1 /* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */ 2 /* 3 Written 1998-2000 by Donald Becker. 4 5 Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please 6 send all bug reports to me, and not to Donald Becker, as this code 7 has been heavily modified from Donald's original version. 8 9 This software may be used and distributed according to the terms of 10 the GNU General Public License (GPL), incorporated herein by reference. 11 Drivers based on or derived from this code fall under the GPL and must 12 retain the authorship, copyright and license notice. This file is not 13 a complete program and may only be used when the entire operating 14 system is licensed under the GPL. 15 16 The information below comes from Donald Becker's original driver: 17 18 The author may be reached as becker@scyld.com, or C/O 19 Scyld Computing Corporation 20 410 Severn Ave., Suite 210 21 Annapolis MD 21403 22 23 Support and updates available at 24 http://www.scyld.com/network/starfire.html 25 [link no longer provides useful info -jgarzik] 26 27 */ 28 29 #define DRV_NAME "starfire" 30 #define DRV_VERSION "2.1" 31 #define DRV_RELDATE "July 6, 2008" 32 33 #include <linux/interrupt.h> 34 #include <linux/module.h> 35 #include <linux/kernel.h> 36 #include <linux/pci.h> 37 #include <linux/netdevice.h> 38 #include <linux/etherdevice.h> 39 #include <linux/init.h> 40 #include <linux/delay.h> 41 #include <linux/crc32.h> 42 #include <linux/ethtool.h> 43 #include <linux/mii.h> 44 #include <linux/if_vlan.h> 45 #include <linux/mm.h> 46 #include <linux/firmware.h> 47 #include <asm/processor.h> /* Processor type for cache alignment. */ 48 #include <linux/uaccess.h> 49 #include <asm/io.h> 50 51 /* 52 * The current frame processor firmware fails to checksum a fragment 53 * of length 1. If and when this is fixed, the #define below can be removed. 54 */ 55 #define HAS_BROKEN_FIRMWARE 56 57 /* 58 * If using the broken firmware, data must be padded to the next 32-bit boundary. 59 */ 60 #ifdef HAS_BROKEN_FIRMWARE 61 #define PADDING_MASK 3 62 #endif 63 64 /* 65 * Define this if using the driver with the zero-copy patch 66 */ 67 #define ZEROCOPY 68 69 #if IS_ENABLED(CONFIG_VLAN_8021Q) 70 #define VLAN_SUPPORT 71 #endif 72 73 /* The user-configurable values. 74 These may be modified when a driver module is loaded.*/ 75 76 /* Used for tuning interrupt latency vs. overhead. */ 77 static int intr_latency; 78 static int small_frames; 79 80 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */ 81 static int max_interrupt_work = 20; 82 static int mtu; 83 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast). 84 The Starfire has a 512 element hash table based on the Ethernet CRC. */ 85 static const int multicast_filter_limit = 512; 86 /* Whether to do TCP/UDP checksums in hardware */ 87 static int enable_hw_cksum = 1; 88 89 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/ 90 /* 91 * Set the copy breakpoint for the copy-only-tiny-frames scheme. 92 * Setting to > 1518 effectively disables this feature. 93 * 94 * NOTE: 95 * The ia64 doesn't allow for unaligned loads even of integers being 96 * misaligned on a 2 byte boundary. Thus always force copying of 97 * packets as the starfire doesn't allow for misaligned DMAs ;-( 98 * 23/10/2000 - Jes 99 * 100 * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64, 101 * at least, having unaligned frames leads to a rather serious performance 102 * penalty. -Ion 103 */ 104 #if defined(__ia64__) || defined(__alpha__) || defined(__sparc__) 105 static int rx_copybreak = PKT_BUF_SZ; 106 #else 107 static int rx_copybreak /* = 0 */; 108 #endif 109 110 /* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */ 111 #ifdef __sparc__ 112 #define DMA_BURST_SIZE 64 113 #else 114 #define DMA_BURST_SIZE 128 115 #endif 116 117 /* Operational parameters that are set at compile time. */ 118 119 /* The "native" ring sizes are either 256 or 2048. 120 However in some modes a descriptor may be marked to wrap the ring earlier. 121 */ 122 #define RX_RING_SIZE 256 123 #define TX_RING_SIZE 32 124 /* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */ 125 #define DONE_Q_SIZE 1024 126 /* All queues must be aligned on a 256-byte boundary */ 127 #define QUEUE_ALIGN 256 128 129 #if RX_RING_SIZE > 256 130 #define RX_Q_ENTRIES Rx2048QEntries 131 #else 132 #define RX_Q_ENTRIES Rx256QEntries 133 #endif 134 135 /* Operational parameters that usually are not changed. */ 136 /* Time in jiffies before concluding the transmitter is hung. */ 137 #define TX_TIMEOUT (2 * HZ) 138 139 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 140 /* 64-bit dma_addr_t */ 141 #define ADDR_64BITS /* This chip uses 64 bit addresses. */ 142 #define netdrv_addr_t __le64 143 #define cpu_to_dma(x) cpu_to_le64(x) 144 #define dma_to_cpu(x) le64_to_cpu(x) 145 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit 146 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit 147 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit 148 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit 149 #define RX_DESC_ADDR_SIZE RxDescAddr64bit 150 #else /* 32-bit dma_addr_t */ 151 #define netdrv_addr_t __le32 152 #define cpu_to_dma(x) cpu_to_le32(x) 153 #define dma_to_cpu(x) le32_to_cpu(x) 154 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit 155 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit 156 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit 157 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit 158 #define RX_DESC_ADDR_SIZE RxDescAddr32bit 159 #endif 160 161 #define skb_first_frag_len(skb) skb_headlen(skb) 162 #define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1) 163 164 /* Firmware names */ 165 #define FIRMWARE_RX "adaptec/starfire_rx.bin" 166 #define FIRMWARE_TX "adaptec/starfire_tx.bin" 167 168 /* These identify the driver base version and may not be removed. */ 169 static const char version[] = 170 KERN_INFO "starfire.c:v1.03 7/26/2000 Written by Donald Becker <becker@scyld.com>\n" 171 " (unofficial 2.2/2.4 kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n"; 172 173 MODULE_AUTHOR("Donald Becker <becker@scyld.com>"); 174 MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver"); 175 MODULE_LICENSE("GPL"); 176 MODULE_VERSION(DRV_VERSION); 177 MODULE_FIRMWARE(FIRMWARE_RX); 178 MODULE_FIRMWARE(FIRMWARE_TX); 179 180 module_param(max_interrupt_work, int, 0); 181 module_param(mtu, int, 0); 182 module_param(debug, int, 0); 183 module_param(rx_copybreak, int, 0); 184 module_param(intr_latency, int, 0); 185 module_param(small_frames, int, 0); 186 module_param(enable_hw_cksum, int, 0); 187 MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt"); 188 MODULE_PARM_DESC(mtu, "MTU (all boards)"); 189 MODULE_PARM_DESC(debug, "Debug level (0-6)"); 190 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames"); 191 MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds"); 192 MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)"); 193 MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)"); 194 195 /* 196 Theory of Operation 197 198 I. Board Compatibility 199 200 This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter. 201 202 II. Board-specific settings 203 204 III. Driver operation 205 206 IIIa. Ring buffers 207 208 The Starfire hardware uses multiple fixed-size descriptor queues/rings. The 209 ring sizes are set fixed by the hardware, but may optionally be wrapped 210 earlier by the END bit in the descriptor. 211 This driver uses that hardware queue size for the Rx ring, where a large 212 number of entries has no ill effect beyond increases the potential backlog. 213 The Tx ring is wrapped with the END bit, since a large hardware Tx queue 214 disables the queue layer priority ordering and we have no mechanism to 215 utilize the hardware two-level priority queue. When modifying the 216 RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning 217 levels. 218 219 IIIb/c. Transmit/Receive Structure 220 221 See the Adaptec manual for the many possible structures, and options for 222 each structure. There are far too many to document all of them here. 223 224 For transmit this driver uses type 0/1 transmit descriptors (depending 225 on the 32/64 bitness of the architecture), and relies on automatic 226 minimum-length padding. It does not use the completion queue 227 consumer index, but instead checks for non-zero status entries. 228 229 For receive this driver uses type 2/3 receive descriptors. The driver 230 allocates full frame size skbuffs for the Rx ring buffers, so all frames 231 should fit in a single descriptor. The driver does not use the completion 232 queue consumer index, but instead checks for non-zero status entries. 233 234 When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff 235 is allocated and the frame is copied to the new skbuff. When the incoming 236 frame is larger, the skbuff is passed directly up the protocol stack. 237 Buffers consumed this way are replaced by newly allocated skbuffs in a later 238 phase of receive. 239 240 A notable aspect of operation is that unaligned buffers are not permitted by 241 the Starfire hardware. Thus the IP header at offset 14 in an ethernet frame 242 isn't longword aligned, which may cause problems on some machine 243 e.g. Alphas and IA64. For these architectures, the driver is forced to copy 244 the frame into a new skbuff unconditionally. Copied frames are put into the 245 skbuff at an offset of "+2", thus 16-byte aligning the IP header. 246 247 IIId. Synchronization 248 249 The driver runs as two independent, single-threaded flows of control. One 250 is the send-packet routine, which enforces single-threaded use by the 251 dev->tbusy flag. The other thread is the interrupt handler, which is single 252 threaded by the hardware and interrupt handling software. 253 254 The send packet thread has partial control over the Tx ring and the netif_queue 255 status. If the number of free Tx slots in the ring falls below a certain number 256 (currently hardcoded to 4), it signals the upper layer to stop the queue. 257 258 The interrupt handler has exclusive control over the Rx ring and records stats 259 from the Tx ring. After reaping the stats, it marks the Tx queue entry as 260 empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the 261 number of free Tx slow is above the threshold, it signals the upper layer to 262 restart the queue. 263 264 IV. Notes 265 266 IVb. References 267 268 The Adaptec Starfire manuals, available only from Adaptec. 269 http://www.scyld.com/expert/100mbps.html 270 http://www.scyld.com/expert/NWay.html 271 272 IVc. Errata 273 274 - StopOnPerr is broken, don't enable 275 - Hardware ethernet padding exposes random data, perform software padding 276 instead (unverified -- works correctly for all the hardware I have) 277 278 */ 279 280 281 282 enum chip_capability_flags {CanHaveMII=1, }; 283 284 enum chipset { 285 CH_6915 = 0, 286 }; 287 288 static const struct pci_device_id starfire_pci_tbl[] = { 289 { PCI_VDEVICE(ADAPTEC, 0x6915), CH_6915 }, 290 { 0, } 291 }; 292 MODULE_DEVICE_TABLE(pci, starfire_pci_tbl); 293 294 /* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */ 295 static const struct chip_info { 296 const char *name; 297 int drv_flags; 298 } netdrv_tbl[] = { 299 { "Adaptec Starfire 6915", CanHaveMII }, 300 }; 301 302 303 /* Offsets to the device registers. 304 Unlike software-only systems, device drivers interact with complex hardware. 305 It's not useful to define symbolic names for every register bit in the 306 device. The name can only partially document the semantics and make 307 the driver longer and more difficult to read. 308 In general, only the important configuration values or bits changed 309 multiple times should be defined symbolically. 310 */ 311 enum register_offsets { 312 PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074, 313 IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088, 314 MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000, 315 GPIOCtrl=0x5008C, TxDescCtrl=0x50090, 316 TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */ 317 TxRingHiAddr=0x5009C, /* 64 bit address extension. */ 318 TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4, 319 TxThreshold=0x500B0, 320 CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8, 321 RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0, 322 CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0, 323 RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0, 324 RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4, 325 TxMode=0x55000, VlanType=0x55064, 326 PerfFilterTable=0x56000, HashTable=0x56100, 327 TxGfpMem=0x58000, RxGfpMem=0x5a000, 328 }; 329 330 /* 331 * Bits in the interrupt status/mask registers. 332 * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register 333 * enables all the interrupt sources that are or'ed into those status bits. 334 */ 335 enum intr_status_bits { 336 IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000, 337 IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000, 338 IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000, 339 IntrTxComplQLow=0x200000, IntrPCI=0x100000, 340 IntrDMAErr=0x080000, IntrTxDataLow=0x040000, 341 IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000, 342 IntrNormalSummary=0x8000, IntrTxDone=0x4000, 343 IntrTxDMADone=0x2000, IntrTxEmpty=0x1000, 344 IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400, 345 IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100, 346 IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40, 347 IntrNoTxCsum=0x20, IntrTxBadID=0x10, 348 IntrHiPriTxBadID=0x08, IntrRxGfp=0x04, 349 IntrTxGfp=0x02, IntrPCIPad=0x01, 350 /* not quite bits */ 351 IntrRxDone=IntrRxQ2Done | IntrRxQ1Done, 352 IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low, 353 IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe, 354 }; 355 356 /* Bits in the RxFilterMode register. */ 357 enum rx_mode_bits { 358 AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01, 359 AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30, 360 PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200, 361 WakeupOnGFP=0x0800, 362 }; 363 364 /* Bits in the TxMode register */ 365 enum tx_mode_bits { 366 MiiSoftReset=0x8000, MIILoopback=0x4000, 367 TxFlowEnable=0x0800, RxFlowEnable=0x0400, 368 PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01, 369 }; 370 371 /* Bits in the TxDescCtrl register. */ 372 enum tx_ctrl_bits { 373 TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20, 374 TxDescSpace128=0x30, TxDescSpace256=0x40, 375 TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02, 376 TxDescType3=0x03, TxDescType4=0x04, 377 TxNoDMACompletion=0x08, 378 TxDescQAddr64bit=0x80, TxDescQAddr32bit=0, 379 TxHiPriFIFOThreshShift=24, TxPadLenShift=16, 380 TxDMABurstSizeShift=8, 381 }; 382 383 /* Bits in the RxDescQCtrl register. */ 384 enum rx_ctrl_bits { 385 RxBufferLenShift=16, RxMinDescrThreshShift=0, 386 RxPrefetchMode=0x8000, RxVariableQ=0x2000, 387 Rx2048QEntries=0x4000, Rx256QEntries=0, 388 RxDescAddr64bit=0x1000, RxDescAddr32bit=0, 389 RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0, 390 RxDescSpace4=0x000, RxDescSpace8=0x100, 391 RxDescSpace16=0x200, RxDescSpace32=0x300, 392 RxDescSpace64=0x400, RxDescSpace128=0x500, 393 RxConsumerWrEn=0x80, 394 }; 395 396 /* Bits in the RxDMACtrl register. */ 397 enum rx_dmactrl_bits { 398 RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000, 399 RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000, 400 RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000, 401 RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000, 402 RxChecksumRejectTCPOnly=0x01000000, 403 RxCompletionQ2Enable=0x800000, 404 RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000, 405 RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000, 406 RxDMAQ2NonIP=0x400000, 407 RxUseBackupQueue=0x080000, RxDMACRC=0x040000, 408 RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8, 409 RxBurstSizeShift=0, 410 }; 411 412 /* Bits in the RxCompletionAddr register */ 413 enum rx_compl_bits { 414 RxComplQAddr64bit=0x80, RxComplQAddr32bit=0, 415 RxComplProducerWrEn=0x40, 416 RxComplType0=0x00, RxComplType1=0x10, 417 RxComplType2=0x20, RxComplType3=0x30, 418 RxComplThreshShift=0, 419 }; 420 421 /* Bits in the TxCompletionAddr register */ 422 enum tx_compl_bits { 423 TxComplQAddr64bit=0x80, TxComplQAddr32bit=0, 424 TxComplProducerWrEn=0x40, 425 TxComplIntrStatus=0x20, 426 CommonQueueMode=0x10, 427 TxComplThreshShift=0, 428 }; 429 430 /* Bits in the GenCtrl register */ 431 enum gen_ctrl_bits { 432 RxEnable=0x05, TxEnable=0x0a, 433 RxGFPEnable=0x10, TxGFPEnable=0x20, 434 }; 435 436 /* Bits in the IntrTimerCtrl register */ 437 enum intr_ctrl_bits { 438 Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100, 439 SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600, 440 IntrLatencyMask=0x1f, 441 }; 442 443 /* The Rx and Tx buffer descriptors. */ 444 struct starfire_rx_desc { 445 netdrv_addr_t rxaddr; 446 }; 447 enum rx_desc_bits { 448 RxDescValid=1, RxDescEndRing=2, 449 }; 450 451 /* Completion queue entry. */ 452 struct short_rx_done_desc { 453 __le32 status; /* Low 16 bits is length. */ 454 }; 455 struct basic_rx_done_desc { 456 __le32 status; /* Low 16 bits is length. */ 457 __le16 vlanid; 458 __le16 status2; 459 }; 460 struct csum_rx_done_desc { 461 __le32 status; /* Low 16 bits is length. */ 462 __le16 csum; /* Partial checksum */ 463 __le16 status2; 464 }; 465 struct full_rx_done_desc { 466 __le32 status; /* Low 16 bits is length. */ 467 __le16 status3; 468 __le16 status2; 469 __le16 vlanid; 470 __le16 csum; /* partial checksum */ 471 __le32 timestamp; 472 }; 473 /* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */ 474 #ifdef VLAN_SUPPORT 475 typedef struct full_rx_done_desc rx_done_desc; 476 #define RxComplType RxComplType3 477 #else /* not VLAN_SUPPORT */ 478 typedef struct csum_rx_done_desc rx_done_desc; 479 #define RxComplType RxComplType2 480 #endif /* not VLAN_SUPPORT */ 481 482 enum rx_done_bits { 483 RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000, 484 }; 485 486 /* Type 1 Tx descriptor. */ 487 struct starfire_tx_desc_1 { 488 __le32 status; /* Upper bits are status, lower 16 length. */ 489 __le32 addr; 490 }; 491 492 /* Type 2 Tx descriptor. */ 493 struct starfire_tx_desc_2 { 494 __le32 status; /* Upper bits are status, lower 16 length. */ 495 __le32 reserved; 496 __le64 addr; 497 }; 498 499 #ifdef ADDR_64BITS 500 typedef struct starfire_tx_desc_2 starfire_tx_desc; 501 #define TX_DESC_TYPE TxDescType2 502 #else /* not ADDR_64BITS */ 503 typedef struct starfire_tx_desc_1 starfire_tx_desc; 504 #define TX_DESC_TYPE TxDescType1 505 #endif /* not ADDR_64BITS */ 506 #define TX_DESC_SPACING TxDescSpaceUnlim 507 508 enum tx_desc_bits { 509 TxDescID=0xB0000000, 510 TxCRCEn=0x01000000, TxDescIntr=0x08000000, 511 TxRingWrap=0x04000000, TxCalTCP=0x02000000, 512 }; 513 struct tx_done_desc { 514 __le32 status; /* timestamp, index. */ 515 #if 0 516 __le32 intrstatus; /* interrupt status */ 517 #endif 518 }; 519 520 struct rx_ring_info { 521 struct sk_buff *skb; 522 dma_addr_t mapping; 523 }; 524 struct tx_ring_info { 525 struct sk_buff *skb; 526 dma_addr_t mapping; 527 unsigned int used_slots; 528 }; 529 530 #define PHY_CNT 2 531 struct netdev_private { 532 /* Descriptor rings first for alignment. */ 533 struct starfire_rx_desc *rx_ring; 534 starfire_tx_desc *tx_ring; 535 dma_addr_t rx_ring_dma; 536 dma_addr_t tx_ring_dma; 537 /* The addresses of rx/tx-in-place skbuffs. */ 538 struct rx_ring_info rx_info[RX_RING_SIZE]; 539 struct tx_ring_info tx_info[TX_RING_SIZE]; 540 /* Pointers to completion queues (full pages). */ 541 rx_done_desc *rx_done_q; 542 dma_addr_t rx_done_q_dma; 543 unsigned int rx_done; 544 struct tx_done_desc *tx_done_q; 545 dma_addr_t tx_done_q_dma; 546 unsigned int tx_done; 547 struct napi_struct napi; 548 struct net_device *dev; 549 struct pci_dev *pci_dev; 550 #ifdef VLAN_SUPPORT 551 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)]; 552 #endif 553 void *queue_mem; 554 dma_addr_t queue_mem_dma; 555 size_t queue_mem_size; 556 557 /* Frequently used values: keep some adjacent for cache effect. */ 558 spinlock_t lock; 559 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */ 560 unsigned int cur_tx, dirty_tx, reap_tx; 561 unsigned int rx_buf_sz; /* Based on MTU+slack. */ 562 /* These values keep track of the transceiver/media in use. */ 563 int speed100; /* Set if speed == 100MBit. */ 564 u32 tx_mode; 565 u32 intr_timer_ctrl; 566 u8 tx_threshold; 567 /* MII transceiver section. */ 568 struct mii_if_info mii_if; /* MII lib hooks/info */ 569 int phy_cnt; /* MII device addresses. */ 570 unsigned char phys[PHY_CNT]; /* MII device addresses. */ 571 void __iomem *base; 572 }; 573 574 575 static int mdio_read(struct net_device *dev, int phy_id, int location); 576 static void mdio_write(struct net_device *dev, int phy_id, int location, int value); 577 static int netdev_open(struct net_device *dev); 578 static void check_duplex(struct net_device *dev); 579 static void tx_timeout(struct net_device *dev); 580 static void init_ring(struct net_device *dev); 581 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev); 582 static irqreturn_t intr_handler(int irq, void *dev_instance); 583 static void netdev_error(struct net_device *dev, int intr_status); 584 static int __netdev_rx(struct net_device *dev, int *quota); 585 static int netdev_poll(struct napi_struct *napi, int budget); 586 static void refill_rx_ring(struct net_device *dev); 587 static void netdev_error(struct net_device *dev, int intr_status); 588 static void set_rx_mode(struct net_device *dev); 589 static struct net_device_stats *get_stats(struct net_device *dev); 590 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); 591 static int netdev_close(struct net_device *dev); 592 static void netdev_media_change(struct net_device *dev); 593 static const struct ethtool_ops ethtool_ops; 594 595 596 #ifdef VLAN_SUPPORT 597 static int netdev_vlan_rx_add_vid(struct net_device *dev, 598 __be16 proto, u16 vid) 599 { 600 struct netdev_private *np = netdev_priv(dev); 601 602 spin_lock(&np->lock); 603 if (debug > 1) 604 printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid); 605 set_bit(vid, np->active_vlans); 606 set_rx_mode(dev); 607 spin_unlock(&np->lock); 608 609 return 0; 610 } 611 612 static int netdev_vlan_rx_kill_vid(struct net_device *dev, 613 __be16 proto, u16 vid) 614 { 615 struct netdev_private *np = netdev_priv(dev); 616 617 spin_lock(&np->lock); 618 if (debug > 1) 619 printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid); 620 clear_bit(vid, np->active_vlans); 621 set_rx_mode(dev); 622 spin_unlock(&np->lock); 623 624 return 0; 625 } 626 #endif /* VLAN_SUPPORT */ 627 628 629 static const struct net_device_ops netdev_ops = { 630 .ndo_open = netdev_open, 631 .ndo_stop = netdev_close, 632 .ndo_start_xmit = start_tx, 633 .ndo_tx_timeout = tx_timeout, 634 .ndo_get_stats = get_stats, 635 .ndo_set_rx_mode = set_rx_mode, 636 .ndo_do_ioctl = netdev_ioctl, 637 .ndo_set_mac_address = eth_mac_addr, 638 .ndo_validate_addr = eth_validate_addr, 639 #ifdef VLAN_SUPPORT 640 .ndo_vlan_rx_add_vid = netdev_vlan_rx_add_vid, 641 .ndo_vlan_rx_kill_vid = netdev_vlan_rx_kill_vid, 642 #endif 643 }; 644 645 static int starfire_init_one(struct pci_dev *pdev, 646 const struct pci_device_id *ent) 647 { 648 struct device *d = &pdev->dev; 649 struct netdev_private *np; 650 int i, irq, chip_idx = ent->driver_data; 651 struct net_device *dev; 652 long ioaddr; 653 void __iomem *base; 654 int drv_flags, io_size; 655 int boguscnt; 656 657 /* when built into the kernel, we only print version if device is found */ 658 #ifndef MODULE 659 static int printed_version; 660 if (!printed_version++) 661 printk(version); 662 #endif 663 664 if (pci_enable_device (pdev)) 665 return -EIO; 666 667 ioaddr = pci_resource_start(pdev, 0); 668 io_size = pci_resource_len(pdev, 0); 669 if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) { 670 dev_err(d, "no PCI MEM resources, aborting\n"); 671 return -ENODEV; 672 } 673 674 dev = alloc_etherdev(sizeof(*np)); 675 if (!dev) 676 return -ENOMEM; 677 678 SET_NETDEV_DEV(dev, &pdev->dev); 679 680 irq = pdev->irq; 681 682 if (pci_request_regions (pdev, DRV_NAME)) { 683 dev_err(d, "cannot reserve PCI resources, aborting\n"); 684 goto err_out_free_netdev; 685 } 686 687 base = ioremap(ioaddr, io_size); 688 if (!base) { 689 dev_err(d, "cannot remap %#x @ %#lx, aborting\n", 690 io_size, ioaddr); 691 goto err_out_free_res; 692 } 693 694 pci_set_master(pdev); 695 696 /* enable MWI -- it vastly improves Rx performance on sparc64 */ 697 pci_try_set_mwi(pdev); 698 699 #ifdef ZEROCOPY 700 /* Starfire can do TCP/UDP checksumming */ 701 if (enable_hw_cksum) 702 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG; 703 #endif /* ZEROCOPY */ 704 705 #ifdef VLAN_SUPPORT 706 dev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER; 707 #endif /* VLAN_RX_KILL_VID */ 708 #ifdef ADDR_64BITS 709 dev->features |= NETIF_F_HIGHDMA; 710 #endif /* ADDR_64BITS */ 711 712 /* Serial EEPROM reads are hidden by the hardware. */ 713 for (i = 0; i < 6; i++) 714 dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i); 715 716 #if ! defined(final_version) /* Dump the EEPROM contents during development. */ 717 if (debug > 4) 718 for (i = 0; i < 0x20; i++) 719 printk("%2.2x%s", 720 (unsigned int)readb(base + EEPROMCtrl + i), 721 i % 16 != 15 ? " " : "\n"); 722 #endif 723 724 /* Issue soft reset */ 725 writel(MiiSoftReset, base + TxMode); 726 udelay(1000); 727 writel(0, base + TxMode); 728 729 /* Reset the chip to erase previous misconfiguration. */ 730 writel(1, base + PCIDeviceConfig); 731 boguscnt = 1000; 732 while (--boguscnt > 0) { 733 udelay(10); 734 if ((readl(base + PCIDeviceConfig) & 1) == 0) 735 break; 736 } 737 if (boguscnt == 0) 738 printk("%s: chipset reset never completed!\n", dev->name); 739 /* wait a little longer */ 740 udelay(1000); 741 742 np = netdev_priv(dev); 743 np->dev = dev; 744 np->base = base; 745 spin_lock_init(&np->lock); 746 pci_set_drvdata(pdev, dev); 747 748 np->pci_dev = pdev; 749 750 np->mii_if.dev = dev; 751 np->mii_if.mdio_read = mdio_read; 752 np->mii_if.mdio_write = mdio_write; 753 np->mii_if.phy_id_mask = 0x1f; 754 np->mii_if.reg_num_mask = 0x1f; 755 756 drv_flags = netdrv_tbl[chip_idx].drv_flags; 757 758 np->speed100 = 1; 759 760 /* timer resolution is 128 * 0.8us */ 761 np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) | 762 Timer10X | EnableIntrMasking; 763 764 if (small_frames > 0) { 765 np->intr_timer_ctrl |= SmallFrameBypass; 766 switch (small_frames) { 767 case 1 ... 64: 768 np->intr_timer_ctrl |= SmallFrame64; 769 break; 770 case 65 ... 128: 771 np->intr_timer_ctrl |= SmallFrame128; 772 break; 773 case 129 ... 256: 774 np->intr_timer_ctrl |= SmallFrame256; 775 break; 776 default: 777 np->intr_timer_ctrl |= SmallFrame512; 778 if (small_frames > 512) 779 printk("Adjusting small_frames down to 512\n"); 780 break; 781 } 782 } 783 784 dev->netdev_ops = &netdev_ops; 785 dev->watchdog_timeo = TX_TIMEOUT; 786 dev->ethtool_ops = ðtool_ops; 787 788 netif_napi_add(dev, &np->napi, netdev_poll, max_interrupt_work); 789 790 if (mtu) 791 dev->mtu = mtu; 792 793 if (register_netdev(dev)) 794 goto err_out_cleardev; 795 796 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n", 797 dev->name, netdrv_tbl[chip_idx].name, base, 798 dev->dev_addr, irq); 799 800 if (drv_flags & CanHaveMII) { 801 int phy, phy_idx = 0; 802 int mii_status; 803 for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) { 804 mdio_write(dev, phy, MII_BMCR, BMCR_RESET); 805 msleep(100); 806 boguscnt = 1000; 807 while (--boguscnt > 0) 808 if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0) 809 break; 810 if (boguscnt == 0) { 811 printk("%s: PHY#%d reset never completed!\n", dev->name, phy); 812 continue; 813 } 814 mii_status = mdio_read(dev, phy, MII_BMSR); 815 if (mii_status != 0) { 816 np->phys[phy_idx++] = phy; 817 np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE); 818 printk(KERN_INFO "%s: MII PHY found at address %d, status " 819 "%#4.4x advertising %#4.4x.\n", 820 dev->name, phy, mii_status, np->mii_if.advertising); 821 /* there can be only one PHY on-board */ 822 break; 823 } 824 } 825 np->phy_cnt = phy_idx; 826 if (np->phy_cnt > 0) 827 np->mii_if.phy_id = np->phys[0]; 828 else 829 memset(&np->mii_if, 0, sizeof(np->mii_if)); 830 } 831 832 printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n", 833 dev->name, enable_hw_cksum ? "enabled" : "disabled"); 834 return 0; 835 836 err_out_cleardev: 837 iounmap(base); 838 err_out_free_res: 839 pci_release_regions (pdev); 840 err_out_free_netdev: 841 free_netdev(dev); 842 return -ENODEV; 843 } 844 845 846 /* Read the MII Management Data I/O (MDIO) interfaces. */ 847 static int mdio_read(struct net_device *dev, int phy_id, int location) 848 { 849 struct netdev_private *np = netdev_priv(dev); 850 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2); 851 int result, boguscnt=1000; 852 /* ??? Should we add a busy-wait here? */ 853 do { 854 result = readl(mdio_addr); 855 } while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0); 856 if (boguscnt == 0) 857 return 0; 858 if ((result & 0xffff) == 0xffff) 859 return 0; 860 return result & 0xffff; 861 } 862 863 864 static void mdio_write(struct net_device *dev, int phy_id, int location, int value) 865 { 866 struct netdev_private *np = netdev_priv(dev); 867 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2); 868 writel(value, mdio_addr); 869 /* The busy-wait will occur before a read. */ 870 } 871 872 873 static int netdev_open(struct net_device *dev) 874 { 875 const struct firmware *fw_rx, *fw_tx; 876 const __be32 *fw_rx_data, *fw_tx_data; 877 struct netdev_private *np = netdev_priv(dev); 878 void __iomem *ioaddr = np->base; 879 const int irq = np->pci_dev->irq; 880 int i, retval; 881 size_t tx_size, rx_size; 882 size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size; 883 884 /* Do we ever need to reset the chip??? */ 885 886 retval = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev); 887 if (retval) 888 return retval; 889 890 /* Disable the Rx and Tx, and reset the chip. */ 891 writel(0, ioaddr + GenCtrl); 892 writel(1, ioaddr + PCIDeviceConfig); 893 if (debug > 1) 894 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n", 895 dev->name, irq); 896 897 /* Allocate the various queues. */ 898 if (!np->queue_mem) { 899 tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN; 900 rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN; 901 tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN; 902 rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE; 903 np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size; 904 np->queue_mem = pci_alloc_consistent(np->pci_dev, np->queue_mem_size, &np->queue_mem_dma); 905 if (np->queue_mem == NULL) { 906 free_irq(irq, dev); 907 return -ENOMEM; 908 } 909 910 np->tx_done_q = np->queue_mem; 911 np->tx_done_q_dma = np->queue_mem_dma; 912 np->rx_done_q = (void *) np->tx_done_q + tx_done_q_size; 913 np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size; 914 np->tx_ring = (void *) np->rx_done_q + rx_done_q_size; 915 np->tx_ring_dma = np->rx_done_q_dma + rx_done_q_size; 916 np->rx_ring = (void *) np->tx_ring + tx_ring_size; 917 np->rx_ring_dma = np->tx_ring_dma + tx_ring_size; 918 } 919 920 /* Start with no carrier, it gets adjusted later */ 921 netif_carrier_off(dev); 922 init_ring(dev); 923 /* Set the size of the Rx buffers. */ 924 writel((np->rx_buf_sz << RxBufferLenShift) | 925 (0 << RxMinDescrThreshShift) | 926 RxPrefetchMode | RxVariableQ | 927 RX_Q_ENTRIES | 928 RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE | 929 RxDescSpace4, 930 ioaddr + RxDescQCtrl); 931 932 /* Set up the Rx DMA controller. */ 933 writel(RxChecksumIgnore | 934 (0 << RxEarlyIntThreshShift) | 935 (6 << RxHighPrioThreshShift) | 936 ((DMA_BURST_SIZE / 32) << RxBurstSizeShift), 937 ioaddr + RxDMACtrl); 938 939 /* Set Tx descriptor */ 940 writel((2 << TxHiPriFIFOThreshShift) | 941 (0 << TxPadLenShift) | 942 ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) | 943 TX_DESC_Q_ADDR_SIZE | 944 TX_DESC_SPACING | TX_DESC_TYPE, 945 ioaddr + TxDescCtrl); 946 947 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr); 948 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr); 949 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr); 950 writel(np->rx_ring_dma, ioaddr + RxDescQAddr); 951 writel(np->tx_ring_dma, ioaddr + TxRingPtr); 952 953 writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr); 954 writel(np->rx_done_q_dma | 955 RxComplType | 956 (0 << RxComplThreshShift), 957 ioaddr + RxCompletionAddr); 958 959 if (debug > 1) 960 printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name); 961 962 /* Fill both the Tx SA register and the Rx perfect filter. */ 963 for (i = 0; i < 6; i++) 964 writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i); 965 /* The first entry is special because it bypasses the VLAN filter. 966 Don't use it. */ 967 writew(0, ioaddr + PerfFilterTable); 968 writew(0, ioaddr + PerfFilterTable + 4); 969 writew(0, ioaddr + PerfFilterTable + 8); 970 for (i = 1; i < 16; i++) { 971 __be16 *eaddrs = (__be16 *)dev->dev_addr; 972 void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16; 973 writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4; 974 writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4; 975 writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8; 976 } 977 978 /* Initialize other registers. */ 979 /* Configure the PCI bus bursts and FIFO thresholds. */ 980 np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable; /* modified when link is up. */ 981 writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode); 982 udelay(1000); 983 writel(np->tx_mode, ioaddr + TxMode); 984 np->tx_threshold = 4; 985 writel(np->tx_threshold, ioaddr + TxThreshold); 986 987 writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl); 988 989 napi_enable(&np->napi); 990 991 netif_start_queue(dev); 992 993 if (debug > 1) 994 printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name); 995 set_rx_mode(dev); 996 997 np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE); 998 check_duplex(dev); 999 1000 /* Enable GPIO interrupts on link change */ 1001 writel(0x0f00ff00, ioaddr + GPIOCtrl); 1002 1003 /* Set the interrupt mask */ 1004 writel(IntrRxDone | IntrRxEmpty | IntrDMAErr | 1005 IntrTxDMADone | IntrStatsMax | IntrLinkChange | 1006 IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID, 1007 ioaddr + IntrEnable); 1008 /* Enable PCI interrupts. */ 1009 writel(0x00800000 | readl(ioaddr + PCIDeviceConfig), 1010 ioaddr + PCIDeviceConfig); 1011 1012 #ifdef VLAN_SUPPORT 1013 /* Set VLAN type to 802.1q */ 1014 writel(ETH_P_8021Q, ioaddr + VlanType); 1015 #endif /* VLAN_SUPPORT */ 1016 1017 retval = request_firmware(&fw_rx, FIRMWARE_RX, &np->pci_dev->dev); 1018 if (retval) { 1019 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n", 1020 FIRMWARE_RX); 1021 goto out_init; 1022 } 1023 if (fw_rx->size % 4) { 1024 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n", 1025 fw_rx->size, FIRMWARE_RX); 1026 retval = -EINVAL; 1027 goto out_rx; 1028 } 1029 retval = request_firmware(&fw_tx, FIRMWARE_TX, &np->pci_dev->dev); 1030 if (retval) { 1031 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n", 1032 FIRMWARE_TX); 1033 goto out_rx; 1034 } 1035 if (fw_tx->size % 4) { 1036 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n", 1037 fw_tx->size, FIRMWARE_TX); 1038 retval = -EINVAL; 1039 goto out_tx; 1040 } 1041 fw_rx_data = (const __be32 *)&fw_rx->data[0]; 1042 fw_tx_data = (const __be32 *)&fw_tx->data[0]; 1043 rx_size = fw_rx->size / 4; 1044 tx_size = fw_tx->size / 4; 1045 1046 /* Load Rx/Tx firmware into the frame processors */ 1047 for (i = 0; i < rx_size; i++) 1048 writel(be32_to_cpup(&fw_rx_data[i]), ioaddr + RxGfpMem + i * 4); 1049 for (i = 0; i < tx_size; i++) 1050 writel(be32_to_cpup(&fw_tx_data[i]), ioaddr + TxGfpMem + i * 4); 1051 if (enable_hw_cksum) 1052 /* Enable the Rx and Tx units, and the Rx/Tx frame processors. */ 1053 writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl); 1054 else 1055 /* Enable the Rx and Tx units only. */ 1056 writel(TxEnable|RxEnable, ioaddr + GenCtrl); 1057 1058 if (debug > 1) 1059 printk(KERN_DEBUG "%s: Done netdev_open().\n", 1060 dev->name); 1061 1062 out_tx: 1063 release_firmware(fw_tx); 1064 out_rx: 1065 release_firmware(fw_rx); 1066 out_init: 1067 if (retval) 1068 netdev_close(dev); 1069 return retval; 1070 } 1071 1072 1073 static void check_duplex(struct net_device *dev) 1074 { 1075 struct netdev_private *np = netdev_priv(dev); 1076 u16 reg0; 1077 int silly_count = 1000; 1078 1079 mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising); 1080 mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET); 1081 udelay(500); 1082 while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET) 1083 /* do nothing */; 1084 if (!silly_count) { 1085 printk("%s: MII reset failed!\n", dev->name); 1086 return; 1087 } 1088 1089 reg0 = mdio_read(dev, np->phys[0], MII_BMCR); 1090 1091 if (!np->mii_if.force_media) { 1092 reg0 |= BMCR_ANENABLE | BMCR_ANRESTART; 1093 } else { 1094 reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART); 1095 if (np->speed100) 1096 reg0 |= BMCR_SPEED100; 1097 if (np->mii_if.full_duplex) 1098 reg0 |= BMCR_FULLDPLX; 1099 printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n", 1100 dev->name, 1101 np->speed100 ? "100" : "10", 1102 np->mii_if.full_duplex ? "full" : "half"); 1103 } 1104 mdio_write(dev, np->phys[0], MII_BMCR, reg0); 1105 } 1106 1107 1108 static void tx_timeout(struct net_device *dev) 1109 { 1110 struct netdev_private *np = netdev_priv(dev); 1111 void __iomem *ioaddr = np->base; 1112 int old_debug; 1113 1114 printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, " 1115 "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus)); 1116 1117 /* Perhaps we should reinitialize the hardware here. */ 1118 1119 /* 1120 * Stop and restart the interface. 1121 * Cheat and increase the debug level temporarily. 1122 */ 1123 old_debug = debug; 1124 debug = 2; 1125 netdev_close(dev); 1126 netdev_open(dev); 1127 debug = old_debug; 1128 1129 /* Trigger an immediate transmit demand. */ 1130 1131 netif_trans_update(dev); /* prevent tx timeout */ 1132 dev->stats.tx_errors++; 1133 netif_wake_queue(dev); 1134 } 1135 1136 1137 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */ 1138 static void init_ring(struct net_device *dev) 1139 { 1140 struct netdev_private *np = netdev_priv(dev); 1141 int i; 1142 1143 np->cur_rx = np->cur_tx = np->reap_tx = 0; 1144 np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0; 1145 1146 np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32); 1147 1148 /* Fill in the Rx buffers. Handle allocation failure gracefully. */ 1149 for (i = 0; i < RX_RING_SIZE; i++) { 1150 struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz); 1151 np->rx_info[i].skb = skb; 1152 if (skb == NULL) 1153 break; 1154 np->rx_info[i].mapping = pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE); 1155 if (pci_dma_mapping_error(np->pci_dev, 1156 np->rx_info[i].mapping)) { 1157 dev_kfree_skb(skb); 1158 np->rx_info[i].skb = NULL; 1159 break; 1160 } 1161 /* Grrr, we cannot offset to correctly align the IP header. */ 1162 np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid); 1163 } 1164 writew(i - 1, np->base + RxDescQIdx); 1165 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE); 1166 1167 /* Clear the remainder of the Rx buffer ring. */ 1168 for ( ; i < RX_RING_SIZE; i++) { 1169 np->rx_ring[i].rxaddr = 0; 1170 np->rx_info[i].skb = NULL; 1171 np->rx_info[i].mapping = 0; 1172 } 1173 /* Mark the last entry as wrapping the ring. */ 1174 np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing); 1175 1176 /* Clear the completion rings. */ 1177 for (i = 0; i < DONE_Q_SIZE; i++) { 1178 np->rx_done_q[i].status = 0; 1179 np->tx_done_q[i].status = 0; 1180 } 1181 1182 for (i = 0; i < TX_RING_SIZE; i++) 1183 memset(&np->tx_info[i], 0, sizeof(np->tx_info[i])); 1184 } 1185 1186 1187 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev) 1188 { 1189 struct netdev_private *np = netdev_priv(dev); 1190 unsigned int entry; 1191 unsigned int prev_tx; 1192 u32 status; 1193 int i, j; 1194 1195 /* 1196 * be cautious here, wrapping the queue has weird semantics 1197 * and we may not have enough slots even when it seems we do. 1198 */ 1199 if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) { 1200 netif_stop_queue(dev); 1201 return NETDEV_TX_BUSY; 1202 } 1203 1204 #if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE) 1205 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1206 if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK)) 1207 return NETDEV_TX_OK; 1208 } 1209 #endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */ 1210 1211 prev_tx = np->cur_tx; 1212 entry = np->cur_tx % TX_RING_SIZE; 1213 for (i = 0; i < skb_num_frags(skb); i++) { 1214 int wrap_ring = 0; 1215 status = TxDescID; 1216 1217 if (i == 0) { 1218 np->tx_info[entry].skb = skb; 1219 status |= TxCRCEn; 1220 if (entry >= TX_RING_SIZE - skb_num_frags(skb)) { 1221 status |= TxRingWrap; 1222 wrap_ring = 1; 1223 } 1224 if (np->reap_tx) { 1225 status |= TxDescIntr; 1226 np->reap_tx = 0; 1227 } 1228 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1229 status |= TxCalTCP; 1230 dev->stats.tx_compressed++; 1231 } 1232 status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16); 1233 1234 np->tx_info[entry].mapping = 1235 pci_map_single(np->pci_dev, skb->data, skb_first_frag_len(skb), PCI_DMA_TODEVICE); 1236 } else { 1237 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1]; 1238 status |= skb_frag_size(this_frag); 1239 np->tx_info[entry].mapping = 1240 pci_map_single(np->pci_dev, 1241 skb_frag_address(this_frag), 1242 skb_frag_size(this_frag), 1243 PCI_DMA_TODEVICE); 1244 } 1245 if (pci_dma_mapping_error(np->pci_dev, 1246 np->tx_info[entry].mapping)) { 1247 dev->stats.tx_dropped++; 1248 goto err_out; 1249 } 1250 1251 np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping); 1252 np->tx_ring[entry].status = cpu_to_le32(status); 1253 if (debug > 3) 1254 printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n", 1255 dev->name, np->cur_tx, np->dirty_tx, 1256 entry, status); 1257 if (wrap_ring) { 1258 np->tx_info[entry].used_slots = TX_RING_SIZE - entry; 1259 np->cur_tx += np->tx_info[entry].used_slots; 1260 entry = 0; 1261 } else { 1262 np->tx_info[entry].used_slots = 1; 1263 np->cur_tx += np->tx_info[entry].used_slots; 1264 entry++; 1265 } 1266 /* scavenge the tx descriptors twice per TX_RING_SIZE */ 1267 if (np->cur_tx % (TX_RING_SIZE / 2) == 0) 1268 np->reap_tx = 1; 1269 } 1270 1271 /* Non-x86: explicitly flush descriptor cache lines here. */ 1272 /* Ensure all descriptors are written back before the transmit is 1273 initiated. - Jes */ 1274 wmb(); 1275 1276 /* Update the producer index. */ 1277 writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx); 1278 1279 /* 4 is arbitrary, but should be ok */ 1280 if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE) 1281 netif_stop_queue(dev); 1282 1283 return NETDEV_TX_OK; 1284 1285 err_out: 1286 entry = prev_tx % TX_RING_SIZE; 1287 np->tx_info[entry].skb = NULL; 1288 if (i > 0) { 1289 pci_unmap_single(np->pci_dev, 1290 np->tx_info[entry].mapping, 1291 skb_first_frag_len(skb), 1292 PCI_DMA_TODEVICE); 1293 np->tx_info[entry].mapping = 0; 1294 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE; 1295 for (j = 1; j < i; j++) { 1296 pci_unmap_single(np->pci_dev, 1297 np->tx_info[entry].mapping, 1298 skb_frag_size( 1299 &skb_shinfo(skb)->frags[j-1]), 1300 PCI_DMA_TODEVICE); 1301 entry++; 1302 } 1303 } 1304 dev_kfree_skb_any(skb); 1305 np->cur_tx = prev_tx; 1306 return NETDEV_TX_OK; 1307 } 1308 1309 /* The interrupt handler does all of the Rx thread work and cleans up 1310 after the Tx thread. */ 1311 static irqreturn_t intr_handler(int irq, void *dev_instance) 1312 { 1313 struct net_device *dev = dev_instance; 1314 struct netdev_private *np = netdev_priv(dev); 1315 void __iomem *ioaddr = np->base; 1316 int boguscnt = max_interrupt_work; 1317 int consumer; 1318 int tx_status; 1319 int handled = 0; 1320 1321 do { 1322 u32 intr_status = readl(ioaddr + IntrClear); 1323 1324 if (debug > 4) 1325 printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n", 1326 dev->name, intr_status); 1327 1328 if (intr_status == 0 || intr_status == (u32) -1) 1329 break; 1330 1331 handled = 1; 1332 1333 if (intr_status & (IntrRxDone | IntrRxEmpty)) { 1334 u32 enable; 1335 1336 if (likely(napi_schedule_prep(&np->napi))) { 1337 __napi_schedule(&np->napi); 1338 enable = readl(ioaddr + IntrEnable); 1339 enable &= ~(IntrRxDone | IntrRxEmpty); 1340 writel(enable, ioaddr + IntrEnable); 1341 /* flush PCI posting buffers */ 1342 readl(ioaddr + IntrEnable); 1343 } else { 1344 /* Paranoia check */ 1345 enable = readl(ioaddr + IntrEnable); 1346 if (enable & (IntrRxDone | IntrRxEmpty)) { 1347 printk(KERN_INFO 1348 "%s: interrupt while in poll!\n", 1349 dev->name); 1350 enable &= ~(IntrRxDone | IntrRxEmpty); 1351 writel(enable, ioaddr + IntrEnable); 1352 } 1353 } 1354 } 1355 1356 /* Scavenge the skbuff list based on the Tx-done queue. 1357 There are redundant checks here that may be cleaned up 1358 after the driver has proven to be reliable. */ 1359 consumer = readl(ioaddr + TxConsumerIdx); 1360 if (debug > 3) 1361 printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n", 1362 dev->name, consumer); 1363 1364 while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) { 1365 if (debug > 3) 1366 printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n", 1367 dev->name, np->dirty_tx, np->tx_done, tx_status); 1368 if ((tx_status & 0xe0000000) == 0xa0000000) { 1369 dev->stats.tx_packets++; 1370 } else if ((tx_status & 0xe0000000) == 0x80000000) { 1371 u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc); 1372 struct sk_buff *skb = np->tx_info[entry].skb; 1373 np->tx_info[entry].skb = NULL; 1374 pci_unmap_single(np->pci_dev, 1375 np->tx_info[entry].mapping, 1376 skb_first_frag_len(skb), 1377 PCI_DMA_TODEVICE); 1378 np->tx_info[entry].mapping = 0; 1379 np->dirty_tx += np->tx_info[entry].used_slots; 1380 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE; 1381 { 1382 int i; 1383 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1384 pci_unmap_single(np->pci_dev, 1385 np->tx_info[entry].mapping, 1386 skb_frag_size(&skb_shinfo(skb)->frags[i]), 1387 PCI_DMA_TODEVICE); 1388 np->dirty_tx++; 1389 entry++; 1390 } 1391 } 1392 1393 dev_kfree_skb_irq(skb); 1394 } 1395 np->tx_done_q[np->tx_done].status = 0; 1396 np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE; 1397 } 1398 writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2); 1399 1400 if (netif_queue_stopped(dev) && 1401 (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) { 1402 /* The ring is no longer full, wake the queue. */ 1403 netif_wake_queue(dev); 1404 } 1405 1406 /* Stats overflow */ 1407 if (intr_status & IntrStatsMax) 1408 get_stats(dev); 1409 1410 /* Media change interrupt. */ 1411 if (intr_status & IntrLinkChange) 1412 netdev_media_change(dev); 1413 1414 /* Abnormal error summary/uncommon events handlers. */ 1415 if (intr_status & IntrAbnormalSummary) 1416 netdev_error(dev, intr_status); 1417 1418 if (--boguscnt < 0) { 1419 if (debug > 1) 1420 printk(KERN_WARNING "%s: Too much work at interrupt, " 1421 "status=%#8.8x.\n", 1422 dev->name, intr_status); 1423 break; 1424 } 1425 } while (1); 1426 1427 if (debug > 4) 1428 printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n", 1429 dev->name, (int) readl(ioaddr + IntrStatus)); 1430 return IRQ_RETVAL(handled); 1431 } 1432 1433 1434 /* 1435 * This routine is logically part of the interrupt/poll handler, but separated 1436 * for clarity and better register allocation. 1437 */ 1438 static int __netdev_rx(struct net_device *dev, int *quota) 1439 { 1440 struct netdev_private *np = netdev_priv(dev); 1441 u32 desc_status; 1442 int retcode = 0; 1443 1444 /* If EOP is set on the next entry, it's a new packet. Send it up. */ 1445 while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) { 1446 struct sk_buff *skb; 1447 u16 pkt_len; 1448 int entry; 1449 rx_done_desc *desc = &np->rx_done_q[np->rx_done]; 1450 1451 if (debug > 4) 1452 printk(KERN_DEBUG " netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status); 1453 if (!(desc_status & RxOK)) { 1454 /* There was an error. */ 1455 if (debug > 2) 1456 printk(KERN_DEBUG " netdev_rx() Rx error was %#8.8x.\n", desc_status); 1457 dev->stats.rx_errors++; 1458 if (desc_status & RxFIFOErr) 1459 dev->stats.rx_fifo_errors++; 1460 goto next_rx; 1461 } 1462 1463 if (*quota <= 0) { /* out of rx quota */ 1464 retcode = 1; 1465 goto out; 1466 } 1467 (*quota)--; 1468 1469 pkt_len = desc_status; /* Implicitly Truncate */ 1470 entry = (desc_status >> 16) & 0x7ff; 1471 1472 if (debug > 4) 1473 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota); 1474 /* Check if the packet is long enough to accept without copying 1475 to a minimally-sized skbuff. */ 1476 if (pkt_len < rx_copybreak && 1477 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) { 1478 skb_reserve(skb, 2); /* 16 byte align the IP header */ 1479 pci_dma_sync_single_for_cpu(np->pci_dev, 1480 np->rx_info[entry].mapping, 1481 pkt_len, PCI_DMA_FROMDEVICE); 1482 skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len); 1483 pci_dma_sync_single_for_device(np->pci_dev, 1484 np->rx_info[entry].mapping, 1485 pkt_len, PCI_DMA_FROMDEVICE); 1486 skb_put(skb, pkt_len); 1487 } else { 1488 pci_unmap_single(np->pci_dev, np->rx_info[entry].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE); 1489 skb = np->rx_info[entry].skb; 1490 skb_put(skb, pkt_len); 1491 np->rx_info[entry].skb = NULL; 1492 np->rx_info[entry].mapping = 0; 1493 } 1494 #ifndef final_version /* Remove after testing. */ 1495 /* You will want this info for the initial debug. */ 1496 if (debug > 5) { 1497 printk(KERN_DEBUG " Rx data %pM %pM %2.2x%2.2x.\n", 1498 skb->data, skb->data + 6, 1499 skb->data[12], skb->data[13]); 1500 } 1501 #endif 1502 1503 skb->protocol = eth_type_trans(skb, dev); 1504 #ifdef VLAN_SUPPORT 1505 if (debug > 4) 1506 printk(KERN_DEBUG " netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2)); 1507 #endif 1508 if (le16_to_cpu(desc->status2) & 0x0100) { 1509 skb->ip_summed = CHECKSUM_UNNECESSARY; 1510 dev->stats.rx_compressed++; 1511 } 1512 /* 1513 * This feature doesn't seem to be working, at least 1514 * with the two firmware versions I have. If the GFP sees 1515 * an IP fragment, it either ignores it completely, or reports 1516 * "bad checksum" on it. 1517 * 1518 * Maybe I missed something -- corrections are welcome. 1519 * Until then, the printk stays. :-) -Ion 1520 */ 1521 else if (le16_to_cpu(desc->status2) & 0x0040) { 1522 skb->ip_summed = CHECKSUM_COMPLETE; 1523 skb->csum = le16_to_cpu(desc->csum); 1524 printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2)); 1525 } 1526 #ifdef VLAN_SUPPORT 1527 if (le16_to_cpu(desc->status2) & 0x0200) { 1528 u16 vlid = le16_to_cpu(desc->vlanid); 1529 1530 if (debug > 4) { 1531 printk(KERN_DEBUG " netdev_rx() vlanid = %d\n", 1532 vlid); 1533 } 1534 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlid); 1535 } 1536 #endif /* VLAN_SUPPORT */ 1537 netif_receive_skb(skb); 1538 dev->stats.rx_packets++; 1539 1540 next_rx: 1541 np->cur_rx++; 1542 desc->status = 0; 1543 np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE; 1544 } 1545 1546 if (*quota == 0) { /* out of rx quota */ 1547 retcode = 1; 1548 goto out; 1549 } 1550 writew(np->rx_done, np->base + CompletionQConsumerIdx); 1551 1552 out: 1553 refill_rx_ring(dev); 1554 if (debug > 5) 1555 printk(KERN_DEBUG " exiting netdev_rx(): %d, status of %d was %#8.8x.\n", 1556 retcode, np->rx_done, desc_status); 1557 return retcode; 1558 } 1559 1560 static int netdev_poll(struct napi_struct *napi, int budget) 1561 { 1562 struct netdev_private *np = container_of(napi, struct netdev_private, napi); 1563 struct net_device *dev = np->dev; 1564 u32 intr_status; 1565 void __iomem *ioaddr = np->base; 1566 int quota = budget; 1567 1568 do { 1569 writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear); 1570 1571 if (__netdev_rx(dev, "a)) 1572 goto out; 1573 1574 intr_status = readl(ioaddr + IntrStatus); 1575 } while (intr_status & (IntrRxDone | IntrRxEmpty)); 1576 1577 napi_complete(napi); 1578 intr_status = readl(ioaddr + IntrEnable); 1579 intr_status |= IntrRxDone | IntrRxEmpty; 1580 writel(intr_status, ioaddr + IntrEnable); 1581 1582 out: 1583 if (debug > 5) 1584 printk(KERN_DEBUG " exiting netdev_poll(): %d.\n", 1585 budget - quota); 1586 1587 /* Restart Rx engine if stopped. */ 1588 return budget - quota; 1589 } 1590 1591 static void refill_rx_ring(struct net_device *dev) 1592 { 1593 struct netdev_private *np = netdev_priv(dev); 1594 struct sk_buff *skb; 1595 int entry = -1; 1596 1597 /* Refill the Rx ring buffers. */ 1598 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) { 1599 entry = np->dirty_rx % RX_RING_SIZE; 1600 if (np->rx_info[entry].skb == NULL) { 1601 skb = netdev_alloc_skb(dev, np->rx_buf_sz); 1602 np->rx_info[entry].skb = skb; 1603 if (skb == NULL) 1604 break; /* Better luck next round. */ 1605 np->rx_info[entry].mapping = 1606 pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE); 1607 if (pci_dma_mapping_error(np->pci_dev, 1608 np->rx_info[entry].mapping)) { 1609 dev_kfree_skb(skb); 1610 np->rx_info[entry].skb = NULL; 1611 break; 1612 } 1613 np->rx_ring[entry].rxaddr = 1614 cpu_to_dma(np->rx_info[entry].mapping | RxDescValid); 1615 } 1616 if (entry == RX_RING_SIZE - 1) 1617 np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing); 1618 } 1619 if (entry >= 0) 1620 writew(entry, np->base + RxDescQIdx); 1621 } 1622 1623 1624 static void netdev_media_change(struct net_device *dev) 1625 { 1626 struct netdev_private *np = netdev_priv(dev); 1627 void __iomem *ioaddr = np->base; 1628 u16 reg0, reg1, reg4, reg5; 1629 u32 new_tx_mode; 1630 u32 new_intr_timer_ctrl; 1631 1632 /* reset status first */ 1633 mdio_read(dev, np->phys[0], MII_BMCR); 1634 mdio_read(dev, np->phys[0], MII_BMSR); 1635 1636 reg0 = mdio_read(dev, np->phys[0], MII_BMCR); 1637 reg1 = mdio_read(dev, np->phys[0], MII_BMSR); 1638 1639 if (reg1 & BMSR_LSTATUS) { 1640 /* link is up */ 1641 if (reg0 & BMCR_ANENABLE) { 1642 /* autonegotiation is enabled */ 1643 reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE); 1644 reg5 = mdio_read(dev, np->phys[0], MII_LPA); 1645 if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) { 1646 np->speed100 = 1; 1647 np->mii_if.full_duplex = 1; 1648 } else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) { 1649 np->speed100 = 1; 1650 np->mii_if.full_duplex = 0; 1651 } else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) { 1652 np->speed100 = 0; 1653 np->mii_if.full_duplex = 1; 1654 } else { 1655 np->speed100 = 0; 1656 np->mii_if.full_duplex = 0; 1657 } 1658 } else { 1659 /* autonegotiation is disabled */ 1660 if (reg0 & BMCR_SPEED100) 1661 np->speed100 = 1; 1662 else 1663 np->speed100 = 0; 1664 if (reg0 & BMCR_FULLDPLX) 1665 np->mii_if.full_duplex = 1; 1666 else 1667 np->mii_if.full_duplex = 0; 1668 } 1669 netif_carrier_on(dev); 1670 printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n", 1671 dev->name, 1672 np->speed100 ? "100" : "10", 1673 np->mii_if.full_duplex ? "full" : "half"); 1674 1675 new_tx_mode = np->tx_mode & ~FullDuplex; /* duplex setting */ 1676 if (np->mii_if.full_duplex) 1677 new_tx_mode |= FullDuplex; 1678 if (np->tx_mode != new_tx_mode) { 1679 np->tx_mode = new_tx_mode; 1680 writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode); 1681 udelay(1000); 1682 writel(np->tx_mode, ioaddr + TxMode); 1683 } 1684 1685 new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X; 1686 if (np->speed100) 1687 new_intr_timer_ctrl |= Timer10X; 1688 if (np->intr_timer_ctrl != new_intr_timer_ctrl) { 1689 np->intr_timer_ctrl = new_intr_timer_ctrl; 1690 writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl); 1691 } 1692 } else { 1693 netif_carrier_off(dev); 1694 printk(KERN_DEBUG "%s: Link is down\n", dev->name); 1695 } 1696 } 1697 1698 1699 static void netdev_error(struct net_device *dev, int intr_status) 1700 { 1701 struct netdev_private *np = netdev_priv(dev); 1702 1703 /* Came close to underrunning the Tx FIFO, increase threshold. */ 1704 if (intr_status & IntrTxDataLow) { 1705 if (np->tx_threshold <= PKT_BUF_SZ / 16) { 1706 writel(++np->tx_threshold, np->base + TxThreshold); 1707 printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n", 1708 dev->name, np->tx_threshold * 16); 1709 } else 1710 printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name); 1711 } 1712 if (intr_status & IntrRxGFPDead) { 1713 dev->stats.rx_fifo_errors++; 1714 dev->stats.rx_errors++; 1715 } 1716 if (intr_status & (IntrNoTxCsum | IntrDMAErr)) { 1717 dev->stats.tx_fifo_errors++; 1718 dev->stats.tx_errors++; 1719 } 1720 if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug) 1721 printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n", 1722 dev->name, intr_status); 1723 } 1724 1725 1726 static struct net_device_stats *get_stats(struct net_device *dev) 1727 { 1728 struct netdev_private *np = netdev_priv(dev); 1729 void __iomem *ioaddr = np->base; 1730 1731 /* This adapter architecture needs no SMP locks. */ 1732 dev->stats.tx_bytes = readl(ioaddr + 0x57010); 1733 dev->stats.rx_bytes = readl(ioaddr + 0x57044); 1734 dev->stats.tx_packets = readl(ioaddr + 0x57000); 1735 dev->stats.tx_aborted_errors = 1736 readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028); 1737 dev->stats.tx_window_errors = readl(ioaddr + 0x57018); 1738 dev->stats.collisions = 1739 readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008); 1740 1741 /* The chip only need report frame silently dropped. */ 1742 dev->stats.rx_dropped += readw(ioaddr + RxDMAStatus); 1743 writew(0, ioaddr + RxDMAStatus); 1744 dev->stats.rx_crc_errors = readl(ioaddr + 0x5703C); 1745 dev->stats.rx_frame_errors = readl(ioaddr + 0x57040); 1746 dev->stats.rx_length_errors = readl(ioaddr + 0x57058); 1747 dev->stats.rx_missed_errors = readl(ioaddr + 0x5707C); 1748 1749 return &dev->stats; 1750 } 1751 1752 #ifdef VLAN_SUPPORT 1753 static u32 set_vlan_mode(struct netdev_private *np) 1754 { 1755 u32 ret = VlanMode; 1756 u16 vid; 1757 void __iomem *filter_addr = np->base + HashTable + 8; 1758 int vlan_count = 0; 1759 1760 for_each_set_bit(vid, np->active_vlans, VLAN_N_VID) { 1761 if (vlan_count == 32) 1762 break; 1763 writew(vid, filter_addr); 1764 filter_addr += 16; 1765 vlan_count++; 1766 } 1767 if (vlan_count == 32) { 1768 ret |= PerfectFilterVlan; 1769 while (vlan_count < 32) { 1770 writew(0, filter_addr); 1771 filter_addr += 16; 1772 vlan_count++; 1773 } 1774 } 1775 return ret; 1776 } 1777 #endif /* VLAN_SUPPORT */ 1778 1779 static void set_rx_mode(struct net_device *dev) 1780 { 1781 struct netdev_private *np = netdev_priv(dev); 1782 void __iomem *ioaddr = np->base; 1783 u32 rx_mode = MinVLANPrio; 1784 struct netdev_hw_addr *ha; 1785 int i; 1786 1787 #ifdef VLAN_SUPPORT 1788 rx_mode |= set_vlan_mode(np); 1789 #endif /* VLAN_SUPPORT */ 1790 1791 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ 1792 rx_mode |= AcceptAll; 1793 } else if ((netdev_mc_count(dev) > multicast_filter_limit) || 1794 (dev->flags & IFF_ALLMULTI)) { 1795 /* Too many to match, or accept all multicasts. */ 1796 rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter; 1797 } else if (netdev_mc_count(dev) <= 14) { 1798 /* Use the 16 element perfect filter, skip first two entries. */ 1799 void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16; 1800 __be16 *eaddrs; 1801 netdev_for_each_mc_addr(ha, dev) { 1802 eaddrs = (__be16 *) ha->addr; 1803 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4; 1804 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4; 1805 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8; 1806 } 1807 eaddrs = (__be16 *)dev->dev_addr; 1808 i = netdev_mc_count(dev) + 2; 1809 while (i++ < 16) { 1810 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4; 1811 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4; 1812 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8; 1813 } 1814 rx_mode |= AcceptBroadcast|PerfectFilter; 1815 } else { 1816 /* Must use a multicast hash table. */ 1817 void __iomem *filter_addr; 1818 __be16 *eaddrs; 1819 __le16 mc_filter[32] __attribute__ ((aligned(sizeof(long)))); /* Multicast hash filter */ 1820 1821 memset(mc_filter, 0, sizeof(mc_filter)); 1822 netdev_for_each_mc_addr(ha, dev) { 1823 /* The chip uses the upper 9 CRC bits 1824 as index into the hash table */ 1825 int bit_nr = ether_crc_le(ETH_ALEN, ha->addr) >> 23; 1826 __le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1]; 1827 1828 *fptr |= cpu_to_le32(1 << (bit_nr & 31)); 1829 } 1830 /* Clear the perfect filter list, skip first two entries. */ 1831 filter_addr = ioaddr + PerfFilterTable + 2 * 16; 1832 eaddrs = (__be16 *)dev->dev_addr; 1833 for (i = 2; i < 16; i++) { 1834 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4; 1835 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4; 1836 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8; 1837 } 1838 for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++) 1839 writew(mc_filter[i], filter_addr); 1840 rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter; 1841 } 1842 writel(rx_mode, ioaddr + RxFilterMode); 1843 } 1844 1845 static int check_if_running(struct net_device *dev) 1846 { 1847 if (!netif_running(dev)) 1848 return -EINVAL; 1849 return 0; 1850 } 1851 1852 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1853 { 1854 struct netdev_private *np = netdev_priv(dev); 1855 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 1856 strlcpy(info->version, DRV_VERSION, sizeof(info->version)); 1857 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info)); 1858 } 1859 1860 static int get_link_ksettings(struct net_device *dev, 1861 struct ethtool_link_ksettings *cmd) 1862 { 1863 struct netdev_private *np = netdev_priv(dev); 1864 spin_lock_irq(&np->lock); 1865 mii_ethtool_get_link_ksettings(&np->mii_if, cmd); 1866 spin_unlock_irq(&np->lock); 1867 return 0; 1868 } 1869 1870 static int set_link_ksettings(struct net_device *dev, 1871 const struct ethtool_link_ksettings *cmd) 1872 { 1873 struct netdev_private *np = netdev_priv(dev); 1874 int res; 1875 spin_lock_irq(&np->lock); 1876 res = mii_ethtool_set_link_ksettings(&np->mii_if, cmd); 1877 spin_unlock_irq(&np->lock); 1878 check_duplex(dev); 1879 return res; 1880 } 1881 1882 static int nway_reset(struct net_device *dev) 1883 { 1884 struct netdev_private *np = netdev_priv(dev); 1885 return mii_nway_restart(&np->mii_if); 1886 } 1887 1888 static u32 get_link(struct net_device *dev) 1889 { 1890 struct netdev_private *np = netdev_priv(dev); 1891 return mii_link_ok(&np->mii_if); 1892 } 1893 1894 static u32 get_msglevel(struct net_device *dev) 1895 { 1896 return debug; 1897 } 1898 1899 static void set_msglevel(struct net_device *dev, u32 val) 1900 { 1901 debug = val; 1902 } 1903 1904 static const struct ethtool_ops ethtool_ops = { 1905 .begin = check_if_running, 1906 .get_drvinfo = get_drvinfo, 1907 .nway_reset = nway_reset, 1908 .get_link = get_link, 1909 .get_msglevel = get_msglevel, 1910 .set_msglevel = set_msglevel, 1911 .get_link_ksettings = get_link_ksettings, 1912 .set_link_ksettings = set_link_ksettings, 1913 }; 1914 1915 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1916 { 1917 struct netdev_private *np = netdev_priv(dev); 1918 struct mii_ioctl_data *data = if_mii(rq); 1919 int rc; 1920 1921 if (!netif_running(dev)) 1922 return -EINVAL; 1923 1924 spin_lock_irq(&np->lock); 1925 rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL); 1926 spin_unlock_irq(&np->lock); 1927 1928 if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0])) 1929 check_duplex(dev); 1930 1931 return rc; 1932 } 1933 1934 static int netdev_close(struct net_device *dev) 1935 { 1936 struct netdev_private *np = netdev_priv(dev); 1937 void __iomem *ioaddr = np->base; 1938 int i; 1939 1940 netif_stop_queue(dev); 1941 1942 napi_disable(&np->napi); 1943 1944 if (debug > 1) { 1945 printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n", 1946 dev->name, (int) readl(ioaddr + IntrStatus)); 1947 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n", 1948 dev->name, np->cur_tx, np->dirty_tx, 1949 np->cur_rx, np->dirty_rx); 1950 } 1951 1952 /* Disable interrupts by clearing the interrupt mask. */ 1953 writel(0, ioaddr + IntrEnable); 1954 1955 /* Stop the chip's Tx and Rx processes. */ 1956 writel(0, ioaddr + GenCtrl); 1957 readl(ioaddr + GenCtrl); 1958 1959 if (debug > 5) { 1960 printk(KERN_DEBUG" Tx ring at %#llx:\n", 1961 (long long) np->tx_ring_dma); 1962 for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++) 1963 printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n", 1964 i, le32_to_cpu(np->tx_ring[i].status), 1965 (long long) dma_to_cpu(np->tx_ring[i].addr), 1966 le32_to_cpu(np->tx_done_q[i].status)); 1967 printk(KERN_DEBUG " Rx ring at %#llx -> %p:\n", 1968 (long long) np->rx_ring_dma, np->rx_done_q); 1969 if (np->rx_done_q) 1970 for (i = 0; i < 8 /* RX_RING_SIZE */; i++) { 1971 printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n", 1972 i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status)); 1973 } 1974 } 1975 1976 free_irq(np->pci_dev->irq, dev); 1977 1978 /* Free all the skbuffs in the Rx queue. */ 1979 for (i = 0; i < RX_RING_SIZE; i++) { 1980 np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */ 1981 if (np->rx_info[i].skb != NULL) { 1982 pci_unmap_single(np->pci_dev, np->rx_info[i].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE); 1983 dev_kfree_skb(np->rx_info[i].skb); 1984 } 1985 np->rx_info[i].skb = NULL; 1986 np->rx_info[i].mapping = 0; 1987 } 1988 for (i = 0; i < TX_RING_SIZE; i++) { 1989 struct sk_buff *skb = np->tx_info[i].skb; 1990 if (skb == NULL) 1991 continue; 1992 pci_unmap_single(np->pci_dev, 1993 np->tx_info[i].mapping, 1994 skb_first_frag_len(skb), PCI_DMA_TODEVICE); 1995 np->tx_info[i].mapping = 0; 1996 dev_kfree_skb(skb); 1997 np->tx_info[i].skb = NULL; 1998 } 1999 2000 return 0; 2001 } 2002 2003 #ifdef CONFIG_PM 2004 static int starfire_suspend(struct pci_dev *pdev, pm_message_t state) 2005 { 2006 struct net_device *dev = pci_get_drvdata(pdev); 2007 2008 if (netif_running(dev)) { 2009 netif_device_detach(dev); 2010 netdev_close(dev); 2011 } 2012 2013 pci_save_state(pdev); 2014 pci_set_power_state(pdev, pci_choose_state(pdev,state)); 2015 2016 return 0; 2017 } 2018 2019 static int starfire_resume(struct pci_dev *pdev) 2020 { 2021 struct net_device *dev = pci_get_drvdata(pdev); 2022 2023 pci_set_power_state(pdev, PCI_D0); 2024 pci_restore_state(pdev); 2025 2026 if (netif_running(dev)) { 2027 netdev_open(dev); 2028 netif_device_attach(dev); 2029 } 2030 2031 return 0; 2032 } 2033 #endif /* CONFIG_PM */ 2034 2035 2036 static void starfire_remove_one(struct pci_dev *pdev) 2037 { 2038 struct net_device *dev = pci_get_drvdata(pdev); 2039 struct netdev_private *np = netdev_priv(dev); 2040 2041 BUG_ON(!dev); 2042 2043 unregister_netdev(dev); 2044 2045 if (np->queue_mem) 2046 pci_free_consistent(pdev, np->queue_mem_size, np->queue_mem, np->queue_mem_dma); 2047 2048 2049 /* XXX: add wakeup code -- requires firmware for MagicPacket */ 2050 pci_set_power_state(pdev, PCI_D3hot); /* go to sleep in D3 mode */ 2051 pci_disable_device(pdev); 2052 2053 iounmap(np->base); 2054 pci_release_regions(pdev); 2055 2056 free_netdev(dev); /* Will also free np!! */ 2057 } 2058 2059 2060 static struct pci_driver starfire_driver = { 2061 .name = DRV_NAME, 2062 .probe = starfire_init_one, 2063 .remove = starfire_remove_one, 2064 #ifdef CONFIG_PM 2065 .suspend = starfire_suspend, 2066 .resume = starfire_resume, 2067 #endif /* CONFIG_PM */ 2068 .id_table = starfire_pci_tbl, 2069 }; 2070 2071 2072 static int __init starfire_init (void) 2073 { 2074 /* when a module, this is printed whether or not devices are found in probe */ 2075 #ifdef MODULE 2076 printk(version); 2077 2078 printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n"); 2079 #endif 2080 2081 BUILD_BUG_ON(sizeof(dma_addr_t) != sizeof(netdrv_addr_t)); 2082 2083 return pci_register_driver(&starfire_driver); 2084 } 2085 2086 2087 static void __exit starfire_cleanup (void) 2088 { 2089 pci_unregister_driver (&starfire_driver); 2090 } 2091 2092 2093 module_init(starfire_init); 2094 module_exit(starfire_cleanup); 2095 2096 2097 /* 2098 * Local variables: 2099 * c-basic-offset: 8 2100 * tab-width: 8 2101 * End: 2102 */ 2103