1 /* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
2 /*
3 	Written 1998-2000 by Donald Becker.
4 
5 	Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
6 	send all bug reports to me, and not to Donald Becker, as this code
7 	has been heavily modified from Donald's original version.
8 
9 	This software may be used and distributed according to the terms of
10 	the GNU General Public License (GPL), incorporated herein by reference.
11 	Drivers based on or derived from this code fall under the GPL and must
12 	retain the authorship, copyright and license notice.  This file is not
13 	a complete program and may only be used when the entire operating
14 	system is licensed under the GPL.
15 
16 	The information below comes from Donald Becker's original driver:
17 
18 	The author may be reached as becker@scyld.com, or C/O
19 	Scyld Computing Corporation
20 	410 Severn Ave., Suite 210
21 	Annapolis MD 21403
22 
23 	Support and updates available at
24 	http://www.scyld.com/network/starfire.html
25 	[link no longer provides useful info -jgarzik]
26 
27 */
28 
29 #define DRV_NAME	"starfire"
30 #define DRV_VERSION	"2.1"
31 #define DRV_RELDATE	"July  6, 2008"
32 
33 #include <linux/interrupt.h>
34 #include <linux/module.h>
35 #include <linux/kernel.h>
36 #include <linux/pci.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/init.h>
40 #include <linux/delay.h>
41 #include <linux/crc32.h>
42 #include <linux/ethtool.h>
43 #include <linux/mii.h>
44 #include <linux/if_vlan.h>
45 #include <linux/mm.h>
46 #include <linux/firmware.h>
47 #include <asm/processor.h>		/* Processor type for cache alignment. */
48 #include <asm/uaccess.h>
49 #include <asm/io.h>
50 
51 /*
52  * The current frame processor firmware fails to checksum a fragment
53  * of length 1. If and when this is fixed, the #define below can be removed.
54  */
55 #define HAS_BROKEN_FIRMWARE
56 
57 /*
58  * If using the broken firmware, data must be padded to the next 32-bit boundary.
59  */
60 #ifdef HAS_BROKEN_FIRMWARE
61 #define PADDING_MASK 3
62 #endif
63 
64 /*
65  * Define this if using the driver with the zero-copy patch
66  */
67 #define ZEROCOPY
68 
69 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
70 #define VLAN_SUPPORT
71 #endif
72 
73 /* The user-configurable values.
74    These may be modified when a driver module is loaded.*/
75 
76 /* Used for tuning interrupt latency vs. overhead. */
77 static int intr_latency;
78 static int small_frames;
79 
80 static int debug = 1;			/* 1 normal messages, 0 quiet .. 7 verbose. */
81 static int max_interrupt_work = 20;
82 static int mtu;
83 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
84    The Starfire has a 512 element hash table based on the Ethernet CRC. */
85 static const int multicast_filter_limit = 512;
86 /* Whether to do TCP/UDP checksums in hardware */
87 static int enable_hw_cksum = 1;
88 
89 #define PKT_BUF_SZ	1536		/* Size of each temporary Rx buffer.*/
90 /*
91  * Set the copy breakpoint for the copy-only-tiny-frames scheme.
92  * Setting to > 1518 effectively disables this feature.
93  *
94  * NOTE:
95  * The ia64 doesn't allow for unaligned loads even of integers being
96  * misaligned on a 2 byte boundary. Thus always force copying of
97  * packets as the starfire doesn't allow for misaligned DMAs ;-(
98  * 23/10/2000 - Jes
99  *
100  * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
101  * at least, having unaligned frames leads to a rather serious performance
102  * penalty. -Ion
103  */
104 #if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
105 static int rx_copybreak = PKT_BUF_SZ;
106 #else
107 static int rx_copybreak /* = 0 */;
108 #endif
109 
110 /* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
111 #ifdef __sparc__
112 #define DMA_BURST_SIZE 64
113 #else
114 #define DMA_BURST_SIZE 128
115 #endif
116 
117 /* Operational parameters that are set at compile time. */
118 
119 /* The "native" ring sizes are either 256 or 2048.
120    However in some modes a descriptor may be marked to wrap the ring earlier.
121 */
122 #define RX_RING_SIZE	256
123 #define TX_RING_SIZE	32
124 /* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
125 #define DONE_Q_SIZE	1024
126 /* All queues must be aligned on a 256-byte boundary */
127 #define QUEUE_ALIGN	256
128 
129 #if RX_RING_SIZE > 256
130 #define RX_Q_ENTRIES Rx2048QEntries
131 #else
132 #define RX_Q_ENTRIES Rx256QEntries
133 #endif
134 
135 /* Operational parameters that usually are not changed. */
136 /* Time in jiffies before concluding the transmitter is hung. */
137 #define TX_TIMEOUT	(2 * HZ)
138 
139 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
140 /* 64-bit dma_addr_t */
141 #define ADDR_64BITS	/* This chip uses 64 bit addresses. */
142 #define netdrv_addr_t __le64
143 #define cpu_to_dma(x) cpu_to_le64(x)
144 #define dma_to_cpu(x) le64_to_cpu(x)
145 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
146 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
147 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
148 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
149 #define RX_DESC_ADDR_SIZE RxDescAddr64bit
150 #else  /* 32-bit dma_addr_t */
151 #define netdrv_addr_t __le32
152 #define cpu_to_dma(x) cpu_to_le32(x)
153 #define dma_to_cpu(x) le32_to_cpu(x)
154 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
155 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
156 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
157 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
158 #define RX_DESC_ADDR_SIZE RxDescAddr32bit
159 #endif
160 
161 #define skb_first_frag_len(skb)	skb_headlen(skb)
162 #define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
163 
164 /* Firmware names */
165 #define FIRMWARE_RX	"adaptec/starfire_rx.bin"
166 #define FIRMWARE_TX	"adaptec/starfire_tx.bin"
167 
168 /* These identify the driver base version and may not be removed. */
169 static const char version[] =
170 KERN_INFO "starfire.c:v1.03 7/26/2000  Written by Donald Becker <becker@scyld.com>\n"
171 " (unofficial 2.2/2.4 kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n";
172 
173 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
174 MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
175 MODULE_LICENSE("GPL");
176 MODULE_VERSION(DRV_VERSION);
177 MODULE_FIRMWARE(FIRMWARE_RX);
178 MODULE_FIRMWARE(FIRMWARE_TX);
179 
180 module_param(max_interrupt_work, int, 0);
181 module_param(mtu, int, 0);
182 module_param(debug, int, 0);
183 module_param(rx_copybreak, int, 0);
184 module_param(intr_latency, int, 0);
185 module_param(small_frames, int, 0);
186 module_param(enable_hw_cksum, int, 0);
187 MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
188 MODULE_PARM_DESC(mtu, "MTU (all boards)");
189 MODULE_PARM_DESC(debug, "Debug level (0-6)");
190 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
191 MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
192 MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
193 MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
194 
195 /*
196 				Theory of Operation
197 
198 I. Board Compatibility
199 
200 This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
201 
202 II. Board-specific settings
203 
204 III. Driver operation
205 
206 IIIa. Ring buffers
207 
208 The Starfire hardware uses multiple fixed-size descriptor queues/rings.  The
209 ring sizes are set fixed by the hardware, but may optionally be wrapped
210 earlier by the END bit in the descriptor.
211 This driver uses that hardware queue size for the Rx ring, where a large
212 number of entries has no ill effect beyond increases the potential backlog.
213 The Tx ring is wrapped with the END bit, since a large hardware Tx queue
214 disables the queue layer priority ordering and we have no mechanism to
215 utilize the hardware two-level priority queue.  When modifying the
216 RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
217 levels.
218 
219 IIIb/c. Transmit/Receive Structure
220 
221 See the Adaptec manual for the many possible structures, and options for
222 each structure.  There are far too many to document all of them here.
223 
224 For transmit this driver uses type 0/1 transmit descriptors (depending
225 on the 32/64 bitness of the architecture), and relies on automatic
226 minimum-length padding.  It does not use the completion queue
227 consumer index, but instead checks for non-zero status entries.
228 
229 For receive this driver uses type 2/3 receive descriptors.  The driver
230 allocates full frame size skbuffs for the Rx ring buffers, so all frames
231 should fit in a single descriptor.  The driver does not use the completion
232 queue consumer index, but instead checks for non-zero status entries.
233 
234 When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
235 is allocated and the frame is copied to the new skbuff.  When the incoming
236 frame is larger, the skbuff is passed directly up the protocol stack.
237 Buffers consumed this way are replaced by newly allocated skbuffs in a later
238 phase of receive.
239 
240 A notable aspect of operation is that unaligned buffers are not permitted by
241 the Starfire hardware.  Thus the IP header at offset 14 in an ethernet frame
242 isn't longword aligned, which may cause problems on some machine
243 e.g. Alphas and IA64. For these architectures, the driver is forced to copy
244 the frame into a new skbuff unconditionally. Copied frames are put into the
245 skbuff at an offset of "+2", thus 16-byte aligning the IP header.
246 
247 IIId. Synchronization
248 
249 The driver runs as two independent, single-threaded flows of control.  One
250 is the send-packet routine, which enforces single-threaded use by the
251 dev->tbusy flag.  The other thread is the interrupt handler, which is single
252 threaded by the hardware and interrupt handling software.
253 
254 The send packet thread has partial control over the Tx ring and the netif_queue
255 status. If the number of free Tx slots in the ring falls below a certain number
256 (currently hardcoded to 4), it signals the upper layer to stop the queue.
257 
258 The interrupt handler has exclusive control over the Rx ring and records stats
259 from the Tx ring.  After reaping the stats, it marks the Tx queue entry as
260 empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
261 number of free Tx slow is above the threshold, it signals the upper layer to
262 restart the queue.
263 
264 IV. Notes
265 
266 IVb. References
267 
268 The Adaptec Starfire manuals, available only from Adaptec.
269 http://www.scyld.com/expert/100mbps.html
270 http://www.scyld.com/expert/NWay.html
271 
272 IVc. Errata
273 
274 - StopOnPerr is broken, don't enable
275 - Hardware ethernet padding exposes random data, perform software padding
276   instead (unverified -- works correctly for all the hardware I have)
277 
278 */
279 
280 
281 
282 enum chip_capability_flags {CanHaveMII=1, };
283 
284 enum chipset {
285 	CH_6915 = 0,
286 };
287 
288 static const struct pci_device_id starfire_pci_tbl[] = {
289 	{ PCI_VDEVICE(ADAPTEC, 0x6915), CH_6915 },
290 	{ 0, }
291 };
292 MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
293 
294 /* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
295 static const struct chip_info {
296 	const char *name;
297 	int drv_flags;
298 } netdrv_tbl[] = {
299 	{ "Adaptec Starfire 6915", CanHaveMII },
300 };
301 
302 
303 /* Offsets to the device registers.
304    Unlike software-only systems, device drivers interact with complex hardware.
305    It's not useful to define symbolic names for every register bit in the
306    device.  The name can only partially document the semantics and make
307    the driver longer and more difficult to read.
308    In general, only the important configuration values or bits changed
309    multiple times should be defined symbolically.
310 */
311 enum register_offsets {
312 	PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
313 	IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
314 	MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
315 	GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
316 	TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
317 	TxRingHiAddr=0x5009C,		/* 64 bit address extension. */
318 	TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
319 	TxThreshold=0x500B0,
320 	CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
321 	RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
322 	CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
323 	RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
324 	RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
325 	TxMode=0x55000, VlanType=0x55064,
326 	PerfFilterTable=0x56000, HashTable=0x56100,
327 	TxGfpMem=0x58000, RxGfpMem=0x5a000,
328 };
329 
330 /*
331  * Bits in the interrupt status/mask registers.
332  * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
333  * enables all the interrupt sources that are or'ed into those status bits.
334  */
335 enum intr_status_bits {
336 	IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
337 	IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
338 	IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
339 	IntrTxComplQLow=0x200000, IntrPCI=0x100000,
340 	IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
341 	IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
342 	IntrNormalSummary=0x8000, IntrTxDone=0x4000,
343 	IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
344 	IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
345 	IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
346 	IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
347 	IntrNoTxCsum=0x20, IntrTxBadID=0x10,
348 	IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
349 	IntrTxGfp=0x02, IntrPCIPad=0x01,
350 	/* not quite bits */
351 	IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
352 	IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
353 	IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
354 };
355 
356 /* Bits in the RxFilterMode register. */
357 enum rx_mode_bits {
358 	AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
359 	AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
360 	PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
361 	WakeupOnGFP=0x0800,
362 };
363 
364 /* Bits in the TxMode register */
365 enum tx_mode_bits {
366 	MiiSoftReset=0x8000, MIILoopback=0x4000,
367 	TxFlowEnable=0x0800, RxFlowEnable=0x0400,
368 	PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
369 };
370 
371 /* Bits in the TxDescCtrl register. */
372 enum tx_ctrl_bits {
373 	TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
374 	TxDescSpace128=0x30, TxDescSpace256=0x40,
375 	TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
376 	TxDescType3=0x03, TxDescType4=0x04,
377 	TxNoDMACompletion=0x08,
378 	TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
379 	TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
380 	TxDMABurstSizeShift=8,
381 };
382 
383 /* Bits in the RxDescQCtrl register. */
384 enum rx_ctrl_bits {
385 	RxBufferLenShift=16, RxMinDescrThreshShift=0,
386 	RxPrefetchMode=0x8000, RxVariableQ=0x2000,
387 	Rx2048QEntries=0x4000, Rx256QEntries=0,
388 	RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
389 	RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
390 	RxDescSpace4=0x000, RxDescSpace8=0x100,
391 	RxDescSpace16=0x200, RxDescSpace32=0x300,
392 	RxDescSpace64=0x400, RxDescSpace128=0x500,
393 	RxConsumerWrEn=0x80,
394 };
395 
396 /* Bits in the RxDMACtrl register. */
397 enum rx_dmactrl_bits {
398 	RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
399 	RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
400 	RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
401 	RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
402 	RxChecksumRejectTCPOnly=0x01000000,
403 	RxCompletionQ2Enable=0x800000,
404 	RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
405 	RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
406 	RxDMAQ2NonIP=0x400000,
407 	RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
408 	RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
409 	RxBurstSizeShift=0,
410 };
411 
412 /* Bits in the RxCompletionAddr register */
413 enum rx_compl_bits {
414 	RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
415 	RxComplProducerWrEn=0x40,
416 	RxComplType0=0x00, RxComplType1=0x10,
417 	RxComplType2=0x20, RxComplType3=0x30,
418 	RxComplThreshShift=0,
419 };
420 
421 /* Bits in the TxCompletionAddr register */
422 enum tx_compl_bits {
423 	TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
424 	TxComplProducerWrEn=0x40,
425 	TxComplIntrStatus=0x20,
426 	CommonQueueMode=0x10,
427 	TxComplThreshShift=0,
428 };
429 
430 /* Bits in the GenCtrl register */
431 enum gen_ctrl_bits {
432 	RxEnable=0x05, TxEnable=0x0a,
433 	RxGFPEnable=0x10, TxGFPEnable=0x20,
434 };
435 
436 /* Bits in the IntrTimerCtrl register */
437 enum intr_ctrl_bits {
438 	Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
439 	SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
440 	IntrLatencyMask=0x1f,
441 };
442 
443 /* The Rx and Tx buffer descriptors. */
444 struct starfire_rx_desc {
445 	netdrv_addr_t rxaddr;
446 };
447 enum rx_desc_bits {
448 	RxDescValid=1, RxDescEndRing=2,
449 };
450 
451 /* Completion queue entry. */
452 struct short_rx_done_desc {
453 	__le32 status;			/* Low 16 bits is length. */
454 };
455 struct basic_rx_done_desc {
456 	__le32 status;			/* Low 16 bits is length. */
457 	__le16 vlanid;
458 	__le16 status2;
459 };
460 struct csum_rx_done_desc {
461 	__le32 status;			/* Low 16 bits is length. */
462 	__le16 csum;			/* Partial checksum */
463 	__le16 status2;
464 };
465 struct full_rx_done_desc {
466 	__le32 status;			/* Low 16 bits is length. */
467 	__le16 status3;
468 	__le16 status2;
469 	__le16 vlanid;
470 	__le16 csum;			/* partial checksum */
471 	__le32 timestamp;
472 };
473 /* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
474 #ifdef VLAN_SUPPORT
475 typedef struct full_rx_done_desc rx_done_desc;
476 #define RxComplType RxComplType3
477 #else  /* not VLAN_SUPPORT */
478 typedef struct csum_rx_done_desc rx_done_desc;
479 #define RxComplType RxComplType2
480 #endif /* not VLAN_SUPPORT */
481 
482 enum rx_done_bits {
483 	RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
484 };
485 
486 /* Type 1 Tx descriptor. */
487 struct starfire_tx_desc_1 {
488 	__le32 status;			/* Upper bits are status, lower 16 length. */
489 	__le32 addr;
490 };
491 
492 /* Type 2 Tx descriptor. */
493 struct starfire_tx_desc_2 {
494 	__le32 status;			/* Upper bits are status, lower 16 length. */
495 	__le32 reserved;
496 	__le64 addr;
497 };
498 
499 #ifdef ADDR_64BITS
500 typedef struct starfire_tx_desc_2 starfire_tx_desc;
501 #define TX_DESC_TYPE TxDescType2
502 #else  /* not ADDR_64BITS */
503 typedef struct starfire_tx_desc_1 starfire_tx_desc;
504 #define TX_DESC_TYPE TxDescType1
505 #endif /* not ADDR_64BITS */
506 #define TX_DESC_SPACING TxDescSpaceUnlim
507 
508 enum tx_desc_bits {
509 	TxDescID=0xB0000000,
510 	TxCRCEn=0x01000000, TxDescIntr=0x08000000,
511 	TxRingWrap=0x04000000, TxCalTCP=0x02000000,
512 };
513 struct tx_done_desc {
514 	__le32 status;			/* timestamp, index. */
515 #if 0
516 	__le32 intrstatus;		/* interrupt status */
517 #endif
518 };
519 
520 struct rx_ring_info {
521 	struct sk_buff *skb;
522 	dma_addr_t mapping;
523 };
524 struct tx_ring_info {
525 	struct sk_buff *skb;
526 	dma_addr_t mapping;
527 	unsigned int used_slots;
528 };
529 
530 #define PHY_CNT		2
531 struct netdev_private {
532 	/* Descriptor rings first for alignment. */
533 	struct starfire_rx_desc *rx_ring;
534 	starfire_tx_desc *tx_ring;
535 	dma_addr_t rx_ring_dma;
536 	dma_addr_t tx_ring_dma;
537 	/* The addresses of rx/tx-in-place skbuffs. */
538 	struct rx_ring_info rx_info[RX_RING_SIZE];
539 	struct tx_ring_info tx_info[TX_RING_SIZE];
540 	/* Pointers to completion queues (full pages). */
541 	rx_done_desc *rx_done_q;
542 	dma_addr_t rx_done_q_dma;
543 	unsigned int rx_done;
544 	struct tx_done_desc *tx_done_q;
545 	dma_addr_t tx_done_q_dma;
546 	unsigned int tx_done;
547 	struct napi_struct napi;
548 	struct net_device *dev;
549 	struct pci_dev *pci_dev;
550 #ifdef VLAN_SUPPORT
551 	unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
552 #endif
553 	void *queue_mem;
554 	dma_addr_t queue_mem_dma;
555 	size_t queue_mem_size;
556 
557 	/* Frequently used values: keep some adjacent for cache effect. */
558 	spinlock_t lock;
559 	unsigned int cur_rx, dirty_rx;	/* Producer/consumer ring indices */
560 	unsigned int cur_tx, dirty_tx, reap_tx;
561 	unsigned int rx_buf_sz;		/* Based on MTU+slack. */
562 	/* These values keep track of the transceiver/media in use. */
563 	int speed100;			/* Set if speed == 100MBit. */
564 	u32 tx_mode;
565 	u32 intr_timer_ctrl;
566 	u8 tx_threshold;
567 	/* MII transceiver section. */
568 	struct mii_if_info mii_if;		/* MII lib hooks/info */
569 	int phy_cnt;			/* MII device addresses. */
570 	unsigned char phys[PHY_CNT];	/* MII device addresses. */
571 	void __iomem *base;
572 };
573 
574 
575 static int	mdio_read(struct net_device *dev, int phy_id, int location);
576 static void	mdio_write(struct net_device *dev, int phy_id, int location, int value);
577 static int	netdev_open(struct net_device *dev);
578 static void	check_duplex(struct net_device *dev);
579 static void	tx_timeout(struct net_device *dev);
580 static void	init_ring(struct net_device *dev);
581 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
582 static irqreturn_t intr_handler(int irq, void *dev_instance);
583 static void	netdev_error(struct net_device *dev, int intr_status);
584 static int	__netdev_rx(struct net_device *dev, int *quota);
585 static int	netdev_poll(struct napi_struct *napi, int budget);
586 static void	refill_rx_ring(struct net_device *dev);
587 static void	netdev_error(struct net_device *dev, int intr_status);
588 static void	set_rx_mode(struct net_device *dev);
589 static struct net_device_stats *get_stats(struct net_device *dev);
590 static int	netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
591 static int	netdev_close(struct net_device *dev);
592 static void	netdev_media_change(struct net_device *dev);
593 static const struct ethtool_ops ethtool_ops;
594 
595 
596 #ifdef VLAN_SUPPORT
597 static int netdev_vlan_rx_add_vid(struct net_device *dev,
598 				  __be16 proto, u16 vid)
599 {
600 	struct netdev_private *np = netdev_priv(dev);
601 
602 	spin_lock(&np->lock);
603 	if (debug > 1)
604 		printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
605 	set_bit(vid, np->active_vlans);
606 	set_rx_mode(dev);
607 	spin_unlock(&np->lock);
608 
609 	return 0;
610 }
611 
612 static int netdev_vlan_rx_kill_vid(struct net_device *dev,
613 				   __be16 proto, u16 vid)
614 {
615 	struct netdev_private *np = netdev_priv(dev);
616 
617 	spin_lock(&np->lock);
618 	if (debug > 1)
619 		printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
620 	clear_bit(vid, np->active_vlans);
621 	set_rx_mode(dev);
622 	spin_unlock(&np->lock);
623 
624 	return 0;
625 }
626 #endif /* VLAN_SUPPORT */
627 
628 
629 static const struct net_device_ops netdev_ops = {
630 	.ndo_open		= netdev_open,
631 	.ndo_stop		= netdev_close,
632 	.ndo_start_xmit		= start_tx,
633 	.ndo_tx_timeout		= tx_timeout,
634 	.ndo_get_stats		= get_stats,
635 	.ndo_set_rx_mode	= set_rx_mode,
636 	.ndo_do_ioctl		= netdev_ioctl,
637 	.ndo_change_mtu		= eth_change_mtu,
638 	.ndo_set_mac_address	= eth_mac_addr,
639 	.ndo_validate_addr	= eth_validate_addr,
640 #ifdef VLAN_SUPPORT
641 	.ndo_vlan_rx_add_vid	= netdev_vlan_rx_add_vid,
642 	.ndo_vlan_rx_kill_vid	= netdev_vlan_rx_kill_vid,
643 #endif
644 };
645 
646 static int starfire_init_one(struct pci_dev *pdev,
647 			     const struct pci_device_id *ent)
648 {
649 	struct device *d = &pdev->dev;
650 	struct netdev_private *np;
651 	int i, irq, chip_idx = ent->driver_data;
652 	struct net_device *dev;
653 	long ioaddr;
654 	void __iomem *base;
655 	int drv_flags, io_size;
656 	int boguscnt;
657 
658 /* when built into the kernel, we only print version if device is found */
659 #ifndef MODULE
660 	static int printed_version;
661 	if (!printed_version++)
662 		printk(version);
663 #endif
664 
665 	if (pci_enable_device (pdev))
666 		return -EIO;
667 
668 	ioaddr = pci_resource_start(pdev, 0);
669 	io_size = pci_resource_len(pdev, 0);
670 	if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
671 		dev_err(d, "no PCI MEM resources, aborting\n");
672 		return -ENODEV;
673 	}
674 
675 	dev = alloc_etherdev(sizeof(*np));
676 	if (!dev)
677 		return -ENOMEM;
678 
679 	SET_NETDEV_DEV(dev, &pdev->dev);
680 
681 	irq = pdev->irq;
682 
683 	if (pci_request_regions (pdev, DRV_NAME)) {
684 		dev_err(d, "cannot reserve PCI resources, aborting\n");
685 		goto err_out_free_netdev;
686 	}
687 
688 	base = ioremap(ioaddr, io_size);
689 	if (!base) {
690 		dev_err(d, "cannot remap %#x @ %#lx, aborting\n",
691 			io_size, ioaddr);
692 		goto err_out_free_res;
693 	}
694 
695 	pci_set_master(pdev);
696 
697 	/* enable MWI -- it vastly improves Rx performance on sparc64 */
698 	pci_try_set_mwi(pdev);
699 
700 #ifdef ZEROCOPY
701 	/* Starfire can do TCP/UDP checksumming */
702 	if (enable_hw_cksum)
703 		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
704 #endif /* ZEROCOPY */
705 
706 #ifdef VLAN_SUPPORT
707 	dev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER;
708 #endif /* VLAN_RX_KILL_VID */
709 #ifdef ADDR_64BITS
710 	dev->features |= NETIF_F_HIGHDMA;
711 #endif /* ADDR_64BITS */
712 
713 	/* Serial EEPROM reads are hidden by the hardware. */
714 	for (i = 0; i < 6; i++)
715 		dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i);
716 
717 #if ! defined(final_version) /* Dump the EEPROM contents during development. */
718 	if (debug > 4)
719 		for (i = 0; i < 0x20; i++)
720 			printk("%2.2x%s",
721 			       (unsigned int)readb(base + EEPROMCtrl + i),
722 			       i % 16 != 15 ? " " : "\n");
723 #endif
724 
725 	/* Issue soft reset */
726 	writel(MiiSoftReset, base + TxMode);
727 	udelay(1000);
728 	writel(0, base + TxMode);
729 
730 	/* Reset the chip to erase previous misconfiguration. */
731 	writel(1, base + PCIDeviceConfig);
732 	boguscnt = 1000;
733 	while (--boguscnt > 0) {
734 		udelay(10);
735 		if ((readl(base + PCIDeviceConfig) & 1) == 0)
736 			break;
737 	}
738 	if (boguscnt == 0)
739 		printk("%s: chipset reset never completed!\n", dev->name);
740 	/* wait a little longer */
741 	udelay(1000);
742 
743 	np = netdev_priv(dev);
744 	np->dev = dev;
745 	np->base = base;
746 	spin_lock_init(&np->lock);
747 	pci_set_drvdata(pdev, dev);
748 
749 	np->pci_dev = pdev;
750 
751 	np->mii_if.dev = dev;
752 	np->mii_if.mdio_read = mdio_read;
753 	np->mii_if.mdio_write = mdio_write;
754 	np->mii_if.phy_id_mask = 0x1f;
755 	np->mii_if.reg_num_mask = 0x1f;
756 
757 	drv_flags = netdrv_tbl[chip_idx].drv_flags;
758 
759 	np->speed100 = 1;
760 
761 	/* timer resolution is 128 * 0.8us */
762 	np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
763 		Timer10X | EnableIntrMasking;
764 
765 	if (small_frames > 0) {
766 		np->intr_timer_ctrl |= SmallFrameBypass;
767 		switch (small_frames) {
768 		case 1 ... 64:
769 			np->intr_timer_ctrl |= SmallFrame64;
770 			break;
771 		case 65 ... 128:
772 			np->intr_timer_ctrl |= SmallFrame128;
773 			break;
774 		case 129 ... 256:
775 			np->intr_timer_ctrl |= SmallFrame256;
776 			break;
777 		default:
778 			np->intr_timer_ctrl |= SmallFrame512;
779 			if (small_frames > 512)
780 				printk("Adjusting small_frames down to 512\n");
781 			break;
782 		}
783 	}
784 
785 	dev->netdev_ops = &netdev_ops;
786 	dev->watchdog_timeo = TX_TIMEOUT;
787 	dev->ethtool_ops = &ethtool_ops;
788 
789 	netif_napi_add(dev, &np->napi, netdev_poll, max_interrupt_work);
790 
791 	if (mtu)
792 		dev->mtu = mtu;
793 
794 	if (register_netdev(dev))
795 		goto err_out_cleardev;
796 
797 	printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
798 	       dev->name, netdrv_tbl[chip_idx].name, base,
799 	       dev->dev_addr, irq);
800 
801 	if (drv_flags & CanHaveMII) {
802 		int phy, phy_idx = 0;
803 		int mii_status;
804 		for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
805 			mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
806 			mdelay(100);
807 			boguscnt = 1000;
808 			while (--boguscnt > 0)
809 				if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
810 					break;
811 			if (boguscnt == 0) {
812 				printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
813 				continue;
814 			}
815 			mii_status = mdio_read(dev, phy, MII_BMSR);
816 			if (mii_status != 0) {
817 				np->phys[phy_idx++] = phy;
818 				np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
819 				printk(KERN_INFO "%s: MII PHY found at address %d, status "
820 					   "%#4.4x advertising %#4.4x.\n",
821 					   dev->name, phy, mii_status, np->mii_if.advertising);
822 				/* there can be only one PHY on-board */
823 				break;
824 			}
825 		}
826 		np->phy_cnt = phy_idx;
827 		if (np->phy_cnt > 0)
828 			np->mii_if.phy_id = np->phys[0];
829 		else
830 			memset(&np->mii_if, 0, sizeof(np->mii_if));
831 	}
832 
833 	printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
834 	       dev->name, enable_hw_cksum ? "enabled" : "disabled");
835 	return 0;
836 
837 err_out_cleardev:
838 	iounmap(base);
839 err_out_free_res:
840 	pci_release_regions (pdev);
841 err_out_free_netdev:
842 	free_netdev(dev);
843 	return -ENODEV;
844 }
845 
846 
847 /* Read the MII Management Data I/O (MDIO) interfaces. */
848 static int mdio_read(struct net_device *dev, int phy_id, int location)
849 {
850 	struct netdev_private *np = netdev_priv(dev);
851 	void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
852 	int result, boguscnt=1000;
853 	/* ??? Should we add a busy-wait here? */
854 	do {
855 		result = readl(mdio_addr);
856 	} while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
857 	if (boguscnt == 0)
858 		return 0;
859 	if ((result & 0xffff) == 0xffff)
860 		return 0;
861 	return result & 0xffff;
862 }
863 
864 
865 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
866 {
867 	struct netdev_private *np = netdev_priv(dev);
868 	void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
869 	writel(value, mdio_addr);
870 	/* The busy-wait will occur before a read. */
871 }
872 
873 
874 static int netdev_open(struct net_device *dev)
875 {
876 	const struct firmware *fw_rx, *fw_tx;
877 	const __be32 *fw_rx_data, *fw_tx_data;
878 	struct netdev_private *np = netdev_priv(dev);
879 	void __iomem *ioaddr = np->base;
880 	const int irq = np->pci_dev->irq;
881 	int i, retval;
882 	size_t tx_size, rx_size;
883 	size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
884 
885 	/* Do we ever need to reset the chip??? */
886 
887 	retval = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
888 	if (retval)
889 		return retval;
890 
891 	/* Disable the Rx and Tx, and reset the chip. */
892 	writel(0, ioaddr + GenCtrl);
893 	writel(1, ioaddr + PCIDeviceConfig);
894 	if (debug > 1)
895 		printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
896 		       dev->name, irq);
897 
898 	/* Allocate the various queues. */
899 	if (!np->queue_mem) {
900 		tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
901 		rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
902 		tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
903 		rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
904 		np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
905 		np->queue_mem = pci_alloc_consistent(np->pci_dev, np->queue_mem_size, &np->queue_mem_dma);
906 		if (np->queue_mem == NULL) {
907 			free_irq(irq, dev);
908 			return -ENOMEM;
909 		}
910 
911 		np->tx_done_q     = np->queue_mem;
912 		np->tx_done_q_dma = np->queue_mem_dma;
913 		np->rx_done_q     = (void *) np->tx_done_q + tx_done_q_size;
914 		np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
915 		np->tx_ring       = (void *) np->rx_done_q + rx_done_q_size;
916 		np->tx_ring_dma   = np->rx_done_q_dma + rx_done_q_size;
917 		np->rx_ring       = (void *) np->tx_ring + tx_ring_size;
918 		np->rx_ring_dma   = np->tx_ring_dma + tx_ring_size;
919 	}
920 
921 	/* Start with no carrier, it gets adjusted later */
922 	netif_carrier_off(dev);
923 	init_ring(dev);
924 	/* Set the size of the Rx buffers. */
925 	writel((np->rx_buf_sz << RxBufferLenShift) |
926 	       (0 << RxMinDescrThreshShift) |
927 	       RxPrefetchMode | RxVariableQ |
928 	       RX_Q_ENTRIES |
929 	       RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
930 	       RxDescSpace4,
931 	       ioaddr + RxDescQCtrl);
932 
933 	/* Set up the Rx DMA controller. */
934 	writel(RxChecksumIgnore |
935 	       (0 << RxEarlyIntThreshShift) |
936 	       (6 << RxHighPrioThreshShift) |
937 	       ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
938 	       ioaddr + RxDMACtrl);
939 
940 	/* Set Tx descriptor */
941 	writel((2 << TxHiPriFIFOThreshShift) |
942 	       (0 << TxPadLenShift) |
943 	       ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
944 	       TX_DESC_Q_ADDR_SIZE |
945 	       TX_DESC_SPACING | TX_DESC_TYPE,
946 	       ioaddr + TxDescCtrl);
947 
948 	writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
949 	writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
950 	writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
951 	writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
952 	writel(np->tx_ring_dma, ioaddr + TxRingPtr);
953 
954 	writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
955 	writel(np->rx_done_q_dma |
956 	       RxComplType |
957 	       (0 << RxComplThreshShift),
958 	       ioaddr + RxCompletionAddr);
959 
960 	if (debug > 1)
961 		printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
962 
963 	/* Fill both the Tx SA register and the Rx perfect filter. */
964 	for (i = 0; i < 6; i++)
965 		writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
966 	/* The first entry is special because it bypasses the VLAN filter.
967 	   Don't use it. */
968 	writew(0, ioaddr + PerfFilterTable);
969 	writew(0, ioaddr + PerfFilterTable + 4);
970 	writew(0, ioaddr + PerfFilterTable + 8);
971 	for (i = 1; i < 16; i++) {
972 		__be16 *eaddrs = (__be16 *)dev->dev_addr;
973 		void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
974 		writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4;
975 		writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4;
976 		writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8;
977 	}
978 
979 	/* Initialize other registers. */
980 	/* Configure the PCI bus bursts and FIFO thresholds. */
981 	np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable;	/* modified when link is up. */
982 	writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
983 	udelay(1000);
984 	writel(np->tx_mode, ioaddr + TxMode);
985 	np->tx_threshold = 4;
986 	writel(np->tx_threshold, ioaddr + TxThreshold);
987 
988 	writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
989 
990 	napi_enable(&np->napi);
991 
992 	netif_start_queue(dev);
993 
994 	if (debug > 1)
995 		printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
996 	set_rx_mode(dev);
997 
998 	np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
999 	check_duplex(dev);
1000 
1001 	/* Enable GPIO interrupts on link change */
1002 	writel(0x0f00ff00, ioaddr + GPIOCtrl);
1003 
1004 	/* Set the interrupt mask */
1005 	writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
1006 	       IntrTxDMADone | IntrStatsMax | IntrLinkChange |
1007 	       IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
1008 	       ioaddr + IntrEnable);
1009 	/* Enable PCI interrupts. */
1010 	writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
1011 	       ioaddr + PCIDeviceConfig);
1012 
1013 #ifdef VLAN_SUPPORT
1014 	/* Set VLAN type to 802.1q */
1015 	writel(ETH_P_8021Q, ioaddr + VlanType);
1016 #endif /* VLAN_SUPPORT */
1017 
1018 	retval = request_firmware(&fw_rx, FIRMWARE_RX, &np->pci_dev->dev);
1019 	if (retval) {
1020 		printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1021 		       FIRMWARE_RX);
1022 		goto out_init;
1023 	}
1024 	if (fw_rx->size % 4) {
1025 		printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1026 		       fw_rx->size, FIRMWARE_RX);
1027 		retval = -EINVAL;
1028 		goto out_rx;
1029 	}
1030 	retval = request_firmware(&fw_tx, FIRMWARE_TX, &np->pci_dev->dev);
1031 	if (retval) {
1032 		printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1033 		       FIRMWARE_TX);
1034 		goto out_rx;
1035 	}
1036 	if (fw_tx->size % 4) {
1037 		printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1038 		       fw_tx->size, FIRMWARE_TX);
1039 		retval = -EINVAL;
1040 		goto out_tx;
1041 	}
1042 	fw_rx_data = (const __be32 *)&fw_rx->data[0];
1043 	fw_tx_data = (const __be32 *)&fw_tx->data[0];
1044 	rx_size = fw_rx->size / 4;
1045 	tx_size = fw_tx->size / 4;
1046 
1047 	/* Load Rx/Tx firmware into the frame processors */
1048 	for (i = 0; i < rx_size; i++)
1049 		writel(be32_to_cpup(&fw_rx_data[i]), ioaddr + RxGfpMem + i * 4);
1050 	for (i = 0; i < tx_size; i++)
1051 		writel(be32_to_cpup(&fw_tx_data[i]), ioaddr + TxGfpMem + i * 4);
1052 	if (enable_hw_cksum)
1053 		/* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1054 		writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1055 	else
1056 		/* Enable the Rx and Tx units only. */
1057 		writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1058 
1059 	if (debug > 1)
1060 		printk(KERN_DEBUG "%s: Done netdev_open().\n",
1061 		       dev->name);
1062 
1063 out_tx:
1064 	release_firmware(fw_tx);
1065 out_rx:
1066 	release_firmware(fw_rx);
1067 out_init:
1068 	if (retval)
1069 		netdev_close(dev);
1070 	return retval;
1071 }
1072 
1073 
1074 static void check_duplex(struct net_device *dev)
1075 {
1076 	struct netdev_private *np = netdev_priv(dev);
1077 	u16 reg0;
1078 	int silly_count = 1000;
1079 
1080 	mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1081 	mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1082 	udelay(500);
1083 	while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1084 		/* do nothing */;
1085 	if (!silly_count) {
1086 		printk("%s: MII reset failed!\n", dev->name);
1087 		return;
1088 	}
1089 
1090 	reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1091 
1092 	if (!np->mii_if.force_media) {
1093 		reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1094 	} else {
1095 		reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1096 		if (np->speed100)
1097 			reg0 |= BMCR_SPEED100;
1098 		if (np->mii_if.full_duplex)
1099 			reg0 |= BMCR_FULLDPLX;
1100 		printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1101 		       dev->name,
1102 		       np->speed100 ? "100" : "10",
1103 		       np->mii_if.full_duplex ? "full" : "half");
1104 	}
1105 	mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1106 }
1107 
1108 
1109 static void tx_timeout(struct net_device *dev)
1110 {
1111 	struct netdev_private *np = netdev_priv(dev);
1112 	void __iomem *ioaddr = np->base;
1113 	int old_debug;
1114 
1115 	printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1116 	       "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1117 
1118 	/* Perhaps we should reinitialize the hardware here. */
1119 
1120 	/*
1121 	 * Stop and restart the interface.
1122 	 * Cheat and increase the debug level temporarily.
1123 	 */
1124 	old_debug = debug;
1125 	debug = 2;
1126 	netdev_close(dev);
1127 	netdev_open(dev);
1128 	debug = old_debug;
1129 
1130 	/* Trigger an immediate transmit demand. */
1131 
1132 	netif_trans_update(dev); /* prevent tx timeout */
1133 	dev->stats.tx_errors++;
1134 	netif_wake_queue(dev);
1135 }
1136 
1137 
1138 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1139 static void init_ring(struct net_device *dev)
1140 {
1141 	struct netdev_private *np = netdev_priv(dev);
1142 	int i;
1143 
1144 	np->cur_rx = np->cur_tx = np->reap_tx = 0;
1145 	np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1146 
1147 	np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1148 
1149 	/* Fill in the Rx buffers.  Handle allocation failure gracefully. */
1150 	for (i = 0; i < RX_RING_SIZE; i++) {
1151 		struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1152 		np->rx_info[i].skb = skb;
1153 		if (skb == NULL)
1154 			break;
1155 		np->rx_info[i].mapping = pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1156 		/* Grrr, we cannot offset to correctly align the IP header. */
1157 		np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1158 	}
1159 	writew(i - 1, np->base + RxDescQIdx);
1160 	np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1161 
1162 	/* Clear the remainder of the Rx buffer ring. */
1163 	for (  ; i < RX_RING_SIZE; i++) {
1164 		np->rx_ring[i].rxaddr = 0;
1165 		np->rx_info[i].skb = NULL;
1166 		np->rx_info[i].mapping = 0;
1167 	}
1168 	/* Mark the last entry as wrapping the ring. */
1169 	np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1170 
1171 	/* Clear the completion rings. */
1172 	for (i = 0; i < DONE_Q_SIZE; i++) {
1173 		np->rx_done_q[i].status = 0;
1174 		np->tx_done_q[i].status = 0;
1175 	}
1176 
1177 	for (i = 0; i < TX_RING_SIZE; i++)
1178 		memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1179 }
1180 
1181 
1182 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1183 {
1184 	struct netdev_private *np = netdev_priv(dev);
1185 	unsigned int entry;
1186 	u32 status;
1187 	int i;
1188 
1189 	/*
1190 	 * be cautious here, wrapping the queue has weird semantics
1191 	 * and we may not have enough slots even when it seems we do.
1192 	 */
1193 	if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1194 		netif_stop_queue(dev);
1195 		return NETDEV_TX_BUSY;
1196 	}
1197 
1198 #if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
1199 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1200 		if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
1201 			return NETDEV_TX_OK;
1202 	}
1203 #endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1204 
1205 	entry = np->cur_tx % TX_RING_SIZE;
1206 	for (i = 0; i < skb_num_frags(skb); i++) {
1207 		int wrap_ring = 0;
1208 		status = TxDescID;
1209 
1210 		if (i == 0) {
1211 			np->tx_info[entry].skb = skb;
1212 			status |= TxCRCEn;
1213 			if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1214 				status |= TxRingWrap;
1215 				wrap_ring = 1;
1216 			}
1217 			if (np->reap_tx) {
1218 				status |= TxDescIntr;
1219 				np->reap_tx = 0;
1220 			}
1221 			if (skb->ip_summed == CHECKSUM_PARTIAL) {
1222 				status |= TxCalTCP;
1223 				dev->stats.tx_compressed++;
1224 			}
1225 			status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1226 
1227 			np->tx_info[entry].mapping =
1228 				pci_map_single(np->pci_dev, skb->data, skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1229 		} else {
1230 			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1231 			status |= skb_frag_size(this_frag);
1232 			np->tx_info[entry].mapping =
1233 				pci_map_single(np->pci_dev,
1234 					       skb_frag_address(this_frag),
1235 					       skb_frag_size(this_frag),
1236 					       PCI_DMA_TODEVICE);
1237 		}
1238 
1239 		np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1240 		np->tx_ring[entry].status = cpu_to_le32(status);
1241 		if (debug > 3)
1242 			printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1243 			       dev->name, np->cur_tx, np->dirty_tx,
1244 			       entry, status);
1245 		if (wrap_ring) {
1246 			np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1247 			np->cur_tx += np->tx_info[entry].used_slots;
1248 			entry = 0;
1249 		} else {
1250 			np->tx_info[entry].used_slots = 1;
1251 			np->cur_tx += np->tx_info[entry].used_slots;
1252 			entry++;
1253 		}
1254 		/* scavenge the tx descriptors twice per TX_RING_SIZE */
1255 		if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1256 			np->reap_tx = 1;
1257 	}
1258 
1259 	/* Non-x86: explicitly flush descriptor cache lines here. */
1260 	/* Ensure all descriptors are written back before the transmit is
1261 	   initiated. - Jes */
1262 	wmb();
1263 
1264 	/* Update the producer index. */
1265 	writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1266 
1267 	/* 4 is arbitrary, but should be ok */
1268 	if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1269 		netif_stop_queue(dev);
1270 
1271 	return NETDEV_TX_OK;
1272 }
1273 
1274 
1275 /* The interrupt handler does all of the Rx thread work and cleans up
1276    after the Tx thread. */
1277 static irqreturn_t intr_handler(int irq, void *dev_instance)
1278 {
1279 	struct net_device *dev = dev_instance;
1280 	struct netdev_private *np = netdev_priv(dev);
1281 	void __iomem *ioaddr = np->base;
1282 	int boguscnt = max_interrupt_work;
1283 	int consumer;
1284 	int tx_status;
1285 	int handled = 0;
1286 
1287 	do {
1288 		u32 intr_status = readl(ioaddr + IntrClear);
1289 
1290 		if (debug > 4)
1291 			printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1292 			       dev->name, intr_status);
1293 
1294 		if (intr_status == 0 || intr_status == (u32) -1)
1295 			break;
1296 
1297 		handled = 1;
1298 
1299 		if (intr_status & (IntrRxDone | IntrRxEmpty)) {
1300 			u32 enable;
1301 
1302 			if (likely(napi_schedule_prep(&np->napi))) {
1303 				__napi_schedule(&np->napi);
1304 				enable = readl(ioaddr + IntrEnable);
1305 				enable &= ~(IntrRxDone | IntrRxEmpty);
1306 				writel(enable, ioaddr + IntrEnable);
1307 				/* flush PCI posting buffers */
1308 				readl(ioaddr + IntrEnable);
1309 			} else {
1310 				/* Paranoia check */
1311 				enable = readl(ioaddr + IntrEnable);
1312 				if (enable & (IntrRxDone | IntrRxEmpty)) {
1313 					printk(KERN_INFO
1314 					       "%s: interrupt while in poll!\n",
1315 					       dev->name);
1316 					enable &= ~(IntrRxDone | IntrRxEmpty);
1317 					writel(enable, ioaddr + IntrEnable);
1318 				}
1319 			}
1320 		}
1321 
1322 		/* Scavenge the skbuff list based on the Tx-done queue.
1323 		   There are redundant checks here that may be cleaned up
1324 		   after the driver has proven to be reliable. */
1325 		consumer = readl(ioaddr + TxConsumerIdx);
1326 		if (debug > 3)
1327 			printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1328 			       dev->name, consumer);
1329 
1330 		while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1331 			if (debug > 3)
1332 				printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1333 				       dev->name, np->dirty_tx, np->tx_done, tx_status);
1334 			if ((tx_status & 0xe0000000) == 0xa0000000) {
1335 				dev->stats.tx_packets++;
1336 			} else if ((tx_status & 0xe0000000) == 0x80000000) {
1337 				u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1338 				struct sk_buff *skb = np->tx_info[entry].skb;
1339 				np->tx_info[entry].skb = NULL;
1340 				pci_unmap_single(np->pci_dev,
1341 						 np->tx_info[entry].mapping,
1342 						 skb_first_frag_len(skb),
1343 						 PCI_DMA_TODEVICE);
1344 				np->tx_info[entry].mapping = 0;
1345 				np->dirty_tx += np->tx_info[entry].used_slots;
1346 				entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1347 				{
1348 					int i;
1349 					for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1350 						pci_unmap_single(np->pci_dev,
1351 								 np->tx_info[entry].mapping,
1352 								 skb_frag_size(&skb_shinfo(skb)->frags[i]),
1353 								 PCI_DMA_TODEVICE);
1354 						np->dirty_tx++;
1355 						entry++;
1356 					}
1357 				}
1358 
1359 				dev_kfree_skb_irq(skb);
1360 			}
1361 			np->tx_done_q[np->tx_done].status = 0;
1362 			np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1363 		}
1364 		writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1365 
1366 		if (netif_queue_stopped(dev) &&
1367 		    (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1368 			/* The ring is no longer full, wake the queue. */
1369 			netif_wake_queue(dev);
1370 		}
1371 
1372 		/* Stats overflow */
1373 		if (intr_status & IntrStatsMax)
1374 			get_stats(dev);
1375 
1376 		/* Media change interrupt. */
1377 		if (intr_status & IntrLinkChange)
1378 			netdev_media_change(dev);
1379 
1380 		/* Abnormal error summary/uncommon events handlers. */
1381 		if (intr_status & IntrAbnormalSummary)
1382 			netdev_error(dev, intr_status);
1383 
1384 		if (--boguscnt < 0) {
1385 			if (debug > 1)
1386 				printk(KERN_WARNING "%s: Too much work at interrupt, "
1387 				       "status=%#8.8x.\n",
1388 				       dev->name, intr_status);
1389 			break;
1390 		}
1391 	} while (1);
1392 
1393 	if (debug > 4)
1394 		printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1395 		       dev->name, (int) readl(ioaddr + IntrStatus));
1396 	return IRQ_RETVAL(handled);
1397 }
1398 
1399 
1400 /*
1401  * This routine is logically part of the interrupt/poll handler, but separated
1402  * for clarity and better register allocation.
1403  */
1404 static int __netdev_rx(struct net_device *dev, int *quota)
1405 {
1406 	struct netdev_private *np = netdev_priv(dev);
1407 	u32 desc_status;
1408 	int retcode = 0;
1409 
1410 	/* If EOP is set on the next entry, it's a new packet. Send it up. */
1411 	while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1412 		struct sk_buff *skb;
1413 		u16 pkt_len;
1414 		int entry;
1415 		rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1416 
1417 		if (debug > 4)
1418 			printk(KERN_DEBUG "  netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1419 		if (!(desc_status & RxOK)) {
1420 			/* There was an error. */
1421 			if (debug > 2)
1422 				printk(KERN_DEBUG "  netdev_rx() Rx error was %#8.8x.\n", desc_status);
1423 			dev->stats.rx_errors++;
1424 			if (desc_status & RxFIFOErr)
1425 				dev->stats.rx_fifo_errors++;
1426 			goto next_rx;
1427 		}
1428 
1429 		if (*quota <= 0) {	/* out of rx quota */
1430 			retcode = 1;
1431 			goto out;
1432 		}
1433 		(*quota)--;
1434 
1435 		pkt_len = desc_status;	/* Implicitly Truncate */
1436 		entry = (desc_status >> 16) & 0x7ff;
1437 
1438 		if (debug > 4)
1439 			printk(KERN_DEBUG "  netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1440 		/* Check if the packet is long enough to accept without copying
1441 		   to a minimally-sized skbuff. */
1442 		if (pkt_len < rx_copybreak &&
1443 		    (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1444 			skb_reserve(skb, 2);	/* 16 byte align the IP header */
1445 			pci_dma_sync_single_for_cpu(np->pci_dev,
1446 						    np->rx_info[entry].mapping,
1447 						    pkt_len, PCI_DMA_FROMDEVICE);
1448 			skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len);
1449 			pci_dma_sync_single_for_device(np->pci_dev,
1450 						       np->rx_info[entry].mapping,
1451 						       pkt_len, PCI_DMA_FROMDEVICE);
1452 			skb_put(skb, pkt_len);
1453 		} else {
1454 			pci_unmap_single(np->pci_dev, np->rx_info[entry].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1455 			skb = np->rx_info[entry].skb;
1456 			skb_put(skb, pkt_len);
1457 			np->rx_info[entry].skb = NULL;
1458 			np->rx_info[entry].mapping = 0;
1459 		}
1460 #ifndef final_version			/* Remove after testing. */
1461 		/* You will want this info for the initial debug. */
1462 		if (debug > 5) {
1463 			printk(KERN_DEBUG "  Rx data %pM %pM %2.2x%2.2x.\n",
1464 			       skb->data, skb->data + 6,
1465 			       skb->data[12], skb->data[13]);
1466 		}
1467 #endif
1468 
1469 		skb->protocol = eth_type_trans(skb, dev);
1470 #ifdef VLAN_SUPPORT
1471 		if (debug > 4)
1472 			printk(KERN_DEBUG "  netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1473 #endif
1474 		if (le16_to_cpu(desc->status2) & 0x0100) {
1475 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1476 			dev->stats.rx_compressed++;
1477 		}
1478 		/*
1479 		 * This feature doesn't seem to be working, at least
1480 		 * with the two firmware versions I have. If the GFP sees
1481 		 * an IP fragment, it either ignores it completely, or reports
1482 		 * "bad checksum" on it.
1483 		 *
1484 		 * Maybe I missed something -- corrections are welcome.
1485 		 * Until then, the printk stays. :-) -Ion
1486 		 */
1487 		else if (le16_to_cpu(desc->status2) & 0x0040) {
1488 			skb->ip_summed = CHECKSUM_COMPLETE;
1489 			skb->csum = le16_to_cpu(desc->csum);
1490 			printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1491 		}
1492 #ifdef VLAN_SUPPORT
1493 		if (le16_to_cpu(desc->status2) & 0x0200) {
1494 			u16 vlid = le16_to_cpu(desc->vlanid);
1495 
1496 			if (debug > 4) {
1497 				printk(KERN_DEBUG "  netdev_rx() vlanid = %d\n",
1498 				       vlid);
1499 			}
1500 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlid);
1501 		}
1502 #endif /* VLAN_SUPPORT */
1503 		netif_receive_skb(skb);
1504 		dev->stats.rx_packets++;
1505 
1506 	next_rx:
1507 		np->cur_rx++;
1508 		desc->status = 0;
1509 		np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1510 	}
1511 
1512 	if (*quota == 0) {	/* out of rx quota */
1513 		retcode = 1;
1514 		goto out;
1515 	}
1516 	writew(np->rx_done, np->base + CompletionQConsumerIdx);
1517 
1518  out:
1519 	refill_rx_ring(dev);
1520 	if (debug > 5)
1521 		printk(KERN_DEBUG "  exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1522 		       retcode, np->rx_done, desc_status);
1523 	return retcode;
1524 }
1525 
1526 static int netdev_poll(struct napi_struct *napi, int budget)
1527 {
1528 	struct netdev_private *np = container_of(napi, struct netdev_private, napi);
1529 	struct net_device *dev = np->dev;
1530 	u32 intr_status;
1531 	void __iomem *ioaddr = np->base;
1532 	int quota = budget;
1533 
1534 	do {
1535 		writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1536 
1537 		if (__netdev_rx(dev, &quota))
1538 			goto out;
1539 
1540 		intr_status = readl(ioaddr + IntrStatus);
1541 	} while (intr_status & (IntrRxDone | IntrRxEmpty));
1542 
1543 	napi_complete(napi);
1544 	intr_status = readl(ioaddr + IntrEnable);
1545 	intr_status |= IntrRxDone | IntrRxEmpty;
1546 	writel(intr_status, ioaddr + IntrEnable);
1547 
1548  out:
1549 	if (debug > 5)
1550 		printk(KERN_DEBUG "  exiting netdev_poll(): %d.\n",
1551 		       budget - quota);
1552 
1553 	/* Restart Rx engine if stopped. */
1554 	return budget - quota;
1555 }
1556 
1557 static void refill_rx_ring(struct net_device *dev)
1558 {
1559 	struct netdev_private *np = netdev_priv(dev);
1560 	struct sk_buff *skb;
1561 	int entry = -1;
1562 
1563 	/* Refill the Rx ring buffers. */
1564 	for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1565 		entry = np->dirty_rx % RX_RING_SIZE;
1566 		if (np->rx_info[entry].skb == NULL) {
1567 			skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1568 			np->rx_info[entry].skb = skb;
1569 			if (skb == NULL)
1570 				break;	/* Better luck next round. */
1571 			np->rx_info[entry].mapping =
1572 				pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1573 			np->rx_ring[entry].rxaddr =
1574 				cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1575 		}
1576 		if (entry == RX_RING_SIZE - 1)
1577 			np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1578 	}
1579 	if (entry >= 0)
1580 		writew(entry, np->base + RxDescQIdx);
1581 }
1582 
1583 
1584 static void netdev_media_change(struct net_device *dev)
1585 {
1586 	struct netdev_private *np = netdev_priv(dev);
1587 	void __iomem *ioaddr = np->base;
1588 	u16 reg0, reg1, reg4, reg5;
1589 	u32 new_tx_mode;
1590 	u32 new_intr_timer_ctrl;
1591 
1592 	/* reset status first */
1593 	mdio_read(dev, np->phys[0], MII_BMCR);
1594 	mdio_read(dev, np->phys[0], MII_BMSR);
1595 
1596 	reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1597 	reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1598 
1599 	if (reg1 & BMSR_LSTATUS) {
1600 		/* link is up */
1601 		if (reg0 & BMCR_ANENABLE) {
1602 			/* autonegotiation is enabled */
1603 			reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1604 			reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1605 			if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1606 				np->speed100 = 1;
1607 				np->mii_if.full_duplex = 1;
1608 			} else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1609 				np->speed100 = 1;
1610 				np->mii_if.full_duplex = 0;
1611 			} else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1612 				np->speed100 = 0;
1613 				np->mii_if.full_duplex = 1;
1614 			} else {
1615 				np->speed100 = 0;
1616 				np->mii_if.full_duplex = 0;
1617 			}
1618 		} else {
1619 			/* autonegotiation is disabled */
1620 			if (reg0 & BMCR_SPEED100)
1621 				np->speed100 = 1;
1622 			else
1623 				np->speed100 = 0;
1624 			if (reg0 & BMCR_FULLDPLX)
1625 				np->mii_if.full_duplex = 1;
1626 			else
1627 				np->mii_if.full_duplex = 0;
1628 		}
1629 		netif_carrier_on(dev);
1630 		printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1631 		       dev->name,
1632 		       np->speed100 ? "100" : "10",
1633 		       np->mii_if.full_duplex ? "full" : "half");
1634 
1635 		new_tx_mode = np->tx_mode & ~FullDuplex;	/* duplex setting */
1636 		if (np->mii_if.full_duplex)
1637 			new_tx_mode |= FullDuplex;
1638 		if (np->tx_mode != new_tx_mode) {
1639 			np->tx_mode = new_tx_mode;
1640 			writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1641 			udelay(1000);
1642 			writel(np->tx_mode, ioaddr + TxMode);
1643 		}
1644 
1645 		new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1646 		if (np->speed100)
1647 			new_intr_timer_ctrl |= Timer10X;
1648 		if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1649 			np->intr_timer_ctrl = new_intr_timer_ctrl;
1650 			writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1651 		}
1652 	} else {
1653 		netif_carrier_off(dev);
1654 		printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1655 	}
1656 }
1657 
1658 
1659 static void netdev_error(struct net_device *dev, int intr_status)
1660 {
1661 	struct netdev_private *np = netdev_priv(dev);
1662 
1663 	/* Came close to underrunning the Tx FIFO, increase threshold. */
1664 	if (intr_status & IntrTxDataLow) {
1665 		if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1666 			writel(++np->tx_threshold, np->base + TxThreshold);
1667 			printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1668 			       dev->name, np->tx_threshold * 16);
1669 		} else
1670 			printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1671 	}
1672 	if (intr_status & IntrRxGFPDead) {
1673 		dev->stats.rx_fifo_errors++;
1674 		dev->stats.rx_errors++;
1675 	}
1676 	if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
1677 		dev->stats.tx_fifo_errors++;
1678 		dev->stats.tx_errors++;
1679 	}
1680 	if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1681 		printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1682 		       dev->name, intr_status);
1683 }
1684 
1685 
1686 static struct net_device_stats *get_stats(struct net_device *dev)
1687 {
1688 	struct netdev_private *np = netdev_priv(dev);
1689 	void __iomem *ioaddr = np->base;
1690 
1691 	/* This adapter architecture needs no SMP locks. */
1692 	dev->stats.tx_bytes = readl(ioaddr + 0x57010);
1693 	dev->stats.rx_bytes = readl(ioaddr + 0x57044);
1694 	dev->stats.tx_packets = readl(ioaddr + 0x57000);
1695 	dev->stats.tx_aborted_errors =
1696 		readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
1697 	dev->stats.tx_window_errors = readl(ioaddr + 0x57018);
1698 	dev->stats.collisions =
1699 		readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1700 
1701 	/* The chip only need report frame silently dropped. */
1702 	dev->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1703 	writew(0, ioaddr + RxDMAStatus);
1704 	dev->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1705 	dev->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1706 	dev->stats.rx_length_errors = readl(ioaddr + 0x57058);
1707 	dev->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1708 
1709 	return &dev->stats;
1710 }
1711 
1712 #ifdef VLAN_SUPPORT
1713 static u32 set_vlan_mode(struct netdev_private *np)
1714 {
1715 	u32 ret = VlanMode;
1716 	u16 vid;
1717 	void __iomem *filter_addr = np->base + HashTable + 8;
1718 	int vlan_count = 0;
1719 
1720 	for_each_set_bit(vid, np->active_vlans, VLAN_N_VID) {
1721 		if (vlan_count == 32)
1722 			break;
1723 		writew(vid, filter_addr);
1724 		filter_addr += 16;
1725 		vlan_count++;
1726 	}
1727 	if (vlan_count == 32) {
1728 		ret |= PerfectFilterVlan;
1729 		while (vlan_count < 32) {
1730 			writew(0, filter_addr);
1731 			filter_addr += 16;
1732 			vlan_count++;
1733 		}
1734 	}
1735 	return ret;
1736 }
1737 #endif /* VLAN_SUPPORT */
1738 
1739 static void set_rx_mode(struct net_device *dev)
1740 {
1741 	struct netdev_private *np = netdev_priv(dev);
1742 	void __iomem *ioaddr = np->base;
1743 	u32 rx_mode = MinVLANPrio;
1744 	struct netdev_hw_addr *ha;
1745 	int i;
1746 
1747 #ifdef VLAN_SUPPORT
1748 	rx_mode |= set_vlan_mode(np);
1749 #endif /* VLAN_SUPPORT */
1750 
1751 	if (dev->flags & IFF_PROMISC) {	/* Set promiscuous. */
1752 		rx_mode |= AcceptAll;
1753 	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1754 		   (dev->flags & IFF_ALLMULTI)) {
1755 		/* Too many to match, or accept all multicasts. */
1756 		rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
1757 	} else if (netdev_mc_count(dev) <= 14) {
1758 		/* Use the 16 element perfect filter, skip first two entries. */
1759 		void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1760 		__be16 *eaddrs;
1761 		netdev_for_each_mc_addr(ha, dev) {
1762 			eaddrs = (__be16 *) ha->addr;
1763 			writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4;
1764 			writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1765 			writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8;
1766 		}
1767 		eaddrs = (__be16 *)dev->dev_addr;
1768 		i = netdev_mc_count(dev) + 2;
1769 		while (i++ < 16) {
1770 			writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1771 			writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1772 			writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1773 		}
1774 		rx_mode |= AcceptBroadcast|PerfectFilter;
1775 	} else {
1776 		/* Must use a multicast hash table. */
1777 		void __iomem *filter_addr;
1778 		__be16 *eaddrs;
1779 		__le16 mc_filter[32] __attribute__ ((aligned(sizeof(long))));	/* Multicast hash filter */
1780 
1781 		memset(mc_filter, 0, sizeof(mc_filter));
1782 		netdev_for_each_mc_addr(ha, dev) {
1783 			/* The chip uses the upper 9 CRC bits
1784 			   as index into the hash table */
1785 			int bit_nr = ether_crc_le(ETH_ALEN, ha->addr) >> 23;
1786 			__le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1];
1787 
1788 			*fptr |= cpu_to_le32(1 << (bit_nr & 31));
1789 		}
1790 		/* Clear the perfect filter list, skip first two entries. */
1791 		filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1792 		eaddrs = (__be16 *)dev->dev_addr;
1793 		for (i = 2; i < 16; i++) {
1794 			writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1795 			writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1796 			writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1797 		}
1798 		for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1799 			writew(mc_filter[i], filter_addr);
1800 		rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1801 	}
1802 	writel(rx_mode, ioaddr + RxFilterMode);
1803 }
1804 
1805 static int check_if_running(struct net_device *dev)
1806 {
1807 	if (!netif_running(dev))
1808 		return -EINVAL;
1809 	return 0;
1810 }
1811 
1812 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1813 {
1814 	struct netdev_private *np = netdev_priv(dev);
1815 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1816 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1817 	strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1818 }
1819 
1820 static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1821 {
1822 	struct netdev_private *np = netdev_priv(dev);
1823 	spin_lock_irq(&np->lock);
1824 	mii_ethtool_gset(&np->mii_if, ecmd);
1825 	spin_unlock_irq(&np->lock);
1826 	return 0;
1827 }
1828 
1829 static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1830 {
1831 	struct netdev_private *np = netdev_priv(dev);
1832 	int res;
1833 	spin_lock_irq(&np->lock);
1834 	res = mii_ethtool_sset(&np->mii_if, ecmd);
1835 	spin_unlock_irq(&np->lock);
1836 	check_duplex(dev);
1837 	return res;
1838 }
1839 
1840 static int nway_reset(struct net_device *dev)
1841 {
1842 	struct netdev_private *np = netdev_priv(dev);
1843 	return mii_nway_restart(&np->mii_if);
1844 }
1845 
1846 static u32 get_link(struct net_device *dev)
1847 {
1848 	struct netdev_private *np = netdev_priv(dev);
1849 	return mii_link_ok(&np->mii_if);
1850 }
1851 
1852 static u32 get_msglevel(struct net_device *dev)
1853 {
1854 	return debug;
1855 }
1856 
1857 static void set_msglevel(struct net_device *dev, u32 val)
1858 {
1859 	debug = val;
1860 }
1861 
1862 static const struct ethtool_ops ethtool_ops = {
1863 	.begin = check_if_running,
1864 	.get_drvinfo = get_drvinfo,
1865 	.get_settings = get_settings,
1866 	.set_settings = set_settings,
1867 	.nway_reset = nway_reset,
1868 	.get_link = get_link,
1869 	.get_msglevel = get_msglevel,
1870 	.set_msglevel = set_msglevel,
1871 };
1872 
1873 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1874 {
1875 	struct netdev_private *np = netdev_priv(dev);
1876 	struct mii_ioctl_data *data = if_mii(rq);
1877 	int rc;
1878 
1879 	if (!netif_running(dev))
1880 		return -EINVAL;
1881 
1882 	spin_lock_irq(&np->lock);
1883 	rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1884 	spin_unlock_irq(&np->lock);
1885 
1886 	if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
1887 		check_duplex(dev);
1888 
1889 	return rc;
1890 }
1891 
1892 static int netdev_close(struct net_device *dev)
1893 {
1894 	struct netdev_private *np = netdev_priv(dev);
1895 	void __iomem *ioaddr = np->base;
1896 	int i;
1897 
1898 	netif_stop_queue(dev);
1899 
1900 	napi_disable(&np->napi);
1901 
1902 	if (debug > 1) {
1903 		printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
1904 			   dev->name, (int) readl(ioaddr + IntrStatus));
1905 		printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1906 		       dev->name, np->cur_tx, np->dirty_tx,
1907 		       np->cur_rx, np->dirty_rx);
1908 	}
1909 
1910 	/* Disable interrupts by clearing the interrupt mask. */
1911 	writel(0, ioaddr + IntrEnable);
1912 
1913 	/* Stop the chip's Tx and Rx processes. */
1914 	writel(0, ioaddr + GenCtrl);
1915 	readl(ioaddr + GenCtrl);
1916 
1917 	if (debug > 5) {
1918 		printk(KERN_DEBUG"  Tx ring at %#llx:\n",
1919 		       (long long) np->tx_ring_dma);
1920 		for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
1921 			printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1922 			       i, le32_to_cpu(np->tx_ring[i].status),
1923 			       (long long) dma_to_cpu(np->tx_ring[i].addr),
1924 			       le32_to_cpu(np->tx_done_q[i].status));
1925 		printk(KERN_DEBUG "  Rx ring at %#llx -> %p:\n",
1926 		       (long long) np->rx_ring_dma, np->rx_done_q);
1927 		if (np->rx_done_q)
1928 			for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
1929 				printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
1930 				       i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
1931 		}
1932 	}
1933 
1934 	free_irq(np->pci_dev->irq, dev);
1935 
1936 	/* Free all the skbuffs in the Rx queue. */
1937 	for (i = 0; i < RX_RING_SIZE; i++) {
1938 		np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
1939 		if (np->rx_info[i].skb != NULL) {
1940 			pci_unmap_single(np->pci_dev, np->rx_info[i].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1941 			dev_kfree_skb(np->rx_info[i].skb);
1942 		}
1943 		np->rx_info[i].skb = NULL;
1944 		np->rx_info[i].mapping = 0;
1945 	}
1946 	for (i = 0; i < TX_RING_SIZE; i++) {
1947 		struct sk_buff *skb = np->tx_info[i].skb;
1948 		if (skb == NULL)
1949 			continue;
1950 		pci_unmap_single(np->pci_dev,
1951 				 np->tx_info[i].mapping,
1952 				 skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1953 		np->tx_info[i].mapping = 0;
1954 		dev_kfree_skb(skb);
1955 		np->tx_info[i].skb = NULL;
1956 	}
1957 
1958 	return 0;
1959 }
1960 
1961 #ifdef CONFIG_PM
1962 static int starfire_suspend(struct pci_dev *pdev, pm_message_t state)
1963 {
1964 	struct net_device *dev = pci_get_drvdata(pdev);
1965 
1966 	if (netif_running(dev)) {
1967 		netif_device_detach(dev);
1968 		netdev_close(dev);
1969 	}
1970 
1971 	pci_save_state(pdev);
1972 	pci_set_power_state(pdev, pci_choose_state(pdev,state));
1973 
1974 	return 0;
1975 }
1976 
1977 static int starfire_resume(struct pci_dev *pdev)
1978 {
1979 	struct net_device *dev = pci_get_drvdata(pdev);
1980 
1981 	pci_set_power_state(pdev, PCI_D0);
1982 	pci_restore_state(pdev);
1983 
1984 	if (netif_running(dev)) {
1985 		netdev_open(dev);
1986 		netif_device_attach(dev);
1987 	}
1988 
1989 	return 0;
1990 }
1991 #endif /* CONFIG_PM */
1992 
1993 
1994 static void starfire_remove_one(struct pci_dev *pdev)
1995 {
1996 	struct net_device *dev = pci_get_drvdata(pdev);
1997 	struct netdev_private *np = netdev_priv(dev);
1998 
1999 	BUG_ON(!dev);
2000 
2001 	unregister_netdev(dev);
2002 
2003 	if (np->queue_mem)
2004 		pci_free_consistent(pdev, np->queue_mem_size, np->queue_mem, np->queue_mem_dma);
2005 
2006 
2007 	/* XXX: add wakeup code -- requires firmware for MagicPacket */
2008 	pci_set_power_state(pdev, PCI_D3hot);	/* go to sleep in D3 mode */
2009 	pci_disable_device(pdev);
2010 
2011 	iounmap(np->base);
2012 	pci_release_regions(pdev);
2013 
2014 	free_netdev(dev);			/* Will also free np!! */
2015 }
2016 
2017 
2018 static struct pci_driver starfire_driver = {
2019 	.name		= DRV_NAME,
2020 	.probe		= starfire_init_one,
2021 	.remove		= starfire_remove_one,
2022 #ifdef CONFIG_PM
2023 	.suspend	= starfire_suspend,
2024 	.resume		= starfire_resume,
2025 #endif /* CONFIG_PM */
2026 	.id_table	= starfire_pci_tbl,
2027 };
2028 
2029 
2030 static int __init starfire_init (void)
2031 {
2032 /* when a module, this is printed whether or not devices are found in probe */
2033 #ifdef MODULE
2034 	printk(version);
2035 
2036 	printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
2037 #endif
2038 
2039 	BUILD_BUG_ON(sizeof(dma_addr_t) != sizeof(netdrv_addr_t));
2040 
2041 	return pci_register_driver(&starfire_driver);
2042 }
2043 
2044 
2045 static void __exit starfire_cleanup (void)
2046 {
2047 	pci_unregister_driver (&starfire_driver);
2048 }
2049 
2050 
2051 module_init(starfire_init);
2052 module_exit(starfire_cleanup);
2053 
2054 
2055 /*
2056  * Local variables:
2057  *  c-basic-offset: 8
2058  *  tab-width: 8
2059  * End:
2060  */
2061