1 /* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */ 2 /* 3 Written 1998-2000 by Donald Becker. 4 5 Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please 6 send all bug reports to me, and not to Donald Becker, as this code 7 has been heavily modified from Donald's original version. 8 9 This software may be used and distributed according to the terms of 10 the GNU General Public License (GPL), incorporated herein by reference. 11 Drivers based on or derived from this code fall under the GPL and must 12 retain the authorship, copyright and license notice. This file is not 13 a complete program and may only be used when the entire operating 14 system is licensed under the GPL. 15 16 The information below comes from Donald Becker's original driver: 17 18 The author may be reached as becker@scyld.com, or C/O 19 Scyld Computing Corporation 20 410 Severn Ave., Suite 210 21 Annapolis MD 21403 22 23 Support and updates available at 24 http://www.scyld.com/network/starfire.html 25 [link no longer provides useful info -jgarzik] 26 27 */ 28 29 #define DRV_NAME "starfire" 30 31 #include <linux/interrupt.h> 32 #include <linux/module.h> 33 #include <linux/kernel.h> 34 #include <linux/pci.h> 35 #include <linux/netdevice.h> 36 #include <linux/etherdevice.h> 37 #include <linux/init.h> 38 #include <linux/delay.h> 39 #include <linux/crc32.h> 40 #include <linux/ethtool.h> 41 #include <linux/mii.h> 42 #include <linux/if_vlan.h> 43 #include <linux/mm.h> 44 #include <linux/firmware.h> 45 #include <asm/processor.h> /* Processor type for cache alignment. */ 46 #include <linux/uaccess.h> 47 #include <asm/io.h> 48 49 /* 50 * The current frame processor firmware fails to checksum a fragment 51 * of length 1. If and when this is fixed, the #define below can be removed. 52 */ 53 #define HAS_BROKEN_FIRMWARE 54 55 /* 56 * If using the broken firmware, data must be padded to the next 32-bit boundary. 57 */ 58 #ifdef HAS_BROKEN_FIRMWARE 59 #define PADDING_MASK 3 60 #endif 61 62 /* 63 * Define this if using the driver with the zero-copy patch 64 */ 65 #define ZEROCOPY 66 67 #if IS_ENABLED(CONFIG_VLAN_8021Q) 68 #define VLAN_SUPPORT 69 #endif 70 71 /* The user-configurable values. 72 These may be modified when a driver module is loaded.*/ 73 74 /* Used for tuning interrupt latency vs. overhead. */ 75 static int intr_latency; 76 static int small_frames; 77 78 static int debug = 1; /* 1 normal messages, 0 quiet .. 7 verbose. */ 79 static int max_interrupt_work = 20; 80 static int mtu; 81 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast). 82 The Starfire has a 512 element hash table based on the Ethernet CRC. */ 83 static const int multicast_filter_limit = 512; 84 /* Whether to do TCP/UDP checksums in hardware */ 85 static int enable_hw_cksum = 1; 86 87 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/ 88 /* 89 * Set the copy breakpoint for the copy-only-tiny-frames scheme. 90 * Setting to > 1518 effectively disables this feature. 91 * 92 * NOTE: 93 * The ia64 doesn't allow for unaligned loads even of integers being 94 * misaligned on a 2 byte boundary. Thus always force copying of 95 * packets as the starfire doesn't allow for misaligned DMAs ;-( 96 * 23/10/2000 - Jes 97 * 98 * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64, 99 * at least, having unaligned frames leads to a rather serious performance 100 * penalty. -Ion 101 */ 102 #if defined(__ia64__) || defined(__alpha__) || defined(__sparc__) 103 static int rx_copybreak = PKT_BUF_SZ; 104 #else 105 static int rx_copybreak /* = 0 */; 106 #endif 107 108 /* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */ 109 #ifdef __sparc__ 110 #define DMA_BURST_SIZE 64 111 #else 112 #define DMA_BURST_SIZE 128 113 #endif 114 115 /* Operational parameters that are set at compile time. */ 116 117 /* The "native" ring sizes are either 256 or 2048. 118 However in some modes a descriptor may be marked to wrap the ring earlier. 119 */ 120 #define RX_RING_SIZE 256 121 #define TX_RING_SIZE 32 122 /* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */ 123 #define DONE_Q_SIZE 1024 124 /* All queues must be aligned on a 256-byte boundary */ 125 #define QUEUE_ALIGN 256 126 127 #if RX_RING_SIZE > 256 128 #define RX_Q_ENTRIES Rx2048QEntries 129 #else 130 #define RX_Q_ENTRIES Rx256QEntries 131 #endif 132 133 /* Operational parameters that usually are not changed. */ 134 /* Time in jiffies before concluding the transmitter is hung. */ 135 #define TX_TIMEOUT (2 * HZ) 136 137 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT 138 /* 64-bit dma_addr_t */ 139 #define ADDR_64BITS /* This chip uses 64 bit addresses. */ 140 #define netdrv_addr_t __le64 141 #define cpu_to_dma(x) cpu_to_le64(x) 142 #define dma_to_cpu(x) le64_to_cpu(x) 143 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit 144 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit 145 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit 146 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit 147 #define RX_DESC_ADDR_SIZE RxDescAddr64bit 148 #else /* 32-bit dma_addr_t */ 149 #define netdrv_addr_t __le32 150 #define cpu_to_dma(x) cpu_to_le32(x) 151 #define dma_to_cpu(x) le32_to_cpu(x) 152 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit 153 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit 154 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit 155 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit 156 #define RX_DESC_ADDR_SIZE RxDescAddr32bit 157 #endif 158 159 #define skb_first_frag_len(skb) skb_headlen(skb) 160 #define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1) 161 162 /* Firmware names */ 163 #define FIRMWARE_RX "adaptec/starfire_rx.bin" 164 #define FIRMWARE_TX "adaptec/starfire_tx.bin" 165 166 MODULE_AUTHOR("Donald Becker <becker@scyld.com>"); 167 MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver"); 168 MODULE_LICENSE("GPL"); 169 MODULE_FIRMWARE(FIRMWARE_RX); 170 MODULE_FIRMWARE(FIRMWARE_TX); 171 172 module_param(max_interrupt_work, int, 0); 173 module_param(mtu, int, 0); 174 module_param(debug, int, 0); 175 module_param(rx_copybreak, int, 0); 176 module_param(intr_latency, int, 0); 177 module_param(small_frames, int, 0); 178 module_param(enable_hw_cksum, int, 0); 179 MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt"); 180 MODULE_PARM_DESC(mtu, "MTU (all boards)"); 181 MODULE_PARM_DESC(debug, "Debug level (0-6)"); 182 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames"); 183 MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds"); 184 MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)"); 185 MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)"); 186 187 /* 188 Theory of Operation 189 190 I. Board Compatibility 191 192 This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter. 193 194 II. Board-specific settings 195 196 III. Driver operation 197 198 IIIa. Ring buffers 199 200 The Starfire hardware uses multiple fixed-size descriptor queues/rings. The 201 ring sizes are set fixed by the hardware, but may optionally be wrapped 202 earlier by the END bit in the descriptor. 203 This driver uses that hardware queue size for the Rx ring, where a large 204 number of entries has no ill effect beyond increases the potential backlog. 205 The Tx ring is wrapped with the END bit, since a large hardware Tx queue 206 disables the queue layer priority ordering and we have no mechanism to 207 utilize the hardware two-level priority queue. When modifying the 208 RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning 209 levels. 210 211 IIIb/c. Transmit/Receive Structure 212 213 See the Adaptec manual for the many possible structures, and options for 214 each structure. There are far too many to document all of them here. 215 216 For transmit this driver uses type 0/1 transmit descriptors (depending 217 on the 32/64 bitness of the architecture), and relies on automatic 218 minimum-length padding. It does not use the completion queue 219 consumer index, but instead checks for non-zero status entries. 220 221 For receive this driver uses type 2/3 receive descriptors. The driver 222 allocates full frame size skbuffs for the Rx ring buffers, so all frames 223 should fit in a single descriptor. The driver does not use the completion 224 queue consumer index, but instead checks for non-zero status entries. 225 226 When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff 227 is allocated and the frame is copied to the new skbuff. When the incoming 228 frame is larger, the skbuff is passed directly up the protocol stack. 229 Buffers consumed this way are replaced by newly allocated skbuffs in a later 230 phase of receive. 231 232 A notable aspect of operation is that unaligned buffers are not permitted by 233 the Starfire hardware. Thus the IP header at offset 14 in an ethernet frame 234 isn't longword aligned, which may cause problems on some machine 235 e.g. Alphas and IA64. For these architectures, the driver is forced to copy 236 the frame into a new skbuff unconditionally. Copied frames are put into the 237 skbuff at an offset of "+2", thus 16-byte aligning the IP header. 238 239 IIId. Synchronization 240 241 The driver runs as two independent, single-threaded flows of control. One 242 is the send-packet routine, which enforces single-threaded use by the 243 dev->tbusy flag. The other thread is the interrupt handler, which is single 244 threaded by the hardware and interrupt handling software. 245 246 The send packet thread has partial control over the Tx ring and the netif_queue 247 status. If the number of free Tx slots in the ring falls below a certain number 248 (currently hardcoded to 4), it signals the upper layer to stop the queue. 249 250 The interrupt handler has exclusive control over the Rx ring and records stats 251 from the Tx ring. After reaping the stats, it marks the Tx queue entry as 252 empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the 253 number of free Tx slow is above the threshold, it signals the upper layer to 254 restart the queue. 255 256 IV. Notes 257 258 IVb. References 259 260 The Adaptec Starfire manuals, available only from Adaptec. 261 http://www.scyld.com/expert/100mbps.html 262 http://www.scyld.com/expert/NWay.html 263 264 IVc. Errata 265 266 - StopOnPerr is broken, don't enable 267 - Hardware ethernet padding exposes random data, perform software padding 268 instead (unverified -- works correctly for all the hardware I have) 269 270 */ 271 272 273 274 enum chip_capability_flags {CanHaveMII=1, }; 275 276 enum chipset { 277 CH_6915 = 0, 278 }; 279 280 static const struct pci_device_id starfire_pci_tbl[] = { 281 { PCI_VDEVICE(ADAPTEC, 0x6915), CH_6915 }, 282 { 0, } 283 }; 284 MODULE_DEVICE_TABLE(pci, starfire_pci_tbl); 285 286 /* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */ 287 static const struct chip_info { 288 const char *name; 289 int drv_flags; 290 } netdrv_tbl[] = { 291 { "Adaptec Starfire 6915", CanHaveMII }, 292 }; 293 294 295 /* Offsets to the device registers. 296 Unlike software-only systems, device drivers interact with complex hardware. 297 It's not useful to define symbolic names for every register bit in the 298 device. The name can only partially document the semantics and make 299 the driver longer and more difficult to read. 300 In general, only the important configuration values or bits changed 301 multiple times should be defined symbolically. 302 */ 303 enum register_offsets { 304 PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074, 305 IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088, 306 MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000, 307 GPIOCtrl=0x5008C, TxDescCtrl=0x50090, 308 TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */ 309 TxRingHiAddr=0x5009C, /* 64 bit address extension. */ 310 TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4, 311 TxThreshold=0x500B0, 312 CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8, 313 RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0, 314 CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0, 315 RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0, 316 RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4, 317 TxMode=0x55000, VlanType=0x55064, 318 PerfFilterTable=0x56000, HashTable=0x56100, 319 TxGfpMem=0x58000, RxGfpMem=0x5a000, 320 }; 321 322 /* 323 * Bits in the interrupt status/mask registers. 324 * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register 325 * enables all the interrupt sources that are or'ed into those status bits. 326 */ 327 enum intr_status_bits { 328 IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000, 329 IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000, 330 IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000, 331 IntrTxComplQLow=0x200000, IntrPCI=0x100000, 332 IntrDMAErr=0x080000, IntrTxDataLow=0x040000, 333 IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000, 334 IntrNormalSummary=0x8000, IntrTxDone=0x4000, 335 IntrTxDMADone=0x2000, IntrTxEmpty=0x1000, 336 IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400, 337 IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100, 338 IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40, 339 IntrNoTxCsum=0x20, IntrTxBadID=0x10, 340 IntrHiPriTxBadID=0x08, IntrRxGfp=0x04, 341 IntrTxGfp=0x02, IntrPCIPad=0x01, 342 /* not quite bits */ 343 IntrRxDone=IntrRxQ2Done | IntrRxQ1Done, 344 IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low, 345 IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe, 346 }; 347 348 /* Bits in the RxFilterMode register. */ 349 enum rx_mode_bits { 350 AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01, 351 AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30, 352 PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200, 353 WakeupOnGFP=0x0800, 354 }; 355 356 /* Bits in the TxMode register */ 357 enum tx_mode_bits { 358 MiiSoftReset=0x8000, MIILoopback=0x4000, 359 TxFlowEnable=0x0800, RxFlowEnable=0x0400, 360 PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01, 361 }; 362 363 /* Bits in the TxDescCtrl register. */ 364 enum tx_ctrl_bits { 365 TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20, 366 TxDescSpace128=0x30, TxDescSpace256=0x40, 367 TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02, 368 TxDescType3=0x03, TxDescType4=0x04, 369 TxNoDMACompletion=0x08, 370 TxDescQAddr64bit=0x80, TxDescQAddr32bit=0, 371 TxHiPriFIFOThreshShift=24, TxPadLenShift=16, 372 TxDMABurstSizeShift=8, 373 }; 374 375 /* Bits in the RxDescQCtrl register. */ 376 enum rx_ctrl_bits { 377 RxBufferLenShift=16, RxMinDescrThreshShift=0, 378 RxPrefetchMode=0x8000, RxVariableQ=0x2000, 379 Rx2048QEntries=0x4000, Rx256QEntries=0, 380 RxDescAddr64bit=0x1000, RxDescAddr32bit=0, 381 RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0, 382 RxDescSpace4=0x000, RxDescSpace8=0x100, 383 RxDescSpace16=0x200, RxDescSpace32=0x300, 384 RxDescSpace64=0x400, RxDescSpace128=0x500, 385 RxConsumerWrEn=0x80, 386 }; 387 388 /* Bits in the RxDMACtrl register. */ 389 enum rx_dmactrl_bits { 390 RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000, 391 RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000, 392 RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000, 393 RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000, 394 RxChecksumRejectTCPOnly=0x01000000, 395 RxCompletionQ2Enable=0x800000, 396 RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000, 397 RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000, 398 RxDMAQ2NonIP=0x400000, 399 RxUseBackupQueue=0x080000, RxDMACRC=0x040000, 400 RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8, 401 RxBurstSizeShift=0, 402 }; 403 404 /* Bits in the RxCompletionAddr register */ 405 enum rx_compl_bits { 406 RxComplQAddr64bit=0x80, RxComplQAddr32bit=0, 407 RxComplProducerWrEn=0x40, 408 RxComplType0=0x00, RxComplType1=0x10, 409 RxComplType2=0x20, RxComplType3=0x30, 410 RxComplThreshShift=0, 411 }; 412 413 /* Bits in the TxCompletionAddr register */ 414 enum tx_compl_bits { 415 TxComplQAddr64bit=0x80, TxComplQAddr32bit=0, 416 TxComplProducerWrEn=0x40, 417 TxComplIntrStatus=0x20, 418 CommonQueueMode=0x10, 419 TxComplThreshShift=0, 420 }; 421 422 /* Bits in the GenCtrl register */ 423 enum gen_ctrl_bits { 424 RxEnable=0x05, TxEnable=0x0a, 425 RxGFPEnable=0x10, TxGFPEnable=0x20, 426 }; 427 428 /* Bits in the IntrTimerCtrl register */ 429 enum intr_ctrl_bits { 430 Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100, 431 SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600, 432 IntrLatencyMask=0x1f, 433 }; 434 435 /* The Rx and Tx buffer descriptors. */ 436 struct starfire_rx_desc { 437 netdrv_addr_t rxaddr; 438 }; 439 enum rx_desc_bits { 440 RxDescValid=1, RxDescEndRing=2, 441 }; 442 443 /* Completion queue entry. */ 444 struct short_rx_done_desc { 445 __le32 status; /* Low 16 bits is length. */ 446 }; 447 struct basic_rx_done_desc { 448 __le32 status; /* Low 16 bits is length. */ 449 __le16 vlanid; 450 __le16 status2; 451 }; 452 struct csum_rx_done_desc { 453 __le32 status; /* Low 16 bits is length. */ 454 __le16 csum; /* Partial checksum */ 455 __le16 status2; 456 }; 457 struct full_rx_done_desc { 458 __le32 status; /* Low 16 bits is length. */ 459 __le16 status3; 460 __le16 status2; 461 __le16 vlanid; 462 __le16 csum; /* partial checksum */ 463 __le32 timestamp; 464 }; 465 /* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */ 466 #ifdef VLAN_SUPPORT 467 typedef struct full_rx_done_desc rx_done_desc; 468 #define RxComplType RxComplType3 469 #else /* not VLAN_SUPPORT */ 470 typedef struct csum_rx_done_desc rx_done_desc; 471 #define RxComplType RxComplType2 472 #endif /* not VLAN_SUPPORT */ 473 474 enum rx_done_bits { 475 RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000, 476 }; 477 478 /* Type 1 Tx descriptor. */ 479 struct starfire_tx_desc_1 { 480 __le32 status; /* Upper bits are status, lower 16 length. */ 481 __le32 addr; 482 }; 483 484 /* Type 2 Tx descriptor. */ 485 struct starfire_tx_desc_2 { 486 __le32 status; /* Upper bits are status, lower 16 length. */ 487 __le32 reserved; 488 __le64 addr; 489 }; 490 491 #ifdef ADDR_64BITS 492 typedef struct starfire_tx_desc_2 starfire_tx_desc; 493 #define TX_DESC_TYPE TxDescType2 494 #else /* not ADDR_64BITS */ 495 typedef struct starfire_tx_desc_1 starfire_tx_desc; 496 #define TX_DESC_TYPE TxDescType1 497 #endif /* not ADDR_64BITS */ 498 #define TX_DESC_SPACING TxDescSpaceUnlim 499 500 enum tx_desc_bits { 501 TxDescID=0xB0000000, 502 TxCRCEn=0x01000000, TxDescIntr=0x08000000, 503 TxRingWrap=0x04000000, TxCalTCP=0x02000000, 504 }; 505 struct tx_done_desc { 506 __le32 status; /* timestamp, index. */ 507 #if 0 508 __le32 intrstatus; /* interrupt status */ 509 #endif 510 }; 511 512 struct rx_ring_info { 513 struct sk_buff *skb; 514 dma_addr_t mapping; 515 }; 516 struct tx_ring_info { 517 struct sk_buff *skb; 518 dma_addr_t mapping; 519 unsigned int used_slots; 520 }; 521 522 #define PHY_CNT 2 523 struct netdev_private { 524 /* Descriptor rings first for alignment. */ 525 struct starfire_rx_desc *rx_ring; 526 starfire_tx_desc *tx_ring; 527 dma_addr_t rx_ring_dma; 528 dma_addr_t tx_ring_dma; 529 /* The addresses of rx/tx-in-place skbuffs. */ 530 struct rx_ring_info rx_info[RX_RING_SIZE]; 531 struct tx_ring_info tx_info[TX_RING_SIZE]; 532 /* Pointers to completion queues (full pages). */ 533 rx_done_desc *rx_done_q; 534 dma_addr_t rx_done_q_dma; 535 unsigned int rx_done; 536 struct tx_done_desc *tx_done_q; 537 dma_addr_t tx_done_q_dma; 538 unsigned int tx_done; 539 struct napi_struct napi; 540 struct net_device *dev; 541 struct pci_dev *pci_dev; 542 #ifdef VLAN_SUPPORT 543 unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)]; 544 #endif 545 void *queue_mem; 546 dma_addr_t queue_mem_dma; 547 size_t queue_mem_size; 548 549 /* Frequently used values: keep some adjacent for cache effect. */ 550 spinlock_t lock; 551 unsigned int cur_rx, dirty_rx; /* Producer/consumer ring indices */ 552 unsigned int cur_tx, dirty_tx, reap_tx; 553 unsigned int rx_buf_sz; /* Based on MTU+slack. */ 554 /* These values keep track of the transceiver/media in use. */ 555 int speed100; /* Set if speed == 100MBit. */ 556 u32 tx_mode; 557 u32 intr_timer_ctrl; 558 u8 tx_threshold; 559 /* MII transceiver section. */ 560 struct mii_if_info mii_if; /* MII lib hooks/info */ 561 int phy_cnt; /* MII device addresses. */ 562 unsigned char phys[PHY_CNT]; /* MII device addresses. */ 563 void __iomem *base; 564 }; 565 566 567 static int mdio_read(struct net_device *dev, int phy_id, int location); 568 static void mdio_write(struct net_device *dev, int phy_id, int location, int value); 569 static int netdev_open(struct net_device *dev); 570 static void check_duplex(struct net_device *dev); 571 static void tx_timeout(struct net_device *dev, unsigned int txqueue); 572 static void init_ring(struct net_device *dev); 573 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev); 574 static irqreturn_t intr_handler(int irq, void *dev_instance); 575 static void netdev_error(struct net_device *dev, int intr_status); 576 static int __netdev_rx(struct net_device *dev, int *quota); 577 static int netdev_poll(struct napi_struct *napi, int budget); 578 static void refill_rx_ring(struct net_device *dev); 579 static void netdev_error(struct net_device *dev, int intr_status); 580 static void set_rx_mode(struct net_device *dev); 581 static struct net_device_stats *get_stats(struct net_device *dev); 582 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); 583 static int netdev_close(struct net_device *dev); 584 static void netdev_media_change(struct net_device *dev); 585 static const struct ethtool_ops ethtool_ops; 586 587 588 #ifdef VLAN_SUPPORT 589 static int netdev_vlan_rx_add_vid(struct net_device *dev, 590 __be16 proto, u16 vid) 591 { 592 struct netdev_private *np = netdev_priv(dev); 593 594 spin_lock(&np->lock); 595 if (debug > 1) 596 printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid); 597 set_bit(vid, np->active_vlans); 598 set_rx_mode(dev); 599 spin_unlock(&np->lock); 600 601 return 0; 602 } 603 604 static int netdev_vlan_rx_kill_vid(struct net_device *dev, 605 __be16 proto, u16 vid) 606 { 607 struct netdev_private *np = netdev_priv(dev); 608 609 spin_lock(&np->lock); 610 if (debug > 1) 611 printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid); 612 clear_bit(vid, np->active_vlans); 613 set_rx_mode(dev); 614 spin_unlock(&np->lock); 615 616 return 0; 617 } 618 #endif /* VLAN_SUPPORT */ 619 620 621 static const struct net_device_ops netdev_ops = { 622 .ndo_open = netdev_open, 623 .ndo_stop = netdev_close, 624 .ndo_start_xmit = start_tx, 625 .ndo_tx_timeout = tx_timeout, 626 .ndo_get_stats = get_stats, 627 .ndo_set_rx_mode = set_rx_mode, 628 .ndo_eth_ioctl = netdev_ioctl, 629 .ndo_set_mac_address = eth_mac_addr, 630 .ndo_validate_addr = eth_validate_addr, 631 #ifdef VLAN_SUPPORT 632 .ndo_vlan_rx_add_vid = netdev_vlan_rx_add_vid, 633 .ndo_vlan_rx_kill_vid = netdev_vlan_rx_kill_vid, 634 #endif 635 }; 636 637 static int starfire_init_one(struct pci_dev *pdev, 638 const struct pci_device_id *ent) 639 { 640 struct device *d = &pdev->dev; 641 struct netdev_private *np; 642 int i, irq, chip_idx = ent->driver_data; 643 struct net_device *dev; 644 long ioaddr; 645 void __iomem *base; 646 int drv_flags, io_size; 647 int boguscnt; 648 649 if (pci_enable_device (pdev)) 650 return -EIO; 651 652 ioaddr = pci_resource_start(pdev, 0); 653 io_size = pci_resource_len(pdev, 0); 654 if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) { 655 dev_err(d, "no PCI MEM resources, aborting\n"); 656 return -ENODEV; 657 } 658 659 dev = alloc_etherdev(sizeof(*np)); 660 if (!dev) 661 return -ENOMEM; 662 663 SET_NETDEV_DEV(dev, &pdev->dev); 664 665 irq = pdev->irq; 666 667 if (pci_request_regions (pdev, DRV_NAME)) { 668 dev_err(d, "cannot reserve PCI resources, aborting\n"); 669 goto err_out_free_netdev; 670 } 671 672 base = ioremap(ioaddr, io_size); 673 if (!base) { 674 dev_err(d, "cannot remap %#x @ %#lx, aborting\n", 675 io_size, ioaddr); 676 goto err_out_free_res; 677 } 678 679 pci_set_master(pdev); 680 681 /* enable MWI -- it vastly improves Rx performance on sparc64 */ 682 pci_try_set_mwi(pdev); 683 684 #ifdef ZEROCOPY 685 /* Starfire can do TCP/UDP checksumming */ 686 if (enable_hw_cksum) 687 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG; 688 #endif /* ZEROCOPY */ 689 690 #ifdef VLAN_SUPPORT 691 dev->features |= NETIF_F_HW_VLAN_CTAG_RX | NETIF_F_HW_VLAN_CTAG_FILTER; 692 #endif /* VLAN_RX_KILL_VID */ 693 #ifdef ADDR_64BITS 694 dev->features |= NETIF_F_HIGHDMA; 695 #endif /* ADDR_64BITS */ 696 697 /* Serial EEPROM reads are hidden by the hardware. */ 698 for (i = 0; i < 6; i++) 699 dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i); 700 701 #if ! defined(final_version) /* Dump the EEPROM contents during development. */ 702 if (debug > 4) 703 for (i = 0; i < 0x20; i++) 704 printk("%2.2x%s", 705 (unsigned int)readb(base + EEPROMCtrl + i), 706 i % 16 != 15 ? " " : "\n"); 707 #endif 708 709 /* Issue soft reset */ 710 writel(MiiSoftReset, base + TxMode); 711 udelay(1000); 712 writel(0, base + TxMode); 713 714 /* Reset the chip to erase previous misconfiguration. */ 715 writel(1, base + PCIDeviceConfig); 716 boguscnt = 1000; 717 while (--boguscnt > 0) { 718 udelay(10); 719 if ((readl(base + PCIDeviceConfig) & 1) == 0) 720 break; 721 } 722 if (boguscnt == 0) 723 printk("%s: chipset reset never completed!\n", dev->name); 724 /* wait a little longer */ 725 udelay(1000); 726 727 np = netdev_priv(dev); 728 np->dev = dev; 729 np->base = base; 730 spin_lock_init(&np->lock); 731 pci_set_drvdata(pdev, dev); 732 733 np->pci_dev = pdev; 734 735 np->mii_if.dev = dev; 736 np->mii_if.mdio_read = mdio_read; 737 np->mii_if.mdio_write = mdio_write; 738 np->mii_if.phy_id_mask = 0x1f; 739 np->mii_if.reg_num_mask = 0x1f; 740 741 drv_flags = netdrv_tbl[chip_idx].drv_flags; 742 743 np->speed100 = 1; 744 745 /* timer resolution is 128 * 0.8us */ 746 np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) | 747 Timer10X | EnableIntrMasking; 748 749 if (small_frames > 0) { 750 np->intr_timer_ctrl |= SmallFrameBypass; 751 switch (small_frames) { 752 case 1 ... 64: 753 np->intr_timer_ctrl |= SmallFrame64; 754 break; 755 case 65 ... 128: 756 np->intr_timer_ctrl |= SmallFrame128; 757 break; 758 case 129 ... 256: 759 np->intr_timer_ctrl |= SmallFrame256; 760 break; 761 default: 762 np->intr_timer_ctrl |= SmallFrame512; 763 if (small_frames > 512) 764 printk("Adjusting small_frames down to 512\n"); 765 break; 766 } 767 } 768 769 dev->netdev_ops = &netdev_ops; 770 dev->watchdog_timeo = TX_TIMEOUT; 771 dev->ethtool_ops = ðtool_ops; 772 773 netif_napi_add(dev, &np->napi, netdev_poll, max_interrupt_work); 774 775 if (mtu) 776 dev->mtu = mtu; 777 778 if (register_netdev(dev)) 779 goto err_out_cleardev; 780 781 printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n", 782 dev->name, netdrv_tbl[chip_idx].name, base, 783 dev->dev_addr, irq); 784 785 if (drv_flags & CanHaveMII) { 786 int phy, phy_idx = 0; 787 int mii_status; 788 for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) { 789 mdio_write(dev, phy, MII_BMCR, BMCR_RESET); 790 msleep(100); 791 boguscnt = 1000; 792 while (--boguscnt > 0) 793 if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0) 794 break; 795 if (boguscnt == 0) { 796 printk("%s: PHY#%d reset never completed!\n", dev->name, phy); 797 continue; 798 } 799 mii_status = mdio_read(dev, phy, MII_BMSR); 800 if (mii_status != 0) { 801 np->phys[phy_idx++] = phy; 802 np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE); 803 printk(KERN_INFO "%s: MII PHY found at address %d, status " 804 "%#4.4x advertising %#4.4x.\n", 805 dev->name, phy, mii_status, np->mii_if.advertising); 806 /* there can be only one PHY on-board */ 807 break; 808 } 809 } 810 np->phy_cnt = phy_idx; 811 if (np->phy_cnt > 0) 812 np->mii_if.phy_id = np->phys[0]; 813 else 814 memset(&np->mii_if, 0, sizeof(np->mii_if)); 815 } 816 817 printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n", 818 dev->name, enable_hw_cksum ? "enabled" : "disabled"); 819 return 0; 820 821 err_out_cleardev: 822 iounmap(base); 823 err_out_free_res: 824 pci_release_regions (pdev); 825 err_out_free_netdev: 826 free_netdev(dev); 827 return -ENODEV; 828 } 829 830 831 /* Read the MII Management Data I/O (MDIO) interfaces. */ 832 static int mdio_read(struct net_device *dev, int phy_id, int location) 833 { 834 struct netdev_private *np = netdev_priv(dev); 835 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2); 836 int result, boguscnt=1000; 837 /* ??? Should we add a busy-wait here? */ 838 do { 839 result = readl(mdio_addr); 840 } while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0); 841 if (boguscnt == 0) 842 return 0; 843 if ((result & 0xffff) == 0xffff) 844 return 0; 845 return result & 0xffff; 846 } 847 848 849 static void mdio_write(struct net_device *dev, int phy_id, int location, int value) 850 { 851 struct netdev_private *np = netdev_priv(dev); 852 void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2); 853 writel(value, mdio_addr); 854 /* The busy-wait will occur before a read. */ 855 } 856 857 858 static int netdev_open(struct net_device *dev) 859 { 860 const struct firmware *fw_rx, *fw_tx; 861 const __be32 *fw_rx_data, *fw_tx_data; 862 struct netdev_private *np = netdev_priv(dev); 863 void __iomem *ioaddr = np->base; 864 const int irq = np->pci_dev->irq; 865 int i, retval; 866 size_t tx_size, rx_size; 867 size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size; 868 869 /* Do we ever need to reset the chip??? */ 870 871 retval = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev); 872 if (retval) 873 return retval; 874 875 /* Disable the Rx and Tx, and reset the chip. */ 876 writel(0, ioaddr + GenCtrl); 877 writel(1, ioaddr + PCIDeviceConfig); 878 if (debug > 1) 879 printk(KERN_DEBUG "%s: netdev_open() irq %d.\n", 880 dev->name, irq); 881 882 /* Allocate the various queues. */ 883 if (!np->queue_mem) { 884 tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN; 885 rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN; 886 tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN; 887 rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE; 888 np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size; 889 np->queue_mem = dma_alloc_coherent(&np->pci_dev->dev, 890 np->queue_mem_size, 891 &np->queue_mem_dma, GFP_ATOMIC); 892 if (np->queue_mem == NULL) { 893 free_irq(irq, dev); 894 return -ENOMEM; 895 } 896 897 np->tx_done_q = np->queue_mem; 898 np->tx_done_q_dma = np->queue_mem_dma; 899 np->rx_done_q = (void *) np->tx_done_q + tx_done_q_size; 900 np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size; 901 np->tx_ring = (void *) np->rx_done_q + rx_done_q_size; 902 np->tx_ring_dma = np->rx_done_q_dma + rx_done_q_size; 903 np->rx_ring = (void *) np->tx_ring + tx_ring_size; 904 np->rx_ring_dma = np->tx_ring_dma + tx_ring_size; 905 } 906 907 /* Start with no carrier, it gets adjusted later */ 908 netif_carrier_off(dev); 909 init_ring(dev); 910 /* Set the size of the Rx buffers. */ 911 writel((np->rx_buf_sz << RxBufferLenShift) | 912 (0 << RxMinDescrThreshShift) | 913 RxPrefetchMode | RxVariableQ | 914 RX_Q_ENTRIES | 915 RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE | 916 RxDescSpace4, 917 ioaddr + RxDescQCtrl); 918 919 /* Set up the Rx DMA controller. */ 920 writel(RxChecksumIgnore | 921 (0 << RxEarlyIntThreshShift) | 922 (6 << RxHighPrioThreshShift) | 923 ((DMA_BURST_SIZE / 32) << RxBurstSizeShift), 924 ioaddr + RxDMACtrl); 925 926 /* Set Tx descriptor */ 927 writel((2 << TxHiPriFIFOThreshShift) | 928 (0 << TxPadLenShift) | 929 ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) | 930 TX_DESC_Q_ADDR_SIZE | 931 TX_DESC_SPACING | TX_DESC_TYPE, 932 ioaddr + TxDescCtrl); 933 934 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr); 935 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr); 936 writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr); 937 writel(np->rx_ring_dma, ioaddr + RxDescQAddr); 938 writel(np->tx_ring_dma, ioaddr + TxRingPtr); 939 940 writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr); 941 writel(np->rx_done_q_dma | 942 RxComplType | 943 (0 << RxComplThreshShift), 944 ioaddr + RxCompletionAddr); 945 946 if (debug > 1) 947 printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name); 948 949 /* Fill both the Tx SA register and the Rx perfect filter. */ 950 for (i = 0; i < 6; i++) 951 writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i); 952 /* The first entry is special because it bypasses the VLAN filter. 953 Don't use it. */ 954 writew(0, ioaddr + PerfFilterTable); 955 writew(0, ioaddr + PerfFilterTable + 4); 956 writew(0, ioaddr + PerfFilterTable + 8); 957 for (i = 1; i < 16; i++) { 958 __be16 *eaddrs = (__be16 *)dev->dev_addr; 959 void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16; 960 writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4; 961 writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4; 962 writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8; 963 } 964 965 /* Initialize other registers. */ 966 /* Configure the PCI bus bursts and FIFO thresholds. */ 967 np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable; /* modified when link is up. */ 968 writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode); 969 udelay(1000); 970 writel(np->tx_mode, ioaddr + TxMode); 971 np->tx_threshold = 4; 972 writel(np->tx_threshold, ioaddr + TxThreshold); 973 974 writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl); 975 976 napi_enable(&np->napi); 977 978 netif_start_queue(dev); 979 980 if (debug > 1) 981 printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name); 982 set_rx_mode(dev); 983 984 np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE); 985 check_duplex(dev); 986 987 /* Enable GPIO interrupts on link change */ 988 writel(0x0f00ff00, ioaddr + GPIOCtrl); 989 990 /* Set the interrupt mask */ 991 writel(IntrRxDone | IntrRxEmpty | IntrDMAErr | 992 IntrTxDMADone | IntrStatsMax | IntrLinkChange | 993 IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID, 994 ioaddr + IntrEnable); 995 /* Enable PCI interrupts. */ 996 writel(0x00800000 | readl(ioaddr + PCIDeviceConfig), 997 ioaddr + PCIDeviceConfig); 998 999 #ifdef VLAN_SUPPORT 1000 /* Set VLAN type to 802.1q */ 1001 writel(ETH_P_8021Q, ioaddr + VlanType); 1002 #endif /* VLAN_SUPPORT */ 1003 1004 retval = request_firmware(&fw_rx, FIRMWARE_RX, &np->pci_dev->dev); 1005 if (retval) { 1006 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n", 1007 FIRMWARE_RX); 1008 goto out_init; 1009 } 1010 if (fw_rx->size % 4) { 1011 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n", 1012 fw_rx->size, FIRMWARE_RX); 1013 retval = -EINVAL; 1014 goto out_rx; 1015 } 1016 retval = request_firmware(&fw_tx, FIRMWARE_TX, &np->pci_dev->dev); 1017 if (retval) { 1018 printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n", 1019 FIRMWARE_TX); 1020 goto out_rx; 1021 } 1022 if (fw_tx->size % 4) { 1023 printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n", 1024 fw_tx->size, FIRMWARE_TX); 1025 retval = -EINVAL; 1026 goto out_tx; 1027 } 1028 fw_rx_data = (const __be32 *)&fw_rx->data[0]; 1029 fw_tx_data = (const __be32 *)&fw_tx->data[0]; 1030 rx_size = fw_rx->size / 4; 1031 tx_size = fw_tx->size / 4; 1032 1033 /* Load Rx/Tx firmware into the frame processors */ 1034 for (i = 0; i < rx_size; i++) 1035 writel(be32_to_cpup(&fw_rx_data[i]), ioaddr + RxGfpMem + i * 4); 1036 for (i = 0; i < tx_size; i++) 1037 writel(be32_to_cpup(&fw_tx_data[i]), ioaddr + TxGfpMem + i * 4); 1038 if (enable_hw_cksum) 1039 /* Enable the Rx and Tx units, and the Rx/Tx frame processors. */ 1040 writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl); 1041 else 1042 /* Enable the Rx and Tx units only. */ 1043 writel(TxEnable|RxEnable, ioaddr + GenCtrl); 1044 1045 if (debug > 1) 1046 printk(KERN_DEBUG "%s: Done netdev_open().\n", 1047 dev->name); 1048 1049 out_tx: 1050 release_firmware(fw_tx); 1051 out_rx: 1052 release_firmware(fw_rx); 1053 out_init: 1054 if (retval) 1055 netdev_close(dev); 1056 return retval; 1057 } 1058 1059 1060 static void check_duplex(struct net_device *dev) 1061 { 1062 struct netdev_private *np = netdev_priv(dev); 1063 u16 reg0; 1064 int silly_count = 1000; 1065 1066 mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising); 1067 mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET); 1068 udelay(500); 1069 while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET) 1070 /* do nothing */; 1071 if (!silly_count) { 1072 printk("%s: MII reset failed!\n", dev->name); 1073 return; 1074 } 1075 1076 reg0 = mdio_read(dev, np->phys[0], MII_BMCR); 1077 1078 if (!np->mii_if.force_media) { 1079 reg0 |= BMCR_ANENABLE | BMCR_ANRESTART; 1080 } else { 1081 reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART); 1082 if (np->speed100) 1083 reg0 |= BMCR_SPEED100; 1084 if (np->mii_if.full_duplex) 1085 reg0 |= BMCR_FULLDPLX; 1086 printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n", 1087 dev->name, 1088 np->speed100 ? "100" : "10", 1089 np->mii_if.full_duplex ? "full" : "half"); 1090 } 1091 mdio_write(dev, np->phys[0], MII_BMCR, reg0); 1092 } 1093 1094 1095 static void tx_timeout(struct net_device *dev, unsigned int txqueue) 1096 { 1097 struct netdev_private *np = netdev_priv(dev); 1098 void __iomem *ioaddr = np->base; 1099 int old_debug; 1100 1101 printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, " 1102 "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus)); 1103 1104 /* Perhaps we should reinitialize the hardware here. */ 1105 1106 /* 1107 * Stop and restart the interface. 1108 * Cheat and increase the debug level temporarily. 1109 */ 1110 old_debug = debug; 1111 debug = 2; 1112 netdev_close(dev); 1113 netdev_open(dev); 1114 debug = old_debug; 1115 1116 /* Trigger an immediate transmit demand. */ 1117 1118 netif_trans_update(dev); /* prevent tx timeout */ 1119 dev->stats.tx_errors++; 1120 netif_wake_queue(dev); 1121 } 1122 1123 1124 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */ 1125 static void init_ring(struct net_device *dev) 1126 { 1127 struct netdev_private *np = netdev_priv(dev); 1128 int i; 1129 1130 np->cur_rx = np->cur_tx = np->reap_tx = 0; 1131 np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0; 1132 1133 np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32); 1134 1135 /* Fill in the Rx buffers. Handle allocation failure gracefully. */ 1136 for (i = 0; i < RX_RING_SIZE; i++) { 1137 struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz); 1138 np->rx_info[i].skb = skb; 1139 if (skb == NULL) 1140 break; 1141 np->rx_info[i].mapping = dma_map_single(&np->pci_dev->dev, 1142 skb->data, 1143 np->rx_buf_sz, 1144 DMA_FROM_DEVICE); 1145 if (dma_mapping_error(&np->pci_dev->dev, np->rx_info[i].mapping)) { 1146 dev_kfree_skb(skb); 1147 np->rx_info[i].skb = NULL; 1148 break; 1149 } 1150 /* Grrr, we cannot offset to correctly align the IP header. */ 1151 np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid); 1152 } 1153 writew(i - 1, np->base + RxDescQIdx); 1154 np->dirty_rx = (unsigned int)(i - RX_RING_SIZE); 1155 1156 /* Clear the remainder of the Rx buffer ring. */ 1157 for ( ; i < RX_RING_SIZE; i++) { 1158 np->rx_ring[i].rxaddr = 0; 1159 np->rx_info[i].skb = NULL; 1160 np->rx_info[i].mapping = 0; 1161 } 1162 /* Mark the last entry as wrapping the ring. */ 1163 np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing); 1164 1165 /* Clear the completion rings. */ 1166 for (i = 0; i < DONE_Q_SIZE; i++) { 1167 np->rx_done_q[i].status = 0; 1168 np->tx_done_q[i].status = 0; 1169 } 1170 1171 for (i = 0; i < TX_RING_SIZE; i++) 1172 memset(&np->tx_info[i], 0, sizeof(np->tx_info[i])); 1173 } 1174 1175 1176 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev) 1177 { 1178 struct netdev_private *np = netdev_priv(dev); 1179 unsigned int entry; 1180 unsigned int prev_tx; 1181 u32 status; 1182 int i, j; 1183 1184 /* 1185 * be cautious here, wrapping the queue has weird semantics 1186 * and we may not have enough slots even when it seems we do. 1187 */ 1188 if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) { 1189 netif_stop_queue(dev); 1190 return NETDEV_TX_BUSY; 1191 } 1192 1193 #if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE) 1194 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1195 if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK)) 1196 return NETDEV_TX_OK; 1197 } 1198 #endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */ 1199 1200 prev_tx = np->cur_tx; 1201 entry = np->cur_tx % TX_RING_SIZE; 1202 for (i = 0; i < skb_num_frags(skb); i++) { 1203 int wrap_ring = 0; 1204 status = TxDescID; 1205 1206 if (i == 0) { 1207 np->tx_info[entry].skb = skb; 1208 status |= TxCRCEn; 1209 if (entry >= TX_RING_SIZE - skb_num_frags(skb)) { 1210 status |= TxRingWrap; 1211 wrap_ring = 1; 1212 } 1213 if (np->reap_tx) { 1214 status |= TxDescIntr; 1215 np->reap_tx = 0; 1216 } 1217 if (skb->ip_summed == CHECKSUM_PARTIAL) { 1218 status |= TxCalTCP; 1219 dev->stats.tx_compressed++; 1220 } 1221 status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16); 1222 1223 np->tx_info[entry].mapping = 1224 dma_map_single(&np->pci_dev->dev, skb->data, 1225 skb_first_frag_len(skb), 1226 DMA_TO_DEVICE); 1227 } else { 1228 const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1]; 1229 status |= skb_frag_size(this_frag); 1230 np->tx_info[entry].mapping = 1231 dma_map_single(&np->pci_dev->dev, 1232 skb_frag_address(this_frag), 1233 skb_frag_size(this_frag), 1234 DMA_TO_DEVICE); 1235 } 1236 if (dma_mapping_error(&np->pci_dev->dev, np->tx_info[entry].mapping)) { 1237 dev->stats.tx_dropped++; 1238 goto err_out; 1239 } 1240 1241 np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping); 1242 np->tx_ring[entry].status = cpu_to_le32(status); 1243 if (debug > 3) 1244 printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n", 1245 dev->name, np->cur_tx, np->dirty_tx, 1246 entry, status); 1247 if (wrap_ring) { 1248 np->tx_info[entry].used_slots = TX_RING_SIZE - entry; 1249 np->cur_tx += np->tx_info[entry].used_slots; 1250 entry = 0; 1251 } else { 1252 np->tx_info[entry].used_slots = 1; 1253 np->cur_tx += np->tx_info[entry].used_slots; 1254 entry++; 1255 } 1256 /* scavenge the tx descriptors twice per TX_RING_SIZE */ 1257 if (np->cur_tx % (TX_RING_SIZE / 2) == 0) 1258 np->reap_tx = 1; 1259 } 1260 1261 /* Non-x86: explicitly flush descriptor cache lines here. */ 1262 /* Ensure all descriptors are written back before the transmit is 1263 initiated. - Jes */ 1264 wmb(); 1265 1266 /* Update the producer index. */ 1267 writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx); 1268 1269 /* 4 is arbitrary, but should be ok */ 1270 if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE) 1271 netif_stop_queue(dev); 1272 1273 return NETDEV_TX_OK; 1274 1275 err_out: 1276 entry = prev_tx % TX_RING_SIZE; 1277 np->tx_info[entry].skb = NULL; 1278 if (i > 0) { 1279 dma_unmap_single(&np->pci_dev->dev, 1280 np->tx_info[entry].mapping, 1281 skb_first_frag_len(skb), DMA_TO_DEVICE); 1282 np->tx_info[entry].mapping = 0; 1283 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE; 1284 for (j = 1; j < i; j++) { 1285 dma_unmap_single(&np->pci_dev->dev, 1286 np->tx_info[entry].mapping, 1287 skb_frag_size(&skb_shinfo(skb)->frags[j - 1]), 1288 DMA_TO_DEVICE); 1289 entry++; 1290 } 1291 } 1292 dev_kfree_skb_any(skb); 1293 np->cur_tx = prev_tx; 1294 return NETDEV_TX_OK; 1295 } 1296 1297 /* The interrupt handler does all of the Rx thread work and cleans up 1298 after the Tx thread. */ 1299 static irqreturn_t intr_handler(int irq, void *dev_instance) 1300 { 1301 struct net_device *dev = dev_instance; 1302 struct netdev_private *np = netdev_priv(dev); 1303 void __iomem *ioaddr = np->base; 1304 int boguscnt = max_interrupt_work; 1305 int consumer; 1306 int tx_status; 1307 int handled = 0; 1308 1309 do { 1310 u32 intr_status = readl(ioaddr + IntrClear); 1311 1312 if (debug > 4) 1313 printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n", 1314 dev->name, intr_status); 1315 1316 if (intr_status == 0 || intr_status == (u32) -1) 1317 break; 1318 1319 handled = 1; 1320 1321 if (intr_status & (IntrRxDone | IntrRxEmpty)) { 1322 u32 enable; 1323 1324 if (likely(napi_schedule_prep(&np->napi))) { 1325 __napi_schedule(&np->napi); 1326 enable = readl(ioaddr + IntrEnable); 1327 enable &= ~(IntrRxDone | IntrRxEmpty); 1328 writel(enable, ioaddr + IntrEnable); 1329 /* flush PCI posting buffers */ 1330 readl(ioaddr + IntrEnable); 1331 } else { 1332 /* Paranoia check */ 1333 enable = readl(ioaddr + IntrEnable); 1334 if (enable & (IntrRxDone | IntrRxEmpty)) { 1335 printk(KERN_INFO 1336 "%s: interrupt while in poll!\n", 1337 dev->name); 1338 enable &= ~(IntrRxDone | IntrRxEmpty); 1339 writel(enable, ioaddr + IntrEnable); 1340 } 1341 } 1342 } 1343 1344 /* Scavenge the skbuff list based on the Tx-done queue. 1345 There are redundant checks here that may be cleaned up 1346 after the driver has proven to be reliable. */ 1347 consumer = readl(ioaddr + TxConsumerIdx); 1348 if (debug > 3) 1349 printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n", 1350 dev->name, consumer); 1351 1352 while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) { 1353 if (debug > 3) 1354 printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n", 1355 dev->name, np->dirty_tx, np->tx_done, tx_status); 1356 if ((tx_status & 0xe0000000) == 0xa0000000) { 1357 dev->stats.tx_packets++; 1358 } else if ((tx_status & 0xe0000000) == 0x80000000) { 1359 u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc); 1360 struct sk_buff *skb = np->tx_info[entry].skb; 1361 np->tx_info[entry].skb = NULL; 1362 dma_unmap_single(&np->pci_dev->dev, 1363 np->tx_info[entry].mapping, 1364 skb_first_frag_len(skb), 1365 DMA_TO_DEVICE); 1366 np->tx_info[entry].mapping = 0; 1367 np->dirty_tx += np->tx_info[entry].used_slots; 1368 entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE; 1369 { 1370 int i; 1371 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 1372 dma_unmap_single(&np->pci_dev->dev, 1373 np->tx_info[entry].mapping, 1374 skb_frag_size(&skb_shinfo(skb)->frags[i]), 1375 DMA_TO_DEVICE); 1376 np->dirty_tx++; 1377 entry++; 1378 } 1379 } 1380 1381 dev_consume_skb_irq(skb); 1382 } 1383 np->tx_done_q[np->tx_done].status = 0; 1384 np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE; 1385 } 1386 writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2); 1387 1388 if (netif_queue_stopped(dev) && 1389 (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) { 1390 /* The ring is no longer full, wake the queue. */ 1391 netif_wake_queue(dev); 1392 } 1393 1394 /* Stats overflow */ 1395 if (intr_status & IntrStatsMax) 1396 get_stats(dev); 1397 1398 /* Media change interrupt. */ 1399 if (intr_status & IntrLinkChange) 1400 netdev_media_change(dev); 1401 1402 /* Abnormal error summary/uncommon events handlers. */ 1403 if (intr_status & IntrAbnormalSummary) 1404 netdev_error(dev, intr_status); 1405 1406 if (--boguscnt < 0) { 1407 if (debug > 1) 1408 printk(KERN_WARNING "%s: Too much work at interrupt, " 1409 "status=%#8.8x.\n", 1410 dev->name, intr_status); 1411 break; 1412 } 1413 } while (1); 1414 1415 if (debug > 4) 1416 printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n", 1417 dev->name, (int) readl(ioaddr + IntrStatus)); 1418 return IRQ_RETVAL(handled); 1419 } 1420 1421 1422 /* 1423 * This routine is logically part of the interrupt/poll handler, but separated 1424 * for clarity and better register allocation. 1425 */ 1426 static int __netdev_rx(struct net_device *dev, int *quota) 1427 { 1428 struct netdev_private *np = netdev_priv(dev); 1429 u32 desc_status; 1430 int retcode = 0; 1431 1432 /* If EOP is set on the next entry, it's a new packet. Send it up. */ 1433 while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) { 1434 struct sk_buff *skb; 1435 u16 pkt_len; 1436 int entry; 1437 rx_done_desc *desc = &np->rx_done_q[np->rx_done]; 1438 1439 if (debug > 4) 1440 printk(KERN_DEBUG " netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status); 1441 if (!(desc_status & RxOK)) { 1442 /* There was an error. */ 1443 if (debug > 2) 1444 printk(KERN_DEBUG " netdev_rx() Rx error was %#8.8x.\n", desc_status); 1445 dev->stats.rx_errors++; 1446 if (desc_status & RxFIFOErr) 1447 dev->stats.rx_fifo_errors++; 1448 goto next_rx; 1449 } 1450 1451 if (*quota <= 0) { /* out of rx quota */ 1452 retcode = 1; 1453 goto out; 1454 } 1455 (*quota)--; 1456 1457 pkt_len = desc_status; /* Implicitly Truncate */ 1458 entry = (desc_status >> 16) & 0x7ff; 1459 1460 if (debug > 4) 1461 printk(KERN_DEBUG " netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota); 1462 /* Check if the packet is long enough to accept without copying 1463 to a minimally-sized skbuff. */ 1464 if (pkt_len < rx_copybreak && 1465 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) { 1466 skb_reserve(skb, 2); /* 16 byte align the IP header */ 1467 dma_sync_single_for_cpu(&np->pci_dev->dev, 1468 np->rx_info[entry].mapping, 1469 pkt_len, DMA_FROM_DEVICE); 1470 skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len); 1471 dma_sync_single_for_device(&np->pci_dev->dev, 1472 np->rx_info[entry].mapping, 1473 pkt_len, DMA_FROM_DEVICE); 1474 skb_put(skb, pkt_len); 1475 } else { 1476 dma_unmap_single(&np->pci_dev->dev, 1477 np->rx_info[entry].mapping, 1478 np->rx_buf_sz, DMA_FROM_DEVICE); 1479 skb = np->rx_info[entry].skb; 1480 skb_put(skb, pkt_len); 1481 np->rx_info[entry].skb = NULL; 1482 np->rx_info[entry].mapping = 0; 1483 } 1484 #ifndef final_version /* Remove after testing. */ 1485 /* You will want this info for the initial debug. */ 1486 if (debug > 5) { 1487 printk(KERN_DEBUG " Rx data %pM %pM %2.2x%2.2x.\n", 1488 skb->data, skb->data + 6, 1489 skb->data[12], skb->data[13]); 1490 } 1491 #endif 1492 1493 skb->protocol = eth_type_trans(skb, dev); 1494 #ifdef VLAN_SUPPORT 1495 if (debug > 4) 1496 printk(KERN_DEBUG " netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2)); 1497 #endif 1498 if (le16_to_cpu(desc->status2) & 0x0100) { 1499 skb->ip_summed = CHECKSUM_UNNECESSARY; 1500 dev->stats.rx_compressed++; 1501 } 1502 /* 1503 * This feature doesn't seem to be working, at least 1504 * with the two firmware versions I have. If the GFP sees 1505 * an IP fragment, it either ignores it completely, or reports 1506 * "bad checksum" on it. 1507 * 1508 * Maybe I missed something -- corrections are welcome. 1509 * Until then, the printk stays. :-) -Ion 1510 */ 1511 else if (le16_to_cpu(desc->status2) & 0x0040) { 1512 skb->ip_summed = CHECKSUM_COMPLETE; 1513 skb->csum = le16_to_cpu(desc->csum); 1514 printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2)); 1515 } 1516 #ifdef VLAN_SUPPORT 1517 if (le16_to_cpu(desc->status2) & 0x0200) { 1518 u16 vlid = le16_to_cpu(desc->vlanid); 1519 1520 if (debug > 4) { 1521 printk(KERN_DEBUG " netdev_rx() vlanid = %d\n", 1522 vlid); 1523 } 1524 __vlan_hwaccel_put_tag(skb, htons(ETH_P_8021Q), vlid); 1525 } 1526 #endif /* VLAN_SUPPORT */ 1527 netif_receive_skb(skb); 1528 dev->stats.rx_packets++; 1529 1530 next_rx: 1531 np->cur_rx++; 1532 desc->status = 0; 1533 np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE; 1534 } 1535 1536 if (*quota == 0) { /* out of rx quota */ 1537 retcode = 1; 1538 goto out; 1539 } 1540 writew(np->rx_done, np->base + CompletionQConsumerIdx); 1541 1542 out: 1543 refill_rx_ring(dev); 1544 if (debug > 5) 1545 printk(KERN_DEBUG " exiting netdev_rx(): %d, status of %d was %#8.8x.\n", 1546 retcode, np->rx_done, desc_status); 1547 return retcode; 1548 } 1549 1550 static int netdev_poll(struct napi_struct *napi, int budget) 1551 { 1552 struct netdev_private *np = container_of(napi, struct netdev_private, napi); 1553 struct net_device *dev = np->dev; 1554 u32 intr_status; 1555 void __iomem *ioaddr = np->base; 1556 int quota = budget; 1557 1558 do { 1559 writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear); 1560 1561 if (__netdev_rx(dev, "a)) 1562 goto out; 1563 1564 intr_status = readl(ioaddr + IntrStatus); 1565 } while (intr_status & (IntrRxDone | IntrRxEmpty)); 1566 1567 napi_complete(napi); 1568 intr_status = readl(ioaddr + IntrEnable); 1569 intr_status |= IntrRxDone | IntrRxEmpty; 1570 writel(intr_status, ioaddr + IntrEnable); 1571 1572 out: 1573 if (debug > 5) 1574 printk(KERN_DEBUG " exiting netdev_poll(): %d.\n", 1575 budget - quota); 1576 1577 /* Restart Rx engine if stopped. */ 1578 return budget - quota; 1579 } 1580 1581 static void refill_rx_ring(struct net_device *dev) 1582 { 1583 struct netdev_private *np = netdev_priv(dev); 1584 struct sk_buff *skb; 1585 int entry = -1; 1586 1587 /* Refill the Rx ring buffers. */ 1588 for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) { 1589 entry = np->dirty_rx % RX_RING_SIZE; 1590 if (np->rx_info[entry].skb == NULL) { 1591 skb = netdev_alloc_skb(dev, np->rx_buf_sz); 1592 np->rx_info[entry].skb = skb; 1593 if (skb == NULL) 1594 break; /* Better luck next round. */ 1595 np->rx_info[entry].mapping = 1596 dma_map_single(&np->pci_dev->dev, skb->data, 1597 np->rx_buf_sz, DMA_FROM_DEVICE); 1598 if (dma_mapping_error(&np->pci_dev->dev, np->rx_info[entry].mapping)) { 1599 dev_kfree_skb(skb); 1600 np->rx_info[entry].skb = NULL; 1601 break; 1602 } 1603 np->rx_ring[entry].rxaddr = 1604 cpu_to_dma(np->rx_info[entry].mapping | RxDescValid); 1605 } 1606 if (entry == RX_RING_SIZE - 1) 1607 np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing); 1608 } 1609 if (entry >= 0) 1610 writew(entry, np->base + RxDescQIdx); 1611 } 1612 1613 1614 static void netdev_media_change(struct net_device *dev) 1615 { 1616 struct netdev_private *np = netdev_priv(dev); 1617 void __iomem *ioaddr = np->base; 1618 u16 reg0, reg1, reg4, reg5; 1619 u32 new_tx_mode; 1620 u32 new_intr_timer_ctrl; 1621 1622 /* reset status first */ 1623 mdio_read(dev, np->phys[0], MII_BMCR); 1624 mdio_read(dev, np->phys[0], MII_BMSR); 1625 1626 reg0 = mdio_read(dev, np->phys[0], MII_BMCR); 1627 reg1 = mdio_read(dev, np->phys[0], MII_BMSR); 1628 1629 if (reg1 & BMSR_LSTATUS) { 1630 /* link is up */ 1631 if (reg0 & BMCR_ANENABLE) { 1632 /* autonegotiation is enabled */ 1633 reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE); 1634 reg5 = mdio_read(dev, np->phys[0], MII_LPA); 1635 if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) { 1636 np->speed100 = 1; 1637 np->mii_if.full_duplex = 1; 1638 } else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) { 1639 np->speed100 = 1; 1640 np->mii_if.full_duplex = 0; 1641 } else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) { 1642 np->speed100 = 0; 1643 np->mii_if.full_duplex = 1; 1644 } else { 1645 np->speed100 = 0; 1646 np->mii_if.full_duplex = 0; 1647 } 1648 } else { 1649 /* autonegotiation is disabled */ 1650 if (reg0 & BMCR_SPEED100) 1651 np->speed100 = 1; 1652 else 1653 np->speed100 = 0; 1654 if (reg0 & BMCR_FULLDPLX) 1655 np->mii_if.full_duplex = 1; 1656 else 1657 np->mii_if.full_duplex = 0; 1658 } 1659 netif_carrier_on(dev); 1660 printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n", 1661 dev->name, 1662 np->speed100 ? "100" : "10", 1663 np->mii_if.full_duplex ? "full" : "half"); 1664 1665 new_tx_mode = np->tx_mode & ~FullDuplex; /* duplex setting */ 1666 if (np->mii_if.full_duplex) 1667 new_tx_mode |= FullDuplex; 1668 if (np->tx_mode != new_tx_mode) { 1669 np->tx_mode = new_tx_mode; 1670 writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode); 1671 udelay(1000); 1672 writel(np->tx_mode, ioaddr + TxMode); 1673 } 1674 1675 new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X; 1676 if (np->speed100) 1677 new_intr_timer_ctrl |= Timer10X; 1678 if (np->intr_timer_ctrl != new_intr_timer_ctrl) { 1679 np->intr_timer_ctrl = new_intr_timer_ctrl; 1680 writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl); 1681 } 1682 } else { 1683 netif_carrier_off(dev); 1684 printk(KERN_DEBUG "%s: Link is down\n", dev->name); 1685 } 1686 } 1687 1688 1689 static void netdev_error(struct net_device *dev, int intr_status) 1690 { 1691 struct netdev_private *np = netdev_priv(dev); 1692 1693 /* Came close to underrunning the Tx FIFO, increase threshold. */ 1694 if (intr_status & IntrTxDataLow) { 1695 if (np->tx_threshold <= PKT_BUF_SZ / 16) { 1696 writel(++np->tx_threshold, np->base + TxThreshold); 1697 printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n", 1698 dev->name, np->tx_threshold * 16); 1699 } else 1700 printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name); 1701 } 1702 if (intr_status & IntrRxGFPDead) { 1703 dev->stats.rx_fifo_errors++; 1704 dev->stats.rx_errors++; 1705 } 1706 if (intr_status & (IntrNoTxCsum | IntrDMAErr)) { 1707 dev->stats.tx_fifo_errors++; 1708 dev->stats.tx_errors++; 1709 } 1710 if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug) 1711 printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n", 1712 dev->name, intr_status); 1713 } 1714 1715 1716 static struct net_device_stats *get_stats(struct net_device *dev) 1717 { 1718 struct netdev_private *np = netdev_priv(dev); 1719 void __iomem *ioaddr = np->base; 1720 1721 /* This adapter architecture needs no SMP locks. */ 1722 dev->stats.tx_bytes = readl(ioaddr + 0x57010); 1723 dev->stats.rx_bytes = readl(ioaddr + 0x57044); 1724 dev->stats.tx_packets = readl(ioaddr + 0x57000); 1725 dev->stats.tx_aborted_errors = 1726 readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028); 1727 dev->stats.tx_window_errors = readl(ioaddr + 0x57018); 1728 dev->stats.collisions = 1729 readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008); 1730 1731 /* The chip only need report frame silently dropped. */ 1732 dev->stats.rx_dropped += readw(ioaddr + RxDMAStatus); 1733 writew(0, ioaddr + RxDMAStatus); 1734 dev->stats.rx_crc_errors = readl(ioaddr + 0x5703C); 1735 dev->stats.rx_frame_errors = readl(ioaddr + 0x57040); 1736 dev->stats.rx_length_errors = readl(ioaddr + 0x57058); 1737 dev->stats.rx_missed_errors = readl(ioaddr + 0x5707C); 1738 1739 return &dev->stats; 1740 } 1741 1742 #ifdef VLAN_SUPPORT 1743 static u32 set_vlan_mode(struct netdev_private *np) 1744 { 1745 u32 ret = VlanMode; 1746 u16 vid; 1747 void __iomem *filter_addr = np->base + HashTable + 8; 1748 int vlan_count = 0; 1749 1750 for_each_set_bit(vid, np->active_vlans, VLAN_N_VID) { 1751 if (vlan_count == 32) 1752 break; 1753 writew(vid, filter_addr); 1754 filter_addr += 16; 1755 vlan_count++; 1756 } 1757 if (vlan_count == 32) { 1758 ret |= PerfectFilterVlan; 1759 while (vlan_count < 32) { 1760 writew(0, filter_addr); 1761 filter_addr += 16; 1762 vlan_count++; 1763 } 1764 } 1765 return ret; 1766 } 1767 #endif /* VLAN_SUPPORT */ 1768 1769 static void set_rx_mode(struct net_device *dev) 1770 { 1771 struct netdev_private *np = netdev_priv(dev); 1772 void __iomem *ioaddr = np->base; 1773 u32 rx_mode = MinVLANPrio; 1774 struct netdev_hw_addr *ha; 1775 int i; 1776 1777 #ifdef VLAN_SUPPORT 1778 rx_mode |= set_vlan_mode(np); 1779 #endif /* VLAN_SUPPORT */ 1780 1781 if (dev->flags & IFF_PROMISC) { /* Set promiscuous. */ 1782 rx_mode |= AcceptAll; 1783 } else if ((netdev_mc_count(dev) > multicast_filter_limit) || 1784 (dev->flags & IFF_ALLMULTI)) { 1785 /* Too many to match, or accept all multicasts. */ 1786 rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter; 1787 } else if (netdev_mc_count(dev) <= 14) { 1788 /* Use the 16 element perfect filter, skip first two entries. */ 1789 void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16; 1790 __be16 *eaddrs; 1791 netdev_for_each_mc_addr(ha, dev) { 1792 eaddrs = (__be16 *) ha->addr; 1793 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4; 1794 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4; 1795 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8; 1796 } 1797 eaddrs = (__be16 *)dev->dev_addr; 1798 i = netdev_mc_count(dev) + 2; 1799 while (i++ < 16) { 1800 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4; 1801 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4; 1802 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8; 1803 } 1804 rx_mode |= AcceptBroadcast|PerfectFilter; 1805 } else { 1806 /* Must use a multicast hash table. */ 1807 void __iomem *filter_addr; 1808 __be16 *eaddrs; 1809 __le16 mc_filter[32] __attribute__ ((aligned(sizeof(long)))); /* Multicast hash filter */ 1810 1811 memset(mc_filter, 0, sizeof(mc_filter)); 1812 netdev_for_each_mc_addr(ha, dev) { 1813 /* The chip uses the upper 9 CRC bits 1814 as index into the hash table */ 1815 int bit_nr = ether_crc_le(ETH_ALEN, ha->addr) >> 23; 1816 __le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1]; 1817 1818 *fptr |= cpu_to_le32(1 << (bit_nr & 31)); 1819 } 1820 /* Clear the perfect filter list, skip first two entries. */ 1821 filter_addr = ioaddr + PerfFilterTable + 2 * 16; 1822 eaddrs = (__be16 *)dev->dev_addr; 1823 for (i = 2; i < 16; i++) { 1824 writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4; 1825 writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4; 1826 writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8; 1827 } 1828 for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++) 1829 writew(mc_filter[i], filter_addr); 1830 rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter; 1831 } 1832 writel(rx_mode, ioaddr + RxFilterMode); 1833 } 1834 1835 static int check_if_running(struct net_device *dev) 1836 { 1837 if (!netif_running(dev)) 1838 return -EINVAL; 1839 return 0; 1840 } 1841 1842 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info) 1843 { 1844 struct netdev_private *np = netdev_priv(dev); 1845 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 1846 strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info)); 1847 } 1848 1849 static int get_link_ksettings(struct net_device *dev, 1850 struct ethtool_link_ksettings *cmd) 1851 { 1852 struct netdev_private *np = netdev_priv(dev); 1853 spin_lock_irq(&np->lock); 1854 mii_ethtool_get_link_ksettings(&np->mii_if, cmd); 1855 spin_unlock_irq(&np->lock); 1856 return 0; 1857 } 1858 1859 static int set_link_ksettings(struct net_device *dev, 1860 const struct ethtool_link_ksettings *cmd) 1861 { 1862 struct netdev_private *np = netdev_priv(dev); 1863 int res; 1864 spin_lock_irq(&np->lock); 1865 res = mii_ethtool_set_link_ksettings(&np->mii_if, cmd); 1866 spin_unlock_irq(&np->lock); 1867 check_duplex(dev); 1868 return res; 1869 } 1870 1871 static int nway_reset(struct net_device *dev) 1872 { 1873 struct netdev_private *np = netdev_priv(dev); 1874 return mii_nway_restart(&np->mii_if); 1875 } 1876 1877 static u32 get_link(struct net_device *dev) 1878 { 1879 struct netdev_private *np = netdev_priv(dev); 1880 return mii_link_ok(&np->mii_if); 1881 } 1882 1883 static u32 get_msglevel(struct net_device *dev) 1884 { 1885 return debug; 1886 } 1887 1888 static void set_msglevel(struct net_device *dev, u32 val) 1889 { 1890 debug = val; 1891 } 1892 1893 static const struct ethtool_ops ethtool_ops = { 1894 .begin = check_if_running, 1895 .get_drvinfo = get_drvinfo, 1896 .nway_reset = nway_reset, 1897 .get_link = get_link, 1898 .get_msglevel = get_msglevel, 1899 .set_msglevel = set_msglevel, 1900 .get_link_ksettings = get_link_ksettings, 1901 .set_link_ksettings = set_link_ksettings, 1902 }; 1903 1904 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 1905 { 1906 struct netdev_private *np = netdev_priv(dev); 1907 struct mii_ioctl_data *data = if_mii(rq); 1908 int rc; 1909 1910 if (!netif_running(dev)) 1911 return -EINVAL; 1912 1913 spin_lock_irq(&np->lock); 1914 rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL); 1915 spin_unlock_irq(&np->lock); 1916 1917 if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0])) 1918 check_duplex(dev); 1919 1920 return rc; 1921 } 1922 1923 static int netdev_close(struct net_device *dev) 1924 { 1925 struct netdev_private *np = netdev_priv(dev); 1926 void __iomem *ioaddr = np->base; 1927 int i; 1928 1929 netif_stop_queue(dev); 1930 1931 napi_disable(&np->napi); 1932 1933 if (debug > 1) { 1934 printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n", 1935 dev->name, (int) readl(ioaddr + IntrStatus)); 1936 printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n", 1937 dev->name, np->cur_tx, np->dirty_tx, 1938 np->cur_rx, np->dirty_rx); 1939 } 1940 1941 /* Disable interrupts by clearing the interrupt mask. */ 1942 writel(0, ioaddr + IntrEnable); 1943 1944 /* Stop the chip's Tx and Rx processes. */ 1945 writel(0, ioaddr + GenCtrl); 1946 readl(ioaddr + GenCtrl); 1947 1948 if (debug > 5) { 1949 printk(KERN_DEBUG" Tx ring at %#llx:\n", 1950 (long long) np->tx_ring_dma); 1951 for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++) 1952 printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n", 1953 i, le32_to_cpu(np->tx_ring[i].status), 1954 (long long) dma_to_cpu(np->tx_ring[i].addr), 1955 le32_to_cpu(np->tx_done_q[i].status)); 1956 printk(KERN_DEBUG " Rx ring at %#llx -> %p:\n", 1957 (long long) np->rx_ring_dma, np->rx_done_q); 1958 if (np->rx_done_q) 1959 for (i = 0; i < 8 /* RX_RING_SIZE */; i++) { 1960 printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n", 1961 i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status)); 1962 } 1963 } 1964 1965 free_irq(np->pci_dev->irq, dev); 1966 1967 /* Free all the skbuffs in the Rx queue. */ 1968 for (i = 0; i < RX_RING_SIZE; i++) { 1969 np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */ 1970 if (np->rx_info[i].skb != NULL) { 1971 dma_unmap_single(&np->pci_dev->dev, 1972 np->rx_info[i].mapping, 1973 np->rx_buf_sz, DMA_FROM_DEVICE); 1974 dev_kfree_skb(np->rx_info[i].skb); 1975 } 1976 np->rx_info[i].skb = NULL; 1977 np->rx_info[i].mapping = 0; 1978 } 1979 for (i = 0; i < TX_RING_SIZE; i++) { 1980 struct sk_buff *skb = np->tx_info[i].skb; 1981 if (skb == NULL) 1982 continue; 1983 dma_unmap_single(&np->pci_dev->dev, np->tx_info[i].mapping, 1984 skb_first_frag_len(skb), DMA_TO_DEVICE); 1985 np->tx_info[i].mapping = 0; 1986 dev_kfree_skb(skb); 1987 np->tx_info[i].skb = NULL; 1988 } 1989 1990 return 0; 1991 } 1992 1993 static int __maybe_unused starfire_suspend(struct device *dev_d) 1994 { 1995 struct net_device *dev = dev_get_drvdata(dev_d); 1996 1997 if (netif_running(dev)) { 1998 netif_device_detach(dev); 1999 netdev_close(dev); 2000 } 2001 2002 return 0; 2003 } 2004 2005 static int __maybe_unused starfire_resume(struct device *dev_d) 2006 { 2007 struct net_device *dev = dev_get_drvdata(dev_d); 2008 2009 if (netif_running(dev)) { 2010 netdev_open(dev); 2011 netif_device_attach(dev); 2012 } 2013 2014 return 0; 2015 } 2016 2017 static void starfire_remove_one(struct pci_dev *pdev) 2018 { 2019 struct net_device *dev = pci_get_drvdata(pdev); 2020 struct netdev_private *np = netdev_priv(dev); 2021 2022 BUG_ON(!dev); 2023 2024 unregister_netdev(dev); 2025 2026 if (np->queue_mem) 2027 dma_free_coherent(&pdev->dev, np->queue_mem_size, 2028 np->queue_mem, np->queue_mem_dma); 2029 2030 2031 /* XXX: add wakeup code -- requires firmware for MagicPacket */ 2032 pci_set_power_state(pdev, PCI_D3hot); /* go to sleep in D3 mode */ 2033 pci_disable_device(pdev); 2034 2035 iounmap(np->base); 2036 pci_release_regions(pdev); 2037 2038 free_netdev(dev); /* Will also free np!! */ 2039 } 2040 2041 static SIMPLE_DEV_PM_OPS(starfire_pm_ops, starfire_suspend, starfire_resume); 2042 2043 static struct pci_driver starfire_driver = { 2044 .name = DRV_NAME, 2045 .probe = starfire_init_one, 2046 .remove = starfire_remove_one, 2047 .driver.pm = &starfire_pm_ops, 2048 .id_table = starfire_pci_tbl, 2049 }; 2050 2051 2052 static int __init starfire_init (void) 2053 { 2054 /* when a module, this is printed whether or not devices are found in probe */ 2055 #ifdef MODULE 2056 printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n"); 2057 #endif 2058 2059 BUILD_BUG_ON(sizeof(dma_addr_t) != sizeof(netdrv_addr_t)); 2060 2061 return pci_register_driver(&starfire_driver); 2062 } 2063 2064 2065 static void __exit starfire_cleanup (void) 2066 { 2067 pci_unregister_driver (&starfire_driver); 2068 } 2069 2070 2071 module_init(starfire_init); 2072 module_exit(starfire_cleanup); 2073