1 /* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
2 /*
3 	Written 1998-2000 by Donald Becker.
4 
5 	Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
6 	send all bug reports to me, and not to Donald Becker, as this code
7 	has been heavily modified from Donald's original version.
8 
9 	This software may be used and distributed according to the terms of
10 	the GNU General Public License (GPL), incorporated herein by reference.
11 	Drivers based on or derived from this code fall under the GPL and must
12 	retain the authorship, copyright and license notice.  This file is not
13 	a complete program and may only be used when the entire operating
14 	system is licensed under the GPL.
15 
16 	The information below comes from Donald Becker's original driver:
17 
18 	The author may be reached as becker@scyld.com, or C/O
19 	Scyld Computing Corporation
20 	410 Severn Ave., Suite 210
21 	Annapolis MD 21403
22 
23 	Support and updates available at
24 	http://www.scyld.com/network/starfire.html
25 	[link no longer provides useful info -jgarzik]
26 
27 */
28 
29 #define DRV_NAME	"starfire"
30 
31 #include <linux/interrupt.h>
32 #include <linux/module.h>
33 #include <linux/kernel.h>
34 #include <linux/pci.h>
35 #include <linux/netdevice.h>
36 #include <linux/etherdevice.h>
37 #include <linux/init.h>
38 #include <linux/delay.h>
39 #include <linux/crc32.h>
40 #include <linux/ethtool.h>
41 #include <linux/mii.h>
42 #include <linux/if_vlan.h>
43 #include <linux/mm.h>
44 #include <linux/firmware.h>
45 #include <asm/processor.h>		/* Processor type for cache alignment. */
46 #include <linux/uaccess.h>
47 #include <asm/io.h>
48 
49 /*
50  * The current frame processor firmware fails to checksum a fragment
51  * of length 1. If and when this is fixed, the #define below can be removed.
52  */
53 #define HAS_BROKEN_FIRMWARE
54 
55 /*
56  * If using the broken firmware, data must be padded to the next 32-bit boundary.
57  */
58 #ifdef HAS_BROKEN_FIRMWARE
59 #define PADDING_MASK 3
60 #endif
61 
62 /*
63  * Define this if using the driver with the zero-copy patch
64  */
65 #define ZEROCOPY
66 
67 #if IS_ENABLED(CONFIG_VLAN_8021Q)
68 #define VLAN_SUPPORT
69 #endif
70 
71 /* The user-configurable values.
72    These may be modified when a driver module is loaded.*/
73 
74 /* Used for tuning interrupt latency vs. overhead. */
75 static int intr_latency;
76 static int small_frames;
77 
78 static int debug = 1;			/* 1 normal messages, 0 quiet .. 7 verbose. */
79 static int max_interrupt_work = 20;
80 static int mtu;
81 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
82    The Starfire has a 512 element hash table based on the Ethernet CRC. */
83 static const int multicast_filter_limit = 512;
84 /* Whether to do TCP/UDP checksums in hardware */
85 static int enable_hw_cksum = 1;
86 
87 #define PKT_BUF_SZ	1536		/* Size of each temporary Rx buffer.*/
88 /*
89  * Set the copy breakpoint for the copy-only-tiny-frames scheme.
90  * Setting to > 1518 effectively disables this feature.
91  *
92  * NOTE:
93  * The ia64 doesn't allow for unaligned loads even of integers being
94  * misaligned on a 2 byte boundary. Thus always force copying of
95  * packets as the starfire doesn't allow for misaligned DMAs ;-(
96  * 23/10/2000 - Jes
97  *
98  * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
99  * at least, having unaligned frames leads to a rather serious performance
100  * penalty. -Ion
101  */
102 #if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
103 static int rx_copybreak = PKT_BUF_SZ;
104 #else
105 static int rx_copybreak /* = 0 */;
106 #endif
107 
108 /* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
109 #ifdef __sparc__
110 #define DMA_BURST_SIZE 64
111 #else
112 #define DMA_BURST_SIZE 128
113 #endif
114 
115 /* Operational parameters that are set at compile time. */
116 
117 /* The "native" ring sizes are either 256 or 2048.
118    However in some modes a descriptor may be marked to wrap the ring earlier.
119 */
120 #define RX_RING_SIZE	256
121 #define TX_RING_SIZE	32
122 /* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
123 #define DONE_Q_SIZE	1024
124 /* All queues must be aligned on a 256-byte boundary */
125 #define QUEUE_ALIGN	256
126 
127 #if RX_RING_SIZE > 256
128 #define RX_Q_ENTRIES Rx2048QEntries
129 #else
130 #define RX_Q_ENTRIES Rx256QEntries
131 #endif
132 
133 /* Operational parameters that usually are not changed. */
134 /* Time in jiffies before concluding the transmitter is hung. */
135 #define TX_TIMEOUT	(2 * HZ)
136 
137 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
138 /* 64-bit dma_addr_t */
139 #define ADDR_64BITS	/* This chip uses 64 bit addresses. */
140 #define netdrv_addr_t __le64
141 #define cpu_to_dma(x) cpu_to_le64(x)
142 #define dma_to_cpu(x) le64_to_cpu(x)
143 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
144 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
145 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
146 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
147 #define RX_DESC_ADDR_SIZE RxDescAddr64bit
148 #else  /* 32-bit dma_addr_t */
149 #define netdrv_addr_t __le32
150 #define cpu_to_dma(x) cpu_to_le32(x)
151 #define dma_to_cpu(x) le32_to_cpu(x)
152 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
153 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
154 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
155 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
156 #define RX_DESC_ADDR_SIZE RxDescAddr32bit
157 #endif
158 
159 #define skb_first_frag_len(skb)	skb_headlen(skb)
160 #define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
161 
162 /* Firmware names */
163 #define FIRMWARE_RX	"adaptec/starfire_rx.bin"
164 #define FIRMWARE_TX	"adaptec/starfire_tx.bin"
165 
166 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
167 MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
168 MODULE_LICENSE("GPL");
169 MODULE_FIRMWARE(FIRMWARE_RX);
170 MODULE_FIRMWARE(FIRMWARE_TX);
171 
172 module_param(max_interrupt_work, int, 0);
173 module_param(mtu, int, 0);
174 module_param(debug, int, 0);
175 module_param(rx_copybreak, int, 0);
176 module_param(intr_latency, int, 0);
177 module_param(small_frames, int, 0);
178 module_param(enable_hw_cksum, int, 0);
179 MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
180 MODULE_PARM_DESC(mtu, "MTU (all boards)");
181 MODULE_PARM_DESC(debug, "Debug level (0-6)");
182 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
183 MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
184 MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
185 MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
186 
187 /*
188 				Theory of Operation
189 
190 I. Board Compatibility
191 
192 This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
193 
194 II. Board-specific settings
195 
196 III. Driver operation
197 
198 IIIa. Ring buffers
199 
200 The Starfire hardware uses multiple fixed-size descriptor queues/rings.  The
201 ring sizes are set fixed by the hardware, but may optionally be wrapped
202 earlier by the END bit in the descriptor.
203 This driver uses that hardware queue size for the Rx ring, where a large
204 number of entries has no ill effect beyond increases the potential backlog.
205 The Tx ring is wrapped with the END bit, since a large hardware Tx queue
206 disables the queue layer priority ordering and we have no mechanism to
207 utilize the hardware two-level priority queue.  When modifying the
208 RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
209 levels.
210 
211 IIIb/c. Transmit/Receive Structure
212 
213 See the Adaptec manual for the many possible structures, and options for
214 each structure.  There are far too many to document all of them here.
215 
216 For transmit this driver uses type 0/1 transmit descriptors (depending
217 on the 32/64 bitness of the architecture), and relies on automatic
218 minimum-length padding.  It does not use the completion queue
219 consumer index, but instead checks for non-zero status entries.
220 
221 For receive this driver uses type 2/3 receive descriptors.  The driver
222 allocates full frame size skbuffs for the Rx ring buffers, so all frames
223 should fit in a single descriptor.  The driver does not use the completion
224 queue consumer index, but instead checks for non-zero status entries.
225 
226 When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
227 is allocated and the frame is copied to the new skbuff.  When the incoming
228 frame is larger, the skbuff is passed directly up the protocol stack.
229 Buffers consumed this way are replaced by newly allocated skbuffs in a later
230 phase of receive.
231 
232 A notable aspect of operation is that unaligned buffers are not permitted by
233 the Starfire hardware.  Thus the IP header at offset 14 in an ethernet frame
234 isn't longword aligned, which may cause problems on some machine
235 e.g. Alphas and IA64. For these architectures, the driver is forced to copy
236 the frame into a new skbuff unconditionally. Copied frames are put into the
237 skbuff at an offset of "+2", thus 16-byte aligning the IP header.
238 
239 IIId. Synchronization
240 
241 The driver runs as two independent, single-threaded flows of control.  One
242 is the send-packet routine, which enforces single-threaded use by the
243 dev->tbusy flag.  The other thread is the interrupt handler, which is single
244 threaded by the hardware and interrupt handling software.
245 
246 The send packet thread has partial control over the Tx ring and the netif_queue
247 status. If the number of free Tx slots in the ring falls below a certain number
248 (currently hardcoded to 4), it signals the upper layer to stop the queue.
249 
250 The interrupt handler has exclusive control over the Rx ring and records stats
251 from the Tx ring.  After reaping the stats, it marks the Tx queue entry as
252 empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
253 number of free Tx slow is above the threshold, it signals the upper layer to
254 restart the queue.
255 
256 IV. Notes
257 
258 IVb. References
259 
260 The Adaptec Starfire manuals, available only from Adaptec.
261 http://www.scyld.com/expert/100mbps.html
262 http://www.scyld.com/expert/NWay.html
263 
264 IVc. Errata
265 
266 - StopOnPerr is broken, don't enable
267 - Hardware ethernet padding exposes random data, perform software padding
268   instead (unverified -- works correctly for all the hardware I have)
269 
270 */
271 
272 
273 
274 enum chip_capability_flags {CanHaveMII=1, };
275 
276 enum chipset {
277 	CH_6915 = 0,
278 };
279 
280 static const struct pci_device_id starfire_pci_tbl[] = {
281 	{ PCI_VDEVICE(ADAPTEC, 0x6915), CH_6915 },
282 	{ 0, }
283 };
284 MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
285 
286 /* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
287 static const struct chip_info {
288 	const char *name;
289 	int drv_flags;
290 } netdrv_tbl[] = {
291 	{ "Adaptec Starfire 6915", CanHaveMII },
292 };
293 
294 
295 /* Offsets to the device registers.
296    Unlike software-only systems, device drivers interact with complex hardware.
297    It's not useful to define symbolic names for every register bit in the
298    device.  The name can only partially document the semantics and make
299    the driver longer and more difficult to read.
300    In general, only the important configuration values or bits changed
301    multiple times should be defined symbolically.
302 */
303 enum register_offsets {
304 	PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
305 	IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
306 	MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
307 	GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
308 	TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
309 	TxRingHiAddr=0x5009C,		/* 64 bit address extension. */
310 	TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
311 	TxThreshold=0x500B0,
312 	CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
313 	RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
314 	CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
315 	RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
316 	RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
317 	TxMode=0x55000, VlanType=0x55064,
318 	PerfFilterTable=0x56000, HashTable=0x56100,
319 	TxGfpMem=0x58000, RxGfpMem=0x5a000,
320 };
321 
322 /*
323  * Bits in the interrupt status/mask registers.
324  * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
325  * enables all the interrupt sources that are or'ed into those status bits.
326  */
327 enum intr_status_bits {
328 	IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
329 	IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
330 	IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
331 	IntrTxComplQLow=0x200000, IntrPCI=0x100000,
332 	IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
333 	IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
334 	IntrNormalSummary=0x8000, IntrTxDone=0x4000,
335 	IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
336 	IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
337 	IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
338 	IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
339 	IntrNoTxCsum=0x20, IntrTxBadID=0x10,
340 	IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
341 	IntrTxGfp=0x02, IntrPCIPad=0x01,
342 	/* not quite bits */
343 	IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
344 	IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
345 	IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
346 };
347 
348 /* Bits in the RxFilterMode register. */
349 enum rx_mode_bits {
350 	AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
351 	AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
352 	PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
353 	WakeupOnGFP=0x0800,
354 };
355 
356 /* Bits in the TxMode register */
357 enum tx_mode_bits {
358 	MiiSoftReset=0x8000, MIILoopback=0x4000,
359 	TxFlowEnable=0x0800, RxFlowEnable=0x0400,
360 	PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
361 };
362 
363 /* Bits in the TxDescCtrl register. */
364 enum tx_ctrl_bits {
365 	TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
366 	TxDescSpace128=0x30, TxDescSpace256=0x40,
367 	TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
368 	TxDescType3=0x03, TxDescType4=0x04,
369 	TxNoDMACompletion=0x08,
370 	TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
371 	TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
372 	TxDMABurstSizeShift=8,
373 };
374 
375 /* Bits in the RxDescQCtrl register. */
376 enum rx_ctrl_bits {
377 	RxBufferLenShift=16, RxMinDescrThreshShift=0,
378 	RxPrefetchMode=0x8000, RxVariableQ=0x2000,
379 	Rx2048QEntries=0x4000, Rx256QEntries=0,
380 	RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
381 	RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
382 	RxDescSpace4=0x000, RxDescSpace8=0x100,
383 	RxDescSpace16=0x200, RxDescSpace32=0x300,
384 	RxDescSpace64=0x400, RxDescSpace128=0x500,
385 	RxConsumerWrEn=0x80,
386 };
387 
388 /* Bits in the RxDMACtrl register. */
389 enum rx_dmactrl_bits {
390 	RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
391 	RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
392 	RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
393 	RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
394 	RxChecksumRejectTCPOnly=0x01000000,
395 	RxCompletionQ2Enable=0x800000,
396 	RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
397 	RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
398 	RxDMAQ2NonIP=0x400000,
399 	RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
400 	RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
401 	RxBurstSizeShift=0,
402 };
403 
404 /* Bits in the RxCompletionAddr register */
405 enum rx_compl_bits {
406 	RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
407 	RxComplProducerWrEn=0x40,
408 	RxComplType0=0x00, RxComplType1=0x10,
409 	RxComplType2=0x20, RxComplType3=0x30,
410 	RxComplThreshShift=0,
411 };
412 
413 /* Bits in the TxCompletionAddr register */
414 enum tx_compl_bits {
415 	TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
416 	TxComplProducerWrEn=0x40,
417 	TxComplIntrStatus=0x20,
418 	CommonQueueMode=0x10,
419 	TxComplThreshShift=0,
420 };
421 
422 /* Bits in the GenCtrl register */
423 enum gen_ctrl_bits {
424 	RxEnable=0x05, TxEnable=0x0a,
425 	RxGFPEnable=0x10, TxGFPEnable=0x20,
426 };
427 
428 /* Bits in the IntrTimerCtrl register */
429 enum intr_ctrl_bits {
430 	Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
431 	SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
432 	IntrLatencyMask=0x1f,
433 };
434 
435 /* The Rx and Tx buffer descriptors. */
436 struct starfire_rx_desc {
437 	netdrv_addr_t rxaddr;
438 };
439 enum rx_desc_bits {
440 	RxDescValid=1, RxDescEndRing=2,
441 };
442 
443 /* Completion queue entry. */
444 struct short_rx_done_desc {
445 	__le32 status;			/* Low 16 bits is length. */
446 };
447 struct basic_rx_done_desc {
448 	__le32 status;			/* Low 16 bits is length. */
449 	__le16 vlanid;
450 	__le16 status2;
451 };
452 struct csum_rx_done_desc {
453 	__le32 status;			/* Low 16 bits is length. */
454 	__le16 csum;			/* Partial checksum */
455 	__le16 status2;
456 };
457 struct full_rx_done_desc {
458 	__le32 status;			/* Low 16 bits is length. */
459 	__le16 status3;
460 	__le16 status2;
461 	__le16 vlanid;
462 	__le16 csum;			/* partial checksum */
463 	__le32 timestamp;
464 };
465 /* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
466 #ifdef VLAN_SUPPORT
467 typedef struct full_rx_done_desc rx_done_desc;
468 #define RxComplType RxComplType3
469 #else  /* not VLAN_SUPPORT */
470 typedef struct csum_rx_done_desc rx_done_desc;
471 #define RxComplType RxComplType2
472 #endif /* not VLAN_SUPPORT */
473 
474 enum rx_done_bits {
475 	RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
476 };
477 
478 /* Type 1 Tx descriptor. */
479 struct starfire_tx_desc_1 {
480 	__le32 status;			/* Upper bits are status, lower 16 length. */
481 	__le32 addr;
482 };
483 
484 /* Type 2 Tx descriptor. */
485 struct starfire_tx_desc_2 {
486 	__le32 status;			/* Upper bits are status, lower 16 length. */
487 	__le32 reserved;
488 	__le64 addr;
489 };
490 
491 #ifdef ADDR_64BITS
492 typedef struct starfire_tx_desc_2 starfire_tx_desc;
493 #define TX_DESC_TYPE TxDescType2
494 #else  /* not ADDR_64BITS */
495 typedef struct starfire_tx_desc_1 starfire_tx_desc;
496 #define TX_DESC_TYPE TxDescType1
497 #endif /* not ADDR_64BITS */
498 #define TX_DESC_SPACING TxDescSpaceUnlim
499 
500 enum tx_desc_bits {
501 	TxDescID=0xB0000000,
502 	TxCRCEn=0x01000000, TxDescIntr=0x08000000,
503 	TxRingWrap=0x04000000, TxCalTCP=0x02000000,
504 };
505 struct tx_done_desc {
506 	__le32 status;			/* timestamp, index. */
507 #if 0
508 	__le32 intrstatus;		/* interrupt status */
509 #endif
510 };
511 
512 struct rx_ring_info {
513 	struct sk_buff *skb;
514 	dma_addr_t mapping;
515 };
516 struct tx_ring_info {
517 	struct sk_buff *skb;
518 	dma_addr_t mapping;
519 	unsigned int used_slots;
520 };
521 
522 #define PHY_CNT		2
523 struct netdev_private {
524 	/* Descriptor rings first for alignment. */
525 	struct starfire_rx_desc *rx_ring;
526 	starfire_tx_desc *tx_ring;
527 	dma_addr_t rx_ring_dma;
528 	dma_addr_t tx_ring_dma;
529 	/* The addresses of rx/tx-in-place skbuffs. */
530 	struct rx_ring_info rx_info[RX_RING_SIZE];
531 	struct tx_ring_info tx_info[TX_RING_SIZE];
532 	/* Pointers to completion queues (full pages). */
533 	rx_done_desc *rx_done_q;
534 	dma_addr_t rx_done_q_dma;
535 	unsigned int rx_done;
536 	struct tx_done_desc *tx_done_q;
537 	dma_addr_t tx_done_q_dma;
538 	unsigned int tx_done;
539 	struct napi_struct napi;
540 	struct net_device *dev;
541 	struct pci_dev *pci_dev;
542 #ifdef VLAN_SUPPORT
543 	unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
544 #endif
545 	void *queue_mem;
546 	dma_addr_t queue_mem_dma;
547 	size_t queue_mem_size;
548 
549 	/* Frequently used values: keep some adjacent for cache effect. */
550 	spinlock_t lock;
551 	unsigned int cur_rx, dirty_rx;	/* Producer/consumer ring indices */
552 	unsigned int cur_tx, dirty_tx, reap_tx;
553 	unsigned int rx_buf_sz;		/* Based on MTU+slack. */
554 	/* These values keep track of the transceiver/media in use. */
555 	int speed100;			/* Set if speed == 100MBit. */
556 	u32 tx_mode;
557 	u32 intr_timer_ctrl;
558 	u8 tx_threshold;
559 	/* MII transceiver section. */
560 	struct mii_if_info mii_if;		/* MII lib hooks/info */
561 	int phy_cnt;			/* MII device addresses. */
562 	unsigned char phys[PHY_CNT];	/* MII device addresses. */
563 	void __iomem *base;
564 };
565 
566 
567 static int	mdio_read(struct net_device *dev, int phy_id, int location);
568 static void	mdio_write(struct net_device *dev, int phy_id, int location, int value);
569 static int	netdev_open(struct net_device *dev);
570 static void	check_duplex(struct net_device *dev);
571 static void	tx_timeout(struct net_device *dev, unsigned int txqueue);
572 static void	init_ring(struct net_device *dev);
573 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
574 static irqreturn_t intr_handler(int irq, void *dev_instance);
575 static void	netdev_error(struct net_device *dev, int intr_status);
576 static int	__netdev_rx(struct net_device *dev, int *quota);
577 static int	netdev_poll(struct napi_struct *napi, int budget);
578 static void	refill_rx_ring(struct net_device *dev);
579 static void	netdev_error(struct net_device *dev, int intr_status);
580 static void	set_rx_mode(struct net_device *dev);
581 static struct net_device_stats *get_stats(struct net_device *dev);
582 static int	netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
583 static int	netdev_close(struct net_device *dev);
584 static void	netdev_media_change(struct net_device *dev);
585 static const struct ethtool_ops ethtool_ops;
586 
587 
588 #ifdef VLAN_SUPPORT
589 static int netdev_vlan_rx_add_vid(struct net_device *dev,
590 				  __be16 proto, u16 vid)
591 {
592 	struct netdev_private *np = netdev_priv(dev);
593 
594 	spin_lock(&np->lock);
595 	if (debug > 1)
596 		printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
597 	set_bit(vid, np->active_vlans);
598 	set_rx_mode(dev);
599 	spin_unlock(&np->lock);
600 
601 	return 0;
602 }
603 
604 static int netdev_vlan_rx_kill_vid(struct net_device *dev,
605 				   __be16 proto, u16 vid)
606 {
607 	struct netdev_private *np = netdev_priv(dev);
608 
609 	spin_lock(&np->lock);
610 	if (debug > 1)
611 		printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
612 	clear_bit(vid, np->active_vlans);
613 	set_rx_mode(dev);
614 	spin_unlock(&np->lock);
615 
616 	return 0;
617 }
618 #endif /* VLAN_SUPPORT */
619 
620 
621 static const struct net_device_ops netdev_ops = {
622 	.ndo_open		= netdev_open,
623 	.ndo_stop		= netdev_close,
624 	.ndo_start_xmit		= start_tx,
625 	.ndo_tx_timeout		= tx_timeout,
626 	.ndo_get_stats		= get_stats,
627 	.ndo_set_rx_mode	= set_rx_mode,
628 	.ndo_do_ioctl		= netdev_ioctl,
629 	.ndo_set_mac_address	= eth_mac_addr,
630 	.ndo_validate_addr	= eth_validate_addr,
631 #ifdef VLAN_SUPPORT
632 	.ndo_vlan_rx_add_vid	= netdev_vlan_rx_add_vid,
633 	.ndo_vlan_rx_kill_vid	= netdev_vlan_rx_kill_vid,
634 #endif
635 };
636 
637 static int starfire_init_one(struct pci_dev *pdev,
638 			     const struct pci_device_id *ent)
639 {
640 	struct device *d = &pdev->dev;
641 	struct netdev_private *np;
642 	int i, irq, chip_idx = ent->driver_data;
643 	struct net_device *dev;
644 	long ioaddr;
645 	void __iomem *base;
646 	int drv_flags, io_size;
647 	int boguscnt;
648 
649 	if (pci_enable_device (pdev))
650 		return -EIO;
651 
652 	ioaddr = pci_resource_start(pdev, 0);
653 	io_size = pci_resource_len(pdev, 0);
654 	if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
655 		dev_err(d, "no PCI MEM resources, aborting\n");
656 		return -ENODEV;
657 	}
658 
659 	dev = alloc_etherdev(sizeof(*np));
660 	if (!dev)
661 		return -ENOMEM;
662 
663 	SET_NETDEV_DEV(dev, &pdev->dev);
664 
665 	irq = pdev->irq;
666 
667 	if (pci_request_regions (pdev, DRV_NAME)) {
668 		dev_err(d, "cannot reserve PCI resources, aborting\n");
669 		goto err_out_free_netdev;
670 	}
671 
672 	base = ioremap(ioaddr, io_size);
673 	if (!base) {
674 		dev_err(d, "cannot remap %#x @ %#lx, aborting\n",
675 			io_size, ioaddr);
676 		goto err_out_free_res;
677 	}
678 
679 	pci_set_master(pdev);
680 
681 	/* enable MWI -- it vastly improves Rx performance on sparc64 */
682 	pci_try_set_mwi(pdev);
683 
684 #ifdef ZEROCOPY
685 	/* Starfire can do TCP/UDP checksumming */
686 	if (enable_hw_cksum)
687 		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
688 #endif /* ZEROCOPY */
689 
690 #ifdef VLAN_SUPPORT
691 	dev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER;
692 #endif /* VLAN_RX_KILL_VID */
693 #ifdef ADDR_64BITS
694 	dev->features |= NETIF_F_HIGHDMA;
695 #endif /* ADDR_64BITS */
696 
697 	/* Serial EEPROM reads are hidden by the hardware. */
698 	for (i = 0; i < 6; i++)
699 		dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i);
700 
701 #if ! defined(final_version) /* Dump the EEPROM contents during development. */
702 	if (debug > 4)
703 		for (i = 0; i < 0x20; i++)
704 			printk("%2.2x%s",
705 			       (unsigned int)readb(base + EEPROMCtrl + i),
706 			       i % 16 != 15 ? " " : "\n");
707 #endif
708 
709 	/* Issue soft reset */
710 	writel(MiiSoftReset, base + TxMode);
711 	udelay(1000);
712 	writel(0, base + TxMode);
713 
714 	/* Reset the chip to erase previous misconfiguration. */
715 	writel(1, base + PCIDeviceConfig);
716 	boguscnt = 1000;
717 	while (--boguscnt > 0) {
718 		udelay(10);
719 		if ((readl(base + PCIDeviceConfig) & 1) == 0)
720 			break;
721 	}
722 	if (boguscnt == 0)
723 		printk("%s: chipset reset never completed!\n", dev->name);
724 	/* wait a little longer */
725 	udelay(1000);
726 
727 	np = netdev_priv(dev);
728 	np->dev = dev;
729 	np->base = base;
730 	spin_lock_init(&np->lock);
731 	pci_set_drvdata(pdev, dev);
732 
733 	np->pci_dev = pdev;
734 
735 	np->mii_if.dev = dev;
736 	np->mii_if.mdio_read = mdio_read;
737 	np->mii_if.mdio_write = mdio_write;
738 	np->mii_if.phy_id_mask = 0x1f;
739 	np->mii_if.reg_num_mask = 0x1f;
740 
741 	drv_flags = netdrv_tbl[chip_idx].drv_flags;
742 
743 	np->speed100 = 1;
744 
745 	/* timer resolution is 128 * 0.8us */
746 	np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
747 		Timer10X | EnableIntrMasking;
748 
749 	if (small_frames > 0) {
750 		np->intr_timer_ctrl |= SmallFrameBypass;
751 		switch (small_frames) {
752 		case 1 ... 64:
753 			np->intr_timer_ctrl |= SmallFrame64;
754 			break;
755 		case 65 ... 128:
756 			np->intr_timer_ctrl |= SmallFrame128;
757 			break;
758 		case 129 ... 256:
759 			np->intr_timer_ctrl |= SmallFrame256;
760 			break;
761 		default:
762 			np->intr_timer_ctrl |= SmallFrame512;
763 			if (small_frames > 512)
764 				printk("Adjusting small_frames down to 512\n");
765 			break;
766 		}
767 	}
768 
769 	dev->netdev_ops = &netdev_ops;
770 	dev->watchdog_timeo = TX_TIMEOUT;
771 	dev->ethtool_ops = &ethtool_ops;
772 
773 	netif_napi_add(dev, &np->napi, netdev_poll, max_interrupt_work);
774 
775 	if (mtu)
776 		dev->mtu = mtu;
777 
778 	if (register_netdev(dev))
779 		goto err_out_cleardev;
780 
781 	printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
782 	       dev->name, netdrv_tbl[chip_idx].name, base,
783 	       dev->dev_addr, irq);
784 
785 	if (drv_flags & CanHaveMII) {
786 		int phy, phy_idx = 0;
787 		int mii_status;
788 		for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
789 			mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
790 			msleep(100);
791 			boguscnt = 1000;
792 			while (--boguscnt > 0)
793 				if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
794 					break;
795 			if (boguscnt == 0) {
796 				printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
797 				continue;
798 			}
799 			mii_status = mdio_read(dev, phy, MII_BMSR);
800 			if (mii_status != 0) {
801 				np->phys[phy_idx++] = phy;
802 				np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
803 				printk(KERN_INFO "%s: MII PHY found at address %d, status "
804 					   "%#4.4x advertising %#4.4x.\n",
805 					   dev->name, phy, mii_status, np->mii_if.advertising);
806 				/* there can be only one PHY on-board */
807 				break;
808 			}
809 		}
810 		np->phy_cnt = phy_idx;
811 		if (np->phy_cnt > 0)
812 			np->mii_if.phy_id = np->phys[0];
813 		else
814 			memset(&np->mii_if, 0, sizeof(np->mii_if));
815 	}
816 
817 	printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
818 	       dev->name, enable_hw_cksum ? "enabled" : "disabled");
819 	return 0;
820 
821 err_out_cleardev:
822 	iounmap(base);
823 err_out_free_res:
824 	pci_release_regions (pdev);
825 err_out_free_netdev:
826 	free_netdev(dev);
827 	return -ENODEV;
828 }
829 
830 
831 /* Read the MII Management Data I/O (MDIO) interfaces. */
832 static int mdio_read(struct net_device *dev, int phy_id, int location)
833 {
834 	struct netdev_private *np = netdev_priv(dev);
835 	void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
836 	int result, boguscnt=1000;
837 	/* ??? Should we add a busy-wait here? */
838 	do {
839 		result = readl(mdio_addr);
840 	} while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
841 	if (boguscnt == 0)
842 		return 0;
843 	if ((result & 0xffff) == 0xffff)
844 		return 0;
845 	return result & 0xffff;
846 }
847 
848 
849 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
850 {
851 	struct netdev_private *np = netdev_priv(dev);
852 	void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
853 	writel(value, mdio_addr);
854 	/* The busy-wait will occur before a read. */
855 }
856 
857 
858 static int netdev_open(struct net_device *dev)
859 {
860 	const struct firmware *fw_rx, *fw_tx;
861 	const __be32 *fw_rx_data, *fw_tx_data;
862 	struct netdev_private *np = netdev_priv(dev);
863 	void __iomem *ioaddr = np->base;
864 	const int irq = np->pci_dev->irq;
865 	int i, retval;
866 	size_t tx_size, rx_size;
867 	size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
868 
869 	/* Do we ever need to reset the chip??? */
870 
871 	retval = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
872 	if (retval)
873 		return retval;
874 
875 	/* Disable the Rx and Tx, and reset the chip. */
876 	writel(0, ioaddr + GenCtrl);
877 	writel(1, ioaddr + PCIDeviceConfig);
878 	if (debug > 1)
879 		printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
880 		       dev->name, irq);
881 
882 	/* Allocate the various queues. */
883 	if (!np->queue_mem) {
884 		tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
885 		rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
886 		tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
887 		rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
888 		np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
889 		np->queue_mem = pci_alloc_consistent(np->pci_dev, np->queue_mem_size, &np->queue_mem_dma);
890 		if (np->queue_mem == NULL) {
891 			free_irq(irq, dev);
892 			return -ENOMEM;
893 		}
894 
895 		np->tx_done_q     = np->queue_mem;
896 		np->tx_done_q_dma = np->queue_mem_dma;
897 		np->rx_done_q     = (void *) np->tx_done_q + tx_done_q_size;
898 		np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
899 		np->tx_ring       = (void *) np->rx_done_q + rx_done_q_size;
900 		np->tx_ring_dma   = np->rx_done_q_dma + rx_done_q_size;
901 		np->rx_ring       = (void *) np->tx_ring + tx_ring_size;
902 		np->rx_ring_dma   = np->tx_ring_dma + tx_ring_size;
903 	}
904 
905 	/* Start with no carrier, it gets adjusted later */
906 	netif_carrier_off(dev);
907 	init_ring(dev);
908 	/* Set the size of the Rx buffers. */
909 	writel((np->rx_buf_sz << RxBufferLenShift) |
910 	       (0 << RxMinDescrThreshShift) |
911 	       RxPrefetchMode | RxVariableQ |
912 	       RX_Q_ENTRIES |
913 	       RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
914 	       RxDescSpace4,
915 	       ioaddr + RxDescQCtrl);
916 
917 	/* Set up the Rx DMA controller. */
918 	writel(RxChecksumIgnore |
919 	       (0 << RxEarlyIntThreshShift) |
920 	       (6 << RxHighPrioThreshShift) |
921 	       ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
922 	       ioaddr + RxDMACtrl);
923 
924 	/* Set Tx descriptor */
925 	writel((2 << TxHiPriFIFOThreshShift) |
926 	       (0 << TxPadLenShift) |
927 	       ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
928 	       TX_DESC_Q_ADDR_SIZE |
929 	       TX_DESC_SPACING | TX_DESC_TYPE,
930 	       ioaddr + TxDescCtrl);
931 
932 	writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
933 	writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
934 	writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
935 	writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
936 	writel(np->tx_ring_dma, ioaddr + TxRingPtr);
937 
938 	writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
939 	writel(np->rx_done_q_dma |
940 	       RxComplType |
941 	       (0 << RxComplThreshShift),
942 	       ioaddr + RxCompletionAddr);
943 
944 	if (debug > 1)
945 		printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
946 
947 	/* Fill both the Tx SA register and the Rx perfect filter. */
948 	for (i = 0; i < 6; i++)
949 		writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
950 	/* The first entry is special because it bypasses the VLAN filter.
951 	   Don't use it. */
952 	writew(0, ioaddr + PerfFilterTable);
953 	writew(0, ioaddr + PerfFilterTable + 4);
954 	writew(0, ioaddr + PerfFilterTable + 8);
955 	for (i = 1; i < 16; i++) {
956 		__be16 *eaddrs = (__be16 *)dev->dev_addr;
957 		void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
958 		writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4;
959 		writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4;
960 		writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8;
961 	}
962 
963 	/* Initialize other registers. */
964 	/* Configure the PCI bus bursts and FIFO thresholds. */
965 	np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable;	/* modified when link is up. */
966 	writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
967 	udelay(1000);
968 	writel(np->tx_mode, ioaddr + TxMode);
969 	np->tx_threshold = 4;
970 	writel(np->tx_threshold, ioaddr + TxThreshold);
971 
972 	writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
973 
974 	napi_enable(&np->napi);
975 
976 	netif_start_queue(dev);
977 
978 	if (debug > 1)
979 		printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
980 	set_rx_mode(dev);
981 
982 	np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
983 	check_duplex(dev);
984 
985 	/* Enable GPIO interrupts on link change */
986 	writel(0x0f00ff00, ioaddr + GPIOCtrl);
987 
988 	/* Set the interrupt mask */
989 	writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
990 	       IntrTxDMADone | IntrStatsMax | IntrLinkChange |
991 	       IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
992 	       ioaddr + IntrEnable);
993 	/* Enable PCI interrupts. */
994 	writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
995 	       ioaddr + PCIDeviceConfig);
996 
997 #ifdef VLAN_SUPPORT
998 	/* Set VLAN type to 802.1q */
999 	writel(ETH_P_8021Q, ioaddr + VlanType);
1000 #endif /* VLAN_SUPPORT */
1001 
1002 	retval = request_firmware(&fw_rx, FIRMWARE_RX, &np->pci_dev->dev);
1003 	if (retval) {
1004 		printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1005 		       FIRMWARE_RX);
1006 		goto out_init;
1007 	}
1008 	if (fw_rx->size % 4) {
1009 		printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1010 		       fw_rx->size, FIRMWARE_RX);
1011 		retval = -EINVAL;
1012 		goto out_rx;
1013 	}
1014 	retval = request_firmware(&fw_tx, FIRMWARE_TX, &np->pci_dev->dev);
1015 	if (retval) {
1016 		printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1017 		       FIRMWARE_TX);
1018 		goto out_rx;
1019 	}
1020 	if (fw_tx->size % 4) {
1021 		printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1022 		       fw_tx->size, FIRMWARE_TX);
1023 		retval = -EINVAL;
1024 		goto out_tx;
1025 	}
1026 	fw_rx_data = (const __be32 *)&fw_rx->data[0];
1027 	fw_tx_data = (const __be32 *)&fw_tx->data[0];
1028 	rx_size = fw_rx->size / 4;
1029 	tx_size = fw_tx->size / 4;
1030 
1031 	/* Load Rx/Tx firmware into the frame processors */
1032 	for (i = 0; i < rx_size; i++)
1033 		writel(be32_to_cpup(&fw_rx_data[i]), ioaddr + RxGfpMem + i * 4);
1034 	for (i = 0; i < tx_size; i++)
1035 		writel(be32_to_cpup(&fw_tx_data[i]), ioaddr + TxGfpMem + i * 4);
1036 	if (enable_hw_cksum)
1037 		/* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1038 		writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1039 	else
1040 		/* Enable the Rx and Tx units only. */
1041 		writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1042 
1043 	if (debug > 1)
1044 		printk(KERN_DEBUG "%s: Done netdev_open().\n",
1045 		       dev->name);
1046 
1047 out_tx:
1048 	release_firmware(fw_tx);
1049 out_rx:
1050 	release_firmware(fw_rx);
1051 out_init:
1052 	if (retval)
1053 		netdev_close(dev);
1054 	return retval;
1055 }
1056 
1057 
1058 static void check_duplex(struct net_device *dev)
1059 {
1060 	struct netdev_private *np = netdev_priv(dev);
1061 	u16 reg0;
1062 	int silly_count = 1000;
1063 
1064 	mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1065 	mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1066 	udelay(500);
1067 	while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1068 		/* do nothing */;
1069 	if (!silly_count) {
1070 		printk("%s: MII reset failed!\n", dev->name);
1071 		return;
1072 	}
1073 
1074 	reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1075 
1076 	if (!np->mii_if.force_media) {
1077 		reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1078 	} else {
1079 		reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1080 		if (np->speed100)
1081 			reg0 |= BMCR_SPEED100;
1082 		if (np->mii_if.full_duplex)
1083 			reg0 |= BMCR_FULLDPLX;
1084 		printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1085 		       dev->name,
1086 		       np->speed100 ? "100" : "10",
1087 		       np->mii_if.full_duplex ? "full" : "half");
1088 	}
1089 	mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1090 }
1091 
1092 
1093 static void tx_timeout(struct net_device *dev, unsigned int txqueue)
1094 {
1095 	struct netdev_private *np = netdev_priv(dev);
1096 	void __iomem *ioaddr = np->base;
1097 	int old_debug;
1098 
1099 	printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1100 	       "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1101 
1102 	/* Perhaps we should reinitialize the hardware here. */
1103 
1104 	/*
1105 	 * Stop and restart the interface.
1106 	 * Cheat and increase the debug level temporarily.
1107 	 */
1108 	old_debug = debug;
1109 	debug = 2;
1110 	netdev_close(dev);
1111 	netdev_open(dev);
1112 	debug = old_debug;
1113 
1114 	/* Trigger an immediate transmit demand. */
1115 
1116 	netif_trans_update(dev); /* prevent tx timeout */
1117 	dev->stats.tx_errors++;
1118 	netif_wake_queue(dev);
1119 }
1120 
1121 
1122 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1123 static void init_ring(struct net_device *dev)
1124 {
1125 	struct netdev_private *np = netdev_priv(dev);
1126 	int i;
1127 
1128 	np->cur_rx = np->cur_tx = np->reap_tx = 0;
1129 	np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1130 
1131 	np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1132 
1133 	/* Fill in the Rx buffers.  Handle allocation failure gracefully. */
1134 	for (i = 0; i < RX_RING_SIZE; i++) {
1135 		struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1136 		np->rx_info[i].skb = skb;
1137 		if (skb == NULL)
1138 			break;
1139 		np->rx_info[i].mapping = pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1140 		if (pci_dma_mapping_error(np->pci_dev,
1141 					  np->rx_info[i].mapping)) {
1142 			dev_kfree_skb(skb);
1143 			np->rx_info[i].skb = NULL;
1144 			break;
1145 		}
1146 		/* Grrr, we cannot offset to correctly align the IP header. */
1147 		np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1148 	}
1149 	writew(i - 1, np->base + RxDescQIdx);
1150 	np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1151 
1152 	/* Clear the remainder of the Rx buffer ring. */
1153 	for (  ; i < RX_RING_SIZE; i++) {
1154 		np->rx_ring[i].rxaddr = 0;
1155 		np->rx_info[i].skb = NULL;
1156 		np->rx_info[i].mapping = 0;
1157 	}
1158 	/* Mark the last entry as wrapping the ring. */
1159 	np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1160 
1161 	/* Clear the completion rings. */
1162 	for (i = 0; i < DONE_Q_SIZE; i++) {
1163 		np->rx_done_q[i].status = 0;
1164 		np->tx_done_q[i].status = 0;
1165 	}
1166 
1167 	for (i = 0; i < TX_RING_SIZE; i++)
1168 		memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1169 }
1170 
1171 
1172 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1173 {
1174 	struct netdev_private *np = netdev_priv(dev);
1175 	unsigned int entry;
1176 	unsigned int prev_tx;
1177 	u32 status;
1178 	int i, j;
1179 
1180 	/*
1181 	 * be cautious here, wrapping the queue has weird semantics
1182 	 * and we may not have enough slots even when it seems we do.
1183 	 */
1184 	if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1185 		netif_stop_queue(dev);
1186 		return NETDEV_TX_BUSY;
1187 	}
1188 
1189 #if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
1190 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1191 		if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
1192 			return NETDEV_TX_OK;
1193 	}
1194 #endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1195 
1196 	prev_tx = np->cur_tx;
1197 	entry = np->cur_tx % TX_RING_SIZE;
1198 	for (i = 0; i < skb_num_frags(skb); i++) {
1199 		int wrap_ring = 0;
1200 		status = TxDescID;
1201 
1202 		if (i == 0) {
1203 			np->tx_info[entry].skb = skb;
1204 			status |= TxCRCEn;
1205 			if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1206 				status |= TxRingWrap;
1207 				wrap_ring = 1;
1208 			}
1209 			if (np->reap_tx) {
1210 				status |= TxDescIntr;
1211 				np->reap_tx = 0;
1212 			}
1213 			if (skb->ip_summed == CHECKSUM_PARTIAL) {
1214 				status |= TxCalTCP;
1215 				dev->stats.tx_compressed++;
1216 			}
1217 			status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1218 
1219 			np->tx_info[entry].mapping =
1220 				pci_map_single(np->pci_dev, skb->data, skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1221 		} else {
1222 			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1223 			status |= skb_frag_size(this_frag);
1224 			np->tx_info[entry].mapping =
1225 				pci_map_single(np->pci_dev,
1226 					       skb_frag_address(this_frag),
1227 					       skb_frag_size(this_frag),
1228 					       PCI_DMA_TODEVICE);
1229 		}
1230 		if (pci_dma_mapping_error(np->pci_dev,
1231 					  np->tx_info[entry].mapping)) {
1232 			dev->stats.tx_dropped++;
1233 			goto err_out;
1234 		}
1235 
1236 		np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1237 		np->tx_ring[entry].status = cpu_to_le32(status);
1238 		if (debug > 3)
1239 			printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1240 			       dev->name, np->cur_tx, np->dirty_tx,
1241 			       entry, status);
1242 		if (wrap_ring) {
1243 			np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1244 			np->cur_tx += np->tx_info[entry].used_slots;
1245 			entry = 0;
1246 		} else {
1247 			np->tx_info[entry].used_slots = 1;
1248 			np->cur_tx += np->tx_info[entry].used_slots;
1249 			entry++;
1250 		}
1251 		/* scavenge the tx descriptors twice per TX_RING_SIZE */
1252 		if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1253 			np->reap_tx = 1;
1254 	}
1255 
1256 	/* Non-x86: explicitly flush descriptor cache lines here. */
1257 	/* Ensure all descriptors are written back before the transmit is
1258 	   initiated. - Jes */
1259 	wmb();
1260 
1261 	/* Update the producer index. */
1262 	writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1263 
1264 	/* 4 is arbitrary, but should be ok */
1265 	if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1266 		netif_stop_queue(dev);
1267 
1268 	return NETDEV_TX_OK;
1269 
1270 err_out:
1271 	entry = prev_tx % TX_RING_SIZE;
1272 	np->tx_info[entry].skb = NULL;
1273 	if (i > 0) {
1274 		pci_unmap_single(np->pci_dev,
1275 				 np->tx_info[entry].mapping,
1276 				 skb_first_frag_len(skb),
1277 				 PCI_DMA_TODEVICE);
1278 		np->tx_info[entry].mapping = 0;
1279 		entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1280 		for (j = 1; j < i; j++) {
1281 			pci_unmap_single(np->pci_dev,
1282 					 np->tx_info[entry].mapping,
1283 					 skb_frag_size(
1284 						&skb_shinfo(skb)->frags[j-1]),
1285 					 PCI_DMA_TODEVICE);
1286 			entry++;
1287 		}
1288 	}
1289 	dev_kfree_skb_any(skb);
1290 	np->cur_tx = prev_tx;
1291 	return NETDEV_TX_OK;
1292 }
1293 
1294 /* The interrupt handler does all of the Rx thread work and cleans up
1295    after the Tx thread. */
1296 static irqreturn_t intr_handler(int irq, void *dev_instance)
1297 {
1298 	struct net_device *dev = dev_instance;
1299 	struct netdev_private *np = netdev_priv(dev);
1300 	void __iomem *ioaddr = np->base;
1301 	int boguscnt = max_interrupt_work;
1302 	int consumer;
1303 	int tx_status;
1304 	int handled = 0;
1305 
1306 	do {
1307 		u32 intr_status = readl(ioaddr + IntrClear);
1308 
1309 		if (debug > 4)
1310 			printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1311 			       dev->name, intr_status);
1312 
1313 		if (intr_status == 0 || intr_status == (u32) -1)
1314 			break;
1315 
1316 		handled = 1;
1317 
1318 		if (intr_status & (IntrRxDone | IntrRxEmpty)) {
1319 			u32 enable;
1320 
1321 			if (likely(napi_schedule_prep(&np->napi))) {
1322 				__napi_schedule(&np->napi);
1323 				enable = readl(ioaddr + IntrEnable);
1324 				enable &= ~(IntrRxDone | IntrRxEmpty);
1325 				writel(enable, ioaddr + IntrEnable);
1326 				/* flush PCI posting buffers */
1327 				readl(ioaddr + IntrEnable);
1328 			} else {
1329 				/* Paranoia check */
1330 				enable = readl(ioaddr + IntrEnable);
1331 				if (enable & (IntrRxDone | IntrRxEmpty)) {
1332 					printk(KERN_INFO
1333 					       "%s: interrupt while in poll!\n",
1334 					       dev->name);
1335 					enable &= ~(IntrRxDone | IntrRxEmpty);
1336 					writel(enable, ioaddr + IntrEnable);
1337 				}
1338 			}
1339 		}
1340 
1341 		/* Scavenge the skbuff list based on the Tx-done queue.
1342 		   There are redundant checks here that may be cleaned up
1343 		   after the driver has proven to be reliable. */
1344 		consumer = readl(ioaddr + TxConsumerIdx);
1345 		if (debug > 3)
1346 			printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1347 			       dev->name, consumer);
1348 
1349 		while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1350 			if (debug > 3)
1351 				printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1352 				       dev->name, np->dirty_tx, np->tx_done, tx_status);
1353 			if ((tx_status & 0xe0000000) == 0xa0000000) {
1354 				dev->stats.tx_packets++;
1355 			} else if ((tx_status & 0xe0000000) == 0x80000000) {
1356 				u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1357 				struct sk_buff *skb = np->tx_info[entry].skb;
1358 				np->tx_info[entry].skb = NULL;
1359 				pci_unmap_single(np->pci_dev,
1360 						 np->tx_info[entry].mapping,
1361 						 skb_first_frag_len(skb),
1362 						 PCI_DMA_TODEVICE);
1363 				np->tx_info[entry].mapping = 0;
1364 				np->dirty_tx += np->tx_info[entry].used_slots;
1365 				entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1366 				{
1367 					int i;
1368 					for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1369 						pci_unmap_single(np->pci_dev,
1370 								 np->tx_info[entry].mapping,
1371 								 skb_frag_size(&skb_shinfo(skb)->frags[i]),
1372 								 PCI_DMA_TODEVICE);
1373 						np->dirty_tx++;
1374 						entry++;
1375 					}
1376 				}
1377 
1378 				dev_consume_skb_irq(skb);
1379 			}
1380 			np->tx_done_q[np->tx_done].status = 0;
1381 			np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1382 		}
1383 		writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1384 
1385 		if (netif_queue_stopped(dev) &&
1386 		    (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1387 			/* The ring is no longer full, wake the queue. */
1388 			netif_wake_queue(dev);
1389 		}
1390 
1391 		/* Stats overflow */
1392 		if (intr_status & IntrStatsMax)
1393 			get_stats(dev);
1394 
1395 		/* Media change interrupt. */
1396 		if (intr_status & IntrLinkChange)
1397 			netdev_media_change(dev);
1398 
1399 		/* Abnormal error summary/uncommon events handlers. */
1400 		if (intr_status & IntrAbnormalSummary)
1401 			netdev_error(dev, intr_status);
1402 
1403 		if (--boguscnt < 0) {
1404 			if (debug > 1)
1405 				printk(KERN_WARNING "%s: Too much work at interrupt, "
1406 				       "status=%#8.8x.\n",
1407 				       dev->name, intr_status);
1408 			break;
1409 		}
1410 	} while (1);
1411 
1412 	if (debug > 4)
1413 		printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1414 		       dev->name, (int) readl(ioaddr + IntrStatus));
1415 	return IRQ_RETVAL(handled);
1416 }
1417 
1418 
1419 /*
1420  * This routine is logically part of the interrupt/poll handler, but separated
1421  * for clarity and better register allocation.
1422  */
1423 static int __netdev_rx(struct net_device *dev, int *quota)
1424 {
1425 	struct netdev_private *np = netdev_priv(dev);
1426 	u32 desc_status;
1427 	int retcode = 0;
1428 
1429 	/* If EOP is set on the next entry, it's a new packet. Send it up. */
1430 	while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1431 		struct sk_buff *skb;
1432 		u16 pkt_len;
1433 		int entry;
1434 		rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1435 
1436 		if (debug > 4)
1437 			printk(KERN_DEBUG "  netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1438 		if (!(desc_status & RxOK)) {
1439 			/* There was an error. */
1440 			if (debug > 2)
1441 				printk(KERN_DEBUG "  netdev_rx() Rx error was %#8.8x.\n", desc_status);
1442 			dev->stats.rx_errors++;
1443 			if (desc_status & RxFIFOErr)
1444 				dev->stats.rx_fifo_errors++;
1445 			goto next_rx;
1446 		}
1447 
1448 		if (*quota <= 0) {	/* out of rx quota */
1449 			retcode = 1;
1450 			goto out;
1451 		}
1452 		(*quota)--;
1453 
1454 		pkt_len = desc_status;	/* Implicitly Truncate */
1455 		entry = (desc_status >> 16) & 0x7ff;
1456 
1457 		if (debug > 4)
1458 			printk(KERN_DEBUG "  netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1459 		/* Check if the packet is long enough to accept without copying
1460 		   to a minimally-sized skbuff. */
1461 		if (pkt_len < rx_copybreak &&
1462 		    (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1463 			skb_reserve(skb, 2);	/* 16 byte align the IP header */
1464 			pci_dma_sync_single_for_cpu(np->pci_dev,
1465 						    np->rx_info[entry].mapping,
1466 						    pkt_len, PCI_DMA_FROMDEVICE);
1467 			skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len);
1468 			pci_dma_sync_single_for_device(np->pci_dev,
1469 						       np->rx_info[entry].mapping,
1470 						       pkt_len, PCI_DMA_FROMDEVICE);
1471 			skb_put(skb, pkt_len);
1472 		} else {
1473 			pci_unmap_single(np->pci_dev, np->rx_info[entry].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1474 			skb = np->rx_info[entry].skb;
1475 			skb_put(skb, pkt_len);
1476 			np->rx_info[entry].skb = NULL;
1477 			np->rx_info[entry].mapping = 0;
1478 		}
1479 #ifndef final_version			/* Remove after testing. */
1480 		/* You will want this info for the initial debug. */
1481 		if (debug > 5) {
1482 			printk(KERN_DEBUG "  Rx data %pM %pM %2.2x%2.2x.\n",
1483 			       skb->data, skb->data + 6,
1484 			       skb->data[12], skb->data[13]);
1485 		}
1486 #endif
1487 
1488 		skb->protocol = eth_type_trans(skb, dev);
1489 #ifdef VLAN_SUPPORT
1490 		if (debug > 4)
1491 			printk(KERN_DEBUG "  netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1492 #endif
1493 		if (le16_to_cpu(desc->status2) & 0x0100) {
1494 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1495 			dev->stats.rx_compressed++;
1496 		}
1497 		/*
1498 		 * This feature doesn't seem to be working, at least
1499 		 * with the two firmware versions I have. If the GFP sees
1500 		 * an IP fragment, it either ignores it completely, or reports
1501 		 * "bad checksum" on it.
1502 		 *
1503 		 * Maybe I missed something -- corrections are welcome.
1504 		 * Until then, the printk stays. :-) -Ion
1505 		 */
1506 		else if (le16_to_cpu(desc->status2) & 0x0040) {
1507 			skb->ip_summed = CHECKSUM_COMPLETE;
1508 			skb->csum = le16_to_cpu(desc->csum);
1509 			printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1510 		}
1511 #ifdef VLAN_SUPPORT
1512 		if (le16_to_cpu(desc->status2) & 0x0200) {
1513 			u16 vlid = le16_to_cpu(desc->vlanid);
1514 
1515 			if (debug > 4) {
1516 				printk(KERN_DEBUG "  netdev_rx() vlanid = %d\n",
1517 				       vlid);
1518 			}
1519 			__vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlid);
1520 		}
1521 #endif /* VLAN_SUPPORT */
1522 		netif_receive_skb(skb);
1523 		dev->stats.rx_packets++;
1524 
1525 	next_rx:
1526 		np->cur_rx++;
1527 		desc->status = 0;
1528 		np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1529 	}
1530 
1531 	if (*quota == 0) {	/* out of rx quota */
1532 		retcode = 1;
1533 		goto out;
1534 	}
1535 	writew(np->rx_done, np->base + CompletionQConsumerIdx);
1536 
1537  out:
1538 	refill_rx_ring(dev);
1539 	if (debug > 5)
1540 		printk(KERN_DEBUG "  exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1541 		       retcode, np->rx_done, desc_status);
1542 	return retcode;
1543 }
1544 
1545 static int netdev_poll(struct napi_struct *napi, int budget)
1546 {
1547 	struct netdev_private *np = container_of(napi, struct netdev_private, napi);
1548 	struct net_device *dev = np->dev;
1549 	u32 intr_status;
1550 	void __iomem *ioaddr = np->base;
1551 	int quota = budget;
1552 
1553 	do {
1554 		writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1555 
1556 		if (__netdev_rx(dev, &quota))
1557 			goto out;
1558 
1559 		intr_status = readl(ioaddr + IntrStatus);
1560 	} while (intr_status & (IntrRxDone | IntrRxEmpty));
1561 
1562 	napi_complete(napi);
1563 	intr_status = readl(ioaddr + IntrEnable);
1564 	intr_status |= IntrRxDone | IntrRxEmpty;
1565 	writel(intr_status, ioaddr + IntrEnable);
1566 
1567  out:
1568 	if (debug > 5)
1569 		printk(KERN_DEBUG "  exiting netdev_poll(): %d.\n",
1570 		       budget - quota);
1571 
1572 	/* Restart Rx engine if stopped. */
1573 	return budget - quota;
1574 }
1575 
1576 static void refill_rx_ring(struct net_device *dev)
1577 {
1578 	struct netdev_private *np = netdev_priv(dev);
1579 	struct sk_buff *skb;
1580 	int entry = -1;
1581 
1582 	/* Refill the Rx ring buffers. */
1583 	for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1584 		entry = np->dirty_rx % RX_RING_SIZE;
1585 		if (np->rx_info[entry].skb == NULL) {
1586 			skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1587 			np->rx_info[entry].skb = skb;
1588 			if (skb == NULL)
1589 				break;	/* Better luck next round. */
1590 			np->rx_info[entry].mapping =
1591 				pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1592 			if (pci_dma_mapping_error(np->pci_dev,
1593 						np->rx_info[entry].mapping)) {
1594 				dev_kfree_skb(skb);
1595 				np->rx_info[entry].skb = NULL;
1596 				break;
1597 			}
1598 			np->rx_ring[entry].rxaddr =
1599 				cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1600 		}
1601 		if (entry == RX_RING_SIZE - 1)
1602 			np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1603 	}
1604 	if (entry >= 0)
1605 		writew(entry, np->base + RxDescQIdx);
1606 }
1607 
1608 
1609 static void netdev_media_change(struct net_device *dev)
1610 {
1611 	struct netdev_private *np = netdev_priv(dev);
1612 	void __iomem *ioaddr = np->base;
1613 	u16 reg0, reg1, reg4, reg5;
1614 	u32 new_tx_mode;
1615 	u32 new_intr_timer_ctrl;
1616 
1617 	/* reset status first */
1618 	mdio_read(dev, np->phys[0], MII_BMCR);
1619 	mdio_read(dev, np->phys[0], MII_BMSR);
1620 
1621 	reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1622 	reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1623 
1624 	if (reg1 & BMSR_LSTATUS) {
1625 		/* link is up */
1626 		if (reg0 & BMCR_ANENABLE) {
1627 			/* autonegotiation is enabled */
1628 			reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1629 			reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1630 			if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1631 				np->speed100 = 1;
1632 				np->mii_if.full_duplex = 1;
1633 			} else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1634 				np->speed100 = 1;
1635 				np->mii_if.full_duplex = 0;
1636 			} else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1637 				np->speed100 = 0;
1638 				np->mii_if.full_duplex = 1;
1639 			} else {
1640 				np->speed100 = 0;
1641 				np->mii_if.full_duplex = 0;
1642 			}
1643 		} else {
1644 			/* autonegotiation is disabled */
1645 			if (reg0 & BMCR_SPEED100)
1646 				np->speed100 = 1;
1647 			else
1648 				np->speed100 = 0;
1649 			if (reg0 & BMCR_FULLDPLX)
1650 				np->mii_if.full_duplex = 1;
1651 			else
1652 				np->mii_if.full_duplex = 0;
1653 		}
1654 		netif_carrier_on(dev);
1655 		printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1656 		       dev->name,
1657 		       np->speed100 ? "100" : "10",
1658 		       np->mii_if.full_duplex ? "full" : "half");
1659 
1660 		new_tx_mode = np->tx_mode & ~FullDuplex;	/* duplex setting */
1661 		if (np->mii_if.full_duplex)
1662 			new_tx_mode |= FullDuplex;
1663 		if (np->tx_mode != new_tx_mode) {
1664 			np->tx_mode = new_tx_mode;
1665 			writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1666 			udelay(1000);
1667 			writel(np->tx_mode, ioaddr + TxMode);
1668 		}
1669 
1670 		new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1671 		if (np->speed100)
1672 			new_intr_timer_ctrl |= Timer10X;
1673 		if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1674 			np->intr_timer_ctrl = new_intr_timer_ctrl;
1675 			writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1676 		}
1677 	} else {
1678 		netif_carrier_off(dev);
1679 		printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1680 	}
1681 }
1682 
1683 
1684 static void netdev_error(struct net_device *dev, int intr_status)
1685 {
1686 	struct netdev_private *np = netdev_priv(dev);
1687 
1688 	/* Came close to underrunning the Tx FIFO, increase threshold. */
1689 	if (intr_status & IntrTxDataLow) {
1690 		if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1691 			writel(++np->tx_threshold, np->base + TxThreshold);
1692 			printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1693 			       dev->name, np->tx_threshold * 16);
1694 		} else
1695 			printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1696 	}
1697 	if (intr_status & IntrRxGFPDead) {
1698 		dev->stats.rx_fifo_errors++;
1699 		dev->stats.rx_errors++;
1700 	}
1701 	if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
1702 		dev->stats.tx_fifo_errors++;
1703 		dev->stats.tx_errors++;
1704 	}
1705 	if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1706 		printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1707 		       dev->name, intr_status);
1708 }
1709 
1710 
1711 static struct net_device_stats *get_stats(struct net_device *dev)
1712 {
1713 	struct netdev_private *np = netdev_priv(dev);
1714 	void __iomem *ioaddr = np->base;
1715 
1716 	/* This adapter architecture needs no SMP locks. */
1717 	dev->stats.tx_bytes = readl(ioaddr + 0x57010);
1718 	dev->stats.rx_bytes = readl(ioaddr + 0x57044);
1719 	dev->stats.tx_packets = readl(ioaddr + 0x57000);
1720 	dev->stats.tx_aborted_errors =
1721 		readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
1722 	dev->stats.tx_window_errors = readl(ioaddr + 0x57018);
1723 	dev->stats.collisions =
1724 		readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1725 
1726 	/* The chip only need report frame silently dropped. */
1727 	dev->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1728 	writew(0, ioaddr + RxDMAStatus);
1729 	dev->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1730 	dev->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1731 	dev->stats.rx_length_errors = readl(ioaddr + 0x57058);
1732 	dev->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1733 
1734 	return &dev->stats;
1735 }
1736 
1737 #ifdef VLAN_SUPPORT
1738 static u32 set_vlan_mode(struct netdev_private *np)
1739 {
1740 	u32 ret = VlanMode;
1741 	u16 vid;
1742 	void __iomem *filter_addr = np->base + HashTable + 8;
1743 	int vlan_count = 0;
1744 
1745 	for_each_set_bit(vid, np->active_vlans, VLAN_N_VID) {
1746 		if (vlan_count == 32)
1747 			break;
1748 		writew(vid, filter_addr);
1749 		filter_addr += 16;
1750 		vlan_count++;
1751 	}
1752 	if (vlan_count == 32) {
1753 		ret |= PerfectFilterVlan;
1754 		while (vlan_count < 32) {
1755 			writew(0, filter_addr);
1756 			filter_addr += 16;
1757 			vlan_count++;
1758 		}
1759 	}
1760 	return ret;
1761 }
1762 #endif /* VLAN_SUPPORT */
1763 
1764 static void set_rx_mode(struct net_device *dev)
1765 {
1766 	struct netdev_private *np = netdev_priv(dev);
1767 	void __iomem *ioaddr = np->base;
1768 	u32 rx_mode = MinVLANPrio;
1769 	struct netdev_hw_addr *ha;
1770 	int i;
1771 
1772 #ifdef VLAN_SUPPORT
1773 	rx_mode |= set_vlan_mode(np);
1774 #endif /* VLAN_SUPPORT */
1775 
1776 	if (dev->flags & IFF_PROMISC) {	/* Set promiscuous. */
1777 		rx_mode |= AcceptAll;
1778 	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1779 		   (dev->flags & IFF_ALLMULTI)) {
1780 		/* Too many to match, or accept all multicasts. */
1781 		rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
1782 	} else if (netdev_mc_count(dev) <= 14) {
1783 		/* Use the 16 element perfect filter, skip first two entries. */
1784 		void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1785 		__be16 *eaddrs;
1786 		netdev_for_each_mc_addr(ha, dev) {
1787 			eaddrs = (__be16 *) ha->addr;
1788 			writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4;
1789 			writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1790 			writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8;
1791 		}
1792 		eaddrs = (__be16 *)dev->dev_addr;
1793 		i = netdev_mc_count(dev) + 2;
1794 		while (i++ < 16) {
1795 			writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1796 			writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1797 			writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1798 		}
1799 		rx_mode |= AcceptBroadcast|PerfectFilter;
1800 	} else {
1801 		/* Must use a multicast hash table. */
1802 		void __iomem *filter_addr;
1803 		__be16 *eaddrs;
1804 		__le16 mc_filter[32] __attribute__ ((aligned(sizeof(long))));	/* Multicast hash filter */
1805 
1806 		memset(mc_filter, 0, sizeof(mc_filter));
1807 		netdev_for_each_mc_addr(ha, dev) {
1808 			/* The chip uses the upper 9 CRC bits
1809 			   as index into the hash table */
1810 			int bit_nr = ether_crc_le(ETH_ALEN, ha->addr) >> 23;
1811 			__le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1];
1812 
1813 			*fptr |= cpu_to_le32(1 << (bit_nr & 31));
1814 		}
1815 		/* Clear the perfect filter list, skip first two entries. */
1816 		filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1817 		eaddrs = (__be16 *)dev->dev_addr;
1818 		for (i = 2; i < 16; i++) {
1819 			writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1820 			writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1821 			writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1822 		}
1823 		for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1824 			writew(mc_filter[i], filter_addr);
1825 		rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1826 	}
1827 	writel(rx_mode, ioaddr + RxFilterMode);
1828 }
1829 
1830 static int check_if_running(struct net_device *dev)
1831 {
1832 	if (!netif_running(dev))
1833 		return -EINVAL;
1834 	return 0;
1835 }
1836 
1837 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1838 {
1839 	struct netdev_private *np = netdev_priv(dev);
1840 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1841 	strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1842 }
1843 
1844 static int get_link_ksettings(struct net_device *dev,
1845 			      struct ethtool_link_ksettings *cmd)
1846 {
1847 	struct netdev_private *np = netdev_priv(dev);
1848 	spin_lock_irq(&np->lock);
1849 	mii_ethtool_get_link_ksettings(&np->mii_if, cmd);
1850 	spin_unlock_irq(&np->lock);
1851 	return 0;
1852 }
1853 
1854 static int set_link_ksettings(struct net_device *dev,
1855 			      const struct ethtool_link_ksettings *cmd)
1856 {
1857 	struct netdev_private *np = netdev_priv(dev);
1858 	int res;
1859 	spin_lock_irq(&np->lock);
1860 	res = mii_ethtool_set_link_ksettings(&np->mii_if, cmd);
1861 	spin_unlock_irq(&np->lock);
1862 	check_duplex(dev);
1863 	return res;
1864 }
1865 
1866 static int nway_reset(struct net_device *dev)
1867 {
1868 	struct netdev_private *np = netdev_priv(dev);
1869 	return mii_nway_restart(&np->mii_if);
1870 }
1871 
1872 static u32 get_link(struct net_device *dev)
1873 {
1874 	struct netdev_private *np = netdev_priv(dev);
1875 	return mii_link_ok(&np->mii_if);
1876 }
1877 
1878 static u32 get_msglevel(struct net_device *dev)
1879 {
1880 	return debug;
1881 }
1882 
1883 static void set_msglevel(struct net_device *dev, u32 val)
1884 {
1885 	debug = val;
1886 }
1887 
1888 static const struct ethtool_ops ethtool_ops = {
1889 	.begin = check_if_running,
1890 	.get_drvinfo = get_drvinfo,
1891 	.nway_reset = nway_reset,
1892 	.get_link = get_link,
1893 	.get_msglevel = get_msglevel,
1894 	.set_msglevel = set_msglevel,
1895 	.get_link_ksettings = get_link_ksettings,
1896 	.set_link_ksettings = set_link_ksettings,
1897 };
1898 
1899 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1900 {
1901 	struct netdev_private *np = netdev_priv(dev);
1902 	struct mii_ioctl_data *data = if_mii(rq);
1903 	int rc;
1904 
1905 	if (!netif_running(dev))
1906 		return -EINVAL;
1907 
1908 	spin_lock_irq(&np->lock);
1909 	rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1910 	spin_unlock_irq(&np->lock);
1911 
1912 	if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
1913 		check_duplex(dev);
1914 
1915 	return rc;
1916 }
1917 
1918 static int netdev_close(struct net_device *dev)
1919 {
1920 	struct netdev_private *np = netdev_priv(dev);
1921 	void __iomem *ioaddr = np->base;
1922 	int i;
1923 
1924 	netif_stop_queue(dev);
1925 
1926 	napi_disable(&np->napi);
1927 
1928 	if (debug > 1) {
1929 		printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
1930 			   dev->name, (int) readl(ioaddr + IntrStatus));
1931 		printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1932 		       dev->name, np->cur_tx, np->dirty_tx,
1933 		       np->cur_rx, np->dirty_rx);
1934 	}
1935 
1936 	/* Disable interrupts by clearing the interrupt mask. */
1937 	writel(0, ioaddr + IntrEnable);
1938 
1939 	/* Stop the chip's Tx and Rx processes. */
1940 	writel(0, ioaddr + GenCtrl);
1941 	readl(ioaddr + GenCtrl);
1942 
1943 	if (debug > 5) {
1944 		printk(KERN_DEBUG"  Tx ring at %#llx:\n",
1945 		       (long long) np->tx_ring_dma);
1946 		for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
1947 			printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1948 			       i, le32_to_cpu(np->tx_ring[i].status),
1949 			       (long long) dma_to_cpu(np->tx_ring[i].addr),
1950 			       le32_to_cpu(np->tx_done_q[i].status));
1951 		printk(KERN_DEBUG "  Rx ring at %#llx -> %p:\n",
1952 		       (long long) np->rx_ring_dma, np->rx_done_q);
1953 		if (np->rx_done_q)
1954 			for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
1955 				printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
1956 				       i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
1957 		}
1958 	}
1959 
1960 	free_irq(np->pci_dev->irq, dev);
1961 
1962 	/* Free all the skbuffs in the Rx queue. */
1963 	for (i = 0; i < RX_RING_SIZE; i++) {
1964 		np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
1965 		if (np->rx_info[i].skb != NULL) {
1966 			pci_unmap_single(np->pci_dev, np->rx_info[i].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1967 			dev_kfree_skb(np->rx_info[i].skb);
1968 		}
1969 		np->rx_info[i].skb = NULL;
1970 		np->rx_info[i].mapping = 0;
1971 	}
1972 	for (i = 0; i < TX_RING_SIZE; i++) {
1973 		struct sk_buff *skb = np->tx_info[i].skb;
1974 		if (skb == NULL)
1975 			continue;
1976 		pci_unmap_single(np->pci_dev,
1977 				 np->tx_info[i].mapping,
1978 				 skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1979 		np->tx_info[i].mapping = 0;
1980 		dev_kfree_skb(skb);
1981 		np->tx_info[i].skb = NULL;
1982 	}
1983 
1984 	return 0;
1985 }
1986 
1987 static int __maybe_unused starfire_suspend(struct device *dev_d)
1988 {
1989 	struct net_device *dev = dev_get_drvdata(dev_d);
1990 
1991 	if (netif_running(dev)) {
1992 		netif_device_detach(dev);
1993 		netdev_close(dev);
1994 	}
1995 
1996 	return 0;
1997 }
1998 
1999 static int __maybe_unused starfire_resume(struct device *dev_d)
2000 {
2001 	struct net_device *dev = dev_get_drvdata(dev_d);
2002 
2003 	if (netif_running(dev)) {
2004 		netdev_open(dev);
2005 		netif_device_attach(dev);
2006 	}
2007 
2008 	return 0;
2009 }
2010 
2011 static void starfire_remove_one(struct pci_dev *pdev)
2012 {
2013 	struct net_device *dev = pci_get_drvdata(pdev);
2014 	struct netdev_private *np = netdev_priv(dev);
2015 
2016 	BUG_ON(!dev);
2017 
2018 	unregister_netdev(dev);
2019 
2020 	if (np->queue_mem)
2021 		pci_free_consistent(pdev, np->queue_mem_size, np->queue_mem, np->queue_mem_dma);
2022 
2023 
2024 	/* XXX: add wakeup code -- requires firmware for MagicPacket */
2025 	pci_set_power_state(pdev, PCI_D3hot);	/* go to sleep in D3 mode */
2026 	pci_disable_device(pdev);
2027 
2028 	iounmap(np->base);
2029 	pci_release_regions(pdev);
2030 
2031 	free_netdev(dev);			/* Will also free np!! */
2032 }
2033 
2034 static SIMPLE_DEV_PM_OPS(starfire_pm_ops, starfire_suspend, starfire_resume);
2035 
2036 static struct pci_driver starfire_driver = {
2037 	.name		= DRV_NAME,
2038 	.probe		= starfire_init_one,
2039 	.remove		= starfire_remove_one,
2040 	.driver.pm	= &starfire_pm_ops,
2041 	.id_table	= starfire_pci_tbl,
2042 };
2043 
2044 
2045 static int __init starfire_init (void)
2046 {
2047 /* when a module, this is printed whether or not devices are found in probe */
2048 #ifdef MODULE
2049 	printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
2050 #endif
2051 
2052 	BUILD_BUG_ON(sizeof(dma_addr_t) != sizeof(netdrv_addr_t));
2053 
2054 	return pci_register_driver(&starfire_driver);
2055 }
2056 
2057 
2058 static void __exit starfire_cleanup (void)
2059 {
2060 	pci_unregister_driver (&starfire_driver);
2061 }
2062 
2063 
2064 module_init(starfire_init);
2065 module_exit(starfire_cleanup);
2066 
2067 
2068 /*
2069  * Local variables:
2070  *  c-basic-offset: 8
2071  *  tab-width: 8
2072  * End:
2073  */
2074