1 /* starfire.c: Linux device driver for the Adaptec Starfire network adapter. */
2 /*
3 	Written 1998-2000 by Donald Becker.
4 
5 	Current maintainer is Ion Badulescu <ionut ta badula tod org>. Please
6 	send all bug reports to me, and not to Donald Becker, as this code
7 	has been heavily modified from Donald's original version.
8 
9 	This software may be used and distributed according to the terms of
10 	the GNU General Public License (GPL), incorporated herein by reference.
11 	Drivers based on or derived from this code fall under the GPL and must
12 	retain the authorship, copyright and license notice.  This file is not
13 	a complete program and may only be used when the entire operating
14 	system is licensed under the GPL.
15 
16 	The information below comes from Donald Becker's original driver:
17 
18 	The author may be reached as becker@scyld.com, or C/O
19 	Scyld Computing Corporation
20 	410 Severn Ave., Suite 210
21 	Annapolis MD 21403
22 
23 	Support and updates available at
24 	http://www.scyld.com/network/starfire.html
25 	[link no longer provides useful info -jgarzik]
26 
27 */
28 
29 #define DRV_NAME	"starfire"
30 #define DRV_VERSION	"2.1"
31 #define DRV_RELDATE	"July  6, 2008"
32 
33 #include <linux/interrupt.h>
34 #include <linux/module.h>
35 #include <linux/kernel.h>
36 #include <linux/pci.h>
37 #include <linux/netdevice.h>
38 #include <linux/etherdevice.h>
39 #include <linux/init.h>
40 #include <linux/delay.h>
41 #include <linux/crc32.h>
42 #include <linux/ethtool.h>
43 #include <linux/mii.h>
44 #include <linux/if_vlan.h>
45 #include <linux/mm.h>
46 #include <linux/firmware.h>
47 #include <asm/processor.h>		/* Processor type for cache alignment. */
48 #include <asm/uaccess.h>
49 #include <asm/io.h>
50 
51 /*
52  * The current frame processor firmware fails to checksum a fragment
53  * of length 1. If and when this is fixed, the #define below can be removed.
54  */
55 #define HAS_BROKEN_FIRMWARE
56 
57 /*
58  * If using the broken firmware, data must be padded to the next 32-bit boundary.
59  */
60 #ifdef HAS_BROKEN_FIRMWARE
61 #define PADDING_MASK 3
62 #endif
63 
64 /*
65  * Define this if using the driver with the zero-copy patch
66  */
67 #define ZEROCOPY
68 
69 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
70 #define VLAN_SUPPORT
71 #endif
72 
73 /* The user-configurable values.
74    These may be modified when a driver module is loaded.*/
75 
76 /* Used for tuning interrupt latency vs. overhead. */
77 static int intr_latency;
78 static int small_frames;
79 
80 static int debug = 1;			/* 1 normal messages, 0 quiet .. 7 verbose. */
81 static int max_interrupt_work = 20;
82 static int mtu;
83 /* Maximum number of multicast addresses to filter (vs. rx-all-multicast).
84    The Starfire has a 512 element hash table based on the Ethernet CRC. */
85 static const int multicast_filter_limit = 512;
86 /* Whether to do TCP/UDP checksums in hardware */
87 static int enable_hw_cksum = 1;
88 
89 #define PKT_BUF_SZ	1536		/* Size of each temporary Rx buffer.*/
90 /*
91  * Set the copy breakpoint for the copy-only-tiny-frames scheme.
92  * Setting to > 1518 effectively disables this feature.
93  *
94  * NOTE:
95  * The ia64 doesn't allow for unaligned loads even of integers being
96  * misaligned on a 2 byte boundary. Thus always force copying of
97  * packets as the starfire doesn't allow for misaligned DMAs ;-(
98  * 23/10/2000 - Jes
99  *
100  * The Alpha and the Sparc don't like unaligned loads, either. On Sparc64,
101  * at least, having unaligned frames leads to a rather serious performance
102  * penalty. -Ion
103  */
104 #if defined(__ia64__) || defined(__alpha__) || defined(__sparc__)
105 static int rx_copybreak = PKT_BUF_SZ;
106 #else
107 static int rx_copybreak /* = 0 */;
108 #endif
109 
110 /* PCI DMA burst size -- on sparc64 we want to force it to 64 bytes, on the others the default of 128 is fine. */
111 #ifdef __sparc__
112 #define DMA_BURST_SIZE 64
113 #else
114 #define DMA_BURST_SIZE 128
115 #endif
116 
117 /* Operational parameters that are set at compile time. */
118 
119 /* The "native" ring sizes are either 256 or 2048.
120    However in some modes a descriptor may be marked to wrap the ring earlier.
121 */
122 #define RX_RING_SIZE	256
123 #define TX_RING_SIZE	32
124 /* The completion queues are fixed at 1024 entries i.e. 4K or 8KB. */
125 #define DONE_Q_SIZE	1024
126 /* All queues must be aligned on a 256-byte boundary */
127 #define QUEUE_ALIGN	256
128 
129 #if RX_RING_SIZE > 256
130 #define RX_Q_ENTRIES Rx2048QEntries
131 #else
132 #define RX_Q_ENTRIES Rx256QEntries
133 #endif
134 
135 /* Operational parameters that usually are not changed. */
136 /* Time in jiffies before concluding the transmitter is hung. */
137 #define TX_TIMEOUT	(2 * HZ)
138 
139 #ifdef CONFIG_ARCH_DMA_ADDR_T_64BIT
140 /* 64-bit dma_addr_t */
141 #define ADDR_64BITS	/* This chip uses 64 bit addresses. */
142 #define netdrv_addr_t __le64
143 #define cpu_to_dma(x) cpu_to_le64(x)
144 #define dma_to_cpu(x) le64_to_cpu(x)
145 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr64bit
146 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr64bit
147 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr64bit
148 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr64bit
149 #define RX_DESC_ADDR_SIZE RxDescAddr64bit
150 #else  /* 32-bit dma_addr_t */
151 #define netdrv_addr_t __le32
152 #define cpu_to_dma(x) cpu_to_le32(x)
153 #define dma_to_cpu(x) le32_to_cpu(x)
154 #define RX_DESC_Q_ADDR_SIZE RxDescQAddr32bit
155 #define TX_DESC_Q_ADDR_SIZE TxDescQAddr32bit
156 #define RX_COMPL_Q_ADDR_SIZE RxComplQAddr32bit
157 #define TX_COMPL_Q_ADDR_SIZE TxComplQAddr32bit
158 #define RX_DESC_ADDR_SIZE RxDescAddr32bit
159 #endif
160 
161 #define skb_first_frag_len(skb)	skb_headlen(skb)
162 #define skb_num_frags(skb) (skb_shinfo(skb)->nr_frags + 1)
163 
164 /* Firmware names */
165 #define FIRMWARE_RX	"adaptec/starfire_rx.bin"
166 #define FIRMWARE_TX	"adaptec/starfire_tx.bin"
167 
168 /* These identify the driver base version and may not be removed. */
169 static const char version[] __devinitconst =
170 KERN_INFO "starfire.c:v1.03 7/26/2000  Written by Donald Becker <becker@scyld.com>\n"
171 " (unofficial 2.2/2.4 kernel port, version " DRV_VERSION ", " DRV_RELDATE ")\n";
172 
173 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
174 MODULE_DESCRIPTION("Adaptec Starfire Ethernet driver");
175 MODULE_LICENSE("GPL");
176 MODULE_VERSION(DRV_VERSION);
177 MODULE_FIRMWARE(FIRMWARE_RX);
178 MODULE_FIRMWARE(FIRMWARE_TX);
179 
180 module_param(max_interrupt_work, int, 0);
181 module_param(mtu, int, 0);
182 module_param(debug, int, 0);
183 module_param(rx_copybreak, int, 0);
184 module_param(intr_latency, int, 0);
185 module_param(small_frames, int, 0);
186 module_param(enable_hw_cksum, int, 0);
187 MODULE_PARM_DESC(max_interrupt_work, "Maximum events handled per interrupt");
188 MODULE_PARM_DESC(mtu, "MTU (all boards)");
189 MODULE_PARM_DESC(debug, "Debug level (0-6)");
190 MODULE_PARM_DESC(rx_copybreak, "Copy breakpoint for copy-only-tiny-frames");
191 MODULE_PARM_DESC(intr_latency, "Maximum interrupt latency, in microseconds");
192 MODULE_PARM_DESC(small_frames, "Maximum size of receive frames that bypass interrupt latency (0,64,128,256,512)");
193 MODULE_PARM_DESC(enable_hw_cksum, "Enable/disable hardware cksum support (0/1)");
194 
195 /*
196 				Theory of Operation
197 
198 I. Board Compatibility
199 
200 This driver is for the Adaptec 6915 "Starfire" 64 bit PCI Ethernet adapter.
201 
202 II. Board-specific settings
203 
204 III. Driver operation
205 
206 IIIa. Ring buffers
207 
208 The Starfire hardware uses multiple fixed-size descriptor queues/rings.  The
209 ring sizes are set fixed by the hardware, but may optionally be wrapped
210 earlier by the END bit in the descriptor.
211 This driver uses that hardware queue size for the Rx ring, where a large
212 number of entries has no ill effect beyond increases the potential backlog.
213 The Tx ring is wrapped with the END bit, since a large hardware Tx queue
214 disables the queue layer priority ordering and we have no mechanism to
215 utilize the hardware two-level priority queue.  When modifying the
216 RX/TX_RING_SIZE pay close attention to page sizes and the ring-empty warning
217 levels.
218 
219 IIIb/c. Transmit/Receive Structure
220 
221 See the Adaptec manual for the many possible structures, and options for
222 each structure.  There are far too many to document all of them here.
223 
224 For transmit this driver uses type 0/1 transmit descriptors (depending
225 on the 32/64 bitness of the architecture), and relies on automatic
226 minimum-length padding.  It does not use the completion queue
227 consumer index, but instead checks for non-zero status entries.
228 
229 For receive this driver uses type 2/3 receive descriptors.  The driver
230 allocates full frame size skbuffs for the Rx ring buffers, so all frames
231 should fit in a single descriptor.  The driver does not use the completion
232 queue consumer index, but instead checks for non-zero status entries.
233 
234 When an incoming frame is less than RX_COPYBREAK bytes long, a fresh skbuff
235 is allocated and the frame is copied to the new skbuff.  When the incoming
236 frame is larger, the skbuff is passed directly up the protocol stack.
237 Buffers consumed this way are replaced by newly allocated skbuffs in a later
238 phase of receive.
239 
240 A notable aspect of operation is that unaligned buffers are not permitted by
241 the Starfire hardware.  Thus the IP header at offset 14 in an ethernet frame
242 isn't longword aligned, which may cause problems on some machine
243 e.g. Alphas and IA64. For these architectures, the driver is forced to copy
244 the frame into a new skbuff unconditionally. Copied frames are put into the
245 skbuff at an offset of "+2", thus 16-byte aligning the IP header.
246 
247 IIId. Synchronization
248 
249 The driver runs as two independent, single-threaded flows of control.  One
250 is the send-packet routine, which enforces single-threaded use by the
251 dev->tbusy flag.  The other thread is the interrupt handler, which is single
252 threaded by the hardware and interrupt handling software.
253 
254 The send packet thread has partial control over the Tx ring and the netif_queue
255 status. If the number of free Tx slots in the ring falls below a certain number
256 (currently hardcoded to 4), it signals the upper layer to stop the queue.
257 
258 The interrupt handler has exclusive control over the Rx ring and records stats
259 from the Tx ring.  After reaping the stats, it marks the Tx queue entry as
260 empty by incrementing the dirty_tx mark. Iff the netif_queue is stopped and the
261 number of free Tx slow is above the threshold, it signals the upper layer to
262 restart the queue.
263 
264 IV. Notes
265 
266 IVb. References
267 
268 The Adaptec Starfire manuals, available only from Adaptec.
269 http://www.scyld.com/expert/100mbps.html
270 http://www.scyld.com/expert/NWay.html
271 
272 IVc. Errata
273 
274 - StopOnPerr is broken, don't enable
275 - Hardware ethernet padding exposes random data, perform software padding
276   instead (unverified -- works correctly for all the hardware I have)
277 
278 */
279 
280 
281 
282 enum chip_capability_flags {CanHaveMII=1, };
283 
284 enum chipset {
285 	CH_6915 = 0,
286 };
287 
288 static DEFINE_PCI_DEVICE_TABLE(starfire_pci_tbl) = {
289 	{ PCI_VDEVICE(ADAPTEC, 0x6915), CH_6915 },
290 	{ 0, }
291 };
292 MODULE_DEVICE_TABLE(pci, starfire_pci_tbl);
293 
294 /* A chip capabilities table, matching the CH_xxx entries in xxx_pci_tbl[] above. */
295 static const struct chip_info {
296 	const char *name;
297 	int drv_flags;
298 } netdrv_tbl[] __devinitconst = {
299 	{ "Adaptec Starfire 6915", CanHaveMII },
300 };
301 
302 
303 /* Offsets to the device registers.
304    Unlike software-only systems, device drivers interact with complex hardware.
305    It's not useful to define symbolic names for every register bit in the
306    device.  The name can only partially document the semantics and make
307    the driver longer and more difficult to read.
308    In general, only the important configuration values or bits changed
309    multiple times should be defined symbolically.
310 */
311 enum register_offsets {
312 	PCIDeviceConfig=0x50040, GenCtrl=0x50070, IntrTimerCtrl=0x50074,
313 	IntrClear=0x50080, IntrStatus=0x50084, IntrEnable=0x50088,
314 	MIICtrl=0x52000, TxStationAddr=0x50120, EEPROMCtrl=0x51000,
315 	GPIOCtrl=0x5008C, TxDescCtrl=0x50090,
316 	TxRingPtr=0x50098, HiPriTxRingPtr=0x50094, /* Low and High priority. */
317 	TxRingHiAddr=0x5009C,		/* 64 bit address extension. */
318 	TxProducerIdx=0x500A0, TxConsumerIdx=0x500A4,
319 	TxThreshold=0x500B0,
320 	CompletionHiAddr=0x500B4, TxCompletionAddr=0x500B8,
321 	RxCompletionAddr=0x500BC, RxCompletionQ2Addr=0x500C0,
322 	CompletionQConsumerIdx=0x500C4, RxDMACtrl=0x500D0,
323 	RxDescQCtrl=0x500D4, RxDescQHiAddr=0x500DC, RxDescQAddr=0x500E0,
324 	RxDescQIdx=0x500E8, RxDMAStatus=0x500F0, RxFilterMode=0x500F4,
325 	TxMode=0x55000, VlanType=0x55064,
326 	PerfFilterTable=0x56000, HashTable=0x56100,
327 	TxGfpMem=0x58000, RxGfpMem=0x5a000,
328 };
329 
330 /*
331  * Bits in the interrupt status/mask registers.
332  * Warning: setting Intr[Ab]NormalSummary in the IntrEnable register
333  * enables all the interrupt sources that are or'ed into those status bits.
334  */
335 enum intr_status_bits {
336 	IntrLinkChange=0xf0000000, IntrStatsMax=0x08000000,
337 	IntrAbnormalSummary=0x02000000, IntrGeneralTimer=0x01000000,
338 	IntrSoftware=0x800000, IntrRxComplQ1Low=0x400000,
339 	IntrTxComplQLow=0x200000, IntrPCI=0x100000,
340 	IntrDMAErr=0x080000, IntrTxDataLow=0x040000,
341 	IntrRxComplQ2Low=0x020000, IntrRxDescQ1Low=0x010000,
342 	IntrNormalSummary=0x8000, IntrTxDone=0x4000,
343 	IntrTxDMADone=0x2000, IntrTxEmpty=0x1000,
344 	IntrEarlyRxQ2=0x0800, IntrEarlyRxQ1=0x0400,
345 	IntrRxQ2Done=0x0200, IntrRxQ1Done=0x0100,
346 	IntrRxGFPDead=0x80, IntrRxDescQ2Low=0x40,
347 	IntrNoTxCsum=0x20, IntrTxBadID=0x10,
348 	IntrHiPriTxBadID=0x08, IntrRxGfp=0x04,
349 	IntrTxGfp=0x02, IntrPCIPad=0x01,
350 	/* not quite bits */
351 	IntrRxDone=IntrRxQ2Done | IntrRxQ1Done,
352 	IntrRxEmpty=IntrRxDescQ1Low | IntrRxDescQ2Low,
353 	IntrNormalMask=0xff00, IntrAbnormalMask=0x3ff00fe,
354 };
355 
356 /* Bits in the RxFilterMode register. */
357 enum rx_mode_bits {
358 	AcceptBroadcast=0x04, AcceptAllMulticast=0x02, AcceptAll=0x01,
359 	AcceptMulticast=0x10, PerfectFilter=0x40, HashFilter=0x30,
360 	PerfectFilterVlan=0x80, MinVLANPrio=0xE000, VlanMode=0x0200,
361 	WakeupOnGFP=0x0800,
362 };
363 
364 /* Bits in the TxMode register */
365 enum tx_mode_bits {
366 	MiiSoftReset=0x8000, MIILoopback=0x4000,
367 	TxFlowEnable=0x0800, RxFlowEnable=0x0400,
368 	PadEnable=0x04, FullDuplex=0x02, HugeFrame=0x01,
369 };
370 
371 /* Bits in the TxDescCtrl register. */
372 enum tx_ctrl_bits {
373 	TxDescSpaceUnlim=0x00, TxDescSpace32=0x10, TxDescSpace64=0x20,
374 	TxDescSpace128=0x30, TxDescSpace256=0x40,
375 	TxDescType0=0x00, TxDescType1=0x01, TxDescType2=0x02,
376 	TxDescType3=0x03, TxDescType4=0x04,
377 	TxNoDMACompletion=0x08,
378 	TxDescQAddr64bit=0x80, TxDescQAddr32bit=0,
379 	TxHiPriFIFOThreshShift=24, TxPadLenShift=16,
380 	TxDMABurstSizeShift=8,
381 };
382 
383 /* Bits in the RxDescQCtrl register. */
384 enum rx_ctrl_bits {
385 	RxBufferLenShift=16, RxMinDescrThreshShift=0,
386 	RxPrefetchMode=0x8000, RxVariableQ=0x2000,
387 	Rx2048QEntries=0x4000, Rx256QEntries=0,
388 	RxDescAddr64bit=0x1000, RxDescAddr32bit=0,
389 	RxDescQAddr64bit=0x0100, RxDescQAddr32bit=0,
390 	RxDescSpace4=0x000, RxDescSpace8=0x100,
391 	RxDescSpace16=0x200, RxDescSpace32=0x300,
392 	RxDescSpace64=0x400, RxDescSpace128=0x500,
393 	RxConsumerWrEn=0x80,
394 };
395 
396 /* Bits in the RxDMACtrl register. */
397 enum rx_dmactrl_bits {
398 	RxReportBadFrames=0x80000000, RxDMAShortFrames=0x40000000,
399 	RxDMABadFrames=0x20000000, RxDMACrcErrorFrames=0x10000000,
400 	RxDMAControlFrame=0x08000000, RxDMAPauseFrame=0x04000000,
401 	RxChecksumIgnore=0, RxChecksumRejectTCPUDP=0x02000000,
402 	RxChecksumRejectTCPOnly=0x01000000,
403 	RxCompletionQ2Enable=0x800000,
404 	RxDMAQ2Disable=0, RxDMAQ2FPOnly=0x100000,
405 	RxDMAQ2SmallPkt=0x200000, RxDMAQ2HighPrio=0x300000,
406 	RxDMAQ2NonIP=0x400000,
407 	RxUseBackupQueue=0x080000, RxDMACRC=0x040000,
408 	RxEarlyIntThreshShift=12, RxHighPrioThreshShift=8,
409 	RxBurstSizeShift=0,
410 };
411 
412 /* Bits in the RxCompletionAddr register */
413 enum rx_compl_bits {
414 	RxComplQAddr64bit=0x80, RxComplQAddr32bit=0,
415 	RxComplProducerWrEn=0x40,
416 	RxComplType0=0x00, RxComplType1=0x10,
417 	RxComplType2=0x20, RxComplType3=0x30,
418 	RxComplThreshShift=0,
419 };
420 
421 /* Bits in the TxCompletionAddr register */
422 enum tx_compl_bits {
423 	TxComplQAddr64bit=0x80, TxComplQAddr32bit=0,
424 	TxComplProducerWrEn=0x40,
425 	TxComplIntrStatus=0x20,
426 	CommonQueueMode=0x10,
427 	TxComplThreshShift=0,
428 };
429 
430 /* Bits in the GenCtrl register */
431 enum gen_ctrl_bits {
432 	RxEnable=0x05, TxEnable=0x0a,
433 	RxGFPEnable=0x10, TxGFPEnable=0x20,
434 };
435 
436 /* Bits in the IntrTimerCtrl register */
437 enum intr_ctrl_bits {
438 	Timer10X=0x800, EnableIntrMasking=0x60, SmallFrameBypass=0x100,
439 	SmallFrame64=0, SmallFrame128=0x200, SmallFrame256=0x400, SmallFrame512=0x600,
440 	IntrLatencyMask=0x1f,
441 };
442 
443 /* The Rx and Tx buffer descriptors. */
444 struct starfire_rx_desc {
445 	netdrv_addr_t rxaddr;
446 };
447 enum rx_desc_bits {
448 	RxDescValid=1, RxDescEndRing=2,
449 };
450 
451 /* Completion queue entry. */
452 struct short_rx_done_desc {
453 	__le32 status;			/* Low 16 bits is length. */
454 };
455 struct basic_rx_done_desc {
456 	__le32 status;			/* Low 16 bits is length. */
457 	__le16 vlanid;
458 	__le16 status2;
459 };
460 struct csum_rx_done_desc {
461 	__le32 status;			/* Low 16 bits is length. */
462 	__le16 csum;			/* Partial checksum */
463 	__le16 status2;
464 };
465 struct full_rx_done_desc {
466 	__le32 status;			/* Low 16 bits is length. */
467 	__le16 status3;
468 	__le16 status2;
469 	__le16 vlanid;
470 	__le16 csum;			/* partial checksum */
471 	__le32 timestamp;
472 };
473 /* XXX: this is ugly and I'm not sure it's worth the trouble -Ion */
474 #ifdef VLAN_SUPPORT
475 typedef struct full_rx_done_desc rx_done_desc;
476 #define RxComplType RxComplType3
477 #else  /* not VLAN_SUPPORT */
478 typedef struct csum_rx_done_desc rx_done_desc;
479 #define RxComplType RxComplType2
480 #endif /* not VLAN_SUPPORT */
481 
482 enum rx_done_bits {
483 	RxOK=0x20000000, RxFIFOErr=0x10000000, RxBufQ2=0x08000000,
484 };
485 
486 /* Type 1 Tx descriptor. */
487 struct starfire_tx_desc_1 {
488 	__le32 status;			/* Upper bits are status, lower 16 length. */
489 	__le32 addr;
490 };
491 
492 /* Type 2 Tx descriptor. */
493 struct starfire_tx_desc_2 {
494 	__le32 status;			/* Upper bits are status, lower 16 length. */
495 	__le32 reserved;
496 	__le64 addr;
497 };
498 
499 #ifdef ADDR_64BITS
500 typedef struct starfire_tx_desc_2 starfire_tx_desc;
501 #define TX_DESC_TYPE TxDescType2
502 #else  /* not ADDR_64BITS */
503 typedef struct starfire_tx_desc_1 starfire_tx_desc;
504 #define TX_DESC_TYPE TxDescType1
505 #endif /* not ADDR_64BITS */
506 #define TX_DESC_SPACING TxDescSpaceUnlim
507 
508 enum tx_desc_bits {
509 	TxDescID=0xB0000000,
510 	TxCRCEn=0x01000000, TxDescIntr=0x08000000,
511 	TxRingWrap=0x04000000, TxCalTCP=0x02000000,
512 };
513 struct tx_done_desc {
514 	__le32 status;			/* timestamp, index. */
515 #if 0
516 	__le32 intrstatus;		/* interrupt status */
517 #endif
518 };
519 
520 struct rx_ring_info {
521 	struct sk_buff *skb;
522 	dma_addr_t mapping;
523 };
524 struct tx_ring_info {
525 	struct sk_buff *skb;
526 	dma_addr_t mapping;
527 	unsigned int used_slots;
528 };
529 
530 #define PHY_CNT		2
531 struct netdev_private {
532 	/* Descriptor rings first for alignment. */
533 	struct starfire_rx_desc *rx_ring;
534 	starfire_tx_desc *tx_ring;
535 	dma_addr_t rx_ring_dma;
536 	dma_addr_t tx_ring_dma;
537 	/* The addresses of rx/tx-in-place skbuffs. */
538 	struct rx_ring_info rx_info[RX_RING_SIZE];
539 	struct tx_ring_info tx_info[TX_RING_SIZE];
540 	/* Pointers to completion queues (full pages). */
541 	rx_done_desc *rx_done_q;
542 	dma_addr_t rx_done_q_dma;
543 	unsigned int rx_done;
544 	struct tx_done_desc *tx_done_q;
545 	dma_addr_t tx_done_q_dma;
546 	unsigned int tx_done;
547 	struct napi_struct napi;
548 	struct net_device *dev;
549 	struct pci_dev *pci_dev;
550 #ifdef VLAN_SUPPORT
551 	unsigned long active_vlans[BITS_TO_LONGS(VLAN_N_VID)];
552 #endif
553 	void *queue_mem;
554 	dma_addr_t queue_mem_dma;
555 	size_t queue_mem_size;
556 
557 	/* Frequently used values: keep some adjacent for cache effect. */
558 	spinlock_t lock;
559 	unsigned int cur_rx, dirty_rx;	/* Producer/consumer ring indices */
560 	unsigned int cur_tx, dirty_tx, reap_tx;
561 	unsigned int rx_buf_sz;		/* Based on MTU+slack. */
562 	/* These values keep track of the transceiver/media in use. */
563 	int speed100;			/* Set if speed == 100MBit. */
564 	u32 tx_mode;
565 	u32 intr_timer_ctrl;
566 	u8 tx_threshold;
567 	/* MII transceiver section. */
568 	struct mii_if_info mii_if;		/* MII lib hooks/info */
569 	int phy_cnt;			/* MII device addresses. */
570 	unsigned char phys[PHY_CNT];	/* MII device addresses. */
571 	void __iomem *base;
572 };
573 
574 
575 static int	mdio_read(struct net_device *dev, int phy_id, int location);
576 static void	mdio_write(struct net_device *dev, int phy_id, int location, int value);
577 static int	netdev_open(struct net_device *dev);
578 static void	check_duplex(struct net_device *dev);
579 static void	tx_timeout(struct net_device *dev);
580 static void	init_ring(struct net_device *dev);
581 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev);
582 static irqreturn_t intr_handler(int irq, void *dev_instance);
583 static void	netdev_error(struct net_device *dev, int intr_status);
584 static int	__netdev_rx(struct net_device *dev, int *quota);
585 static int	netdev_poll(struct napi_struct *napi, int budget);
586 static void	refill_rx_ring(struct net_device *dev);
587 static void	netdev_error(struct net_device *dev, int intr_status);
588 static void	set_rx_mode(struct net_device *dev);
589 static struct net_device_stats *get_stats(struct net_device *dev);
590 static int	netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
591 static int	netdev_close(struct net_device *dev);
592 static void	netdev_media_change(struct net_device *dev);
593 static const struct ethtool_ops ethtool_ops;
594 
595 
596 #ifdef VLAN_SUPPORT
597 static int netdev_vlan_rx_add_vid(struct net_device *dev, unsigned short vid)
598 {
599 	struct netdev_private *np = netdev_priv(dev);
600 
601 	spin_lock(&np->lock);
602 	if (debug > 1)
603 		printk("%s: Adding vlanid %d to vlan filter\n", dev->name, vid);
604 	set_bit(vid, np->active_vlans);
605 	set_rx_mode(dev);
606 	spin_unlock(&np->lock);
607 
608 	return 0;
609 }
610 
611 static int netdev_vlan_rx_kill_vid(struct net_device *dev, unsigned short vid)
612 {
613 	struct netdev_private *np = netdev_priv(dev);
614 
615 	spin_lock(&np->lock);
616 	if (debug > 1)
617 		printk("%s: removing vlanid %d from vlan filter\n", dev->name, vid);
618 	clear_bit(vid, np->active_vlans);
619 	set_rx_mode(dev);
620 	spin_unlock(&np->lock);
621 
622 	return 0;
623 }
624 #endif /* VLAN_SUPPORT */
625 
626 
627 static const struct net_device_ops netdev_ops = {
628 	.ndo_open		= netdev_open,
629 	.ndo_stop		= netdev_close,
630 	.ndo_start_xmit		= start_tx,
631 	.ndo_tx_timeout		= tx_timeout,
632 	.ndo_get_stats		= get_stats,
633 	.ndo_set_rx_mode	= set_rx_mode,
634 	.ndo_do_ioctl		= netdev_ioctl,
635 	.ndo_change_mtu		= eth_change_mtu,
636 	.ndo_set_mac_address	= eth_mac_addr,
637 	.ndo_validate_addr	= eth_validate_addr,
638 #ifdef VLAN_SUPPORT
639 	.ndo_vlan_rx_add_vid	= netdev_vlan_rx_add_vid,
640 	.ndo_vlan_rx_kill_vid	= netdev_vlan_rx_kill_vid,
641 #endif
642 };
643 
644 static int __devinit starfire_init_one(struct pci_dev *pdev,
645 				       const struct pci_device_id *ent)
646 {
647 	struct device *d = &pdev->dev;
648 	struct netdev_private *np;
649 	int i, irq, chip_idx = ent->driver_data;
650 	struct net_device *dev;
651 	long ioaddr;
652 	void __iomem *base;
653 	int drv_flags, io_size;
654 	int boguscnt;
655 
656 /* when built into the kernel, we only print version if device is found */
657 #ifndef MODULE
658 	static int printed_version;
659 	if (!printed_version++)
660 		printk(version);
661 #endif
662 
663 	if (pci_enable_device (pdev))
664 		return -EIO;
665 
666 	ioaddr = pci_resource_start(pdev, 0);
667 	io_size = pci_resource_len(pdev, 0);
668 	if (!ioaddr || ((pci_resource_flags(pdev, 0) & IORESOURCE_MEM) == 0)) {
669 		dev_err(d, "no PCI MEM resources, aborting\n");
670 		return -ENODEV;
671 	}
672 
673 	dev = alloc_etherdev(sizeof(*np));
674 	if (!dev)
675 		return -ENOMEM;
676 
677 	SET_NETDEV_DEV(dev, &pdev->dev);
678 
679 	irq = pdev->irq;
680 
681 	if (pci_request_regions (pdev, DRV_NAME)) {
682 		dev_err(d, "cannot reserve PCI resources, aborting\n");
683 		goto err_out_free_netdev;
684 	}
685 
686 	base = ioremap(ioaddr, io_size);
687 	if (!base) {
688 		dev_err(d, "cannot remap %#x @ %#lx, aborting\n",
689 			io_size, ioaddr);
690 		goto err_out_free_res;
691 	}
692 
693 	pci_set_master(pdev);
694 
695 	/* enable MWI -- it vastly improves Rx performance on sparc64 */
696 	pci_try_set_mwi(pdev);
697 
698 #ifdef ZEROCOPY
699 	/* Starfire can do TCP/UDP checksumming */
700 	if (enable_hw_cksum)
701 		dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
702 #endif /* ZEROCOPY */
703 
704 #ifdef VLAN_SUPPORT
705 	dev->features |= NETIF_F_HW_VLAN_RX | NETIF_F_HW_VLAN_FILTER;
706 #endif /* VLAN_RX_KILL_VID */
707 #ifdef ADDR_64BITS
708 	dev->features |= NETIF_F_HIGHDMA;
709 #endif /* ADDR_64BITS */
710 
711 	/* Serial EEPROM reads are hidden by the hardware. */
712 	for (i = 0; i < 6; i++)
713 		dev->dev_addr[i] = readb(base + EEPROMCtrl + 20 - i);
714 
715 #if ! defined(final_version) /* Dump the EEPROM contents during development. */
716 	if (debug > 4)
717 		for (i = 0; i < 0x20; i++)
718 			printk("%2.2x%s",
719 			       (unsigned int)readb(base + EEPROMCtrl + i),
720 			       i % 16 != 15 ? " " : "\n");
721 #endif
722 
723 	/* Issue soft reset */
724 	writel(MiiSoftReset, base + TxMode);
725 	udelay(1000);
726 	writel(0, base + TxMode);
727 
728 	/* Reset the chip to erase previous misconfiguration. */
729 	writel(1, base + PCIDeviceConfig);
730 	boguscnt = 1000;
731 	while (--boguscnt > 0) {
732 		udelay(10);
733 		if ((readl(base + PCIDeviceConfig) & 1) == 0)
734 			break;
735 	}
736 	if (boguscnt == 0)
737 		printk("%s: chipset reset never completed!\n", dev->name);
738 	/* wait a little longer */
739 	udelay(1000);
740 
741 	np = netdev_priv(dev);
742 	np->dev = dev;
743 	np->base = base;
744 	spin_lock_init(&np->lock);
745 	pci_set_drvdata(pdev, dev);
746 
747 	np->pci_dev = pdev;
748 
749 	np->mii_if.dev = dev;
750 	np->mii_if.mdio_read = mdio_read;
751 	np->mii_if.mdio_write = mdio_write;
752 	np->mii_if.phy_id_mask = 0x1f;
753 	np->mii_if.reg_num_mask = 0x1f;
754 
755 	drv_flags = netdrv_tbl[chip_idx].drv_flags;
756 
757 	np->speed100 = 1;
758 
759 	/* timer resolution is 128 * 0.8us */
760 	np->intr_timer_ctrl = (((intr_latency * 10) / 1024) & IntrLatencyMask) |
761 		Timer10X | EnableIntrMasking;
762 
763 	if (small_frames > 0) {
764 		np->intr_timer_ctrl |= SmallFrameBypass;
765 		switch (small_frames) {
766 		case 1 ... 64:
767 			np->intr_timer_ctrl |= SmallFrame64;
768 			break;
769 		case 65 ... 128:
770 			np->intr_timer_ctrl |= SmallFrame128;
771 			break;
772 		case 129 ... 256:
773 			np->intr_timer_ctrl |= SmallFrame256;
774 			break;
775 		default:
776 			np->intr_timer_ctrl |= SmallFrame512;
777 			if (small_frames > 512)
778 				printk("Adjusting small_frames down to 512\n");
779 			break;
780 		}
781 	}
782 
783 	dev->netdev_ops = &netdev_ops;
784 	dev->watchdog_timeo = TX_TIMEOUT;
785 	SET_ETHTOOL_OPS(dev, &ethtool_ops);
786 
787 	netif_napi_add(dev, &np->napi, netdev_poll, max_interrupt_work);
788 
789 	if (mtu)
790 		dev->mtu = mtu;
791 
792 	if (register_netdev(dev))
793 		goto err_out_cleardev;
794 
795 	printk(KERN_INFO "%s: %s at %p, %pM, IRQ %d.\n",
796 	       dev->name, netdrv_tbl[chip_idx].name, base,
797 	       dev->dev_addr, irq);
798 
799 	if (drv_flags & CanHaveMII) {
800 		int phy, phy_idx = 0;
801 		int mii_status;
802 		for (phy = 0; phy < 32 && phy_idx < PHY_CNT; phy++) {
803 			mdio_write(dev, phy, MII_BMCR, BMCR_RESET);
804 			mdelay(100);
805 			boguscnt = 1000;
806 			while (--boguscnt > 0)
807 				if ((mdio_read(dev, phy, MII_BMCR) & BMCR_RESET) == 0)
808 					break;
809 			if (boguscnt == 0) {
810 				printk("%s: PHY#%d reset never completed!\n", dev->name, phy);
811 				continue;
812 			}
813 			mii_status = mdio_read(dev, phy, MII_BMSR);
814 			if (mii_status != 0) {
815 				np->phys[phy_idx++] = phy;
816 				np->mii_if.advertising = mdio_read(dev, phy, MII_ADVERTISE);
817 				printk(KERN_INFO "%s: MII PHY found at address %d, status "
818 					   "%#4.4x advertising %#4.4x.\n",
819 					   dev->name, phy, mii_status, np->mii_if.advertising);
820 				/* there can be only one PHY on-board */
821 				break;
822 			}
823 		}
824 		np->phy_cnt = phy_idx;
825 		if (np->phy_cnt > 0)
826 			np->mii_if.phy_id = np->phys[0];
827 		else
828 			memset(&np->mii_if, 0, sizeof(np->mii_if));
829 	}
830 
831 	printk(KERN_INFO "%s: scatter-gather and hardware TCP cksumming %s.\n",
832 	       dev->name, enable_hw_cksum ? "enabled" : "disabled");
833 	return 0;
834 
835 err_out_cleardev:
836 	pci_set_drvdata(pdev, NULL);
837 	iounmap(base);
838 err_out_free_res:
839 	pci_release_regions (pdev);
840 err_out_free_netdev:
841 	free_netdev(dev);
842 	return -ENODEV;
843 }
844 
845 
846 /* Read the MII Management Data I/O (MDIO) interfaces. */
847 static int mdio_read(struct net_device *dev, int phy_id, int location)
848 {
849 	struct netdev_private *np = netdev_priv(dev);
850 	void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
851 	int result, boguscnt=1000;
852 	/* ??? Should we add a busy-wait here? */
853 	do {
854 		result = readl(mdio_addr);
855 	} while ((result & 0xC0000000) != 0x80000000 && --boguscnt > 0);
856 	if (boguscnt == 0)
857 		return 0;
858 	if ((result & 0xffff) == 0xffff)
859 		return 0;
860 	return result & 0xffff;
861 }
862 
863 
864 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
865 {
866 	struct netdev_private *np = netdev_priv(dev);
867 	void __iomem *mdio_addr = np->base + MIICtrl + (phy_id<<7) + (location<<2);
868 	writel(value, mdio_addr);
869 	/* The busy-wait will occur before a read. */
870 }
871 
872 
873 static int netdev_open(struct net_device *dev)
874 {
875 	const struct firmware *fw_rx, *fw_tx;
876 	const __be32 *fw_rx_data, *fw_tx_data;
877 	struct netdev_private *np = netdev_priv(dev);
878 	void __iomem *ioaddr = np->base;
879 	const int irq = np->pci_dev->irq;
880 	int i, retval;
881 	size_t tx_size, rx_size;
882 	size_t tx_done_q_size, rx_done_q_size, tx_ring_size, rx_ring_size;
883 
884 	/* Do we ever need to reset the chip??? */
885 
886 	retval = request_irq(irq, intr_handler, IRQF_SHARED, dev->name, dev);
887 	if (retval)
888 		return retval;
889 
890 	/* Disable the Rx and Tx, and reset the chip. */
891 	writel(0, ioaddr + GenCtrl);
892 	writel(1, ioaddr + PCIDeviceConfig);
893 	if (debug > 1)
894 		printk(KERN_DEBUG "%s: netdev_open() irq %d.\n",
895 		       dev->name, irq);
896 
897 	/* Allocate the various queues. */
898 	if (!np->queue_mem) {
899 		tx_done_q_size = ((sizeof(struct tx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
900 		rx_done_q_size = ((sizeof(rx_done_desc) * DONE_Q_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
901 		tx_ring_size = ((sizeof(starfire_tx_desc) * TX_RING_SIZE + QUEUE_ALIGN - 1) / QUEUE_ALIGN) * QUEUE_ALIGN;
902 		rx_ring_size = sizeof(struct starfire_rx_desc) * RX_RING_SIZE;
903 		np->queue_mem_size = tx_done_q_size + rx_done_q_size + tx_ring_size + rx_ring_size;
904 		np->queue_mem = pci_alloc_consistent(np->pci_dev, np->queue_mem_size, &np->queue_mem_dma);
905 		if (np->queue_mem == NULL) {
906 			free_irq(irq, dev);
907 			return -ENOMEM;
908 		}
909 
910 		np->tx_done_q     = np->queue_mem;
911 		np->tx_done_q_dma = np->queue_mem_dma;
912 		np->rx_done_q     = (void *) np->tx_done_q + tx_done_q_size;
913 		np->rx_done_q_dma = np->tx_done_q_dma + tx_done_q_size;
914 		np->tx_ring       = (void *) np->rx_done_q + rx_done_q_size;
915 		np->tx_ring_dma   = np->rx_done_q_dma + rx_done_q_size;
916 		np->rx_ring       = (void *) np->tx_ring + tx_ring_size;
917 		np->rx_ring_dma   = np->tx_ring_dma + tx_ring_size;
918 	}
919 
920 	/* Start with no carrier, it gets adjusted later */
921 	netif_carrier_off(dev);
922 	init_ring(dev);
923 	/* Set the size of the Rx buffers. */
924 	writel((np->rx_buf_sz << RxBufferLenShift) |
925 	       (0 << RxMinDescrThreshShift) |
926 	       RxPrefetchMode | RxVariableQ |
927 	       RX_Q_ENTRIES |
928 	       RX_DESC_Q_ADDR_SIZE | RX_DESC_ADDR_SIZE |
929 	       RxDescSpace4,
930 	       ioaddr + RxDescQCtrl);
931 
932 	/* Set up the Rx DMA controller. */
933 	writel(RxChecksumIgnore |
934 	       (0 << RxEarlyIntThreshShift) |
935 	       (6 << RxHighPrioThreshShift) |
936 	       ((DMA_BURST_SIZE / 32) << RxBurstSizeShift),
937 	       ioaddr + RxDMACtrl);
938 
939 	/* Set Tx descriptor */
940 	writel((2 << TxHiPriFIFOThreshShift) |
941 	       (0 << TxPadLenShift) |
942 	       ((DMA_BURST_SIZE / 32) << TxDMABurstSizeShift) |
943 	       TX_DESC_Q_ADDR_SIZE |
944 	       TX_DESC_SPACING | TX_DESC_TYPE,
945 	       ioaddr + TxDescCtrl);
946 
947 	writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + RxDescQHiAddr);
948 	writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + TxRingHiAddr);
949 	writel( (np->queue_mem_dma >> 16) >> 16, ioaddr + CompletionHiAddr);
950 	writel(np->rx_ring_dma, ioaddr + RxDescQAddr);
951 	writel(np->tx_ring_dma, ioaddr + TxRingPtr);
952 
953 	writel(np->tx_done_q_dma, ioaddr + TxCompletionAddr);
954 	writel(np->rx_done_q_dma |
955 	       RxComplType |
956 	       (0 << RxComplThreshShift),
957 	       ioaddr + RxCompletionAddr);
958 
959 	if (debug > 1)
960 		printk(KERN_DEBUG "%s: Filling in the station address.\n", dev->name);
961 
962 	/* Fill both the Tx SA register and the Rx perfect filter. */
963 	for (i = 0; i < 6; i++)
964 		writeb(dev->dev_addr[i], ioaddr + TxStationAddr + 5 - i);
965 	/* The first entry is special because it bypasses the VLAN filter.
966 	   Don't use it. */
967 	writew(0, ioaddr + PerfFilterTable);
968 	writew(0, ioaddr + PerfFilterTable + 4);
969 	writew(0, ioaddr + PerfFilterTable + 8);
970 	for (i = 1; i < 16; i++) {
971 		__be16 *eaddrs = (__be16 *)dev->dev_addr;
972 		void __iomem *setup_frm = ioaddr + PerfFilterTable + i * 16;
973 		writew(be16_to_cpu(eaddrs[2]), setup_frm); setup_frm += 4;
974 		writew(be16_to_cpu(eaddrs[1]), setup_frm); setup_frm += 4;
975 		writew(be16_to_cpu(eaddrs[0]), setup_frm); setup_frm += 8;
976 	}
977 
978 	/* Initialize other registers. */
979 	/* Configure the PCI bus bursts and FIFO thresholds. */
980 	np->tx_mode = TxFlowEnable|RxFlowEnable|PadEnable;	/* modified when link is up. */
981 	writel(MiiSoftReset | np->tx_mode, ioaddr + TxMode);
982 	udelay(1000);
983 	writel(np->tx_mode, ioaddr + TxMode);
984 	np->tx_threshold = 4;
985 	writel(np->tx_threshold, ioaddr + TxThreshold);
986 
987 	writel(np->intr_timer_ctrl, ioaddr + IntrTimerCtrl);
988 
989 	napi_enable(&np->napi);
990 
991 	netif_start_queue(dev);
992 
993 	if (debug > 1)
994 		printk(KERN_DEBUG "%s: Setting the Rx and Tx modes.\n", dev->name);
995 	set_rx_mode(dev);
996 
997 	np->mii_if.advertising = mdio_read(dev, np->phys[0], MII_ADVERTISE);
998 	check_duplex(dev);
999 
1000 	/* Enable GPIO interrupts on link change */
1001 	writel(0x0f00ff00, ioaddr + GPIOCtrl);
1002 
1003 	/* Set the interrupt mask */
1004 	writel(IntrRxDone | IntrRxEmpty | IntrDMAErr |
1005 	       IntrTxDMADone | IntrStatsMax | IntrLinkChange |
1006 	       IntrRxGFPDead | IntrNoTxCsum | IntrTxBadID,
1007 	       ioaddr + IntrEnable);
1008 	/* Enable PCI interrupts. */
1009 	writel(0x00800000 | readl(ioaddr + PCIDeviceConfig),
1010 	       ioaddr + PCIDeviceConfig);
1011 
1012 #ifdef VLAN_SUPPORT
1013 	/* Set VLAN type to 802.1q */
1014 	writel(ETH_P_8021Q, ioaddr + VlanType);
1015 #endif /* VLAN_SUPPORT */
1016 
1017 	retval = request_firmware(&fw_rx, FIRMWARE_RX, &np->pci_dev->dev);
1018 	if (retval) {
1019 		printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1020 		       FIRMWARE_RX);
1021 		goto out_init;
1022 	}
1023 	if (fw_rx->size % 4) {
1024 		printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1025 		       fw_rx->size, FIRMWARE_RX);
1026 		retval = -EINVAL;
1027 		goto out_rx;
1028 	}
1029 	retval = request_firmware(&fw_tx, FIRMWARE_TX, &np->pci_dev->dev);
1030 	if (retval) {
1031 		printk(KERN_ERR "starfire: Failed to load firmware \"%s\"\n",
1032 		       FIRMWARE_TX);
1033 		goto out_rx;
1034 	}
1035 	if (fw_tx->size % 4) {
1036 		printk(KERN_ERR "starfire: bogus length %zu in \"%s\"\n",
1037 		       fw_tx->size, FIRMWARE_TX);
1038 		retval = -EINVAL;
1039 		goto out_tx;
1040 	}
1041 	fw_rx_data = (const __be32 *)&fw_rx->data[0];
1042 	fw_tx_data = (const __be32 *)&fw_tx->data[0];
1043 	rx_size = fw_rx->size / 4;
1044 	tx_size = fw_tx->size / 4;
1045 
1046 	/* Load Rx/Tx firmware into the frame processors */
1047 	for (i = 0; i < rx_size; i++)
1048 		writel(be32_to_cpup(&fw_rx_data[i]), ioaddr + RxGfpMem + i * 4);
1049 	for (i = 0; i < tx_size; i++)
1050 		writel(be32_to_cpup(&fw_tx_data[i]), ioaddr + TxGfpMem + i * 4);
1051 	if (enable_hw_cksum)
1052 		/* Enable the Rx and Tx units, and the Rx/Tx frame processors. */
1053 		writel(TxEnable|TxGFPEnable|RxEnable|RxGFPEnable, ioaddr + GenCtrl);
1054 	else
1055 		/* Enable the Rx and Tx units only. */
1056 		writel(TxEnable|RxEnable, ioaddr + GenCtrl);
1057 
1058 	if (debug > 1)
1059 		printk(KERN_DEBUG "%s: Done netdev_open().\n",
1060 		       dev->name);
1061 
1062 out_tx:
1063 	release_firmware(fw_tx);
1064 out_rx:
1065 	release_firmware(fw_rx);
1066 out_init:
1067 	if (retval)
1068 		netdev_close(dev);
1069 	return retval;
1070 }
1071 
1072 
1073 static void check_duplex(struct net_device *dev)
1074 {
1075 	struct netdev_private *np = netdev_priv(dev);
1076 	u16 reg0;
1077 	int silly_count = 1000;
1078 
1079 	mdio_write(dev, np->phys[0], MII_ADVERTISE, np->mii_if.advertising);
1080 	mdio_write(dev, np->phys[0], MII_BMCR, BMCR_RESET);
1081 	udelay(500);
1082 	while (--silly_count && mdio_read(dev, np->phys[0], MII_BMCR) & BMCR_RESET)
1083 		/* do nothing */;
1084 	if (!silly_count) {
1085 		printk("%s: MII reset failed!\n", dev->name);
1086 		return;
1087 	}
1088 
1089 	reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1090 
1091 	if (!np->mii_if.force_media) {
1092 		reg0 |= BMCR_ANENABLE | BMCR_ANRESTART;
1093 	} else {
1094 		reg0 &= ~(BMCR_ANENABLE | BMCR_ANRESTART);
1095 		if (np->speed100)
1096 			reg0 |= BMCR_SPEED100;
1097 		if (np->mii_if.full_duplex)
1098 			reg0 |= BMCR_FULLDPLX;
1099 		printk(KERN_DEBUG "%s: Link forced to %sMbit %s-duplex\n",
1100 		       dev->name,
1101 		       np->speed100 ? "100" : "10",
1102 		       np->mii_if.full_duplex ? "full" : "half");
1103 	}
1104 	mdio_write(dev, np->phys[0], MII_BMCR, reg0);
1105 }
1106 
1107 
1108 static void tx_timeout(struct net_device *dev)
1109 {
1110 	struct netdev_private *np = netdev_priv(dev);
1111 	void __iomem *ioaddr = np->base;
1112 	int old_debug;
1113 
1114 	printk(KERN_WARNING "%s: Transmit timed out, status %#8.8x, "
1115 	       "resetting...\n", dev->name, (int) readl(ioaddr + IntrStatus));
1116 
1117 	/* Perhaps we should reinitialize the hardware here. */
1118 
1119 	/*
1120 	 * Stop and restart the interface.
1121 	 * Cheat and increase the debug level temporarily.
1122 	 */
1123 	old_debug = debug;
1124 	debug = 2;
1125 	netdev_close(dev);
1126 	netdev_open(dev);
1127 	debug = old_debug;
1128 
1129 	/* Trigger an immediate transmit demand. */
1130 
1131 	dev->trans_start = jiffies; /* prevent tx timeout */
1132 	dev->stats.tx_errors++;
1133 	netif_wake_queue(dev);
1134 }
1135 
1136 
1137 /* Initialize the Rx and Tx rings, along with various 'dev' bits. */
1138 static void init_ring(struct net_device *dev)
1139 {
1140 	struct netdev_private *np = netdev_priv(dev);
1141 	int i;
1142 
1143 	np->cur_rx = np->cur_tx = np->reap_tx = 0;
1144 	np->dirty_rx = np->dirty_tx = np->rx_done = np->tx_done = 0;
1145 
1146 	np->rx_buf_sz = (dev->mtu <= 1500 ? PKT_BUF_SZ : dev->mtu + 32);
1147 
1148 	/* Fill in the Rx buffers.  Handle allocation failure gracefully. */
1149 	for (i = 0; i < RX_RING_SIZE; i++) {
1150 		struct sk_buff *skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1151 		np->rx_info[i].skb = skb;
1152 		if (skb == NULL)
1153 			break;
1154 		np->rx_info[i].mapping = pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1155 		/* Grrr, we cannot offset to correctly align the IP header. */
1156 		np->rx_ring[i].rxaddr = cpu_to_dma(np->rx_info[i].mapping | RxDescValid);
1157 	}
1158 	writew(i - 1, np->base + RxDescQIdx);
1159 	np->dirty_rx = (unsigned int)(i - RX_RING_SIZE);
1160 
1161 	/* Clear the remainder of the Rx buffer ring. */
1162 	for (  ; i < RX_RING_SIZE; i++) {
1163 		np->rx_ring[i].rxaddr = 0;
1164 		np->rx_info[i].skb = NULL;
1165 		np->rx_info[i].mapping = 0;
1166 	}
1167 	/* Mark the last entry as wrapping the ring. */
1168 	np->rx_ring[RX_RING_SIZE - 1].rxaddr |= cpu_to_dma(RxDescEndRing);
1169 
1170 	/* Clear the completion rings. */
1171 	for (i = 0; i < DONE_Q_SIZE; i++) {
1172 		np->rx_done_q[i].status = 0;
1173 		np->tx_done_q[i].status = 0;
1174 	}
1175 
1176 	for (i = 0; i < TX_RING_SIZE; i++)
1177 		memset(&np->tx_info[i], 0, sizeof(np->tx_info[i]));
1178 }
1179 
1180 
1181 static netdev_tx_t start_tx(struct sk_buff *skb, struct net_device *dev)
1182 {
1183 	struct netdev_private *np = netdev_priv(dev);
1184 	unsigned int entry;
1185 	u32 status;
1186 	int i;
1187 
1188 	/*
1189 	 * be cautious here, wrapping the queue has weird semantics
1190 	 * and we may not have enough slots even when it seems we do.
1191 	 */
1192 	if ((np->cur_tx - np->dirty_tx) + skb_num_frags(skb) * 2 > TX_RING_SIZE) {
1193 		netif_stop_queue(dev);
1194 		return NETDEV_TX_BUSY;
1195 	}
1196 
1197 #if defined(ZEROCOPY) && defined(HAS_BROKEN_FIRMWARE)
1198 	if (skb->ip_summed == CHECKSUM_PARTIAL) {
1199 		if (skb_padto(skb, (skb->len + PADDING_MASK) & ~PADDING_MASK))
1200 			return NETDEV_TX_OK;
1201 	}
1202 #endif /* ZEROCOPY && HAS_BROKEN_FIRMWARE */
1203 
1204 	entry = np->cur_tx % TX_RING_SIZE;
1205 	for (i = 0; i < skb_num_frags(skb); i++) {
1206 		int wrap_ring = 0;
1207 		status = TxDescID;
1208 
1209 		if (i == 0) {
1210 			np->tx_info[entry].skb = skb;
1211 			status |= TxCRCEn;
1212 			if (entry >= TX_RING_SIZE - skb_num_frags(skb)) {
1213 				status |= TxRingWrap;
1214 				wrap_ring = 1;
1215 			}
1216 			if (np->reap_tx) {
1217 				status |= TxDescIntr;
1218 				np->reap_tx = 0;
1219 			}
1220 			if (skb->ip_summed == CHECKSUM_PARTIAL) {
1221 				status |= TxCalTCP;
1222 				dev->stats.tx_compressed++;
1223 			}
1224 			status |= skb_first_frag_len(skb) | (skb_num_frags(skb) << 16);
1225 
1226 			np->tx_info[entry].mapping =
1227 				pci_map_single(np->pci_dev, skb->data, skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1228 		} else {
1229 			const skb_frag_t *this_frag = &skb_shinfo(skb)->frags[i - 1];
1230 			status |= skb_frag_size(this_frag);
1231 			np->tx_info[entry].mapping =
1232 				pci_map_single(np->pci_dev,
1233 					       skb_frag_address(this_frag),
1234 					       skb_frag_size(this_frag),
1235 					       PCI_DMA_TODEVICE);
1236 		}
1237 
1238 		np->tx_ring[entry].addr = cpu_to_dma(np->tx_info[entry].mapping);
1239 		np->tx_ring[entry].status = cpu_to_le32(status);
1240 		if (debug > 3)
1241 			printk(KERN_DEBUG "%s: Tx #%d/#%d slot %d status %#8.8x.\n",
1242 			       dev->name, np->cur_tx, np->dirty_tx,
1243 			       entry, status);
1244 		if (wrap_ring) {
1245 			np->tx_info[entry].used_slots = TX_RING_SIZE - entry;
1246 			np->cur_tx += np->tx_info[entry].used_slots;
1247 			entry = 0;
1248 		} else {
1249 			np->tx_info[entry].used_slots = 1;
1250 			np->cur_tx += np->tx_info[entry].used_slots;
1251 			entry++;
1252 		}
1253 		/* scavenge the tx descriptors twice per TX_RING_SIZE */
1254 		if (np->cur_tx % (TX_RING_SIZE / 2) == 0)
1255 			np->reap_tx = 1;
1256 	}
1257 
1258 	/* Non-x86: explicitly flush descriptor cache lines here. */
1259 	/* Ensure all descriptors are written back before the transmit is
1260 	   initiated. - Jes */
1261 	wmb();
1262 
1263 	/* Update the producer index. */
1264 	writel(entry * (sizeof(starfire_tx_desc) / 8), np->base + TxProducerIdx);
1265 
1266 	/* 4 is arbitrary, but should be ok */
1267 	if ((np->cur_tx - np->dirty_tx) + 4 > TX_RING_SIZE)
1268 		netif_stop_queue(dev);
1269 
1270 	return NETDEV_TX_OK;
1271 }
1272 
1273 
1274 /* The interrupt handler does all of the Rx thread work and cleans up
1275    after the Tx thread. */
1276 static irqreturn_t intr_handler(int irq, void *dev_instance)
1277 {
1278 	struct net_device *dev = dev_instance;
1279 	struct netdev_private *np = netdev_priv(dev);
1280 	void __iomem *ioaddr = np->base;
1281 	int boguscnt = max_interrupt_work;
1282 	int consumer;
1283 	int tx_status;
1284 	int handled = 0;
1285 
1286 	do {
1287 		u32 intr_status = readl(ioaddr + IntrClear);
1288 
1289 		if (debug > 4)
1290 			printk(KERN_DEBUG "%s: Interrupt status %#8.8x.\n",
1291 			       dev->name, intr_status);
1292 
1293 		if (intr_status == 0 || intr_status == (u32) -1)
1294 			break;
1295 
1296 		handled = 1;
1297 
1298 		if (intr_status & (IntrRxDone | IntrRxEmpty)) {
1299 			u32 enable;
1300 
1301 			if (likely(napi_schedule_prep(&np->napi))) {
1302 				__napi_schedule(&np->napi);
1303 				enable = readl(ioaddr + IntrEnable);
1304 				enable &= ~(IntrRxDone | IntrRxEmpty);
1305 				writel(enable, ioaddr + IntrEnable);
1306 				/* flush PCI posting buffers */
1307 				readl(ioaddr + IntrEnable);
1308 			} else {
1309 				/* Paranoia check */
1310 				enable = readl(ioaddr + IntrEnable);
1311 				if (enable & (IntrRxDone | IntrRxEmpty)) {
1312 					printk(KERN_INFO
1313 					       "%s: interrupt while in poll!\n",
1314 					       dev->name);
1315 					enable &= ~(IntrRxDone | IntrRxEmpty);
1316 					writel(enable, ioaddr + IntrEnable);
1317 				}
1318 			}
1319 		}
1320 
1321 		/* Scavenge the skbuff list based on the Tx-done queue.
1322 		   There are redundant checks here that may be cleaned up
1323 		   after the driver has proven to be reliable. */
1324 		consumer = readl(ioaddr + TxConsumerIdx);
1325 		if (debug > 3)
1326 			printk(KERN_DEBUG "%s: Tx Consumer index is %d.\n",
1327 			       dev->name, consumer);
1328 
1329 		while ((tx_status = le32_to_cpu(np->tx_done_q[np->tx_done].status)) != 0) {
1330 			if (debug > 3)
1331 				printk(KERN_DEBUG "%s: Tx completion #%d entry %d is %#8.8x.\n",
1332 				       dev->name, np->dirty_tx, np->tx_done, tx_status);
1333 			if ((tx_status & 0xe0000000) == 0xa0000000) {
1334 				dev->stats.tx_packets++;
1335 			} else if ((tx_status & 0xe0000000) == 0x80000000) {
1336 				u16 entry = (tx_status & 0x7fff) / sizeof(starfire_tx_desc);
1337 				struct sk_buff *skb = np->tx_info[entry].skb;
1338 				np->tx_info[entry].skb = NULL;
1339 				pci_unmap_single(np->pci_dev,
1340 						 np->tx_info[entry].mapping,
1341 						 skb_first_frag_len(skb),
1342 						 PCI_DMA_TODEVICE);
1343 				np->tx_info[entry].mapping = 0;
1344 				np->dirty_tx += np->tx_info[entry].used_slots;
1345 				entry = (entry + np->tx_info[entry].used_slots) % TX_RING_SIZE;
1346 				{
1347 					int i;
1348 					for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
1349 						pci_unmap_single(np->pci_dev,
1350 								 np->tx_info[entry].mapping,
1351 								 skb_frag_size(&skb_shinfo(skb)->frags[i]),
1352 								 PCI_DMA_TODEVICE);
1353 						np->dirty_tx++;
1354 						entry++;
1355 					}
1356 				}
1357 
1358 				dev_kfree_skb_irq(skb);
1359 			}
1360 			np->tx_done_q[np->tx_done].status = 0;
1361 			np->tx_done = (np->tx_done + 1) % DONE_Q_SIZE;
1362 		}
1363 		writew(np->tx_done, ioaddr + CompletionQConsumerIdx + 2);
1364 
1365 		if (netif_queue_stopped(dev) &&
1366 		    (np->cur_tx - np->dirty_tx + 4 < TX_RING_SIZE)) {
1367 			/* The ring is no longer full, wake the queue. */
1368 			netif_wake_queue(dev);
1369 		}
1370 
1371 		/* Stats overflow */
1372 		if (intr_status & IntrStatsMax)
1373 			get_stats(dev);
1374 
1375 		/* Media change interrupt. */
1376 		if (intr_status & IntrLinkChange)
1377 			netdev_media_change(dev);
1378 
1379 		/* Abnormal error summary/uncommon events handlers. */
1380 		if (intr_status & IntrAbnormalSummary)
1381 			netdev_error(dev, intr_status);
1382 
1383 		if (--boguscnt < 0) {
1384 			if (debug > 1)
1385 				printk(KERN_WARNING "%s: Too much work at interrupt, "
1386 				       "status=%#8.8x.\n",
1387 				       dev->name, intr_status);
1388 			break;
1389 		}
1390 	} while (1);
1391 
1392 	if (debug > 4)
1393 		printk(KERN_DEBUG "%s: exiting interrupt, status=%#8.8x.\n",
1394 		       dev->name, (int) readl(ioaddr + IntrStatus));
1395 	return IRQ_RETVAL(handled);
1396 }
1397 
1398 
1399 /*
1400  * This routine is logically part of the interrupt/poll handler, but separated
1401  * for clarity and better register allocation.
1402  */
1403 static int __netdev_rx(struct net_device *dev, int *quota)
1404 {
1405 	struct netdev_private *np = netdev_priv(dev);
1406 	u32 desc_status;
1407 	int retcode = 0;
1408 
1409 	/* If EOP is set on the next entry, it's a new packet. Send it up. */
1410 	while ((desc_status = le32_to_cpu(np->rx_done_q[np->rx_done].status)) != 0) {
1411 		struct sk_buff *skb;
1412 		u16 pkt_len;
1413 		int entry;
1414 		rx_done_desc *desc = &np->rx_done_q[np->rx_done];
1415 
1416 		if (debug > 4)
1417 			printk(KERN_DEBUG "  netdev_rx() status of %d was %#8.8x.\n", np->rx_done, desc_status);
1418 		if (!(desc_status & RxOK)) {
1419 			/* There was an error. */
1420 			if (debug > 2)
1421 				printk(KERN_DEBUG "  netdev_rx() Rx error was %#8.8x.\n", desc_status);
1422 			dev->stats.rx_errors++;
1423 			if (desc_status & RxFIFOErr)
1424 				dev->stats.rx_fifo_errors++;
1425 			goto next_rx;
1426 		}
1427 
1428 		if (*quota <= 0) {	/* out of rx quota */
1429 			retcode = 1;
1430 			goto out;
1431 		}
1432 		(*quota)--;
1433 
1434 		pkt_len = desc_status;	/* Implicitly Truncate */
1435 		entry = (desc_status >> 16) & 0x7ff;
1436 
1437 		if (debug > 4)
1438 			printk(KERN_DEBUG "  netdev_rx() normal Rx pkt length %d, quota %d.\n", pkt_len, *quota);
1439 		/* Check if the packet is long enough to accept without copying
1440 		   to a minimally-sized skbuff. */
1441 		if (pkt_len < rx_copybreak &&
1442 		    (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
1443 			skb_reserve(skb, 2);	/* 16 byte align the IP header */
1444 			pci_dma_sync_single_for_cpu(np->pci_dev,
1445 						    np->rx_info[entry].mapping,
1446 						    pkt_len, PCI_DMA_FROMDEVICE);
1447 			skb_copy_to_linear_data(skb, np->rx_info[entry].skb->data, pkt_len);
1448 			pci_dma_sync_single_for_device(np->pci_dev,
1449 						       np->rx_info[entry].mapping,
1450 						       pkt_len, PCI_DMA_FROMDEVICE);
1451 			skb_put(skb, pkt_len);
1452 		} else {
1453 			pci_unmap_single(np->pci_dev, np->rx_info[entry].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1454 			skb = np->rx_info[entry].skb;
1455 			skb_put(skb, pkt_len);
1456 			np->rx_info[entry].skb = NULL;
1457 			np->rx_info[entry].mapping = 0;
1458 		}
1459 #ifndef final_version			/* Remove after testing. */
1460 		/* You will want this info for the initial debug. */
1461 		if (debug > 5) {
1462 			printk(KERN_DEBUG "  Rx data %pM %pM %2.2x%2.2x.\n",
1463 			       skb->data, skb->data + 6,
1464 			       skb->data[12], skb->data[13]);
1465 		}
1466 #endif
1467 
1468 		skb->protocol = eth_type_trans(skb, dev);
1469 #ifdef VLAN_SUPPORT
1470 		if (debug > 4)
1471 			printk(KERN_DEBUG "  netdev_rx() status2 of %d was %#4.4x.\n", np->rx_done, le16_to_cpu(desc->status2));
1472 #endif
1473 		if (le16_to_cpu(desc->status2) & 0x0100) {
1474 			skb->ip_summed = CHECKSUM_UNNECESSARY;
1475 			dev->stats.rx_compressed++;
1476 		}
1477 		/*
1478 		 * This feature doesn't seem to be working, at least
1479 		 * with the two firmware versions I have. If the GFP sees
1480 		 * an IP fragment, it either ignores it completely, or reports
1481 		 * "bad checksum" on it.
1482 		 *
1483 		 * Maybe I missed something -- corrections are welcome.
1484 		 * Until then, the printk stays. :-) -Ion
1485 		 */
1486 		else if (le16_to_cpu(desc->status2) & 0x0040) {
1487 			skb->ip_summed = CHECKSUM_COMPLETE;
1488 			skb->csum = le16_to_cpu(desc->csum);
1489 			printk(KERN_DEBUG "%s: checksum_hw, status2 = %#x\n", dev->name, le16_to_cpu(desc->status2));
1490 		}
1491 #ifdef VLAN_SUPPORT
1492 		if (le16_to_cpu(desc->status2) & 0x0200) {
1493 			u16 vlid = le16_to_cpu(desc->vlanid);
1494 
1495 			if (debug > 4) {
1496 				printk(KERN_DEBUG "  netdev_rx() vlanid = %d\n",
1497 				       vlid);
1498 			}
1499 			__vlan_hwaccel_put_tag(skb, vlid);
1500 		}
1501 #endif /* VLAN_SUPPORT */
1502 		netif_receive_skb(skb);
1503 		dev->stats.rx_packets++;
1504 
1505 	next_rx:
1506 		np->cur_rx++;
1507 		desc->status = 0;
1508 		np->rx_done = (np->rx_done + 1) % DONE_Q_SIZE;
1509 	}
1510 
1511 	if (*quota == 0) {	/* out of rx quota */
1512 		retcode = 1;
1513 		goto out;
1514 	}
1515 	writew(np->rx_done, np->base + CompletionQConsumerIdx);
1516 
1517  out:
1518 	refill_rx_ring(dev);
1519 	if (debug > 5)
1520 		printk(KERN_DEBUG "  exiting netdev_rx(): %d, status of %d was %#8.8x.\n",
1521 		       retcode, np->rx_done, desc_status);
1522 	return retcode;
1523 }
1524 
1525 static int netdev_poll(struct napi_struct *napi, int budget)
1526 {
1527 	struct netdev_private *np = container_of(napi, struct netdev_private, napi);
1528 	struct net_device *dev = np->dev;
1529 	u32 intr_status;
1530 	void __iomem *ioaddr = np->base;
1531 	int quota = budget;
1532 
1533 	do {
1534 		writel(IntrRxDone | IntrRxEmpty, ioaddr + IntrClear);
1535 
1536 		if (__netdev_rx(dev, &quota))
1537 			goto out;
1538 
1539 		intr_status = readl(ioaddr + IntrStatus);
1540 	} while (intr_status & (IntrRxDone | IntrRxEmpty));
1541 
1542 	napi_complete(napi);
1543 	intr_status = readl(ioaddr + IntrEnable);
1544 	intr_status |= IntrRxDone | IntrRxEmpty;
1545 	writel(intr_status, ioaddr + IntrEnable);
1546 
1547  out:
1548 	if (debug > 5)
1549 		printk(KERN_DEBUG "  exiting netdev_poll(): %d.\n",
1550 		       budget - quota);
1551 
1552 	/* Restart Rx engine if stopped. */
1553 	return budget - quota;
1554 }
1555 
1556 static void refill_rx_ring(struct net_device *dev)
1557 {
1558 	struct netdev_private *np = netdev_priv(dev);
1559 	struct sk_buff *skb;
1560 	int entry = -1;
1561 
1562 	/* Refill the Rx ring buffers. */
1563 	for (; np->cur_rx - np->dirty_rx > 0; np->dirty_rx++) {
1564 		entry = np->dirty_rx % RX_RING_SIZE;
1565 		if (np->rx_info[entry].skb == NULL) {
1566 			skb = netdev_alloc_skb(dev, np->rx_buf_sz);
1567 			np->rx_info[entry].skb = skb;
1568 			if (skb == NULL)
1569 				break;	/* Better luck next round. */
1570 			np->rx_info[entry].mapping =
1571 				pci_map_single(np->pci_dev, skb->data, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1572 			np->rx_ring[entry].rxaddr =
1573 				cpu_to_dma(np->rx_info[entry].mapping | RxDescValid);
1574 		}
1575 		if (entry == RX_RING_SIZE - 1)
1576 			np->rx_ring[entry].rxaddr |= cpu_to_dma(RxDescEndRing);
1577 	}
1578 	if (entry >= 0)
1579 		writew(entry, np->base + RxDescQIdx);
1580 }
1581 
1582 
1583 static void netdev_media_change(struct net_device *dev)
1584 {
1585 	struct netdev_private *np = netdev_priv(dev);
1586 	void __iomem *ioaddr = np->base;
1587 	u16 reg0, reg1, reg4, reg5;
1588 	u32 new_tx_mode;
1589 	u32 new_intr_timer_ctrl;
1590 
1591 	/* reset status first */
1592 	mdio_read(dev, np->phys[0], MII_BMCR);
1593 	mdio_read(dev, np->phys[0], MII_BMSR);
1594 
1595 	reg0 = mdio_read(dev, np->phys[0], MII_BMCR);
1596 	reg1 = mdio_read(dev, np->phys[0], MII_BMSR);
1597 
1598 	if (reg1 & BMSR_LSTATUS) {
1599 		/* link is up */
1600 		if (reg0 & BMCR_ANENABLE) {
1601 			/* autonegotiation is enabled */
1602 			reg4 = mdio_read(dev, np->phys[0], MII_ADVERTISE);
1603 			reg5 = mdio_read(dev, np->phys[0], MII_LPA);
1604 			if (reg4 & ADVERTISE_100FULL && reg5 & LPA_100FULL) {
1605 				np->speed100 = 1;
1606 				np->mii_if.full_duplex = 1;
1607 			} else if (reg4 & ADVERTISE_100HALF && reg5 & LPA_100HALF) {
1608 				np->speed100 = 1;
1609 				np->mii_if.full_duplex = 0;
1610 			} else if (reg4 & ADVERTISE_10FULL && reg5 & LPA_10FULL) {
1611 				np->speed100 = 0;
1612 				np->mii_if.full_duplex = 1;
1613 			} else {
1614 				np->speed100 = 0;
1615 				np->mii_if.full_duplex = 0;
1616 			}
1617 		} else {
1618 			/* autonegotiation is disabled */
1619 			if (reg0 & BMCR_SPEED100)
1620 				np->speed100 = 1;
1621 			else
1622 				np->speed100 = 0;
1623 			if (reg0 & BMCR_FULLDPLX)
1624 				np->mii_if.full_duplex = 1;
1625 			else
1626 				np->mii_if.full_duplex = 0;
1627 		}
1628 		netif_carrier_on(dev);
1629 		printk(KERN_DEBUG "%s: Link is up, running at %sMbit %s-duplex\n",
1630 		       dev->name,
1631 		       np->speed100 ? "100" : "10",
1632 		       np->mii_if.full_duplex ? "full" : "half");
1633 
1634 		new_tx_mode = np->tx_mode & ~FullDuplex;	/* duplex setting */
1635 		if (np->mii_if.full_duplex)
1636 			new_tx_mode |= FullDuplex;
1637 		if (np->tx_mode != new_tx_mode) {
1638 			np->tx_mode = new_tx_mode;
1639 			writel(np->tx_mode | MiiSoftReset, ioaddr + TxMode);
1640 			udelay(1000);
1641 			writel(np->tx_mode, ioaddr + TxMode);
1642 		}
1643 
1644 		new_intr_timer_ctrl = np->intr_timer_ctrl & ~Timer10X;
1645 		if (np->speed100)
1646 			new_intr_timer_ctrl |= Timer10X;
1647 		if (np->intr_timer_ctrl != new_intr_timer_ctrl) {
1648 			np->intr_timer_ctrl = new_intr_timer_ctrl;
1649 			writel(new_intr_timer_ctrl, ioaddr + IntrTimerCtrl);
1650 		}
1651 	} else {
1652 		netif_carrier_off(dev);
1653 		printk(KERN_DEBUG "%s: Link is down\n", dev->name);
1654 	}
1655 }
1656 
1657 
1658 static void netdev_error(struct net_device *dev, int intr_status)
1659 {
1660 	struct netdev_private *np = netdev_priv(dev);
1661 
1662 	/* Came close to underrunning the Tx FIFO, increase threshold. */
1663 	if (intr_status & IntrTxDataLow) {
1664 		if (np->tx_threshold <= PKT_BUF_SZ / 16) {
1665 			writel(++np->tx_threshold, np->base + TxThreshold);
1666 			printk(KERN_NOTICE "%s: PCI bus congestion, increasing Tx FIFO threshold to %d bytes\n",
1667 			       dev->name, np->tx_threshold * 16);
1668 		} else
1669 			printk(KERN_WARNING "%s: PCI Tx underflow -- adapter is probably malfunctioning\n", dev->name);
1670 	}
1671 	if (intr_status & IntrRxGFPDead) {
1672 		dev->stats.rx_fifo_errors++;
1673 		dev->stats.rx_errors++;
1674 	}
1675 	if (intr_status & (IntrNoTxCsum | IntrDMAErr)) {
1676 		dev->stats.tx_fifo_errors++;
1677 		dev->stats.tx_errors++;
1678 	}
1679 	if ((intr_status & ~(IntrNormalMask | IntrAbnormalSummary | IntrLinkChange | IntrStatsMax | IntrTxDataLow | IntrRxGFPDead | IntrNoTxCsum | IntrPCIPad)) && debug)
1680 		printk(KERN_ERR "%s: Something Wicked happened! %#8.8x.\n",
1681 		       dev->name, intr_status);
1682 }
1683 
1684 
1685 static struct net_device_stats *get_stats(struct net_device *dev)
1686 {
1687 	struct netdev_private *np = netdev_priv(dev);
1688 	void __iomem *ioaddr = np->base;
1689 
1690 	/* This adapter architecture needs no SMP locks. */
1691 	dev->stats.tx_bytes = readl(ioaddr + 0x57010);
1692 	dev->stats.rx_bytes = readl(ioaddr + 0x57044);
1693 	dev->stats.tx_packets = readl(ioaddr + 0x57000);
1694 	dev->stats.tx_aborted_errors =
1695 		readl(ioaddr + 0x57024) + readl(ioaddr + 0x57028);
1696 	dev->stats.tx_window_errors = readl(ioaddr + 0x57018);
1697 	dev->stats.collisions =
1698 		readl(ioaddr + 0x57004) + readl(ioaddr + 0x57008);
1699 
1700 	/* The chip only need report frame silently dropped. */
1701 	dev->stats.rx_dropped += readw(ioaddr + RxDMAStatus);
1702 	writew(0, ioaddr + RxDMAStatus);
1703 	dev->stats.rx_crc_errors = readl(ioaddr + 0x5703C);
1704 	dev->stats.rx_frame_errors = readl(ioaddr + 0x57040);
1705 	dev->stats.rx_length_errors = readl(ioaddr + 0x57058);
1706 	dev->stats.rx_missed_errors = readl(ioaddr + 0x5707C);
1707 
1708 	return &dev->stats;
1709 }
1710 
1711 #ifdef VLAN_SUPPORT
1712 static u32 set_vlan_mode(struct netdev_private *np)
1713 {
1714 	u32 ret = VlanMode;
1715 	u16 vid;
1716 	void __iomem *filter_addr = np->base + HashTable + 8;
1717 	int vlan_count = 0;
1718 
1719 	for_each_set_bit(vid, np->active_vlans, VLAN_N_VID) {
1720 		if (vlan_count == 32)
1721 			break;
1722 		writew(vid, filter_addr);
1723 		filter_addr += 16;
1724 		vlan_count++;
1725 	}
1726 	if (vlan_count == 32) {
1727 		ret |= PerfectFilterVlan;
1728 		while (vlan_count < 32) {
1729 			writew(0, filter_addr);
1730 			filter_addr += 16;
1731 			vlan_count++;
1732 		}
1733 	}
1734 	return ret;
1735 }
1736 #endif /* VLAN_SUPPORT */
1737 
1738 static void set_rx_mode(struct net_device *dev)
1739 {
1740 	struct netdev_private *np = netdev_priv(dev);
1741 	void __iomem *ioaddr = np->base;
1742 	u32 rx_mode = MinVLANPrio;
1743 	struct netdev_hw_addr *ha;
1744 	int i;
1745 
1746 #ifdef VLAN_SUPPORT
1747 	rx_mode |= set_vlan_mode(np);
1748 #endif /* VLAN_SUPPORT */
1749 
1750 	if (dev->flags & IFF_PROMISC) {	/* Set promiscuous. */
1751 		rx_mode |= AcceptAll;
1752 	} else if ((netdev_mc_count(dev) > multicast_filter_limit) ||
1753 		   (dev->flags & IFF_ALLMULTI)) {
1754 		/* Too many to match, or accept all multicasts. */
1755 		rx_mode |= AcceptBroadcast|AcceptAllMulticast|PerfectFilter;
1756 	} else if (netdev_mc_count(dev) <= 14) {
1757 		/* Use the 16 element perfect filter, skip first two entries. */
1758 		void __iomem *filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1759 		__be16 *eaddrs;
1760 		netdev_for_each_mc_addr(ha, dev) {
1761 			eaddrs = (__be16 *) ha->addr;
1762 			writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 4;
1763 			writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1764 			writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 8;
1765 		}
1766 		eaddrs = (__be16 *)dev->dev_addr;
1767 		i = netdev_mc_count(dev) + 2;
1768 		while (i++ < 16) {
1769 			writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1770 			writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1771 			writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1772 		}
1773 		rx_mode |= AcceptBroadcast|PerfectFilter;
1774 	} else {
1775 		/* Must use a multicast hash table. */
1776 		void __iomem *filter_addr;
1777 		__be16 *eaddrs;
1778 		__le16 mc_filter[32] __attribute__ ((aligned(sizeof(long))));	/* Multicast hash filter */
1779 
1780 		memset(mc_filter, 0, sizeof(mc_filter));
1781 		netdev_for_each_mc_addr(ha, dev) {
1782 			/* The chip uses the upper 9 CRC bits
1783 			   as index into the hash table */
1784 			int bit_nr = ether_crc_le(ETH_ALEN, ha->addr) >> 23;
1785 			__le32 *fptr = (__le32 *) &mc_filter[(bit_nr >> 4) & ~1];
1786 
1787 			*fptr |= cpu_to_le32(1 << (bit_nr & 31));
1788 		}
1789 		/* Clear the perfect filter list, skip first two entries. */
1790 		filter_addr = ioaddr + PerfFilterTable + 2 * 16;
1791 		eaddrs = (__be16 *)dev->dev_addr;
1792 		for (i = 2; i < 16; i++) {
1793 			writew(be16_to_cpu(eaddrs[0]), filter_addr); filter_addr += 4;
1794 			writew(be16_to_cpu(eaddrs[1]), filter_addr); filter_addr += 4;
1795 			writew(be16_to_cpu(eaddrs[2]), filter_addr); filter_addr += 8;
1796 		}
1797 		for (filter_addr = ioaddr + HashTable, i = 0; i < 32; filter_addr+= 16, i++)
1798 			writew(mc_filter[i], filter_addr);
1799 		rx_mode |= AcceptBroadcast|PerfectFilter|HashFilter;
1800 	}
1801 	writel(rx_mode, ioaddr + RxFilterMode);
1802 }
1803 
1804 static int check_if_running(struct net_device *dev)
1805 {
1806 	if (!netif_running(dev))
1807 		return -EINVAL;
1808 	return 0;
1809 }
1810 
1811 static void get_drvinfo(struct net_device *dev, struct ethtool_drvinfo *info)
1812 {
1813 	struct netdev_private *np = netdev_priv(dev);
1814 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1815 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1816 	strlcpy(info->bus_info, pci_name(np->pci_dev), sizeof(info->bus_info));
1817 }
1818 
1819 static int get_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1820 {
1821 	struct netdev_private *np = netdev_priv(dev);
1822 	spin_lock_irq(&np->lock);
1823 	mii_ethtool_gset(&np->mii_if, ecmd);
1824 	spin_unlock_irq(&np->lock);
1825 	return 0;
1826 }
1827 
1828 static int set_settings(struct net_device *dev, struct ethtool_cmd *ecmd)
1829 {
1830 	struct netdev_private *np = netdev_priv(dev);
1831 	int res;
1832 	spin_lock_irq(&np->lock);
1833 	res = mii_ethtool_sset(&np->mii_if, ecmd);
1834 	spin_unlock_irq(&np->lock);
1835 	check_duplex(dev);
1836 	return res;
1837 }
1838 
1839 static int nway_reset(struct net_device *dev)
1840 {
1841 	struct netdev_private *np = netdev_priv(dev);
1842 	return mii_nway_restart(&np->mii_if);
1843 }
1844 
1845 static u32 get_link(struct net_device *dev)
1846 {
1847 	struct netdev_private *np = netdev_priv(dev);
1848 	return mii_link_ok(&np->mii_if);
1849 }
1850 
1851 static u32 get_msglevel(struct net_device *dev)
1852 {
1853 	return debug;
1854 }
1855 
1856 static void set_msglevel(struct net_device *dev, u32 val)
1857 {
1858 	debug = val;
1859 }
1860 
1861 static const struct ethtool_ops ethtool_ops = {
1862 	.begin = check_if_running,
1863 	.get_drvinfo = get_drvinfo,
1864 	.get_settings = get_settings,
1865 	.set_settings = set_settings,
1866 	.nway_reset = nway_reset,
1867 	.get_link = get_link,
1868 	.get_msglevel = get_msglevel,
1869 	.set_msglevel = set_msglevel,
1870 };
1871 
1872 static int netdev_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
1873 {
1874 	struct netdev_private *np = netdev_priv(dev);
1875 	struct mii_ioctl_data *data = if_mii(rq);
1876 	int rc;
1877 
1878 	if (!netif_running(dev))
1879 		return -EINVAL;
1880 
1881 	spin_lock_irq(&np->lock);
1882 	rc = generic_mii_ioctl(&np->mii_if, data, cmd, NULL);
1883 	spin_unlock_irq(&np->lock);
1884 
1885 	if ((cmd == SIOCSMIIREG) && (data->phy_id == np->phys[0]))
1886 		check_duplex(dev);
1887 
1888 	return rc;
1889 }
1890 
1891 static int netdev_close(struct net_device *dev)
1892 {
1893 	struct netdev_private *np = netdev_priv(dev);
1894 	void __iomem *ioaddr = np->base;
1895 	int i;
1896 
1897 	netif_stop_queue(dev);
1898 
1899 	napi_disable(&np->napi);
1900 
1901 	if (debug > 1) {
1902 		printk(KERN_DEBUG "%s: Shutting down ethercard, Intr status %#8.8x.\n",
1903 			   dev->name, (int) readl(ioaddr + IntrStatus));
1904 		printk(KERN_DEBUG "%s: Queue pointers were Tx %d / %d, Rx %d / %d.\n",
1905 		       dev->name, np->cur_tx, np->dirty_tx,
1906 		       np->cur_rx, np->dirty_rx);
1907 	}
1908 
1909 	/* Disable interrupts by clearing the interrupt mask. */
1910 	writel(0, ioaddr + IntrEnable);
1911 
1912 	/* Stop the chip's Tx and Rx processes. */
1913 	writel(0, ioaddr + GenCtrl);
1914 	readl(ioaddr + GenCtrl);
1915 
1916 	if (debug > 5) {
1917 		printk(KERN_DEBUG"  Tx ring at %#llx:\n",
1918 		       (long long) np->tx_ring_dma);
1919 		for (i = 0; i < 8 /* TX_RING_SIZE is huge! */; i++)
1920 			printk(KERN_DEBUG " #%d desc. %#8.8x %#llx -> %#8.8x.\n",
1921 			       i, le32_to_cpu(np->tx_ring[i].status),
1922 			       (long long) dma_to_cpu(np->tx_ring[i].addr),
1923 			       le32_to_cpu(np->tx_done_q[i].status));
1924 		printk(KERN_DEBUG "  Rx ring at %#llx -> %p:\n",
1925 		       (long long) np->rx_ring_dma, np->rx_done_q);
1926 		if (np->rx_done_q)
1927 			for (i = 0; i < 8 /* RX_RING_SIZE */; i++) {
1928 				printk(KERN_DEBUG " #%d desc. %#llx -> %#8.8x\n",
1929 				       i, (long long) dma_to_cpu(np->rx_ring[i].rxaddr), le32_to_cpu(np->rx_done_q[i].status));
1930 		}
1931 	}
1932 
1933 	free_irq(np->pci_dev->irq, dev);
1934 
1935 	/* Free all the skbuffs in the Rx queue. */
1936 	for (i = 0; i < RX_RING_SIZE; i++) {
1937 		np->rx_ring[i].rxaddr = cpu_to_dma(0xBADF00D0); /* An invalid address. */
1938 		if (np->rx_info[i].skb != NULL) {
1939 			pci_unmap_single(np->pci_dev, np->rx_info[i].mapping, np->rx_buf_sz, PCI_DMA_FROMDEVICE);
1940 			dev_kfree_skb(np->rx_info[i].skb);
1941 		}
1942 		np->rx_info[i].skb = NULL;
1943 		np->rx_info[i].mapping = 0;
1944 	}
1945 	for (i = 0; i < TX_RING_SIZE; i++) {
1946 		struct sk_buff *skb = np->tx_info[i].skb;
1947 		if (skb == NULL)
1948 			continue;
1949 		pci_unmap_single(np->pci_dev,
1950 				 np->tx_info[i].mapping,
1951 				 skb_first_frag_len(skb), PCI_DMA_TODEVICE);
1952 		np->tx_info[i].mapping = 0;
1953 		dev_kfree_skb(skb);
1954 		np->tx_info[i].skb = NULL;
1955 	}
1956 
1957 	return 0;
1958 }
1959 
1960 #ifdef CONFIG_PM
1961 static int starfire_suspend(struct pci_dev *pdev, pm_message_t state)
1962 {
1963 	struct net_device *dev = pci_get_drvdata(pdev);
1964 
1965 	if (netif_running(dev)) {
1966 		netif_device_detach(dev);
1967 		netdev_close(dev);
1968 	}
1969 
1970 	pci_save_state(pdev);
1971 	pci_set_power_state(pdev, pci_choose_state(pdev,state));
1972 
1973 	return 0;
1974 }
1975 
1976 static int starfire_resume(struct pci_dev *pdev)
1977 {
1978 	struct net_device *dev = pci_get_drvdata(pdev);
1979 
1980 	pci_set_power_state(pdev, PCI_D0);
1981 	pci_restore_state(pdev);
1982 
1983 	if (netif_running(dev)) {
1984 		netdev_open(dev);
1985 		netif_device_attach(dev);
1986 	}
1987 
1988 	return 0;
1989 }
1990 #endif /* CONFIG_PM */
1991 
1992 
1993 static void __devexit starfire_remove_one (struct pci_dev *pdev)
1994 {
1995 	struct net_device *dev = pci_get_drvdata(pdev);
1996 	struct netdev_private *np = netdev_priv(dev);
1997 
1998 	BUG_ON(!dev);
1999 
2000 	unregister_netdev(dev);
2001 
2002 	if (np->queue_mem)
2003 		pci_free_consistent(pdev, np->queue_mem_size, np->queue_mem, np->queue_mem_dma);
2004 
2005 
2006 	/* XXX: add wakeup code -- requires firmware for MagicPacket */
2007 	pci_set_power_state(pdev, PCI_D3hot);	/* go to sleep in D3 mode */
2008 	pci_disable_device(pdev);
2009 
2010 	iounmap(np->base);
2011 	pci_release_regions(pdev);
2012 
2013 	pci_set_drvdata(pdev, NULL);
2014 	free_netdev(dev);			/* Will also free np!! */
2015 }
2016 
2017 
2018 static struct pci_driver starfire_driver = {
2019 	.name		= DRV_NAME,
2020 	.probe		= starfire_init_one,
2021 	.remove		= __devexit_p(starfire_remove_one),
2022 #ifdef CONFIG_PM
2023 	.suspend	= starfire_suspend,
2024 	.resume		= starfire_resume,
2025 #endif /* CONFIG_PM */
2026 	.id_table	= starfire_pci_tbl,
2027 };
2028 
2029 
2030 static int __init starfire_init (void)
2031 {
2032 /* when a module, this is printed whether or not devices are found in probe */
2033 #ifdef MODULE
2034 	printk(version);
2035 
2036 	printk(KERN_INFO DRV_NAME ": polling (NAPI) enabled\n");
2037 #endif
2038 
2039 	BUILD_BUG_ON(sizeof(dma_addr_t) != sizeof(netdrv_addr_t));
2040 
2041 	return pci_register_driver(&starfire_driver);
2042 }
2043 
2044 
2045 static void __exit starfire_cleanup (void)
2046 {
2047 	pci_unregister_driver (&starfire_driver);
2048 }
2049 
2050 
2051 module_init(starfire_init);
2052 module_exit(starfire_cleanup);
2053 
2054 
2055 /*
2056  * Local variables:
2057  *  c-basic-offset: 8
2058  *  tab-width: 8
2059  * End:
2060  */
2061