI */ 1549 netif_napi_add(dev, &greth->napi, greth_poll, 64); 1550 1551 return 0; 1552 1553 error5: 1554 dma_free_coherent(greth->dev, 1024, greth->rx_bd_base, greth->rx_bd_base_phys); 1555 error4: 1556 dma_free_coherent(greth->dev, 1024, greth->tx_bd_base, greth->tx_bd_base_phys); 1557 error3: 1558 mdiobus_unregister(greth->mdio); 1559 error2: 1560 of_iounmap(&ofdev->resource[0], greth->regs, resource_size(&ofdev->resource[0])); 1561 error1: 1562 free_netdev(dev); 1563 return err; 1564 } 1565 1566 static int greth_of_remove(struct platform_device *of_dev) 1567 { 1568 struct net_device *ndev = platform_get_drvdata(of_dev); 1569 struct greth_private *greth = netdev_priv(ndev); 1570 1571 /* Free descriptor areas */ 1572 dma_free_coherent(&of_dev->dev, 1024, greth->rx_bd_base, greth->rx_bd_base_phys); 1573 1574 dma_free_coherent(&of_dev->dev, 1024, greth->tx_bd_base, greth->tx_bd_base_phys); 1575 1576 if (greth->phy) 1577 phy_stop(greth->phy); 1578 mdiobus_unregister(greth->mdio); 1579 1580 unregister_netdev(ndev); 1581 free_netdev(ndev); 1582 1583 of_iounmap(&of_dev->resource[0], greth->regs, resource_size(&of_dev->resource[0])); 1584 1585 return 0; 1586 } 1587 1588 static struct of_device_id greth_of_match[] = { 1589 { 1590 .name = "GAISLER_ETHMAC", 1591 }, 1592 { 1593 .name = "01_01d", 1594 }, 1595 {}, 1596 }; 1597 1598 MODULE_DEVICE_TABLE(of, greth_of_match); 1599 1600 static struct platform_driver greth_of_driver = { 1601 .driver = { 1602 .name = "grlib-greth", 1603 .owner = THIS_MODULE, 1604 .of_match_table = greth_of_match, 1605 }, 1606 .probe = greth_of_probe, 1607 .remove = greth_of_remove, 1608 }; 1609 1610 module_platform_driver(greth_of_driver); 1611 1612 MODULE_AUTHOR("Aeroflex Gaisler AB."); 1613 MODULE_DESCRIPTION("Aeroflex Gaisler Ethernet MAC driver"); 1614 MODULE_LICENSE("GPL"); 1615