1 // SPDX-License-Identifier: GPL-2.0-or-later 2 /* 3 * Aeroflex Gaisler GRETH 10/100/1G Ethernet MAC. 4 * 5 * 2005-2010 (c) Aeroflex Gaisler AB 6 * 7 * This driver supports GRETH 10/100 and GRETH 10/100/1G Ethernet MACs 8 * available in the GRLIB VHDL IP core library. 9 * 10 * Full documentation of both cores can be found here: 11 * https://www.gaisler.com/products/grlib/grip.pdf 12 * 13 * The Gigabit version supports scatter/gather DMA, any alignment of 14 * buffers and checksum offloading. 15 * 16 * Contributors: Kristoffer Glembo 17 * Daniel Hellstrom 18 * Marko Isomaki 19 */ 20 21 #include <linux/dma-mapping.h> 22 #include <linux/module.h> 23 #include <linux/uaccess.h> 24 #include <linux/interrupt.h> 25 #include <linux/netdevice.h> 26 #include <linux/etherdevice.h> 27 #include <linux/ethtool.h> 28 #include <linux/skbuff.h> 29 #include <linux/io.h> 30 #include <linux/crc32.h> 31 #include <linux/mii.h> 32 #include <linux/of.h> 33 #include <linux/of_net.h> 34 #include <linux/platform_device.h> 35 #include <linux/slab.h> 36 #include <asm/cacheflush.h> 37 #include <asm/byteorder.h> 38 39 #ifdef CONFIG_SPARC 40 #include <asm/idprom.h> 41 #endif 42 43 #include "greth.h" 44 45 #define GRETH_DEF_MSG_ENABLE \ 46 (NETIF_MSG_DRV | \ 47 NETIF_MSG_PROBE | \ 48 NETIF_MSG_LINK | \ 49 NETIF_MSG_IFDOWN | \ 50 NETIF_MSG_IFUP | \ 51 NETIF_MSG_RX_ERR | \ 52 NETIF_MSG_TX_ERR) 53 54 static int greth_debug = -1; /* -1 == use GRETH_DEF_MSG_ENABLE as value */ 55 module_param(greth_debug, int, 0); 56 MODULE_PARM_DESC(greth_debug, "GRETH bitmapped debugging message enable value"); 57 58 /* Accept MAC address of the form macaddr=0x08,0x00,0x20,0x30,0x40,0x50 */ 59 static int macaddr[6]; 60 module_param_array(macaddr, int, NULL, 0); 61 MODULE_PARM_DESC(macaddr, "GRETH Ethernet MAC address"); 62 63 static int greth_edcl = 1; 64 module_param(greth_edcl, int, 0); 65 MODULE_PARM_DESC(greth_edcl, "GRETH EDCL usage indicator. Set to 1 if EDCL is used."); 66 67 static int greth_open(struct net_device *dev); 68 static netdev_tx_t greth_start_xmit(struct sk_buff *skb, 69 struct net_device *dev); 70 static netdev_tx_t greth_start_xmit_gbit(struct sk_buff *skb, 71 struct net_device *dev); 72 static int greth_rx(struct net_device *dev, int limit); 73 static int greth_rx_gbit(struct net_device *dev, int limit); 74 static void greth_clean_tx(struct net_device *dev); 75 static void greth_clean_tx_gbit(struct net_device *dev); 76 static irqreturn_t greth_interrupt(int irq, void *dev_id); 77 static int greth_close(struct net_device *dev); 78 static int greth_set_mac_add(struct net_device *dev, void *p); 79 static void greth_set_multicast_list(struct net_device *dev); 80 81 #define GRETH_REGLOAD(a) (be32_to_cpu(__raw_readl(&(a)))) 82 #define GRETH_REGSAVE(a, v) (__raw_writel(cpu_to_be32(v), &(a))) 83 #define GRETH_REGORIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) | (v)))) 84 #define GRETH_REGANDIN(a, v) (GRETH_REGSAVE(a, (GRETH_REGLOAD(a) & (v)))) 85 86 #define NEXT_TX(N) (((N) + 1) & GRETH_TXBD_NUM_MASK) 87 #define SKIP_TX(N, C) (((N) + C) & GRETH_TXBD_NUM_MASK) 88 #define NEXT_RX(N) (((N) + 1) & GRETH_RXBD_NUM_MASK) 89 90 static void greth_print_rx_packet(void *addr, int len) 91 { 92 print_hex_dump(KERN_DEBUG, "RX: ", DUMP_PREFIX_OFFSET, 16, 1, 93 addr, len, true); 94 } 95 96 static void greth_print_tx_packet(struct sk_buff *skb) 97 { 98 int i; 99 int length; 100 101 if (skb_shinfo(skb)->nr_frags == 0) 102 length = skb->len; 103 else 104 length = skb_headlen(skb); 105 106 print_hex_dump(KERN_DEBUG, "TX: ", DUMP_PREFIX_OFFSET, 16, 1, 107 skb->data, length, true); 108 109 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 110 111 print_hex_dump(KERN_DEBUG, "TX: ", DUMP_PREFIX_OFFSET, 16, 1, 112 skb_frag_address(&skb_shinfo(skb)->frags[i]), 113 skb_frag_size(&skb_shinfo(skb)->frags[i]), true); 114 } 115 } 116 117 static inline void greth_enable_tx(struct greth_private *greth) 118 { 119 wmb(); 120 GRETH_REGORIN(greth->regs->control, GRETH_TXEN); 121 } 122 123 static inline void greth_enable_tx_and_irq(struct greth_private *greth) 124 { 125 wmb(); /* BDs must been written to memory before enabling TX */ 126 GRETH_REGORIN(greth->regs->control, GRETH_TXEN | GRETH_TXI); 127 } 128 129 static inline void greth_disable_tx(struct greth_private *greth) 130 { 131 GRETH_REGANDIN(greth->regs->control, ~GRETH_TXEN); 132 } 133 134 static inline void greth_enable_rx(struct greth_private *greth) 135 { 136 wmb(); 137 GRETH_REGORIN(greth->regs->control, GRETH_RXEN); 138 } 139 140 static inline void greth_disable_rx(struct greth_private *greth) 141 { 142 GRETH_REGANDIN(greth->regs->control, ~GRETH_RXEN); 143 } 144 145 static inline void greth_enable_irqs(struct greth_private *greth) 146 { 147 GRETH_REGORIN(greth->regs->control, GRETH_RXI | GRETH_TXI); 148 } 149 150 static inline void greth_disable_irqs(struct greth_private *greth) 151 { 152 GRETH_REGANDIN(greth->regs->control, ~(GRETH_RXI|GRETH_TXI)); 153 } 154 155 static inline void greth_write_bd(u32 *bd, u32 val) 156 { 157 __raw_writel(cpu_to_be32(val), bd); 158 } 159 160 static inline u32 greth_read_bd(u32 *bd) 161 { 162 return be32_to_cpu(__raw_readl(bd)); 163 } 164 165 static void greth_clean_rings(struct greth_private *greth) 166 { 167 int i; 168 struct greth_bd *rx_bdp = greth->rx_bd_base; 169 struct greth_bd *tx_bdp = greth->tx_bd_base; 170 171 if (greth->gbit_mac) { 172 173 /* Free and unmap RX buffers */ 174 for (i = 0; i < GRETH_RXBD_NUM; i++, rx_bdp++) { 175 if (greth->rx_skbuff[i] != NULL) { 176 dev_kfree_skb(greth->rx_skbuff[i]); 177 dma_unmap_single(greth->dev, 178 greth_read_bd(&rx_bdp->addr), 179 MAX_FRAME_SIZE+NET_IP_ALIGN, 180 DMA_FROM_DEVICE); 181 } 182 } 183 184 /* TX buffers */ 185 while (greth->tx_free < GRETH_TXBD_NUM) { 186 187 struct sk_buff *skb = greth->tx_skbuff[greth->tx_last]; 188 int nr_frags = skb_shinfo(skb)->nr_frags; 189 tx_bdp = greth->tx_bd_base + greth->tx_last; 190 greth->tx_last = NEXT_TX(greth->tx_last); 191 192 dma_unmap_single(greth->dev, 193 greth_read_bd(&tx_bdp->addr), 194 skb_headlen(skb), 195 DMA_TO_DEVICE); 196 197 for (i = 0; i < nr_frags; i++) { 198 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 199 tx_bdp = greth->tx_bd_base + greth->tx_last; 200 201 dma_unmap_page(greth->dev, 202 greth_read_bd(&tx_bdp->addr), 203 skb_frag_size(frag), 204 DMA_TO_DEVICE); 205 206 greth->tx_last = NEXT_TX(greth->tx_last); 207 } 208 greth->tx_free += nr_frags+1; 209 dev_kfree_skb(skb); 210 } 211 212 213 } else { /* 10/100 Mbps MAC */ 214 215 for (i = 0; i < GRETH_RXBD_NUM; i++, rx_bdp++) { 216 kfree(greth->rx_bufs[i]); 217 dma_unmap_single(greth->dev, 218 greth_read_bd(&rx_bdp->addr), 219 MAX_FRAME_SIZE, 220 DMA_FROM_DEVICE); 221 } 222 for (i = 0; i < GRETH_TXBD_NUM; i++, tx_bdp++) { 223 kfree(greth->tx_bufs[i]); 224 dma_unmap_single(greth->dev, 225 greth_read_bd(&tx_bdp->addr), 226 MAX_FRAME_SIZE, 227 DMA_TO_DEVICE); 228 } 229 } 230 } 231 232 static int greth_init_rings(struct greth_private *greth) 233 { 234 struct sk_buff *skb; 235 struct greth_bd *rx_bd, *tx_bd; 236 u32 dma_addr; 237 int i; 238 239 rx_bd = greth->rx_bd_base; 240 tx_bd = greth->tx_bd_base; 241 242 /* Initialize descriptor rings and buffers */ 243 if (greth->gbit_mac) { 244 245 for (i = 0; i < GRETH_RXBD_NUM; i++) { 246 skb = netdev_alloc_skb(greth->netdev, MAX_FRAME_SIZE+NET_IP_ALIGN); 247 if (skb == NULL) { 248 if (netif_msg_ifup(greth)) 249 dev_err(greth->dev, "Error allocating DMA ring.\n"); 250 goto cleanup; 251 } 252 skb_reserve(skb, NET_IP_ALIGN); 253 dma_addr = dma_map_single(greth->dev, 254 skb->data, 255 MAX_FRAME_SIZE+NET_IP_ALIGN, 256 DMA_FROM_DEVICE); 257 258 if (dma_mapping_error(greth->dev, dma_addr)) { 259 if (netif_msg_ifup(greth)) 260 dev_err(greth->dev, "Could not create initial DMA mapping\n"); 261 dev_kfree_skb(skb); 262 goto cleanup; 263 } 264 greth->rx_skbuff[i] = skb; 265 greth_write_bd(&rx_bd[i].addr, dma_addr); 266 greth_write_bd(&rx_bd[i].stat, GRETH_BD_EN | GRETH_BD_IE); 267 } 268 269 } else { 270 271 /* 10/100 MAC uses a fixed set of buffers and copy to/from SKBs */ 272 for (i = 0; i < GRETH_RXBD_NUM; i++) { 273 274 greth->rx_bufs[i] = kmalloc(MAX_FRAME_SIZE, GFP_KERNEL); 275 276 if (greth->rx_bufs[i] == NULL) { 277 if (netif_msg_ifup(greth)) 278 dev_err(greth->dev, "Error allocating DMA ring.\n"); 279 goto cleanup; 280 } 281 282 dma_addr = dma_map_single(greth->dev, 283 greth->rx_bufs[i], 284 MAX_FRAME_SIZE, 285 DMA_FROM_DEVICE); 286 287 if (dma_mapping_error(greth->dev, dma_addr)) { 288 if (netif_msg_ifup(greth)) 289 dev_err(greth->dev, "Could not create initial DMA mapping\n"); 290 goto cleanup; 291 } 292 greth_write_bd(&rx_bd[i].addr, dma_addr); 293 greth_write_bd(&rx_bd[i].stat, GRETH_BD_EN | GRETH_BD_IE); 294 } 295 for (i = 0; i < GRETH_TXBD_NUM; i++) { 296 297 greth->tx_bufs[i] = kmalloc(MAX_FRAME_SIZE, GFP_KERNEL); 298 299 if (greth->tx_bufs[i] == NULL) { 300 if (netif_msg_ifup(greth)) 301 dev_err(greth->dev, "Error allocating DMA ring.\n"); 302 goto cleanup; 303 } 304 305 dma_addr = dma_map_single(greth->dev, 306 greth->tx_bufs[i], 307 MAX_FRAME_SIZE, 308 DMA_TO_DEVICE); 309 310 if (dma_mapping_error(greth->dev, dma_addr)) { 311 if (netif_msg_ifup(greth)) 312 dev_err(greth->dev, "Could not create initial DMA mapping\n"); 313 goto cleanup; 314 } 315 greth_write_bd(&tx_bd[i].addr, dma_addr); 316 greth_write_bd(&tx_bd[i].stat, 0); 317 } 318 } 319 greth_write_bd(&rx_bd[GRETH_RXBD_NUM - 1].stat, 320 greth_read_bd(&rx_bd[GRETH_RXBD_NUM - 1].stat) | GRETH_BD_WR); 321 322 /* Initialize pointers. */ 323 greth->rx_cur = 0; 324 greth->tx_next = 0; 325 greth->tx_last = 0; 326 greth->tx_free = GRETH_TXBD_NUM; 327 328 /* Initialize descriptor base address */ 329 GRETH_REGSAVE(greth->regs->tx_desc_p, greth->tx_bd_base_phys); 330 GRETH_REGSAVE(greth->regs->rx_desc_p, greth->rx_bd_base_phys); 331 332 return 0; 333 334 cleanup: 335 greth_clean_rings(greth); 336 return -ENOMEM; 337 } 338 339 static int greth_open(struct net_device *dev) 340 { 341 struct greth_private *greth = netdev_priv(dev); 342 int err; 343 344 err = greth_init_rings(greth); 345 if (err) { 346 if (netif_msg_ifup(greth)) 347 dev_err(&dev->dev, "Could not allocate memory for DMA rings\n"); 348 return err; 349 } 350 351 err = request_irq(greth->irq, greth_interrupt, 0, "eth", (void *) dev); 352 if (err) { 353 if (netif_msg_ifup(greth)) 354 dev_err(&dev->dev, "Could not allocate interrupt %d\n", dev->irq); 355 greth_clean_rings(greth); 356 return err; 357 } 358 359 if (netif_msg_ifup(greth)) 360 dev_dbg(&dev->dev, " starting queue\n"); 361 netif_start_queue(dev); 362 363 GRETH_REGSAVE(greth->regs->status, 0xFF); 364 365 napi_enable(&greth->napi); 366 367 greth_enable_irqs(greth); 368 greth_enable_tx(greth); 369 greth_enable_rx(greth); 370 return 0; 371 372 } 373 374 static int greth_close(struct net_device *dev) 375 { 376 struct greth_private *greth = netdev_priv(dev); 377 378 napi_disable(&greth->napi); 379 380 greth_disable_irqs(greth); 381 greth_disable_tx(greth); 382 greth_disable_rx(greth); 383 384 netif_stop_queue(dev); 385 386 free_irq(greth->irq, (void *) dev); 387 388 greth_clean_rings(greth); 389 390 return 0; 391 } 392 393 static netdev_tx_t 394 greth_start_xmit(struct sk_buff *skb, struct net_device *dev) 395 { 396 struct greth_private *greth = netdev_priv(dev); 397 struct greth_bd *bdp; 398 int err = NETDEV_TX_OK; 399 u32 status, dma_addr, ctrl; 400 unsigned long flags; 401 402 /* Clean TX Ring */ 403 greth_clean_tx(greth->netdev); 404 405 if (unlikely(greth->tx_free <= 0)) { 406 spin_lock_irqsave(&greth->devlock, flags);/*save from poll/irq*/ 407 ctrl = GRETH_REGLOAD(greth->regs->control); 408 /* Enable TX IRQ only if not already in poll() routine */ 409 if (ctrl & GRETH_RXI) 410 GRETH_REGSAVE(greth->regs->control, ctrl | GRETH_TXI); 411 netif_stop_queue(dev); 412 spin_unlock_irqrestore(&greth->devlock, flags); 413 return NETDEV_TX_BUSY; 414 } 415 416 if (netif_msg_pktdata(greth)) 417 greth_print_tx_packet(skb); 418 419 420 if (unlikely(skb->len > MAX_FRAME_SIZE)) { 421 dev->stats.tx_errors++; 422 goto out; 423 } 424 425 bdp = greth->tx_bd_base + greth->tx_next; 426 dma_addr = greth_read_bd(&bdp->addr); 427 428 memcpy((unsigned char *) phys_to_virt(dma_addr), skb->data, skb->len); 429 430 dma_sync_single_for_device(greth->dev, dma_addr, skb->len, DMA_TO_DEVICE); 431 432 status = GRETH_BD_EN | GRETH_BD_IE | (skb->len & GRETH_BD_LEN); 433 greth->tx_bufs_length[greth->tx_next] = skb->len & GRETH_BD_LEN; 434 435 /* Wrap around descriptor ring */ 436 if (greth->tx_next == GRETH_TXBD_NUM_MASK) { 437 status |= GRETH_BD_WR; 438 } 439 440 greth->tx_next = NEXT_TX(greth->tx_next); 441 greth->tx_free--; 442 443 /* Write descriptor control word and enable transmission */ 444 greth_write_bd(&bdp->stat, status); 445 spin_lock_irqsave(&greth->devlock, flags); /*save from poll/irq*/ 446 greth_enable_tx(greth); 447 spin_unlock_irqrestore(&greth->devlock, flags); 448 449 out: 450 dev_kfree_skb(skb); 451 return err; 452 } 453 454 static inline u16 greth_num_free_bds(u16 tx_last, u16 tx_next) 455 { 456 if (tx_next < tx_last) 457 return (tx_last - tx_next) - 1; 458 else 459 return GRETH_TXBD_NUM - (tx_next - tx_last) - 1; 460 } 461 462 static netdev_tx_t 463 greth_start_xmit_gbit(struct sk_buff *skb, struct net_device *dev) 464 { 465 struct greth_private *greth = netdev_priv(dev); 466 struct greth_bd *bdp; 467 u32 status, dma_addr; 468 int curr_tx, nr_frags, i, err = NETDEV_TX_OK; 469 unsigned long flags; 470 u16 tx_last; 471 472 nr_frags = skb_shinfo(skb)->nr_frags; 473 tx_last = greth->tx_last; 474 rmb(); /* tx_last is updated by the poll task */ 475 476 if (greth_num_free_bds(tx_last, greth->tx_next) < nr_frags + 1) { 477 netif_stop_queue(dev); 478 err = NETDEV_TX_BUSY; 479 goto out; 480 } 481 482 if (netif_msg_pktdata(greth)) 483 greth_print_tx_packet(skb); 484 485 if (unlikely(skb->len > MAX_FRAME_SIZE)) { 486 dev->stats.tx_errors++; 487 goto len_error; 488 } 489 490 /* Save skb pointer. */ 491 greth->tx_skbuff[greth->tx_next] = skb; 492 493 /* Linear buf */ 494 if (nr_frags != 0) 495 status = GRETH_TXBD_MORE; 496 else 497 status = GRETH_BD_IE; 498 499 if (skb->ip_summed == CHECKSUM_PARTIAL) 500 status |= GRETH_TXBD_CSALL; 501 status |= skb_headlen(skb) & GRETH_BD_LEN; 502 if (greth->tx_next == GRETH_TXBD_NUM_MASK) 503 status |= GRETH_BD_WR; 504 505 506 bdp = greth->tx_bd_base + greth->tx_next; 507 greth_write_bd(&bdp->stat, status); 508 dma_addr = dma_map_single(greth->dev, skb->data, skb_headlen(skb), DMA_TO_DEVICE); 509 510 if (unlikely(dma_mapping_error(greth->dev, dma_addr))) 511 goto map_error; 512 513 greth_write_bd(&bdp->addr, dma_addr); 514 515 curr_tx = NEXT_TX(greth->tx_next); 516 517 /* Frags */ 518 for (i = 0; i < nr_frags; i++) { 519 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 520 greth->tx_skbuff[curr_tx] = NULL; 521 bdp = greth->tx_bd_base + curr_tx; 522 523 status = GRETH_BD_EN; 524 if (skb->ip_summed == CHECKSUM_PARTIAL) 525 status |= GRETH_TXBD_CSALL; 526 status |= skb_frag_size(frag) & GRETH_BD_LEN; 527 528 /* Wrap around descriptor ring */ 529 if (curr_tx == GRETH_TXBD_NUM_MASK) 530 status |= GRETH_BD_WR; 531 532 /* More fragments left */ 533 if (i < nr_frags - 1) 534 status |= GRETH_TXBD_MORE; 535 else 536 status |= GRETH_BD_IE; /* enable IRQ on last fragment */ 537 538 greth_write_bd(&bdp->stat, status); 539 540 dma_addr = skb_frag_dma_map(greth->dev, frag, 0, skb_frag_size(frag), 541 DMA_TO_DEVICE); 542 543 if (unlikely(dma_mapping_error(greth->dev, dma_addr))) 544 goto frag_map_error; 545 546 greth_write_bd(&bdp->addr, dma_addr); 547 548 curr_tx = NEXT_TX(curr_tx); 549 } 550 551 wmb(); 552 553 /* Enable the descriptor chain by enabling the first descriptor */ 554 bdp = greth->tx_bd_base + greth->tx_next; 555 greth_write_bd(&bdp->stat, 556 greth_read_bd(&bdp->stat) | GRETH_BD_EN); 557 558 spin_lock_irqsave(&greth->devlock, flags); /*save from poll/irq*/ 559 greth->tx_next = curr_tx; 560 greth_enable_tx_and_irq(greth); 561 spin_unlock_irqrestore(&greth->devlock, flags); 562 563 return NETDEV_TX_OK; 564 565 frag_map_error: 566 /* Unmap SKB mappings that succeeded and disable descriptor */ 567 for (i = 0; greth->tx_next + i != curr_tx; i++) { 568 bdp = greth->tx_bd_base + greth->tx_next + i; 569 dma_unmap_single(greth->dev, 570 greth_read_bd(&bdp->addr), 571 greth_read_bd(&bdp->stat) & GRETH_BD_LEN, 572 DMA_TO_DEVICE); 573 greth_write_bd(&bdp->stat, 0); 574 } 575 map_error: 576 if (net_ratelimit()) 577 dev_warn(greth->dev, "Could not create TX DMA mapping\n"); 578 len_error: 579 dev_kfree_skb(skb); 580 out: 581 return err; 582 } 583 584 static irqreturn_t greth_interrupt(int irq, void *dev_id) 585 { 586 struct net_device *dev = dev_id; 587 struct greth_private *greth; 588 u32 status, ctrl; 589 irqreturn_t retval = IRQ_NONE; 590 591 greth = netdev_priv(dev); 592 593 spin_lock(&greth->devlock); 594 595 /* Get the interrupt events that caused us to be here. */ 596 status = GRETH_REGLOAD(greth->regs->status); 597 598 /* Must see if interrupts are enabled also, INT_TX|INT_RX flags may be 599 * set regardless of whether IRQ is enabled or not. Especially 600 * important when shared IRQ. 601 */ 602 ctrl = GRETH_REGLOAD(greth->regs->control); 603 604 /* Handle rx and tx interrupts through poll */ 605 if (((status & (GRETH_INT_RE | GRETH_INT_RX)) && (ctrl & GRETH_RXI)) || 606 ((status & (GRETH_INT_TE | GRETH_INT_TX)) && (ctrl & GRETH_TXI))) { 607 retval = IRQ_HANDLED; 608 609 /* Disable interrupts and schedule poll() */ 610 greth_disable_irqs(greth); 611 napi_schedule(&greth->napi); 612 } 613 614 spin_unlock(&greth->devlock); 615 616 return retval; 617 } 618 619 static void greth_clean_tx(struct net_device *dev) 620 { 621 struct greth_private *greth; 622 struct greth_bd *bdp; 623 u32 stat; 624 625 greth = netdev_priv(dev); 626 627 while (1) { 628 bdp = greth->tx_bd_base + greth->tx_last; 629 GRETH_REGSAVE(greth->regs->status, GRETH_INT_TE | GRETH_INT_TX); 630 mb(); 631 stat = greth_read_bd(&bdp->stat); 632 633 if (unlikely(stat & GRETH_BD_EN)) 634 break; 635 636 if (greth->tx_free == GRETH_TXBD_NUM) 637 break; 638 639 /* Check status for errors */ 640 if (unlikely(stat & GRETH_TXBD_STATUS)) { 641 dev->stats.tx_errors++; 642 if (stat & GRETH_TXBD_ERR_AL) 643 dev->stats.tx_aborted_errors++; 644 if (stat & GRETH_TXBD_ERR_UE) 645 dev->stats.tx_fifo_errors++; 646 } 647 dev->stats.tx_packets++; 648 dev->stats.tx_bytes += greth->tx_bufs_length[greth->tx_last]; 649 greth->tx_last = NEXT_TX(greth->tx_last); 650 greth->tx_free++; 651 } 652 653 if (greth->tx_free > 0) { 654 netif_wake_queue(dev); 655 } 656 } 657 658 static inline void greth_update_tx_stats(struct net_device *dev, u32 stat) 659 { 660 /* Check status for errors */ 661 if (unlikely(stat & GRETH_TXBD_STATUS)) { 662 dev->stats.tx_errors++; 663 if (stat & GRETH_TXBD_ERR_AL) 664 dev->stats.tx_aborted_errors++; 665 if (stat & GRETH_TXBD_ERR_UE) 666 dev->stats.tx_fifo_errors++; 667 if (stat & GRETH_TXBD_ERR_LC) 668 dev->stats.tx_aborted_errors++; 669 } 670 dev->stats.tx_packets++; 671 } 672 673 static void greth_clean_tx_gbit(struct net_device *dev) 674 { 675 struct greth_private *greth; 676 struct greth_bd *bdp, *bdp_last_frag; 677 struct sk_buff *skb = NULL; 678 u32 stat; 679 int nr_frags, i; 680 u16 tx_last; 681 682 greth = netdev_priv(dev); 683 tx_last = greth->tx_last; 684 685 while (tx_last != greth->tx_next) { 686 687 skb = greth->tx_skbuff[tx_last]; 688 689 nr_frags = skb_shinfo(skb)->nr_frags; 690 691 /* We only clean fully completed SKBs */ 692 bdp_last_frag = greth->tx_bd_base + SKIP_TX(tx_last, nr_frags); 693 694 GRETH_REGSAVE(greth->regs->status, GRETH_INT_TE | GRETH_INT_TX); 695 mb(); 696 stat = greth_read_bd(&bdp_last_frag->stat); 697 698 if (stat & GRETH_BD_EN) 699 break; 700 701 greth->tx_skbuff[tx_last] = NULL; 702 703 greth_update_tx_stats(dev, stat); 704 dev->stats.tx_bytes += skb->len; 705 706 bdp = greth->tx_bd_base + tx_last; 707 708 tx_last = NEXT_TX(tx_last); 709 710 dma_unmap_single(greth->dev, 711 greth_read_bd(&bdp->addr), 712 skb_headlen(skb), 713 DMA_TO_DEVICE); 714 715 for (i = 0; i < nr_frags; i++) { 716 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 717 bdp = greth->tx_bd_base + tx_last; 718 719 dma_unmap_page(greth->dev, 720 greth_read_bd(&bdp->addr), 721 skb_frag_size(frag), 722 DMA_TO_DEVICE); 723 724 tx_last = NEXT_TX(tx_last); 725 } 726 dev_kfree_skb(skb); 727 } 728 if (skb) { /* skb is set only if the above while loop was entered */ 729 wmb(); 730 greth->tx_last = tx_last; 731 732 if (netif_queue_stopped(dev) && 733 (greth_num_free_bds(tx_last, greth->tx_next) > 734 (MAX_SKB_FRAGS+1))) 735 netif_wake_queue(dev); 736 } 737 } 738 739 static int greth_rx(struct net_device *dev, int limit) 740 { 741 struct greth_private *greth; 742 struct greth_bd *bdp; 743 struct sk_buff *skb; 744 int pkt_len; 745 int bad, count; 746 u32 status, dma_addr; 747 unsigned long flags; 748 749 greth = netdev_priv(dev); 750 751 for (count = 0; count < limit; ++count) { 752 753 bdp = greth->rx_bd_base + greth->rx_cur; 754 GRETH_REGSAVE(greth->regs->status, GRETH_INT_RE | GRETH_INT_RX); 755 mb(); 756 status = greth_read_bd(&bdp->stat); 757 758 if (unlikely(status & GRETH_BD_EN)) { 759 break; 760 } 761 762 dma_addr = greth_read_bd(&bdp->addr); 763 bad = 0; 764 765 /* Check status for errors. */ 766 if (unlikely(status & GRETH_RXBD_STATUS)) { 767 if (status & GRETH_RXBD_ERR_FT) { 768 dev->stats.rx_length_errors++; 769 bad = 1; 770 } 771 if (status & (GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE)) { 772 dev->stats.rx_frame_errors++; 773 bad = 1; 774 } 775 if (status & GRETH_RXBD_ERR_CRC) { 776 dev->stats.rx_crc_errors++; 777 bad = 1; 778 } 779 } 780 if (unlikely(bad)) { 781 dev->stats.rx_errors++; 782 783 } else { 784 785 pkt_len = status & GRETH_BD_LEN; 786 787 skb = netdev_alloc_skb(dev, pkt_len + NET_IP_ALIGN); 788 789 if (unlikely(skb == NULL)) { 790 791 if (net_ratelimit()) 792 dev_warn(&dev->dev, "low on memory - " "packet dropped\n"); 793 794 dev->stats.rx_dropped++; 795 796 } else { 797 skb_reserve(skb, NET_IP_ALIGN); 798 799 dma_sync_single_for_cpu(greth->dev, 800 dma_addr, 801 pkt_len, 802 DMA_FROM_DEVICE); 803 804 if (netif_msg_pktdata(greth)) 805 greth_print_rx_packet(phys_to_virt(dma_addr), pkt_len); 806 807 skb_put_data(skb, phys_to_virt(dma_addr), 808 pkt_len); 809 810 skb->protocol = eth_type_trans(skb, dev); 811 dev->stats.rx_bytes += pkt_len; 812 dev->stats.rx_packets++; 813 netif_receive_skb(skb); 814 } 815 } 816 817 status = GRETH_BD_EN | GRETH_BD_IE; 818 if (greth->rx_cur == GRETH_RXBD_NUM_MASK) { 819 status |= GRETH_BD_WR; 820 } 821 822 wmb(); 823 greth_write_bd(&bdp->stat, status); 824 825 dma_sync_single_for_device(greth->dev, dma_addr, MAX_FRAME_SIZE, DMA_FROM_DEVICE); 826 827 spin_lock_irqsave(&greth->devlock, flags); /* save from XMIT */ 828 greth_enable_rx(greth); 829 spin_unlock_irqrestore(&greth->devlock, flags); 830 831 greth->rx_cur = NEXT_RX(greth->rx_cur); 832 } 833 834 return count; 835 } 836 837 static inline int hw_checksummed(u32 status) 838 { 839 840 if (status & GRETH_RXBD_IP_FRAG) 841 return 0; 842 843 if (status & GRETH_RXBD_IP && status & GRETH_RXBD_IP_CSERR) 844 return 0; 845 846 if (status & GRETH_RXBD_UDP && status & GRETH_RXBD_UDP_CSERR) 847 return 0; 848 849 if (status & GRETH_RXBD_TCP && status & GRETH_RXBD_TCP_CSERR) 850 return 0; 851 852 return 1; 853 } 854 855 static int greth_rx_gbit(struct net_device *dev, int limit) 856 { 857 struct greth_private *greth; 858 struct greth_bd *bdp; 859 struct sk_buff *skb, *newskb; 860 int pkt_len; 861 int bad, count = 0; 862 u32 status, dma_addr; 863 unsigned long flags; 864 865 greth = netdev_priv(dev); 866 867 for (count = 0; count < limit; ++count) { 868 869 bdp = greth->rx_bd_base + greth->rx_cur; 870 skb = greth->rx_skbuff[greth->rx_cur]; 871 GRETH_REGSAVE(greth->regs->status, GRETH_INT_RE | GRETH_INT_RX); 872 mb(); 873 status = greth_read_bd(&bdp->stat); 874 bad = 0; 875 876 if (status & GRETH_BD_EN) 877 break; 878 879 /* Check status for errors. */ 880 if (unlikely(status & GRETH_RXBD_STATUS)) { 881 882 if (status & GRETH_RXBD_ERR_FT) { 883 dev->stats.rx_length_errors++; 884 bad = 1; 885 } else if (status & 886 (GRETH_RXBD_ERR_AE | GRETH_RXBD_ERR_OE | GRETH_RXBD_ERR_LE)) { 887 dev->stats.rx_frame_errors++; 888 bad = 1; 889 } else if (status & GRETH_RXBD_ERR_CRC) { 890 dev->stats.rx_crc_errors++; 891 bad = 1; 892 } 893 } 894 895 /* Allocate new skb to replace current, not needed if the 896 * current skb can be reused */ 897 if (!bad && (newskb=netdev_alloc_skb(dev, MAX_FRAME_SIZE + NET_IP_ALIGN))) { 898 skb_reserve(newskb, NET_IP_ALIGN); 899 900 dma_addr = dma_map_single(greth->dev, 901 newskb->data, 902 MAX_FRAME_SIZE + NET_IP_ALIGN, 903 DMA_FROM_DEVICE); 904 905 if (!dma_mapping_error(greth->dev, dma_addr)) { 906 /* Process the incoming frame. */ 907 pkt_len = status & GRETH_BD_LEN; 908 909 dma_unmap_single(greth->dev, 910 greth_read_bd(&bdp->addr), 911 MAX_FRAME_SIZE + NET_IP_ALIGN, 912 DMA_FROM_DEVICE); 913 914 if (netif_msg_pktdata(greth)) 915 greth_print_rx_packet(phys_to_virt(greth_read_bd(&bdp->addr)), pkt_len); 916 917 skb_put(skb, pkt_len); 918 919 if (dev->features & NETIF_F_RXCSUM && hw_checksummed(status)) 920 skb->ip_summed = CHECKSUM_UNNECESSARY; 921 else 922 skb_checksum_none_assert(skb); 923 924 skb->protocol = eth_type_trans(skb, dev); 925 dev->stats.rx_packets++; 926 dev->stats.rx_bytes += pkt_len; 927 netif_receive_skb(skb); 928 929 greth->rx_skbuff[greth->rx_cur] = newskb; 930 greth_write_bd(&bdp->addr, dma_addr); 931 } else { 932 if (net_ratelimit()) 933 dev_warn(greth->dev, "Could not create DMA mapping, dropping packet\n"); 934 dev_kfree_skb(newskb); 935 /* reusing current skb, so it is a drop */ 936 dev->stats.rx_dropped++; 937 } 938 } else if (bad) { 939 /* Bad Frame transfer, the skb is reused */ 940 dev->stats.rx_dropped++; 941 } else { 942 /* Failed Allocating a new skb. This is rather stupid 943 * but the current "filled" skb is reused, as if 944 * transfer failure. One could argue that RX descriptor 945 * table handling should be divided into cleaning and 946 * filling as the TX part of the driver 947 */ 948 if (net_ratelimit()) 949 dev_warn(greth->dev, "Could not allocate SKB, dropping packet\n"); 950 /* reusing current skb, so it is a drop */ 951 dev->stats.rx_dropped++; 952 } 953 954 status = GRETH_BD_EN | GRETH_BD_IE; 955 if (greth->rx_cur == GRETH_RXBD_NUM_MASK) { 956 status |= GRETH_BD_WR; 957 } 958 959 wmb(); 960 greth_write_bd(&bdp->stat, status); 961 spin_lock_irqsave(&greth->devlock, flags); 962 greth_enable_rx(greth); 963 spin_unlock_irqrestore(&greth->devlock, flags); 964 greth->rx_cur = NEXT_RX(greth->rx_cur); 965 } 966 967 return count; 968 969 } 970 971 static int greth_poll(struct napi_struct *napi, int budget) 972 { 973 struct greth_private *greth; 974 int work_done = 0; 975 unsigned long flags; 976 u32 mask, ctrl; 977 greth = container_of(napi, struct greth_private, napi); 978 979 restart_txrx_poll: 980 if (greth->gbit_mac) { 981 greth_clean_tx_gbit(greth->netdev); 982 work_done += greth_rx_gbit(greth->netdev, budget - work_done); 983 } else { 984 if (netif_queue_stopped(greth->netdev)) 985 greth_clean_tx(greth->netdev); 986 work_done += greth_rx(greth->netdev, budget - work_done); 987 } 988 989 if (work_done < budget) { 990 991 spin_lock_irqsave(&greth->devlock, flags); 992 993 ctrl = GRETH_REGLOAD(greth->regs->control); 994 if ((greth->gbit_mac && (greth->tx_last != greth->tx_next)) || 995 (!greth->gbit_mac && netif_queue_stopped(greth->netdev))) { 996 GRETH_REGSAVE(greth->regs->control, 997 ctrl | GRETH_TXI | GRETH_RXI); 998 mask = GRETH_INT_RX | GRETH_INT_RE | 999 GRETH_INT_TX | GRETH_INT_TE; 1000 } else { 1001 GRETH_REGSAVE(greth->regs->control, ctrl | GRETH_RXI); 1002 mask = GRETH_INT_RX | GRETH_INT_RE; 1003 } 1004 1005 if (GRETH_REGLOAD(greth->regs->status) & mask) { 1006 GRETH_REGSAVE(greth->regs->control, ctrl); 1007 spin_unlock_irqrestore(&greth->devlock, flags); 1008 goto restart_txrx_poll; 1009 } else { 1010 napi_complete_done(napi, work_done); 1011 spin_unlock_irqrestore(&greth->devlock, flags); 1012 } 1013 } 1014 1015 return work_done; 1016 } 1017 1018 static int greth_set_mac_add(struct net_device *dev, void *p) 1019 { 1020 struct sockaddr *addr = p; 1021 struct greth_private *greth; 1022 struct greth_regs *regs; 1023 1024 greth = netdev_priv(dev); 1025 regs = greth->regs; 1026 1027 if (!is_valid_ether_addr(addr->sa_data)) 1028 return -EADDRNOTAVAIL; 1029 1030 eth_hw_addr_set(dev, addr->sa_data); 1031 GRETH_REGSAVE(regs->esa_msb, dev->dev_addr[0] << 8 | dev->dev_addr[1]); 1032 GRETH_REGSAVE(regs->esa_lsb, dev->dev_addr[2] << 24 | dev->dev_addr[3] << 16 | 1033 dev->dev_addr[4] << 8 | dev->dev_addr[5]); 1034 1035 return 0; 1036 } 1037 1038 static u32 greth_hash_get_index(__u8 *addr) 1039 { 1040 return (ether_crc(6, addr)) & 0x3F; 1041 } 1042 1043 static void greth_set_hash_filter(struct net_device *dev) 1044 { 1045 struct netdev_hw_addr *ha; 1046 struct greth_private *greth = netdev_priv(dev); 1047 struct greth_regs *regs = greth->regs; 1048 u32 mc_filter[2]; 1049 unsigned int bitnr; 1050 1051 mc_filter[0] = mc_filter[1] = 0; 1052 1053 netdev_for_each_mc_addr(ha, dev) { 1054 bitnr = greth_hash_get_index(ha->addr); 1055 mc_filter[bitnr >> 5] |= 1 << (bitnr & 31); 1056 } 1057 1058 GRETH_REGSAVE(regs->hash_msb, mc_filter[1]); 1059 GRETH_REGSAVE(regs->hash_lsb, mc_filter[0]); 1060 } 1061 1062 static void greth_set_multicast_list(struct net_device *dev) 1063 { 1064 int cfg; 1065 struct greth_private *greth = netdev_priv(dev); 1066 struct greth_regs *regs = greth->regs; 1067 1068 cfg = GRETH_REGLOAD(regs->control); 1069 if (dev->flags & IFF_PROMISC) 1070 cfg |= GRETH_CTRL_PR; 1071 else 1072 cfg &= ~GRETH_CTRL_PR; 1073 1074 if (greth->multicast) { 1075 if (dev->flags & IFF_ALLMULTI) { 1076 GRETH_REGSAVE(regs->hash_msb, -1); 1077 GRETH_REGSAVE(regs->hash_lsb, -1); 1078 cfg |= GRETH_CTRL_MCEN; 1079 GRETH_REGSAVE(regs->control, cfg); 1080 return; 1081 } 1082 1083 if (netdev_mc_empty(dev)) { 1084 cfg &= ~GRETH_CTRL_MCEN; 1085 GRETH_REGSAVE(regs->control, cfg); 1086 return; 1087 } 1088 1089 /* Setup multicast filter */ 1090 greth_set_hash_filter(dev); 1091 cfg |= GRETH_CTRL_MCEN; 1092 } 1093 GRETH_REGSAVE(regs->control, cfg); 1094 } 1095 1096 static u32 greth_get_msglevel(struct net_device *dev) 1097 { 1098 struct greth_private *greth = netdev_priv(dev); 1099 return greth->msg_enable; 1100 } 1101 1102 static void greth_set_msglevel(struct net_device *dev, u32 value) 1103 { 1104 struct greth_private *greth = netdev_priv(dev); 1105 greth->msg_enable = value; 1106 } 1107 1108 static int greth_get_regs_len(struct net_device *dev) 1109 { 1110 return sizeof(struct greth_regs); 1111 } 1112 1113 static void greth_get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1114 { 1115 struct greth_private *greth = netdev_priv(dev); 1116 1117 strscpy(info->driver, dev_driver_string(greth->dev), 1118 sizeof(info->driver)); 1119 strscpy(info->bus_info, greth->dev->bus->name, sizeof(info->bus_info)); 1120 } 1121 1122 static void greth_get_regs(struct net_device *dev, struct ethtool_regs *regs, void *p) 1123 { 1124 int i; 1125 struct greth_private *greth = netdev_priv(dev); 1126 u32 __iomem *greth_regs = (u32 __iomem *) greth->regs; 1127 u32 *buff = p; 1128 1129 for (i = 0; i < sizeof(struct greth_regs) / sizeof(u32); i++) 1130 buff[i] = greth_read_bd(&greth_regs[i]); 1131 } 1132 1133 static const struct ethtool_ops greth_ethtool_ops = { 1134 .get_msglevel = greth_get_msglevel, 1135 .set_msglevel = greth_set_msglevel, 1136 .get_drvinfo = greth_get_drvinfo, 1137 .get_regs_len = greth_get_regs_len, 1138 .get_regs = greth_get_regs, 1139 .get_link = ethtool_op_get_link, 1140 .get_link_ksettings = phy_ethtool_get_link_ksettings, 1141 .set_link_ksettings = phy_ethtool_set_link_ksettings, 1142 }; 1143 1144 static struct net_device_ops greth_netdev_ops = { 1145 .ndo_open = greth_open, 1146 .ndo_stop = greth_close, 1147 .ndo_start_xmit = greth_start_xmit, 1148 .ndo_set_mac_address = greth_set_mac_add, 1149 .ndo_validate_addr = eth_validate_addr, 1150 }; 1151 1152 static inline int wait_for_mdio(struct greth_private *greth) 1153 { 1154 unsigned long timeout = jiffies + 4*HZ/100; 1155 while (GRETH_REGLOAD(greth->regs->mdio) & GRETH_MII_BUSY) { 1156 if (time_after(jiffies, timeout)) 1157 return 0; 1158 } 1159 return 1; 1160 } 1161 1162 static int greth_mdio_read(struct mii_bus *bus, int phy, int reg) 1163 { 1164 struct greth_private *greth = bus->priv; 1165 int data; 1166 1167 if (!wait_for_mdio(greth)) 1168 return -EBUSY; 1169 1170 GRETH_REGSAVE(greth->regs->mdio, ((phy & 0x1F) << 11) | ((reg & 0x1F) << 6) | 2); 1171 1172 if (!wait_for_mdio(greth)) 1173 return -EBUSY; 1174 1175 if (!(GRETH_REGLOAD(greth->regs->mdio) & GRETH_MII_NVALID)) { 1176 data = (GRETH_REGLOAD(greth->regs->mdio) >> 16) & 0xFFFF; 1177 return data; 1178 1179 } else { 1180 return -1; 1181 } 1182 } 1183 1184 static int greth_mdio_write(struct mii_bus *bus, int phy, int reg, u16 val) 1185 { 1186 struct greth_private *greth = bus->priv; 1187 1188 if (!wait_for_mdio(greth)) 1189 return -EBUSY; 1190 1191 GRETH_REGSAVE(greth->regs->mdio, 1192 ((val & 0xFFFF) << 16) | ((phy & 0x1F) << 11) | ((reg & 0x1F) << 6) | 1); 1193 1194 if (!wait_for_mdio(greth)) 1195 return -EBUSY; 1196 1197 return 0; 1198 } 1199 1200 static void greth_link_change(struct net_device *dev) 1201 { 1202 struct greth_private *greth = netdev_priv(dev); 1203 struct phy_device *phydev = dev->phydev; 1204 unsigned long flags; 1205 int status_change = 0; 1206 u32 ctrl; 1207 1208 spin_lock_irqsave(&greth->devlock, flags); 1209 1210 if (phydev->link) { 1211 1212 if ((greth->speed != phydev->speed) || (greth->duplex != phydev->duplex)) { 1213 ctrl = GRETH_REGLOAD(greth->regs->control) & 1214 ~(GRETH_CTRL_FD | GRETH_CTRL_SP | GRETH_CTRL_GB); 1215 1216 if (phydev->duplex) 1217 ctrl |= GRETH_CTRL_FD; 1218 1219 if (phydev->speed == SPEED_100) 1220 ctrl |= GRETH_CTRL_SP; 1221 else if (phydev->speed == SPEED_1000) 1222 ctrl |= GRETH_CTRL_GB; 1223 1224 GRETH_REGSAVE(greth->regs->control, ctrl); 1225 greth->speed = phydev->speed; 1226 greth->duplex = phydev->duplex; 1227 status_change = 1; 1228 } 1229 } 1230 1231 if (phydev->link != greth->link) { 1232 if (!phydev->link) { 1233 greth->speed = 0; 1234 greth->duplex = -1; 1235 } 1236 greth->link = phydev->link; 1237 1238 status_change = 1; 1239 } 1240 1241 spin_unlock_irqrestore(&greth->devlock, flags); 1242 1243 if (status_change) { 1244 if (phydev->link) 1245 pr_debug("%s: link up (%d/%s)\n", 1246 dev->name, phydev->speed, 1247 DUPLEX_FULL == phydev->duplex ? "Full" : "Half"); 1248 else 1249 pr_debug("%s: link down\n", dev->name); 1250 } 1251 } 1252 1253 static int greth_mdio_probe(struct net_device *dev) 1254 { 1255 struct greth_private *greth = netdev_priv(dev); 1256 struct phy_device *phy = NULL; 1257 int ret; 1258 1259 /* Find the first PHY */ 1260 phy = phy_find_first(greth->mdio); 1261 1262 if (!phy) { 1263 if (netif_msg_probe(greth)) 1264 dev_err(&dev->dev, "no PHY found\n"); 1265 return -ENXIO; 1266 } 1267 1268 ret = phy_connect_direct(dev, phy, &greth_link_change, 1269 greth->gbit_mac ? PHY_INTERFACE_MODE_GMII : PHY_INTERFACE_MODE_MII); 1270 if (ret) { 1271 if (netif_msg_ifup(greth)) 1272 dev_err(&dev->dev, "could not attach to PHY\n"); 1273 return ret; 1274 } 1275 1276 if (greth->gbit_mac) 1277 phy_set_max_speed(phy, SPEED_1000); 1278 else 1279 phy_set_max_speed(phy, SPEED_100); 1280 1281 linkmode_copy(phy->advertising, phy->supported); 1282 1283 greth->link = 0; 1284 greth->speed = 0; 1285 greth->duplex = -1; 1286 1287 return 0; 1288 } 1289 1290 static int greth_mdio_init(struct greth_private *greth) 1291 { 1292 int ret; 1293 unsigned long timeout; 1294 struct net_device *ndev = greth->netdev; 1295 1296 greth->mdio = mdiobus_alloc(); 1297 if (!greth->mdio) { 1298 return -ENOMEM; 1299 } 1300 1301 greth->mdio->name = "greth-mdio"; 1302 snprintf(greth->mdio->id, MII_BUS_ID_SIZE, "%s-%d", greth->mdio->name, greth->irq); 1303 greth->mdio->read = greth_mdio_read; 1304 greth->mdio->write = greth_mdio_write; 1305 greth->mdio->priv = greth; 1306 1307 ret = mdiobus_register(greth->mdio); 1308 if (ret) { 1309 goto error; 1310 } 1311 1312 ret = greth_mdio_probe(greth->netdev); 1313 if (ret) { 1314 if (netif_msg_probe(greth)) 1315 dev_err(&greth->netdev->dev, "failed to probe MDIO bus\n"); 1316 goto unreg_mdio; 1317 } 1318 1319 phy_start(ndev->phydev); 1320 1321 /* If Ethernet debug link is used make autoneg happen right away */ 1322 if (greth->edcl && greth_edcl == 1) { 1323 phy_start_aneg(ndev->phydev); 1324 timeout = jiffies + 6*HZ; 1325 while (!phy_aneg_done(ndev->phydev) && 1326 time_before(jiffies, timeout)) { 1327 } 1328 phy_read_status(ndev->phydev); 1329 greth_link_change(greth->netdev); 1330 } 1331 1332 return 0; 1333 1334 unreg_mdio: 1335 mdiobus_unregister(greth->mdio); 1336 error: 1337 mdiobus_free(greth->mdio); 1338 return ret; 1339 } 1340 1341 /* Initialize the GRETH MAC */ 1342 static int greth_of_probe(struct platform_device *ofdev) 1343 { 1344 struct net_device *dev; 1345 struct greth_private *greth; 1346 struct greth_regs *regs; 1347 1348 int i; 1349 int err; 1350 int tmp; 1351 u8 addr[ETH_ALEN]; 1352 unsigned long timeout; 1353 1354 dev = alloc_etherdev(sizeof(struct greth_private)); 1355 1356 if (dev == NULL) 1357 return -ENOMEM; 1358 1359 greth = netdev_priv(dev); 1360 greth->netdev = dev; 1361 greth->dev = &ofdev->dev; 1362 1363 if (greth_debug > 0) 1364 greth->msg_enable = greth_debug; 1365 else 1366 greth->msg_enable = GRETH_DEF_MSG_ENABLE; 1367 1368 spin_lock_init(&greth->devlock); 1369 1370 greth->regs = of_ioremap(&ofdev->resource[0], 0, 1371 resource_size(&ofdev->resource[0]), 1372 "grlib-greth regs"); 1373 1374 if (greth->regs == NULL) { 1375 if (netif_msg_probe(greth)) 1376 dev_err(greth->dev, "ioremap failure.\n"); 1377 err = -EIO; 1378 goto error1; 1379 } 1380 1381 regs = greth->regs; 1382 greth->irq = ofdev->archdata.irqs[0]; 1383 1384 dev_set_drvdata(greth->dev, dev); 1385 SET_NETDEV_DEV(dev, greth->dev); 1386 1387 if (netif_msg_probe(greth)) 1388 dev_dbg(greth->dev, "resetting controller.\n"); 1389 1390 /* Reset the controller. */ 1391 GRETH_REGSAVE(regs->control, GRETH_RESET); 1392 1393 /* Wait for MAC to reset itself */ 1394 timeout = jiffies + HZ/100; 1395 while (GRETH_REGLOAD(regs->control) & GRETH_RESET) { 1396 if (time_after(jiffies, timeout)) { 1397 err = -EIO; 1398 if (netif_msg_probe(greth)) 1399 dev_err(greth->dev, "timeout when waiting for reset.\n"); 1400 goto error2; 1401 } 1402 } 1403 1404 /* Get default PHY address */ 1405 greth->phyaddr = (GRETH_REGLOAD(regs->mdio) >> 11) & 0x1F; 1406 1407 /* Check if we have GBIT capable MAC */ 1408 tmp = GRETH_REGLOAD(regs->control); 1409 greth->gbit_mac = (tmp >> 27) & 1; 1410 1411 /* Check for multicast capability */ 1412 greth->multicast = (tmp >> 25) & 1; 1413 1414 greth->edcl = (tmp >> 31) & 1; 1415 1416 /* If we have EDCL we disable the EDCL speed-duplex FSM so 1417 * it doesn't interfere with the software */ 1418 if (greth->edcl != 0) 1419 GRETH_REGORIN(regs->control, GRETH_CTRL_DISDUPLEX); 1420 1421 /* Check if MAC can handle MDIO interrupts */ 1422 greth->mdio_int_en = (tmp >> 26) & 1; 1423 1424 err = greth_mdio_init(greth); 1425 if (err) { 1426 if (netif_msg_probe(greth)) 1427 dev_err(greth->dev, "failed to register MDIO bus\n"); 1428 goto error2; 1429 } 1430 1431 /* Allocate TX descriptor ring in coherent memory */ 1432 greth->tx_bd_base = dma_alloc_coherent(greth->dev, 1024, 1433 &greth->tx_bd_base_phys, 1434 GFP_KERNEL); 1435 if (!greth->tx_bd_base) { 1436 err = -ENOMEM; 1437 goto error3; 1438 } 1439 1440 /* Allocate RX descriptor ring in coherent memory */ 1441 greth->rx_bd_base = dma_alloc_coherent(greth->dev, 1024, 1442 &greth->rx_bd_base_phys, 1443 GFP_KERNEL); 1444 if (!greth->rx_bd_base) { 1445 err = -ENOMEM; 1446 goto error4; 1447 } 1448 1449 /* Get MAC address from: module param, OF property or ID prom */ 1450 for (i = 0; i < 6; i++) { 1451 if (macaddr[i] != 0) 1452 break; 1453 } 1454 if (i == 6) { 1455 err = of_get_mac_address(ofdev->dev.of_node, addr); 1456 if (!err) { 1457 for (i = 0; i < 6; i++) 1458 macaddr[i] = (unsigned int) addr[i]; 1459 } else { 1460 #ifdef CONFIG_SPARC 1461 for (i = 0; i < 6; i++) 1462 macaddr[i] = (unsigned int) idprom->id_ethaddr[i]; 1463 #endif 1464 } 1465 } 1466 1467 for (i = 0; i < 6; i++) 1468 addr[i] = macaddr[i]; 1469 eth_hw_addr_set(dev, addr); 1470 1471 macaddr[5]++; 1472 1473 if (!is_valid_ether_addr(&dev->dev_addr[0])) { 1474 if (netif_msg_probe(greth)) 1475 dev_err(greth->dev, "no valid ethernet address, aborting.\n"); 1476 err = -EINVAL; 1477 goto error5; 1478 } 1479 1480 GRETH_REGSAVE(regs->esa_msb, dev->dev_addr[0] << 8 | dev->dev_addr[1]); 1481 GRETH_REGSAVE(regs->esa_lsb, dev->dev_addr[2] << 24 | dev->dev_addr[3] << 16 | 1482 dev->dev_addr[4] << 8 | dev->dev_addr[5]); 1483 1484 /* Clear all pending interrupts except PHY irq */ 1485 GRETH_REGSAVE(regs->status, 0xFF); 1486 1487 if (greth->gbit_mac) { 1488 dev->hw_features = NETIF_F_SG | NETIF_F_IP_CSUM | 1489 NETIF_F_RXCSUM; 1490 dev->features = dev->hw_features | NETIF_F_HIGHDMA; 1491 greth_netdev_ops.ndo_start_xmit = greth_start_xmit_gbit; 1492 } 1493 1494 if (greth->multicast) { 1495 greth_netdev_ops.ndo_set_rx_mode = greth_set_multicast_list; 1496 dev->flags |= IFF_MULTICAST; 1497 } else { 1498 dev->flags &= ~IFF_MULTICAST; 1499 } 1500 1501 dev->netdev_ops = &greth_netdev_ops; 1502 dev->ethtool_ops = &greth_ethtool_ops; 1503 1504 err = register_netdev(dev); 1505 if (err) { 1506 if (netif_msg_probe(greth)) 1507 dev_err(greth->dev, "netdevice registration failed.\n"); 1508 goto error5; 1509 } 1510 1511 /* setup NAPI */ 1512 netif_napi_add(dev, &greth->napi, greth_poll); 1513 1514 return 0; 1515 1516 error5: 1517 dma_free_coherent(greth->dev, 1024, greth->rx_bd_base, greth->rx_bd_base_phys); 1518 error4: 1519 dma_free_coherent(greth->dev, 1024, greth->tx_bd_base, greth->tx_bd_base_phys); 1520 error3: 1521 mdiobus_unregister(greth->mdio); 1522 error2: 1523 of_iounmap(&ofdev->resource[0], greth->regs, resource_size(&ofdev->resource[0])); 1524 error1: 1525 free_netdev(dev); 1526 return err; 1527 } 1528 1529 static int greth_of_remove(struct platform_device *of_dev) 1530 { 1531 struct net_device *ndev = platform_get_drvdata(of_dev); 1532 struct greth_private *greth = netdev_priv(ndev); 1533 1534 /* Free descriptor areas */ 1535 dma_free_coherent(&of_dev->dev, 1024, greth->rx_bd_base, greth->rx_bd_base_phys); 1536 1537 dma_free_coherent(&of_dev->dev, 1024, greth->tx_bd_base, greth->tx_bd_base_phys); 1538 1539 if (ndev->phydev) 1540 phy_stop(ndev->phydev); 1541 mdiobus_unregister(greth->mdio); 1542 1543 unregister_netdev(ndev); 1544 1545 of_iounmap(&of_dev->resource[0], greth->regs, resource_size(&of_dev->resource[0])); 1546 1547 free_netdev(ndev); 1548 1549 return 0; 1550 } 1551 1552 static const struct of_device_id greth_of_match[] = { 1553 { 1554 .name = "GAISLER_ETHMAC", 1555 }, 1556 { 1557 .name = "01_01d", 1558 }, 1559 {}, 1560 }; 1561 1562 MODULE_DEVICE_TABLE(of, greth_of_match); 1563 1564 static struct platform_driver greth_of_driver = { 1565 .driver = { 1566 .name = "grlib-greth", 1567 .of_match_table = greth_of_match, 1568 }, 1569 .probe = greth_of_probe, 1570 .remove = greth_of_remove, 1571 }; 1572 1573 module_platform_driver(greth_of_driver); 1574 1575 MODULE_AUTHOR("Aeroflex Gaisler AB."); 1576 MODULE_DESCRIPTION("Aeroflex Gaisler Ethernet MAC driver"); 1577 MODULE_LICENSE("GPL"); 1578