1 /* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
2 /*
3 	Written 1998-2000 by Donald Becker.
4 
5 	Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
6 	send all bug reports to me, and not to Donald Becker, as this code
7 	has been heavily modified from Donald's original version.
8 
9 	This software may be used and distributed according to the terms of
10 	the GNU General Public License (GPL), incorporated herein by reference.
11 	Drivers based on or derived from this code fall under the GPL and must
12 	retain the authorship, copyright and license notice.  This file is not
13 	a complete program and may only be used when the entire operating
14 	system is licensed under the GPL.
15 
16 	The information below comes from Donald Becker's original driver:
17 
18 	The author may be reached as becker@scyld.com, or C/O
19 	Scyld Computing Corporation
20 	410 Severn Ave., Suite 210
21 	Annapolis MD 21403
22 
23 	Support and updates available at
24 	http://www.scyld.com/network/starfire.html
25 	[link no longer provides useful info -jgarzik]
26 
27 */
28 
29 #define DRV_NAME	"starfire"
30 #define DRV_VERSION	"2.1"
31 #define DRV_RELDATE	"July  6, 2008"
32 
33 #include <linux/interrupt.h>
34 #include <linux/module.h>
35 #include <linux/kernel.h>
36 #include <linux/pci.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/init.h>
40 #include <linux/delay.h>
41 #include <linux/crc32.h>
42 #include <linux/ethtool.h>
43 #include <linux/mii.h>
44 #include <linux/if_vlan.h>
45 #include <linux/mm.h>
46 #include <linux/firmware.h>
47 #include <asm/processor.h>		/* Processor type for cache alignment. */
48 #include <asm/uaccess.h>
49 #include <asm/io.h>
50 
51 /*
52  * The current frame processor firmware fails to checksum a fragment
53  * of length 1. If and when this is fixed, the #define below can be removed.
54  */
55 #define HAS_BROKEN_FIRMWARE
56 
57 /*
58  * If using the broken firmware, data must be padded to the next 32-bit boundary.
59  */
60 #ifdef HAS_BROKEN_FIRMWARE
61 #define PADDING_MASK 3
62 #endif
63 
64 /*
65  * Define this if using the driver with the zero-copy patch
66  */
67 #define ZEROCOPY
68 
69 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
70 #define VLAN_SUPPORT
71 #endif
72 
73 /* The user-configurable values.
74    These may be modified when a driver module is loaded.*/
75 
76 /* Used for tuning interrupt latency vs. overhead. */
77 static int intr_latency;
78 static int small_frames;
79 
80 static int debug = 1;			/* 1 normal messages, 0 quiet .. 7 verbose. */
81 static int max_interrupt_work = 20;
82 static int mtu;
83 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
84    The Starfire has a 512 element hash table based on the Ethernet CRC. */
85 static const int multicast_filter_limit = 512;
86 /* Whether to do TCP/UDP checksums in hardware */
87 static int enable_hw_cksum = 1;
88 
89 #define PKT_BUF_SZ	1536		/* Size of each temporary Rx buffer.*/
90 /*
91  * Set the copy breakpoint for the copy-only-tiny-frames scheme.
92  * Setting to > 1518 effectively disables this feature.
93  *
94  * NOTE:
95  * The ia64 doesn't allow for unaligned loads even of integers being
96  * misaligned on a 2 byte boundary. Thus always force copying of
97  * packets as the starfire doesn't allow for misaligned DMAs ;-(
98  * 23/10/2000 - Jes
99  *
100  * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
101  * at least, having unaligned frames leads to a rather serious performance
102  * penalty. -Ion
103  */
104 #if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
105 static int rx_copybreak = PKT_BUF_SZ;
106 #else
107 static int rx_copybreak /* = 0 */;
108 #endif
109 
110 /* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
111 #ifdef __sparc__
112 #define DMA_BURST_SIZE 64
113 #else
114 #define DMA_BURST_SIZE 128
115 #endif
116 
117 /* Operational parameters that are set at compile time. */
118 
119 /* The "native" ring sizes are either 256 or 2048.
120    However in some modes a descriptor may be marked to wrap the ring earlier.
121 */
122 #define RX_RING_SIZE	256
123 #define TX_RING_SIZE	32
124 /* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
125 #define DONE_Q_SIZE	1024
126 /* All queues must be aligned on a 256-byte boundary */
127 #define QUEUE_ALIGN	256
128 
129 #if RX_RING_SIZE > 256
130 #define RX_Q_ENTRIES Rx2048QEntries
131 #else
132 #define RX_Q_ENTRIES Rx256QEntries
133 #endif
134 
135 /* Operational parameters that usually are not changed. */
136 /* Time in jiffies before concluding the transmitter is hung. */
137 #define TX_TIMEOUT	(2 * HZ)
138 
139 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
140 /* 64-bit dma_addr_t */
141 #define ADDR_64BITS	/* This chip uses 64 bit addresses. */
142 #define netdrv_addr_t __le64
143 #define cpu_to_dma(x) cpu_to_le64(x)
144 #define dma_to_cpu(x) le64_to_cpu(x)
145 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
146 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
147 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
148 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
149 #define RX_DESC_ADDR_SIZE RxDescAddr64bit
150 #else  /* 32-bit dma_addr_t */
151 #define netdrv_addr_t __le32
152 #define cpu_to_dma(x) cpu_to_le32(x)
153 #define dma_to_cpu(x) le32_to_cpu(x)
154 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
155 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
156 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
157 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
158 #define RX_DESC_ADDR_SIZE RxDescAddr32bit
159 #endif
160 
161 #define skb_first_frag_len(skb)	skb_headlen(skb)
162 #define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
163 
164 /* Firmware names */
165 #define FIRMWARE_RX	"adaptec/starfire_rx.bin"
166 #define FIRMWARE_TX	"adaptec/starfire_tx.bin"
167 
168 /* These identify the driver base version and may not be removed. */
169 static const char version[] =
170 KERN_INFO "starfire.c:v1.03 7/26/2000  Written by Donald Becker <becker@scyld.com>\n"
171 " (unofficial 2.2/2.4 kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n";
172 
173 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
174 MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
175 MODULE_LICENSE("GPL");
176 MODULE_VERSION(DRV_VERSION);
177 MODULE_FIRMWARE(FIRMWARE_RX);
178 MODULE_FIRMWARE(FIRMWARE_TX);
179 
180 module_param(max_interrupt_work, int, 0);
181 module_param(mtu, int, 0);
182 module_param(debug, int, 0);
183 module_param(rx_copybreak, int, 0);
184 module_param(intr_latency, int, 0);
185 module_param(small_frames, int, 0);
186 module_param(enable_hw_cksum, int, 0);
187 MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
188 MODULE_PARM_DESC(mtu, "MTU (all boards)");
189 MODULE_PARM_DESC(debug, "Debug level (0-6)");
190 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
191 MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
192 MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
193 MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
194 
195 /*
196 				Theory of Operation
197 
198 I. Board Compatibility
199 
200 This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
201 
202 II. Board-specific settings
203 
204 III. Driver operation
205 
206 IIIa. Ring buffers
207 
208 The Starfire hardware uses multiple fixed-size descriptor queues/rings.  The
209 ring sizes are set fixed by the hardware, but may optionally be wrapped
210 earlier by the END bit in the descriptor.
211 This driver uses that hardware queue size for the Rx ring, where a large
212 number of entries has no ill effect beyond increases the potential backlog.
213 The Tx ring is wrapped with the END bit, since a large hardware Tx queue
214 disables the queue layer priority ordering and we have no mechanism to
215 utilize the hardware two-level priority queue.  When modifying the
216 RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
217 levels.
218 
219 IIIb/c. Transmit/Receive Structure
220 
221 See the Adaptec manual for the many possible structures, and options for
222 each structure.  There are far too many to document all of them here.
223 
224 For transmit this driver uses type 0/1 transmit descriptors (depending
225 on the 32/64 bitness of the architecture), and relies on automatic
226 minimum-length padding.  It does not use the completion queue
227 consumer index, but instead checks for non-zero status entries.
228 
229 For receive this driver uses type 2/3 receive descriptors.  The driver
230 allocates full frame size skbuffs for the Rx ring buffers, so all frames
231 should fit in a single descriptor.  The driver does not use the completion
232 queue consumer index, but instead checks for non-zero status entries.
233 
234 When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
235 is allocated and the frame is copied to the new skbuff.  When the incoming
236 frame is larger, the skbuff is passed directly up the protocol stack.
237 Buffers consumed this way are replaced by newly allocated skbuffs in a later
238 phase of receive.
239 
240 A notable aspect of operation is that unaligned buffers are not permitted by
241 the Starfire hardware.  Thus the IP header at offset 14 in an ethernet frame
242 isn't longword aligned, which may cause problems on some machine
243 e.g. Alphas and IA64. For these architectures, the driver is forced to copy
244 the frame into a new skbuff unconditionally. Copied frames are put into the
245 skbuff at an offset of "+2", thus 16-byte aligning the IP header.
246 
247 IIId. Synchronization
248 
249 The driver runs as two independent, single-threaded flows of control.  One
250 is the send-packet routine, which enforces single-threaded use by the
251 dev->tbusy flag.  The other thread is the interrupt handler, which is single
252 threaded by the hardware and interrupt handling software.
253 
254 The send packet thread has partial control over the Tx ring and the netif_queue
255 status. If the number of free Tx slots in the ring falls below a certain number
256 (currently hardcoded to 4), it signals the upper layer to stop the queue.
257 
258 The interrupt handler has exclusive control over the Rx ring and records stats
259 from the Tx ring.  After reaping the stats, it marks the Tx queue entry as
260 empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
261 number of free Tx slow is above the threshold, it signals the upper layer to
262 restart the queue.
263 
264 IV. Notes
265 
266 IVb. References
267 
268 The Adaptec Starfire manuals, available only from Adaptec.
269 http://www.scyld.com/expert/100mbps.html
270 http://www.scyld.com/expert/NWay.html
271 
272 IVc. Errata
273 
274 - StopOnPerr is broken, don't enable
275 - Hardware ethernet padding exposes random data, perform software padding
276   instead (unverified -- works correctly for all the hardware I have)
277 
278 */
279 
280 
281 
282 enum chip_capability_flags {CanHaveMII=1, };
283 
284 enum chipset {
285 	CH_6915 = 0,
286 };
287 
288 static DEFINE_PCI_DEVICE_TABLE(starfire_pci_tbl) = {
289 	{ PCI_VDEVICE(ADAPTEC, 0x6915), CH_6915 },
290 	{ 0, }
291 };
292 MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
293 
294 /* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
295 static const struct chip_info {
296 	const char *name;
297 	int drv_flags;
298 } netdrv_tbl[] = {
299 	{ "Adaptec Starfire 6915", CanHaveMII },
300 };
301 
302 
303 /* Offsets to the device registers.
304    Unlike software-only systems, device drivers interact with complex hardware.
305    It's not useful to define symbolic names for every register bit in the
306    device.  The name can only partially document the semantics and make
307    the driver longer and more difficult to read.
308    In general, only the important configuration values or bits changed
309    multiple times should be defined symbolically.
310 */
311 enum register_offsets {
312 	PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
313 	IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
314 	MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
315 	GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
316 	TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
317 	TxRingHiAddr=0x5009C,		/* 64 bit address extension. */
318 	TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
319 	TxThreshold=0x500B0,
320 	CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
321 	RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
322 	CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
323 	RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
324 	RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
325 	TxMode=0x55000, VlanType=0x55064,
326 	PerfFilterTable=0x56000, HashTable=0x56100,
327 	TxGfpMem=0x58000, RxGfpMem=0x5a000,
328 };
329 
330 /*
331  * Bits in the interrupt status/mask registers.
332  * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
333  * enables all the interrupt sources that are or'ed into those status bits.
334  */
335 enum intr_status_bits {
336 	IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
337 	IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
338 	IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
339 	IntrTxComplQLow=0x200000, IntrPCI=0x100000,
340 	IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
341 	IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
342 	IntrNormalSummary=0x8000, IntrTxDone=0x4000,
343 	IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
344 	IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
345 	IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
346 	IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
347 	IntrNoTxCsum=0x20, IntrTxBadID=0x10,
348 	IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
349 	IntrTxGfp=0x02, IntrPCIPad=0x01,
350 	/* not quite bits */
351 	IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
352 	IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
353 	IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
354 };
355 
356 /* Bits in the RxFilterMode register. */
357 enum rx_mode_bits {
358 	AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
359 	AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
360 	PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
361 	WakeupOnGFP=0x0800,
362 };
363 
364 /* Bits in the TxMode register */
365 enum tx_mode_bits {
366 	MiiSoftReset=0x8000, MIILoopback=0x4000,
367 	TxFlowEnable=0x0800, RxFlowEnable=0x0400,
368 	PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
369 };
370 
371 /* Bits in the TxDescCtrl register. */
372 enum tx_ctrl_bits {
373 	TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
374 	TxDescSpace128=0x30, TxDescSpace256=0x40,
375 	TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
376 	TxDescType3=0x03, TxDescType4=0x04,
377 	TxNoDMACompletion=0x08,
378 	TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
379 	TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
380 	TxDMABurstSizeShift=8,
381 };
382 
383 /* Bits in the RxDescQCtrl register. */
384 enum rx_ctrl_bits {
385 	RxBufferLenShift=16, RxMinDescrThreshShift=0,
386 	RxPrefetchMode=0x8000, RxVariableQ=0x2000,
387 	Rx2048QEntries=0x4000, Rx256QEntries=0,
388 	RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
389 	RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
390 	RxDescSpace4=0x000, RxDescSpace8=0x100,
391 	RxDescSpace16=0x200, RxDescSpace32=0x300,
392 	RxDescSpace64=0x400, RxDescSpace128=0x500,
393 	RxConsumerWrEn=0x80,
394 };
395 
396 /* Bits in the RxDMACtrl register. */
397 enum rx_dmactrl_bits {
398 	RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
399 	RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
400 	RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
401 	RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
402 	RxChecksumRejectTCPOnly=0x01000000,
403 	RxCompletionQ2Enable=0x800000,
404 	RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
405 	RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
406 	RxDMAQ2NonIP=0x400000,
407 	RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
408 	RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
409 	RxBurstSizeShift=0,
410 };
411 
412 /* Bits in the RxCompletionAddr register */
413 enum rx_compl_bits {
414 	RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
415 	RxComplProducerWrEn=0x40,
416 	RxComplType0=0x00, RxComplType1=0x10,
417 	RxComplType2=0x20, RxComplType3=0x30,
418 	RxComplThreshShift=0,
419 };
420 
421 /* Bits in the TxCompletionAddr register */
422 enum tx_compl_bits {
423 	TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
424 	TxComplProducerWrEn=0x40,
425 	TxComplIntrStatus=0x20,
426 	CommonQueueMode=0x10,
427 	TxComplThreshShift=0,
428 };
429 
430 /* Bits in the GenCtrl register */
431 enum gen_ctrl_bits {
432 	RxEnable=0x05, TxEnable=0x0a,
433 	RxGFPEnable=0x10, TxGFPEnable=0x20,
434 };
435 
436 /* Bits in the IntrTimerCtrl register */
437 enum intr_ctrl_bits {
438 	Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
439 	SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
440 	IntrLatencyMask=0x1f,
441 };
442 
443 /* The Rx and Tx buffer descriptors. */
444 struct starfire_rx_desc {
445 	netdrv_addr_t rxaddr;
446 };
447 enum rx_desc_bits {
448 	RxDescValid=1, RxDescEndRing=2,
449 };
450 
451 /* Completion queue entry. */
452 struct short_rx_done_desc {
453 	__le32 status;			/* Low 16 bits is length. */
454 };
455 struct basic_rx_done_desc {
456 	__le32 status;			/* Low 16 bits is length. */
457 	__le16 vlanid;
458 	__le16 status2;
459 };
460 struct csum_rx_done_desc {
461 	__le32 status;			/* Low 16 bits is length. */
462 	__le16 csum;			/* Partial checksum */
463 	__le16 status2;
464 };
465 struct full_rx_done_desc {
466 	__le32 status;			/* Low 16 bits is length. */
467 	__le16 status3;
468 	__le16 status2;
469 	__le16 vlanid;
470 	__le16 csum;			/* partial checksum */
471 	__le32 timestamp;
472 };
473 /* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
474 #ifdef VLAN_SUPPORT
475 typedef struct full_rx_done_desc rx_done_desc;
476 #define RxComplType RxComplType3
477 #else  /* not VLAN_SUPPORT */
478 typedef struct csum_rx_done_desc rx_done_desc;
479 #define RxComplType RxComplType2
480 #endif /* not VLAN_SUPPORT */
481 
482 enum rx_done_bits {
483 	RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
484 };
485 
486 /* Type 1 Tx descriptor. */
487 struct starfire_tx_desc_1 {
488 	__le32 status;			/* Upper bits are status, lower 16 length. */
489 	__le32 addr;
490 };
491 
492 /* Type 2 Tx descriptor. */
493 struct starfire_tx_desc_2 {
494 	__le32 status;			/* Upper bits are status, lower 16 length. */
495 	__le32 reserved;
496 	__le64 addr;
497 };
498 
499 #ifdef ADDR_64BITS
500 typedef struct starfire_tx_desc_2 starfire_tx_desc;
501 #define TX_DESC_TYPE TxDescType2
502 #else  /* not ADDR_64BITS */
503 typedef struct starfire_tx_desc_1 starfire_tx_desc;
504 #define TX_DESC_TYPE TxDescType1
505 #endif /* not ADDR_64BITS */
506 #define TX_DESC_SPACING TxDescSpaceUnlim
507 
508 enum tx_desc_bits {
509 	TxDescID=0xB0000000,
510 	TxCRCEn=0x01000000, TxDescIntr=0x08000000,
511 	TxRingWrap=0x04000000, TxCalTCP=0x02000000,
512 };
513 struct tx_done_desc {
514 	__le32 status;			/* timestamp, index. */
515 #if 0
516 	__le32 intrstatus;		/* interrupt status */
517 #endif
518 };
519 
520 struct rx_ring_info {
521 	struct sk_buff *skb;
522 	dma_addr_t mapping;
523 };
524 struct tx_ring_info {
525 	struct sk_buff *skb;
526 	dma_addr_t mapping;
527 	unsigned int used_slots;
528 };
529 
530 #define PHY_CNT		2
531 struct netdev_private {
532 	/* Descriptor rings first for alignment. */
533 	struct starfire_rx_desc *rx_ring;
534 	starfire_tx_desc *tx_ring;
535 	dma_addr_t rx_ring_dma;
536 	dma_addr_t tx_ring_dma;
537 	/* The addresses of rx/tx-in-place skbuffs. */
538 	struct rx_ring_info rx_info[RX_RING_SIZE];
539 	struct tx_ring_info tx_info[TX_RING_SIZE];
540 	/* Pointers to completion queues (full pages). */
541 	rx_done_desc *rx_done_q;
542 	dma_addr_t rx_done_q_dma;
543 	unsigned int rx_done;
544 	struct tx_done_desc *tx_done_q;
545 	dma_addr_t tx_done_q_dma;
546 	unsigned int tx_done;
547 	struct napi_struct napi;
548 	struct net_device *dev;
549 	struct pci_dev *pci_dev;
550 #ifdef VLAN_SUPPORT
551 	unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
552 #endif
553 	void *queue_mem;
554 	dma_addr_t queue_mem_dma;
555 	size_t queue_mem_size;
556 
557 	/* Frequently used values: keep some adjacent for cache effect. */
558 	spinlock_t lock;
559 	unsigned int cur_rx, dirty_rx;	/* Producer/consumer ring indices */
560 	unsigned int cur_tx, dirty_tx, reap_tx;
561 	unsigned int rx_buf_sz;		/* Based on MTU+slack. */
562 	/* These values keep track of the transceiver/media in use. */
563 	int speed100;			/* Set if speed == 100MBit. */
564 	u32 tx_mode;
565 	u32 intr_timer_ctrl;
566 	u8 tx_threshold;
567 	/* MII transceiver section. */
568 	struct mii_if_info mii_if;		/* MII lib hooks/info */
569 	int phy_cnt;			/* MII device addresses. */
570 	unsigned char phys[PHY_CNT];	/* MII device addresses. */
571 	void __iomem *base;
572 };
573 
574 
575 static int	mdio_read(struct net_device *dev, int phy_id, int location);
576 static void	mdio_write(struct net_device *dev, int phy_id, int location, int value);
577 static int	netdev_open(struct net_device *dev);
578 static void	check_duplex(struct net_device *dev);
579 static void	tx_timeout(struct net_device *dev);
580 static void	init_ring(struct net_device *dev);
581 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
582 static irqreturn_t intr_handler(int irq, void *dev_instance);
583 static void	netdev_error(struct net_device *dev, int intr_status);
584 static int	__netdev_rx(struct net_device *dev, int *quota);
585 static int	netdev_poll(struct napi_struct *napi, int budget);
586 static void	refill_rx_ring(struct net_device *dev);
587 static void	netdev_error(struct net_device *dev, int intr_status);
588 static void	set_rx_mode(struct net_device *dev);
589 static struct net_device_stats *get_stats(struct net_device *dev);
590 static int	netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
591 static int	netdev_close(struct net_device *dev);
592 static void	netdev_media_change(struct net_device *dev);
593 static const struct ethtool_ops ethtool_ops;
594 
595 
596 #ifdef VLAN_SUPPORT
597 static int netdev_vlan_rx_add_vid(struct net_device *dev,
598 				  __be16 proto, u16 vid)
599 {
600 	struct netdev_private *np = netdev_priv(dev);
601 
602 	spin_lock(&np->lock);
603 	if (debug > 1)
604 		printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
605 	set_bit(vid, np->active_vlans);
606 	set_rx_mode(dev);
607 	spin_unlock(&np->lock);
608 
609 	return 0;
610 }
611 
612 static int netdev_vlan_rx_kill_vid(struct net_device *dev,
613 				   __be16 proto, u16 vid)
614 {
615 	struct netdev_private *np = netdev_priv(dev);
616 
617 	spin_lock(&np->lock);
618 	if (debug > 1)
619 		printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
620 	clear_bit(vid, np->active_vlans);
621 	set_rx_mode(dev);
622 	spin_unlock(&np->lock);
623 
624 	return 0;
625 }
626 #endif /* VLAN_SUPPORT */
627 
628 
629 static const struct net_device_ops netdev_ops = {
630 	.ndo_open		= netdev_open,
631 	.ndo_stop		= netdev_close,
632 	.ndo_start_xmit		= start_tx,
633 	.ndo_tx_timeout		= tx_timeout,
634 	.ndo_get_stats		= get_stats,
635 	.ndo_set_rx_mode	= set_rx_mode,
636 	.ndo_do_ioctl		= netdev_ioctl,
637 	.ndo_change_mtu		= eth_change_mtu,
638 	.ndo_set_mac_address	= eth_mac_addr,
639 	.ndo_validate_addr	= eth_validate_addr,
640 #ifdef VLAN_SUPPORT
641 	.ndo_vlan_rx_add_vid	= netdev_vlan_rx_add_vid,
642 	.ndo_vlan_rx_kill_vid	= netdev_vlan_rx_kill_vid,
643 #endif
644 };
645 
646 static int starfire_init_one(struct pci_dev *pdev,
647 			     const struct pci_device_id *ent)
648 {
649 	struct device *d = &pdev->dev;
650 	struct netdev_private *np;
651 	int i, irq, chip_idx = ent->driver_data;
652 	struct net_device *dev;
653 	long ioaddr;
654 	void __iomem *base;
655 	int drv_flags, io_size;
656 	int boguscnt;
657 
658 /* when built into the kernel, we only print version if device is found */
659 #ifndef MODULE
660 	static int printed_version;
661 	if (!printed_version++)
662 		printk(version);
663 #endif
664 
665 	if (pci_enable_device (pdev))
666 		return -EIO;
667 
668 	ioaddr = pci_resource_start(pdev, 0);
669 	io_size = pci_resource_len(pdev, 0);
670 	if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
671 		dev_err(d, "no PCI MEM resources, aborting\n");
672 		return -ENODEV;
673 	}
674 
675 	dev = alloc_etherdev(sizeof(*np));
676 	if (!dev)
677 		return -ENOMEM;
678 
679 	SET_NETDEV_DEV(dev, &pdev->dev);
680 
681 	irq = pdev->irq;
682 
683 	if (pci_request_regions (pdev, DRV_NAME)) {
684 		dev_err(d, "cannot reserve PCI resources, aborting\n");
685 		goto err_out_free_netdev;
686 	}
687 
688 	base = ioremap(ioaddr, io_size);
689 	if (!base) {
690 		dev_err(d, "cannot remap %#x @ %#lx, aborting\n",
691 			io_size, ioaddr);
692 		goto err_out_free_res;
693 	}
694 
695 	pci_set_master(pdev);
696 
697 	/* enable MWI -- it vastly improves Rx performance on sparc64 */
698 	pci_try_set_mwi(pdev);
699 
700 #ifdef ZEROCOPY
701 	/* Starfire can do TCP/UDP checksumming */
702 	if (enable_hw_cksum)
703 		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
704 #endif /* ZEROCOPY */
705 
706 #ifdef VLAN_SUPPORT
707 	dev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER;
708 #endif /* VLAN_RX_KILL_VID */
709 #ifdef ADDR_64BITS
710 	dev->features |= NETIF_F_HIGHDMA;
711 #endif /* ADDR_64BITS */
712 
713 	/* Serial EEPROM reads are hidden by the hardware. */
714 	for (i = 0; i < 6; i++)
715 		dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i);
716 
717 #if ! defined(final_version) /* Dump the EEPROM contents during development. */
718 	if (debug > 4)
719 		for (i = 0; i < 0x20; i++)
720 			printk("%2.2x%s",
721 			       (unsigned int)readb(base + EEPROMCtrl + i),
722 			       i % 16 != 15 ? " " : "\n");
723 #endif
724 
725 	/* Issue soft reset */
726 	writel(MiiSoftReset, base + TxMode);
727 	udelay(1000);
728 	writel(0, base + TxMode);
729 
730 	/* Reset the chip to erase previous misconfiguration. */
731 	writel(1, base + PCIDeviceConfig);
732 	boguscnt = 1000;
733 	while (--boguscnt > 0) {
734 		udelay(10);
735 		if ((readl(base + PCIDeviceConfig) & 1) == 0)
736 			break;
737 	}
738 	if (boguscnt == 0)
739 		printk("%s: chipset reset never completed!\n", dev->name);
740 	/* wait a little longer */
741 	udelay(1000);
742 
743 	np = netdev_priv(dev);
744 	np->dev = dev;
745 	np->base = base;
746 	spin_lock_init(&np->lock);
747 	pci_set_drvdata(pdev, dev);
748 
749 	np->pci_dev = pdev;
750 
751 	np->mii_if.dev = dev;
752 	np->mii_if.mdio_read = mdio_read;
753 	np->mii_if.mdio_write = mdio_write;
754 	np->mii_if.phy_id_mask = 0x1f;
755 	np->mii_if.reg_num_mask = 0x1f;
756 
757 	drv_flags = netdrv_tbl[chip_idx].drv_flags;
758 
759 	np->speed100 = 1;
760 
761 	/* timer resolution is 128 * 0.8us */
762 	np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
763 		Timer10X | EnableIntrMasking;
764 
765 	if (small_frames > 0) {
766 		np->intr_timer_ctrl |= SmallFrameBypass;
767 		switch (small_frames) {
768 		case 1 ... 64:
769 			np->intr_timer_ctrl |= SmallFrame64;
770 			break;
771 		case 65 ... 128:
772 			np->intr_timer_ctrl |= SmallFrame128;
773 			break;
774 		case 129 ... 256:
775 			np->intr_timer_ctrl |= SmallFrame256;
776 			break;
777 		default:
778 			np->intr_timer_ctrl |= SmallFrame512;
779 			if (small_frames > 512)
780 				printk("Adjusting small_frames down to 512\n");
781 			break;
782 		}
783 	}
784 
785 	dev->netdev_ops = &netdev_ops;
786 	dev->watchdog_timeo = TX_TIMEOUT;
787 	SET_ETHTOOL_OPS(dev, &ethtool_ops);
788 
789 	netif_napi_add(dev, &np->napi, netdev_poll, max_interrupt_work);
790 
791 	if (mtu)
792 		dev->mtu = mtu;
793 
794 	if (register_netdev(dev))
795 		goto err_out_cleardev;
796 
797 	printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
798 	       dev->name, netdrv_tbl[chip_idx].name, base,
799 	       dev->dev_addr, irq);
800 
801 	if (drv_flags & CanHaveMII) {
802 		int phy, phy_idx = 0;
803 		int mii_status;
804 		for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
805 			mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
806 			mdelay(100);
807 			boguscnt = 1000;
808 			while (--boguscnt > 0)
809 				if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
810 					break;
811 			if (boguscnt == 0) {
812 				printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
813 				continue;
814 			}
815 			mii_status = mdio_read(dev, phy, MII_BMSR);
816 			if (mii_status != 0) {
817 				np->phys[phy_idx++] = phy;
818 				np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
819 				printk(KERN_INFO "%s: MII PHY found at address %d, status "
820 					   "%#4.4x advertising %#4.4x.\n",
821 					   dev->name, phy, mii_status, np->mii_if.advertising);
822 				/* there can be only one PHY on-board */
823 				break;
824 			}
825 		}
826 		np->phy_cnt = phy_idx;
827 		if (np->phy_cnt > 0)
828 			np->mii_if.phy_id = np->phys[0];
829 		else
830 			memset(&np->mii_if, 0, sizeof(np->mii_if));
831 	}
832 
833 	printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
834 	       dev->name, enable_hw_cksum ? "enabled" : "disabled");
835 	return 0;
836 
837 err_out_cleardev:
838 	pci_set_drvdata(pdev, NULL);
839 	iounmap(base);
840 err_out_free_res:
841 	pci_release_regions (pdev);
842 err_out_free_netdev:
843 	free_netdev(dev);
844 	return -ENODEV;
845 }
846 
847 
848 /* Read the MII Management Data I/O (MDIO) interfaces. */
849 static int mdio_read(struct net_device *dev, int phy_id, int location)
850 {
851 	struct netdev_private *np = netdev_priv(dev);
852 	void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
853 	int result, boguscnt=1000;
854 	/* ??? Should we add a busy-wait here? */
855 	do {
856 		result = readl(mdio_addr);
857 	} while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
858 	if (boguscnt == 0)
859 		return 0;
860 	if ((result & 0xffff) == 0xffff)
861 		return 0;
862 	return result & 0xffff;
863 }
864 
865 
866 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
867 {
868 	struct netdev_private *np = netdev_priv(dev);
869 	void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
870 	writel(value, mdio_addr);
871 	/* The busy-wait will occur before a read. */
872 }
873 
874 
875 static int netdev_open(struct net_device *dev)
876 {
877 	const struct firmware *fw_rx, *fw_tx;
878 	const __be32 *fw_rx_data, *fw_tx_data;
879 	struct netdev_private *np = netdev_priv(dev);
880 	void __iomem *ioaddr = np->base;
881 	const int irq = np->pci_dev->irq;
882 	int i, retval;
883 	size_t tx_size, rx_size;
884 	size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
885 
886 	/* Do we ever need to reset the chip??? */
887 
888 	retval = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
889 	if (retval)
890 		return retval;
891 
892 	/* Disable the Rx and Tx, and reset the chip. */
893 	writel(0, ioaddr + GenCtrl);
894 	writel(1, ioaddr + PCIDeviceConfig);
895 	if (debug > 1)
896 		printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
897 		       dev->name, irq);
898 
899 	/* Allocate the various queues. */
900 	if (!np->queue_mem) {
901 		tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
902 		rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
903 		tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
904 		rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
905 		np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
906 		np->queue_mem = pci_alloc_consistent(np->pci_dev, np->queue_mem_size, &np->queue_mem_dma);
907 		if (np->queue_mem == NULL) {
908 			free_irq(irq, dev);
909 			return -ENOMEM;
910 		}
911 
912 		np->tx_done_q     = np->queue_mem;
913 		np->tx_done_q_dma = np->queue_mem_dma;
914 		np->rx_done_q     = (void *) np->tx_done_q + tx_done_q_size;
915 		np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
916 		np->tx_ring       = (void *) np->rx_done_q + rx_done_q_size;
917 		np->tx_ring_dma   = np->rx_done_q_dma + rx_done_q_size;
918 		np->rx_ring       = (void *) np->tx_ring + tx_ring_size;
919 		np->rx_ring_dma   = np->tx_ring_dma + tx_ring_size;
920 	}
921 
922 	/* Start with no carrier, it gets adjusted later */
923 	netif_carrier_off(dev);
924 	init_ring(dev);
925 	/* Set the size of the Rx buffers. */
926 	writel((np->rx_buf_sz << RxBufferLenShift) |
927 	       (0 << RxMinDescrThreshShift) |
928 	       RxPrefetchMode | RxVariableQ |
929 	       RX_Q_ENTRIES |
930 	       RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
931 	       RxDescSpace4,
932 	       ioaddr + RxDescQCtrl);
933 
934 	/* Set up the Rx DMA controller. */
935 	writel(RxChecksumIgnore |
936 	       (0 << RxEarlyIntThreshShift) |
937 	       (6 << RxHighPrioThreshShift) |
938 	       ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
939 	       ioaddr + RxDMACtrl);
940 
941 	/* Set Tx descriptor */
942 	writel((2 << TxHiPriFIFOThreshShift) |
943 	       (0 << TxPadLenShift) |
944 	       ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
945 	       TX_DESC_Q_ADDR_SIZE |
946 	       TX_DESC_SPACING | TX_DESC_TYPE,
947 	       ioaddr + TxDescCtrl);
948 
949 	writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
950 	writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
951 	writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
952 	writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
953 	writel(np->tx_ring_dma, ioaddr + TxRingPtr);
954 
955 	writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
956 	writel(np->rx_done_q_dma |
957 	       RxComplType |
958 	       (0 << RxComplThreshShift),
959 	       ioaddr + RxCompletionAddr);
960 
961 	if (debug > 1)
962 		printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
963 
964 	/* Fill both the Tx SA register and the Rx perfect filter. */
965 	for (i = 0; i < 6; i++)
966 		writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
967 	/* The first entry is special because it bypasses the VLAN filter.
968 	   Don't use it. */
969 	writew(0, ioaddr + PerfFilterTable);
970 	writew(0, ioaddr + PerfFilterTable + 4);
971 	writew(0, ioaddr + PerfFilterTable + 8);
972 	for (i = 1; i < 16; i++) {
973 		__be16 *eaddrs = (__be16 *)dev->dev_addr;
974 		void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
975 		writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4;
976 		writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4;
977 		writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8;
978 	}
979 
980 	/* Initialize other registers. */
981 	/* Configure the PCI bus bursts and FIFO thresholds. */
982 	np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable;	/* modified when link is up. */
983 	writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
984 	udelay(1000);
985 	writel(np->tx_mode, ioaddr + TxMode);
986 	np->tx_threshold = 4;
987 	writel(np->tx_threshold, ioaddr + TxThreshold);
988 
989 	writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
990 
991 	napi_enable(&np->napi);
992 
993 	netif_start_queue(dev);
994 
995 	if (debug > 1)
996 		printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
997 	set_rx_mode(dev);
998 
999 	np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1000 	check_duplex(dev);
1001 
1002 	/* Enable GPIO interrupts on link change */
1003 	writel(0x0f00ff00, ioaddr + GPIOCtrl);
1004 
1005 	/* Set the interrupt mask */
1006 	writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
1007 	       IntrTxDMADone | IntrStatsMax | IntrLinkChange |
1008 	       IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
1009 	       ioaddr + IntrEnable);
1010 	/* Enable PCI interrupts. */
1011 	writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
1012 	       ioaddr + PCIDeviceConfig);
1013 
1014 #ifdef VLAN_SUPPORT
1015 	/* Set VLAN type to 802.1q */
1016 	writel(ETH_P_8021Q, ioaddr + VlanType);
1017 #endif /* VLAN_SUPPORT */
1018 
1019 	retval = request_firmware(&fw_rx, FIRMWARE_RX, &np->pci_dev->dev);
1020 	if (retval) {
1021 		printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1022 		       FIRMWARE_RX);
1023 		goto out_init;
1024 	}
1025 	if (fw_rx->size % 4) {
1026 		printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1027 		       fw_rx->size, FIRMWARE_RX);
1028 		retval = -EINVAL;
1029 		goto out_rx;
1030 	}
1031 	retval = request_firmware(&fw_tx, FIRMWARE_TX, &np->pci_dev->dev);
1032 	if (retval) {
1033 		printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1034 		       FIRMWARE_TX);
1035 		goto out_rx;
1036 	}
1037 	if (fw_tx->size % 4) {
1038 		printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1039 		       fw_tx->size, FIRMWARE_TX);
1040 		retval = -EINVAL;
1041 		goto out_tx;
1042 	}
1043 	fw_rx_data = (const __be32 *)&fw_rx->data[0];
1044 	fw_tx_data = (const __be32 *)&fw_tx->data[0];
1045 	rx_size = fw_rx->size / 4;
1046 	tx_size = fw_tx->size / 4;
1047 
1048 	/* Load Rx/Tx firmware into the frame processors */
1049 	for (i = 0; i < rx_size; i++)
1050 		writel(be32_to_cpup(&fw_rx_data[i]), ioaddr + RxGfpMem + i * 4);
1051 	for (i = 0; i < tx_size; i++)
1052 		writel(be32_to_cpup(&fw_tx_data[i]), ioaddr + TxGfpMem + i * 4);
1053 	if (enable_hw_cksum)
1054 		/* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1055 		writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1056 	else
1057 		/* Enable the Rx and Tx units only. */
1058 		writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1059 
1060 	if (debug > 1)
1061 		printk(KERN_DEBUG "%s: Done netdev_open().\n",
1062 		       dev->name);
1063 
1064 out_tx:
1065 	release_firmware(fw_tx);
1066 out_rx:
1067 	release_firmware(fw_rx);
1068 out_init:
1069 	if (retval)
1070 		netdev_close(dev);
1071 	return retval;
1072 }
1073 
1074 
1075 static void check_duplex(struct net_device *dev)
1076 {
1077 	struct netdev_private *np = netdev_priv(dev);
1078 	u16 reg0;
1079 	int silly_count = 1000;
1080 
1081 	mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1082 	mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1083 	udelay(500);
1084 	while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1085 		/* do nothing */;
1086 	if (!silly_count) {
1087 		printk("%s: MII reset failed!\n", dev->name);
1088 		return;
1089 	}
1090 
1091 	reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1092 
1093 	if (!np->mii_if.force_media) {
1094 		reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1095 	} else {
1096 		reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1097 		if (np->speed100)
1098 			reg0 |= BMCR_SPEED100;
1099 		if (np->mii_if.full_duplex)
1100 			reg0 |= BMCR_FULLDPLX;
1101 		printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1102 		       dev->name,
1103 		       np->speed100 ? "100" : "10",
1104 		       np->mii_if.full_duplex ? "full" : "half");
1105 	}
1106 	mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1107 }
1108 
1109 
1110 static void tx_timeout(struct net_device *dev)
1111 {
1112 	struct netdev_private *np = netdev_priv(dev);
1113 	void __iomem *ioaddr = np->base;
1114 	int old_debug;
1115 
1116 	printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1117 	       "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1118 
1119 	/* Perhaps we should reinitialize the hardware here. */
1120 
1121 	/*
1122 	 * Stop and restart the interface.
1123 	 * Cheat and increase the debug level temporarily.
1124 	 */
1125 	old_debug = debug;
1126 	debug = 2;
1127 	netdev_close(dev);
1128 	netdev_open(dev);
1129 	debug = old_debug;
1130 
1131 	/* Trigger an immediate transmit demand. */
1132 
1133 	dev->trans_start = jiffies; /* prevent tx timeout */
1134 	dev->stats.tx_errors++;
1135 	netif_wake_queue(dev);
1136 }
1137 
1138 
1139 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1140 static void init_ring(struct net_device *dev)
1141 {
1142 	struct netdev_private *np = netdev_priv(dev);
1143 	int i;
1144 
1145 	np->cur_rx = np->cur_tx = np->reap_tx = 0;
1146 	np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1147 
1148 	np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1149 
1150 	/* Fill in the Rx buffers.  Handle allocation failure gracefully. */
1151 	for (i = 0; i < RX_RING_SIZE; i++) {
1152 		struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1153 		np->rx_info[i].skb = skb;
1154 		if (skb == NULL)
1155 			break;
1156 		np->rx_info[i].mapping = pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1157 		/* Grrr, we cannot offset to correctly align the IP header. */
1158 		np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1159 	}
1160 	writew(i - 1, np->base + RxDescQIdx);
1161 	np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1162 
1163 	/* Clear the remainder of the Rx buffer ring. */
1164 	for (  ; i < RX_RING_SIZE; i++) {
1165 		np->rx_ring[i].rxaddr = 0;
1166 		np->rx_info[i].skb = NULL;
1167 		np->rx_info[i].mapping = 0;
1168 	}
1169 	/* Mark the last entry as wrapping the ring. */
1170 	np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1171 
1172 	/* Clear the completion rings. */
1173 	for (i = 0; i < DONE_Q_SIZE; i++) {
1174 		np->rx_done_q[i].status = 0;
1175 		np->tx_done_q[i].status = 0;
1176 	}
1177 
1178 	for (i = 0; i < TX_RING_SIZE; i++)
1179 		memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1180 }
1181 
1182 
1183 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1184 {
1185 	struct netdev_private *np = netdev_priv(dev);
1186 	unsigned int entry;
1187 	u32 status;
1188 	int i;
1189 
1190 	/*
1191 	 * be cautious here, wrapping the queue has weird semantics
1192 	 * and we may not have enough slots even when it seems we do.
1193 	 */
1194 	if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1195 		netif_stop_queue(dev);
1196 		return NETDEV_TX_BUSY;
1197 	}
1198 
1199 #if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
1200 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1201 		if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
1202 			return NETDEV_TX_OK;
1203 	}
1204 #endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1205 
1206 	entry = np->cur_tx % TX_RING_SIZE;
1207 	for (i = 0; i < skb_num_frags(skb); i++) {
1208 		int wrap_ring = 0;
1209 		status = TxDescID;
1210 
1211 		if (i == 0) {
1212 			np->tx_info[entry].skb = skb;
1213 			status |= TxCRCEn;
1214 			if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1215 				status |= TxRingWrap;
1216 				wrap_ring = 1;
1217 			}
1218 			if (np->reap_tx) {
1219 				status |= TxDescIntr;
1220 				np->reap_tx = 0;
1221 			}
1222 			if (skb->ip_summed == CHECKSUM_PARTIAL) {
1223 				status |= TxCalTCP;
1224 				dev->stats.tx_compressed++;
1225 			}
1226 			status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1227 
1228 			np->tx_info[entry].mapping =
1229 				pci_map_single(np->pci_dev, skb->data, skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1230 		} else {
1231 			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1232 			status |= skb_frag_size(this_frag);
1233 			np->tx_info[entry].mapping =
1234 				pci_map_single(np->pci_dev,
1235 					       skb_frag_address(this_frag),
1236 					       skb_frag_size(this_frag),
1237 					       PCI_DMA_TODEVICE);
1238 		}
1239 
1240 		np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1241 		np->tx_ring[entry].status = cpu_to_le32(status);
1242 		if (debug > 3)
1243 			printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1244 			       dev->name, np->cur_tx, np->dirty_tx,
1245 			       entry, status);
1246 		if (wrap_ring) {
1247 			np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1248 			np->cur_tx += np->tx_info[entry].used_slots;
1249 			entry = 0;
1250 		} else {
1251 			np->tx_info[entry].used_slots = 1;
1252 			np->cur_tx += np->tx_info[entry].used_slots;
1253 			entry++;
1254 		}
1255 		/* scavenge the tx descriptors twice per TX_RING_SIZE */
1256 		if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1257 			np->reap_tx = 1;
1258 	}
1259 
1260 	/* Non-x86: explicitly flush descriptor cache lines here. */
1261 	/* Ensure all descriptors are written back before the transmit is
1262 	   initiated. - Jes */
1263 	wmb();
1264 
1265 	/* Update the producer index. */
1266 	writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1267 
1268 	/* 4 is arbitrary, but should be ok */
1269 	if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1270 		netif_stop_queue(dev);
1271 
1272 	return NETDEV_TX_OK;
1273 }
1274 
1275 
1276 /* The interrupt handler does all of the Rx thread work and cleans up
1277    after the Tx thread. */
1278 static irqreturn_t intr_handler(int irq, void *dev_instance)
1279 {
1280 	struct net_device *dev = dev_instance;
1281 	struct netdev_private *np = netdev_priv(dev);
1282 	void __iomem *ioaddr = np->base;
1283 	int boguscnt = max_interrupt_work;
1284 	int consumer;
1285 	int tx_status;
1286 	int handled = 0;
1287 
1288 	do {
1289 		u32 intr_status = readl(ioaddr + IntrClear);
1290 
1291 		if (debug > 4)
1292 			printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1293 			       dev->name, intr_status);
1294 
1295 		if (intr_status == 0 || intr_status == (u32) -1)
1296 			break;
1297 
1298 		handled = 1;
1299 
1300 		if (intr_status & (IntrRxDone | IntrRxEmpty)) {
1301 			u32 enable;
1302 
1303 			if (likely(napi_schedule_prep(&np->napi))) {
1304 				__napi_schedule(&np->napi);
1305 				enable = readl(ioaddr + IntrEnable);
1306 				enable &= ~(IntrRxDone | IntrRxEmpty);
1307 				writel(enable, ioaddr + IntrEnable);
1308 				/* flush PCI posting buffers */
1309 				readl(ioaddr + IntrEnable);
1310 			} else {
1311 				/* Paranoia check */
1312 				enable = readl(ioaddr + IntrEnable);
1313 				if (enable & (IntrRxDone | IntrRxEmpty)) {
1314 					printk(KERN_INFO
1315 					       "%s: interrupt while in poll!\n",
1316 					       dev->name);
1317 					enable &= ~(IntrRxDone | IntrRxEmpty);
1318 					writel(enable, ioaddr + IntrEnable);
1319 				}
1320 			}
1321 		}
1322 
1323 		/* Scavenge the skbuff list based on the Tx-done queue.
1324 		   There are redundant checks here that may be cleaned up
1325 		   after the driver has proven to be reliable. */
1326 		consumer = readl(ioaddr + TxConsumerIdx);
1327 		if (debug > 3)
1328 			printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1329 			       dev->name, consumer);
1330 
1331 		while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1332 			if (debug > 3)
1333 				printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1334 				       dev->name, np->dirty_tx, np->tx_done, tx_status);
1335 			if ((tx_status & 0xe0000000) == 0xa0000000) {
1336 				dev->stats.tx_packets++;
1337 			} else if ((tx_status & 0xe0000000) == 0x80000000) {
1338 				u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1339 				struct sk_buff *skb = np->tx_info[entry].skb;
1340 				np->tx_info[entry].skb = NULL;
1341 				pci_unmap_single(np->pci_dev,
1342 						 np->tx_info[entry].mapping,
1343 						 skb_first_frag_len(skb),
1344 						 PCI_DMA_TODEVICE);
1345 				np->tx_info[entry].mapping = 0;
1346 				np->dirty_tx += np->tx_info[entry].used_slots;
1347 				entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1348 				{
1349 					int i;
1350 					for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1351 						pci_unmap_single(np->pci_dev,
1352 								 np->tx_info[entry].mapping,
1353 								 skb_frag_size(&skb_shinfo(skb)->frags[i]),
1354 								 PCI_DMA_TODEVICE);
1355 						np->dirty_tx++;
1356 						entry++;
1357 					}
1358 				}
1359 
1360 				dev_kfree_skb_irq(skb);
1361 			}
1362 			np->tx_done_q[np->tx_done].status = 0;
1363 			np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1364 		}
1365 		writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1366 
1367 		if (netif_queue_stopped(dev) &&
1368 		    (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1369 			/* The ring is no longer full, wake the queue. */
1370 			netif_wake_queue(dev);
1371 		}
1372 
1373 		/* Stats overflow */
1374 		if (intr_status & IntrStatsMax)
1375 			get_stats(dev);
1376 
1377 		/* Media change interrupt. */
1378 		if (intr_status & IntrLinkChange)
1379 			netdev_media_change(dev);
1380 
1381 		/* Abnormal error summary/uncommon events handlers. */
1382 		if (intr_status & IntrAbnormalSummary)
1383 			netdev_error(dev, intr_status);
1384 
1385 		if (--boguscnt < 0) {
1386 			if (debug > 1)
1387 				printk(KERN_WARNING "%s: Too much work at interrupt, "
1388 				       "status=%#8.8x.\n",
1389 				       dev->name, intr_status);
1390 			break;
1391 		}
1392 	} while (1);
1393 
1394 	if (debug > 4)
1395 		printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1396 		       dev->name, (int) readl(ioaddr + IntrStatus));
1397 	return IRQ_RETVAL(handled);
1398 }
1399 
1400 
1401 /*
1402  * This routine is logically part of the interrupt/poll handler, but separated
1403  * for clarity and better register allocation.
1404  */
1405 static int __netdev_rx(struct net_device *dev, int *quota)
1406 {
1407 	struct netdev_private *np = netdev_priv(dev);
1408 	u32 desc_status;
1409 	int retcode = 0;
1410 
1411 	/* If EOP is set on the next entry, it's a new packet. Send it up. */
1412 	while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1413 		struct sk_buff *skb;
1414 		u16 pkt_len;
1415 		int entry;
1416 		rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1417 
1418 		if (debug > 4)
1419 			printk(KERN_DEBUG "  netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1420 		if (!(desc_status & RxOK)) {
1421 			/* There was an error. */
1422 			if (debug > 2)
1423 				printk(KERN_DEBUG "  netdev_rx() Rx error was %#8.8x.\n", desc_status);
1424 			dev->stats.rx_errors++;
1425 			if (desc_status & RxFIFOErr)
1426 				dev->stats.rx_fifo_errors++;
1427 			goto next_rx;
1428 		}
1429 
1430 		if (*quota <= 0) {	/* out of rx quota */
1431 			retcode = 1;
1432 			goto out;
1433 		}
1434 		(*quota)--;
1435 
1436 		pkt_len = desc_status;	/* Implicitly Truncate */
1437 		entry = (desc_status >> 16) & 0x7ff;
1438 
1439 		if (debug > 4)
1440 			printk(KERN_DEBUG "  netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1441 		/* Check if the packet is long enough to accept without copying
1442 		   to a minimally-sized skbuff. */
1443 		if (pkt_len < rx_copybreak &&
1444 		    (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1445 			skb_reserve(skb, 2);	/* 16 byte align the IP header */
1446 			pci_dma_sync_single_for_cpu(np->pci_dev,
1447 						    np->rx_info[entry].mapping,
1448 						    pkt_len, PCI_DMA_FROMDEVICE);
1449 			skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len);
1450 			pci_dma_sync_single_for_device(np->pci_dev,
1451 						       np->rx_info[entry].mapping,
1452 						       pkt_len, PCI_DMA_FROMDEVICE);
1453 			skb_put(skb, pkt_len);
1454 		} else {
1455 			pci_unmap_single(np->pci_dev, np->rx_info[entry].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1456 			skb = np->rx_info[entry].skb;
1457 			skb_put(skb, pkt_len);
1458 			np->rx_info[entry].skb = NULL;
1459 			np->rx_info[entry].mapping = 0;
1460 		}
1461 #ifndef final_version			/* Remove after testing. */
1462 		/* You will want this info for the initial debug. */
1463 		if (debug > 5) {
1464 			printk(KERN_DEBUG "  Rx data %pM %pM %2.2x%2.2x.\n",
1465 			       skb->data, skb->data + 6,
1466 			       skb->data[12], skb->data[13]);
1467 		}
1468 #endif
1469 
1470 		skb->protocol = eth_type_trans(skb, dev);
1471 #ifdef VLAN_SUPPORT
1472 		if (debug > 4)
1473 			printk(KERN_DEBUG "  netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1474 #endif
1475 		if (le16_to_cpu(desc->status2) & 0x0100) {
1476 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1477 			dev->stats.rx_compressed++;
1478 		}
1479 		/*
1480 		 * This feature doesn't seem to be working, at least
1481 		 * with the two firmware versions I have. If the GFP sees
1482 		 * an IP fragment, it either ignores it completely, or reports
1483 		 * "bad checksum" on it.
1484 		 *
1485 		 * Maybe I missed something -- corrections are welcome.
1486 		 * Until then, the printk stays. :-) -Ion
1487 		 */
1488 		else if (le16_to_cpu(desc->status2) & 0x0040) {
1489 			skb->ip_summed = CHECKSUM_COMPLETE;
1490 			skb->csum = le16_to_cpu(desc->csum);
1491 			printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1492 		}
1493 #ifdef VLAN_SUPPORT
1494 		if (le16_to_cpu(desc->status2) & 0x0200) {
1495 			u16 vlid = le16_to_cpu(desc->vlanid);
1496 
1497 			if (debug > 4) {
1498 				printk(KERN_DEBUG "  netdev_rx() vlanid = %d\n",
1499 				       vlid);
1500 			}
1501 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlid);
1502 		}
1503 #endif /* VLAN_SUPPORT */
1504 		netif_receive_skb(skb);
1505 		dev->stats.rx_packets++;
1506 
1507 	next_rx:
1508 		np->cur_rx++;
1509 		desc->status = 0;
1510 		np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1511 	}
1512 
1513 	if (*quota == 0) {	/* out of rx quota */
1514 		retcode = 1;
1515 		goto out;
1516 	}
1517 	writew(np->rx_done, np->base + CompletionQConsumerIdx);
1518 
1519  out:
1520 	refill_rx_ring(dev);
1521 	if (debug > 5)
1522 		printk(KERN_DEBUG "  exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1523 		       retcode, np->rx_done, desc_status);
1524 	return retcode;
1525 }
1526 
1527 static int netdev_poll(struct napi_struct *napi, int budget)
1528 {
1529 	struct netdev_private *np = container_of(napi, struct netdev_private, napi);
1530 	struct net_device *dev = np->dev;
1531 	u32 intr_status;
1532 	void __iomem *ioaddr = np->base;
1533 	int quota = budget;
1534 
1535 	do {
1536 		writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1537 
1538 		if (__netdev_rx(dev, &quota))
1539 			goto out;
1540 
1541 		intr_status = readl(ioaddr + IntrStatus);
1542 	} while (intr_status & (IntrRxDone | IntrRxEmpty));
1543 
1544 	napi_complete(napi);
1545 	intr_status = readl(ioaddr + IntrEnable);
1546 	intr_status |= IntrRxDone | IntrRxEmpty;
1547 	writel(intr_status, ioaddr + IntrEnable);
1548 
1549  out:
1550 	if (debug > 5)
1551 		printk(KERN_DEBUG "  exiting netdev_poll(): %d.\n",
1552 		       budget - quota);
1553 
1554 	/* Restart Rx engine if stopped. */
1555 	return budget - quota;
1556 }
1557 
1558 static void refill_rx_ring(struct net_device *dev)
1559 {
1560 	struct netdev_private *np = netdev_priv(dev);
1561 	struct sk_buff *skb;
1562 	int entry = -1;
1563 
1564 	/* Refill the Rx ring buffers. */
1565 	for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1566 		entry = np->dirty_rx % RX_RING_SIZE;
1567 		if (np->rx_info[entry].skb == NULL) {
1568 			skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1569 			np->rx_info[entry].skb = skb;
1570 			if (skb == NULL)
1571 				break;	/* Better luck next round. */
1572 			np->rx_info[entry].mapping =
1573 				pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1574 			np->rx_ring[entry].rxaddr =
1575 				cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1576 		}
1577 		if (entry == RX_RING_SIZE - 1)
1578 			np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1579 	}
1580 	if (entry >= 0)
1581 		writew(entry, np->base + RxDescQIdx);
1582 }
1583 
1584 
1585 static void netdev_media_change(struct net_device *dev)
1586 {
1587 	struct netdev_private *np = netdev_priv(dev);
1588 	void __iomem *ioaddr = np->base;
1589 	u16 reg0, reg1, reg4, reg5;
1590 	u32 new_tx_mode;
1591 	u32 new_intr_timer_ctrl;
1592 
1593 	/* reset status first */
1594 	mdio_read(dev, np->phys[0], MII_BMCR);
1595 	mdio_read(dev, np->phys[0], MII_BMSR);
1596 
1597 	reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1598 	reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1599 
1600 	if (reg1 & BMSR_LSTATUS) {
1601 		/* link is up */
1602 		if (reg0 & BMCR_ANENABLE) {
1603 			/* autonegotiation is enabled */
1604 			reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1605 			reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1606 			if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1607 				np->speed100 = 1;
1608 				np->mii_if.full_duplex = 1;
1609 			} else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1610 				np->speed100 = 1;
1611 				np->mii_if.full_duplex = 0;
1612 			} else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1613 				np->speed100 = 0;
1614 				np->mii_if.full_duplex = 1;
1615 			} else {
1616 				np->speed100 = 0;
1617 				np->mii_if.full_duplex = 0;
1618 			}
1619 		} else {
1620 			/* autonegotiation is disabled */
1621 			if (reg0 & BMCR_SPEED100)
1622 				np->speed100 = 1;
1623 			else
1624 				np->speed100 = 0;
1625 			if (reg0 & BMCR_FULLDPLX)
1626 				np->mii_if.full_duplex = 1;
1627 			else
1628 				np->mii_if.full_duplex = 0;
1629 		}
1630 		netif_carrier_on(dev);
1631 		printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1632 		       dev->name,
1633 		       np->speed100 ? "100" : "10",
1634 		       np->mii_if.full_duplex ? "full" : "half");
1635 
1636 		new_tx_mode = np->tx_mode & ~FullDuplex;	/* duplex setting */
1637 		if (np->mii_if.full_duplex)
1638 			new_tx_mode |= FullDuplex;
1639 		if (np->tx_mode != new_tx_mode) {
1640 			np->tx_mode = new_tx_mode;
1641 			writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1642 			udelay(1000);
1643 			writel(np->tx_mode, ioaddr + TxMode);
1644 		}
1645 
1646 		new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1647 		if (np->speed100)
1648 			new_intr_timer_ctrl |= Timer10X;
1649 		if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1650 			np->intr_timer_ctrl = new_intr_timer_ctrl;
1651 			writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1652 		}
1653 	} else {
1654 		netif_carrier_off(dev);
1655 		printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1656 	}
1657 }
1658 
1659 
1660 static void netdev_error(struct net_device *dev, int intr_status)
1661 {
1662 	struct netdev_private *np = netdev_priv(dev);
1663 
1664 	/* Came close to underrunning the Tx FIFO, increase threshold. */
1665 	if (intr_status & IntrTxDataLow) {
1666 		if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1667 			writel(++np->tx_threshold, np->base + TxThreshold);
1668 			printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1669 			       dev->name, np->tx_threshold * 16);
1670 		} else
1671 			printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1672 	}
1673 	if (intr_status & IntrRxGFPDead) {
1674 		dev->stats.rx_fifo_errors++;
1675 		dev->stats.rx_errors++;
1676 	}
1677 	if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
1678 		dev->stats.tx_fifo_errors++;
1679 		dev->stats.tx_errors++;
1680 	}
1681 	if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1682 		printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1683 		       dev->name, intr_status);
1684 }
1685 
1686 
1687 static struct net_device_stats *get_stats(struct net_device *dev)
1688 {
1689 	struct netdev_private *np = netdev_priv(dev);
1690 	void __iomem *ioaddr = np->base;
1691 
1692 	/* This adapter architecture needs no SMP locks. */
1693 	dev->stats.tx_bytes = readl(ioaddr + 0x57010);
1694 	dev->stats.rx_bytes = readl(ioaddr + 0x57044);
1695 	dev->stats.tx_packets = readl(ioaddr + 0x57000);
1696 	dev->stats.tx_aborted_errors =
1697 		readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
1698 	dev->stats.tx_window_errors = readl(ioaddr + 0x57018);
1699 	dev->stats.collisions =
1700 		readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1701 
1702 	/* The chip only need report frame silently dropped. */
1703 	dev->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1704 	writew(0, ioaddr + RxDMAStatus);
1705 	dev->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1706 	dev->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1707 	dev->stats.rx_length_errors = readl(ioaddr + 0x57058);
1708 	dev->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1709 
1710 	return &dev->stats;
1711 }
1712 
1713 #ifdef VLAN_SUPPORT
1714 static u32 set_vlan_mode(struct netdev_private *np)
1715 {
1716 	u32 ret = VlanMode;
1717 	u16 vid;
1718 	void __iomem *filter_addr = np->base + HashTable + 8;
1719 	int vlan_count = 0;
1720 
1721 	for_each_set_bit(vid, np->active_vlans, VLAN_N_VID) {
1722 		if (vlan_count == 32)
1723 			break;
1724 		writew(vid, filter_addr);
1725 		filter_addr += 16;
1726 		vlan_count++;
1727 	}
1728 	if (vlan_count == 32) {
1729 		ret |= PerfectFilterVlan;
1730 		while (vlan_count < 32) {
1731 			writew(0, filter_addr);
1732 			filter_addr += 16;
1733 			vlan_count++;
1734 		}
1735 	}
1736 	return ret;
1737 }
1738 #endif /* VLAN_SUPPORT */
1739 
1740 static void set_rx_mode(struct net_device *dev)
1741 {
1742 	struct netdev_private *np = netdev_priv(dev);
1743 	void __iomem *ioaddr = np->base;
1744 	u32 rx_mode = MinVLANPrio;
1745 	struct netdev_hw_addr *ha;
1746 	int i;
1747 
1748 #ifdef VLAN_SUPPORT
1749 	rx_mode |= set_vlan_mode(np);
1750 #endif /* VLAN_SUPPORT */
1751 
1752 	if (dev->flags & IFF_PROMISC) {	/* Set promiscuous. */
1753 		rx_mode |= AcceptAll;
1754 	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1755 		   (dev->flags & IFF_ALLMULTI)) {
1756 		/* Too many to match, or accept all multicasts. */
1757 		rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
1758 	} else if (netdev_mc_count(dev) <= 14) {
1759 		/* Use the 16 element perfect filter, skip first two entries. */
1760 		void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1761 		__be16 *eaddrs;
1762 		netdev_for_each_mc_addr(ha, dev) {
1763 			eaddrs = (__be16 *) ha->addr;
1764 			writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4;
1765 			writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1766 			writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8;
1767 		}
1768 		eaddrs = (__be16 *)dev->dev_addr;
1769 		i = netdev_mc_count(dev) + 2;
1770 		while (i++ < 16) {
1771 			writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1772 			writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1773 			writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1774 		}
1775 		rx_mode |= AcceptBroadcast|PerfectFilter;
1776 	} else {
1777 		/* Must use a multicast hash table. */
1778 		void __iomem *filter_addr;
1779 		__be16 *eaddrs;
1780 		__le16 mc_filter[32] __attribute__ ((aligned(sizeof(long))));	/* Multicast hash filter */
1781 
1782 		memset(mc_filter, 0, sizeof(mc_filter));
1783 		netdev_for_each_mc_addr(ha, dev) {
1784 			/* The chip uses the upper 9 CRC bits
1785 			   as index into the hash table */
1786 			int bit_nr = ether_crc_le(ETH_ALEN, ha->addr) >> 23;
1787 			__le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1];
1788 
1789 			*fptr |= cpu_to_le32(1 << (bit_nr & 31));
1790 		}
1791 		/* Clear the perfect filter list, skip first two entries. */
1792 		filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1793 		eaddrs = (__be16 *)dev->dev_addr;
1794 		for (i = 2; i < 16; i++) {
1795 			writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1796 			writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1797 			writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1798 		}
1799 		for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1800 			writew(mc_filter[i], filter_addr);
1801 		rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1802 	}
1803 	writel(rx_mode, ioaddr + RxFilterMode);
1804 }
1805 
1806 static int check_if_running(struct net_device *dev)
1807 {
1808 	if (!netif_running(dev))
1809 		return -EINVAL;
1810 	return 0;
1811 }
1812 
1813 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1814 {
1815 	struct netdev_private *np = netdev_priv(dev);
1816 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1817 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1818 	strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1819 }
1820 
1821 static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1822 {
1823 	struct netdev_private *np = netdev_priv(dev);
1824 	spin_lock_irq(&np->lock);
1825 	mii_ethtool_gset(&np->mii_if, ecmd);
1826 	spin_unlock_irq(&np->lock);
1827 	return 0;
1828 }
1829 
1830 static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1831 {
1832 	struct netdev_private *np = netdev_priv(dev);
1833 	int res;
1834 	spin_lock_irq(&np->lock);
1835 	res = mii_ethtool_sset(&np->mii_if, ecmd);
1836 	spin_unlock_irq(&np->lock);
1837 	check_duplex(dev);
1838 	return res;
1839 }
1840 
1841 static int nway_reset(struct net_device *dev)
1842 {
1843 	struct netdev_private *np = netdev_priv(dev);
1844 	return mii_nway_restart(&np->mii_if);
1845 }
1846 
1847 static u32 get_link(struct net_device *dev)
1848 {
1849 	struct netdev_private *np = netdev_priv(dev);
1850 	return mii_link_ok(&np->mii_if);
1851 }
1852 
1853 static u32 get_msglevel(struct net_device *dev)
1854 {
1855 	return debug;
1856 }
1857 
1858 static void set_msglevel(struct net_device *dev, u32 val)
1859 {
1860 	debug = val;
1861 }
1862 
1863 static const struct ethtool_ops ethtool_ops = {
1864 	.begin = check_if_running,
1865 	.get_drvinfo = get_drvinfo,
1866 	.get_settings = get_settings,
1867 	.set_settings = set_settings,
1868 	.nway_reset = nway_reset,
1869 	.get_link = get_link,
1870 	.get_msglevel = get_msglevel,
1871 	.set_msglevel = set_msglevel,
1872 };
1873 
1874 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1875 {
1876 	struct netdev_private *np = netdev_priv(dev);
1877 	struct mii_ioctl_data *data = if_mii(rq);
1878 	int rc;
1879 
1880 	if (!netif_running(dev))
1881 		return -EINVAL;
1882 
1883 	spin_lock_irq(&np->lock);
1884 	rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1885 	spin_unlock_irq(&np->lock);
1886 
1887 	if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
1888 		check_duplex(dev);
1889 
1890 	return rc;
1891 }
1892 
1893 static int netdev_close(struct net_device *dev)
1894 {
1895 	struct netdev_private *np = netdev_priv(dev);
1896 	void __iomem *ioaddr = np->base;
1897 	int i;
1898 
1899 	netif_stop_queue(dev);
1900 
1901 	napi_disable(&np->napi);
1902 
1903 	if (debug > 1) {
1904 		printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
1905 			   dev->name, (int) readl(ioaddr + IntrStatus));
1906 		printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1907 		       dev->name, np->cur_tx, np->dirty_tx,
1908 		       np->cur_rx, np->dirty_rx);
1909 	}
1910 
1911 	/* Disable interrupts by clearing the interrupt mask. */
1912 	writel(0, ioaddr + IntrEnable);
1913 
1914 	/* Stop the chip's Tx and Rx processes. */
1915 	writel(0, ioaddr + GenCtrl);
1916 	readl(ioaddr + GenCtrl);
1917 
1918 	if (debug > 5) {
1919 		printk(KERN_DEBUG"  Tx ring at %#llx:\n",
1920 		       (long long) np->tx_ring_dma);
1921 		for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
1922 			printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1923 			       i, le32_to_cpu(np->tx_ring[i].status),
1924 			       (long long) dma_to_cpu(np->tx_ring[i].addr),
1925 			       le32_to_cpu(np->tx_done_q[i].status));
1926 		printk(KERN_DEBUG "  Rx ring at %#llx -> %p:\n",
1927 		       (long long) np->rx_ring_dma, np->rx_done_q);
1928 		if (np->rx_done_q)
1929 			for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
1930 				printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
1931 				       i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
1932 		}
1933 	}
1934 
1935 	free_irq(np->pci_dev->irq, dev);
1936 
1937 	/* Free all the skbuffs in the Rx queue. */
1938 	for (i = 0; i < RX_RING_SIZE; i++) {
1939 		np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
1940 		if (np->rx_info[i].skb != NULL) {
1941 			pci_unmap_single(np->pci_dev, np->rx_info[i].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1942 			dev_kfree_skb(np->rx_info[i].skb);
1943 		}
1944 		np->rx_info[i].skb = NULL;
1945 		np->rx_info[i].mapping = 0;
1946 	}
1947 	for (i = 0; i < TX_RING_SIZE; i++) {
1948 		struct sk_buff *skb = np->tx_info[i].skb;
1949 		if (skb == NULL)
1950 			continue;
1951 		pci_unmap_single(np->pci_dev,
1952 				 np->tx_info[i].mapping,
1953 				 skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1954 		np->tx_info[i].mapping = 0;
1955 		dev_kfree_skb(skb);
1956 		np->tx_info[i].skb = NULL;
1957 	}
1958 
1959 	return 0;
1960 }
1961 
1962 #ifdef CONFIG_PM
1963 static int starfire_suspend(struct pci_dev *pdev, pm_message_t state)
1964 {
1965 	struct net_device *dev = pci_get_drvdata(pdev);
1966 
1967 	if (netif_running(dev)) {
1968 		netif_device_detach(dev);
1969 		netdev_close(dev);
1970 	}
1971 
1972 	pci_save_state(pdev);
1973 	pci_set_power_state(pdev, pci_choose_state(pdev,state));
1974 
1975 	return 0;
1976 }
1977 
1978 static int starfire_resume(struct pci_dev *pdev)
1979 {
1980 	struct net_device *dev = pci_get_drvdata(pdev);
1981 
1982 	pci_set_power_state(pdev, PCI_D0);
1983 	pci_restore_state(pdev);
1984 
1985 	if (netif_running(dev)) {
1986 		netdev_open(dev);
1987 		netif_device_attach(dev);
1988 	}
1989 
1990 	return 0;
1991 }
1992 #endif /* CONFIG_PM */
1993 
1994 
1995 static void starfire_remove_one(struct pci_dev *pdev)
1996 {
1997 	struct net_device *dev = pci_get_drvdata(pdev);
1998 	struct netdev_private *np = netdev_priv(dev);
1999 
2000 	BUG_ON(!dev);
2001 
2002 	unregister_netdev(dev);
2003 
2004 	if (np->queue_mem)
2005 		pci_free_consistent(pdev, np->queue_mem_size, np->queue_mem, np->queue_mem_dma);
2006 
2007 
2008 	/* XXX: add wakeup code -- requires firmware for MagicPacket */
2009 	pci_set_power_state(pdev, PCI_D3hot);	/* go to sleep in D3 mode */
2010 	pci_disable_device(pdev);
2011 
2012 	iounmap(np->base);
2013 	pci_release_regions(pdev);
2014 
2015 	pci_set_drvdata(pdev, NULL);
2016 	free_netdev(dev);			/* Will also free np!! */
2017 }
2018 
2019 
2020 static struct pci_driver starfire_driver = {
2021 	.name		= DRV_NAME,
2022 	.probe		= starfire_init_one,
2023 	.remove		= starfire_remove_one,
2024 #ifdef CONFIG_PM
2025 	.suspend	= starfire_suspend,
2026 	.resume		= starfire_resume,
2027 #endif /* CONFIG_PM */
2028 	.id_table	= starfire_pci_tbl,
2029 };
2030 
2031 
2032 static int __init starfire_init (void)
2033 {
2034 /* when a module, this is printed whether or not devices are found in probe */
2035 #ifdef MODULE
2036 	printk(version);
2037 
2038 	printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
2039 #endif
2040 
2041 	BUILD_BUG_ON(sizeof(dma_addr_t) != sizeof(netdrv_addr_t));
2042 
2043 	return pci_register_driver(&starfire_driver);
2044 }
2045 
2046 
2047 static void __exit starfire_cleanup (void)
2048 {
2049 	pci_unregister_driver (&starfire_driver);
2050 }
2051 
2052 
2053 module_init(starfire_init);
2054 module_exit(starfire_cleanup);
2055 
2056 
2057 /*
2058  * Local variables:
2059  *  c-basic-offset: 8
2060  *  tab-width: 8
2061  * End:
2062  */
2063