1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Aeroflex Gaisler GRETH 10/100/1G Ethernet MAC. 4 * 5 * 2005-2010 (c) Aeroflex Gaisler AB 6 * 7 * This driver supports GRETH 10/100 and GRETH 10/100/1G Ethernet MACs 8 * available in the GRLIB VHDL IP core library. 9 * 10 * Full documentation of both cores can be found here: 11 * http://www.gaisler.com/products/grlib/grip.pdf 12 * 13 * The Gigabit version supports scatter/gather DMA, any alignment of 14 * buffers and checksum offloading. 15 * 16 * Contributors: Kristoffer Glembo 17 * Daniel Hellstrom 18 * Marko Isomaki 19 */ 20 21 #include <linux/dma-mapping.h> 22 #include <linux/module.h> 23 #include <linux/uaccess.h> 24 #include <linux/interrupt.h> 25 #include <linux/netdevice.h> 26 #include <linux/etherdevice.h> 27 #include <linux/ethtool.h> 28 #include <linux/skbuff.h> 29 #include <linux/io.h> 30 #include <linux/crc32.h> 31 #include <linux/mii.h> 32 #include <linux/of_device.h> 33 #include <linux/of_net.h> 34 #include <linux/of_platform.h> 35 #include <linux/slab.h> 36 #include <asm/cacheflush.h> 37 #include <asm/byteorder.h> 38 39 #ifdef CONFIG_SPARC 40 #include <asm/idprom.h> 41 #endif 42 43 #include "greth.h" 44 45 #define GRETH_DEF_MSG_ENABLE \ 46 (NETIF_MSG_DRV | \ 47 NETIF_MSG_PROBE | \ 48 NETIF_MSG_LINK | \ 49 NETIF_MSG_IFDOWN | \ 50 NETIF_MSG_IFUP | \ 51 NETIF_MSG_RX_ERR | \ 52 NETIF_MSG_TX_ERR) 53 54 static int greth_debug = -1; /* -1 == use GRETH_DEF_MSG_ENABLE as value */ 55 module_param(greth_debug, int, 0); 56 MODULE_PARM_DESC(greth_debug, "GRETH bitmapped debugging message enable value"); 57 58 /* Accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */ 59 static int macaddr[6]; 60 module_param_array(macaddr, int, NULL, 0); 61 MODULE_PARM_DESC(macaddr, "GRETH Ethernet MAC address"); 62 63 static int greth_edcl = 1; 64 module_param(greth_edcl, int, 0); 65 MODULE_PARM_DESC(greth_edcl, "GRETH EDCL usage indicator. Set to 1 if EDCL is used."); 66 67 static int greth_open(struct net_device *dev); 68 static netdev_tx_t greth_start_xmit(struct sk_buff *skb, 69 struct net_device *dev); 70 static netdev_tx_t greth_start_xmit_gbit(struct sk_buff *skb, 71 struct net_device *dev); 72 static int greth_rx(struct net_device *dev, int limit); 73 static int greth_rx_gbit(struct net_device *dev, int limit); 74 static void greth_clean_tx(struct net_device *dev); 75 static void greth_clean_tx_gbit(struct net_device *dev); 76 static irqreturn_t greth_interrupt(int irq, void *dev_id); 77 static int greth_close(struct net_device *dev); 78 static int greth_set_mac_add(struct net_device *dev, void *p); 79 static void greth_set_multicast_list(struct net_device *dev); 80 81 #define GRETH_REGLOAD(a) (be32_to_cpu(__raw_readl(&(a)))) 82 #define GRETH_REGSAVE(a, v) (__raw_writel(cpu_to_be32(v), &(a))) 83 #define GRETH_REGORIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) | (v)))) 84 #define GRETH_REGANDIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) & (v)))) 85 86 #define NEXT_TX(N) (((N) + 1) & GRETH_TXBD_NUM_MASK) 87 #define SKIP_TX(N, C) (((N) + C) & GRETH_TXBD_NUM_MASK) 88 #define NEXT_RX(N) (((N) + 1) & GRETH_RXBD_NUM_MASK) 89 90 static void greth_print_rx_packet(void *addr, int len) 91 { 92 print_hex_dump(KERN_DEBUG, "RX: ", DUMP_PREFIX_OFFSET, 16, 1, 93 addr, len, true); 94 } 95 96 static void greth_print_tx_packet(struct sk_buff *skb) 97 { 98 int i; 99 int length; 100 101 if (skb_shinfo(skb)->nr_frags == 0) 102 length = skb->len; 103 else 104 length = skb_headlen(skb); 105 106 print_hex_dump(KERN_DEBUG, "TX: ", DUMP_PREFIX_OFFSET, 16, 1, 107 skb->data, length, true); 108 109 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 110 111 print_hex_dump(KERN_DEBUG, "TX: ", DUMP_PREFIX_OFFSET, 16, 1, 112 skb_frag_address(&skb_shinfo(skb)->frags[i]), 113 skb_frag_size(&skb_shinfo(skb)->frags[i]), true); 114 } 115 } 116 117 static inline void greth_enable_tx(struct greth_private *greth) 118 { 119 wmb(); 120 GRETH_REGORIN(greth->regs->control, GRETH_TXEN); 121 } 122 123 static inline void greth_enable_tx_and_irq(struct greth_private *greth) 124 { 125 wmb(); /* BDs must been written to memory before enabling TX */ 126 GRETH_REGORIN(greth->regs->control, GRETH_TXEN | GRETH_TXI); 127 } 128 129 static inline void greth_disable_tx(struct greth_private *greth) 130 { 131 GRETH_REGANDIN(greth->regs->control, ~GRETH_TXEN); 132 } 133 134 static inline void greth_enable_rx(struct greth_private *greth) 135 { 136 wmb(); 137 GRETH_REGORIN(greth->regs->control, GRETH_RXEN); 138 } 139 140 static inline void greth_disable_rx(struct greth_private *greth) 141 { 142 GRETH_REGANDIN(greth->regs->control, ~GRETH_RXEN); 143 } 144 145 static inline void greth_enable_irqs(struct greth_private *greth) 146 { 147 GRETH_REGORIN(greth->regs->control, GRETH_RXI | GRETH_TXI); 148 } 149 150 static inline void greth_disable_irqs(struct greth_private *greth) 151 { 152 GRETH_REGANDIN(greth->regs->control, ~(GRETH_RXI|GRETH_TXI)); 153 } 154 155 static inline void greth_write_bd(u32 *bd, u32 val) 156 { 157 __raw_writel(cpu_to_be32(val), bd); 158 } 159 160 static inline u32 greth_read_bd(u32 *bd) 161 { 162 return be32_to_cpu(__raw_readl(bd)); 163 } 164 165 static void greth_clean_rings(struct greth_private *greth) 166 { 167 int i; 168 struct greth_bd *rx_bdp = greth->rx_bd_base; 169 struct greth_bd *tx_bdp = greth->tx_bd_base; 170 171 if (greth->gbit_mac) { 172 173 /* Free and unmap RX buffers */ 174 for (i = 0; i < GRETH_RXBD_NUM; i++, rx_bdp++) { 175 if (greth->rx_skbuff[i] != NULL) { 176 dev_kfree_skb(greth->rx_skbuff[i]); 177 dma_unmap_single(greth->dev, 178 greth_read_bd(&rx_bdp->addr), 179 MAX_FRAME_SIZE+NET_IP_ALIGN, 180 DMA_FROM_DEVICE); 181 } 182 } 183 184 /* TX buffers */ 185 while (greth->tx_free < GRETH_TXBD_NUM) { 186 187 struct sk_buff *skb = greth->tx_skbuff[greth->tx_last]; 188 int nr_frags = skb_shinfo(skb)->nr_frags; 189 tx_bdp = greth->tx_bd_base + greth->tx_last; 190 greth->tx_last = NEXT_TX(greth->tx_last); 191 192 dma_unmap_single(greth->dev, 193 greth_read_bd(&tx_bdp->addr), 194 skb_headlen(skb), 195 DMA_TO_DEVICE); 196 197 for (i = 0; i < nr_frags; i++) { 198 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 199 tx_bdp = greth->tx_bd_base + greth->tx_last; 200 201 dma_unmap_page(greth->dev, 202 greth_read_bd(&tx_bdp->addr), 203 skb_frag_size(frag), 204 DMA_TO_DEVICE); 205 206 greth->tx_last = NEXT_TX(greth->tx_last); 207 } 208 greth->tx_free += nr_frags+1; 209 dev_kfree_skb(skb); 210 } 211 212 213 } else { /* 10/100 Mbps MAC */ 214 215 for (i = 0; i < GRETH_RXBD_NUM; i++, rx_bdp++) { 216 kfree(greth->rx_bufs[i]); 217 dma_unmap_single(greth->dev, 218 greth_read_bd(&rx_bdp->addr), 219 MAX_FRAME_SIZE, 220 DMA_FROM_DEVICE); 221 } 222 for (i = 0; i < GRETH_TXBD_NUM; i++, tx_bdp++) { 223 kfree(greth->tx_bufs[i]); 224 dma_unmap_single(greth->dev, 225 greth_read_bd(&tx_bdp->addr), 226 MAX_FRAME_SIZE, 227 DMA_TO_DEVICE); 228 } 229 } 230 } 231 232 static int greth_init_rings(struct greth_private *greth) 233 { 234 struct sk_buff *skb; 235 struct greth_bd *rx_bd, *tx_bd; 236 u32 dma_addr; 237 int i; 238 239 rx_bd = greth->rx_bd_base; 240 tx_bd = greth->tx_bd_base; 241 242 /* Initialize descriptor rings and buffers */ 243 if (greth->gbit_mac) { 244 245 for (i = 0; i < GRETH_RXBD_NUM; i++) { 246 skb = netdev_alloc_skb(greth->netdev, MAX_FRAME_SIZE+NET_IP_ALIGN); 247 if (skb == NULL) { 248 if (netif_msg_ifup(greth)) 249 dev_err(greth->dev, "Error allocating DMA ring.\n"); 250 goto cleanup; 251 } 252 skb_reserve(skb, NET_IP_ALIGN); 253 dma_addr = dma_map_single(greth->dev, 254 skb->data, 255 MAX_FRAME_SIZE+NET_IP_ALIGN, 256 DMA_FROM_DEVICE); 257 258 if (dma_mapping_error(greth->dev, dma_addr)) { 259 if (netif_msg_ifup(greth)) 260 dev_err(greth->dev, "Could not create initial DMA mapping\n"); 261 goto cleanup; 262 } 263 greth->rx_skbuff[i] = skb; 264 greth_write_bd(&rx_bd[i].addr, dma_addr); 265 greth_write_bd(&rx_bd[i].stat, GRETH_BD_EN | GRETH_BD_IE); 266 } 267 268 } else { 269 270 /* 10/100 MAC uses a fixed set of buffers and copy to/from SKBs */ 271 for (i = 0; i < GRETH_RXBD_NUM; i++) { 272 273 greth->rx_bufs[i] = kmalloc(MAX_FRAME_SIZE, GFP_KERNEL); 274 275 if (greth->rx_bufs[i] == NULL) { 276 if (netif_msg_ifup(greth)) 277 dev_err(greth->dev, "Error allocating DMA ring.\n"); 278 goto cleanup; 279 } 280 281 dma_addr = dma_map_single(greth->dev, 282 greth->rx_bufs[i], 283 MAX_FRAME_SIZE, 284 DMA_FROM_DEVICE); 285 286 if (dma_mapping_error(greth->dev, dma_addr)) { 287 if (netif_msg_ifup(greth)) 288 dev_err(greth->dev, "Could not create initial DMA mapping\n"); 289 goto cleanup; 290 } 291 greth_write_bd(&rx_bd[i].addr, dma_addr); 292 greth_write_bd(&rx_bd[i].stat, GRETH_BD_EN | GRETH_BD_IE); 293 } 294 for (i = 0; i < GRETH_TXBD_NUM; i++) { 295 296 greth->tx_bufs[i] = kmalloc(MAX_FRAME_SIZE, GFP_KERNEL); 297 298 if (greth->tx_bufs[i] == NULL) { 299 if (netif_msg_ifup(greth)) 300 dev_err(greth->dev, "Error allocating DMA ring.\n"); 301 goto cleanup; 302 } 303 304 dma_addr = dma_map_single(greth->dev, 305 greth->tx_bufs[i], 306 MAX_FRAME_SIZE, 307 DMA_TO_DEVICE); 308 309 if (dma_mapping_error(greth->dev, dma_addr)) { 310 if (netif_msg_ifup(greth)) 311 dev_err(greth->dev, "Could not create initial DMA mapping\n"); 312 goto cleanup; 313 } 314 greth_write_bd(&tx_bd[i].addr, dma_addr); 315 greth_write_bd(&tx_bd[i].stat, 0); 316 } 317 } 318 greth_write_bd(&rx_bd[GRETH_RXBD_NUM - 1].stat, 319 greth_read_bd(&rx_bd[GRETH_RXBD_NUM - 1].stat) | GRETH_BD_WR); 320 321 /* Initialize pointers. */ 322 greth->rx_cur = 0; 323 greth->tx_next = 0; 324 greth->tx_last = 0; 325 greth->tx_free = GRETH_TXBD_NUM; 326 327 /* Initialize descriptor base address */ 328 GRETH_REGSAVE(greth->regs->tx_desc_p, greth->tx_bd_base_phys); 329 GRETH_REGSAVE(greth->regs->rx_desc_p, greth->rx_bd_base_phys); 330 331 return 0; 332 333 cleanup: 334 greth_clean_rings(greth); 335 return -ENOMEM; 336 } 337 338 static int greth_open(struct net_device *dev) 339 { 340 struct greth_private *greth = netdev_priv(dev); 341 int err; 342 343 err = greth_init_rings(greth); 344 if (err) { 345 if (netif_msg_ifup(greth)) 346 dev_err(&dev->dev, "Could not allocate memory for DMA rings\n"); 347 return err; 348 } 349 350 err = request_irq(greth->irq, greth_interrupt, 0, "eth", (void *) dev); 351 if (err) { 352 if (netif_msg_ifup(greth)) 353 dev_err(&dev->dev, "Could not allocate interrupt %d\n", dev->irq); 354 greth_clean_rings(greth); 355 return err; 356 } 357 358 if (netif_msg_ifup(greth)) 359 dev_dbg(&dev->dev, " starting queue\n"); 360 netif_start_queue(dev); 361 362 GRETH_REGSAVE(greth->regs->status, 0xFF); 363 364 napi_enable(&greth->napi); 365 366 greth_enable_irqs(greth); 367 greth_enable_tx(greth); 368 greth_enable_rx(greth); 369 return 0; 370 371 } 372 373 static int greth_close(struct net_device *dev) 374 { 375 struct greth_private *greth = netdev_priv(dev); 376 377 napi_disable(&greth->napi); 378 379 greth_disable_irqs(greth); 380 greth_disable_tx(greth); 381 greth_disable_rx(greth); 382 383 netif_stop_queue(dev); 384 385 free_irq(greth->irq, (void *) dev); 386 387 greth_clean_rings(greth); 388 389 return 0; 390 } 391 392 static netdev_tx_t 393 greth_start_xmit(struct sk_buff *skb, struct net_device *dev) 394 { 395 struct greth_private *greth = netdev_priv(dev); 396 struct greth_bd *bdp; 397 int err = NETDEV_TX_OK; 398 u32 status, dma_addr, ctrl; 399 unsigned long flags; 400 401 /* Clean TX Ring */ 402 greth_clean_tx(greth->netdev); 403 404 if (unlikely(greth->tx_free <= 0)) { 405 spin_lock_irqsave(&greth->devlock, flags);/*save from poll/irq*/ 406 ctrl = GRETH_REGLOAD(greth->regs->control); 407 /* Enable TX IRQ only if not already in poll() routine */ 408 if (ctrl & GRETH_RXI) 409 GRETH_REGSAVE(greth->regs->control, ctrl | GRETH_TXI); 410 netif_stop_queue(dev); 411 spin_unlock_irqrestore(&greth->devlock, flags); 412 return NETDEV_TX_BUSY; 413 } 414 415 if (netif_msg_pktdata(greth)) 416 greth_print_tx_packet(skb); 417 418 419 if (unlikely(skb->len > MAX_FRAME_SIZE)) { 420 dev->stats.tx_errors++; 421 goto out; 422 } 423 424 bdp = greth->tx_bd_base + greth->tx_next; 425 dma_addr = greth_read_bd(&bdp->addr); 426 427 memcpy((unsigned char *) phys_to_virt(dma_addr), skb->data, skb->len); 428 429 dma_sync_single_for_device(greth->dev, dma_addr, skb->len, DMA_TO_DEVICE); 430 431 status = GRETH_BD_EN | GRETH_BD_IE | (skb->len & GRETH_BD_LEN); 432 greth->tx_bufs_length[greth->tx_next] = skb->len & GRETH_BD_LEN; 433 434 /* Wrap around descriptor ring */ 435 if (greth->tx_next == GRETH_TXBD_NUM_MASK) { 436 status |= GRETH_BD_WR; 437 } 438 439 greth->tx_next = NEXT_TX(greth->tx_next); 440 greth->tx_free--; 441 442 /* Write descriptor control word and enable transmission */ 443 greth_write_bd(&bdp->stat, status); 444 spin_lock_irqsave(&greth->devlock, flags); /*save from poll/irq*/ 445 greth_enable_tx(greth); 446 spin_unlock_irqrestore(&greth->devlock, flags); 447 448 out: 449 dev_kfree_skb(skb); 450 return err; 451 } 452 453 static inline u16 greth_num_free_bds(u16 tx_last, u16 tx_next) 454 { 455 if (tx_next < tx_last) 456 return (tx_last - tx_next) - 1; 457 else 458 return GRETH_TXBD_NUM - (tx_next - tx_last) - 1; 459 } 460 461 static netdev_tx_t 462 greth_start_xmit_gbit(struct sk_buff *skb, struct net_device *dev) 463 { 464 struct greth_private *greth = netdev_priv(dev); 465 struct greth_bd *bdp; 466 u32 status, dma_addr; 467 int curr_tx, nr_frags, i, err = NETDEV_TX_OK; 468 unsigned long flags; 469 u16 tx_last; 470 471 nr_frags = skb_shinfo(skb)->nr_frags; 472 tx_last = greth->tx_last; 473 rmb(); /* tx_last is updated by the poll task */ 474 475 if (greth_num_free_bds(tx_last, greth->tx_next) < nr_frags + 1) { 476 netif_stop_queue(dev); 477 err = NETDEV_TX_BUSY; 478 goto out; 479 } 480 481 if (netif_msg_pktdata(greth)) 482 greth_print_tx_packet(skb); 483 484 if (unlikely(skb->len > MAX_FRAME_SIZE)) { 485 dev->stats.tx_errors++; 486 goto out; 487 } 488 489 /* Save skb pointer. */ 490 greth->tx_skbuff[greth->tx_next] = skb; 491 492 /* Linear buf */ 493 if (nr_frags != 0) 494 status = GRETH_TXBD_MORE; 495 else 496 status = GRETH_BD_IE; 497 498 if (skb->ip_summed == CHECKSUM_PARTIAL) 499 status |= GRETH_TXBD_CSALL; 500 status |= skb_headlen(skb) & GRETH_BD_LEN; 501 if (greth->tx_next == GRETH_TXBD_NUM_MASK) 502 status |= GRETH_BD_WR; 503 504 505 bdp = greth->tx_bd_base + greth->tx_next; 506 greth_write_bd(&bdp->stat, status); 507 dma_addr = dma_map_single(greth->dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); 508 509 if (unlikely(dma_mapping_error(greth->dev, dma_addr))) 510 goto map_error; 511 512 greth_write_bd(&bdp->addr, dma_addr); 513 514 curr_tx = NEXT_TX(greth->tx_next); 515 516 /* Frags */ 517 for (i = 0; i < nr_frags; i++) { 518 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 519 greth->tx_skbuff[curr_tx] = NULL; 520 bdp = greth->tx_bd_base + curr_tx; 521 522 status = GRETH_BD_EN; 523 if (skb->ip_summed == CHECKSUM_PARTIAL) 524 status |= GRETH_TXBD_CSALL; 525 status |= skb_frag_size(frag) & GRETH_BD_LEN; 526 527 /* Wrap around descriptor ring */ 528 if (curr_tx == GRETH_TXBD_NUM_MASK) 529 status |= GRETH_BD_WR; 530 531 /* More fragments left */ 532 if (i < nr_frags - 1) 533 status |= GRETH_TXBD_MORE; 534 else 535 status |= GRETH_BD_IE; /* enable IRQ on last fragment */ 536 537 greth_write_bd(&bdp->stat, status); 538 539 dma_addr = skb_frag_dma_map(greth->dev, frag, 0, skb_frag_size(frag), 540 DMA_TO_DEVICE); 541 542 if (unlikely(dma_mapping_error(greth->dev, dma_addr))) 543 goto frag_map_error; 544 545 greth_write_bd(&bdp->addr, dma_addr); 546 547 curr_tx = NEXT_TX(curr_tx); 548 } 549 550 wmb(); 551 552 /* Enable the descriptor chain by enabling the first descriptor */ 553 bdp = greth->tx_bd_base + greth->tx_next; 554 greth_write_bd(&bdp->stat, 555 greth_read_bd(&bdp->stat) | GRETH_BD_EN); 556 557 spin_lock_irqsave(&greth->devlock, flags); /*save from poll/irq*/ 558 greth->tx_next = curr_tx; 559 greth_enable_tx_and_irq(greth); 560 spin_unlock_irqrestore(&greth->devlock, flags); 561 562 return NETDEV_TX_OK; 563 564 frag_map_error: 565 /* Unmap SKB mappings that succeeded and disable descriptor */ 566 for (i = 0; greth->tx_next + i != curr_tx; i++) { 567 bdp = greth->tx_bd_base + greth->tx_next + i; 568 dma_unmap_single(greth->dev, 569 greth_read_bd(&bdp->addr), 570 greth_read_bd(&bdp->stat) & GRETH_BD_LEN, 571 DMA_TO_DEVICE); 572 greth_write_bd(&bdp->stat, 0); 573 } 574 map_error: 575 if (net_ratelimit()) 576 dev_warn(greth->dev, "Could not create TX DMA mapping\n"); 577 dev_kfree_skb(skb); 578 out: 579 return err; 580 } 581 582 static irqreturn_t greth_interrupt(int irq, void *dev_id) 583 { 584 struct net_device *dev = dev_id; 585 struct greth_private *greth; 586 u32 status, ctrl; 587 irqreturn_t retval = IRQ_NONE; 588 589 greth = netdev_priv(dev); 590 591 spin_lock(&greth->devlock); 592 593 /* Get the interrupt events that caused us to be here. */ 594 status = GRETH_REGLOAD(greth->regs->status); 595 596 /* Must see if interrupts are enabled also, INT_TX|INT_RX flags may be 597 * set regardless of whether IRQ is enabled or not. Especially 598 * important when shared IRQ. 599 */ 600 ctrl = GRETH_REGLOAD(greth->regs->control); 601 602 /* Handle rx and tx interrupts through poll */ 603 if (((status & (GRETH_INT_RE | GRETH_INT_RX)) && (ctrl & GRETH_RXI)) || 604 ((status & (GRETH_INT_TE | GRETH_INT_TX)) && (ctrl & GRETH_TXI))) { 605 retval = IRQ_HANDLED; 606 607 /* Disable interrupts and schedule poll() */ 608 greth_disable_irqs(greth); 609 napi_schedule(&greth->napi); 610 } 611 612 spin_unlock(&greth->devlock); 613 614 return retval; 615 } 616 617 static void greth_clean_tx(struct net_device *dev) 618 { 619 struct greth_private *greth; 620 struct greth_bd *bdp; 621 u32 stat; 622 623 greth = netdev_priv(dev); 624 625 while (1) { 626 bdp = greth->tx_bd_base + greth->tx_last; 627 GRETH_REGSAVE(greth->regs->status, GRETH_INT_TE | GRETH_INT_TX); 628 mb(); 629 stat = greth_read_bd(&bdp->stat); 630 631 if (unlikely(stat & GRETH_BD_EN)) 632 break; 633 634 if (greth->tx_free == GRETH_TXBD_NUM) 635 break; 636 637 /* Check status for errors */ 638 if (unlikely(stat & GRETH_TXBD_STATUS)) { 639 dev->stats.tx_errors++; 640 if (stat & GRETH_TXBD_ERR_AL) 641 dev->stats.tx_aborted_errors++; 642 if (stat & GRETH_TXBD_ERR_UE) 643 dev->stats.tx_fifo_errors++; 644 } 645 dev->stats.tx_packets++; 646 dev->stats.tx_bytes += greth->tx_bufs_length[greth->tx_last]; 647 greth->tx_last = NEXT_TX(greth->tx_last); 648 greth->tx_free++; 649 } 650 651 if (greth->tx_free > 0) { 652 netif_wake_queue(dev); 653 } 654 } 655 656 static inline void greth_update_tx_stats(struct net_device *dev, u32 stat) 657 { 658 /* Check status for errors */ 659 if (unlikely(stat & GRETH_TXBD_STATUS)) { 660 dev->stats.tx_errors++; 661 if (stat & GRETH_TXBD_ERR_AL) 662 dev->stats.tx_aborted_errors++; 663 if (stat & GRETH_TXBD_ERR_UE) 664 dev->stats.tx_fifo_errors++; 665 if (stat & GRETH_TXBD_ERR_LC) 666 dev->stats.tx_aborted_errors++; 667 } 668 dev->stats.tx_packets++; 669 } 670 671 static void greth_clean_tx_gbit(struct net_device *dev) 672 { 673 struct greth_private *greth; 674 struct greth_bd *bdp, *bdp_last_frag; 675 struct sk_buff *skb = NULL; 676 u32 stat; 677 int nr_frags, i; 678 u16 tx_last; 679 680 greth = netdev_priv(dev); 681 tx_last = greth->tx_last; 682 683 while (tx_last != greth->tx_next) { 684 685 skb = greth->tx_skbuff[tx_last]; 686 687 nr_frags = skb_shinfo(skb)->nr_frags; 688 689 /* We only clean fully completed SKBs */ 690 bdp_last_frag = greth->tx_bd_base + SKIP_TX(tx_last, nr_frags); 691 692 GRETH_REGSAVE(greth->regs->status, GRETH_INT_TE | GRETH_INT_TX); 693 mb(); 694 stat = greth_read_bd(&bdp_last_frag->stat); 695 696 if (stat & GRETH_BD_EN) 697 break; 698 699 greth->tx_skbuff[tx_last] = NULL; 700 701 greth_update_tx_stats(dev, stat); 702 dev->stats.tx_bytes += skb->len; 703 704 bdp = greth->tx_bd_base + tx_last; 705 706 tx_last = NEXT_TX(tx_last); 707 708 dma_unmap_single(greth->dev, 709 greth_read_bd(&bdp->addr), 710 skb_headlen(skb), 711 DMA_TO_DEVICE); 712 713 for (i = 0; i < nr_frags; i++) { 714 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 715 bdp = greth->tx_bd_base + tx_last; 716 717 dma_unmap_page(greth->dev, 718 greth_read_bd(&bdp->addr), 719 skb_frag_size(frag), 720 DMA_TO_DEVICE); 721 722 tx_last = NEXT_TX(tx_last); 723 } 724 dev_kfree_skb(skb); 725 } 726 if (skb) { /* skb is set only if the above while loop was entered */ 727 wmb(); 728 greth->tx_last = tx_last; 729 730 if (netif_queue_stopped(dev) && 731 (greth_num_free_bds(tx_last, greth->tx_next) > 732 (MAX_SKB_FRAGS+1))) 733 netif_wake_queue(dev); 734 } 735 } 736 737 static int greth_rx(struct net_device *dev, int limit) 738 { 739 struct greth_private *greth; 740 struct greth_bd *bdp; 741 struct sk_buff *skb; 742 int pkt_len; 743 int bad, count; 744 u32 status, dma_addr; 745 unsigned long flags; 746 747 greth = netdev_priv(dev); 748 749 for (count = 0; count < limit; ++count) { 750 751 bdp = greth->rx_bd_base + greth->rx_cur; 752 GRETH_REGSAVE(greth->regs->status, GRETH_INT_RE | GRETH_INT_RX); 753 mb(); 754 status = greth_read_bd(&bdp->stat); 755 756 if (unlikely(status & GRETH_BD_EN)) { 757 break; 758 } 759 760 dma_addr = greth_read_bd(&bdp->addr); 761 bad = 0; 762 763 /* Check status for errors. */ 764 if (unlikely(status & GRETH_RXBD_STATUS)) { 765 if (status & GRETH_RXBD_ERR_FT) { 766 dev->stats.rx_length_errors++; 767 bad = 1; 768 } 769 if (status & (GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE)) { 770 dev->stats.rx_frame_errors++; 771 bad = 1; 772 } 773 if (status & GRETH_RXBD_ERR_CRC) { 774 dev->stats.rx_crc_errors++; 775 bad = 1; 776 } 777 } 778 if (unlikely(bad)) { 779 dev->stats.rx_errors++; 780 781 } else { 782 783 pkt_len = status & GRETH_BD_LEN; 784 785 skb = netdev_alloc_skb(dev, pkt_len + NET_IP_ALIGN); 786 787 if (unlikely(skb == NULL)) { 788 789 if (net_ratelimit()) 790 dev_warn(&dev->dev, "low on memory - " "packet dropped\n"); 791 792 dev->stats.rx_dropped++; 793 794 } else { 795 skb_reserve(skb, NET_IP_ALIGN); 796 797 dma_sync_single_for_cpu(greth->dev, 798 dma_addr, 799 pkt_len, 800 DMA_FROM_DEVICE); 801 802 if (netif_msg_pktdata(greth)) 803 greth_print_rx_packet(phys_to_virt(dma_addr), pkt_len); 804 805 skb_put_data(skb, phys_to_virt(dma_addr), 806 pkt_len); 807 808 skb->protocol = eth_type_trans(skb, dev); 809 dev->stats.rx_bytes += pkt_len; 810 dev->stats.rx_packets++; 811 netif_receive_skb(skb); 812 } 813 } 814 815 status = GRETH_BD_EN | GRETH_BD_IE; 816 if (greth->rx_cur == GRETH_RXBD_NUM_MASK) { 817 status |= GRETH_BD_WR; 818 } 819 820 wmb(); 821 greth_write_bd(&bdp->stat, status); 822 823 dma_sync_single_for_device(greth->dev, dma_addr, MAX_FRAME_SIZE, DMA_FROM_DEVICE); 824 825 spin_lock_irqsave(&greth->devlock, flags); /* save from XMIT */ 826 greth_enable_rx(greth); 827 spin_unlock_irqrestore(&greth->devlock, flags); 828 829 greth->rx_cur = NEXT_RX(greth->rx_cur); 830 } 831 832 return count; 833 } 834 835 static inline int hw_checksummed(u32 status) 836 { 837 838 if (status & GRETH_RXBD_IP_FRAG) 839 return 0; 840 841 if (status & GRETH_RXBD_IP && status & GRETH_RXBD_IP_CSERR) 842 return 0; 843 844 if (status & GRETH_RXBD_UDP && status & GRETH_RXBD_UDP_CSERR) 845 return 0; 846 847 if (status & GRETH_RXBD_TCP && status & GRETH_RXBD_TCP_CSERR) 848 return 0; 849 850 return 1; 851 } 852 853 static int greth_rx_gbit(struct net_device *dev, int limit) 854 { 855 struct greth_private *greth; 856 struct greth_bd *bdp; 857 struct sk_buff *skb, *newskb; 858 int pkt_len; 859 int bad, count = 0; 860 u32 status, dma_addr; 861 unsigned long flags; 862 863 greth = netdev_priv(dev); 864 865 for (count = 0; count < limit; ++count) { 866 867 bdp = greth->rx_bd_base + greth->rx_cur; 868 skb = greth->rx_skbuff[greth->rx_cur]; 869 GRETH_REGSAVE(greth->regs->status, GRETH_INT_RE | GRETH_INT_RX); 870 mb(); 871 status = greth_read_bd(&bdp->stat); 872 bad = 0; 873 874 if (status & GRETH_BD_EN) 875 break; 876 877 /* Check status for errors. */ 878 if (unlikely(status & GRETH_RXBD_STATUS)) { 879 880 if (status & GRETH_RXBD_ERR_FT) { 881 dev->stats.rx_length_errors++; 882 bad = 1; 883 } else if (status & 884 (GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE | GRETH_RXBD_ERR_LE)) { 885 dev->stats.rx_frame_errors++; 886 bad = 1; 887 } else if (status & GRETH_RXBD_ERR_CRC) { 888 dev->stats.rx_crc_errors++; 889 bad = 1; 890 } 891 } 892 893 /* Allocate new skb to replace current, not needed if the 894 * current skb can be reused */ 895 if (!bad && (newskb=netdev_alloc_skb(dev, MAX_FRAME_SIZE + NET_IP_ALIGN))) { 896 skb_reserve(newskb, NET_IP_ALIGN); 897 898 dma_addr = dma_map_single(greth->dev, 899 newskb->data, 900 MAX_FRAME_SIZE + NET_IP_ALIGN, 901 DMA_FROM_DEVICE); 902 903 if (!dma_mapping_error(greth->dev, dma_addr)) { 904 /* Process the incoming frame. */ 905 pkt_len = status & GRETH_BD_LEN; 906 907 dma_unmap_single(greth->dev, 908 greth_read_bd(&bdp->addr), 909 MAX_FRAME_SIZE + NET_IP_ALIGN, 910 DMA_FROM_DEVICE); 911 912 if (netif_msg_pktdata(greth)) 913 greth_print_rx_packet(phys_to_virt(greth_read_bd(&bdp->addr)), pkt_len); 914 915 skb_put(skb, pkt_len); 916 917 if (dev->features & NETIF_F_RXCSUM && hw_checksummed(status)) 918 skb->ip_summed = CHECKSUM_UNNECESSARY; 919 else 920 skb_checksum_none_assert(skb); 921 922 skb->protocol = eth_type_trans(skb, dev); 923 dev->stats.rx_packets++; 924 dev->stats.rx_bytes += pkt_len; 925 netif_receive_skb(skb); 926 927 greth->rx_skbuff[greth->rx_cur] = newskb; 928 greth_write_bd(&bdp->addr, dma_addr); 929 } else { 930 if (net_ratelimit()) 931 dev_warn(greth->dev, "Could not create DMA mapping, dropping packet\n"); 932 dev_kfree_skb(newskb); 933 /* reusing current skb, so it is a drop */ 934 dev->stats.rx_dropped++; 935 } 936 } else if (bad) { 937 /* Bad Frame transfer, the skb is reused */ 938 dev->stats.rx_dropped++; 939 } else { 940 /* Failed Allocating a new skb. This is rather stupid 941 * but the current "filled" skb is reused, as if 942 * transfer failure. One could argue that RX descriptor 943 * table handling should be divided into cleaning and 944 * filling as the TX part of the driver 945 */ 946 if (net_ratelimit()) 947 dev_warn(greth->dev, "Could not allocate SKB, dropping packet\n"); 948 /* reusing current skb, so it is a drop */ 949 dev->stats.rx_dropped++; 950 } 951 952 status = GRETH_BD_EN | GRETH_BD_IE; 953 if (greth->rx_cur == GRETH_RXBD_NUM_MASK) { 954 status |= GRETH_BD_WR; 955 } 956 957 wmb(); 958 greth_write_bd(&bdp->stat, status); 959 spin_lock_irqsave(&greth->devlock, flags); 960 greth_enable_rx(greth); 961 spin_unlock_irqrestore(&greth->devlock, flags); 962 greth->rx_cur = NEXT_RX(greth->rx_cur); 963 } 964 965 return count; 966 967 } 968 969 static int greth_poll(struct napi_struct *napi, int budget) 970 { 971 struct greth_private *greth; 972 int work_done = 0; 973 unsigned long flags; 974 u32 mask, ctrl; 975 greth = container_of(napi, struct greth_private, napi); 976 977 restart_txrx_poll: 978 if (greth->gbit_mac) { 979 greth_clean_tx_gbit(greth->netdev); 980 work_done += greth_rx_gbit(greth->netdev, budget - work_done); 981 } else { 982 if (netif_queue_stopped(greth->netdev)) 983 greth_clean_tx(greth->netdev); 984 work_done += greth_rx(greth->netdev, budget - work_done); 985 } 986 987 if (work_done < budget) { 988 989 spin_lock_irqsave(&greth->devlock, flags); 990 991 ctrl = GRETH_REGLOAD(greth->regs->control); 992 if ((greth->gbit_mac && (greth->tx_last != greth->tx_next)) || 993 (!greth->gbit_mac && netif_queue_stopped(greth->netdev))) { 994 GRETH_REGSAVE(greth->regs->control, 995 ctrl | GRETH_TXI | GRETH_RXI); 996 mask = GRETH_INT_RX | GRETH_INT_RE | 997 GRETH_INT_TX | GRETH_INT_TE; 998 } else { 999 GRETH_REGSAVE(greth->regs->control, ctrl | GRETH_RXI); 1000 mask = GRETH_INT_RX | GRETH_INT_RE; 1001 } 1002 1003 if (GRETH_REGLOAD(greth->regs->status) & mask) { 1004 GRETH_REGSAVE(greth->regs->control, ctrl); 1005 spin_unlock_irqrestore(&greth->devlock, flags); 1006 goto restart_txrx_poll; 1007 } else { 1008 napi_complete_done(napi, work_done); 1009 spin_unlock_irqrestore(&greth->devlock, flags); 1010 } 1011 } 1012 1013 return work_done; 1014 } 1015 1016 static int greth_set_mac_add(struct net_device *dev, void *p) 1017 { 1018 struct sockaddr *addr = p; 1019 struct greth_private *greth; 1020 struct greth_regs *regs; 1021 1022 greth = netdev_priv(dev); 1023 regs = greth->regs; 1024 1025 if (!is_valid_ether_addr(addr->sa_data)) 1026 return -EADDRNOTAVAIL; 1027 1028 memcpy(dev->dev_addr, addr->sa_data, dev->addr_len); 1029 GRETH_REGSAVE(regs->esa_msb, dev->dev_addr[0] << 8 | dev->dev_addr[1]); 1030 GRETH_REGSAVE(regs->esa_lsb, dev->dev_addr[2] << 24 | dev->dev_addr[3] << 16 | 1031 dev->dev_addr[4] << 8 | dev->dev_addr[5]); 1032 1033 return 0; 1034 } 1035 1036 static u32 greth_hash_get_index(__u8 *addr) 1037 { 1038 return (ether_crc(6, addr)) & 0x3F; 1039 } 1040 1041 static void greth_set_hash_filter(struct net_device *dev) 1042 { 1043 struct netdev_hw_addr *ha; 1044 struct greth_private *greth = netdev_priv(dev); 1045 struct greth_regs *regs = greth->regs; 1046 u32 mc_filter[2]; 1047 unsigned int bitnr; 1048 1049 mc_filter[0] = mc_filter[1] = 0; 1050 1051 netdev_for_each_mc_addr(ha, dev) { 1052 bitnr = greth_hash_get_index(ha->addr); 1053 mc_filter[bitnr >> 5] |= 1 << (bitnr & 31); 1054 } 1055 1056 GRETH_REGSAVE(regs->hash_msb, mc_filter[1]); 1057 GRETH_REGSAVE(regs->hash_lsb, mc_filter[0]); 1058 } 1059 1060 static void greth_set_multicast_list(struct net_device *dev) 1061 { 1062 int cfg; 1063 struct greth_private *greth = netdev_priv(dev); 1064 struct greth_regs *regs = greth->regs; 1065 1066 cfg = GRETH_REGLOAD(regs->control); 1067 if (dev->flags & IFF_PROMISC) 1068 cfg |= GRETH_CTRL_PR; 1069 else 1070 cfg &= ~GRETH_CTRL_PR; 1071 1072 if (greth->multicast) { 1073 if (dev->flags & IFF_ALLMULTI) { 1074 GRETH_REGSAVE(regs->hash_msb, -1); 1075 GRETH_REGSAVE(regs->hash_lsb, -1); 1076 cfg |= GRETH_CTRL_MCEN; 1077 GRETH_REGSAVE(regs->control, cfg); 1078 return; 1079 } 1080 1081 if (netdev_mc_empty(dev)) { 1082 cfg &= ~GRETH_CTRL_MCEN; 1083 GRETH_REGSAVE(regs->control, cfg); 1084 return; 1085 } 1086 1087 /* Setup multicast filter */ 1088 greth_set_hash_filter(dev); 1089 cfg |= GRETH_CTRL_MCEN; 1090 } 1091 GRETH_REGSAVE(regs->control, cfg); 1092 } 1093 1094 static u32 greth_get_msglevel(struct net_device *dev) 1095 { 1096 struct greth_private *greth = netdev_priv(dev); 1097 return greth->msg_enable; 1098 } 1099 1100 static void greth_set_msglevel(struct net_device *dev, u32 value) 1101 { 1102 struct greth_private *greth = netdev_priv(dev); 1103 greth->msg_enable = value; 1104 } 1105 1106 static int greth_get_regs_len(struct net_device *dev) 1107 { 1108 return sizeof(struct greth_regs); 1109 } 1110 1111 static void greth_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1112 { 1113 struct greth_private *greth = netdev_priv(dev); 1114 1115 strlcpy(info->driver, dev_driver_string(greth->dev), 1116 sizeof(info->driver)); 1117 strlcpy(info->version, "revision: 1.0", sizeof(info->version)); 1118 strlcpy(info->bus_info, greth->dev->bus->name, sizeof(info->bus_info)); 1119 strlcpy(info->fw_version, "N/A", sizeof(info->fw_version)); 1120 } 1121 1122 static void greth_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *p) 1123 { 1124 int i; 1125 struct greth_private *greth = netdev_priv(dev); 1126 u32 __iomem *greth_regs = (u32 __iomem *) greth->regs; 1127 u32 *buff = p; 1128 1129 for (i = 0; i < sizeof(struct greth_regs) / sizeof(u32); i++) 1130 buff[i] = greth_read_bd(&greth_regs[i]); 1131 } 1132 1133 static const struct ethtool_ops greth_ethtool_ops = { 1134 .get_msglevel = greth_get_msglevel, 1135 .set_msglevel = greth_set_msglevel, 1136 .get_drvinfo = greth_get_drvinfo, 1137 .get_regs_len = greth_get_regs_len, 1138 .get_regs = greth_get_regs, 1139 .get_link = ethtool_op_get_link, 1140 .get_link_ksettings = phy_ethtool_get_link_ksettings, 1141 .set_link_ksettings = phy_ethtool_set_link_ksettings, 1142 }; 1143 1144 static struct net_device_ops greth_netdev_ops = { 1145 .ndo_open = greth_open, 1146 .ndo_stop = greth_close, 1147 .ndo_start_xmit = greth_start_xmit, 1148 .ndo_set_mac_address = greth_set_mac_add, 1149 .ndo_validate_addr = eth_validate_addr, 1150 }; 1151 1152 static inline int wait_for_mdio(struct greth_private *greth) 1153 { 1154 unsigned long timeout = jiffies + 4*HZ/100; 1155 while (GRETH_REGLOAD(greth->regs->mdio) & GRETH_MII_BUSY) { 1156 if (time_after(jiffies, timeout)) 1157 return 0; 1158 } 1159 return 1; 1160 } 1161 1162 static int greth_mdio_read(struct mii_bus *bus, int phy, int reg) 1163 { 1164 struct greth_private *greth = bus->priv; 1165 int data; 1166 1167 if (!wait_for_mdio(greth)) 1168 return -EBUSY; 1169 1170 GRETH_REGSAVE(greth->regs->mdio, ((phy & 0x1F) << 11) | ((reg & 0x1F) << 6) | 2); 1171 1172 if (!wait_for_mdio(greth)) 1173 return -EBUSY; 1174 1175 if (!(GRETH_REGLOAD(greth->regs->mdio) & GRETH_MII_NVALID)) { 1176 data = (GRETH_REGLOAD(greth->regs->mdio) >> 16) & 0xFFFF; 1177 return data; 1178 1179 } else { 1180 return -1; 1181 } 1182 } 1183 1184 static int greth_mdio_write(struct mii_bus *bus, int phy, int reg, u16 val) 1185 { 1186 struct greth_private *greth = bus->priv; 1187 1188 if (!wait_for_mdio(greth)) 1189 return -EBUSY; 1190 1191 GRETH_REGSAVE(greth->regs->mdio, 1192 ((val & 0xFFFF) << 16) | ((phy & 0x1F) << 11) | ((reg & 0x1F) << 6) | 1); 1193 1194 if (!wait_for_mdio(greth)) 1195 return -EBUSY; 1196 1197 return 0; 1198 } 1199 1200 static void greth_link_change(struct net_device *dev) 1201 { 1202 struct greth_private *greth = netdev_priv(dev); 1203 struct phy_device *phydev = dev->phydev; 1204 unsigned long flags; 1205 int status_change = 0; 1206 u32 ctrl; 1207 1208 spin_lock_irqsave(&greth->devlock, flags); 1209 1210 if (phydev->link) { 1211 1212 if ((greth->speed != phydev->speed) || (greth->duplex != phydev->duplex)) { 1213 ctrl = GRETH_REGLOAD(greth->regs->control) & 1214 ~(GRETH_CTRL_FD | GRETH_CTRL_SP | GRETH_CTRL_GB); 1215 1216 if (phydev->duplex) 1217 ctrl |= GRETH_CTRL_FD; 1218 1219 if (phydev->speed == SPEED_100) 1220 ctrl |= GRETH_CTRL_SP; 1221 else if (phydev->speed == SPEED_1000) 1222 ctrl |= GRETH_CTRL_GB; 1223 1224 GRETH_REGSAVE(greth->regs->control, ctrl); 1225 greth->speed = phydev->speed; 1226 greth->duplex = phydev->duplex; 1227 status_change = 1; 1228 } 1229 } 1230 1231 if (phydev->link != greth->link) { 1232 if (!phydev->link) { 1233 greth->speed = 0; 1234 greth->duplex = -1; 1235 } 1236 greth->link = phydev->link; 1237 1238 status_change = 1; 1239 } 1240 1241 spin_unlock_irqrestore(&greth->devlock, flags); 1242 1243 if (status_change) { 1244 if (phydev->link) 1245 pr_debug("%s: link up (%d/%s)\n", 1246 dev->name, phydev->speed, 1247 DUPLEX_FULL == phydev->duplex ? "Full" : "Half"); 1248 else 1249 pr_debug("%s: link down\n", dev->name); 1250 } 1251 } 1252 1253 static int greth_mdio_probe(struct net_device *dev) 1254 { 1255 struct greth_private *greth = netdev_priv(dev); 1256 struct phy_device *phy = NULL; 1257 int ret; 1258 1259 /* Find the first PHY */ 1260 phy = phy_find_first(greth->mdio); 1261 1262 if (!phy) { 1263 if (netif_msg_probe(greth)) 1264 dev_err(&dev->dev, "no PHY found\n"); 1265 return -ENXIO; 1266 } 1267 1268 ret = phy_connect_direct(dev, phy, &greth_link_change, 1269 greth->gbit_mac ? PHY_INTERFACE_MODE_GMII : PHY_INTERFACE_MODE_MII); 1270 if (ret) { 1271 if (netif_msg_ifup(greth)) 1272 dev_err(&dev->dev, "could not attach to PHY\n"); 1273 return ret; 1274 } 1275 1276 if (greth->gbit_mac) 1277 phy_set_max_speed(phy, SPEED_1000); 1278 else 1279 phy_set_max_speed(phy, SPEED_100); 1280 1281 linkmode_copy(phy->advertising, phy->supported); 1282 1283 greth->link = 0; 1284 greth->speed = 0; 1285 greth->duplex = -1; 1286 1287 return 0; 1288 } 1289 1290 static int greth_mdio_init(struct greth_private *greth) 1291 { 1292 int ret; 1293 unsigned long timeout; 1294 struct net_device *ndev = greth->netdev; 1295 1296 greth->mdio = mdiobus_alloc(); 1297 if (!greth->mdio) { 1298 return -ENOMEM; 1299 } 1300 1301 greth->mdio->name = "greth-mdio"; 1302 snprintf(greth->mdio->id, MII_BUS_ID_SIZE, "%s-%d", greth->mdio->name, greth->irq); 1303 greth->mdio->read = greth_mdio_read; 1304 greth->mdio->write = greth_mdio_write; 1305 greth->mdio->priv = greth; 1306 1307 ret = mdiobus_register(greth->mdio); 1308 if (ret) { 1309 goto error; 1310 } 1311 1312 ret = greth_mdio_probe(greth->netdev); 1313 if (ret) { 1314 if (netif_msg_probe(greth)) 1315 dev_err(&greth->netdev->dev, "failed to probe MDIO bus\n"); 1316 goto unreg_mdio; 1317 } 1318 1319 phy_start(ndev->phydev); 1320 1321 /* If Ethernet debug link is used make autoneg happen right away */ 1322 if (greth->edcl && greth_edcl == 1) { 1323 phy_start_aneg(ndev->phydev); 1324 timeout = jiffies + 6*HZ; 1325 while (!phy_aneg_done(ndev->phydev) && 1326 time_before(jiffies, timeout)) { 1327 } 1328 phy_read_status(ndev->phydev); 1329 greth_link_change(greth->netdev); 1330 } 1331 1332 return 0; 1333 1334 unreg_mdio: 1335 mdiobus_unregister(greth->mdio); 1336 error: 1337 mdiobus_free(greth->mdio); 1338 return ret; 1339 } 1340 1341 /* Initialize the GRETH MAC */ 1342 static int greth_of_probe(struct platform_device *ofdev) 1343 { 1344 struct net_device *dev; 1345 struct greth_private *greth; 1346 struct greth_regs *regs; 1347 1348 int i; 1349 int err; 1350 int tmp; 1351 unsigned long timeout; 1352 1353 dev = alloc_etherdev(sizeof(struct greth_private)); 1354 1355 if (dev == NULL) 1356 return -ENOMEM; 1357 1358 greth = netdev_priv(dev); 1359 greth->netdev = dev; 1360 greth->dev = &ofdev->dev; 1361 1362 if (greth_debug > 0) 1363 greth->msg_enable = greth_debug; 1364 else 1365 greth->msg_enable = GRETH_DEF_MSG_ENABLE; 1366 1367 spin_lock_init(&greth->devlock); 1368 1369 greth->regs = of_ioremap(&ofdev->resource[0], 0, 1370 resource_size(&ofdev->resource[0]), 1371 "grlib-greth regs"); 1372 1373 if (greth->regs == NULL) { 1374 if (netif_msg_probe(greth)) 1375 dev_err(greth->dev, "ioremap failure.\n"); 1376 err = -EIO; 1377 goto error1; 1378 } 1379 1380 regs = greth->regs; 1381 greth->irq = ofdev->archdata.irqs[0]; 1382 1383 dev_set_drvdata(greth->dev, dev); 1384 SET_NETDEV_DEV(dev, greth->dev); 1385 1386 if (netif_msg_probe(greth)) 1387 dev_dbg(greth->dev, "resetting controller.\n"); 1388 1389 /* Reset the controller. */ 1390 GRETH_REGSAVE(regs->control, GRETH_RESET); 1391 1392 /* Wait for MAC to reset itself */ 1393 timeout = jiffies + HZ/100; 1394 while (GRETH_REGLOAD(regs->control) & GRETH_RESET) { 1395 if (time_after(jiffies, timeout)) { 1396 err = -EIO; 1397 if (netif_msg_probe(greth)) 1398 dev_err(greth->dev, "timeout when waiting for reset.\n"); 1399 goto error2; 1400 } 1401 } 1402 1403 /* Get default PHY address */ 1404 greth->phyaddr = (GRETH_REGLOAD(regs->mdio) >> 11) & 0x1F; 1405 1406 /* Check if we have GBIT capable MAC */ 1407 tmp = GRETH_REGLOAD(regs->control); 1408 greth->gbit_mac = (tmp >> 27) & 1; 1409 1410 /* Check for multicast capability */ 1411 greth->multicast = (tmp >> 25) & 1; 1412 1413 greth->edcl = (tmp >> 31) & 1; 1414 1415 /* If we have EDCL we disable the EDCL speed-duplex FSM so 1416 * it doesn't interfere with the software */ 1417 if (greth->edcl != 0) 1418 GRETH_REGORIN(regs->control, GRETH_CTRL_DISDUPLEX); 1419 1420 /* Check if MAC can handle MDIO interrupts */ 1421 greth->mdio_int_en = (tmp >> 26) & 1; 1422 1423 err = greth_mdio_init(greth); 1424 if (err) { 1425 if (netif_msg_probe(greth)) 1426 dev_err(greth->dev, "failed to register MDIO bus\n"); 1427 goto error2; 1428 } 1429 1430 /* Allocate TX descriptor ring in coherent memory */ 1431 greth->tx_bd_base = dma_alloc_coherent(greth->dev, 1024, 1432 &greth->tx_bd_base_phys, 1433 GFP_KERNEL); 1434 if (!greth->tx_bd_base) { 1435 err = -ENOMEM; 1436 goto error3; 1437 } 1438 1439 /* Allocate RX descriptor ring in coherent memory */ 1440 greth->rx_bd_base = dma_alloc_coherent(greth->dev, 1024, 1441 &greth->rx_bd_base_phys, 1442 GFP_KERNEL); 1443 if (!greth->rx_bd_base) { 1444 err = -ENOMEM; 1445 goto error4; 1446 } 1447 1448 /* Get MAC address from: module param, OF property or ID prom */ 1449 for (i = 0; i < 6; i++) { 1450 if (macaddr[i] != 0) 1451 break; 1452 } 1453 if (i == 6) { 1454 const u8 *addr; 1455 1456 addr = of_get_mac_address(ofdev->dev.of_node); 1457 if (!IS_ERR(addr)) { 1458 for (i = 0; i < 6; i++) 1459 macaddr[i] = (unsigned int) addr[i]; 1460 } else { 1461 #ifdef CONFIG_SPARC 1462 for (i = 0; i < 6; i++) 1463 macaddr[i] = (unsigned int) idprom->id_ethaddr[i]; 1464 #endif 1465 } 1466 } 1467 1468 for (i = 0; i < 6; i++) 1469 dev->dev_addr[i] = macaddr[i]; 1470 1471 macaddr[5]++; 1472 1473 if (!is_valid_ether_addr(&dev->dev_addr[0])) { 1474 if (netif_msg_probe(greth)) 1475 dev_err(greth->dev, "no valid ethernet address, aborting.\n"); 1476 err = -EINVAL; 1477 goto error5; 1478 } 1479 1480 GRETH_REGSAVE(regs->esa_msb, dev->dev_addr[0] << 8 | dev->dev_addr[1]); 1481 GRETH_REGSAVE(regs->esa_lsb, dev->dev_addr[2] << 24 | dev->dev_addr[3] << 16 | 1482 dev->dev_addr[4] << 8 | dev->dev_addr[5]); 1483 1484 /* Clear all pending interrupts except PHY irq */ 1485 GRETH_REGSAVE(regs->status, 0xFF); 1486 1487 if (greth->gbit_mac) { 1488 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | 1489 NETIF_F_RXCSUM; 1490 dev->features = dev->hw_features | NETIF_F_HIGHDMA; 1491 greth_netdev_ops.ndo_start_xmit = greth_start_xmit_gbit; 1492 } 1493 1494 if (greth->multicast) { 1495 greth_netdev_ops.ndo_set_rx_mode = greth_set_multicast_list; 1496 dev->flags |= IFF_MULTICAST; 1497 } else { 1498 dev->flags &= ~IFF_MULTICAST; 1499 } 1500 1501 dev->netdev_ops = &greth_netdev_ops; 1502 dev->ethtool_ops = &greth_ethtool_ops; 1503 1504 err = register_netdev(dev); 1505 if (err) { 1506 if (netif_msg_probe(greth)) 1507 dev_err(greth->dev, "netdevice registration failed.\n"); 1508 goto error5; 1509 } 1510 1511 /* setup NAPI */ 1512 netif_napi_add(dev, &greth->napi, greth_poll, 64); 1513 1514 return 0; 1515 1516 error5: 1517 dma_free_coherent(greth->dev, 1024, greth->rx_bd_base, greth->rx_bd_base_phys); 1518 error4: 1519 dma_free_coherent(greth->dev, 1024, greth->tx_bd_base, greth->tx_bd_base_phys); 1520 error3: 1521 mdiobus_unregister(greth->mdio); 1522 error2: 1523 of_iounmap(&ofdev->resource[0], greth->regs, resource_size(&ofdev->resource[0])); 1524 error1: 1525 free_netdev(dev); 1526 return err; 1527 } 1528 1529 static int greth_of_remove(struct platform_device *of_dev) 1530 { 1531 struct net_device *ndev = platform_get_drvdata(of_dev); 1532 struct greth_private *greth = netdev_priv(ndev); 1533 1534 /* Free descriptor areas */ 1535 dma_free_coherent(&of_dev->dev, 1024, greth->rx_bd_base, greth->rx_bd_base_phys); 1536 1537 dma_free_coherent(&of_dev->dev, 1024, greth->tx_bd_base, greth->tx_bd_base_phys); 1538 1539 if (ndev->phydev) 1540 phy_stop(ndev->phydev); 1541 mdiobus_unregister(greth->mdio); 1542 1543 unregister_netdev(ndev); 1544 free_netdev(ndev); 1545 1546 of_iounmap(&of_dev->resource[0], greth->regs, resource_size(&of_dev->resource[0])); 1547 1548 return 0; 1549 } 1550 1551 static const struct of_device_id greth_of_match[] = { 1552 { 1553 .name = "GAISLER_ETHMAC", 1554 }, 1555 { 1556 .name = "01_01d", 1557 }, 1558 {}, 1559 }; 1560 1561 MODULE_DEVICE_TABLE(of, greth_of_match); 1562 1563 static struct platform_driver greth_of_driver = { 1564 .driver = { 1565 .name = "grlib-greth", 1566 .of_match_table = greth_of_match, 1567 }, 1568 .probe = greth_of_probe, 1569 .remove = greth_of_remove, 1570 }; 1571 1572 module_platform_driver(greth_of_driver); 1573 1574 MODULE_AUTHOR("Aeroflex Gaisler AB."); 1575 MODULE_DESCRIPTION("Aeroflex Gaisler Ethernet MAC driver"); 1576 MODULE_LICENSE("GPL"); 1577