1 /* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
2 /*
3 	Written 1998-2000 by Donald Becker.
4 
5 	Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
6 	send all bug reports to me, and not to Donald Becker, as this code
7 	has been heavily modified from Donald's original version.
8 
9 	This software may be used and distributed according to the terms of
10 	the GNU General Public License (GPL), incorporated herein by reference.
11 	Drivers based on or derived from this code fall under the GPL and must
12 	retain the authorship, copyright and license notice.  This file is not
13 	a complete program and may only be used when the entire operating
14 	system is licensed under the GPL.
15 
16 	The information below comes from Donald Becker's original driver:
17 
18 	The author may be reached as becker@scyld.com, or C/O
19 	Scyld Computing Corporation
20 	410 Severn Ave., Suite 210
21 	Annapolis MD 21403
22 
23 	Support and updates available at
24 	http://www.scyld.com/network/starfire.html
25 	[link no longer provides useful info -jgarzik]
26 
27 */
28 
29 #define DRV_NAME	"starfire"
30 #define DRV_VERSION	"2.1"
31 #define DRV_RELDATE	"July  6, 2008"
32 
33 #include <linux/interrupt.h>
34 #include <linux/module.h>
35 #include <linux/kernel.h>
36 #include <linux/pci.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/init.h>
40 #include <linux/delay.h>
41 #include <linux/crc32.h>
42 #include <linux/ethtool.h>
43 #include <linux/mii.h>
44 #include <linux/if_vlan.h>
45 #include <linux/mm.h>
46 #include <linux/firmware.h>
47 #include <asm/processor.h>		/* Processor type for cache alignment. */
48 #include <asm/uaccess.h>
49 #include <asm/io.h>
50 
51 /*
52  * The current frame processor firmware fails to checksum a fragment
53  * of length 1. If and when this is fixed, the #define below can be removed.
54  */
55 #define HAS_BROKEN_FIRMWARE
56 
57 /*
58  * If using the broken firmware, data must be padded to the next 32-bit boundary.
59  */
60 #ifdef HAS_BROKEN_FIRMWARE
61 #define PADDING_MASK 3
62 #endif
63 
64 /*
65  * Define this if using the driver with the zero-copy patch
66  */
67 #define ZEROCOPY
68 
69 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
70 #define VLAN_SUPPORT
71 #endif
72 
73 /* The user-configurable values.
74    These may be modified when a driver module is loaded.*/
75 
76 /* Used for tuning interrupt latency vs. overhead. */
77 static int intr_latency;
78 static int small_frames;
79 
80 static int debug = 1;			/* 1 normal messages, 0 quiet .. 7 verbose. */
81 static int max_interrupt_work = 20;
82 static int mtu;
83 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
84    The Starfire has a 512 element hash table based on the Ethernet CRC. */
85 static const int multicast_filter_limit = 512;
86 /* Whether to do TCP/UDP checksums in hardware */
87 static int enable_hw_cksum = 1;
88 
89 #define PKT_BUF_SZ	1536		/* Size of each temporary Rx buffer.*/
90 /*
91  * Set the copy breakpoint for the copy-only-tiny-frames scheme.
92  * Setting to > 1518 effectively disables this feature.
93  *
94  * NOTE:
95  * The ia64 doesn't allow for unaligned loads even of integers being
96  * misaligned on a 2 byte boundary. Thus always force copying of
97  * packets as the starfire doesn't allow for misaligned DMAs ;-(
98  * 23/10/2000 - Jes
99  *
100  * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
101  * at least, having unaligned frames leads to a rather serious performance
102  * penalty. -Ion
103  */
104 #if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
105 static int rx_copybreak = PKT_BUF_SZ;
106 #else
107 static int rx_copybreak /* = 0 */;
108 #endif
109 
110 /* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
111 #ifdef __sparc__
112 #define DMA_BURST_SIZE 64
113 #else
114 #define DMA_BURST_SIZE 128
115 #endif
116 
117 /* Used to pass the media type, etc.
118    Both 'options[]' and 'full_duplex[]' exist for driver interoperability.
119    The media type is usually passed in 'options[]'.
120    These variables are deprecated, use ethtool instead. -Ion
121 */
122 #define MAX_UNITS 8		/* More are supported, limit only on options */
123 static int options[MAX_UNITS] = {0, };
124 static int full_duplex[MAX_UNITS] = {0, };
125 
126 /* Operational parameters that are set at compile time. */
127 
128 /* The "native" ring sizes are either 256 or 2048.
129    However in some modes a descriptor may be marked to wrap the ring earlier.
130 */
131 #define RX_RING_SIZE	256
132 #define TX_RING_SIZE	32
133 /* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
134 #define DONE_Q_SIZE	1024
135 /* All queues must be aligned on a 256-byte boundary */
136 #define QUEUE_ALIGN	256
137 
138 #if RX_RING_SIZE > 256
139 #define RX_Q_ENTRIES Rx2048QEntries
140 #else
141 #define RX_Q_ENTRIES Rx256QEntries
142 #endif
143 
144 /* Operational parameters that usually are not changed. */
145 /* Time in jiffies before concluding the transmitter is hung. */
146 #define TX_TIMEOUT	(2 * HZ)
147 
148 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
149 /* 64-bit dma_addr_t */
150 #define ADDR_64BITS	/* This chip uses 64 bit addresses. */
151 #define netdrv_addr_t __le64
152 #define cpu_to_dma(x) cpu_to_le64(x)
153 #define dma_to_cpu(x) le64_to_cpu(x)
154 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
155 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
156 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
157 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
158 #define RX_DESC_ADDR_SIZE RxDescAddr64bit
159 #else  /* 32-bit dma_addr_t */
160 #define netdrv_addr_t __le32
161 #define cpu_to_dma(x) cpu_to_le32(x)
162 #define dma_to_cpu(x) le32_to_cpu(x)
163 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
164 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
165 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
166 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
167 #define RX_DESC_ADDR_SIZE RxDescAddr32bit
168 #endif
169 
170 #define skb_first_frag_len(skb)	skb_headlen(skb)
171 #define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
172 
173 /* Firmware names */
174 #define FIRMWARE_RX	"adaptec/starfire_rx.bin"
175 #define FIRMWARE_TX	"adaptec/starfire_tx.bin"
176 
177 /* These identify the driver base version and may not be removed. */
178 static const char version[] __devinitconst =
179 KERN_INFO "starfire.c:v1.03 7/26/2000  Written by Donald Becker <becker@scyld.com>\n"
180 " (unofficial 2.2/2.4 kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n";
181 
182 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
183 MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
184 MODULE_LICENSE("GPL");
185 MODULE_VERSION(DRV_VERSION);
186 MODULE_FIRMWARE(FIRMWARE_RX);
187 MODULE_FIRMWARE(FIRMWARE_TX);
188 
189 module_param(max_interrupt_work, int, 0);
190 module_param(mtu, int, 0);
191 module_param(debug, int, 0);
192 module_param(rx_copybreak, int, 0);
193 module_param(intr_latency, int, 0);
194 module_param(small_frames, int, 0);
195 module_param_array(options, int, NULL, 0);
196 module_param_array(full_duplex, int, NULL, 0);
197 module_param(enable_hw_cksum, int, 0);
198 MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
199 MODULE_PARM_DESC(mtu, "MTU (all boards)");
200 MODULE_PARM_DESC(debug, "Debug level (0-6)");
201 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
202 MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
203 MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
204 MODULE_PARM_DESC(options, "Deprecated: Bits 0-3: media type, bit 17: full duplex");
205 MODULE_PARM_DESC(full_duplex, "Deprecated: Forced full-duplex setting (0/1)");
206 MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
207 
208 /*
209 				Theory of Operation
210 
211 I. Board Compatibility
212 
213 This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
214 
215 II. Board-specific settings
216 
217 III. Driver operation
218 
219 IIIa. Ring buffers
220 
221 The Starfire hardware uses multiple fixed-size descriptor queues/rings.  The
222 ring sizes are set fixed by the hardware, but may optionally be wrapped
223 earlier by the END bit in the descriptor.
224 This driver uses that hardware queue size for the Rx ring, where a large
225 number of entries has no ill effect beyond increases the potential backlog.
226 The Tx ring is wrapped with the END bit, since a large hardware Tx queue
227 disables the queue layer priority ordering and we have no mechanism to
228 utilize the hardware two-level priority queue.  When modifying the
229 RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
230 levels.
231 
232 IIIb/c. Transmit/Receive Structure
233 
234 See the Adaptec manual for the many possible structures, and options for
235 each structure.  There are far too many to document all of them here.
236 
237 For transmit this driver uses type 0/1 transmit descriptors (depending
238 on the 32/64 bitness of the architecture), and relies on automatic
239 minimum-length padding.  It does not use the completion queue
240 consumer index, but instead checks for non-zero status entries.
241 
242 For receive this driver uses type 2/3 receive descriptors.  The driver
243 allocates full frame size skbuffs for the Rx ring buffers, so all frames
244 should fit in a single descriptor.  The driver does not use the completion
245 queue consumer index, but instead checks for non-zero status entries.
246 
247 When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
248 is allocated and the frame is copied to the new skbuff.  When the incoming
249 frame is larger, the skbuff is passed directly up the protocol stack.
250 Buffers consumed this way are replaced by newly allocated skbuffs in a later
251 phase of receive.
252 
253 A notable aspect of operation is that unaligned buffers are not permitted by
254 the Starfire hardware.  Thus the IP header at offset 14 in an ethernet frame
255 isn't longword aligned, which may cause problems on some machine
256 e.g. Alphas and IA64. For these architectures, the driver is forced to copy
257 the frame into a new skbuff unconditionally. Copied frames are put into the
258 skbuff at an offset of "+2", thus 16-byte aligning the IP header.
259 
260 IIId. Synchronization
261 
262 The driver runs as two independent, single-threaded flows of control.  One
263 is the send-packet routine, which enforces single-threaded use by the
264 dev->tbusy flag.  The other thread is the interrupt handler, which is single
265 threaded by the hardware and interrupt handling software.
266 
267 The send packet thread has partial control over the Tx ring and the netif_queue
268 status. If the number of free Tx slots in the ring falls below a certain number
269 (currently hardcoded to 4), it signals the upper layer to stop the queue.
270 
271 The interrupt handler has exclusive control over the Rx ring and records stats
272 from the Tx ring.  After reaping the stats, it marks the Tx queue entry as
273 empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
274 number of free Tx slow is above the threshold, it signals the upper layer to
275 restart the queue.
276 
277 IV. Notes
278 
279 IVb. References
280 
281 The Adaptec Starfire manuals, available only from Adaptec.
282 http://www.scyld.com/expert/100mbps.html
283 http://www.scyld.com/expert/NWay.html
284 
285 IVc. Errata
286 
287 - StopOnPerr is broken, don't enable
288 - Hardware ethernet padding exposes random data, perform software padding
289   instead (unverified -- works correctly for all the hardware I have)
290 
291 */
292 
293 
294 
295 enum chip_capability_flags {CanHaveMII=1, };
296 
297 enum chipset {
298 	CH_6915 = 0,
299 };
300 
301 static DEFINE_PCI_DEVICE_TABLE(starfire_pci_tbl) = {
302 	{ PCI_VDEVICE(ADAPTEC, 0x6915), CH_6915 },
303 	{ 0, }
304 };
305 MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
306 
307 /* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
308 static const struct chip_info {
309 	const char *name;
310 	int drv_flags;
311 } netdrv_tbl[] __devinitdata = {
312 	{ "Adaptec Starfire 6915", CanHaveMII },
313 };
314 
315 
316 /* Offsets to the device registers.
317    Unlike software-only systems, device drivers interact with complex hardware.
318    It's not useful to define symbolic names for every register bit in the
319    device.  The name can only partially document the semantics and make
320    the driver longer and more difficult to read.
321    In general, only the important configuration values or bits changed
322    multiple times should be defined symbolically.
323 */
324 enum register_offsets {
325 	PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
326 	IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
327 	MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
328 	GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
329 	TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
330 	TxRingHiAddr=0x5009C,		/* 64 bit address extension. */
331 	TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
332 	TxThreshold=0x500B0,
333 	CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
334 	RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
335 	CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
336 	RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
337 	RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
338 	TxMode=0x55000, VlanType=0x55064,
339 	PerfFilterTable=0x56000, HashTable=0x56100,
340 	TxGfpMem=0x58000, RxGfpMem=0x5a000,
341 };
342 
343 /*
344  * Bits in the interrupt status/mask registers.
345  * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
346  * enables all the interrupt sources that are or'ed into those status bits.
347  */
348 enum intr_status_bits {
349 	IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
350 	IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
351 	IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
352 	IntrTxComplQLow=0x200000, IntrPCI=0x100000,
353 	IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
354 	IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
355 	IntrNormalSummary=0x8000, IntrTxDone=0x4000,
356 	IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
357 	IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
358 	IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
359 	IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
360 	IntrNoTxCsum=0x20, IntrTxBadID=0x10,
361 	IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
362 	IntrTxGfp=0x02, IntrPCIPad=0x01,
363 	/* not quite bits */
364 	IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
365 	IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
366 	IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
367 };
368 
369 /* Bits in the RxFilterMode register. */
370 enum rx_mode_bits {
371 	AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
372 	AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
373 	PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
374 	WakeupOnGFP=0x0800,
375 };
376 
377 /* Bits in the TxMode register */
378 enum tx_mode_bits {
379 	MiiSoftReset=0x8000, MIILoopback=0x4000,
380 	TxFlowEnable=0x0800, RxFlowEnable=0x0400,
381 	PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
382 };
383 
384 /* Bits in the TxDescCtrl register. */
385 enum tx_ctrl_bits {
386 	TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
387 	TxDescSpace128=0x30, TxDescSpace256=0x40,
388 	TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
389 	TxDescType3=0x03, TxDescType4=0x04,
390 	TxNoDMACompletion=0x08,
391 	TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
392 	TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
393 	TxDMABurstSizeShift=8,
394 };
395 
396 /* Bits in the RxDescQCtrl register. */
397 enum rx_ctrl_bits {
398 	RxBufferLenShift=16, RxMinDescrThreshShift=0,
399 	RxPrefetchMode=0x8000, RxVariableQ=0x2000,
400 	Rx2048QEntries=0x4000, Rx256QEntries=0,
401 	RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
402 	RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
403 	RxDescSpace4=0x000, RxDescSpace8=0x100,
404 	RxDescSpace16=0x200, RxDescSpace32=0x300,
405 	RxDescSpace64=0x400, RxDescSpace128=0x500,
406 	RxConsumerWrEn=0x80,
407 };
408 
409 /* Bits in the RxDMACtrl register. */
410 enum rx_dmactrl_bits {
411 	RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
412 	RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
413 	RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
414 	RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
415 	RxChecksumRejectTCPOnly=0x01000000,
416 	RxCompletionQ2Enable=0x800000,
417 	RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
418 	RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
419 	RxDMAQ2NonIP=0x400000,
420 	RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
421 	RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
422 	RxBurstSizeShift=0,
423 };
424 
425 /* Bits in the RxCompletionAddr register */
426 enum rx_compl_bits {
427 	RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
428 	RxComplProducerWrEn=0x40,
429 	RxComplType0=0x00, RxComplType1=0x10,
430 	RxComplType2=0x20, RxComplType3=0x30,
431 	RxComplThreshShift=0,
432 };
433 
434 /* Bits in the TxCompletionAddr register */
435 enum tx_compl_bits {
436 	TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
437 	TxComplProducerWrEn=0x40,
438 	TxComplIntrStatus=0x20,
439 	CommonQueueMode=0x10,
440 	TxComplThreshShift=0,
441 };
442 
443 /* Bits in the GenCtrl register */
444 enum gen_ctrl_bits {
445 	RxEnable=0x05, TxEnable=0x0a,
446 	RxGFPEnable=0x10, TxGFPEnable=0x20,
447 };
448 
449 /* Bits in the IntrTimerCtrl register */
450 enum intr_ctrl_bits {
451 	Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
452 	SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
453 	IntrLatencyMask=0x1f,
454 };
455 
456 /* The Rx and Tx buffer descriptors. */
457 struct starfire_rx_desc {
458 	netdrv_addr_t rxaddr;
459 };
460 enum rx_desc_bits {
461 	RxDescValid=1, RxDescEndRing=2,
462 };
463 
464 /* Completion queue entry. */
465 struct short_rx_done_desc {
466 	__le32 status;			/* Low 16 bits is length. */
467 };
468 struct basic_rx_done_desc {
469 	__le32 status;			/* Low 16 bits is length. */
470 	__le16 vlanid;
471 	__le16 status2;
472 };
473 struct csum_rx_done_desc {
474 	__le32 status;			/* Low 16 bits is length. */
475 	__le16 csum;			/* Partial checksum */
476 	__le16 status2;
477 };
478 struct full_rx_done_desc {
479 	__le32 status;			/* Low 16 bits is length. */
480 	__le16 status3;
481 	__le16 status2;
482 	__le16 vlanid;
483 	__le16 csum;			/* partial checksum */
484 	__le32 timestamp;
485 };
486 /* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
487 #ifdef VLAN_SUPPORT
488 typedef struct full_rx_done_desc rx_done_desc;
489 #define RxComplType RxComplType3
490 #else  /* not VLAN_SUPPORT */
491 typedef struct csum_rx_done_desc rx_done_desc;
492 #define RxComplType RxComplType2
493 #endif /* not VLAN_SUPPORT */
494 
495 enum rx_done_bits {
496 	RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
497 };
498 
499 /* Type 1 Tx descriptor. */
500 struct starfire_tx_desc_1 {
501 	__le32 status;			/* Upper bits are status, lower 16 length. */
502 	__le32 addr;
503 };
504 
505 /* Type 2 Tx descriptor. */
506 struct starfire_tx_desc_2 {
507 	__le32 status;			/* Upper bits are status, lower 16 length. */
508 	__le32 reserved;
509 	__le64 addr;
510 };
511 
512 #ifdef ADDR_64BITS
513 typedef struct starfire_tx_desc_2 starfire_tx_desc;
514 #define TX_DESC_TYPE TxDescType2
515 #else  /* not ADDR_64BITS */
516 typedef struct starfire_tx_desc_1 starfire_tx_desc;
517 #define TX_DESC_TYPE TxDescType1
518 #endif /* not ADDR_64BITS */
519 #define TX_DESC_SPACING TxDescSpaceUnlim
520 
521 enum tx_desc_bits {
522 	TxDescID=0xB0000000,
523 	TxCRCEn=0x01000000, TxDescIntr=0x08000000,
524 	TxRingWrap=0x04000000, TxCalTCP=0x02000000,
525 };
526 struct tx_done_desc {
527 	__le32 status;			/* timestamp, index. */
528 #if 0
529 	__le32 intrstatus;		/* interrupt status */
530 #endif
531 };
532 
533 struct rx_ring_info {
534 	struct sk_buff *skb;
535 	dma_addr_t mapping;
536 };
537 struct tx_ring_info {
538 	struct sk_buff *skb;
539 	dma_addr_t mapping;
540 	unsigned int used_slots;
541 };
542 
543 #define PHY_CNT		2
544 struct netdev_private {
545 	/* Descriptor rings first for alignment. */
546 	struct starfire_rx_desc *rx_ring;
547 	starfire_tx_desc *tx_ring;
548 	dma_addr_t rx_ring_dma;
549 	dma_addr_t tx_ring_dma;
550 	/* The addresses of rx/tx-in-place skbuffs. */
551 	struct rx_ring_info rx_info[RX_RING_SIZE];
552 	struct tx_ring_info tx_info[TX_RING_SIZE];
553 	/* Pointers to completion queues (full pages). */
554 	rx_done_desc *rx_done_q;
555 	dma_addr_t rx_done_q_dma;
556 	unsigned int rx_done;
557 	struct tx_done_desc *tx_done_q;
558 	dma_addr_t tx_done_q_dma;
559 	unsigned int tx_done;
560 	struct napi_struct napi;
561 	struct net_device *dev;
562 	struct pci_dev *pci_dev;
563 #ifdef VLAN_SUPPORT
564 	unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
565 #endif
566 	void *queue_mem;
567 	dma_addr_t queue_mem_dma;
568 	size_t queue_mem_size;
569 
570 	/* Frequently used values: keep some adjacent for cache effect. */
571 	spinlock_t lock;
572 	unsigned int cur_rx, dirty_rx;	/* Producer/consumer ring indices */
573 	unsigned int cur_tx, dirty_tx, reap_tx;
574 	unsigned int rx_buf_sz;		/* Based on MTU+slack. */
575 	/* These values keep track of the transceiver/media in use. */
576 	int speed100;			/* Set if speed == 100MBit. */
577 	u32 tx_mode;
578 	u32 intr_timer_ctrl;
579 	u8 tx_threshold;
580 	/* MII transceiver section. */
581 	struct mii_if_info mii_if;		/* MII lib hooks/info */
582 	int phy_cnt;			/* MII device addresses. */
583 	unsigned char phys[PHY_CNT];	/* MII device addresses. */
584 	void __iomem *base;
585 };
586 
587 
588 static int	mdio_read(struct net_device *dev, int phy_id, int location);
589 static void	mdio_write(struct net_device *dev, int phy_id, int location, int value);
590 static int	netdev_open(struct net_device *dev);
591 static void	check_duplex(struct net_device *dev);
592 static void	tx_timeout(struct net_device *dev);
593 static void	init_ring(struct net_device *dev);
594 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
595 static irqreturn_t intr_handler(int irq, void *dev_instance);
596 static void	netdev_error(struct net_device *dev, int intr_status);
597 static int	__netdev_rx(struct net_device *dev, int *quota);
598 static int	netdev_poll(struct napi_struct *napi, int budget);
599 static void	refill_rx_ring(struct net_device *dev);
600 static void	netdev_error(struct net_device *dev, int intr_status);
601 static void	set_rx_mode(struct net_device *dev);
602 static struct net_device_stats *get_stats(struct net_device *dev);
603 static int	netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
604 static int	netdev_close(struct net_device *dev);
605 static void	netdev_media_change(struct net_device *dev);
606 static const struct ethtool_ops ethtool_ops;
607 
608 
609 #ifdef VLAN_SUPPORT
610 static int netdev_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
611 {
612 	struct netdev_private *np = netdev_priv(dev);
613 
614 	spin_lock(&np->lock);
615 	if (debug > 1)
616 		printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
617 	set_bit(vid, np->active_vlans);
618 	set_rx_mode(dev);
619 	spin_unlock(&np->lock);
620 
621 	return 0;
622 }
623 
624 static int netdev_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
625 {
626 	struct netdev_private *np = netdev_priv(dev);
627 
628 	spin_lock(&np->lock);
629 	if (debug > 1)
630 		printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
631 	clear_bit(vid, np->active_vlans);
632 	set_rx_mode(dev);
633 	spin_unlock(&np->lock);
634 
635 	return 0;
636 }
637 #endif /* VLAN_SUPPORT */
638 
639 
640 static const struct net_device_ops netdev_ops = {
641 	.ndo_open		= netdev_open,
642 	.ndo_stop		= netdev_close,
643 	.ndo_start_xmit		= start_tx,
644 	.ndo_tx_timeout		= tx_timeout,
645 	.ndo_get_stats		= get_stats,
646 	.ndo_set_rx_mode	= set_rx_mode,
647 	.ndo_do_ioctl		= netdev_ioctl,
648 	.ndo_change_mtu		= eth_change_mtu,
649 	.ndo_set_mac_address	= eth_mac_addr,
650 	.ndo_validate_addr	= eth_validate_addr,
651 #ifdef VLAN_SUPPORT
652 	.ndo_vlan_rx_add_vid	= netdev_vlan_rx_add_vid,
653 	.ndo_vlan_rx_kill_vid	= netdev_vlan_rx_kill_vid,
654 #endif
655 };
656 
657 static int __devinit starfire_init_one(struct pci_dev *pdev,
658 				       const struct pci_device_id *ent)
659 {
660 	struct netdev_private *np;
661 	int i, irq, option, chip_idx = ent->driver_data;
662 	struct net_device *dev;
663 	static int card_idx = -1;
664 	long ioaddr;
665 	void __iomem *base;
666 	int drv_flags, io_size;
667 	int boguscnt;
668 
669 /* when built into the kernel, we only print version if device is found */
670 #ifndef MODULE
671 	static int printed_version;
672 	if (!printed_version++)
673 		printk(version);
674 #endif
675 
676 	card_idx++;
677 
678 	if (pci_enable_device (pdev))
679 		return -EIO;
680 
681 	ioaddr = pci_resource_start(pdev, 0);
682 	io_size = pci_resource_len(pdev, 0);
683 	if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
684 		printk(KERN_ERR DRV_NAME " %d: no PCI MEM resources, aborting\n", card_idx);
685 		return -ENODEV;
686 	}
687 
688 	dev = alloc_etherdev(sizeof(*np));
689 	if (!dev)
690 		return -ENOMEM;
691 
692 	SET_NETDEV_DEV(dev, &pdev->dev);
693 
694 	irq = pdev->irq;
695 
696 	if (pci_request_regions (pdev, DRV_NAME)) {
697 		printk(KERN_ERR DRV_NAME " %d: cannot reserve PCI resources, aborting\n", card_idx);
698 		goto err_out_free_netdev;
699 	}
700 
701 	base = ioremap(ioaddr, io_size);
702 	if (!base) {
703 		printk(KERN_ERR DRV_NAME " %d: cannot remap %#x @ %#lx, aborting\n",
704 			card_idx, io_size, ioaddr);
705 		goto err_out_free_res;
706 	}
707 
708 	pci_set_master(pdev);
709 
710 	/* enable MWI -- it vastly improves Rx performance on sparc64 */
711 	pci_try_set_mwi(pdev);
712 
713 #ifdef ZEROCOPY
714 	/* Starfire can do TCP/UDP checksumming */
715 	if (enable_hw_cksum)
716 		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
717 #endif /* ZEROCOPY */
718 
719 #ifdef VLAN_SUPPORT
720 	dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
721 #endif /* VLAN_RX_KILL_VID */
722 #ifdef ADDR_64BITS
723 	dev->features |= NETIF_F_HIGHDMA;
724 #endif /* ADDR_64BITS */
725 
726 	/* Serial EEPROM reads are hidden by the hardware. */
727 	for (i = 0; i < 6; i++)
728 		dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i);
729 
730 #if ! defined(final_version) /* Dump the EEPROM contents during development. */
731 	if (debug > 4)
732 		for (i = 0; i < 0x20; i++)
733 			printk("%2.2x%s",
734 			       (unsigned int)readb(base + EEPROMCtrl + i),
735 			       i % 16 != 15 ? " " : "\n");
736 #endif
737 
738 	/* Issue soft reset */
739 	writel(MiiSoftReset, base + TxMode);
740 	udelay(1000);
741 	writel(0, base + TxMode);
742 
743 	/* Reset the chip to erase previous misconfiguration. */
744 	writel(1, base + PCIDeviceConfig);
745 	boguscnt = 1000;
746 	while (--boguscnt > 0) {
747 		udelay(10);
748 		if ((readl(base + PCIDeviceConfig) & 1) == 0)
749 			break;
750 	}
751 	if (boguscnt == 0)
752 		printk("%s: chipset reset never completed!\n", dev->name);
753 	/* wait a little longer */
754 	udelay(1000);
755 
756 	dev->base_addr = (unsigned long)base;
757 	dev->irq = irq;
758 
759 	np = netdev_priv(dev);
760 	np->dev = dev;
761 	np->base = base;
762 	spin_lock_init(&np->lock);
763 	pci_set_drvdata(pdev, dev);
764 
765 	np->pci_dev = pdev;
766 
767 	np->mii_if.dev = dev;
768 	np->mii_if.mdio_read = mdio_read;
769 	np->mii_if.mdio_write = mdio_write;
770 	np->mii_if.phy_id_mask = 0x1f;
771 	np->mii_if.reg_num_mask = 0x1f;
772 
773 	drv_flags = netdrv_tbl[chip_idx].drv_flags;
774 
775 	option = card_idx < MAX_UNITS ? options[card_idx] : 0;
776 	if (dev->mem_start)
777 		option = dev->mem_start;
778 
779 	/* The lower four bits are the media type. */
780 	if (option & 0x200)
781 		np->mii_if.full_duplex = 1;
782 
783 	if (card_idx < MAX_UNITS && full_duplex[card_idx] > 0)
784 		np->mii_if.full_duplex = 1;
785 
786 	if (np->mii_if.full_duplex)
787 		np->mii_if.force_media = 1;
788 	else
789 		np->mii_if.force_media = 0;
790 	np->speed100 = 1;
791 
792 	/* timer resolution is 128 * 0.8us */
793 	np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
794 		Timer10X | EnableIntrMasking;
795 
796 	if (small_frames > 0) {
797 		np->intr_timer_ctrl |= SmallFrameBypass;
798 		switch (small_frames) {
799 		case 1 ... 64:
800 			np->intr_timer_ctrl |= SmallFrame64;
801 			break;
802 		case 65 ... 128:
803 			np->intr_timer_ctrl |= SmallFrame128;
804 			break;
805 		case 129 ... 256:
806 			np->intr_timer_ctrl |= SmallFrame256;
807 			break;
808 		default:
809 			np->intr_timer_ctrl |= SmallFrame512;
810 			if (small_frames > 512)
811 				printk("Adjusting small_frames down to 512\n");
812 			break;
813 		}
814 	}
815 
816 	dev->netdev_ops = &netdev_ops;
817 	dev->watchdog_timeo = TX_TIMEOUT;
818 	SET_ETHTOOL_OPS(dev, &ethtool_ops);
819 
820 	netif_napi_add(dev, &np->napi, netdev_poll, max_interrupt_work);
821 
822 	if (mtu)
823 		dev->mtu = mtu;
824 
825 	if (register_netdev(dev))
826 		goto err_out_cleardev;
827 
828 	printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
829 	       dev->name, netdrv_tbl[chip_idx].name, base,
830 	       dev->dev_addr, irq);
831 
832 	if (drv_flags & CanHaveMII) {
833 		int phy, phy_idx = 0;
834 		int mii_status;
835 		for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
836 			mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
837 			mdelay(100);
838 			boguscnt = 1000;
839 			while (--boguscnt > 0)
840 				if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
841 					break;
842 			if (boguscnt == 0) {
843 				printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
844 				continue;
845 			}
846 			mii_status = mdio_read(dev, phy, MII_BMSR);
847 			if (mii_status != 0) {
848 				np->phys[phy_idx++] = phy;
849 				np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
850 				printk(KERN_INFO "%s: MII PHY found at address %d, status "
851 					   "%#4.4x advertising %#4.4x.\n",
852 					   dev->name, phy, mii_status, np->mii_if.advertising);
853 				/* there can be only one PHY on-board */
854 				break;
855 			}
856 		}
857 		np->phy_cnt = phy_idx;
858 		if (np->phy_cnt > 0)
859 			np->mii_if.phy_id = np->phys[0];
860 		else
861 			memset(&np->mii_if, 0, sizeof(np->mii_if));
862 	}
863 
864 	printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
865 	       dev->name, enable_hw_cksum ? "enabled" : "disabled");
866 	return 0;
867 
868 err_out_cleardev:
869 	pci_set_drvdata(pdev, NULL);
870 	iounmap(base);
871 err_out_free_res:
872 	pci_release_regions (pdev);
873 err_out_free_netdev:
874 	free_netdev(dev);
875 	return -ENODEV;
876 }
877 
878 
879 /* Read the MII Management Data I/O (MDIO) interfaces. */
880 static int mdio_read(struct net_device *dev, int phy_id, int location)
881 {
882 	struct netdev_private *np = netdev_priv(dev);
883 	void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
884 	int result, boguscnt=1000;
885 	/* ??? Should we add a busy-wait here? */
886 	do {
887 		result = readl(mdio_addr);
888 	} while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
889 	if (boguscnt == 0)
890 		return 0;
891 	if ((result & 0xffff) == 0xffff)
892 		return 0;
893 	return result & 0xffff;
894 }
895 
896 
897 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
898 {
899 	struct netdev_private *np = netdev_priv(dev);
900 	void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
901 	writel(value, mdio_addr);
902 	/* The busy-wait will occur before a read. */
903 }
904 
905 
906 static int netdev_open(struct net_device *dev)
907 {
908 	const struct firmware *fw_rx, *fw_tx;
909 	const __be32 *fw_rx_data, *fw_tx_data;
910 	struct netdev_private *np = netdev_priv(dev);
911 	void __iomem *ioaddr = np->base;
912 	int i, retval;
913 	size_t tx_size, rx_size;
914 	size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
915 
916 	/* Do we ever need to reset the chip??? */
917 
918 	retval = request_irq(dev->irq, intr_handler, IRQF_SHARED, dev->name, dev);
919 	if (retval)
920 		return retval;
921 
922 	/* Disable the Rx and Tx, and reset the chip. */
923 	writel(0, ioaddr + GenCtrl);
924 	writel(1, ioaddr + PCIDeviceConfig);
925 	if (debug > 1)
926 		printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
927 		       dev->name, dev->irq);
928 
929 	/* Allocate the various queues. */
930 	if (!np->queue_mem) {
931 		tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
932 		rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
933 		tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
934 		rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
935 		np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
936 		np->queue_mem = pci_alloc_consistent(np->pci_dev, np->queue_mem_size, &np->queue_mem_dma);
937 		if (np->queue_mem == NULL) {
938 			free_irq(dev->irq, dev);
939 			return -ENOMEM;
940 		}
941 
942 		np->tx_done_q     = np->queue_mem;
943 		np->tx_done_q_dma = np->queue_mem_dma;
944 		np->rx_done_q     = (void *) np->tx_done_q + tx_done_q_size;
945 		np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
946 		np->tx_ring       = (void *) np->rx_done_q + rx_done_q_size;
947 		np->tx_ring_dma   = np->rx_done_q_dma + rx_done_q_size;
948 		np->rx_ring       = (void *) np->tx_ring + tx_ring_size;
949 		np->rx_ring_dma   = np->tx_ring_dma + tx_ring_size;
950 	}
951 
952 	/* Start with no carrier, it gets adjusted later */
953 	netif_carrier_off(dev);
954 	init_ring(dev);
955 	/* Set the size of the Rx buffers. */
956 	writel((np->rx_buf_sz << RxBufferLenShift) |
957 	       (0 << RxMinDescrThreshShift) |
958 	       RxPrefetchMode | RxVariableQ |
959 	       RX_Q_ENTRIES |
960 	       RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
961 	       RxDescSpace4,
962 	       ioaddr + RxDescQCtrl);
963 
964 	/* Set up the Rx DMA controller. */
965 	writel(RxChecksumIgnore |
966 	       (0 << RxEarlyIntThreshShift) |
967 	       (6 << RxHighPrioThreshShift) |
968 	       ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
969 	       ioaddr + RxDMACtrl);
970 
971 	/* Set Tx descriptor */
972 	writel((2 << TxHiPriFIFOThreshShift) |
973 	       (0 << TxPadLenShift) |
974 	       ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
975 	       TX_DESC_Q_ADDR_SIZE |
976 	       TX_DESC_SPACING | TX_DESC_TYPE,
977 	       ioaddr + TxDescCtrl);
978 
979 	writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
980 	writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
981 	writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
982 	writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
983 	writel(np->tx_ring_dma, ioaddr + TxRingPtr);
984 
985 	writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
986 	writel(np->rx_done_q_dma |
987 	       RxComplType |
988 	       (0 << RxComplThreshShift),
989 	       ioaddr + RxCompletionAddr);
990 
991 	if (debug > 1)
992 		printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
993 
994 	/* Fill both the Tx SA register and the Rx perfect filter. */
995 	for (i = 0; i < 6; i++)
996 		writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
997 	/* The first entry is special because it bypasses the VLAN filter.
998 	   Don't use it. */
999 	writew(0, ioaddr + PerfFilterTable);
1000 	writew(0, ioaddr + PerfFilterTable + 4);
1001 	writew(0, ioaddr + PerfFilterTable + 8);
1002 	for (i = 1; i < 16; i++) {
1003 		__be16 *eaddrs = (__be16 *)dev->dev_addr;
1004 		void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
1005 		writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4;
1006 		writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4;
1007 		writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8;
1008 	}
1009 
1010 	/* Initialize other registers. */
1011 	/* Configure the PCI bus bursts and FIFO thresholds. */
1012 	np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable;	/* modified when link is up. */
1013 	writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
1014 	udelay(1000);
1015 	writel(np->tx_mode, ioaddr + TxMode);
1016 	np->tx_threshold = 4;
1017 	writel(np->tx_threshold, ioaddr + TxThreshold);
1018 
1019 	writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1020 
1021 	napi_enable(&np->napi);
1022 
1023 	netif_start_queue(dev);
1024 
1025 	if (debug > 1)
1026 		printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
1027 	set_rx_mode(dev);
1028 
1029 	np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1030 	check_duplex(dev);
1031 
1032 	/* Enable GPIO interrupts on link change */
1033 	writel(0x0f00ff00, ioaddr + GPIOCtrl);
1034 
1035 	/* Set the interrupt mask */
1036 	writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
1037 	       IntrTxDMADone | IntrStatsMax | IntrLinkChange |
1038 	       IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
1039 	       ioaddr + IntrEnable);
1040 	/* Enable PCI interrupts. */
1041 	writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
1042 	       ioaddr + PCIDeviceConfig);
1043 
1044 #ifdef VLAN_SUPPORT
1045 	/* Set VLAN type to 802.1q */
1046 	writel(ETH_P_8021Q, ioaddr + VlanType);
1047 #endif /* VLAN_SUPPORT */
1048 
1049 	retval = request_firmware(&fw_rx, FIRMWARE_RX, &np->pci_dev->dev);
1050 	if (retval) {
1051 		printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1052 		       FIRMWARE_RX);
1053 		goto out_init;
1054 	}
1055 	if (fw_rx->size % 4) {
1056 		printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1057 		       fw_rx->size, FIRMWARE_RX);
1058 		retval = -EINVAL;
1059 		goto out_rx;
1060 	}
1061 	retval = request_firmware(&fw_tx, FIRMWARE_TX, &np->pci_dev->dev);
1062 	if (retval) {
1063 		printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1064 		       FIRMWARE_TX);
1065 		goto out_rx;
1066 	}
1067 	if (fw_tx->size % 4) {
1068 		printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1069 		       fw_tx->size, FIRMWARE_TX);
1070 		retval = -EINVAL;
1071 		goto out_tx;
1072 	}
1073 	fw_rx_data = (const __be32 *)&fw_rx->data[0];
1074 	fw_tx_data = (const __be32 *)&fw_tx->data[0];
1075 	rx_size = fw_rx->size / 4;
1076 	tx_size = fw_tx->size / 4;
1077 
1078 	/* Load Rx/Tx firmware into the frame processors */
1079 	for (i = 0; i < rx_size; i++)
1080 		writel(be32_to_cpup(&fw_rx_data[i]), ioaddr + RxGfpMem + i * 4);
1081 	for (i = 0; i < tx_size; i++)
1082 		writel(be32_to_cpup(&fw_tx_data[i]), ioaddr + TxGfpMem + i * 4);
1083 	if (enable_hw_cksum)
1084 		/* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1085 		writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1086 	else
1087 		/* Enable the Rx and Tx units only. */
1088 		writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1089 
1090 	if (debug > 1)
1091 		printk(KERN_DEBUG "%s: Done netdev_open().\n",
1092 		       dev->name);
1093 
1094 out_tx:
1095 	release_firmware(fw_tx);
1096 out_rx:
1097 	release_firmware(fw_rx);
1098 out_init:
1099 	if (retval)
1100 		netdev_close(dev);
1101 	return retval;
1102 }
1103 
1104 
1105 static void check_duplex(struct net_device *dev)
1106 {
1107 	struct netdev_private *np = netdev_priv(dev);
1108 	u16 reg0;
1109 	int silly_count = 1000;
1110 
1111 	mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1112 	mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1113 	udelay(500);
1114 	while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1115 		/* do nothing */;
1116 	if (!silly_count) {
1117 		printk("%s: MII reset failed!\n", dev->name);
1118 		return;
1119 	}
1120 
1121 	reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1122 
1123 	if (!np->mii_if.force_media) {
1124 		reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1125 	} else {
1126 		reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1127 		if (np->speed100)
1128 			reg0 |= BMCR_SPEED100;
1129 		if (np->mii_if.full_duplex)
1130 			reg0 |= BMCR_FULLDPLX;
1131 		printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1132 		       dev->name,
1133 		       np->speed100 ? "100" : "10",
1134 		       np->mii_if.full_duplex ? "full" : "half");
1135 	}
1136 	mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1137 }
1138 
1139 
1140 static void tx_timeout(struct net_device *dev)
1141 {
1142 	struct netdev_private *np = netdev_priv(dev);
1143 	void __iomem *ioaddr = np->base;
1144 	int old_debug;
1145 
1146 	printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1147 	       "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1148 
1149 	/* Perhaps we should reinitialize the hardware here. */
1150 
1151 	/*
1152 	 * Stop and restart the interface.
1153 	 * Cheat and increase the debug level temporarily.
1154 	 */
1155 	old_debug = debug;
1156 	debug = 2;
1157 	netdev_close(dev);
1158 	netdev_open(dev);
1159 	debug = old_debug;
1160 
1161 	/* Trigger an immediate transmit demand. */
1162 
1163 	dev->trans_start = jiffies; /* prevent tx timeout */
1164 	dev->stats.tx_errors++;
1165 	netif_wake_queue(dev);
1166 }
1167 
1168 
1169 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1170 static void init_ring(struct net_device *dev)
1171 {
1172 	struct netdev_private *np = netdev_priv(dev);
1173 	int i;
1174 
1175 	np->cur_rx = np->cur_tx = np->reap_tx = 0;
1176 	np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1177 
1178 	np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1179 
1180 	/* Fill in the Rx buffers.  Handle allocation failure gracefully. */
1181 	for (i = 0; i < RX_RING_SIZE; i++) {
1182 		struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1183 		np->rx_info[i].skb = skb;
1184 		if (skb == NULL)
1185 			break;
1186 		np->rx_info[i].mapping = pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1187 		/* Grrr, we cannot offset to correctly align the IP header. */
1188 		np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1189 	}
1190 	writew(i - 1, np->base + RxDescQIdx);
1191 	np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1192 
1193 	/* Clear the remainder of the Rx buffer ring. */
1194 	for (  ; i < RX_RING_SIZE; i++) {
1195 		np->rx_ring[i].rxaddr = 0;
1196 		np->rx_info[i].skb = NULL;
1197 		np->rx_info[i].mapping = 0;
1198 	}
1199 	/* Mark the last entry as wrapping the ring. */
1200 	np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1201 
1202 	/* Clear the completion rings. */
1203 	for (i = 0; i < DONE_Q_SIZE; i++) {
1204 		np->rx_done_q[i].status = 0;
1205 		np->tx_done_q[i].status = 0;
1206 	}
1207 
1208 	for (i = 0; i < TX_RING_SIZE; i++)
1209 		memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1210 }
1211 
1212 
1213 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1214 {
1215 	struct netdev_private *np = netdev_priv(dev);
1216 	unsigned int entry;
1217 	u32 status;
1218 	int i;
1219 
1220 	/*
1221 	 * be cautious here, wrapping the queue has weird semantics
1222 	 * and we may not have enough slots even when it seems we do.
1223 	 */
1224 	if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1225 		netif_stop_queue(dev);
1226 		return NETDEV_TX_BUSY;
1227 	}
1228 
1229 #if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
1230 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1231 		if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
1232 			return NETDEV_TX_OK;
1233 	}
1234 #endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1235 
1236 	entry = np->cur_tx % TX_RING_SIZE;
1237 	for (i = 0; i < skb_num_frags(skb); i++) {
1238 		int wrap_ring = 0;
1239 		status = TxDescID;
1240 
1241 		if (i == 0) {
1242 			np->tx_info[entry].skb = skb;
1243 			status |= TxCRCEn;
1244 			if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1245 				status |= TxRingWrap;
1246 				wrap_ring = 1;
1247 			}
1248 			if (np->reap_tx) {
1249 				status |= TxDescIntr;
1250 				np->reap_tx = 0;
1251 			}
1252 			if (skb->ip_summed == CHECKSUM_PARTIAL) {
1253 				status |= TxCalTCP;
1254 				dev->stats.tx_compressed++;
1255 			}
1256 			status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1257 
1258 			np->tx_info[entry].mapping =
1259 				pci_map_single(np->pci_dev, skb->data, skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1260 		} else {
1261 			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1262 			status |= skb_frag_size(this_frag);
1263 			np->tx_info[entry].mapping =
1264 				pci_map_single(np->pci_dev,
1265 					       skb_frag_address(this_frag),
1266 					       skb_frag_size(this_frag),
1267 					       PCI_DMA_TODEVICE);
1268 		}
1269 
1270 		np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1271 		np->tx_ring[entry].status = cpu_to_le32(status);
1272 		if (debug > 3)
1273 			printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1274 			       dev->name, np->cur_tx, np->dirty_tx,
1275 			       entry, status);
1276 		if (wrap_ring) {
1277 			np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1278 			np->cur_tx += np->tx_info[entry].used_slots;
1279 			entry = 0;
1280 		} else {
1281 			np->tx_info[entry].used_slots = 1;
1282 			np->cur_tx += np->tx_info[entry].used_slots;
1283 			entry++;
1284 		}
1285 		/* scavenge the tx descriptors twice per TX_RING_SIZE */
1286 		if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1287 			np->reap_tx = 1;
1288 	}
1289 
1290 	/* Non-x86: explicitly flush descriptor cache lines here. */
1291 	/* Ensure all descriptors are written back before the transmit is
1292 	   initiated. - Jes */
1293 	wmb();
1294 
1295 	/* Update the producer index. */
1296 	writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1297 
1298 	/* 4 is arbitrary, but should be ok */
1299 	if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1300 		netif_stop_queue(dev);
1301 
1302 	return NETDEV_TX_OK;
1303 }
1304 
1305 
1306 /* The interrupt handler does all of the Rx thread work and cleans up
1307    after the Tx thread. */
1308 static irqreturn_t intr_handler(int irq, void *dev_instance)
1309 {
1310 	struct net_device *dev = dev_instance;
1311 	struct netdev_private *np = netdev_priv(dev);
1312 	void __iomem *ioaddr = np->base;
1313 	int boguscnt = max_interrupt_work;
1314 	int consumer;
1315 	int tx_status;
1316 	int handled = 0;
1317 
1318 	do {
1319 		u32 intr_status = readl(ioaddr + IntrClear);
1320 
1321 		if (debug > 4)
1322 			printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1323 			       dev->name, intr_status);
1324 
1325 		if (intr_status == 0 || intr_status == (u32) -1)
1326 			break;
1327 
1328 		handled = 1;
1329 
1330 		if (intr_status & (IntrRxDone | IntrRxEmpty)) {
1331 			u32 enable;
1332 
1333 			if (likely(napi_schedule_prep(&np->napi))) {
1334 				__napi_schedule(&np->napi);
1335 				enable = readl(ioaddr + IntrEnable);
1336 				enable &= ~(IntrRxDone | IntrRxEmpty);
1337 				writel(enable, ioaddr + IntrEnable);
1338 				/* flush PCI posting buffers */
1339 				readl(ioaddr + IntrEnable);
1340 			} else {
1341 				/* Paranoia check */
1342 				enable = readl(ioaddr + IntrEnable);
1343 				if (enable & (IntrRxDone | IntrRxEmpty)) {
1344 					printk(KERN_INFO
1345 					       "%s: interrupt while in poll!\n",
1346 					       dev->name);
1347 					enable &= ~(IntrRxDone | IntrRxEmpty);
1348 					writel(enable, ioaddr + IntrEnable);
1349 				}
1350 			}
1351 		}
1352 
1353 		/* Scavenge the skbuff list based on the Tx-done queue.
1354 		   There are redundant checks here that may be cleaned up
1355 		   after the driver has proven to be reliable. */
1356 		consumer = readl(ioaddr + TxConsumerIdx);
1357 		if (debug > 3)
1358 			printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1359 			       dev->name, consumer);
1360 
1361 		while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1362 			if (debug > 3)
1363 				printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1364 				       dev->name, np->dirty_tx, np->tx_done, tx_status);
1365 			if ((tx_status & 0xe0000000) == 0xa0000000) {
1366 				dev->stats.tx_packets++;
1367 			} else if ((tx_status & 0xe0000000) == 0x80000000) {
1368 				u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1369 				struct sk_buff *skb = np->tx_info[entry].skb;
1370 				np->tx_info[entry].skb = NULL;
1371 				pci_unmap_single(np->pci_dev,
1372 						 np->tx_info[entry].mapping,
1373 						 skb_first_frag_len(skb),
1374 						 PCI_DMA_TODEVICE);
1375 				np->tx_info[entry].mapping = 0;
1376 				np->dirty_tx += np->tx_info[entry].used_slots;
1377 				entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1378 				{
1379 					int i;
1380 					for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1381 						pci_unmap_single(np->pci_dev,
1382 								 np->tx_info[entry].mapping,
1383 								 skb_frag_size(&skb_shinfo(skb)->frags[i]),
1384 								 PCI_DMA_TODEVICE);
1385 						np->dirty_tx++;
1386 						entry++;
1387 					}
1388 				}
1389 
1390 				dev_kfree_skb_irq(skb);
1391 			}
1392 			np->tx_done_q[np->tx_done].status = 0;
1393 			np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1394 		}
1395 		writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1396 
1397 		if (netif_queue_stopped(dev) &&
1398 		    (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1399 			/* The ring is no longer full, wake the queue. */
1400 			netif_wake_queue(dev);
1401 		}
1402 
1403 		/* Stats overflow */
1404 		if (intr_status & IntrStatsMax)
1405 			get_stats(dev);
1406 
1407 		/* Media change interrupt. */
1408 		if (intr_status & IntrLinkChange)
1409 			netdev_media_change(dev);
1410 
1411 		/* Abnormal error summary/uncommon events handlers. */
1412 		if (intr_status & IntrAbnormalSummary)
1413 			netdev_error(dev, intr_status);
1414 
1415 		if (--boguscnt < 0) {
1416 			if (debug > 1)
1417 				printk(KERN_WARNING "%s: Too much work at interrupt, "
1418 				       "status=%#8.8x.\n",
1419 				       dev->name, intr_status);
1420 			break;
1421 		}
1422 	} while (1);
1423 
1424 	if (debug > 4)
1425 		printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1426 		       dev->name, (int) readl(ioaddr + IntrStatus));
1427 	return IRQ_RETVAL(handled);
1428 }
1429 
1430 
1431 /*
1432  * This routine is logically part of the interrupt/poll handler, but separated
1433  * for clarity and better register allocation.
1434  */
1435 static int __netdev_rx(struct net_device *dev, int *quota)
1436 {
1437 	struct netdev_private *np = netdev_priv(dev);
1438 	u32 desc_status;
1439 	int retcode = 0;
1440 
1441 	/* If EOP is set on the next entry, it's a new packet. Send it up. */
1442 	while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1443 		struct sk_buff *skb;
1444 		u16 pkt_len;
1445 		int entry;
1446 		rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1447 
1448 		if (debug > 4)
1449 			printk(KERN_DEBUG "  netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1450 		if (!(desc_status & RxOK)) {
1451 			/* There was an error. */
1452 			if (debug > 2)
1453 				printk(KERN_DEBUG "  netdev_rx() Rx error was %#8.8x.\n", desc_status);
1454 			dev->stats.rx_errors++;
1455 			if (desc_status & RxFIFOErr)
1456 				dev->stats.rx_fifo_errors++;
1457 			goto next_rx;
1458 		}
1459 
1460 		if (*quota <= 0) {	/* out of rx quota */
1461 			retcode = 1;
1462 			goto out;
1463 		}
1464 		(*quota)--;
1465 
1466 		pkt_len = desc_status;	/* Implicitly Truncate */
1467 		entry = (desc_status >> 16) & 0x7ff;
1468 
1469 		if (debug > 4)
1470 			printk(KERN_DEBUG "  netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1471 		/* Check if the packet is long enough to accept without copying
1472 		   to a minimally-sized skbuff. */
1473 		if (pkt_len < rx_copybreak &&
1474 		    (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1475 			skb_reserve(skb, 2);	/* 16 byte align the IP header */
1476 			pci_dma_sync_single_for_cpu(np->pci_dev,
1477 						    np->rx_info[entry].mapping,
1478 						    pkt_len, PCI_DMA_FROMDEVICE);
1479 			skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len);
1480 			pci_dma_sync_single_for_device(np->pci_dev,
1481 						       np->rx_info[entry].mapping,
1482 						       pkt_len, PCI_DMA_FROMDEVICE);
1483 			skb_put(skb, pkt_len);
1484 		} else {
1485 			pci_unmap_single(np->pci_dev, np->rx_info[entry].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1486 			skb = np->rx_info[entry].skb;
1487 			skb_put(skb, pkt_len);
1488 			np->rx_info[entry].skb = NULL;
1489 			np->rx_info[entry].mapping = 0;
1490 		}
1491 #ifndef final_version			/* Remove after testing. */
1492 		/* You will want this info for the initial debug. */
1493 		if (debug > 5) {
1494 			printk(KERN_DEBUG "  Rx data %pM %pM %2.2x%2.2x.\n",
1495 			       skb->data, skb->data + 6,
1496 			       skb->data[12], skb->data[13]);
1497 		}
1498 #endif
1499 
1500 		skb->protocol = eth_type_trans(skb, dev);
1501 #ifdef VLAN_SUPPORT
1502 		if (debug > 4)
1503 			printk(KERN_DEBUG "  netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1504 #endif
1505 		if (le16_to_cpu(desc->status2) & 0x0100) {
1506 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1507 			dev->stats.rx_compressed++;
1508 		}
1509 		/*
1510 		 * This feature doesn't seem to be working, at least
1511 		 * with the two firmware versions I have. If the GFP sees
1512 		 * an IP fragment, it either ignores it completely, or reports
1513 		 * "bad checksum" on it.
1514 		 *
1515 		 * Maybe I missed something -- corrections are welcome.
1516 		 * Until then, the printk stays. :-) -Ion
1517 		 */
1518 		else if (le16_to_cpu(desc->status2) & 0x0040) {
1519 			skb->ip_summed = CHECKSUM_COMPLETE;
1520 			skb->csum = le16_to_cpu(desc->csum);
1521 			printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1522 		}
1523 #ifdef VLAN_SUPPORT
1524 		if (le16_to_cpu(desc->status2) & 0x0200) {
1525 			u16 vlid = le16_to_cpu(desc->vlanid);
1526 
1527 			if (debug > 4) {
1528 				printk(KERN_DEBUG "  netdev_rx() vlanid = %d\n",
1529 				       vlid);
1530 			}
1531 			__vlan_hwaccel_put_tag(skb, vlid);
1532 		}
1533 #endif /* VLAN_SUPPORT */
1534 		netif_receive_skb(skb);
1535 		dev->stats.rx_packets++;
1536 
1537 	next_rx:
1538 		np->cur_rx++;
1539 		desc->status = 0;
1540 		np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1541 	}
1542 
1543 	if (*quota == 0) {	/* out of rx quota */
1544 		retcode = 1;
1545 		goto out;
1546 	}
1547 	writew(np->rx_done, np->base + CompletionQConsumerIdx);
1548 
1549  out:
1550 	refill_rx_ring(dev);
1551 	if (debug > 5)
1552 		printk(KERN_DEBUG "  exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1553 		       retcode, np->rx_done, desc_status);
1554 	return retcode;
1555 }
1556 
1557 static int netdev_poll(struct napi_struct *napi, int budget)
1558 {
1559 	struct netdev_private *np = container_of(napi, struct netdev_private, napi);
1560 	struct net_device *dev = np->dev;
1561 	u32 intr_status;
1562 	void __iomem *ioaddr = np->base;
1563 	int quota = budget;
1564 
1565 	do {
1566 		writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1567 
1568 		if (__netdev_rx(dev, &quota))
1569 			goto out;
1570 
1571 		intr_status = readl(ioaddr + IntrStatus);
1572 	} while (intr_status & (IntrRxDone | IntrRxEmpty));
1573 
1574 	napi_complete(napi);
1575 	intr_status = readl(ioaddr + IntrEnable);
1576 	intr_status |= IntrRxDone | IntrRxEmpty;
1577 	writel(intr_status, ioaddr + IntrEnable);
1578 
1579  out:
1580 	if (debug > 5)
1581 		printk(KERN_DEBUG "  exiting netdev_poll(): %d.\n",
1582 		       budget - quota);
1583 
1584 	/* Restart Rx engine if stopped. */
1585 	return budget - quota;
1586 }
1587 
1588 static void refill_rx_ring(struct net_device *dev)
1589 {
1590 	struct netdev_private *np = netdev_priv(dev);
1591 	struct sk_buff *skb;
1592 	int entry = -1;
1593 
1594 	/* Refill the Rx ring buffers. */
1595 	for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1596 		entry = np->dirty_rx % RX_RING_SIZE;
1597 		if (np->rx_info[entry].skb == NULL) {
1598 			skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1599 			np->rx_info[entry].skb = skb;
1600 			if (skb == NULL)
1601 				break;	/* Better luck next round. */
1602 			np->rx_info[entry].mapping =
1603 				pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1604 			np->rx_ring[entry].rxaddr =
1605 				cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1606 		}
1607 		if (entry == RX_RING_SIZE - 1)
1608 			np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1609 	}
1610 	if (entry >= 0)
1611 		writew(entry, np->base + RxDescQIdx);
1612 }
1613 
1614 
1615 static void netdev_media_change(struct net_device *dev)
1616 {
1617 	struct netdev_private *np = netdev_priv(dev);
1618 	void __iomem *ioaddr = np->base;
1619 	u16 reg0, reg1, reg4, reg5;
1620 	u32 new_tx_mode;
1621 	u32 new_intr_timer_ctrl;
1622 
1623 	/* reset status first */
1624 	mdio_read(dev, np->phys[0], MII_BMCR);
1625 	mdio_read(dev, np->phys[0], MII_BMSR);
1626 
1627 	reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1628 	reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1629 
1630 	if (reg1 & BMSR_LSTATUS) {
1631 		/* link is up */
1632 		if (reg0 & BMCR_ANENABLE) {
1633 			/* autonegotiation is enabled */
1634 			reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1635 			reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1636 			if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1637 				np->speed100 = 1;
1638 				np->mii_if.full_duplex = 1;
1639 			} else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1640 				np->speed100 = 1;
1641 				np->mii_if.full_duplex = 0;
1642 			} else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1643 				np->speed100 = 0;
1644 				np->mii_if.full_duplex = 1;
1645 			} else {
1646 				np->speed100 = 0;
1647 				np->mii_if.full_duplex = 0;
1648 			}
1649 		} else {
1650 			/* autonegotiation is disabled */
1651 			if (reg0 & BMCR_SPEED100)
1652 				np->speed100 = 1;
1653 			else
1654 				np->speed100 = 0;
1655 			if (reg0 & BMCR_FULLDPLX)
1656 				np->mii_if.full_duplex = 1;
1657 			else
1658 				np->mii_if.full_duplex = 0;
1659 		}
1660 		netif_carrier_on(dev);
1661 		printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1662 		       dev->name,
1663 		       np->speed100 ? "100" : "10",
1664 		       np->mii_if.full_duplex ? "full" : "half");
1665 
1666 		new_tx_mode = np->tx_mode & ~FullDuplex;	/* duplex setting */
1667 		if (np->mii_if.full_duplex)
1668 			new_tx_mode |= FullDuplex;
1669 		if (np->tx_mode != new_tx_mode) {
1670 			np->tx_mode = new_tx_mode;
1671 			writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1672 			udelay(1000);
1673 			writel(np->tx_mode, ioaddr + TxMode);
1674 		}
1675 
1676 		new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1677 		if (np->speed100)
1678 			new_intr_timer_ctrl |= Timer10X;
1679 		if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1680 			np->intr_timer_ctrl = new_intr_timer_ctrl;
1681 			writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1682 		}
1683 	} else {
1684 		netif_carrier_off(dev);
1685 		printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1686 	}
1687 }
1688 
1689 
1690 static void netdev_error(struct net_device *dev, int intr_status)
1691 {
1692 	struct netdev_private *np = netdev_priv(dev);
1693 
1694 	/* Came close to underrunning the Tx FIFO, increase threshold. */
1695 	if (intr_status & IntrTxDataLow) {
1696 		if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1697 			writel(++np->tx_threshold, np->base + TxThreshold);
1698 			printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1699 			       dev->name, np->tx_threshold * 16);
1700 		} else
1701 			printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1702 	}
1703 	if (intr_status & IntrRxGFPDead) {
1704 		dev->stats.rx_fifo_errors++;
1705 		dev->stats.rx_errors++;
1706 	}
1707 	if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
1708 		dev->stats.tx_fifo_errors++;
1709 		dev->stats.tx_errors++;
1710 	}
1711 	if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1712 		printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1713 		       dev->name, intr_status);
1714 }
1715 
1716 
1717 static struct net_device_stats *get_stats(struct net_device *dev)
1718 {
1719 	struct netdev_private *np = netdev_priv(dev);
1720 	void __iomem *ioaddr = np->base;
1721 
1722 	/* This adapter architecture needs no SMP locks. */
1723 	dev->stats.tx_bytes = readl(ioaddr + 0x57010);
1724 	dev->stats.rx_bytes = readl(ioaddr + 0x57044);
1725 	dev->stats.tx_packets = readl(ioaddr + 0x57000);
1726 	dev->stats.tx_aborted_errors =
1727 		readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
1728 	dev->stats.tx_window_errors = readl(ioaddr + 0x57018);
1729 	dev->stats.collisions =
1730 		readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1731 
1732 	/* The chip only need report frame silently dropped. */
1733 	dev->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1734 	writew(0, ioaddr + RxDMAStatus);
1735 	dev->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1736 	dev->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1737 	dev->stats.rx_length_errors = readl(ioaddr + 0x57058);
1738 	dev->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1739 
1740 	return &dev->stats;
1741 }
1742 
1743 #ifdef VLAN_SUPPORT
1744 static u32 set_vlan_mode(struct netdev_private *np)
1745 {
1746 	u32 ret = VlanMode;
1747 	u16 vid;
1748 	void __iomem *filter_addr = np->base + HashTable + 8;
1749 	int vlan_count = 0;
1750 
1751 	for_each_set_bit(vid, np->active_vlans, VLAN_N_VID) {
1752 		if (vlan_count == 32)
1753 			break;
1754 		writew(vid, filter_addr);
1755 		filter_addr += 16;
1756 		vlan_count++;
1757 	}
1758 	if (vlan_count == 32) {
1759 		ret |= PerfectFilterVlan;
1760 		while (vlan_count < 32) {
1761 			writew(0, filter_addr);
1762 			filter_addr += 16;
1763 			vlan_count++;
1764 		}
1765 	}
1766 	return ret;
1767 }
1768 #endif /* VLAN_SUPPORT */
1769 
1770 static void set_rx_mode(struct net_device *dev)
1771 {
1772 	struct netdev_private *np = netdev_priv(dev);
1773 	void __iomem *ioaddr = np->base;
1774 	u32 rx_mode = MinVLANPrio;
1775 	struct netdev_hw_addr *ha;
1776 	int i;
1777 
1778 #ifdef VLAN_SUPPORT
1779 	rx_mode |= set_vlan_mode(np);
1780 #endif /* VLAN_SUPPORT */
1781 
1782 	if (dev->flags & IFF_PROMISC) {	/* Set promiscuous. */
1783 		rx_mode |= AcceptAll;
1784 	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1785 		   (dev->flags & IFF_ALLMULTI)) {
1786 		/* Too many to match, or accept all multicasts. */
1787 		rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
1788 	} else if (netdev_mc_count(dev) <= 14) {
1789 		/* Use the 16 element perfect filter, skip first two entries. */
1790 		void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1791 		__be16 *eaddrs;
1792 		netdev_for_each_mc_addr(ha, dev) {
1793 			eaddrs = (__be16 *) ha->addr;
1794 			writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4;
1795 			writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1796 			writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8;
1797 		}
1798 		eaddrs = (__be16 *)dev->dev_addr;
1799 		i = netdev_mc_count(dev) + 2;
1800 		while (i++ < 16) {
1801 			writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1802 			writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1803 			writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1804 		}
1805 		rx_mode |= AcceptBroadcast|PerfectFilter;
1806 	} else {
1807 		/* Must use a multicast hash table. */
1808 		void __iomem *filter_addr;
1809 		__be16 *eaddrs;
1810 		__le16 mc_filter[32] __attribute__ ((aligned(sizeof(long))));	/* Multicast hash filter */
1811 
1812 		memset(mc_filter, 0, sizeof(mc_filter));
1813 		netdev_for_each_mc_addr(ha, dev) {
1814 			/* The chip uses the upper 9 CRC bits
1815 			   as index into the hash table */
1816 			int bit_nr = ether_crc_le(ETH_ALEN, ha->addr) >> 23;
1817 			__le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1];
1818 
1819 			*fptr |= cpu_to_le32(1 << (bit_nr & 31));
1820 		}
1821 		/* Clear the perfect filter list, skip first two entries. */
1822 		filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1823 		eaddrs = (__be16 *)dev->dev_addr;
1824 		for (i = 2; i < 16; i++) {
1825 			writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1826 			writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1827 			writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1828 		}
1829 		for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1830 			writew(mc_filter[i], filter_addr);
1831 		rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1832 	}
1833 	writel(rx_mode, ioaddr + RxFilterMode);
1834 }
1835 
1836 static int check_if_running(struct net_device *dev)
1837 {
1838 	if (!netif_running(dev))
1839 		return -EINVAL;
1840 	return 0;
1841 }
1842 
1843 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1844 {
1845 	struct netdev_private *np = netdev_priv(dev);
1846 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1847 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1848 	strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1849 }
1850 
1851 static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1852 {
1853 	struct netdev_private *np = netdev_priv(dev);
1854 	spin_lock_irq(&np->lock);
1855 	mii_ethtool_gset(&np->mii_if, ecmd);
1856 	spin_unlock_irq(&np->lock);
1857 	return 0;
1858 }
1859 
1860 static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1861 {
1862 	struct netdev_private *np = netdev_priv(dev);
1863 	int res;
1864 	spin_lock_irq(&np->lock);
1865 	res = mii_ethtool_sset(&np->mii_if, ecmd);
1866 	spin_unlock_irq(&np->lock);
1867 	check_duplex(dev);
1868 	return res;
1869 }
1870 
1871 static int nway_reset(struct net_device *dev)
1872 {
1873 	struct netdev_private *np = netdev_priv(dev);
1874 	return mii_nway_restart(&np->mii_if);
1875 }
1876 
1877 static u32 get_link(struct net_device *dev)
1878 {
1879 	struct netdev_private *np = netdev_priv(dev);
1880 	return mii_link_ok(&np->mii_if);
1881 }
1882 
1883 static u32 get_msglevel(struct net_device *dev)
1884 {
1885 	return debug;
1886 }
1887 
1888 static void set_msglevel(struct net_device *dev, u32 val)
1889 {
1890 	debug = val;
1891 }
1892 
1893 static const struct ethtool_ops ethtool_ops = {
1894 	.begin = check_if_running,
1895 	.get_drvinfo = get_drvinfo,
1896 	.get_settings = get_settings,
1897 	.set_settings = set_settings,
1898 	.nway_reset = nway_reset,
1899 	.get_link = get_link,
1900 	.get_msglevel = get_msglevel,
1901 	.set_msglevel = set_msglevel,
1902 };
1903 
1904 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1905 {
1906 	struct netdev_private *np = netdev_priv(dev);
1907 	struct mii_ioctl_data *data = if_mii(rq);
1908 	int rc;
1909 
1910 	if (!netif_running(dev))
1911 		return -EINVAL;
1912 
1913 	spin_lock_irq(&np->lock);
1914 	rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1915 	spin_unlock_irq(&np->lock);
1916 
1917 	if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
1918 		check_duplex(dev);
1919 
1920 	return rc;
1921 }
1922 
1923 static int netdev_close(struct net_device *dev)
1924 {
1925 	struct netdev_private *np = netdev_priv(dev);
1926 	void __iomem *ioaddr = np->base;
1927 	int i;
1928 
1929 	netif_stop_queue(dev);
1930 
1931 	napi_disable(&np->napi);
1932 
1933 	if (debug > 1) {
1934 		printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
1935 			   dev->name, (int) readl(ioaddr + IntrStatus));
1936 		printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1937 		       dev->name, np->cur_tx, np->dirty_tx,
1938 		       np->cur_rx, np->dirty_rx);
1939 	}
1940 
1941 	/* Disable interrupts by clearing the interrupt mask. */
1942 	writel(0, ioaddr + IntrEnable);
1943 
1944 	/* Stop the chip's Tx and Rx processes. */
1945 	writel(0, ioaddr + GenCtrl);
1946 	readl(ioaddr + GenCtrl);
1947 
1948 	if (debug > 5) {
1949 		printk(KERN_DEBUG"  Tx ring at %#llx:\n",
1950 		       (long long) np->tx_ring_dma);
1951 		for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
1952 			printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1953 			       i, le32_to_cpu(np->tx_ring[i].status),
1954 			       (long long) dma_to_cpu(np->tx_ring[i].addr),
1955 			       le32_to_cpu(np->tx_done_q[i].status));
1956 		printk(KERN_DEBUG "  Rx ring at %#llx -> %p:\n",
1957 		       (long long) np->rx_ring_dma, np->rx_done_q);
1958 		if (np->rx_done_q)
1959 			for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
1960 				printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
1961 				       i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
1962 		}
1963 	}
1964 
1965 	free_irq(dev->irq, dev);
1966 
1967 	/* Free all the skbuffs in the Rx queue. */
1968 	for (i = 0; i < RX_RING_SIZE; i++) {
1969 		np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
1970 		if (np->rx_info[i].skb != NULL) {
1971 			pci_unmap_single(np->pci_dev, np->rx_info[i].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1972 			dev_kfree_skb(np->rx_info[i].skb);
1973 		}
1974 		np->rx_info[i].skb = NULL;
1975 		np->rx_info[i].mapping = 0;
1976 	}
1977 	for (i = 0; i < TX_RING_SIZE; i++) {
1978 		struct sk_buff *skb = np->tx_info[i].skb;
1979 		if (skb == NULL)
1980 			continue;
1981 		pci_unmap_single(np->pci_dev,
1982 				 np->tx_info[i].mapping,
1983 				 skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1984 		np->tx_info[i].mapping = 0;
1985 		dev_kfree_skb(skb);
1986 		np->tx_info[i].skb = NULL;
1987 	}
1988 
1989 	return 0;
1990 }
1991 
1992 #ifdef CONFIG_PM
1993 static int starfire_suspend(struct pci_dev *pdev, pm_message_t state)
1994 {
1995 	struct net_device *dev = pci_get_drvdata(pdev);
1996 
1997 	if (netif_running(dev)) {
1998 		netif_device_detach(dev);
1999 		netdev_close(dev);
2000 	}
2001 
2002 	pci_save_state(pdev);
2003 	pci_set_power_state(pdev, pci_choose_state(pdev,state));
2004 
2005 	return 0;
2006 }
2007 
2008 static int starfire_resume(struct pci_dev *pdev)
2009 {
2010 	struct net_device *dev = pci_get_drvdata(pdev);
2011 
2012 	pci_set_power_state(pdev, PCI_D0);
2013 	pci_restore_state(pdev);
2014 
2015 	if (netif_running(dev)) {
2016 		netdev_open(dev);
2017 		netif_device_attach(dev);
2018 	}
2019 
2020 	return 0;
2021 }
2022 #endif /* CONFIG_PM */
2023 
2024 
2025 static void __devexit starfire_remove_one (struct pci_dev *pdev)
2026 {
2027 	struct net_device *dev = pci_get_drvdata(pdev);
2028 	struct netdev_private *np = netdev_priv(dev);
2029 
2030 	BUG_ON(!dev);
2031 
2032 	unregister_netdev(dev);
2033 
2034 	if (np->queue_mem)
2035 		pci_free_consistent(pdev, np->queue_mem_size, np->queue_mem, np->queue_mem_dma);
2036 
2037 
2038 	/* XXX: add wakeup code -- requires firmware for MagicPacket */
2039 	pci_set_power_state(pdev, PCI_D3hot);	/* go to sleep in D3 mode */
2040 	pci_disable_device(pdev);
2041 
2042 	iounmap(np->base);
2043 	pci_release_regions(pdev);
2044 
2045 	pci_set_drvdata(pdev, NULL);
2046 	free_netdev(dev);			/* Will also free np!! */
2047 }
2048 
2049 
2050 static struct pci_driver starfire_driver = {
2051 	.name		= DRV_NAME,
2052 	.probe		= starfire_init_one,
2053 	.remove		= __devexit_p(starfire_remove_one),
2054 #ifdef CONFIG_PM
2055 	.suspend	= starfire_suspend,
2056 	.resume		= starfire_resume,
2057 #endif /* CONFIG_PM */
2058 	.id_table	= starfire_pci_tbl,
2059 };
2060 
2061 
2062 static int __init starfire_init (void)
2063 {
2064 /* when a module, this is printed whether or not devices are found in probe */
2065 #ifdef MODULE
2066 	printk(version);
2067 
2068 	printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
2069 #endif
2070 
2071 	BUILD_BUG_ON(sizeof(dma_addr_t) != sizeof(netdrv_addr_t));
2072 
2073 	return pci_register_driver(&starfire_driver);
2074 }
2075 
2076 
2077 static void __exit starfire_cleanup (void)
2078 {
2079 	pci_unregister_driver (&starfire_driver);
2080 }
2081 
2082 
2083 module_init(starfire_init);
2084 module_exit(starfire_cleanup);
2085 
2086 
2087 /*
2088  * Local variables:
2089  *  c-basic-offset: 8
2090  *  tab-width: 8
2091  * End:
2092  */
2093