1 /* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */ 2 /* 3 Written 1998-2000 by Donald Becker. 4 5 Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please 6 send all bug reports to me, and not to Donald Becker, as this code 7 has been heavily modified from Donald's original version. 8 9 This software may be used and distributed according to the terms of 10 the GNU General Public License (GPL), incorporated herein by reference. 11 Drivers based on or derived from this code fall under the GPL and must 12 retain the authorship, copyright and license notice. This file is not 13 a complete program and may only be used when the entire operating 14 system is licensed under the GPL. 15 16 The information below comes from Donald Becker's original driver: 17 18 The author may be reached as becker@scyld.com, or C/O 19 Scyld Computing Corporation 20 410 Severn Ave., Suite 210 21 Annapolis MD 21403 22 23 Support and updates available at 24 http://www.scyld.com/network/starfire.html 25 [link no longer provides useful info -jgarzik] 26 27 */ 28 29 #define DRV_NAME "starfire" 30 31 #include <linux/interrupt.h> 32 #include <linux/module.h> 33 #include <linux/kernel.h> 34 #include <linux/pci.h> 35 #include <linux/netdevice.h> 36 #include <linux/etherdevice.h> 37 #include <linux/init.h> 38 #include <linux/delay.h> 39 #include <linux/crc32.h> 40 #include <linux/ethtool.h> 41 #include <linux/mii.h> 42 #include <linux/if_vlan.h> 43 #include <linux/mm.h> 44 #include <linux/firmware.h> 45 #include <asm/processor.h> /* Processor type for cache alignment. */ 46 #include <linux/uaccess.h> 47 #include <asm/io.h> 48 49 /* 50 * The current frame processor firmware fails to checksum a fragment 51 * of length 1. If and when this is fixed, the #define below can be removed. 52 */ 53 #define HAS_BROKEN_FIRMWARE 54 55 /* 56 * If using the broken firmware, data must be padded to the next 32-bit boundary. 57 */ 58 #ifdef HAS_BROKEN_FIRMWARE 59 #define PADDING_MASK 3 60 #endif 61 62 /* 63 * Define this if using the driver with the zero-copy patch 64 */ 65 #define ZEROCOPY 66 67 #if IS_ENABLED(CONFIG_VLAN_8021Q) 68 #define VLAN_SUPPORT 69 #endif 70 71 /* The user-configurable values. 72 These may be modified when a driver module is loaded.*/ 73 74 /* Used for tuning interrupt latency vs. overhead. */ 75 static int intr_latency; 76 static int small_frames; 77 78 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */ 79 static int max_interrupt_work = 20; 80 static int mtu; 81 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast). 82 The Starfire has a 512 element hash table based on the Ethernet CRC. */ 83 static const int multicast_filter_limit = 512; 84 /* Whether to do TCP/UDP checksums in hardware */ 85 static int enable_hw_cksum = 1; 86 87 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/ 88 /* 89 * Set the copy breakpoint for the copy-only-tiny-frames scheme. 90 * Setting to > 1518 effectively disables this feature. 91 * 92 * NOTE: 93 * The ia64 doesn't allow for unaligned loads even of integers being 94 * misaligned on a 2 byte boundary. Thus always force copying of 95 * packets as the starfire doesn't allow for misaligned DMAs ;-( 96 * 23/10/2000 - Jes 97 * 98 * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64, 99 * at least, having unaligned frames leads to a rather serious performance 100 * penalty. -Ion 101 */ 102 #if defined(__ia64__) || defined(__alpha__) || defined(__sparc__) 103 static int rx_copybreak = PKT_BUF_SZ; 104 #else 105 static int rx_copybreak /* = 0 */; 106 #endif 107 108 /* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */ 109 #ifdef __sparc__ 110 #define DMA_BURST_SIZE 64 111 #else 112 #define DMA_BURST_SIZE 128 113 #endif 114 115 /* Operational parameters that are set at compile time. */ 116 117 /* The "native" ring sizes are either 256 or 2048. 118 However in some modes a descriptor may be marked to wrap the ring earlier. 119 */ 120 #define RX_RING_SIZE 256 121 #define TX_RING_SIZE 32 122 /* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */ 123 #define DONE_Q_SIZE 1024 124 /* All queues must be aligned on a 256-byte boundary */ 125 #define QUEUE_ALIGN 256 126 127 #if RX_RING_SIZE > 256 128 #define RX_Q_ENTRIES Rx2048QEntries 129 #else 130 #define RX_Q_ENTRIES Rx256QEntries 131 #endif 132 133 /* Operational parameters that usually are not changed. */ 134 /* Time in jiffies before concluding the transmitter is hung. */ 135 #define TX_TIMEOUT (2 * HZ) 136 137 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 138 /* 64-bit dma_addr_t */ 139 #define ADDR_64BITS /* This chip uses 64 bit addresses. */ 140 #define netdrv_addr_t __le64 141 #define cpu_to_dma(x) cpu_to_le64(x) 142 #define dma_to_cpu(x) le64_to_cpu(x) 143 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit 144 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit 145 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit 146 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit 147 #define RX_DESC_ADDR_SIZE RxDescAddr64bit 148 #else /* 32-bit dma_addr_t */ 149 #define netdrv_addr_t __le32 150 #define cpu_to_dma(x) cpu_to_le32(x) 151 #define dma_to_cpu(x) le32_to_cpu(x) 152 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit 153 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit 154 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit 155 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit 156 #define RX_DESC_ADDR_SIZE RxDescAddr32bit 157 #endif 158 159 #define skb_first_frag_len(skb) skb_headlen(skb) 160 #define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1) 161 162 /* Firmware names */ 163 #define FIRMWARE_RX "adaptec/starfire_rx.bin" 164 #define FIRMWARE_TX "adaptec/starfire_tx.bin" 165 166 MODULE_AUTHOR("Donald Becker <becker@scyld.com>"); 167 MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver"); 168 MODULE_LICENSE("GPL"); 169 MODULE_FIRMWARE(FIRMWARE_RX); 170 MODULE_FIRMWARE(FIRMWARE_TX); 171 172 module_param(max_interrupt_work, int, 0); 173 module_param(mtu, int, 0); 174 module_param(debug, int, 0); 175 module_param(rx_copybreak, int, 0); 176 module_param(intr_latency, int, 0); 177 module_param(small_frames, int, 0); 178 module_param(enable_hw_cksum, int, 0); 179 MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt"); 180 MODULE_PARM_DESC(mtu, "MTU (all boards)"); 181 MODULE_PARM_DESC(debug, "Debug level (0-6)"); 182 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames"); 183 MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds"); 184 MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)"); 185 MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)"); 186 187 /* 188 Theory of Operation 189 190 I. Board Compatibility 191 192 This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter. 193 194 II. Board-specific settings 195 196 III. Driver operation 197 198 IIIa. Ring buffers 199 200 The Starfire hardware uses multiple fixed-size descriptor queues/rings. The 201 ring sizes are set fixed by the hardware, but may optionally be wrapped 202 earlier by the END bit in the descriptor. 203 This driver uses that hardware queue size for the Rx ring, where a large 204 number of entries has no ill effect beyond increases the potential backlog. 205 The Tx ring is wrapped with the END bit, since a large hardware Tx queue 206 disables the queue layer priority ordering and we have no mechanism to 207 utilize the hardware two-level priority queue. When modifying the 208 RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning 209 levels. 210 211 IIIb/c. Transmit/Receive Structure 212 213 See the Adaptec manual for the many possible structures, and options for 214 each structure. There are far too many to document all of them here. 215 216 For transmit this driver uses type 0/1 transmit descriptors (depending 217 on the 32/64 bitness of the architecture), and relies on automatic 218 minimum-length padding. It does not use the completion queue 219 consumer index, but instead checks for non-zero status entries. 220 221 For receive this driver uses type 2/3 receive descriptors. The driver 222 allocates full frame size skbuffs for the Rx ring buffers, so all frames 223 should fit in a single descriptor. The driver does not use the completion 224 queue consumer index, but instead checks for non-zero status entries. 225 226 When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff 227 is allocated and the frame is copied to the new skbuff. When the incoming 228 frame is larger, the skbuff is passed directly up the protocol stack. 229 Buffers consumed this way are replaced by newly allocated skbuffs in a later 230 phase of receive. 231 232 A notable aspect of operation is that unaligned buffers are not permitted by 233 the Starfire hardware. Thus the IP header at offset 14 in an ethernet frame 234 isn't longword aligned, which may cause problems on some machine 235 e.g. Alphas and IA64. For these architectures, the driver is forced to copy 236 the frame into a new skbuff unconditionally. Copied frames are put into the 237 skbuff at an offset of "+2", thus 16-byte aligning the IP header. 238 239 IIId. Synchronization 240 241 The driver runs as two independent, single-threaded flows of control. One 242 is the send-packet routine, which enforces single-threaded use by the 243 dev->tbusy flag. The other thread is the interrupt handler, which is single 244 threaded by the hardware and interrupt handling software. 245 246 The send packet thread has partial control over the Tx ring and the netif_queue 247 status. If the number of free Tx slots in the ring falls below a certain number 248 (currently hardcoded to 4), it signals the upper layer to stop the queue. 249 250 The interrupt handler has exclusive control over the Rx ring and records stats 251 from the Tx ring. After reaping the stats, it marks the Tx queue entry as 252 empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the 253 number of free Tx slow is above the threshold, it signals the upper layer to 254 restart the queue. 255 256 IV. Notes 257 258 IVb. References 259 260 The Adaptec Starfire manuals, available only from Adaptec. 261 http://www.scyld.com/expert/100mbps.html 262 http://www.scyld.com/expert/NWay.html 263 264 IVc. Errata 265 266 - StopOnPerr is broken, don't enable 267 - Hardware ethernet padding exposes random data, perform software padding 268 instead (unverified -- works correctly for all the hardware I have) 269 270 */ 271 272 273 274 enum chip_capability_flags {CanHaveMII=1, }; 275 276 enum chipset { 277 CH_6915 = 0, 278 }; 279 280 static const struct pci_device_id starfire_pci_tbl[] = { 281 { PCI_VDEVICE(ADAPTEC, 0x6915), CH_6915 }, 282 { 0, } 283 }; 284 MODULE_DEVICE_TABLE(pci, starfire_pci_tbl); 285 286 /* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */ 287 static const struct chip_info { 288 const char *name; 289 int drv_flags; 290 } netdrv_tbl[] = { 291 { "Adaptec Starfire 6915", CanHaveMII }, 292 }; 293 294 295 /* Offsets to the device registers. 296 Unlike software-only systems, device drivers interact with complex hardware. 297 It's not useful to define symbolic names for every register bit in the 298 device. The name can only partially document the semantics and make 299 the driver longer and more difficult to read. 300 In general, only the important configuration values or bits changed 301 multiple times should be defined symbolically. 302 */ 303 enum register_offsets { 304 PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074, 305 IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088, 306 MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000, 307 GPIOCtrl=0x5008C, TxDescCtrl=0x50090, 308 TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */ 309 TxRingHiAddr=0x5009C, /* 64 bit address extension. */ 310 TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4, 311 TxThreshold=0x500B0, 312 CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8, 313 RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0, 314 CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0, 315 RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0, 316 RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4, 317 TxMode=0x55000, VlanType=0x55064, 318 PerfFilterTable=0x56000, HashTable=0x56100, 319 TxGfpMem=0x58000, RxGfpMem=0x5a000, 320 }; 321 322 /* 323 * Bits in the interrupt status/mask registers. 324 * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register 325 * enables all the interrupt sources that are or'ed into those status bits. 326 */ 327 enum intr_status_bits { 328 IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000, 329 IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000, 330 IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000, 331 IntrTxComplQLow=0x200000, IntrPCI=0x100000, 332 IntrDMAErr=0x080000, IntrTxDataLow=0x040000, 333 IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000, 334 IntrNormalSummary=0x8000, IntrTxDone=0x4000, 335 IntrTxDMADone=0x2000, IntrTxEmpty=0x1000, 336 IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400, 337 IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100, 338 IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40, 339 IntrNoTxCsum=0x20, IntrTxBadID=0x10, 340 IntrHiPriTxBadID=0x08, IntrRxGfp=0x04, 341 IntrTxGfp=0x02, IntrPCIPad=0x01, 342 /* not quite bits */ 343 IntrRxDone=IntrRxQ2Done | IntrRxQ1Done, 344 IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low, 345 IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe, 346 }; 347 348 /* Bits in the RxFilterMode register. */ 349 enum rx_mode_bits { 350 AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01, 351 AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30, 352 PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200, 353 WakeupOnGFP=0x0800, 354 }; 355 356 /* Bits in the TxMode register */ 357 enum tx_mode_bits { 358 MiiSoftReset=0x8000, MIILoopback=0x4000, 359 TxFlowEnable=0x0800, RxFlowEnable=0x0400, 360 PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01, 361 }; 362 363 /* Bits in the TxDescCtrl register. */ 364 enum tx_ctrl_bits { 365 TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20, 366 TxDescSpace128=0x30, TxDescSpace256=0x40, 367 TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02, 368 TxDescType3=0x03, TxDescType4=0x04, 369 TxNoDMACompletion=0x08, 370 TxDescQAddr64bit=0x80, TxDescQAddr32bit=0, 371 TxHiPriFIFOThreshShift=24, TxPadLenShift=16, 372 TxDMABurstSizeShift=8, 373 }; 374 375 /* Bits in the RxDescQCtrl register. */ 376 enum rx_ctrl_bits { 377 RxBufferLenShift=16, RxMinDescrThreshShift=0, 378 RxPrefetchMode=0x8000, RxVariableQ=0x2000, 379 Rx2048QEntries=0x4000, Rx256QEntries=0, 380 RxDescAddr64bit=0x1000, RxDescAddr32bit=0, 381 RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0, 382 RxDescSpace4=0x000, RxDescSpace8=0x100, 383 RxDescSpace16=0x200, RxDescSpace32=0x300, 384 RxDescSpace64=0x400, RxDescSpace128=0x500, 385 RxConsumerWrEn=0x80, 386 }; 387 388 /* Bits in the RxDMACtrl register. */ 389 enum rx_dmactrl_bits { 390 RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000, 391 RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000, 392 RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000, 393 RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000, 394 RxChecksumRejectTCPOnly=0x01000000, 395 RxCompletionQ2Enable=0x800000, 396 RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000, 397 RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000, 398 RxDMAQ2NonIP=0x400000, 399 RxUseBackupQueue=0x080000, RxDMACRC=0x040000, 400 RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8, 401 RxBurstSizeShift=0, 402 }; 403 404 /* Bits in the RxCompletionAddr register */ 405 enum rx_compl_bits { 406 RxComplQAddr64bit=0x80, RxComplQAddr32bit=0, 407 RxComplProducerWrEn=0x40, 408 RxComplType0=0x00, RxComplType1=0x10, 409 RxComplType2=0x20, RxComplType3=0x30, 410 RxComplThreshShift=0, 411 }; 412 413 /* Bits in the TxCompletionAddr register */ 414 enum tx_compl_bits { 415 TxComplQAddr64bit=0x80, TxComplQAddr32bit=0, 416 TxComplProducerWrEn=0x40, 417 TxComplIntrStatus=0x20, 418 CommonQueueMode=0x10, 419 TxComplThreshShift=0, 420 }; 421 422 /* Bits in the GenCtrl register */ 423 enum gen_ctrl_bits { 424 RxEnable=0x05, TxEnable=0x0a, 425 RxGFPEnable=0x10, TxGFPEnable=0x20, 426 }; 427 428 /* Bits in the IntrTimerCtrl register */ 429 enum intr_ctrl_bits { 430 Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100, 431 SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600, 432 IntrLatencyMask=0x1f, 433 }; 434 435 /* The Rx and Tx buffer descriptors. */ 436 struct starfire_rx_desc { 437 netdrv_addr_t rxaddr; 438 }; 439 enum rx_desc_bits { 440 RxDescValid=1, RxDescEndRing=2, 441 }; 442 443 /* Completion queue entry. */ 444 struct short_rx_done_desc { 445 __le32 status; /* Low 16 bits is length. */ 446 }; 447 struct basic_rx_done_desc { 448 __le32 status; /* Low 16 bits is length. */ 449 __le16 vlanid; 450 __le16 status2; 451 }; 452 struct csum_rx_done_desc { 453 __le32 status; /* Low 16 bits is length. */ 454 __le16 csum; /* Partial checksum */ 455 __le16 status2; 456 }; 457 struct full_rx_done_desc { 458 __le32 status; /* Low 16 bits is length. */ 459 __le16 status3; 460 __le16 status2; 461 __le16 vlanid; 462 __le16 csum; /* partial checksum */ 463 __le32 timestamp; 464 }; 465 /* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */ 466 #ifdef VLAN_SUPPORT 467 typedef struct full_rx_done_desc rx_done_desc; 468 #define RxComplType RxComplType3 469 #else /* not VLAN_SUPPORT */ 470 typedef struct csum_rx_done_desc rx_done_desc; 471 #define RxComplType RxComplType2 472 #endif /* not VLAN_SUPPORT */ 473 474 enum rx_done_bits { 475 RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000, 476 }; 477 478 /* Type 1 Tx descriptor. */ 479 struct starfire_tx_desc_1 { 480 __le32 status; /* Upper bits are status, lower 16 length. */ 481 __le32 addr; 482 }; 483 484 /* Type 2 Tx descriptor. */ 485 struct starfire_tx_desc_2 { 486 __le32 status; /* Upper bits are status, lower 16 length. */ 487 __le32 reserved; 488 __le64 addr; 489 }; 490 491 #ifdef ADDR_64BITS 492 typedef struct starfire_tx_desc_2 starfire_tx_desc; 493 #define TX_DESC_TYPE TxDescType2 494 #else /* not ADDR_64BITS */ 495 typedef struct starfire_tx_desc_1 starfire_tx_desc; 496 #define TX_DESC_TYPE TxDescType1 497 #endif /* not ADDR_64BITS */ 498 #define TX_DESC_SPACING TxDescSpaceUnlim 499 500 enum tx_desc_bits { 501 TxDescID=0xB0000000, 502 TxCRCEn=0x01000000, TxDescIntr=0x08000000, 503 TxRingWrap=0x04000000, TxCalTCP=0x02000000, 504 }; 505 struct tx_done_desc { 506 __le32 status; /* timestamp, index. */ 507 #if 0 508 __le32 intrstatus; /* interrupt status */ 509 #endif 510 }; 511 512 struct rx_ring_info { 513 struct sk_buff *skb; 514 dma_addr_t mapping; 515 }; 516 struct tx_ring_info { 517 struct sk_buff *skb; 518 dma_addr_t mapping; 519 unsigned int used_slots; 520 }; 521 522 #define PHY_CNT 2 523 struct netdev_private { 524 /* Descriptor rings first for alignment. */ 525 struct starfire_rx_desc *rx_ring; 526 starfire_tx_desc *tx_ring; 527 dma_addr_t rx_ring_dma; 528 dma_addr_t tx_ring_dma; 529 /* The addresses of rx/tx-in-place skbuffs. */ 530 struct rx_ring_info rx_info[RX_RING_SIZE]; 531 struct tx_ring_info tx_info[TX_RING_SIZE]; 532 /* Pointers to completion queues (full pages). */ 533 rx_done_desc *rx_done_q; 534 dma_addr_t rx_done_q_dma; 535 unsigned int rx_done; 536 struct tx_done_desc *tx_done_q; 537 dma_addr_t tx_done_q_dma; 538 unsigned int tx_done; 539 struct napi_struct napi; 540 struct net_device *dev; 541 struct pci_dev *pci_dev; 542 #ifdef VLAN_SUPPORT 543 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)]; 544 #endif 545 void *queue_mem; 546 dma_addr_t queue_mem_dma; 547 size_t queue_mem_size; 548 549 /* Frequently used values: keep some adjacent for cache effect. */ 550 spinlock_t lock; 551 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */ 552 unsigned int cur_tx, dirty_tx, reap_tx; 553 unsigned int rx_buf_sz; /* Based on MTU+slack. */ 554 /* These values keep track of the transceiver/media in use. */ 555 int speed100; /* Set if speed == 100MBit. */ 556 u32 tx_mode; 557 u32 intr_timer_ctrl; 558 u8 tx_threshold; 559 /* MII transceiver section. */ 560 struct mii_if_info mii_if; /* MII lib hooks/info */ 561 int phy_cnt; /* MII device addresses. */ 562 unsigned char phys[PHY_CNT]; /* MII device addresses. */ 563 void __iomem *base; 564 }; 565 566 567 static int mdio_read(struct net_device *dev, int phy_id, int location); 568 static void mdio_write(struct net_device *dev, int phy_id, int location, int value); 569 static int netdev_open(struct net_device *dev); 570 static void check_duplex(struct net_device *dev); 571 static void tx_timeout(struct net_device *dev, unsigned int txqueue); 572 static void init_ring(struct net_device *dev); 573 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev); 574 static irqreturn_t intr_handler(int irq, void *dev_instance); 575 static void netdev_error(struct net_device *dev, int intr_status); 576 static int __netdev_rx(struct net_device *dev, int *quota); 577 static int netdev_poll(struct napi_struct *napi, int budget); 578 static void refill_rx_ring(struct net_device *dev); 579 static void netdev_error(struct net_device *dev, int intr_status); 580 static void set_rx_mode(struct net_device *dev); 581 static struct net_device_stats *get_stats(struct net_device *dev); 582 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); 583 static int netdev_close(struct net_device *dev); 584 static void netdev_media_change(struct net_device *dev); 585 static const struct ethtool_ops ethtool_ops; 586 587 588 #ifdef VLAN_SUPPORT 589 static int netdev_vlan_rx_add_vid(struct net_device *dev, 590 __be16 proto, u16 vid) 591 { 592 struct netdev_private *np = netdev_priv(dev); 593 594 spin_lock(&np->lock); 595 if (debug > 1) 596 printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid); 597 set_bit(vid, np->active_vlans); 598 set_rx_mode(dev); 599 spin_unlock(&np->lock); 600 601 return 0; 602 } 603 604 static int netdev_vlan_rx_kill_vid(struct net_device *dev, 605 __be16 proto, u16 vid) 606 { 607 struct netdev_private *np = netdev_priv(dev); 608 609 spin_lock(&np->lock); 610 if (debug > 1) 611 printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid); 612 clear_bit(vid, np->active_vlans); 613 set_rx_mode(dev); 614 spin_unlock(&np->lock); 615 616 return 0; 617 } 618 #endif /* VLAN_SUPPORT */ 619 620 621 static const struct net_device_ops netdev_ops = { 622 .ndo_open = netdev_open, 623 .ndo_stop = netdev_close, 624 .ndo_start_xmit = start_tx, 625 .ndo_tx_timeout = tx_timeout, 626 .ndo_get_stats = get_stats, 627 .ndo_set_rx_mode = set_rx_mode, 628 .ndo_do_ioctl = netdev_ioctl, 629 .ndo_set_mac_address = eth_mac_addr, 630 .ndo_validate_addr = eth_validate_addr, 631 #ifdef VLAN_SUPPORT 632 .ndo_vlan_rx_add_vid = netdev_vlan_rx_add_vid, 633 .ndo_vlan_rx_kill_vid = netdev_vlan_rx_kill_vid, 634 #endif 635 }; 636 637 static int starfire_init_one(struct pci_dev *pdev, 638 const struct pci_device_id *ent) 639 { 640 struct device *d = &pdev->dev; 641 struct netdev_private *np; 642 int i, irq, chip_idx = ent->driver_data; 643 struct net_device *dev; 644 long ioaddr; 645 void __iomem *base; 646 int drv_flags, io_size; 647 int boguscnt; 648 649 if (pci_enable_device (pdev)) 650 return -EIO; 651 652 ioaddr = pci_resource_start(pdev, 0); 653 io_size = pci_resource_len(pdev, 0); 654 if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) { 655 dev_err(d, "no PCI MEM resources, aborting\n"); 656 return -ENODEV; 657 } 658 659 dev = alloc_etherdev(sizeof(*np)); 660 if (!dev) 661 return -ENOMEM; 662 663 SET_NETDEV_DEV(dev, &pdev->dev); 664 665 irq = pdev->irq; 666 667 if (pci_request_regions (pdev, DRV_NAME)) { 668 dev_err(d, "cannot reserve PCI resources, aborting\n"); 669 goto err_out_free_netdev; 670 } 671 672 base = ioremap(ioaddr, io_size); 673 if (!base) { 674 dev_err(d, "cannot remap %#x @ %#lx, aborting\n", 675 io_size, ioaddr); 676 goto err_out_free_res; 677 } 678 679 pci_set_master(pdev); 680 681 /* enable MWI -- it vastly improves Rx performance on sparc64 */ 682 pci_try_set_mwi(pdev); 683 684 #ifdef ZEROCOPY 685 /* Starfire can do TCP/UDP checksumming */ 686 if (enable_hw_cksum) 687 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG; 688 #endif /* ZEROCOPY */ 689 690 #ifdef VLAN_SUPPORT 691 dev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER; 692 #endif /* VLAN_RX_KILL_VID */ 693 #ifdef ADDR_64BITS 694 dev->features |= NETIF_F_HIGHDMA; 695 #endif /* ADDR_64BITS */ 696 697 /* Serial EEPROM reads are hidden by the hardware. */ 698 for (i = 0; i < 6; i++) 699 dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i); 700 701 #if ! defined(final_version) /* Dump the EEPROM contents during development. */ 702 if (debug > 4) 703 for (i = 0; i < 0x20; i++) 704 printk("%2.2x%s", 705 (unsigned int)readb(base + EEPROMCtrl + i), 706 i % 16 != 15 ? " " : "\n"); 707 #endif 708 709 /* Issue soft reset */ 710 writel(MiiSoftReset, base + TxMode); 711 udelay(1000); 712 writel(0, base + TxMode); 713 714 /* Reset the chip to erase previous misconfiguration. */ 715 writel(1, base + PCIDeviceConfig); 716 boguscnt = 1000; 717 while (--boguscnt > 0) { 718 udelay(10); 719 if ((readl(base + PCIDeviceConfig) & 1) == 0) 720 break; 721 } 722 if (boguscnt == 0) 723 printk("%s: chipset reset never completed!\n", dev->name); 724 /* wait a little longer */ 725 udelay(1000); 726 727 np = netdev_priv(dev); 728 np->dev = dev; 729 np->base = base; 730 spin_lock_init(&np->lock); 731 pci_set_drvdata(pdev, dev); 732 733 np->pci_dev = pdev; 734 735 np->mii_if.dev = dev; 736 np->mii_if.mdio_read = mdio_read; 737 np->mii_if.mdio_write = mdio_write; 738 np->mii_if.phy_id_mask = 0x1f; 739 np->mii_if.reg_num_mask = 0x1f; 740 741 drv_flags = netdrv_tbl[chip_idx].drv_flags; 742 743 np->speed100 = 1; 744 745 /* timer resolution is 128 * 0.8us */ 746 np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) | 747 Timer10X | EnableIntrMasking; 748 749 if (small_frames > 0) { 750 np->intr_timer_ctrl |= SmallFrameBypass; 751 switch (small_frames) { 752 case 1 ... 64: 753 np->intr_timer_ctrl |= SmallFrame64; 754 break; 755 case 65 ... 128: 756 np->intr_timer_ctrl |= SmallFrame128; 757 break; 758 case 129 ... 256: 759 np->intr_timer_ctrl |= SmallFrame256; 760 break; 761 default: 762 np->intr_timer_ctrl |= SmallFrame512; 763 if (small_frames > 512) 764 printk("Adjusting small_frames down to 512\n"); 765 break; 766 } 767 } 768 769 dev->netdev_ops = &netdev_ops; 770 dev->watchdog_timeo = TX_TIMEOUT; 771 dev->ethtool_ops = ðtool_ops; 772 773 netif_napi_add(dev, &np->napi, netdev_poll, max_interrupt_work); 774 775 if (mtu) 776 dev->mtu = mtu; 777 778 if (register_netdev(dev)) 779 goto err_out_cleardev; 780 781 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n", 782 dev->name, netdrv_tbl[chip_idx].name, base, 783 dev->dev_addr, irq); 784 785 if (drv_flags & CanHaveMII) { 786 int phy, phy_idx = 0; 787 int mii_status; 788 for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) { 789 mdio_write(dev, phy, MII_BMCR, BMCR_RESET); 790 msleep(100); 791 boguscnt = 1000; 792 while (--boguscnt > 0) 793 if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0) 794 break; 795 if (boguscnt == 0) { 796 printk("%s: PHY#%d reset never completed!\n", dev->name, phy); 797 continue; 798 } 799 mii_status = mdio_read(dev, phy, MII_BMSR); 800 if (mii_status != 0) { 801 np->phys[phy_idx++] = phy; 802 np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE); 803 printk(KERN_INFO "%s: MII PHY found at address %d, status " 804 "%#4.4x advertising %#4.4x.\n", 805 dev->name, phy, mii_status, np->mii_if.advertising); 806 /* there can be only one PHY on-board */ 807 break; 808 } 809 } 810 np->phy_cnt = phy_idx; 811 if (np->phy_cnt > 0) 812 np->mii_if.phy_id = np->phys[0]; 813 else 814 memset(&np->mii_if, 0, sizeof(np->mii_if)); 815 } 816 817 printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n", 818 dev->name, enable_hw_cksum ? "enabled" : "disabled"); 819 return 0; 820 821 err_out_cleardev: 822 iounmap(base); 823 err_out_free_res: 824 pci_release_regions (pdev); 825 err_out_free_netdev: 826 free_netdev(dev); 827 return -ENODEV; 828 } 829 830 831 /* Read the MII Management Data I/O (MDIO) interfaces. */ 832 static int mdio_read(struct net_device *dev, int phy_id, int location) 833 { 834 struct netdev_private *np = netdev_priv(dev); 835 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2); 836 int result, boguscnt=1000; 837 /* ??? Should we add a busy-wait here? */ 838 do { 839 result = readl(mdio_addr); 840 } while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0); 841 if (boguscnt == 0) 842 return 0; 843 if ((result & 0xffff) == 0xffff) 844 return 0; 845 return result & 0xffff; 846 } 847 848 849 static void mdio_write(struct net_device *dev, int phy_id, int location, int value) 850 { 851 struct netdev_private *np = netdev_priv(dev); 852 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2); 853 writel(value, mdio_addr); 854 /* The busy-wait will occur before a read. */ 855 } 856 857 858 static int netdev_open(struct net_device *dev) 859 { 860 const struct firmware *fw_rx, *fw_tx; 861 const __be32 *fw_rx_data, *fw_tx_data; 862 struct netdev_private *np = netdev_priv(dev); 863 void __iomem *ioaddr = np->base; 864 const int irq = np->pci_dev->irq; 865 int i, retval; 866 size_t tx_size, rx_size; 867 size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size; 868 869 /* Do we ever need to reset the chip??? */ 870 871 retval = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev); 872 if (retval) 873 return retval; 874 875 /* Disable the Rx and Tx, and reset the chip. */ 876 writel(0, ioaddr + GenCtrl); 877 writel(1, ioaddr + PCIDeviceConfig); 878 if (debug > 1) 879 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n", 880 dev->name, irq); 881 882 /* Allocate the various queues. */ 883 if (!np->queue_mem) { 884 tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN; 885 rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN; 886 tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN; 887 rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE; 888 np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size; 889 np->queue_mem = pci_alloc_consistent(np->pci_dev, np->queue_mem_size, &np->queue_mem_dma); 890 if (np->queue_mem == NULL) { 891 free_irq(irq, dev); 892 return -ENOMEM; 893 } 894 895 np->tx_done_q = np->queue_mem; 896 np->tx_done_q_dma = np->queue_mem_dma; 897 np->rx_done_q = (void *) np->tx_done_q + tx_done_q_size; 898 np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size; 899 np->tx_ring = (void *) np->rx_done_q + rx_done_q_size; 900 np->tx_ring_dma = np->rx_done_q_dma + rx_done_q_size; 901 np->rx_ring = (void *) np->tx_ring + tx_ring_size; 902 np->rx_ring_dma = np->tx_ring_dma + tx_ring_size; 903 } 904 905 /* Start with no carrier, it gets adjusted later */ 906 netif_carrier_off(dev); 907 init_ring(dev); 908 /* Set the size of the Rx buffers. */ 909 writel((np->rx_buf_sz << RxBufferLenShift) | 910 (0 << RxMinDescrThreshShift) | 911 RxPrefetchMode | RxVariableQ | 912 RX_Q_ENTRIES | 913 RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE | 914 RxDescSpace4, 915 ioaddr + RxDescQCtrl); 916 917 /* Set up the Rx DMA controller. */ 918 writel(RxChecksumIgnore | 919 (0 << RxEarlyIntThreshShift) | 920 (6 << RxHighPrioThreshShift) | 921 ((DMA_BURST_SIZE / 32) << RxBurstSizeShift), 922 ioaddr + RxDMACtrl); 923 924 /* Set Tx descriptor */ 925 writel((2 << TxHiPriFIFOThreshShift) | 926 (0 << TxPadLenShift) | 927 ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) | 928 TX_DESC_Q_ADDR_SIZE | 929 TX_DESC_SPACING | TX_DESC_TYPE, 930 ioaddr + TxDescCtrl); 931 932 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr); 933 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr); 934 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr); 935 writel(np->rx_ring_dma, ioaddr + RxDescQAddr); 936 writel(np->tx_ring_dma, ioaddr + TxRingPtr); 937 938 writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr); 939 writel(np->rx_done_q_dma | 940 RxComplType | 941 (0 << RxComplThreshShift), 942 ioaddr + RxCompletionAddr); 943 944 if (debug > 1) 945 printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name); 946 947 /* Fill both the Tx SA register and the Rx perfect filter. */ 948 for (i = 0; i < 6; i++) 949 writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i); 950 /* The first entry is special because it bypasses the VLAN filter. 951 Don't use it. */ 952 writew(0, ioaddr + PerfFilterTable); 953 writew(0, ioaddr + PerfFilterTable + 4); 954 writew(0, ioaddr + PerfFilterTable + 8); 955 for (i = 1; i < 16; i++) { 956 __be16 *eaddrs = (__be16 *)dev->dev_addr; 957 void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16; 958 writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4; 959 writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4; 960 writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8; 961 } 962 963 /* Initialize other registers. */ 964 /* Configure the PCI bus bursts and FIFO thresholds. */ 965 np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable; /* modified when link is up. */ 966 writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode); 967 udelay(1000); 968 writel(np->tx_mode, ioaddr + TxMode); 969 np->tx_threshold = 4; 970 writel(np->tx_threshold, ioaddr + TxThreshold); 971 972 writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl); 973 974 napi_enable(&np->napi); 975 976 netif_start_queue(dev); 977 978 if (debug > 1) 979 printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name); 980 set_rx_mode(dev); 981 982 np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE); 983 check_duplex(dev); 984 985 /* Enable GPIO interrupts on link change */ 986 writel(0x0f00ff00, ioaddr + GPIOCtrl); 987 988 /* Set the interrupt mask */ 989 writel(IntrRxDone | IntrRxEmpty | IntrDMAErr | 990 IntrTxDMADone | IntrStatsMax | IntrLinkChange | 991 IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID, 992 ioaddr + IntrEnable); 993 /* Enable PCI interrupts. */ 994 writel(0x00800000 | readl(ioaddr + PCIDeviceConfig), 995 ioaddr + PCIDeviceConfig); 996 997 #ifdef VLAN_SUPPORT 998 /* Set VLAN type to 802.1q */ 999 writel(ETH_P_8021Q, ioaddr + VlanType); 1000 #endif /* VLAN_SUPPORT */ 1001 1002 retval = request_firmware(&fw_rx, FIRMWARE_RX, &np->pci_dev->dev); 1003 if (retval) { 1004 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n", 1005 FIRMWARE_RX); 1006 goto out_init; 1007 } 1008 if (fw_rx->size % 4) { 1009 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n", 1010 fw_rx->size, FIRMWARE_RX); 1011 retval = -EINVAL; 1012 goto out_rx; 1013 } 1014 retval = request_firmware(&fw_tx, FIRMWARE_TX, &np->pci_dev->dev); 1015 if (retval) { 1016 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n", 1017 FIRMWARE_TX); 1018 goto out_rx; 1019 } 1020 if (fw_tx->size % 4) { 1021 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n", 1022 fw_tx->size, FIRMWARE_TX); 1023 retval = -EINVAL; 1024 goto out_tx; 1025 } 1026 fw_rx_data = (const __be32 *)&fw_rx->data[0]; 1027 fw_tx_data = (const __be32 *)&fw_tx->data[0]; 1028 rx_size = fw_rx->size / 4; 1029 tx_size = fw_tx->size / 4; 1030 1031 /* Load Rx/Tx firmware into the frame processors */ 1032 for (i = 0; i < rx_size; i++) 1033 writel(be32_to_cpup(&fw_rx_data[i]), ioaddr + RxGfpMem + i * 4); 1034 for (i = 0; i < tx_size; i++) 1035 writel(be32_to_cpup(&fw_tx_data[i]), ioaddr + TxGfpMem + i * 4); 1036 if (enable_hw_cksum) 1037 /* Enable the Rx and Tx units, and the Rx/Tx frame processors. */ 1038 writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl); 1039 else 1040 /* Enable the Rx and Tx units only. */ 1041 writel(TxEnable|RxEnable, ioaddr + GenCtrl); 1042 1043 if (debug > 1) 1044 printk(KERN_DEBUG "%s: Done netdev_open().\n", 1045 dev->name); 1046 1047 out_tx: 1048 release_firmware(fw_tx); 1049 out_rx: 1050 release_firmware(fw_rx); 1051 out_init: 1052 if (retval) 1053 netdev_close(dev); 1054 return retval; 1055 } 1056 1057 1058 static void check_duplex(struct net_device *dev) 1059 { 1060 struct netdev_private *np = netdev_priv(dev); 1061 u16 reg0; 1062 int silly_count = 1000; 1063 1064 mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising); 1065 mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET); 1066 udelay(500); 1067 while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET) 1068 /* do nothing */; 1069 if (!silly_count) { 1070 printk("%s: MII reset failed!\n", dev->name); 1071 return; 1072 } 1073 1074 reg0 = mdio_read(dev, np->phys[0], MII_BMCR); 1075 1076 if (!np->mii_if.force_media) { 1077 reg0 |= BMCR_ANENABLE | BMCR_ANRESTART; 1078 } else { 1079 reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART); 1080 if (np->speed100) 1081 reg0 |= BMCR_SPEED100; 1082 if (np->mii_if.full_duplex) 1083 reg0 |= BMCR_FULLDPLX; 1084 printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n", 1085 dev->name, 1086 np->speed100 ? "100" : "10", 1087 np->mii_if.full_duplex ? "full" : "half"); 1088 } 1089 mdio_write(dev, np->phys[0], MII_BMCR, reg0); 1090 } 1091 1092 1093 static void tx_timeout(struct net_device *dev, unsigned int txqueue) 1094 { 1095 struct netdev_private *np = netdev_priv(dev); 1096 void __iomem *ioaddr = np->base; 1097 int old_debug; 1098 1099 printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, " 1100 "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus)); 1101 1102 /* Perhaps we should reinitialize the hardware here. */ 1103 1104 /* 1105 * Stop and restart the interface. 1106 * Cheat and increase the debug level temporarily. 1107 */ 1108 old_debug = debug; 1109 debug = 2; 1110 netdev_close(dev); 1111 netdev_open(dev); 1112 debug = old_debug; 1113 1114 /* Trigger an immediate transmit demand. */ 1115 1116 netif_trans_update(dev); /* prevent tx timeout */ 1117 dev->stats.tx_errors++; 1118 netif_wake_queue(dev); 1119 } 1120 1121 1122 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */ 1123 static void init_ring(struct net_device *dev) 1124 { 1125 struct netdev_private *np = netdev_priv(dev); 1126 int i; 1127 1128 np->cur_rx = np->cur_tx = np->reap_tx = 0; 1129 np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0; 1130 1131 np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32); 1132 1133 /* Fill in the Rx buffers. Handle allocation failure gracefully. */ 1134 for (i = 0; i < RX_RING_SIZE; i++) { 1135 struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz); 1136 np->rx_info[i].skb = skb; 1137 if (skb == NULL) 1138 break; 1139 np->rx_info[i].mapping = pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE); 1140 if (pci_dma_mapping_error(np->pci_dev, 1141 np->rx_info[i].mapping)) { 1142 dev_kfree_skb(skb); 1143 np->rx_info[i].skb = NULL; 1144 break; 1145 } 1146 /* Grrr, we cannot offset to correctly align the IP header. */ 1147 np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid); 1148 } 1149 writew(i - 1, np->base + RxDescQIdx); 1150 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE); 1151 1152 /* Clear the remainder of the Rx buffer ring. */ 1153 for ( ; i < RX_RING_SIZE; i++) { 1154 np->rx_ring[i].rxaddr = 0; 1155 np->rx_info[i].skb = NULL; 1156 np->rx_info[i].mapping = 0; 1157 } 1158 /* Mark the last entry as wrapping the ring. */ 1159 np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing); 1160 1161 /* Clear the completion rings. */ 1162 for (i = 0; i < DONE_Q_SIZE; i++) { 1163 np->rx_done_q[i].status = 0; 1164 np->tx_done_q[i].status = 0; 1165 } 1166 1167 for (i = 0; i < TX_RING_SIZE; i++) 1168 memset(&np->tx_info[i], 0, sizeof(np->tx_info[i])); 1169 } 1170 1171 1172 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev) 1173 { 1174 struct netdev_private *np = netdev_priv(dev); 1175 unsigned int entry; 1176 unsigned int prev_tx; 1177 u32 status; 1178 int i, j; 1179 1180 /* 1181 * be cautious here, wrapping the queue has weird semantics 1182 * and we may not have enough slots even when it seems we do. 1183 */ 1184 if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) { 1185 netif_stop_queue(dev); 1186 return NETDEV_TX_BUSY; 1187 } 1188 1189 #if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE) 1190 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1191 if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK)) 1192 return NETDEV_TX_OK; 1193 } 1194 #endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */ 1195 1196 prev_tx = np->cur_tx; 1197 entry = np->cur_tx % TX_RING_SIZE; 1198 for (i = 0; i < skb_num_frags(skb); i++) { 1199 int wrap_ring = 0; 1200 status = TxDescID; 1201 1202 if (i == 0) { 1203 np->tx_info[entry].skb = skb; 1204 status |= TxCRCEn; 1205 if (entry >= TX_RING_SIZE - skb_num_frags(skb)) { 1206 status |= TxRingWrap; 1207 wrap_ring = 1; 1208 } 1209 if (np->reap_tx) { 1210 status |= TxDescIntr; 1211 np->reap_tx = 0; 1212 } 1213 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1214 status |= TxCalTCP; 1215 dev->stats.tx_compressed++; 1216 } 1217 status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16); 1218 1219 np->tx_info[entry].mapping = 1220 pci_map_single(np->pci_dev, skb->data, skb_first_frag_len(skb), PCI_DMA_TODEVICE); 1221 } else { 1222 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1]; 1223 status |= skb_frag_size(this_frag); 1224 np->tx_info[entry].mapping = 1225 pci_map_single(np->pci_dev, 1226 skb_frag_address(this_frag), 1227 skb_frag_size(this_frag), 1228 PCI_DMA_TODEVICE); 1229 } 1230 if (pci_dma_mapping_error(np->pci_dev, 1231 np->tx_info[entry].mapping)) { 1232 dev->stats.tx_dropped++; 1233 goto err_out; 1234 } 1235 1236 np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping); 1237 np->tx_ring[entry].status = cpu_to_le32(status); 1238 if (debug > 3) 1239 printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n", 1240 dev->name, np->cur_tx, np->dirty_tx, 1241 entry, status); 1242 if (wrap_ring) { 1243 np->tx_info[entry].used_slots = TX_RING_SIZE - entry; 1244 np->cur_tx += np->tx_info[entry].used_slots; 1245 entry = 0; 1246 } else { 1247 np->tx_info[entry].used_slots = 1; 1248 np->cur_tx += np->tx_info[entry].used_slots; 1249 entry++; 1250 } 1251 /* scavenge the tx descriptors twice per TX_RING_SIZE */ 1252 if (np->cur_tx % (TX_RING_SIZE / 2) == 0) 1253 np->reap_tx = 1; 1254 } 1255 1256 /* Non-x86: explicitly flush descriptor cache lines here. */ 1257 /* Ensure all descriptors are written back before the transmit is 1258 initiated. - Jes */ 1259 wmb(); 1260 1261 /* Update the producer index. */ 1262 writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx); 1263 1264 /* 4 is arbitrary, but should be ok */ 1265 if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE) 1266 netif_stop_queue(dev); 1267 1268 return NETDEV_TX_OK; 1269 1270 err_out: 1271 entry = prev_tx % TX_RING_SIZE; 1272 np->tx_info[entry].skb = NULL; 1273 if (i > 0) { 1274 pci_unmap_single(np->pci_dev, 1275 np->tx_info[entry].mapping, 1276 skb_first_frag_len(skb), 1277 PCI_DMA_TODEVICE); 1278 np->tx_info[entry].mapping = 0; 1279 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE; 1280 for (j = 1; j < i; j++) { 1281 pci_unmap_single(np->pci_dev, 1282 np->tx_info[entry].mapping, 1283 skb_frag_size( 1284 &skb_shinfo(skb)->frags[j-1]), 1285 PCI_DMA_TODEVICE); 1286 entry++; 1287 } 1288 } 1289 dev_kfree_skb_any(skb); 1290 np->cur_tx = prev_tx; 1291 return NETDEV_TX_OK; 1292 } 1293 1294 /* The interrupt handler does all of the Rx thread work and cleans up 1295 after the Tx thread. */ 1296 static irqreturn_t intr_handler(int irq, void *dev_instance) 1297 { 1298 struct net_device *dev = dev_instance; 1299 struct netdev_private *np = netdev_priv(dev); 1300 void __iomem *ioaddr = np->base; 1301 int boguscnt = max_interrupt_work; 1302 int consumer; 1303 int tx_status; 1304 int handled = 0; 1305 1306 do { 1307 u32 intr_status = readl(ioaddr + IntrClear); 1308 1309 if (debug > 4) 1310 printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n", 1311 dev->name, intr_status); 1312 1313 if (intr_status == 0 || intr_status == (u32) -1) 1314 break; 1315 1316 handled = 1; 1317 1318 if (intr_status & (IntrRxDone | IntrRxEmpty)) { 1319 u32 enable; 1320 1321 if (likely(napi_schedule_prep(&np->napi))) { 1322 __napi_schedule(&np->napi); 1323 enable = readl(ioaddr + IntrEnable); 1324 enable &= ~(IntrRxDone | IntrRxEmpty); 1325 writel(enable, ioaddr + IntrEnable); 1326 /* flush PCI posting buffers */ 1327 readl(ioaddr + IntrEnable); 1328 } else { 1329 /* Paranoia check */ 1330 enable = readl(ioaddr + IntrEnable); 1331 if (enable & (IntrRxDone | IntrRxEmpty)) { 1332 printk(KERN_INFO 1333 "%s: interrupt while in poll!\n", 1334 dev->name); 1335 enable &= ~(IntrRxDone | IntrRxEmpty); 1336 writel(enable, ioaddr + IntrEnable); 1337 } 1338 } 1339 } 1340 1341 /* Scavenge the skbuff list based on the Tx-done queue. 1342 There are redundant checks here that may be cleaned up 1343 after the driver has proven to be reliable. */ 1344 consumer = readl(ioaddr + TxConsumerIdx); 1345 if (debug > 3) 1346 printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n", 1347 dev->name, consumer); 1348 1349 while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) { 1350 if (debug > 3) 1351 printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n", 1352 dev->name, np->dirty_tx, np->tx_done, tx_status); 1353 if ((tx_status & 0xe0000000) == 0xa0000000) { 1354 dev->stats.tx_packets++; 1355 } else if ((tx_status & 0xe0000000) == 0x80000000) { 1356 u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc); 1357 struct sk_buff *skb = np->tx_info[entry].skb; 1358 np->tx_info[entry].skb = NULL; 1359 pci_unmap_single(np->pci_dev, 1360 np->tx_info[entry].mapping, 1361 skb_first_frag_len(skb), 1362 PCI_DMA_TODEVICE); 1363 np->tx_info[entry].mapping = 0; 1364 np->dirty_tx += np->tx_info[entry].used_slots; 1365 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE; 1366 { 1367 int i; 1368 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1369 pci_unmap_single(np->pci_dev, 1370 np->tx_info[entry].mapping, 1371 skb_frag_size(&skb_shinfo(skb)->frags[i]), 1372 PCI_DMA_TODEVICE); 1373 np->dirty_tx++; 1374 entry++; 1375 } 1376 } 1377 1378 dev_consume_skb_irq(skb); 1379 } 1380 np->tx_done_q[np->tx_done].status = 0; 1381 np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE; 1382 } 1383 writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2); 1384 1385 if (netif_queue_stopped(dev) && 1386 (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) { 1387 /* The ring is no longer full, wake the queue. */ 1388 netif_wake_queue(dev); 1389 } 1390 1391 /* Stats overflow */ 1392 if (intr_status & IntrStatsMax) 1393 get_stats(dev); 1394 1395 /* Media change interrupt. */ 1396 if (intr_status & IntrLinkChange) 1397 netdev_media_change(dev); 1398 1399 /* Abnormal error summary/uncommon events handlers. */ 1400 if (intr_status & IntrAbnormalSummary) 1401 netdev_error(dev, intr_status); 1402 1403 if (--boguscnt < 0) { 1404 if (debug > 1) 1405 printk(KERN_WARNING "%s: Too much work at interrupt, " 1406 "status=%#8.8x.\n", 1407 dev->name, intr_status); 1408 break; 1409 } 1410 } while (1); 1411 1412 if (debug > 4) 1413 printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n", 1414 dev->name, (int) readl(ioaddr + IntrStatus)); 1415 return IRQ_RETVAL(handled); 1416 } 1417 1418 1419 /* 1420 * This routine is logically part of the interrupt/poll handler, but separated 1421 * for clarity and better register allocation. 1422 */ 1423 static int __netdev_rx(struct net_device *dev, int *quota) 1424 { 1425 struct netdev_private *np = netdev_priv(dev); 1426 u32 desc_status; 1427 int retcode = 0; 1428 1429 /* If EOP is set on the next entry, it's a new packet. Send it up. */ 1430 while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) { 1431 struct sk_buff *skb; 1432 u16 pkt_len; 1433 int entry; 1434 rx_done_desc *desc = &np->rx_done_q[np->rx_done]; 1435 1436 if (debug > 4) 1437 printk(KERN_DEBUG " netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status); 1438 if (!(desc_status & RxOK)) { 1439 /* There was an error. */ 1440 if (debug > 2) 1441 printk(KERN_DEBUG " netdev_rx() Rx error was %#8.8x.\n", desc_status); 1442 dev->stats.rx_errors++; 1443 if (desc_status & RxFIFOErr) 1444 dev->stats.rx_fifo_errors++; 1445 goto next_rx; 1446 } 1447 1448 if (*quota <= 0) { /* out of rx quota */ 1449 retcode = 1; 1450 goto out; 1451 } 1452 (*quota)--; 1453 1454 pkt_len = desc_status; /* Implicitly Truncate */ 1455 entry = (desc_status >> 16) & 0x7ff; 1456 1457 if (debug > 4) 1458 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota); 1459 /* Check if the packet is long enough to accept without copying 1460 to a minimally-sized skbuff. */ 1461 if (pkt_len < rx_copybreak && 1462 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) { 1463 skb_reserve(skb, 2); /* 16 byte align the IP header */ 1464 pci_dma_sync_single_for_cpu(np->pci_dev, 1465 np->rx_info[entry].mapping, 1466 pkt_len, PCI_DMA_FROMDEVICE); 1467 skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len); 1468 pci_dma_sync_single_for_device(np->pci_dev, 1469 np->rx_info[entry].mapping, 1470 pkt_len, PCI_DMA_FROMDEVICE); 1471 skb_put(skb, pkt_len); 1472 } else { 1473 pci_unmap_single(np->pci_dev, np->rx_info[entry].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE); 1474 skb = np->rx_info[entry].skb; 1475 skb_put(skb, pkt_len); 1476 np->rx_info[entry].skb = NULL; 1477 np->rx_info[entry].mapping = 0; 1478 } 1479 #ifndef final_version /* Remove after testing. */ 1480 /* You will want this info for the initial debug. */ 1481 if (debug > 5) { 1482 printk(KERN_DEBUG " Rx data %pM %pM %2.2x%2.2x.\n", 1483 skb->data, skb->data + 6, 1484 skb->data[12], skb->data[13]); 1485 } 1486 #endif 1487 1488 skb->protocol = eth_type_trans(skb, dev); 1489 #ifdef VLAN_SUPPORT 1490 if (debug > 4) 1491 printk(KERN_DEBUG " netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2)); 1492 #endif 1493 if (le16_to_cpu(desc->status2) & 0x0100) { 1494 skb->ip_summed = CHECKSUM_UNNECESSARY; 1495 dev->stats.rx_compressed++; 1496 } 1497 /* 1498 * This feature doesn't seem to be working, at least 1499 * with the two firmware versions I have. If the GFP sees 1500 * an IP fragment, it either ignores it completely, or reports 1501 * "bad checksum" on it. 1502 * 1503 * Maybe I missed something -- corrections are welcome. 1504 * Until then, the printk stays. :-) -Ion 1505 */ 1506 else if (le16_to_cpu(desc->status2) & 0x0040) { 1507 skb->ip_summed = CHECKSUM_COMPLETE; 1508 skb->csum = le16_to_cpu(desc->csum); 1509 printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2)); 1510 } 1511 #ifdef VLAN_SUPPORT 1512 if (le16_to_cpu(desc->status2) & 0x0200) { 1513 u16 vlid = le16_to_cpu(desc->vlanid); 1514 1515 if (debug > 4) { 1516 printk(KERN_DEBUG " netdev_rx() vlanid = %d\n", 1517 vlid); 1518 } 1519 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlid); 1520 } 1521 #endif /* VLAN_SUPPORT */ 1522 netif_receive_skb(skb); 1523 dev->stats.rx_packets++; 1524 1525 next_rx: 1526 np->cur_rx++; 1527 desc->status = 0; 1528 np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE; 1529 } 1530 1531 if (*quota == 0) { /* out of rx quota */ 1532 retcode = 1; 1533 goto out; 1534 } 1535 writew(np->rx_done, np->base + CompletionQConsumerIdx); 1536 1537 out: 1538 refill_rx_ring(dev); 1539 if (debug > 5) 1540 printk(KERN_DEBUG " exiting netdev_rx(): %d, status of %d was %#8.8x.\n", 1541 retcode, np->rx_done, desc_status); 1542 return retcode; 1543 } 1544 1545 static int netdev_poll(struct napi_struct *napi, int budget) 1546 { 1547 struct netdev_private *np = container_of(napi, struct netdev_private, napi); 1548 struct net_device *dev = np->dev; 1549 u32 intr_status; 1550 void __iomem *ioaddr = np->base; 1551 int quota = budget; 1552 1553 do { 1554 writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear); 1555 1556 if (__netdev_rx(dev, "a)) 1557 goto out; 1558 1559 intr_status = readl(ioaddr + IntrStatus); 1560 } while (intr_status & (IntrRxDone | IntrRxEmpty)); 1561 1562 napi_complete(napi); 1563 intr_status = readl(ioaddr + IntrEnable); 1564 intr_status |= IntrRxDone | IntrRxEmpty; 1565 writel(intr_status, ioaddr + IntrEnable); 1566 1567 out: 1568 if (debug > 5) 1569 printk(KERN_DEBUG " exiting netdev_poll(): %d.\n", 1570 budget - quota); 1571 1572 /* Restart Rx engine if stopped. */ 1573 return budget - quota; 1574 } 1575 1576 static void refill_rx_ring(struct net_device *dev) 1577 { 1578 struct netdev_private *np = netdev_priv(dev); 1579 struct sk_buff *skb; 1580 int entry = -1; 1581 1582 /* Refill the Rx ring buffers. */ 1583 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) { 1584 entry = np->dirty_rx % RX_RING_SIZE; 1585 if (np->rx_info[entry].skb == NULL) { 1586 skb = netdev_alloc_skb(dev, np->rx_buf_sz); 1587 np->rx_info[entry].skb = skb; 1588 if (skb == NULL) 1589 break; /* Better luck next round. */ 1590 np->rx_info[entry].mapping = 1591 pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE); 1592 if (pci_dma_mapping_error(np->pci_dev, 1593 np->rx_info[entry].mapping)) { 1594 dev_kfree_skb(skb); 1595 np->rx_info[entry].skb = NULL; 1596 break; 1597 } 1598 np->rx_ring[entry].rxaddr = 1599 cpu_to_dma(np->rx_info[entry].mapping | RxDescValid); 1600 } 1601 if (entry == RX_RING_SIZE - 1) 1602 np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing); 1603 } 1604 if (entry >= 0) 1605 writew(entry, np->base + RxDescQIdx); 1606 } 1607 1608 1609 static void netdev_media_change(struct net_device *dev) 1610 { 1611 struct netdev_private *np = netdev_priv(dev); 1612 void __iomem *ioaddr = np->base; 1613 u16 reg0, reg1, reg4, reg5; 1614 u32 new_tx_mode; 1615 u32 new_intr_timer_ctrl; 1616 1617 /* reset status first */ 1618 mdio_read(dev, np->phys[0], MII_BMCR); 1619 mdio_read(dev, np->phys[0], MII_BMSR); 1620 1621 reg0 = mdio_read(dev, np->phys[0], MII_BMCR); 1622 reg1 = mdio_read(dev, np->phys[0], MII_BMSR); 1623 1624 if (reg1 & BMSR_LSTATUS) { 1625 /* link is up */ 1626 if (reg0 & BMCR_ANENABLE) { 1627 /* autonegotiation is enabled */ 1628 reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE); 1629 reg5 = mdio_read(dev, np->phys[0], MII_LPA); 1630 if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) { 1631 np->speed100 = 1; 1632 np->mii_if.full_duplex = 1; 1633 } else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) { 1634 np->speed100 = 1; 1635 np->mii_if.full_duplex = 0; 1636 } else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) { 1637 np->speed100 = 0; 1638 np->mii_if.full_duplex = 1; 1639 } else { 1640 np->speed100 = 0; 1641 np->mii_if.full_duplex = 0; 1642 } 1643 } else { 1644 /* autonegotiation is disabled */ 1645 if (reg0 & BMCR_SPEED100) 1646 np->speed100 = 1; 1647 else 1648 np->speed100 = 0; 1649 if (reg0 & BMCR_FULLDPLX) 1650 np->mii_if.full_duplex = 1; 1651 else 1652 np->mii_if.full_duplex = 0; 1653 } 1654 netif_carrier_on(dev); 1655 printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n", 1656 dev->name, 1657 np->speed100 ? "100" : "10", 1658 np->mii_if.full_duplex ? "full" : "half"); 1659 1660 new_tx_mode = np->tx_mode & ~FullDuplex; /* duplex setting */ 1661 if (np->mii_if.full_duplex) 1662 new_tx_mode |= FullDuplex; 1663 if (np->tx_mode != new_tx_mode) { 1664 np->tx_mode = new_tx_mode; 1665 writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode); 1666 udelay(1000); 1667 writel(np->tx_mode, ioaddr + TxMode); 1668 } 1669 1670 new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X; 1671 if (np->speed100) 1672 new_intr_timer_ctrl |= Timer10X; 1673 if (np->intr_timer_ctrl != new_intr_timer_ctrl) { 1674 np->intr_timer_ctrl = new_intr_timer_ctrl; 1675 writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl); 1676 } 1677 } else { 1678 netif_carrier_off(dev); 1679 printk(KERN_DEBUG "%s: Link is down\n", dev->name); 1680 } 1681 } 1682 1683 1684 static void netdev_error(struct net_device *dev, int intr_status) 1685 { 1686 struct netdev_private *np = netdev_priv(dev); 1687 1688 /* Came close to underrunning the Tx FIFO, increase threshold. */ 1689 if (intr_status & IntrTxDataLow) { 1690 if (np->tx_threshold <= PKT_BUF_SZ / 16) { 1691 writel(++np->tx_threshold, np->base + TxThreshold); 1692 printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n", 1693 dev->name, np->tx_threshold * 16); 1694 } else 1695 printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name); 1696 } 1697 if (intr_status & IntrRxGFPDead) { 1698 dev->stats.rx_fifo_errors++; 1699 dev->stats.rx_errors++; 1700 } 1701 if (intr_status & (IntrNoTxCsum | IntrDMAErr)) { 1702 dev->stats.tx_fifo_errors++; 1703 dev->stats.tx_errors++; 1704 } 1705 if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug) 1706 printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n", 1707 dev->name, intr_status); 1708 } 1709 1710 1711 static struct net_device_stats *get_stats(struct net_device *dev) 1712 { 1713 struct netdev_private *np = netdev_priv(dev); 1714 void __iomem *ioaddr = np->base; 1715 1716 /* This adapter architecture needs no SMP locks. */ 1717 dev->stats.tx_bytes = readl(ioaddr + 0x57010); 1718 dev->stats.rx_bytes = readl(ioaddr + 0x57044); 1719 dev->stats.tx_packets = readl(ioaddr + 0x57000); 1720 dev->stats.tx_aborted_errors = 1721 readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028); 1722 dev->stats.tx_window_errors = readl(ioaddr + 0x57018); 1723 dev->stats.collisions = 1724 readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008); 1725 1726 /* The chip only need report frame silently dropped. */ 1727 dev->stats.rx_dropped += readw(ioaddr + RxDMAStatus); 1728 writew(0, ioaddr + RxDMAStatus); 1729 dev->stats.rx_crc_errors = readl(ioaddr + 0x5703C); 1730 dev->stats.rx_frame_errors = readl(ioaddr + 0x57040); 1731 dev->stats.rx_length_errors = readl(ioaddr + 0x57058); 1732 dev->stats.rx_missed_errors = readl(ioaddr + 0x5707C); 1733 1734 return &dev->stats; 1735 } 1736 1737 #ifdef VLAN_SUPPORT 1738 static u32 set_vlan_mode(struct netdev_private *np) 1739 { 1740 u32 ret = VlanMode; 1741 u16 vid; 1742 void __iomem *filter_addr = np->base + HashTable + 8; 1743 int vlan_count = 0; 1744 1745 for_each_set_bit(vid, np->active_vlans, VLAN_N_VID) { 1746 if (vlan_count == 32) 1747 break; 1748 writew(vid, filter_addr); 1749 filter_addr += 16; 1750 vlan_count++; 1751 } 1752 if (vlan_count == 32) { 1753 ret |= PerfectFilterVlan; 1754 while (vlan_count < 32) { 1755 writew(0, filter_addr); 1756 filter_addr += 16; 1757 vlan_count++; 1758 } 1759 } 1760 return ret; 1761 } 1762 #endif /* VLAN_SUPPORT */ 1763 1764 static void set_rx_mode(struct net_device *dev) 1765 { 1766 struct netdev_private *np = netdev_priv(dev); 1767 void __iomem *ioaddr = np->base; 1768 u32 rx_mode = MinVLANPrio; 1769 struct netdev_hw_addr *ha; 1770 int i; 1771 1772 #ifdef VLAN_SUPPORT 1773 rx_mode |= set_vlan_mode(np); 1774 #endif /* VLAN_SUPPORT */ 1775 1776 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ 1777 rx_mode |= AcceptAll; 1778 } else if ((netdev_mc_count(dev) > multicast_filter_limit) || 1779 (dev->flags & IFF_ALLMULTI)) { 1780 /* Too many to match, or accept all multicasts. */ 1781 rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter; 1782 } else if (netdev_mc_count(dev) <= 14) { 1783 /* Use the 16 element perfect filter, skip first two entries. */ 1784 void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16; 1785 __be16 *eaddrs; 1786 netdev_for_each_mc_addr(ha, dev) { 1787 eaddrs = (__be16 *) ha->addr; 1788 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4; 1789 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4; 1790 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8; 1791 } 1792 eaddrs = (__be16 *)dev->dev_addr; 1793 i = netdev_mc_count(dev) + 2; 1794 while (i++ < 16) { 1795 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4; 1796 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4; 1797 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8; 1798 } 1799 rx_mode |= AcceptBroadcast|PerfectFilter; 1800 } else { 1801 /* Must use a multicast hash table. */ 1802 void __iomem *filter_addr; 1803 __be16 *eaddrs; 1804 __le16 mc_filter[32] __attribute__ ((aligned(sizeof(long)))); /* Multicast hash filter */ 1805 1806 memset(mc_filter, 0, sizeof(mc_filter)); 1807 netdev_for_each_mc_addr(ha, dev) { 1808 /* The chip uses the upper 9 CRC bits 1809 as index into the hash table */ 1810 int bit_nr = ether_crc_le(ETH_ALEN, ha->addr) >> 23; 1811 __le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1]; 1812 1813 *fptr |= cpu_to_le32(1 << (bit_nr & 31)); 1814 } 1815 /* Clear the perfect filter list, skip first two entries. */ 1816 filter_addr = ioaddr + PerfFilterTable + 2 * 16; 1817 eaddrs = (__be16 *)dev->dev_addr; 1818 for (i = 2; i < 16; i++) { 1819 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4; 1820 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4; 1821 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8; 1822 } 1823 for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++) 1824 writew(mc_filter[i], filter_addr); 1825 rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter; 1826 } 1827 writel(rx_mode, ioaddr + RxFilterMode); 1828 } 1829 1830 static int check_if_running(struct net_device *dev) 1831 { 1832 if (!netif_running(dev)) 1833 return -EINVAL; 1834 return 0; 1835 } 1836 1837 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1838 { 1839 struct netdev_private *np = netdev_priv(dev); 1840 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 1841 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info)); 1842 } 1843 1844 static int get_link_ksettings(struct net_device *dev, 1845 struct ethtool_link_ksettings *cmd) 1846 { 1847 struct netdev_private *np = netdev_priv(dev); 1848 spin_lock_irq(&np->lock); 1849 mii_ethtool_get_link_ksettings(&np->mii_if, cmd); 1850 spin_unlock_irq(&np->lock); 1851 return 0; 1852 } 1853 1854 static int set_link_ksettings(struct net_device *dev, 1855 const struct ethtool_link_ksettings *cmd) 1856 { 1857 struct netdev_private *np = netdev_priv(dev); 1858 int res; 1859 spin_lock_irq(&np->lock); 1860 res = mii_ethtool_set_link_ksettings(&np->mii_if, cmd); 1861 spin_unlock_irq(&np->lock); 1862 check_duplex(dev); 1863 return res; 1864 } 1865 1866 static int nway_reset(struct net_device *dev) 1867 { 1868 struct netdev_private *np = netdev_priv(dev); 1869 return mii_nway_restart(&np->mii_if); 1870 } 1871 1872 static u32 get_link(struct net_device *dev) 1873 { 1874 struct netdev_private *np = netdev_priv(dev); 1875 return mii_link_ok(&np->mii_if); 1876 } 1877 1878 static u32 get_msglevel(struct net_device *dev) 1879 { 1880 return debug; 1881 } 1882 1883 static void set_msglevel(struct net_device *dev, u32 val) 1884 { 1885 debug = val; 1886 } 1887 1888 static const struct ethtool_ops ethtool_ops = { 1889 .begin = check_if_running, 1890 .get_drvinfo = get_drvinfo, 1891 .nway_reset = nway_reset, 1892 .get_link = get_link, 1893 .get_msglevel = get_msglevel, 1894 .set_msglevel = set_msglevel, 1895 .get_link_ksettings = get_link_ksettings, 1896 .set_link_ksettings = set_link_ksettings, 1897 }; 1898 1899 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1900 { 1901 struct netdev_private *np = netdev_priv(dev); 1902 struct mii_ioctl_data *data = if_mii(rq); 1903 int rc; 1904 1905 if (!netif_running(dev)) 1906 return -EINVAL; 1907 1908 spin_lock_irq(&np->lock); 1909 rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL); 1910 spin_unlock_irq(&np->lock); 1911 1912 if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0])) 1913 check_duplex(dev); 1914 1915 return rc; 1916 } 1917 1918 static int netdev_close(struct net_device *dev) 1919 { 1920 struct netdev_private *np = netdev_priv(dev); 1921 void __iomem *ioaddr = np->base; 1922 int i; 1923 1924 netif_stop_queue(dev); 1925 1926 napi_disable(&np->napi); 1927 1928 if (debug > 1) { 1929 printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n", 1930 dev->name, (int) readl(ioaddr + IntrStatus)); 1931 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n", 1932 dev->name, np->cur_tx, np->dirty_tx, 1933 np->cur_rx, np->dirty_rx); 1934 } 1935 1936 /* Disable interrupts by clearing the interrupt mask. */ 1937 writel(0, ioaddr + IntrEnable); 1938 1939 /* Stop the chip's Tx and Rx processes. */ 1940 writel(0, ioaddr + GenCtrl); 1941 readl(ioaddr + GenCtrl); 1942 1943 if (debug > 5) { 1944 printk(KERN_DEBUG" Tx ring at %#llx:\n", 1945 (long long) np->tx_ring_dma); 1946 for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++) 1947 printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n", 1948 i, le32_to_cpu(np->tx_ring[i].status), 1949 (long long) dma_to_cpu(np->tx_ring[i].addr), 1950 le32_to_cpu(np->tx_done_q[i].status)); 1951 printk(KERN_DEBUG " Rx ring at %#llx -> %p:\n", 1952 (long long) np->rx_ring_dma, np->rx_done_q); 1953 if (np->rx_done_q) 1954 for (i = 0; i < 8 /* RX_RING_SIZE */; i++) { 1955 printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n", 1956 i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status)); 1957 } 1958 } 1959 1960 free_irq(np->pci_dev->irq, dev); 1961 1962 /* Free all the skbuffs in the Rx queue. */ 1963 for (i = 0; i < RX_RING_SIZE; i++) { 1964 np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */ 1965 if (np->rx_info[i].skb != NULL) { 1966 pci_unmap_single(np->pci_dev, np->rx_info[i].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE); 1967 dev_kfree_skb(np->rx_info[i].skb); 1968 } 1969 np->rx_info[i].skb = NULL; 1970 np->rx_info[i].mapping = 0; 1971 } 1972 for (i = 0; i < TX_RING_SIZE; i++) { 1973 struct sk_buff *skb = np->tx_info[i].skb; 1974 if (skb == NULL) 1975 continue; 1976 pci_unmap_single(np->pci_dev, 1977 np->tx_info[i].mapping, 1978 skb_first_frag_len(skb), PCI_DMA_TODEVICE); 1979 np->tx_info[i].mapping = 0; 1980 dev_kfree_skb(skb); 1981 np->tx_info[i].skb = NULL; 1982 } 1983 1984 return 0; 1985 } 1986 1987 #ifdef CONFIG_PM 1988 static int starfire_suspend(struct pci_dev *pdev, pm_message_t state) 1989 { 1990 struct net_device *dev = pci_get_drvdata(pdev); 1991 1992 if (netif_running(dev)) { 1993 netif_device_detach(dev); 1994 netdev_close(dev); 1995 } 1996 1997 pci_save_state(pdev); 1998 pci_set_power_state(pdev, pci_choose_state(pdev,state)); 1999 2000 return 0; 2001 } 2002 2003 static int starfire_resume(struct pci_dev *pdev) 2004 { 2005 struct net_device *dev = pci_get_drvdata(pdev); 2006 2007 pci_set_power_state(pdev, PCI_D0); 2008 pci_restore_state(pdev); 2009 2010 if (netif_running(dev)) { 2011 netdev_open(dev); 2012 netif_device_attach(dev); 2013 } 2014 2015 return 0; 2016 } 2017 #endif /* CONFIG_PM */ 2018 2019 2020 static void starfire_remove_one(struct pci_dev *pdev) 2021 { 2022 struct net_device *dev = pci_get_drvdata(pdev); 2023 struct netdev_private *np = netdev_priv(dev); 2024 2025 BUG_ON(!dev); 2026 2027 unregister_netdev(dev); 2028 2029 if (np->queue_mem) 2030 pci_free_consistent(pdev, np->queue_mem_size, np->queue_mem, np->queue_mem_dma); 2031 2032 2033 /* XXX: add wakeup code -- requires firmware for MagicPacket */ 2034 pci_set_power_state(pdev, PCI_D3hot); /* go to sleep in D3 mode */ 2035 pci_disable_device(pdev); 2036 2037 iounmap(np->base); 2038 pci_release_regions(pdev); 2039 2040 free_netdev(dev); /* Will also free np!! */ 2041 } 2042 2043 2044 static struct pci_driver starfire_driver = { 2045 .name = DRV_NAME, 2046 .probe = starfire_init_one, 2047 .remove = starfire_remove_one, 2048 #ifdef CONFIG_PM 2049 .suspend = starfire_suspend, 2050 .resume = starfire_resume, 2051 #endif /* CONFIG_PM */ 2052 .id_table = starfire_pci_tbl, 2053 }; 2054 2055 2056 static int __init starfire_init (void) 2057 { 2058 /* when a module, this is printed whether or not devices are found in probe */ 2059 #ifdef MODULE 2060 printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n"); 2061 #endif 2062 2063 BUILD_BUG_ON(sizeof(dma_addr_t) != sizeof(netdrv_addr_t)); 2064 2065 return pci_register_driver(&starfire_driver); 2066 } 2067 2068 2069 static void __exit starfire_cleanup (void) 2070 { 2071 pci_unregister_driver (&starfire_driver); 2072 } 2073 2074 2075 module_init(starfire_init); 2076 module_exit(starfire_cleanup); 2077 2078 2079 /* 2080 * Local variables: 2081 * c-basic-offset: 8 2082 * tab-width: 8 2083 * End: 2084 */ 2085