xref: /openbmc/linux/drivers/net/ethernet/3com/3c59x.c (revision e285d5bf)
1 /* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */
2 /*
3 	Written 1996-1999 by Donald Becker.
4 
5 	This software may be used and distributed according to the terms
6 	of the GNU General Public License, incorporated herein by reference.
7 
8 	This driver is for the 3Com "Vortex" and "Boomerang" series ethercards.
9 	Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597
10 	and the EtherLink XL 3c900 and 3c905 cards.
11 
12 	Problem reports and questions should be directed to
13 	vortex@scyld.com
14 
15 	The author may be reached as becker@scyld.com, or C/O
16 	Scyld Computing Corporation
17 	410 Severn Ave., Suite 210
18 	Annapolis MD 21403
19 
20 */
21 
22 /*
23  * FIXME: This driver _could_ support MTU changing, but doesn't.  See Don's hamachi.c implementation
24  * as well as other drivers
25  *
26  * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k
27  * due to dead code elimination.  There will be some performance benefits from this due to
28  * elimination of all the tests and reduced cache footprint.
29  */
30 
31 
32 #define DRV_NAME	"3c59x"
33 
34 
35 
36 /* A few values that may be tweaked. */
37 /* Keep the ring sizes a power of two for efficiency. */
38 #define TX_RING_SIZE	16
39 #define RX_RING_SIZE	32
40 #define PKT_BUF_SZ		1536			/* Size of each temporary Rx buffer.*/
41 
42 /* "Knobs" that adjust features and parameters. */
43 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
44    Setting to > 1512 effectively disables this feature. */
45 #ifndef __arm__
46 static int rx_copybreak = 200;
47 #else
48 /* ARM systems perform better by disregarding the bus-master
49    transfer capability of these cards. -- rmk */
50 static int rx_copybreak = 1513;
51 #endif
52 /* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
53 static const int mtu = 1500;
54 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
55 static int max_interrupt_work = 32;
56 /* Tx timeout interval (millisecs) */
57 static int watchdog = 5000;
58 
59 /* Allow aggregation of Tx interrupts.  Saves CPU load at the cost
60  * of possible Tx stalls if the system is blocking interrupts
61  * somewhere else.  Undefine this to disable.
62  */
63 #define tx_interrupt_mitigation 1
64 
65 /* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */
66 #define vortex_debug debug
67 #ifdef VORTEX_DEBUG
68 static int vortex_debug = VORTEX_DEBUG;
69 #else
70 static int vortex_debug = 1;
71 #endif
72 
73 #include <linux/module.h>
74 #include <linux/kernel.h>
75 #include <linux/string.h>
76 #include <linux/timer.h>
77 #include <linux/errno.h>
78 #include <linux/in.h>
79 #include <linux/ioport.h>
80 #include <linux/interrupt.h>
81 #include <linux/pci.h>
82 #include <linux/mii.h>
83 #include <linux/init.h>
84 #include <linux/netdevice.h>
85 #include <linux/etherdevice.h>
86 #include <linux/skbuff.h>
87 #include <linux/ethtool.h>
88 #include <linux/highmem.h>
89 #include <linux/eisa.h>
90 #include <linux/bitops.h>
91 #include <linux/jiffies.h>
92 #include <linux/gfp.h>
93 #include <asm/irq.h>			/* For nr_irqs only. */
94 #include <asm/io.h>
95 #include <linux/uaccess.h>
96 
97 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package.
98    This is only in the support-all-kernels source code. */
99 
100 #define RUN_AT(x) (jiffies + (x))
101 
102 #include <linux/delay.h>
103 
104 
105 static const char version[] =
106 	DRV_NAME ": Donald Becker and others.\n";
107 
108 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
109 MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver ");
110 MODULE_LICENSE("GPL");
111 
112 
113 /* Operational parameter that usually are not changed. */
114 
115 /* The Vortex size is twice that of the original EtherLinkIII series: the
116    runtime register window, window 1, is now always mapped in.
117    The Boomerang size is twice as large as the Vortex -- it has additional
118    bus master control registers. */
119 #define VORTEX_TOTAL_SIZE 0x20
120 #define BOOMERANG_TOTAL_SIZE 0x40
121 
122 /* Set iff a MII transceiver on any interface requires mdio preamble.
123    This only set with the original DP83840 on older 3c905 boards, so the extra
124    code size of a per-interface flag is not worthwhile. */
125 static char mii_preamble_required;
126 
127 #define PFX DRV_NAME ": "
128 
129 
130 
131 /*
132 				Theory of Operation
133 
134 I. Board Compatibility
135 
136 This device driver is designed for the 3Com FastEtherLink and FastEtherLink
137 XL, 3Com's PCI to 10/100baseT adapters.  It also works with the 10Mbs
138 versions of the FastEtherLink cards.  The supported product IDs are
139   3c590, 3c592, 3c595, 3c597, 3c900, 3c905
140 
141 The related ISA 3c515 is supported with a separate driver, 3c515.c, included
142 with the kernel source or available from
143     cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html
144 
145 II. Board-specific settings
146 
147 PCI bus devices are configured by the system at boot time, so no jumpers
148 need to be set on the board.  The system BIOS should be set to assign the
149 PCI INTA signal to an otherwise unused system IRQ line.
150 
151 The EEPROM settings for media type and forced-full-duplex are observed.
152 The EEPROM media type should be left at the default "autoselect" unless using
153 10base2 or AUI connections which cannot be reliably detected.
154 
155 III. Driver operation
156 
157 The 3c59x series use an interface that's very similar to the previous 3c5x9
158 series.  The primary interface is two programmed-I/O FIFOs, with an
159 alternate single-contiguous-region bus-master transfer (see next).
160 
161 The 3c900 "Boomerang" series uses a full-bus-master interface with separate
162 lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
163 DEC Tulip and Intel Speedo3.  The first chip version retains a compatible
164 programmed-I/O interface that has been removed in 'B' and subsequent board
165 revisions.
166 
167 One extension that is advertised in a very large font is that the adapters
168 are capable of being bus masters.  On the Vortex chip this capability was
169 only for a single contiguous region making it far less useful than the full
170 bus master capability.  There is a significant performance impact of taking
171 an extra interrupt or polling for the completion of each transfer, as well
172 as difficulty sharing the single transfer engine between the transmit and
173 receive threads.  Using DMA transfers is a win only with large blocks or
174 with the flawed versions of the Intel Orion motherboard PCI controller.
175 
176 The Boomerang chip's full-bus-master interface is useful, and has the
177 currently-unused advantages over other similar chips that queued transmit
178 packets may be reordered and receive buffer groups are associated with a
179 single frame.
180 
181 With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme.
182 Rather than a fixed intermediate receive buffer, this scheme allocates
183 full-sized skbuffs as receive buffers.  The value RX_COPYBREAK is used as
184 the copying breakpoint: it is chosen to trade-off the memory wasted by
185 passing the full-sized skbuff to the queue layer for all frames vs. the
186 copying cost of copying a frame to a correctly-sized skbuff.
187 
188 IIIC. Synchronization
189 The driver runs as two independent, single-threaded flows of control.  One
190 is the send-packet routine, which enforces single-threaded use by the
191 dev->tbusy flag.  The other thread is the interrupt handler, which is single
192 threaded by the hardware and other software.
193 
194 IV. Notes
195 
196 Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development
197 3c590, 3c595, and 3c900 boards.
198 The name "Vortex" is the internal 3Com project name for the PCI ASIC, and
199 the EISA version is called "Demon".  According to Terry these names come
200 from rides at the local amusement park.
201 
202 The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes!
203 This driver only supports ethernet packets because of the skbuff allocation
204 limit of 4K.
205 */
206 
207 /* This table drives the PCI probe routines.  It's mostly boilerplate in all
208    of the drivers, and will likely be provided by some future kernel.
209 */
210 enum pci_flags_bit {
211 	PCI_USES_MASTER=4,
212 };
213 
214 enum {	IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8,
215 	EEPROM_8BIT=0x10,	/* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */
216 	HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100,
217 	INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800,
218 	EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000,
219 	EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, };
220 
221 enum vortex_chips {
222 	CH_3C590 = 0,
223 	CH_3C592,
224 	CH_3C597,
225 	CH_3C595_1,
226 	CH_3C595_2,
227 
228 	CH_3C595_3,
229 	CH_3C900_1,
230 	CH_3C900_2,
231 	CH_3C900_3,
232 	CH_3C900_4,
233 
234 	CH_3C900_5,
235 	CH_3C900B_FL,
236 	CH_3C905_1,
237 	CH_3C905_2,
238 	CH_3C905B_TX,
239 	CH_3C905B_1,
240 
241 	CH_3C905B_2,
242 	CH_3C905B_FX,
243 	CH_3C905C,
244 	CH_3C9202,
245 	CH_3C980,
246 	CH_3C9805,
247 
248 	CH_3CSOHO100_TX,
249 	CH_3C555,
250 	CH_3C556,
251 	CH_3C556B,
252 	CH_3C575,
253 
254 	CH_3C575_1,
255 	CH_3CCFE575,
256 	CH_3CCFE575CT,
257 	CH_3CCFE656,
258 	CH_3CCFEM656,
259 
260 	CH_3CCFEM656_1,
261 	CH_3C450,
262 	CH_3C920,
263 	CH_3C982A,
264 	CH_3C982B,
265 
266 	CH_905BT4,
267 	CH_920B_EMB_WNM,
268 };
269 
270 
271 /* note: this array directly indexed by above enums, and MUST
272  * be kept in sync with both the enums above, and the PCI device
273  * table below
274  */
275 static struct vortex_chip_info {
276 	const char *name;
277 	int flags;
278 	int drv_flags;
279 	int io_size;
280 } vortex_info_tbl[] = {
281 	{"3c590 Vortex 10Mbps",
282 	 PCI_USES_MASTER, IS_VORTEX, 32, },
283 	{"3c592 EISA 10Mbps Demon/Vortex",					/* AKPM: from Don's 3c59x_cb.c 0.49H */
284 	 PCI_USES_MASTER, IS_VORTEX, 32, },
285 	{"3c597 EISA Fast Demon/Vortex",					/* AKPM: from Don's 3c59x_cb.c 0.49H */
286 	 PCI_USES_MASTER, IS_VORTEX, 32, },
287 	{"3c595 Vortex 100baseTx",
288 	 PCI_USES_MASTER, IS_VORTEX, 32, },
289 	{"3c595 Vortex 100baseT4",
290 	 PCI_USES_MASTER, IS_VORTEX, 32, },
291 
292 	{"3c595 Vortex 100base-MII",
293 	 PCI_USES_MASTER, IS_VORTEX, 32, },
294 	{"3c900 Boomerang 10baseT",
295 	 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
296 	{"3c900 Boomerang 10Mbps Combo",
297 	 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
298 	{"3c900 Cyclone 10Mbps TPO",						/* AKPM: from Don's 0.99M */
299 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
300 	{"3c900 Cyclone 10Mbps Combo",
301 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
302 
303 	{"3c900 Cyclone 10Mbps TPC",						/* AKPM: from Don's 0.99M */
304 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
305 	{"3c900B-FL Cyclone 10base-FL",
306 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
307 	{"3c905 Boomerang 100baseTx",
308 	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
309 	{"3c905 Boomerang 100baseT4",
310 	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
311 	{"3C905B-TX Fast Etherlink XL PCI",
312 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
313 	{"3c905B Cyclone 100baseTx",
314 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
315 
316 	{"3c905B Cyclone 10/100/BNC",
317 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
318 	{"3c905B-FX Cyclone 100baseFx",
319 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
320 	{"3c905C Tornado",
321 	PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
322 	{"3c920B-EMB-WNM (ATI Radeon 9100 IGP)",
323 	 PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, },
324 	{"3c980 Cyclone",
325 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
326 
327 	{"3c980C Python-T",
328 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
329 	{"3cSOHO100-TX Hurricane",
330 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
331 	{"3c555 Laptop Hurricane",
332 	 PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, },
333 	{"3c556 Laptop Tornado",
334 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR|
335 									HAS_HWCKSM, 128, },
336 	{"3c556B Laptop Hurricane",
337 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR|
338 	                                WNO_XCVR_PWR|HAS_HWCKSM, 128, },
339 
340 	{"3c575 [Megahertz] 10/100 LAN 	CardBus",
341 	PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
342 	{"3c575 Boomerang CardBus",
343 	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
344 	{"3CCFE575BT Cyclone CardBus",
345 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|
346 									INVERT_LED_PWR|HAS_HWCKSM, 128, },
347 	{"3CCFE575CT Tornado CardBus",
348 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
349 									MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
350 	{"3CCFE656 Cyclone CardBus",
351 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
352 									INVERT_LED_PWR|HAS_HWCKSM, 128, },
353 
354 	{"3CCFEM656B Cyclone+Winmodem CardBus",
355 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
356 									INVERT_LED_PWR|HAS_HWCKSM, 128, },
357 	{"3CXFEM656C Tornado+Winmodem CardBus",			/* From pcmcia-cs-3.1.5 */
358 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
359 									MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
360 	{"3c450 HomePNA Tornado",						/* AKPM: from Don's 0.99Q */
361 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
362 	{"3c920 Tornado",
363 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
364 	{"3c982 Hydra Dual Port A",
365 	 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
366 
367 	{"3c982 Hydra Dual Port B",
368 	 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
369 	{"3c905B-T4",
370 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
371 	{"3c920B-EMB-WNM Tornado",
372 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
373 
374 	{NULL,}, /* NULL terminated list. */
375 };
376 
377 
378 static const struct pci_device_id vortex_pci_tbl[] = {
379 	{ 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 },
380 	{ 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 },
381 	{ 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 },
382 	{ 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 },
383 	{ 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 },
384 
385 	{ 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 },
386 	{ 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 },
387 	{ 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 },
388 	{ 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 },
389 	{ 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 },
390 
391 	{ 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 },
392 	{ 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL },
393 	{ 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 },
394 	{ 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 },
395 	{ 0x10B7, 0x9054, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_TX },
396 	{ 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 },
397 
398 	{ 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 },
399 	{ 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX },
400 	{ 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C },
401 	{ 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 },
402 	{ 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 },
403 	{ 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 },
404 
405 	{ 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX },
406 	{ 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 },
407 	{ 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 },
408 	{ 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B },
409 	{ 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 },
410 
411 	{ 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 },
412 	{ 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 },
413 	{ 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT },
414 	{ 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 },
415 	{ 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 },
416 
417 	{ 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 },
418 	{ 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 },
419 	{ 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 },
420 	{ 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A },
421 	{ 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B },
422 
423 	{ 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 },
424 	{ 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM },
425 
426 	{0,}						/* 0 terminated list. */
427 };
428 MODULE_DEVICE_TABLE(pci, vortex_pci_tbl);
429 
430 
431 /* Operational definitions.
432    These are not used by other compilation units and thus are not
433    exported in a ".h" file.
434 
435    First the windows.  There are eight register windows, with the command
436    and status registers available in each.
437    */
438 #define EL3_CMD 0x0e
439 #define EL3_STATUS 0x0e
440 
441 /* The top five bits written to EL3_CMD are a command, the lower
442    11 bits are the parameter, if applicable.
443    Note that 11 parameters bits was fine for ethernet, but the new chip
444    can handle FDDI length frames (~4500 octets) and now parameters count
445    32-bit 'Dwords' rather than octets. */
446 
447 enum vortex_cmd {
448 	TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11,
449 	RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11,
450 	UpStall = 6<<11, UpUnstall = (6<<11)+1,
451 	DownStall = (6<<11)+2, DownUnstall = (6<<11)+3,
452 	RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11,
453 	FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11,
454 	SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11,
455 	SetTxThreshold = 18<<11, SetTxStart = 19<<11,
456 	StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11,
457 	StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,};
458 
459 /* The SetRxFilter command accepts the following classes: */
460 enum RxFilter {
461 	RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 };
462 
463 /* Bits in the general status register. */
464 enum vortex_status {
465 	IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004,
466 	TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
467 	IntReq = 0x0040, StatsFull = 0x0080,
468 	DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10,
469 	DMAInProgress = 1<<11,			/* DMA controller is still busy.*/
470 	CmdInProgress = 1<<12,			/* EL3_CMD is still busy.*/
471 };
472 
473 /* Register window 1 offsets, the window used in normal operation.
474    On the Vortex this window is always mapped at offsets 0x10-0x1f. */
475 enum Window1 {
476 	TX_FIFO = 0x10,  RX_FIFO = 0x10,  RxErrors = 0x14,
477 	RxStatus = 0x18,  Timer=0x1A, TxStatus = 0x1B,
478 	TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
479 };
480 enum Window0 {
481 	Wn0EepromCmd = 10,		/* Window 0: EEPROM command register. */
482 	Wn0EepromData = 12,		/* Window 0: EEPROM results register. */
483 	IntrStatus=0x0E,		/* Valid in all windows. */
484 };
485 enum Win0_EEPROM_bits {
486 	EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
487 	EEPROM_EWENB = 0x30,		/* Enable erasing/writing for 10 msec. */
488 	EEPROM_EWDIS = 0x00,		/* Disable EWENB before 10 msec timeout. */
489 };
490 /* EEPROM locations. */
491 enum eeprom_offset {
492 	PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3,
493 	EtherLink3ID=7, IFXcvrIO=8, IRQLine=9,
494 	NodeAddr01=10, NodeAddr23=11, NodeAddr45=12,
495 	DriverTune=13, Checksum=15};
496 
497 enum Window2 {			/* Window 2. */
498 	Wn2_ResetOptions=12,
499 };
500 enum Window3 {			/* Window 3: MAC/config bits. */
501 	Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8,
502 };
503 
504 #define BFEXT(value, offset, bitcount)  \
505     ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1))
506 
507 #define BFINS(lhs, rhs, offset, bitcount)					\
508 	(((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) |	\
509 	(((rhs) & ((1 << (bitcount)) - 1)) << (offset)))
510 
511 #define RAM_SIZE(v)		BFEXT(v, 0, 3)
512 #define RAM_WIDTH(v)	BFEXT(v, 3, 1)
513 #define RAM_SPEED(v)	BFEXT(v, 4, 2)
514 #define ROM_SIZE(v)		BFEXT(v, 6, 2)
515 #define RAM_SPLIT(v)	BFEXT(v, 16, 2)
516 #define XCVR(v)			BFEXT(v, 20, 4)
517 #define AUTOSELECT(v)	BFEXT(v, 24, 1)
518 
519 enum Window4 {		/* Window 4: Xcvr/media bits. */
520 	Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10,
521 };
522 enum Win4_Media_bits {
523 	Media_SQE = 0x0008,		/* Enable SQE error counting for AUI. */
524 	Media_10TP = 0x00C0,	/* Enable link beat and jabber for 10baseT. */
525 	Media_Lnk = 0x0080,		/* Enable just link beat for 100TX/100FX. */
526 	Media_LnkBeat = 0x0800,
527 };
528 enum Window7 {					/* Window 7: Bus Master control. */
529 	Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6,
530 	Wn7_MasterStatus = 12,
531 };
532 /* Boomerang bus master control registers. */
533 enum MasterCtrl {
534 	PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c,
535 	TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38,
536 };
537 
538 /* The Rx and Tx descriptor lists.
539    Caution Alpha hackers: these types are 32 bits!  Note also the 8 byte
540    alignment contraint on tx_ring[] and rx_ring[]. */
541 #define LAST_FRAG 	0x80000000			/* Last Addr/Len pair in descriptor. */
542 #define DN_COMPLETE	0x00010000			/* This packet has been downloaded */
543 struct boom_rx_desc {
544 	__le32 next;					/* Last entry points to 0.   */
545 	__le32 status;
546 	__le32 addr;					/* Up to 63 addr/len pairs possible. */
547 	__le32 length;					/* Set LAST_FRAG to indicate last pair. */
548 };
549 /* Values for the Rx status entry. */
550 enum rx_desc_status {
551 	RxDComplete=0x00008000, RxDError=0x4000,
552 	/* See boomerang_rx() for actual error bits */
553 	IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27,
554 	IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31,
555 };
556 
557 #ifdef MAX_SKB_FRAGS
558 #define DO_ZEROCOPY 1
559 #else
560 #define DO_ZEROCOPY 0
561 #endif
562 
563 struct boom_tx_desc {
564 	__le32 next;					/* Last entry points to 0.   */
565 	__le32 status;					/* bits 0:12 length, others see below.  */
566 #if DO_ZEROCOPY
567 	struct {
568 		__le32 addr;
569 		__le32 length;
570 	} frag[1+MAX_SKB_FRAGS];
571 #else
572 		__le32 addr;
573 		__le32 length;
574 #endif
575 };
576 
577 /* Values for the Tx status entry. */
578 enum tx_desc_status {
579 	CRCDisable=0x2000, TxDComplete=0x8000,
580 	AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000,
581 	TxIntrUploaded=0x80000000,		/* IRQ when in FIFO, but maybe not sent. */
582 };
583 
584 /* Chip features we care about in vp->capabilities, read from the EEPROM. */
585 enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 };
586 
587 struct vortex_extra_stats {
588 	unsigned long tx_deferred;
589 	unsigned long tx_max_collisions;
590 	unsigned long tx_multiple_collisions;
591 	unsigned long tx_single_collisions;
592 	unsigned long rx_bad_ssd;
593 };
594 
595 struct vortex_private {
596 	/* The Rx and Tx rings should be quad-word-aligned. */
597 	struct boom_rx_desc* rx_ring;
598 	struct boom_tx_desc* tx_ring;
599 	dma_addr_t rx_ring_dma;
600 	dma_addr_t tx_ring_dma;
601 	/* The addresses of transmit- and receive-in-place skbuffs. */
602 	struct sk_buff* rx_skbuff[RX_RING_SIZE];
603 	struct sk_buff* tx_skbuff[TX_RING_SIZE];
604 	unsigned int cur_rx, cur_tx;		/* The next free ring entry */
605 	unsigned int dirty_tx;	/* The ring entries to be free()ed. */
606 	struct vortex_extra_stats xstats;	/* NIC-specific extra stats */
607 	struct sk_buff *tx_skb;				/* Packet being eaten by bus master ctrl.  */
608 	dma_addr_t tx_skb_dma;				/* Allocated DMA address for bus master ctrl DMA.   */
609 
610 	/* PCI configuration space information. */
611 	struct device *gendev;
612 	void __iomem *ioaddr;			/* IO address space */
613 	void __iomem *cb_fn_base;		/* CardBus function status addr space. */
614 
615 	/* Some values here only for performance evaluation and path-coverage */
616 	int rx_nocopy, rx_copy, queued_packet, rx_csumhits;
617 	int card_idx;
618 
619 	/* The remainder are related to chip state, mostly media selection. */
620 	struct timer_list timer;			/* Media selection timer. */
621 	int options;						/* User-settable misc. driver options. */
622 	unsigned int media_override:4, 		/* Passed-in media type. */
623 		default_media:4,				/* Read from the EEPROM/Wn3_Config. */
624 		full_duplex:1, autoselect:1,
625 		bus_master:1,					/* Vortex can only do a fragment bus-m. */
626 		full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang  */
627 		flow_ctrl:1,					/* Use 802.3x flow control (PAUSE only) */
628 		partner_flow_ctrl:1,			/* Partner supports flow control */
629 		has_nway:1,
630 		enable_wol:1,					/* Wake-on-LAN is enabled */
631 		pm_state_valid:1,				/* pci_dev->saved_config_space has sane contents */
632 		open:1,
633 		medialock:1,
634 		large_frames:1,			/* accept large frames */
635 		handling_irq:1;			/* private in_irq indicator */
636 	/* {get|set}_wol operations are already serialized by rtnl.
637 	 * no additional locking is required for the enable_wol and acpi_set_WOL()
638 	 */
639 	int drv_flags;
640 	u16 status_enable;
641 	u16 intr_enable;
642 	u16 available_media;				/* From Wn3_Options. */
643 	u16 capabilities, info1, info2;		/* Various, from EEPROM. */
644 	u16 advertising;					/* NWay media advertisement */
645 	unsigned char phys[2];				/* MII device addresses. */
646 	u16 deferred;						/* Resend these interrupts when we
647 										 * bale from the ISR */
648 	u16 io_size;						/* Size of PCI region (for release_region) */
649 
650 	/* Serialises access to hardware other than MII and variables below.
651 	 * The lock hierarchy is rtnl_lock > {lock, mii_lock} > window_lock. */
652 	spinlock_t lock;
653 
654 	spinlock_t mii_lock;		/* Serialises access to MII */
655 	struct mii_if_info mii;		/* MII lib hooks/info */
656 	spinlock_t window_lock;		/* Serialises access to windowed regs */
657 	int window;			/* Register window */
658 };
659 
660 static void window_set(struct vortex_private *vp, int window)
661 {
662 	if (window != vp->window) {
663 		iowrite16(SelectWindow + window, vp->ioaddr + EL3_CMD);
664 		vp->window = window;
665 	}
666 }
667 
668 #define DEFINE_WINDOW_IO(size)						\
669 static u ## size							\
670 window_read ## size(struct vortex_private *vp, int window, int addr)	\
671 {									\
672 	unsigned long flags;						\
673 	u ## size ret;							\
674 	spin_lock_irqsave(&vp->window_lock, flags);			\
675 	window_set(vp, window);						\
676 	ret = ioread ## size(vp->ioaddr + addr);			\
677 	spin_unlock_irqrestore(&vp->window_lock, flags);		\
678 	return ret;							\
679 }									\
680 static void								\
681 window_write ## size(struct vortex_private *vp, u ## size value,	\
682 		     int window, int addr)				\
683 {									\
684 	unsigned long flags;						\
685 	spin_lock_irqsave(&vp->window_lock, flags);			\
686 	window_set(vp, window);						\
687 	iowrite ## size(value, vp->ioaddr + addr);			\
688 	spin_unlock_irqrestore(&vp->window_lock, flags);		\
689 }
690 DEFINE_WINDOW_IO(8)
691 DEFINE_WINDOW_IO(16)
692 DEFINE_WINDOW_IO(32)
693 
694 #ifdef CONFIG_PCI
695 #define DEVICE_PCI(dev) ((dev_is_pci(dev)) ? to_pci_dev((dev)) : NULL)
696 #else
697 #define DEVICE_PCI(dev) NULL
698 #endif
699 
700 #define VORTEX_PCI(vp)							\
701 	((struct pci_dev *) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL))
702 
703 #ifdef CONFIG_EISA
704 #define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL)
705 #else
706 #define DEVICE_EISA(dev) NULL
707 #endif
708 
709 #define VORTEX_EISA(vp)							\
710 	((struct eisa_device *) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL))
711 
712 /* The action to take with a media selection timer tick.
713    Note that we deviate from the 3Com order by checking 10base2 before AUI.
714  */
715 enum xcvr_types {
716 	XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
717 	XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10,
718 };
719 
720 static const struct media_table {
721 	char *name;
722 	unsigned int media_bits:16,		/* Bits to set in Wn4_Media register. */
723 		mask:8,						/* The transceiver-present bit in Wn3_Config.*/
724 		next:8;						/* The media type to try next. */
725 	int wait;						/* Time before we check media status. */
726 } media_tbl[] = {
727   {	"10baseT",   Media_10TP,0x08, XCVR_10base2, (14*HZ)/10},
728   { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10},
729   { "undefined", 0,			0x80, XCVR_10baseT, 10000},
730   { "10base2",   0,			0x10, XCVR_AUI,		(1*HZ)/10},
731   { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10},
732   { "100baseFX", Media_Lnk, 0x04, XCVR_MII,		(14*HZ)/10},
733   { "MII",		 0,			0x41, XCVR_10baseT, 3*HZ },
734   { "undefined", 0,			0x01, XCVR_10baseT, 10000},
735   { "Autonegotiate", 0,		0x41, XCVR_10baseT, 3*HZ},
736   { "MII-External",	 0,		0x41, XCVR_10baseT, 3*HZ },
737   { "Default",	 0,			0xFF, XCVR_10baseT, 10000},
738 };
739 
740 static struct {
741 	const char str[ETH_GSTRING_LEN];
742 } ethtool_stats_keys[] = {
743 	{ "tx_deferred" },
744 	{ "tx_max_collisions" },
745 	{ "tx_multiple_collisions" },
746 	{ "tx_single_collisions" },
747 	{ "rx_bad_ssd" },
748 };
749 
750 /* number of ETHTOOL_GSTATS u64's */
751 #define VORTEX_NUM_STATS    5
752 
753 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
754 				   int chip_idx, int card_idx);
755 static int vortex_up(struct net_device *dev);
756 static void vortex_down(struct net_device *dev, int final);
757 static int vortex_open(struct net_device *dev);
758 static void mdio_sync(struct vortex_private *vp, int bits);
759 static int mdio_read(struct net_device *dev, int phy_id, int location);
760 static void mdio_write(struct net_device *vp, int phy_id, int location, int value);
761 static void vortex_timer(struct timer_list *t);
762 static netdev_tx_t vortex_start_xmit(struct sk_buff *skb,
763 				     struct net_device *dev);
764 static netdev_tx_t boomerang_start_xmit(struct sk_buff *skb,
765 					struct net_device *dev);
766 static int vortex_rx(struct net_device *dev);
767 static int boomerang_rx(struct net_device *dev);
768 static irqreturn_t vortex_boomerang_interrupt(int irq, void *dev_id);
769 static irqreturn_t _vortex_interrupt(int irq, struct net_device *dev);
770 static irqreturn_t _boomerang_interrupt(int irq, struct net_device *dev);
771 static int vortex_close(struct net_device *dev);
772 static void dump_tx_ring(struct net_device *dev);
773 static void update_stats(void __iomem *ioaddr, struct net_device *dev);
774 static struct net_device_stats *vortex_get_stats(struct net_device *dev);
775 static void set_rx_mode(struct net_device *dev);
776 #ifdef CONFIG_PCI
777 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
778 #endif
779 static void vortex_tx_timeout(struct net_device *dev);
780 static void acpi_set_WOL(struct net_device *dev);
781 static const struct ethtool_ops vortex_ethtool_ops;
782 static void set_8021q_mode(struct net_device *dev, int enable);
783 
784 /* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
785 /* Option count limit only -- unlimited interfaces are supported. */
786 #define MAX_UNITS 8
787 static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 };
788 static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
789 static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
790 static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
791 static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
792 static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
793 static int global_options = -1;
794 static int global_full_duplex = -1;
795 static int global_enable_wol = -1;
796 static int global_use_mmio = -1;
797 
798 /* Variables to work-around the Compaq PCI BIOS32 problem. */
799 static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900;
800 static struct net_device *compaq_net_device;
801 
802 static int vortex_cards_found;
803 
804 module_param(debug, int, 0);
805 module_param(global_options, int, 0);
806 module_param_array(options, int, NULL, 0);
807 module_param(global_full_duplex, int, 0);
808 module_param_array(full_duplex, int, NULL, 0);
809 module_param_array(hw_checksums, int, NULL, 0);
810 module_param_array(flow_ctrl, int, NULL, 0);
811 module_param(global_enable_wol, int, 0);
812 module_param_array(enable_wol, int, NULL, 0);
813 module_param(rx_copybreak, int, 0);
814 module_param(max_interrupt_work, int, 0);
815 module_param_hw(compaq_ioaddr, int, ioport, 0);
816 module_param_hw(compaq_irq, int, irq, 0);
817 module_param(compaq_device_id, int, 0);
818 module_param(watchdog, int, 0);
819 module_param(global_use_mmio, int, 0);
820 module_param_array(use_mmio, int, NULL, 0);
821 MODULE_PARM_DESC(debug, "3c59x debug level (0-6)");
822 MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex");
823 MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset");
824 MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)");
825 MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset");
826 MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)");
827 MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)");
828 MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)");
829 MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset");
830 MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames");
831 MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt");
832 MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)");
833 MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)");
834 MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)");
835 MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds");
836 MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset");
837 MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)");
838 
839 #ifdef CONFIG_NET_POLL_CONTROLLER
840 static void poll_vortex(struct net_device *dev)
841 {
842 	vortex_boomerang_interrupt(dev->irq, dev);
843 }
844 #endif
845 
846 #ifdef CONFIG_PM
847 
848 static int vortex_suspend(struct device *dev)
849 {
850 	struct pci_dev *pdev = to_pci_dev(dev);
851 	struct net_device *ndev = pci_get_drvdata(pdev);
852 
853 	if (!ndev || !netif_running(ndev))
854 		return 0;
855 
856 	netif_device_detach(ndev);
857 	vortex_down(ndev, 1);
858 
859 	return 0;
860 }
861 
862 static int vortex_resume(struct device *dev)
863 {
864 	struct pci_dev *pdev = to_pci_dev(dev);
865 	struct net_device *ndev = pci_get_drvdata(pdev);
866 	int err;
867 
868 	if (!ndev || !netif_running(ndev))
869 		return 0;
870 
871 	err = vortex_up(ndev);
872 	if (err)
873 		return err;
874 
875 	netif_device_attach(ndev);
876 
877 	return 0;
878 }
879 
880 static const struct dev_pm_ops vortex_pm_ops = {
881 	.suspend = vortex_suspend,
882 	.resume = vortex_resume,
883 	.freeze = vortex_suspend,
884 	.thaw = vortex_resume,
885 	.poweroff = vortex_suspend,
886 	.restore = vortex_resume,
887 };
888 
889 #define VORTEX_PM_OPS (&vortex_pm_ops)
890 
891 #else /* !CONFIG_PM */
892 
893 #define VORTEX_PM_OPS NULL
894 
895 #endif /* !CONFIG_PM */
896 
897 #ifdef CONFIG_EISA
898 static const struct eisa_device_id vortex_eisa_ids[] = {
899 	{ "TCM5920", CH_3C592 },
900 	{ "TCM5970", CH_3C597 },
901 	{ "" }
902 };
903 MODULE_DEVICE_TABLE(eisa, vortex_eisa_ids);
904 
905 static int vortex_eisa_probe(struct device *device)
906 {
907 	void __iomem *ioaddr;
908 	struct eisa_device *edev;
909 
910 	edev = to_eisa_device(device);
911 
912 	if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME))
913 		return -EBUSY;
914 
915 	ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE);
916 
917 	if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12,
918 					  edev->id.driver_data, vortex_cards_found)) {
919 		release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
920 		return -ENODEV;
921 	}
922 
923 	vortex_cards_found++;
924 
925 	return 0;
926 }
927 
928 static int vortex_eisa_remove(struct device *device)
929 {
930 	struct eisa_device *edev;
931 	struct net_device *dev;
932 	struct vortex_private *vp;
933 	void __iomem *ioaddr;
934 
935 	edev = to_eisa_device(device);
936 	dev = eisa_get_drvdata(edev);
937 
938 	if (!dev) {
939 		pr_err("vortex_eisa_remove called for Compaq device!\n");
940 		BUG();
941 	}
942 
943 	vp = netdev_priv(dev);
944 	ioaddr = vp->ioaddr;
945 
946 	unregister_netdev(dev);
947 	iowrite16(TotalReset|0x14, ioaddr + EL3_CMD);
948 	release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
949 
950 	free_netdev(dev);
951 	return 0;
952 }
953 
954 static struct eisa_driver vortex_eisa_driver = {
955 	.id_table = vortex_eisa_ids,
956 	.driver   = {
957 		.name    = "3c59x",
958 		.probe   = vortex_eisa_probe,
959 		.remove  = vortex_eisa_remove
960 	}
961 };
962 
963 #endif /* CONFIG_EISA */
964 
965 /* returns count found (>= 0), or negative on error */
966 static int __init vortex_eisa_init(void)
967 {
968 	int eisa_found = 0;
969 	int orig_cards_found = vortex_cards_found;
970 
971 #ifdef CONFIG_EISA
972 	int err;
973 
974 	err = eisa_driver_register (&vortex_eisa_driver);
975 	if (!err) {
976 		/*
977 		 * Because of the way EISA bus is probed, we cannot assume
978 		 * any device have been found when we exit from
979 		 * eisa_driver_register (the bus root driver may not be
980 		 * initialized yet). So we blindly assume something was
981 		 * found, and let the sysfs magic happened...
982 		 */
983 		eisa_found = 1;
984 	}
985 #endif
986 
987 	/* Special code to work-around the Compaq PCI BIOS32 problem. */
988 	if (compaq_ioaddr) {
989 		vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE),
990 			      compaq_irq, compaq_device_id, vortex_cards_found++);
991 	}
992 
993 	return vortex_cards_found - orig_cards_found + eisa_found;
994 }
995 
996 /* returns count (>= 0), or negative on error */
997 static int vortex_init_one(struct pci_dev *pdev,
998 			   const struct pci_device_id *ent)
999 {
1000 	int rc, unit, pci_bar;
1001 	struct vortex_chip_info *vci;
1002 	void __iomem *ioaddr;
1003 
1004 	/* wake up and enable device */
1005 	rc = pci_enable_device(pdev);
1006 	if (rc < 0)
1007 		goto out;
1008 
1009 	rc = pci_request_regions(pdev, DRV_NAME);
1010 	if (rc < 0)
1011 		goto out_disable;
1012 
1013 	unit = vortex_cards_found;
1014 
1015 	if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) {
1016 		/* Determine the default if the user didn't override us */
1017 		vci = &vortex_info_tbl[ent->driver_data];
1018 		pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0;
1019 	} else if (unit < MAX_UNITS && use_mmio[unit] >= 0)
1020 		pci_bar = use_mmio[unit] ? 1 : 0;
1021 	else
1022 		pci_bar = global_use_mmio ? 1 : 0;
1023 
1024 	ioaddr = pci_iomap(pdev, pci_bar, 0);
1025 	if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */
1026 		ioaddr = pci_iomap(pdev, 0, 0);
1027 	if (!ioaddr) {
1028 		rc = -ENOMEM;
1029 		goto out_release;
1030 	}
1031 
1032 	rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq,
1033 			   ent->driver_data, unit);
1034 	if (rc < 0)
1035 		goto out_iounmap;
1036 
1037 	vortex_cards_found++;
1038 	goto out;
1039 
1040 out_iounmap:
1041 	pci_iounmap(pdev, ioaddr);
1042 out_release:
1043 	pci_release_regions(pdev);
1044 out_disable:
1045 	pci_disable_device(pdev);
1046 out:
1047 	return rc;
1048 }
1049 
1050 static const struct net_device_ops boomrang_netdev_ops = {
1051 	.ndo_open		= vortex_open,
1052 	.ndo_stop		= vortex_close,
1053 	.ndo_start_xmit		= boomerang_start_xmit,
1054 	.ndo_tx_timeout		= vortex_tx_timeout,
1055 	.ndo_get_stats		= vortex_get_stats,
1056 #ifdef CONFIG_PCI
1057 	.ndo_do_ioctl 		= vortex_ioctl,
1058 #endif
1059 	.ndo_set_rx_mode	= set_rx_mode,
1060 	.ndo_set_mac_address 	= eth_mac_addr,
1061 	.ndo_validate_addr	= eth_validate_addr,
1062 #ifdef CONFIG_NET_POLL_CONTROLLER
1063 	.ndo_poll_controller	= poll_vortex,
1064 #endif
1065 };
1066 
1067 static const struct net_device_ops vortex_netdev_ops = {
1068 	.ndo_open		= vortex_open,
1069 	.ndo_stop		= vortex_close,
1070 	.ndo_start_xmit		= vortex_start_xmit,
1071 	.ndo_tx_timeout		= vortex_tx_timeout,
1072 	.ndo_get_stats		= vortex_get_stats,
1073 #ifdef CONFIG_PCI
1074 	.ndo_do_ioctl 		= vortex_ioctl,
1075 #endif
1076 	.ndo_set_rx_mode	= set_rx_mode,
1077 	.ndo_set_mac_address 	= eth_mac_addr,
1078 	.ndo_validate_addr	= eth_validate_addr,
1079 #ifdef CONFIG_NET_POLL_CONTROLLER
1080 	.ndo_poll_controller	= poll_vortex,
1081 #endif
1082 };
1083 
1084 /*
1085  * Start up the PCI/EISA device which is described by *gendev.
1086  * Return 0 on success.
1087  *
1088  * NOTE: pdev can be NULL, for the case of a Compaq device
1089  */
1090 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
1091 			 int chip_idx, int card_idx)
1092 {
1093 	struct vortex_private *vp;
1094 	int option;
1095 	unsigned int eeprom[0x40], checksum = 0;		/* EEPROM contents */
1096 	int i, step;
1097 	struct net_device *dev;
1098 	static int printed_version;
1099 	int retval, print_info;
1100 	struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx];
1101 	const char *print_name = "3c59x";
1102 	struct pci_dev *pdev = NULL;
1103 	struct eisa_device *edev = NULL;
1104 
1105 	if (!printed_version) {
1106 		pr_info("%s", version);
1107 		printed_version = 1;
1108 	}
1109 
1110 	if (gendev) {
1111 		if ((pdev = DEVICE_PCI(gendev))) {
1112 			print_name = pci_name(pdev);
1113 		}
1114 
1115 		if ((edev = DEVICE_EISA(gendev))) {
1116 			print_name = dev_name(&edev->dev);
1117 		}
1118 	}
1119 
1120 	dev = alloc_etherdev(sizeof(*vp));
1121 	retval = -ENOMEM;
1122 	if (!dev)
1123 		goto out;
1124 
1125 	SET_NETDEV_DEV(dev, gendev);
1126 	vp = netdev_priv(dev);
1127 
1128 	option = global_options;
1129 
1130 	/* The lower four bits are the media type. */
1131 	if (dev->mem_start) {
1132 		/*
1133 		 * The 'options' param is passed in as the third arg to the
1134 		 * LILO 'ether=' argument for non-modular use
1135 		 */
1136 		option = dev->mem_start;
1137 	}
1138 	else if (card_idx < MAX_UNITS) {
1139 		if (options[card_idx] >= 0)
1140 			option = options[card_idx];
1141 	}
1142 
1143 	if (option > 0) {
1144 		if (option & 0x8000)
1145 			vortex_debug = 7;
1146 		if (option & 0x4000)
1147 			vortex_debug = 2;
1148 		if (option & 0x0400)
1149 			vp->enable_wol = 1;
1150 	}
1151 
1152 	print_info = (vortex_debug > 1);
1153 	if (print_info)
1154 		pr_info("See Documentation/networking/vortex.txt\n");
1155 
1156 	pr_info("%s: 3Com %s %s at %p.\n",
1157 	       print_name,
1158 	       pdev ? "PCI" : "EISA",
1159 	       vci->name,
1160 	       ioaddr);
1161 
1162 	dev->base_addr = (unsigned long)ioaddr;
1163 	dev->irq = irq;
1164 	dev->mtu = mtu;
1165 	vp->ioaddr = ioaddr;
1166 	vp->large_frames = mtu > 1500;
1167 	vp->drv_flags = vci->drv_flags;
1168 	vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0;
1169 	vp->io_size = vci->io_size;
1170 	vp->card_idx = card_idx;
1171 	vp->window = -1;
1172 
1173 	/* module list only for Compaq device */
1174 	if (gendev == NULL) {
1175 		compaq_net_device = dev;
1176 	}
1177 
1178 	/* PCI-only startup logic */
1179 	if (pdev) {
1180 		/* enable bus-mastering if necessary */
1181 		if (vci->flags & PCI_USES_MASTER)
1182 			pci_set_master(pdev);
1183 
1184 		if (vci->drv_flags & IS_VORTEX) {
1185 			u8 pci_latency;
1186 			u8 new_latency = 248;
1187 
1188 			/* Check the PCI latency value.  On the 3c590 series the latency timer
1189 			   must be set to the maximum value to avoid data corruption that occurs
1190 			   when the timer expires during a transfer.  This bug exists the Vortex
1191 			   chip only. */
1192 			pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
1193 			if (pci_latency < new_latency) {
1194 				pr_info("%s: Overriding PCI latency timer (CFLT) setting of %d, new value is %d.\n",
1195 					print_name, pci_latency, new_latency);
1196 				pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency);
1197 			}
1198 		}
1199 	}
1200 
1201 	spin_lock_init(&vp->lock);
1202 	spin_lock_init(&vp->mii_lock);
1203 	spin_lock_init(&vp->window_lock);
1204 	vp->gendev = gendev;
1205 	vp->mii.dev = dev;
1206 	vp->mii.mdio_read = mdio_read;
1207 	vp->mii.mdio_write = mdio_write;
1208 	vp->mii.phy_id_mask = 0x1f;
1209 	vp->mii.reg_num_mask = 0x1f;
1210 
1211 	/* Makes sure rings are at least 16 byte aligned. */
1212 	vp->rx_ring = dma_alloc_coherent(gendev, sizeof(struct boom_rx_desc) * RX_RING_SIZE
1213 					   + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1214 					   &vp->rx_ring_dma, GFP_KERNEL);
1215 	retval = -ENOMEM;
1216 	if (!vp->rx_ring)
1217 		goto free_device;
1218 
1219 	vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE);
1220 	vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE;
1221 
1222 	/* if we are a PCI driver, we store info in pdev->driver_data
1223 	 * instead of a module list */
1224 	if (pdev)
1225 		pci_set_drvdata(pdev, dev);
1226 	if (edev)
1227 		eisa_set_drvdata(edev, dev);
1228 
1229 	vp->media_override = 7;
1230 	if (option >= 0) {
1231 		vp->media_override = ((option & 7) == 2)  ?  0  :  option & 15;
1232 		if (vp->media_override != 7)
1233 			vp->medialock = 1;
1234 		vp->full_duplex = (option & 0x200) ? 1 : 0;
1235 		vp->bus_master = (option & 16) ? 1 : 0;
1236 	}
1237 
1238 	if (global_full_duplex > 0)
1239 		vp->full_duplex = 1;
1240 	if (global_enable_wol > 0)
1241 		vp->enable_wol = 1;
1242 
1243 	if (card_idx < MAX_UNITS) {
1244 		if (full_duplex[card_idx] > 0)
1245 			vp->full_duplex = 1;
1246 		if (flow_ctrl[card_idx] > 0)
1247 			vp->flow_ctrl = 1;
1248 		if (enable_wol[card_idx] > 0)
1249 			vp->enable_wol = 1;
1250 	}
1251 
1252 	vp->mii.force_media = vp->full_duplex;
1253 	vp->options = option;
1254 	/* Read the station address from the EEPROM. */
1255 	{
1256 		int base;
1257 
1258 		if (vci->drv_flags & EEPROM_8BIT)
1259 			base = 0x230;
1260 		else if (vci->drv_flags & EEPROM_OFFSET)
1261 			base = EEPROM_Read + 0x30;
1262 		else
1263 			base = EEPROM_Read;
1264 
1265 		for (i = 0; i < 0x40; i++) {
1266 			int timer;
1267 			window_write16(vp, base + i, 0, Wn0EepromCmd);
1268 			/* Pause for at least 162 us. for the read to take place. */
1269 			for (timer = 10; timer >= 0; timer--) {
1270 				udelay(162);
1271 				if ((window_read16(vp, 0, Wn0EepromCmd) &
1272 				     0x8000) == 0)
1273 					break;
1274 			}
1275 			eeprom[i] = window_read16(vp, 0, Wn0EepromData);
1276 		}
1277 	}
1278 	for (i = 0; i < 0x18; i++)
1279 		checksum ^= eeprom[i];
1280 	checksum = (checksum ^ (checksum >> 8)) & 0xff;
1281 	if (checksum != 0x00) {		/* Grrr, needless incompatible change 3Com. */
1282 		while (i < 0x21)
1283 			checksum ^= eeprom[i++];
1284 		checksum = (checksum ^ (checksum >> 8)) & 0xff;
1285 	}
1286 	if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO))
1287 		pr_cont(" ***INVALID CHECKSUM %4.4x*** ", checksum);
1288 	for (i = 0; i < 3; i++)
1289 		((__be16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]);
1290 	if (print_info)
1291 		pr_cont(" %pM", dev->dev_addr);
1292 	/* Unfortunately an all zero eeprom passes the checksum and this
1293 	   gets found in the wild in failure cases. Crypto is hard 8) */
1294 	if (!is_valid_ether_addr(dev->dev_addr)) {
1295 		retval = -EINVAL;
1296 		pr_err("*** EEPROM MAC address is invalid.\n");
1297 		goto free_ring;	/* With every pack */
1298 	}
1299 	for (i = 0; i < 6; i++)
1300 		window_write8(vp, dev->dev_addr[i], 2, i);
1301 
1302 	if (print_info)
1303 		pr_cont(", IRQ %d\n", dev->irq);
1304 	/* Tell them about an invalid IRQ. */
1305 	if (dev->irq <= 0 || dev->irq >= nr_irqs)
1306 		pr_warn(" *** Warning: IRQ %d is unlikely to work! ***\n",
1307 			dev->irq);
1308 
1309 	step = (window_read8(vp, 4, Wn4_NetDiag) & 0x1e) >> 1;
1310 	if (print_info) {
1311 		pr_info("  product code %02x%02x rev %02x.%d date %02d-%02d-%02d\n",
1312 			eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14],
1313 			step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9);
1314 	}
1315 
1316 
1317 	if (pdev && vci->drv_flags & HAS_CB_FNS) {
1318 		unsigned short n;
1319 
1320 		vp->cb_fn_base = pci_iomap(pdev, 2, 0);
1321 		if (!vp->cb_fn_base) {
1322 			retval = -ENOMEM;
1323 			goto free_ring;
1324 		}
1325 
1326 		if (print_info) {
1327 			pr_info("%s: CardBus functions mapped %16.16llx->%p\n",
1328 				print_name,
1329 				(unsigned long long)pci_resource_start(pdev, 2),
1330 				vp->cb_fn_base);
1331 		}
1332 
1333 		n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1334 		if (vp->drv_flags & INVERT_LED_PWR)
1335 			n |= 0x10;
1336 		if (vp->drv_flags & INVERT_MII_PWR)
1337 			n |= 0x4000;
1338 		window_write16(vp, n, 2, Wn2_ResetOptions);
1339 		if (vp->drv_flags & WNO_XCVR_PWR) {
1340 			window_write16(vp, 0x0800, 0, 0);
1341 		}
1342 	}
1343 
1344 	/* Extract our information from the EEPROM data. */
1345 	vp->info1 = eeprom[13];
1346 	vp->info2 = eeprom[15];
1347 	vp->capabilities = eeprom[16];
1348 
1349 	if (vp->info1 & 0x8000) {
1350 		vp->full_duplex = 1;
1351 		if (print_info)
1352 			pr_info("Full duplex capable\n");
1353 	}
1354 
1355 	{
1356 		static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"};
1357 		unsigned int config;
1358 		vp->available_media = window_read16(vp, 3, Wn3_Options);
1359 		if ((vp->available_media & 0xff) == 0)		/* Broken 3c916 */
1360 			vp->available_media = 0x40;
1361 		config = window_read32(vp, 3, Wn3_Config);
1362 		if (print_info) {
1363 			pr_debug("  Internal config register is %4.4x, transceivers %#x.\n",
1364 				config, window_read16(vp, 3, Wn3_Options));
1365 			pr_info("  %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
1366 				   8 << RAM_SIZE(config),
1367 				   RAM_WIDTH(config) ? "word" : "byte",
1368 				   ram_split[RAM_SPLIT(config)],
1369 				   AUTOSELECT(config) ? "autoselect/" : "",
1370 				   XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" :
1371 				   media_tbl[XCVR(config)].name);
1372 		}
1373 		vp->default_media = XCVR(config);
1374 		if (vp->default_media == XCVR_NWAY)
1375 			vp->has_nway = 1;
1376 		vp->autoselect = AUTOSELECT(config);
1377 	}
1378 
1379 	if (vp->media_override != 7) {
1380 		pr_info("%s:  Media override to transceiver type %d (%s).\n",
1381 				print_name, vp->media_override,
1382 				media_tbl[vp->media_override].name);
1383 		dev->if_port = vp->media_override;
1384 	} else
1385 		dev->if_port = vp->default_media;
1386 
1387 	if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) ||
1388 		dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1389 		int phy, phy_idx = 0;
1390 		mii_preamble_required++;
1391 		if (vp->drv_flags & EXTRA_PREAMBLE)
1392 			mii_preamble_required++;
1393 		mdio_sync(vp, 32);
1394 		mdio_read(dev, 24, MII_BMSR);
1395 		for (phy = 0; phy < 32 && phy_idx < 1; phy++) {
1396 			int mii_status, phyx;
1397 
1398 			/*
1399 			 * For the 3c905CX we look at index 24 first, because it bogusly
1400 			 * reports an external PHY at all indices
1401 			 */
1402 			if (phy == 0)
1403 				phyx = 24;
1404 			else if (phy <= 24)
1405 				phyx = phy - 1;
1406 			else
1407 				phyx = phy;
1408 			mii_status = mdio_read(dev, phyx, MII_BMSR);
1409 			if (mii_status  &&  mii_status != 0xffff) {
1410 				vp->phys[phy_idx++] = phyx;
1411 				if (print_info) {
1412 					pr_info("  MII transceiver found at address %d, status %4x.\n",
1413 						phyx, mii_status);
1414 				}
1415 				if ((mii_status & 0x0040) == 0)
1416 					mii_preamble_required++;
1417 			}
1418 		}
1419 		mii_preamble_required--;
1420 		if (phy_idx == 0) {
1421 			pr_warn("  ***WARNING*** No MII transceivers found!\n");
1422 			vp->phys[0] = 24;
1423 		} else {
1424 			vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE);
1425 			if (vp->full_duplex) {
1426 				/* Only advertise the FD media types. */
1427 				vp->advertising &= ~0x02A0;
1428 				mdio_write(dev, vp->phys[0], 4, vp->advertising);
1429 			}
1430 		}
1431 		vp->mii.phy_id = vp->phys[0];
1432 	}
1433 
1434 	if (vp->capabilities & CapBusMaster) {
1435 		vp->full_bus_master_tx = 1;
1436 		if (print_info) {
1437 			pr_info("  Enabling bus-master transmits and %s receives.\n",
1438 			(vp->info2 & 1) ? "early" : "whole-frame" );
1439 		}
1440 		vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2;
1441 		vp->bus_master = 0;		/* AKPM: vortex only */
1442 	}
1443 
1444 	/* The 3c59x-specific entries in the device structure. */
1445 	if (vp->full_bus_master_tx) {
1446 		dev->netdev_ops = &boomrang_netdev_ops;
1447 		/* Actually, it still should work with iommu. */
1448 		if (card_idx < MAX_UNITS &&
1449 		    ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) ||
1450 				hw_checksums[card_idx] == 1)) {
1451 			dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1452 		}
1453 	} else
1454 		dev->netdev_ops =  &vortex_netdev_ops;
1455 
1456 	if (print_info) {
1457 		pr_info("%s: scatter/gather %sabled. h/w checksums %sabled\n",
1458 				print_name,
1459 				(dev->features & NETIF_F_SG) ? "en":"dis",
1460 				(dev->features & NETIF_F_IP_CSUM) ? "en":"dis");
1461 	}
1462 
1463 	dev->ethtool_ops = &vortex_ethtool_ops;
1464 	dev->watchdog_timeo = (watchdog * HZ) / 1000;
1465 
1466 	if (pdev) {
1467 		vp->pm_state_valid = 1;
1468 		pci_save_state(pdev);
1469  		acpi_set_WOL(dev);
1470 	}
1471 	retval = register_netdev(dev);
1472 	if (retval == 0)
1473 		return 0;
1474 
1475 free_ring:
1476 	dma_free_coherent(&pdev->dev,
1477 		sizeof(struct boom_rx_desc) * RX_RING_SIZE +
1478 		sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1479 		vp->rx_ring, vp->rx_ring_dma);
1480 free_device:
1481 	free_netdev(dev);
1482 	pr_err(PFX "vortex_probe1 fails.  Returns %d\n", retval);
1483 out:
1484 	return retval;
1485 }
1486 
1487 static void
1488 issue_and_wait(struct net_device *dev, int cmd)
1489 {
1490 	struct vortex_private *vp = netdev_priv(dev);
1491 	void __iomem *ioaddr = vp->ioaddr;
1492 	int i;
1493 
1494 	iowrite16(cmd, ioaddr + EL3_CMD);
1495 	for (i = 0; i < 2000; i++) {
1496 		if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
1497 			return;
1498 	}
1499 
1500 	/* OK, that didn't work.  Do it the slow way.  One second */
1501 	for (i = 0; i < 100000; i++) {
1502 		if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) {
1503 			if (vortex_debug > 1)
1504 				pr_info("%s: command 0x%04x took %d usecs\n",
1505 					   dev->name, cmd, i * 10);
1506 			return;
1507 		}
1508 		udelay(10);
1509 	}
1510 	pr_err("%s: command 0x%04x did not complete! Status=0x%x\n",
1511 			   dev->name, cmd, ioread16(ioaddr + EL3_STATUS));
1512 }
1513 
1514 static void
1515 vortex_set_duplex(struct net_device *dev)
1516 {
1517 	struct vortex_private *vp = netdev_priv(dev);
1518 
1519 	pr_info("%s:  setting %s-duplex.\n",
1520 		dev->name, (vp->full_duplex) ? "full" : "half");
1521 
1522 	/* Set the full-duplex bit. */
1523 	window_write16(vp,
1524 		       ((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) |
1525 		       (vp->large_frames ? 0x40 : 0) |
1526 		       ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ?
1527 			0x100 : 0),
1528 		       3, Wn3_MAC_Ctrl);
1529 }
1530 
1531 static void vortex_check_media(struct net_device *dev, unsigned int init)
1532 {
1533 	struct vortex_private *vp = netdev_priv(dev);
1534 	unsigned int ok_to_print = 0;
1535 
1536 	if (vortex_debug > 3)
1537 		ok_to_print = 1;
1538 
1539 	if (mii_check_media(&vp->mii, ok_to_print, init)) {
1540 		vp->full_duplex = vp->mii.full_duplex;
1541 		vortex_set_duplex(dev);
1542 	} else if (init) {
1543 		vortex_set_duplex(dev);
1544 	}
1545 }
1546 
1547 static int
1548 vortex_up(struct net_device *dev)
1549 {
1550 	struct vortex_private *vp = netdev_priv(dev);
1551 	void __iomem *ioaddr = vp->ioaddr;
1552 	unsigned int config;
1553 	int i, mii_reg1, mii_reg5, err = 0;
1554 
1555 	if (VORTEX_PCI(vp)) {
1556 		pci_set_power_state(VORTEX_PCI(vp), PCI_D0);	/* Go active */
1557 		if (vp->pm_state_valid)
1558 			pci_restore_state(VORTEX_PCI(vp));
1559 		err = pci_enable_device(VORTEX_PCI(vp));
1560 		if (err) {
1561 			pr_warn("%s: Could not enable device\n", dev->name);
1562 			goto err_out;
1563 		}
1564 	}
1565 
1566 	/* Before initializing select the active media port. */
1567 	config = window_read32(vp, 3, Wn3_Config);
1568 
1569 	if (vp->media_override != 7) {
1570 		pr_info("%s: Media override to transceiver %d (%s).\n",
1571 			   dev->name, vp->media_override,
1572 			   media_tbl[vp->media_override].name);
1573 		dev->if_port = vp->media_override;
1574 	} else if (vp->autoselect) {
1575 		if (vp->has_nway) {
1576 			if (vortex_debug > 1)
1577 				pr_info("%s: using NWAY device table, not %d\n",
1578 								dev->name, dev->if_port);
1579 			dev->if_port = XCVR_NWAY;
1580 		} else {
1581 			/* Find first available media type, starting with 100baseTx. */
1582 			dev->if_port = XCVR_100baseTx;
1583 			while (! (vp->available_media & media_tbl[dev->if_port].mask))
1584 				dev->if_port = media_tbl[dev->if_port].next;
1585 			if (vortex_debug > 1)
1586 				pr_info("%s: first available media type: %s\n",
1587 					dev->name, media_tbl[dev->if_port].name);
1588 		}
1589 	} else {
1590 		dev->if_port = vp->default_media;
1591 		if (vortex_debug > 1)
1592 			pr_info("%s: using default media %s\n",
1593 				dev->name, media_tbl[dev->if_port].name);
1594 	}
1595 
1596 	timer_setup(&vp->timer, vortex_timer, 0);
1597 	mod_timer(&vp->timer, RUN_AT(media_tbl[dev->if_port].wait));
1598 
1599 	if (vortex_debug > 1)
1600 		pr_debug("%s: Initial media type %s.\n",
1601 			   dev->name, media_tbl[dev->if_port].name);
1602 
1603 	vp->full_duplex = vp->mii.force_media;
1604 	config = BFINS(config, dev->if_port, 20, 4);
1605 	if (vortex_debug > 6)
1606 		pr_debug("vortex_up(): writing 0x%x to InternalConfig\n", config);
1607 	window_write32(vp, config, 3, Wn3_Config);
1608 
1609 	if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1610 		mii_reg1 = mdio_read(dev, vp->phys[0], MII_BMSR);
1611 		mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA);
1612 		vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0);
1613 		vp->mii.full_duplex = vp->full_duplex;
1614 
1615 		vortex_check_media(dev, 1);
1616 	}
1617 	else
1618 		vortex_set_duplex(dev);
1619 
1620 	issue_and_wait(dev, TxReset);
1621 	/*
1622 	 * Don't reset the PHY - that upsets autonegotiation during DHCP operations.
1623 	 */
1624 	issue_and_wait(dev, RxReset|0x04);
1625 
1626 
1627 	iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
1628 
1629 	if (vortex_debug > 1) {
1630 		pr_debug("%s: vortex_up() irq %d media status %4.4x.\n",
1631 			   dev->name, dev->irq, window_read16(vp, 4, Wn4_Media));
1632 	}
1633 
1634 	/* Set the station address and mask in window 2 each time opened. */
1635 	for (i = 0; i < 6; i++)
1636 		window_write8(vp, dev->dev_addr[i], 2, i);
1637 	for (; i < 12; i+=2)
1638 		window_write16(vp, 0, 2, i);
1639 
1640 	if (vp->cb_fn_base) {
1641 		unsigned short n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1642 		if (vp->drv_flags & INVERT_LED_PWR)
1643 			n |= 0x10;
1644 		if (vp->drv_flags & INVERT_MII_PWR)
1645 			n |= 0x4000;
1646 		window_write16(vp, n, 2, Wn2_ResetOptions);
1647 	}
1648 
1649 	if (dev->if_port == XCVR_10base2)
1650 		/* Start the thinnet transceiver. We should really wait 50ms...*/
1651 		iowrite16(StartCoax, ioaddr + EL3_CMD);
1652 	if (dev->if_port != XCVR_NWAY) {
1653 		window_write16(vp,
1654 			       (window_read16(vp, 4, Wn4_Media) &
1655 				~(Media_10TP|Media_SQE)) |
1656 			       media_tbl[dev->if_port].media_bits,
1657 			       4, Wn4_Media);
1658 	}
1659 
1660 	/* Switch to the stats window, and clear all stats by reading. */
1661 	iowrite16(StatsDisable, ioaddr + EL3_CMD);
1662 	for (i = 0; i < 10; i++)
1663 		window_read8(vp, 6, i);
1664 	window_read16(vp, 6, 10);
1665 	window_read16(vp, 6, 12);
1666 	/* New: On the Vortex we must also clear the BadSSD counter. */
1667 	window_read8(vp, 4, 12);
1668 	/* ..and on the Boomerang we enable the extra statistics bits. */
1669 	window_write16(vp, 0x0040, 4, Wn4_NetDiag);
1670 
1671 	if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1672 		vp->cur_rx = 0;
1673 		/* Initialize the RxEarly register as recommended. */
1674 		iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD);
1675 		iowrite32(0x0020, ioaddr + PktStatus);
1676 		iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr);
1677 	}
1678 	if (vp->full_bus_master_tx) { 		/* Boomerang bus master Tx. */
1679 		vp->cur_tx = vp->dirty_tx = 0;
1680 		if (vp->drv_flags & IS_BOOMERANG)
1681 			iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */
1682 		/* Clear the Rx, Tx rings. */
1683 		for (i = 0; i < RX_RING_SIZE; i++)	/* AKPM: this is done in vortex_open, too */
1684 			vp->rx_ring[i].status = 0;
1685 		for (i = 0; i < TX_RING_SIZE; i++)
1686 			vp->tx_skbuff[i] = NULL;
1687 		iowrite32(0, ioaddr + DownListPtr);
1688 	}
1689 	/* Set receiver mode: presumably accept b-case and phys addr only. */
1690 	set_rx_mode(dev);
1691 	/* enable 802.1q tagged frames */
1692 	set_8021q_mode(dev, 1);
1693 	iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
1694 
1695 	iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
1696 	iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
1697 	/* Allow status bits to be seen. */
1698 	vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete|
1699 		(vp->full_bus_master_tx ? DownComplete : TxAvailable) |
1700 		(vp->full_bus_master_rx ? UpComplete : RxComplete) |
1701 		(vp->bus_master ? DMADone : 0);
1702 	vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable |
1703 		(vp->full_bus_master_rx ? 0 : RxComplete) |
1704 		StatsFull | HostError | TxComplete | IntReq
1705 		| (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete;
1706 	iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1707 	/* Ack all pending events, and set active indicator mask. */
1708 	iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
1709 		 ioaddr + EL3_CMD);
1710 	iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1711 	if (vp->cb_fn_base)			/* The PCMCIA people are idiots.  */
1712 		iowrite32(0x8000, vp->cb_fn_base + 4);
1713 	netif_start_queue (dev);
1714 	netdev_reset_queue(dev);
1715 err_out:
1716 	return err;
1717 }
1718 
1719 static int
1720 vortex_open(struct net_device *dev)
1721 {
1722 	struct vortex_private *vp = netdev_priv(dev);
1723 	int i;
1724 	int retval;
1725 	dma_addr_t dma;
1726 
1727 	/* Use the now-standard shared IRQ implementation. */
1728 	if ((retval = request_irq(dev->irq, vortex_boomerang_interrupt, IRQF_SHARED, dev->name, dev))) {
1729 		pr_err("%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1730 		goto err;
1731 	}
1732 
1733 	if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1734 		if (vortex_debug > 2)
1735 			pr_debug("%s:  Filling in the Rx ring.\n", dev->name);
1736 		for (i = 0; i < RX_RING_SIZE; i++) {
1737 			struct sk_buff *skb;
1738 			vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1));
1739 			vp->rx_ring[i].status = 0;	/* Clear complete bit. */
1740 			vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG);
1741 
1742 			skb = __netdev_alloc_skb(dev, PKT_BUF_SZ + NET_IP_ALIGN,
1743 						 GFP_KERNEL);
1744 			vp->rx_skbuff[i] = skb;
1745 			if (skb == NULL)
1746 				break;			/* Bad news!  */
1747 
1748 			skb_reserve(skb, NET_IP_ALIGN);	/* Align IP on 16 byte boundaries */
1749 			dma = dma_map_single(vp->gendev, skb->data,
1750 					     PKT_BUF_SZ, DMA_FROM_DEVICE);
1751 			if (dma_mapping_error(vp->gendev, dma))
1752 				break;
1753 			vp->rx_ring[i].addr = cpu_to_le32(dma);
1754 		}
1755 		if (i != RX_RING_SIZE) {
1756 			pr_emerg("%s: no memory for rx ring\n", dev->name);
1757 			retval = -ENOMEM;
1758 			goto err_free_skb;
1759 		}
1760 		/* Wrap the ring. */
1761 		vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma);
1762 	}
1763 
1764 	retval = vortex_up(dev);
1765 	if (!retval)
1766 		goto out;
1767 
1768 err_free_skb:
1769 	for (i = 0; i < RX_RING_SIZE; i++) {
1770 		if (vp->rx_skbuff[i]) {
1771 			dev_kfree_skb(vp->rx_skbuff[i]);
1772 			vp->rx_skbuff[i] = NULL;
1773 		}
1774 	}
1775 	free_irq(dev->irq, dev);
1776 err:
1777 	if (vortex_debug > 1)
1778 		pr_err("%s: vortex_open() fails: returning %d\n", dev->name, retval);
1779 out:
1780 	return retval;
1781 }
1782 
1783 static void
1784 vortex_timer(struct timer_list *t)
1785 {
1786 	struct vortex_private *vp = from_timer(vp, t, timer);
1787 	struct net_device *dev = vp->mii.dev;
1788 	void __iomem *ioaddr = vp->ioaddr;
1789 	int next_tick = 60*HZ;
1790 	int ok = 0;
1791 	int media_status;
1792 
1793 	if (vortex_debug > 2) {
1794 		pr_debug("%s: Media selection timer tick happened, %s.\n",
1795 			   dev->name, media_tbl[dev->if_port].name);
1796 		pr_debug("dev->watchdog_timeo=%d\n", dev->watchdog_timeo);
1797 	}
1798 
1799 	media_status = window_read16(vp, 4, Wn4_Media);
1800 	switch (dev->if_port) {
1801 	case XCVR_10baseT:  case XCVR_100baseTx:  case XCVR_100baseFx:
1802 		if (media_status & Media_LnkBeat) {
1803 			netif_carrier_on(dev);
1804 			ok = 1;
1805 			if (vortex_debug > 1)
1806 				pr_debug("%s: Media %s has link beat, %x.\n",
1807 					   dev->name, media_tbl[dev->if_port].name, media_status);
1808 		} else {
1809 			netif_carrier_off(dev);
1810 			if (vortex_debug > 1) {
1811 				pr_debug("%s: Media %s has no link beat, %x.\n",
1812 					   dev->name, media_tbl[dev->if_port].name, media_status);
1813 			}
1814 		}
1815 		break;
1816 	case XCVR_MII: case XCVR_NWAY:
1817 		{
1818 			ok = 1;
1819 			vortex_check_media(dev, 0);
1820 		}
1821 		break;
1822 	  default:					/* Other media types handled by Tx timeouts. */
1823 		if (vortex_debug > 1)
1824 		  pr_debug("%s: Media %s has no indication, %x.\n",
1825 				 dev->name, media_tbl[dev->if_port].name, media_status);
1826 		ok = 1;
1827 	}
1828 
1829 	if (dev->flags & IFF_SLAVE || !netif_carrier_ok(dev))
1830 		next_tick = 5*HZ;
1831 
1832 	if (vp->medialock)
1833 		goto leave_media_alone;
1834 
1835 	if (!ok) {
1836 		unsigned int config;
1837 
1838 		spin_lock_irq(&vp->lock);
1839 
1840 		do {
1841 			dev->if_port = media_tbl[dev->if_port].next;
1842 		} while ( ! (vp->available_media & media_tbl[dev->if_port].mask));
1843 		if (dev->if_port == XCVR_Default) { /* Go back to default. */
1844 		  dev->if_port = vp->default_media;
1845 		  if (vortex_debug > 1)
1846 			pr_debug("%s: Media selection failing, using default %s port.\n",
1847 				   dev->name, media_tbl[dev->if_port].name);
1848 		} else {
1849 			if (vortex_debug > 1)
1850 				pr_debug("%s: Media selection failed, now trying %s port.\n",
1851 					   dev->name, media_tbl[dev->if_port].name);
1852 			next_tick = media_tbl[dev->if_port].wait;
1853 		}
1854 		window_write16(vp,
1855 			       (media_status & ~(Media_10TP|Media_SQE)) |
1856 			       media_tbl[dev->if_port].media_bits,
1857 			       4, Wn4_Media);
1858 
1859 		config = window_read32(vp, 3, Wn3_Config);
1860 		config = BFINS(config, dev->if_port, 20, 4);
1861 		window_write32(vp, config, 3, Wn3_Config);
1862 
1863 		iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax,
1864 			 ioaddr + EL3_CMD);
1865 		if (vortex_debug > 1)
1866 			pr_debug("wrote 0x%08x to Wn3_Config\n", config);
1867 		/* AKPM: FIXME: Should reset Rx & Tx here.  P60 of 3c90xc.pdf */
1868 
1869 		spin_unlock_irq(&vp->lock);
1870 	}
1871 
1872 leave_media_alone:
1873 	if (vortex_debug > 2)
1874 	  pr_debug("%s: Media selection timer finished, %s.\n",
1875 			 dev->name, media_tbl[dev->if_port].name);
1876 
1877 	mod_timer(&vp->timer, RUN_AT(next_tick));
1878 	if (vp->deferred)
1879 		iowrite16(FakeIntr, ioaddr + EL3_CMD);
1880 }
1881 
1882 static void vortex_tx_timeout(struct net_device *dev)
1883 {
1884 	struct vortex_private *vp = netdev_priv(dev);
1885 	void __iomem *ioaddr = vp->ioaddr;
1886 
1887 	pr_err("%s: transmit timed out, tx_status %2.2x status %4.4x.\n",
1888 		   dev->name, ioread8(ioaddr + TxStatus),
1889 		   ioread16(ioaddr + EL3_STATUS));
1890 	pr_err("  diagnostics: net %04x media %04x dma %08x fifo %04x\n",
1891 			window_read16(vp, 4, Wn4_NetDiag),
1892 			window_read16(vp, 4, Wn4_Media),
1893 			ioread32(ioaddr + PktStatus),
1894 			window_read16(vp, 4, Wn4_FIFODiag));
1895 	/* Slight code bloat to be user friendly. */
1896 	if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88)
1897 		pr_err("%s: Transmitter encountered 16 collisions --"
1898 			   " network cable problem?\n", dev->name);
1899 	if (ioread16(ioaddr + EL3_STATUS) & IntLatch) {
1900 		pr_err("%s: Interrupt posted but not delivered --"
1901 			   " IRQ blocked by another device?\n", dev->name);
1902 		/* Bad idea here.. but we might as well handle a few events. */
1903 		vortex_boomerang_interrupt(dev->irq, dev);
1904 	}
1905 
1906 	if (vortex_debug > 0)
1907 		dump_tx_ring(dev);
1908 
1909 	issue_and_wait(dev, TxReset);
1910 
1911 	dev->stats.tx_errors++;
1912 	if (vp->full_bus_master_tx) {
1913 		pr_debug("%s: Resetting the Tx ring pointer.\n", dev->name);
1914 		if (vp->cur_tx - vp->dirty_tx > 0  &&  ioread32(ioaddr + DownListPtr) == 0)
1915 			iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc),
1916 				 ioaddr + DownListPtr);
1917 		if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE) {
1918 			netif_wake_queue (dev);
1919 			netdev_reset_queue (dev);
1920 		}
1921 		if (vp->drv_flags & IS_BOOMERANG)
1922 			iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold);
1923 		iowrite16(DownUnstall, ioaddr + EL3_CMD);
1924 	} else {
1925 		dev->stats.tx_dropped++;
1926 		netif_wake_queue(dev);
1927 		netdev_reset_queue(dev);
1928 	}
1929 	/* Issue Tx Enable */
1930 	iowrite16(TxEnable, ioaddr + EL3_CMD);
1931 	netif_trans_update(dev); /* prevent tx timeout */
1932 }
1933 
1934 /*
1935  * Handle uncommon interrupt sources.  This is a separate routine to minimize
1936  * the cache impact.
1937  */
1938 static void
1939 vortex_error(struct net_device *dev, int status)
1940 {
1941 	struct vortex_private *vp = netdev_priv(dev);
1942 	void __iomem *ioaddr = vp->ioaddr;
1943 	int do_tx_reset = 0, reset_mask = 0;
1944 	unsigned char tx_status = 0;
1945 
1946 	if (vortex_debug > 2) {
1947 		pr_err("%s: vortex_error(), status=0x%x\n", dev->name, status);
1948 	}
1949 
1950 	if (status & TxComplete) {			/* Really "TxError" for us. */
1951 		tx_status = ioread8(ioaddr + TxStatus);
1952 		/* Presumably a tx-timeout. We must merely re-enable. */
1953 		if (vortex_debug > 2 ||
1954 		    (tx_status != 0x88 && vortex_debug > 0)) {
1955 			pr_err("%s: Transmit error, Tx status register %2.2x.\n",
1956 				   dev->name, tx_status);
1957 			if (tx_status == 0x82) {
1958 				pr_err("Probably a duplex mismatch.  See "
1959 						"Documentation/networking/vortex.txt\n");
1960 			}
1961 			dump_tx_ring(dev);
1962 		}
1963 		if (tx_status & 0x14)  dev->stats.tx_fifo_errors++;
1964 		if (tx_status & 0x38)  dev->stats.tx_aborted_errors++;
1965 		if (tx_status & 0x08)  vp->xstats.tx_max_collisions++;
1966 		iowrite8(0, ioaddr + TxStatus);
1967 		if (tx_status & 0x30) {			/* txJabber or txUnderrun */
1968 			do_tx_reset = 1;
1969 		} else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET))  {	/* maxCollisions */
1970 			do_tx_reset = 1;
1971 			reset_mask = 0x0108;		/* Reset interface logic, but not download logic */
1972 		} else {				/* Merely re-enable the transmitter. */
1973 			iowrite16(TxEnable, ioaddr + EL3_CMD);
1974 		}
1975 	}
1976 
1977 	if (status & RxEarly)				/* Rx early is unused. */
1978 		iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD);
1979 
1980 	if (status & StatsFull) {			/* Empty statistics. */
1981 		static int DoneDidThat;
1982 		if (vortex_debug > 4)
1983 			pr_debug("%s: Updating stats.\n", dev->name);
1984 		update_stats(ioaddr, dev);
1985 		/* HACK: Disable statistics as an interrupt source. */
1986 		/* This occurs when we have the wrong media type! */
1987 		if (DoneDidThat == 0  &&
1988 			ioread16(ioaddr + EL3_STATUS) & StatsFull) {
1989 			pr_warn("%s: Updating statistics failed, disabling stats as an interrupt source\n",
1990 				dev->name);
1991 			iowrite16(SetIntrEnb |
1992 				  (window_read16(vp, 5, 10) & ~StatsFull),
1993 				  ioaddr + EL3_CMD);
1994 			vp->intr_enable &= ~StatsFull;
1995 			DoneDidThat++;
1996 		}
1997 	}
1998 	if (status & IntReq) {		/* Restore all interrupt sources.  */
1999 		iowrite16(vp->status_enable, ioaddr + EL3_CMD);
2000 		iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
2001 	}
2002 	if (status & HostError) {
2003 		u16 fifo_diag;
2004 		fifo_diag = window_read16(vp, 4, Wn4_FIFODiag);
2005 		pr_err("%s: Host error, FIFO diagnostic register %4.4x.\n",
2006 			   dev->name, fifo_diag);
2007 		/* Adapter failure requires Tx/Rx reset and reinit. */
2008 		if (vp->full_bus_master_tx) {
2009 			int bus_status = ioread32(ioaddr + PktStatus);
2010 			/* 0x80000000 PCI master abort. */
2011 			/* 0x40000000 PCI target abort. */
2012 			if (vortex_debug)
2013 				pr_err("%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status);
2014 
2015 			/* In this case, blow the card away */
2016 			/* Must not enter D3 or we can't legally issue the reset! */
2017 			vortex_down(dev, 0);
2018 			issue_and_wait(dev, TotalReset | 0xff);
2019 			vortex_up(dev);		/* AKPM: bug.  vortex_up() assumes that the rx ring is full. It may not be. */
2020 		} else if (fifo_diag & 0x0400)
2021 			do_tx_reset = 1;
2022 		if (fifo_diag & 0x3000) {
2023 			/* Reset Rx fifo and upload logic */
2024 			issue_and_wait(dev, RxReset|0x07);
2025 			/* Set the Rx filter to the current state. */
2026 			set_rx_mode(dev);
2027 			/* enable 802.1q VLAN tagged frames */
2028 			set_8021q_mode(dev, 1);
2029 			iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
2030 			iowrite16(AckIntr | HostError, ioaddr + EL3_CMD);
2031 		}
2032 	}
2033 
2034 	if (do_tx_reset) {
2035 		issue_and_wait(dev, TxReset|reset_mask);
2036 		iowrite16(TxEnable, ioaddr + EL3_CMD);
2037 		if (!vp->full_bus_master_tx)
2038 			netif_wake_queue(dev);
2039 	}
2040 }
2041 
2042 static netdev_tx_t
2043 vortex_start_xmit(struct sk_buff *skb, struct net_device *dev)
2044 {
2045 	struct vortex_private *vp = netdev_priv(dev);
2046 	void __iomem *ioaddr = vp->ioaddr;
2047 	int skblen = skb->len;
2048 
2049 	/* Put out the doubleword header... */
2050 	iowrite32(skb->len, ioaddr + TX_FIFO);
2051 	if (vp->bus_master) {
2052 		/* Set the bus-master controller to transfer the packet. */
2053 		int len = (skb->len + 3) & ~3;
2054 		vp->tx_skb_dma = dma_map_single(vp->gendev, skb->data, len,
2055 						DMA_TO_DEVICE);
2056 		if (dma_mapping_error(vp->gendev, vp->tx_skb_dma)) {
2057 			dev_kfree_skb_any(skb);
2058 			dev->stats.tx_dropped++;
2059 			return NETDEV_TX_OK;
2060 		}
2061 
2062 		spin_lock_irq(&vp->window_lock);
2063 		window_set(vp, 7);
2064 		iowrite32(vp->tx_skb_dma, ioaddr + Wn7_MasterAddr);
2065 		iowrite16(len, ioaddr + Wn7_MasterLen);
2066 		spin_unlock_irq(&vp->window_lock);
2067 		vp->tx_skb = skb;
2068 		skb_tx_timestamp(skb);
2069 		iowrite16(StartDMADown, ioaddr + EL3_CMD);
2070 		/* netif_wake_queue() will be called at the DMADone interrupt. */
2071 	} else {
2072 		/* ... and the packet rounded to a doubleword. */
2073 		skb_tx_timestamp(skb);
2074 		iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
2075 		dev_consume_skb_any (skb);
2076 		if (ioread16(ioaddr + TxFree) > 1536) {
2077 			netif_start_queue (dev);	/* AKPM: redundant? */
2078 		} else {
2079 			/* Interrupt us when the FIFO has room for max-sized packet. */
2080 			netif_stop_queue(dev);
2081 			iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2082 		}
2083 	}
2084 
2085 	netdev_sent_queue(dev, skblen);
2086 
2087 	/* Clear the Tx status stack. */
2088 	{
2089 		int tx_status;
2090 		int i = 32;
2091 
2092 		while (--i > 0	&&	(tx_status = ioread8(ioaddr + TxStatus)) > 0) {
2093 			if (tx_status & 0x3C) {		/* A Tx-disabling error occurred.  */
2094 				if (vortex_debug > 2)
2095 				  pr_debug("%s: Tx error, status %2.2x.\n",
2096 						 dev->name, tx_status);
2097 				if (tx_status & 0x04) dev->stats.tx_fifo_errors++;
2098 				if (tx_status & 0x38) dev->stats.tx_aborted_errors++;
2099 				if (tx_status & 0x30) {
2100 					issue_and_wait(dev, TxReset);
2101 				}
2102 				iowrite16(TxEnable, ioaddr + EL3_CMD);
2103 			}
2104 			iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */
2105 		}
2106 	}
2107 	return NETDEV_TX_OK;
2108 }
2109 
2110 static netdev_tx_t
2111 boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev)
2112 {
2113 	struct vortex_private *vp = netdev_priv(dev);
2114 	void __iomem *ioaddr = vp->ioaddr;
2115 	/* Calculate the next Tx descriptor entry. */
2116 	int entry = vp->cur_tx % TX_RING_SIZE;
2117 	int skblen = skb->len;
2118 	struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE];
2119 	unsigned long flags;
2120 	dma_addr_t dma_addr;
2121 
2122 	if (vortex_debug > 6) {
2123 		pr_debug("boomerang_start_xmit()\n");
2124 		pr_debug("%s: Trying to send a packet, Tx index %d.\n",
2125 			   dev->name, vp->cur_tx);
2126 	}
2127 
2128 	/*
2129 	 * We can't allow a recursion from our interrupt handler back into the
2130 	 * tx routine, as they take the same spin lock, and that causes
2131 	 * deadlock.  Just return NETDEV_TX_BUSY and let the stack try again in
2132 	 * a bit
2133 	 */
2134 	if (vp->handling_irq)
2135 		return NETDEV_TX_BUSY;
2136 
2137 	if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) {
2138 		if (vortex_debug > 0)
2139 			pr_warn("%s: BUG! Tx Ring full, refusing to send buffer\n",
2140 				dev->name);
2141 		netif_stop_queue(dev);
2142 		return NETDEV_TX_BUSY;
2143 	}
2144 
2145 	vp->tx_skbuff[entry] = skb;
2146 
2147 	vp->tx_ring[entry].next = 0;
2148 #if DO_ZEROCOPY
2149 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2150 			vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2151 	else
2152 			vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum);
2153 
2154 	if (!skb_shinfo(skb)->nr_frags) {
2155 		dma_addr = dma_map_single(vp->gendev, skb->data, skb->len,
2156 					  DMA_TO_DEVICE);
2157 		if (dma_mapping_error(vp->gendev, dma_addr))
2158 			goto out_dma_err;
2159 
2160 		vp->tx_ring[entry].frag[0].addr = cpu_to_le32(dma_addr);
2161 		vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG);
2162 	} else {
2163 		int i;
2164 
2165 		dma_addr = dma_map_single(vp->gendev, skb->data,
2166 					  skb_headlen(skb), DMA_TO_DEVICE);
2167 		if (dma_mapping_error(vp->gendev, dma_addr))
2168 			goto out_dma_err;
2169 
2170 		vp->tx_ring[entry].frag[0].addr = cpu_to_le32(dma_addr);
2171 		vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb_headlen(skb));
2172 
2173 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2174 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2175 
2176 			dma_addr = skb_frag_dma_map(vp->gendev, frag,
2177 						    0,
2178 						    frag->size,
2179 						    DMA_TO_DEVICE);
2180 			if (dma_mapping_error(vp->gendev, dma_addr)) {
2181 				for(i = i-1; i >= 0; i--)
2182 					dma_unmap_page(vp->gendev,
2183 						       le32_to_cpu(vp->tx_ring[entry].frag[i+1].addr),
2184 						       le32_to_cpu(vp->tx_ring[entry].frag[i+1].length),
2185 						       DMA_TO_DEVICE);
2186 
2187 				dma_unmap_single(vp->gendev,
2188 						 le32_to_cpu(vp->tx_ring[entry].frag[0].addr),
2189 						 le32_to_cpu(vp->tx_ring[entry].frag[0].length),
2190 						 DMA_TO_DEVICE);
2191 
2192 				goto out_dma_err;
2193 			}
2194 
2195 			vp->tx_ring[entry].frag[i+1].addr =
2196 						cpu_to_le32(dma_addr);
2197 
2198 			if (i == skb_shinfo(skb)->nr_frags-1)
2199 					vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag)|LAST_FRAG);
2200 			else
2201 					vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag));
2202 		}
2203 	}
2204 #else
2205 	dma_addr = dma_map_single(vp->gendev, skb->data, skb->len, DMA_TO_DEVICE);
2206 	if (dma_mapping_error(vp->gendev, dma_addr))
2207 		goto out_dma_err;
2208 	vp->tx_ring[entry].addr = cpu_to_le32(dma_addr);
2209 	vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG);
2210 	vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2211 #endif
2212 
2213 	spin_lock_irqsave(&vp->lock, flags);
2214 	/* Wait for the stall to complete. */
2215 	issue_and_wait(dev, DownStall);
2216 	prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc));
2217 	if (ioread32(ioaddr + DownListPtr) == 0) {
2218 		iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr);
2219 		vp->queued_packet++;
2220 	}
2221 
2222 	vp->cur_tx++;
2223 	netdev_sent_queue(dev, skblen);
2224 
2225 	if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) {
2226 		netif_stop_queue (dev);
2227 	} else {					/* Clear previous interrupt enable. */
2228 #if defined(tx_interrupt_mitigation)
2229 		/* Dubious. If in boomeang_interrupt "faster" cyclone ifdef
2230 		 * were selected, this would corrupt DN_COMPLETE. No?
2231 		 */
2232 		prev_entry->status &= cpu_to_le32(~TxIntrUploaded);
2233 #endif
2234 	}
2235 	skb_tx_timestamp(skb);
2236 	iowrite16(DownUnstall, ioaddr + EL3_CMD);
2237 	spin_unlock_irqrestore(&vp->lock, flags);
2238 out:
2239 	return NETDEV_TX_OK;
2240 out_dma_err:
2241 	dev_err(vp->gendev, "Error mapping dma buffer\n");
2242 	goto out;
2243 }
2244 
2245 /* The interrupt handler does all of the Rx thread work and cleans up
2246    after the Tx thread. */
2247 
2248 /*
2249  * This is the ISR for the vortex series chips.
2250  * full_bus_master_tx == 0 && full_bus_master_rx == 0
2251  */
2252 
2253 static irqreturn_t
2254 _vortex_interrupt(int irq, struct net_device *dev)
2255 {
2256 	struct vortex_private *vp = netdev_priv(dev);
2257 	void __iomem *ioaddr;
2258 	int status;
2259 	int work_done = max_interrupt_work;
2260 	int handled = 0;
2261 	unsigned int bytes_compl = 0, pkts_compl = 0;
2262 
2263 	ioaddr = vp->ioaddr;
2264 
2265 	status = ioread16(ioaddr + EL3_STATUS);
2266 
2267 	if (vortex_debug > 6)
2268 		pr_debug("vortex_interrupt(). status=0x%4x\n", status);
2269 
2270 	if ((status & IntLatch) == 0)
2271 		goto handler_exit;		/* No interrupt: shared IRQs cause this */
2272 	handled = 1;
2273 
2274 	if (status & IntReq) {
2275 		status |= vp->deferred;
2276 		vp->deferred = 0;
2277 	}
2278 
2279 	if (status == 0xffff)		/* h/w no longer present (hotplug)? */
2280 		goto handler_exit;
2281 
2282 	if (vortex_debug > 4)
2283 		pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2284 			   dev->name, status, ioread8(ioaddr + Timer));
2285 
2286 	spin_lock(&vp->window_lock);
2287 	window_set(vp, 7);
2288 
2289 	do {
2290 		if (vortex_debug > 5)
2291 				pr_debug("%s: In interrupt loop, status %4.4x.\n",
2292 					   dev->name, status);
2293 		if (status & RxComplete)
2294 			vortex_rx(dev);
2295 
2296 		if (status & TxAvailable) {
2297 			if (vortex_debug > 5)
2298 				pr_debug("	TX room bit was handled.\n");
2299 			/* There's room in the FIFO for a full-sized packet. */
2300 			iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD);
2301 			netif_wake_queue (dev);
2302 		}
2303 
2304 		if (status & DMADone) {
2305 			if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) {
2306 				iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
2307 				dma_unmap_single(vp->gendev, vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, DMA_TO_DEVICE);
2308 				pkts_compl++;
2309 				bytes_compl += vp->tx_skb->len;
2310 				dev_kfree_skb_irq(vp->tx_skb); /* Release the transferred buffer */
2311 				if (ioread16(ioaddr + TxFree) > 1536) {
2312 					/*
2313 					 * AKPM: FIXME: I don't think we need this.  If the queue was stopped due to
2314 					 * insufficient FIFO room, the TxAvailable test will succeed and call
2315 					 * netif_wake_queue()
2316 					 */
2317 					netif_wake_queue(dev);
2318 				} else { /* Interrupt when FIFO has room for max-sized packet. */
2319 					iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2320 					netif_stop_queue(dev);
2321 				}
2322 			}
2323 		}
2324 		/* Check for all uncommon interrupts at once. */
2325 		if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) {
2326 			if (status == 0xffff)
2327 				break;
2328 			if (status & RxEarly)
2329 				vortex_rx(dev);
2330 			spin_unlock(&vp->window_lock);
2331 			vortex_error(dev, status);
2332 			spin_lock(&vp->window_lock);
2333 			window_set(vp, 7);
2334 		}
2335 
2336 		if (--work_done < 0) {
2337 			pr_warn("%s: Too much work in interrupt, status %4.4x\n",
2338 				dev->name, status);
2339 			/* Disable all pending interrupts. */
2340 			do {
2341 				vp->deferred |= status;
2342 				iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2343 					 ioaddr + EL3_CMD);
2344 				iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2345 			} while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2346 			/* The timer will reenable interrupts. */
2347 			mod_timer(&vp->timer, jiffies + 1*HZ);
2348 			break;
2349 		}
2350 		/* Acknowledge the IRQ. */
2351 		iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2352 	} while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
2353 
2354 	netdev_completed_queue(dev, pkts_compl, bytes_compl);
2355 	spin_unlock(&vp->window_lock);
2356 
2357 	if (vortex_debug > 4)
2358 		pr_debug("%s: exiting interrupt, status %4.4x.\n",
2359 			   dev->name, status);
2360 handler_exit:
2361 	return IRQ_RETVAL(handled);
2362 }
2363 
2364 /*
2365  * This is the ISR for the boomerang series chips.
2366  * full_bus_master_tx == 1 && full_bus_master_rx == 1
2367  */
2368 
2369 static irqreturn_t
2370 _boomerang_interrupt(int irq, struct net_device *dev)
2371 {
2372 	struct vortex_private *vp = netdev_priv(dev);
2373 	void __iomem *ioaddr;
2374 	int status;
2375 	int work_done = max_interrupt_work;
2376 	int handled = 0;
2377 	unsigned int bytes_compl = 0, pkts_compl = 0;
2378 
2379 	ioaddr = vp->ioaddr;
2380 
2381 	vp->handling_irq = 1;
2382 
2383 	status = ioread16(ioaddr + EL3_STATUS);
2384 
2385 	if (vortex_debug > 6)
2386 		pr_debug("boomerang_interrupt. status=0x%4x\n", status);
2387 
2388 	if ((status & IntLatch) == 0)
2389 		goto handler_exit;		/* No interrupt: shared IRQs can cause this */
2390 	handled = 1;
2391 
2392 	if (status == 0xffff) {		/* h/w no longer present (hotplug)? */
2393 		if (vortex_debug > 1)
2394 			pr_debug("boomerang_interrupt(1): status = 0xffff\n");
2395 		goto handler_exit;
2396 	}
2397 
2398 	if (status & IntReq) {
2399 		status |= vp->deferred;
2400 		vp->deferred = 0;
2401 	}
2402 
2403 	if (vortex_debug > 4)
2404 		pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2405 			   dev->name, status, ioread8(ioaddr + Timer));
2406 	do {
2407 		if (vortex_debug > 5)
2408 				pr_debug("%s: In interrupt loop, status %4.4x.\n",
2409 					   dev->name, status);
2410 		if (status & UpComplete) {
2411 			iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD);
2412 			if (vortex_debug > 5)
2413 				pr_debug("boomerang_interrupt->boomerang_rx\n");
2414 			boomerang_rx(dev);
2415 		}
2416 
2417 		if (status & DownComplete) {
2418 			unsigned int dirty_tx = vp->dirty_tx;
2419 
2420 			iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD);
2421 			while (vp->cur_tx - dirty_tx > 0) {
2422 				int entry = dirty_tx % TX_RING_SIZE;
2423 #if 1	/* AKPM: the latter is faster, but cyclone-only */
2424 				if (ioread32(ioaddr + DownListPtr) ==
2425 					vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc))
2426 					break;			/* It still hasn't been processed. */
2427 #else
2428 				if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0)
2429 					break;			/* It still hasn't been processed. */
2430 #endif
2431 
2432 				if (vp->tx_skbuff[entry]) {
2433 					struct sk_buff *skb = vp->tx_skbuff[entry];
2434 #if DO_ZEROCOPY
2435 					int i;
2436 					dma_unmap_single(vp->gendev,
2437 							le32_to_cpu(vp->tx_ring[entry].frag[0].addr),
2438 							le32_to_cpu(vp->tx_ring[entry].frag[0].length)&0xFFF,
2439 							DMA_TO_DEVICE);
2440 
2441 					for (i=1; i<=skb_shinfo(skb)->nr_frags; i++)
2442 							dma_unmap_page(vp->gendev,
2443 											 le32_to_cpu(vp->tx_ring[entry].frag[i].addr),
2444 											 le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF,
2445 											 DMA_TO_DEVICE);
2446 #else
2447 					dma_unmap_single(vp->gendev,
2448 						le32_to_cpu(vp->tx_ring[entry].addr), skb->len, DMA_TO_DEVICE);
2449 #endif
2450 					pkts_compl++;
2451 					bytes_compl += skb->len;
2452 					dev_kfree_skb_irq(skb);
2453 					vp->tx_skbuff[entry] = NULL;
2454 				} else {
2455 					pr_debug("boomerang_interrupt: no skb!\n");
2456 				}
2457 				/* dev->stats.tx_packets++;  Counted below. */
2458 				dirty_tx++;
2459 			}
2460 			vp->dirty_tx = dirty_tx;
2461 			if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) {
2462 				if (vortex_debug > 6)
2463 					pr_debug("boomerang_interrupt: wake queue\n");
2464 				netif_wake_queue (dev);
2465 			}
2466 		}
2467 
2468 		/* Check for all uncommon interrupts at once. */
2469 		if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq))
2470 			vortex_error(dev, status);
2471 
2472 		if (--work_done < 0) {
2473 			pr_warn("%s: Too much work in interrupt, status %4.4x\n",
2474 				dev->name, status);
2475 			/* Disable all pending interrupts. */
2476 			do {
2477 				vp->deferred |= status;
2478 				iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2479 					 ioaddr + EL3_CMD);
2480 				iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2481 			} while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2482 			/* The timer will reenable interrupts. */
2483 			mod_timer(&vp->timer, jiffies + 1*HZ);
2484 			break;
2485 		}
2486 		/* Acknowledge the IRQ. */
2487 		iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2488 		if (vp->cb_fn_base)			/* The PCMCIA people are idiots.  */
2489 			iowrite32(0x8000, vp->cb_fn_base + 4);
2490 
2491 	} while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch);
2492 	netdev_completed_queue(dev, pkts_compl, bytes_compl);
2493 
2494 	if (vortex_debug > 4)
2495 		pr_debug("%s: exiting interrupt, status %4.4x.\n",
2496 			   dev->name, status);
2497 handler_exit:
2498 	vp->handling_irq = 0;
2499 	return IRQ_RETVAL(handled);
2500 }
2501 
2502 static irqreturn_t
2503 vortex_boomerang_interrupt(int irq, void *dev_id)
2504 {
2505 	struct net_device *dev = dev_id;
2506 	struct vortex_private *vp = netdev_priv(dev);
2507 	unsigned long flags;
2508 	irqreturn_t ret;
2509 
2510 	spin_lock_irqsave(&vp->lock, flags);
2511 
2512 	if (vp->full_bus_master_rx)
2513 		ret = _boomerang_interrupt(dev->irq, dev);
2514 	else
2515 		ret = _vortex_interrupt(dev->irq, dev);
2516 
2517 	spin_unlock_irqrestore(&vp->lock, flags);
2518 
2519 	return ret;
2520 }
2521 
2522 static int vortex_rx(struct net_device *dev)
2523 {
2524 	struct vortex_private *vp = netdev_priv(dev);
2525 	void __iomem *ioaddr = vp->ioaddr;
2526 	int i;
2527 	short rx_status;
2528 
2529 	if (vortex_debug > 5)
2530 		pr_debug("vortex_rx(): status %4.4x, rx_status %4.4x.\n",
2531 			   ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus));
2532 	while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) {
2533 		if (rx_status & 0x4000) { /* Error, update stats. */
2534 			unsigned char rx_error = ioread8(ioaddr + RxErrors);
2535 			if (vortex_debug > 2)
2536 				pr_debug(" Rx error: status %2.2x.\n", rx_error);
2537 			dev->stats.rx_errors++;
2538 			if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2539 			if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2540 			if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2541 			if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2542 			if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2543 		} else {
2544 			/* The packet length: up to 4.5K!. */
2545 			int pkt_len = rx_status & 0x1fff;
2546 			struct sk_buff *skb;
2547 
2548 			skb = netdev_alloc_skb(dev, pkt_len + 5);
2549 			if (vortex_debug > 4)
2550 				pr_debug("Receiving packet size %d status %4.4x.\n",
2551 					   pkt_len, rx_status);
2552 			if (skb != NULL) {
2553 				skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
2554 				/* 'skb_put()' points to the start of sk_buff data area. */
2555 				if (vp->bus_master &&
2556 					! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) {
2557 					dma_addr_t dma = dma_map_single(vp->gendev, skb_put(skb, pkt_len),
2558 									   pkt_len, DMA_FROM_DEVICE);
2559 					iowrite32(dma, ioaddr + Wn7_MasterAddr);
2560 					iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
2561 					iowrite16(StartDMAUp, ioaddr + EL3_CMD);
2562 					while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)
2563 						;
2564 					dma_unmap_single(vp->gendev, dma, pkt_len, DMA_FROM_DEVICE);
2565 				} else {
2566 					ioread32_rep(ioaddr + RX_FIFO,
2567 					             skb_put(skb, pkt_len),
2568 						     (pkt_len + 3) >> 2);
2569 				}
2570 				iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
2571 				skb->protocol = eth_type_trans(skb, dev);
2572 				netif_rx(skb);
2573 				dev->stats.rx_packets++;
2574 				/* Wait a limited time to go to next packet. */
2575 				for (i = 200; i >= 0; i--)
2576 					if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
2577 						break;
2578 				continue;
2579 			} else if (vortex_debug > 0)
2580 				pr_notice("%s: No memory to allocate a sk_buff of size %d.\n",
2581 					dev->name, pkt_len);
2582 			dev->stats.rx_dropped++;
2583 		}
2584 		issue_and_wait(dev, RxDiscard);
2585 	}
2586 
2587 	return 0;
2588 }
2589 
2590 static int
2591 boomerang_rx(struct net_device *dev)
2592 {
2593 	struct vortex_private *vp = netdev_priv(dev);
2594 	int entry = vp->cur_rx % RX_RING_SIZE;
2595 	void __iomem *ioaddr = vp->ioaddr;
2596 	int rx_status;
2597 	int rx_work_limit = RX_RING_SIZE;
2598 
2599 	if (vortex_debug > 5)
2600 		pr_debug("boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS));
2601 
2602 	while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){
2603 		if (--rx_work_limit < 0)
2604 			break;
2605 		if (rx_status & RxDError) { /* Error, update stats. */
2606 			unsigned char rx_error = rx_status >> 16;
2607 			if (vortex_debug > 2)
2608 				pr_debug(" Rx error: status %2.2x.\n", rx_error);
2609 			dev->stats.rx_errors++;
2610 			if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2611 			if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2612 			if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2613 			if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2614 			if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2615 		} else {
2616 			/* The packet length: up to 4.5K!. */
2617 			int pkt_len = rx_status & 0x1fff;
2618 			struct sk_buff *skb, *newskb;
2619 			dma_addr_t newdma;
2620 			dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr);
2621 
2622 			if (vortex_debug > 4)
2623 				pr_debug("Receiving packet size %d status %4.4x.\n",
2624 					   pkt_len, rx_status);
2625 
2626 			/* Check if the packet is long enough to just accept without
2627 			   copying to a properly sized skbuff. */
2628 			if (pkt_len < rx_copybreak &&
2629 			    (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
2630 				skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
2631 				dma_sync_single_for_cpu(vp->gendev, dma, PKT_BUF_SZ, DMA_FROM_DEVICE);
2632 				/* 'skb_put()' points to the start of sk_buff data area. */
2633 				skb_put_data(skb, vp->rx_skbuff[entry]->data,
2634 					     pkt_len);
2635 				dma_sync_single_for_device(vp->gendev, dma, PKT_BUF_SZ, DMA_FROM_DEVICE);
2636 				vp->rx_copy++;
2637 			} else {
2638 				/* Pre-allocate the replacement skb.  If it or its
2639 				 * mapping fails then recycle the buffer thats already
2640 				 * in place
2641 				 */
2642 				newskb = netdev_alloc_skb_ip_align(dev, PKT_BUF_SZ);
2643 				if (!newskb) {
2644 					dev->stats.rx_dropped++;
2645 					goto clear_complete;
2646 				}
2647 				newdma = dma_map_single(vp->gendev, newskb->data,
2648 							PKT_BUF_SZ, DMA_FROM_DEVICE);
2649 				if (dma_mapping_error(vp->gendev, newdma)) {
2650 					dev->stats.rx_dropped++;
2651 					consume_skb(newskb);
2652 					goto clear_complete;
2653 				}
2654 
2655 				/* Pass up the skbuff already on the Rx ring. */
2656 				skb = vp->rx_skbuff[entry];
2657 				vp->rx_skbuff[entry] = newskb;
2658 				vp->rx_ring[entry].addr = cpu_to_le32(newdma);
2659 				skb_put(skb, pkt_len);
2660 				dma_unmap_single(vp->gendev, dma, PKT_BUF_SZ, DMA_FROM_DEVICE);
2661 				vp->rx_nocopy++;
2662 			}
2663 			skb->protocol = eth_type_trans(skb, dev);
2664 			{					/* Use hardware checksum info. */
2665 				int csum_bits = rx_status & 0xee000000;
2666 				if (csum_bits &&
2667 					(csum_bits == (IPChksumValid | TCPChksumValid) ||
2668 					 csum_bits == (IPChksumValid | UDPChksumValid))) {
2669 					skb->ip_summed = CHECKSUM_UNNECESSARY;
2670 					vp->rx_csumhits++;
2671 				}
2672 			}
2673 			netif_rx(skb);
2674 			dev->stats.rx_packets++;
2675 		}
2676 
2677 clear_complete:
2678 		vp->rx_ring[entry].status = 0;	/* Clear complete bit. */
2679 		iowrite16(UpUnstall, ioaddr + EL3_CMD);
2680 		entry = (++vp->cur_rx) % RX_RING_SIZE;
2681 	}
2682 	return 0;
2683 }
2684 
2685 static void
2686 vortex_down(struct net_device *dev, int final_down)
2687 {
2688 	struct vortex_private *vp = netdev_priv(dev);
2689 	void __iomem *ioaddr = vp->ioaddr;
2690 
2691 	netdev_reset_queue(dev);
2692 	netif_stop_queue(dev);
2693 
2694 	del_timer_sync(&vp->timer);
2695 
2696 	/* Turn off statistics ASAP.  We update dev->stats below. */
2697 	iowrite16(StatsDisable, ioaddr + EL3_CMD);
2698 
2699 	/* Disable the receiver and transmitter. */
2700 	iowrite16(RxDisable, ioaddr + EL3_CMD);
2701 	iowrite16(TxDisable, ioaddr + EL3_CMD);
2702 
2703 	/* Disable receiving 802.1q tagged frames */
2704 	set_8021q_mode(dev, 0);
2705 
2706 	if (dev->if_port == XCVR_10base2)
2707 		/* Turn off thinnet power.  Green! */
2708 		iowrite16(StopCoax, ioaddr + EL3_CMD);
2709 
2710 	iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
2711 
2712 	update_stats(ioaddr, dev);
2713 	if (vp->full_bus_master_rx)
2714 		iowrite32(0, ioaddr + UpListPtr);
2715 	if (vp->full_bus_master_tx)
2716 		iowrite32(0, ioaddr + DownListPtr);
2717 
2718 	if (final_down && VORTEX_PCI(vp)) {
2719 		vp->pm_state_valid = 1;
2720 		pci_save_state(VORTEX_PCI(vp));
2721 		acpi_set_WOL(dev);
2722 	}
2723 }
2724 
2725 static int
2726 vortex_close(struct net_device *dev)
2727 {
2728 	struct vortex_private *vp = netdev_priv(dev);
2729 	void __iomem *ioaddr = vp->ioaddr;
2730 	int i;
2731 
2732 	if (netif_device_present(dev))
2733 		vortex_down(dev, 1);
2734 
2735 	if (vortex_debug > 1) {
2736 		pr_debug("%s: vortex_close() status %4.4x, Tx status %2.2x.\n",
2737 			   dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus));
2738 		pr_debug("%s: vortex close stats: rx_nocopy %d rx_copy %d"
2739 			   " tx_queued %d Rx pre-checksummed %d.\n",
2740 			   dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits);
2741 	}
2742 
2743 #if DO_ZEROCOPY
2744 	if (vp->rx_csumhits &&
2745 	    (vp->drv_flags & HAS_HWCKSM) == 0 &&
2746 	    (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) {
2747 		pr_warn("%s supports hardware checksums, and we're not using them!\n",
2748 			dev->name);
2749 	}
2750 #endif
2751 
2752 	free_irq(dev->irq, dev);
2753 
2754 	if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
2755 		for (i = 0; i < RX_RING_SIZE; i++)
2756 			if (vp->rx_skbuff[i]) {
2757 				dma_unmap_single(vp->gendev, le32_to_cpu(vp->rx_ring[i].addr),
2758 									PKT_BUF_SZ, DMA_FROM_DEVICE);
2759 				dev_kfree_skb(vp->rx_skbuff[i]);
2760 				vp->rx_skbuff[i] = NULL;
2761 			}
2762 	}
2763 	if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
2764 		for (i = 0; i < TX_RING_SIZE; i++) {
2765 			if (vp->tx_skbuff[i]) {
2766 				struct sk_buff *skb = vp->tx_skbuff[i];
2767 #if DO_ZEROCOPY
2768 				int k;
2769 
2770 				for (k=0; k<=skb_shinfo(skb)->nr_frags; k++)
2771 						dma_unmap_single(vp->gendev,
2772 										 le32_to_cpu(vp->tx_ring[i].frag[k].addr),
2773 										 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF,
2774 										 DMA_TO_DEVICE);
2775 #else
2776 				dma_unmap_single(vp->gendev, le32_to_cpu(vp->tx_ring[i].addr), skb->len, DMA_TO_DEVICE);
2777 #endif
2778 				dev_kfree_skb(skb);
2779 				vp->tx_skbuff[i] = NULL;
2780 			}
2781 		}
2782 	}
2783 
2784 	return 0;
2785 }
2786 
2787 static void
2788 dump_tx_ring(struct net_device *dev)
2789 {
2790 	if (vortex_debug > 0) {
2791 	struct vortex_private *vp = netdev_priv(dev);
2792 		void __iomem *ioaddr = vp->ioaddr;
2793 
2794 		if (vp->full_bus_master_tx) {
2795 			int i;
2796 			int stalled = ioread32(ioaddr + PktStatus) & 0x04;	/* Possible racy. But it's only debug stuff */
2797 
2798 			pr_err("  Flags; bus-master %d, dirty %d(%d) current %d(%d)\n",
2799 					vp->full_bus_master_tx,
2800 					vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE,
2801 					vp->cur_tx, vp->cur_tx % TX_RING_SIZE);
2802 			pr_err("  Transmit list %8.8x vs. %p.\n",
2803 				   ioread32(ioaddr + DownListPtr),
2804 				   &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]);
2805 			issue_and_wait(dev, DownStall);
2806 			for (i = 0; i < TX_RING_SIZE; i++) {
2807 				unsigned int length;
2808 
2809 #if DO_ZEROCOPY
2810 				length = le32_to_cpu(vp->tx_ring[i].frag[0].length);
2811 #else
2812 				length = le32_to_cpu(vp->tx_ring[i].length);
2813 #endif
2814 				pr_err("  %d: @%p  length %8.8x status %8.8x\n",
2815 					   i, &vp->tx_ring[i], length,
2816 					   le32_to_cpu(vp->tx_ring[i].status));
2817 			}
2818 			if (!stalled)
2819 				iowrite16(DownUnstall, ioaddr + EL3_CMD);
2820 		}
2821 	}
2822 }
2823 
2824 static struct net_device_stats *vortex_get_stats(struct net_device *dev)
2825 {
2826 	struct vortex_private *vp = netdev_priv(dev);
2827 	void __iomem *ioaddr = vp->ioaddr;
2828 	unsigned long flags;
2829 
2830 	if (netif_device_present(dev)) {	/* AKPM: Used to be netif_running */
2831 		spin_lock_irqsave (&vp->lock, flags);
2832 		update_stats(ioaddr, dev);
2833 		spin_unlock_irqrestore (&vp->lock, flags);
2834 	}
2835 	return &dev->stats;
2836 }
2837 
2838 /*  Update statistics.
2839 	Unlike with the EL3 we need not worry about interrupts changing
2840 	the window setting from underneath us, but we must still guard
2841 	against a race condition with a StatsUpdate interrupt updating the
2842 	table.  This is done by checking that the ASM (!) code generated uses
2843 	atomic updates with '+='.
2844 	*/
2845 static void update_stats(void __iomem *ioaddr, struct net_device *dev)
2846 {
2847 	struct vortex_private *vp = netdev_priv(dev);
2848 
2849 	/* Unlike the 3c5x9 we need not turn off stats updates while reading. */
2850 	/* Switch to the stats window, and read everything. */
2851 	dev->stats.tx_carrier_errors		+= window_read8(vp, 6, 0);
2852 	dev->stats.tx_heartbeat_errors		+= window_read8(vp, 6, 1);
2853 	dev->stats.tx_window_errors		+= window_read8(vp, 6, 4);
2854 	dev->stats.rx_fifo_errors		+= window_read8(vp, 6, 5);
2855 	dev->stats.tx_packets			+= window_read8(vp, 6, 6);
2856 	dev->stats.tx_packets			+= (window_read8(vp, 6, 9) &
2857 						    0x30) << 4;
2858 	/* Rx packets	*/			window_read8(vp, 6, 7);   /* Must read to clear */
2859 	/* Don't bother with register 9, an extension of registers 6&7.
2860 	   If we do use the 6&7 values the atomic update assumption above
2861 	   is invalid. */
2862 	dev->stats.rx_bytes 			+= window_read16(vp, 6, 10);
2863 	dev->stats.tx_bytes 			+= window_read16(vp, 6, 12);
2864 	/* Extra stats for get_ethtool_stats() */
2865 	vp->xstats.tx_multiple_collisions	+= window_read8(vp, 6, 2);
2866 	vp->xstats.tx_single_collisions         += window_read8(vp, 6, 3);
2867 	vp->xstats.tx_deferred			+= window_read8(vp, 6, 8);
2868 	vp->xstats.rx_bad_ssd			+= window_read8(vp, 4, 12);
2869 
2870 	dev->stats.collisions = vp->xstats.tx_multiple_collisions
2871 		+ vp->xstats.tx_single_collisions
2872 		+ vp->xstats.tx_max_collisions;
2873 
2874 	{
2875 		u8 up = window_read8(vp, 4, 13);
2876 		dev->stats.rx_bytes += (up & 0x0f) << 16;
2877 		dev->stats.tx_bytes += (up & 0xf0) << 12;
2878 	}
2879 }
2880 
2881 static int vortex_nway_reset(struct net_device *dev)
2882 {
2883 	struct vortex_private *vp = netdev_priv(dev);
2884 
2885 	return mii_nway_restart(&vp->mii);
2886 }
2887 
2888 static int vortex_get_link_ksettings(struct net_device *dev,
2889 				     struct ethtool_link_ksettings *cmd)
2890 {
2891 	struct vortex_private *vp = netdev_priv(dev);
2892 
2893 	mii_ethtool_get_link_ksettings(&vp->mii, cmd);
2894 
2895 	return 0;
2896 }
2897 
2898 static int vortex_set_link_ksettings(struct net_device *dev,
2899 				     const struct ethtool_link_ksettings *cmd)
2900 {
2901 	struct vortex_private *vp = netdev_priv(dev);
2902 
2903 	return mii_ethtool_set_link_ksettings(&vp->mii, cmd);
2904 }
2905 
2906 static u32 vortex_get_msglevel(struct net_device *dev)
2907 {
2908 	return vortex_debug;
2909 }
2910 
2911 static void vortex_set_msglevel(struct net_device *dev, u32 dbg)
2912 {
2913 	vortex_debug = dbg;
2914 }
2915 
2916 static int vortex_get_sset_count(struct net_device *dev, int sset)
2917 {
2918 	switch (sset) {
2919 	case ETH_SS_STATS:
2920 		return VORTEX_NUM_STATS;
2921 	default:
2922 		return -EOPNOTSUPP;
2923 	}
2924 }
2925 
2926 static void vortex_get_ethtool_stats(struct net_device *dev,
2927 	struct ethtool_stats *stats, u64 *data)
2928 {
2929 	struct vortex_private *vp = netdev_priv(dev);
2930 	void __iomem *ioaddr = vp->ioaddr;
2931 	unsigned long flags;
2932 
2933 	spin_lock_irqsave(&vp->lock, flags);
2934 	update_stats(ioaddr, dev);
2935 	spin_unlock_irqrestore(&vp->lock, flags);
2936 
2937 	data[0] = vp->xstats.tx_deferred;
2938 	data[1] = vp->xstats.tx_max_collisions;
2939 	data[2] = vp->xstats.tx_multiple_collisions;
2940 	data[3] = vp->xstats.tx_single_collisions;
2941 	data[4] = vp->xstats.rx_bad_ssd;
2942 }
2943 
2944 
2945 static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2946 {
2947 	switch (stringset) {
2948 	case ETH_SS_STATS:
2949 		memcpy(data, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
2950 		break;
2951 	default:
2952 		WARN_ON(1);
2953 		break;
2954 	}
2955 }
2956 
2957 static void vortex_get_drvinfo(struct net_device *dev,
2958 					struct ethtool_drvinfo *info)
2959 {
2960 	struct vortex_private *vp = netdev_priv(dev);
2961 
2962 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2963 	if (VORTEX_PCI(vp)) {
2964 		strlcpy(info->bus_info, pci_name(VORTEX_PCI(vp)),
2965 			sizeof(info->bus_info));
2966 	} else {
2967 		if (VORTEX_EISA(vp))
2968 			strlcpy(info->bus_info, dev_name(vp->gendev),
2969 				sizeof(info->bus_info));
2970 		else
2971 			snprintf(info->bus_info, sizeof(info->bus_info),
2972 				"EISA 0x%lx %d", dev->base_addr, dev->irq);
2973 	}
2974 }
2975 
2976 static void vortex_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2977 {
2978 	struct vortex_private *vp = netdev_priv(dev);
2979 
2980 	if (!VORTEX_PCI(vp))
2981 		return;
2982 
2983 	wol->supported = WAKE_MAGIC;
2984 
2985 	wol->wolopts = 0;
2986 	if (vp->enable_wol)
2987 		wol->wolopts |= WAKE_MAGIC;
2988 }
2989 
2990 static int vortex_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2991 {
2992 	struct vortex_private *vp = netdev_priv(dev);
2993 
2994 	if (!VORTEX_PCI(vp))
2995 		return -EOPNOTSUPP;
2996 
2997 	if (wol->wolopts & ~WAKE_MAGIC)
2998 		return -EINVAL;
2999 
3000 	if (wol->wolopts & WAKE_MAGIC)
3001 		vp->enable_wol = 1;
3002 	else
3003 		vp->enable_wol = 0;
3004 	acpi_set_WOL(dev);
3005 
3006 	return 0;
3007 }
3008 
3009 static const struct ethtool_ops vortex_ethtool_ops = {
3010 	.get_drvinfo		= vortex_get_drvinfo,
3011 	.get_strings            = vortex_get_strings,
3012 	.get_msglevel           = vortex_get_msglevel,
3013 	.set_msglevel           = vortex_set_msglevel,
3014 	.get_ethtool_stats      = vortex_get_ethtool_stats,
3015 	.get_sset_count		= vortex_get_sset_count,
3016 	.get_link               = ethtool_op_get_link,
3017 	.nway_reset             = vortex_nway_reset,
3018 	.get_wol                = vortex_get_wol,
3019 	.set_wol                = vortex_set_wol,
3020 	.get_ts_info		= ethtool_op_get_ts_info,
3021 	.get_link_ksettings     = vortex_get_link_ksettings,
3022 	.set_link_ksettings     = vortex_set_link_ksettings,
3023 };
3024 
3025 #ifdef CONFIG_PCI
3026 /*
3027  *	Must power the device up to do MDIO operations
3028  */
3029 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3030 {
3031 	int err;
3032 	struct vortex_private *vp = netdev_priv(dev);
3033 	pci_power_t state = 0;
3034 
3035 	if(VORTEX_PCI(vp))
3036 		state = VORTEX_PCI(vp)->current_state;
3037 
3038 	/* The kernel core really should have pci_get_power_state() */
3039 
3040 	if(state != 0)
3041 		pci_set_power_state(VORTEX_PCI(vp), PCI_D0);
3042 	err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL);
3043 	if(state != 0)
3044 		pci_set_power_state(VORTEX_PCI(vp), state);
3045 
3046 	return err;
3047 }
3048 #endif
3049 
3050 
3051 /* Pre-Cyclone chips have no documented multicast filter, so the only
3052    multicast setting is to receive all multicast frames.  At least
3053    the chip has a very clean way to set the mode, unlike many others. */
3054 static void set_rx_mode(struct net_device *dev)
3055 {
3056 	struct vortex_private *vp = netdev_priv(dev);
3057 	void __iomem *ioaddr = vp->ioaddr;
3058 	int new_mode;
3059 
3060 	if (dev->flags & IFF_PROMISC) {
3061 		if (vortex_debug > 3)
3062 			pr_notice("%s: Setting promiscuous mode.\n", dev->name);
3063 		new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm;
3064 	} else	if (!netdev_mc_empty(dev) || dev->flags & IFF_ALLMULTI) {
3065 		new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast;
3066 	} else
3067 		new_mode = SetRxFilter | RxStation | RxBroadcast;
3068 
3069 	iowrite16(new_mode, ioaddr + EL3_CMD);
3070 }
3071 
3072 #if IS_ENABLED(CONFIG_VLAN_8021Q)
3073 /* Setup the card so that it can receive frames with an 802.1q VLAN tag.
3074    Note that this must be done after each RxReset due to some backwards
3075    compatibility logic in the Cyclone and Tornado ASICs */
3076 
3077 /* The Ethernet Type used for 802.1q tagged frames */
3078 #define VLAN_ETHER_TYPE 0x8100
3079 
3080 static void set_8021q_mode(struct net_device *dev, int enable)
3081 {
3082 	struct vortex_private *vp = netdev_priv(dev);
3083 	int mac_ctrl;
3084 
3085 	if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) {
3086 		/* cyclone and tornado chipsets can recognize 802.1q
3087 		 * tagged frames and treat them correctly */
3088 
3089 		int max_pkt_size = dev->mtu+14;	/* MTU+Ethernet header */
3090 		if (enable)
3091 			max_pkt_size += 4;	/* 802.1Q VLAN tag */
3092 
3093 		window_write16(vp, max_pkt_size, 3, Wn3_MaxPktSize);
3094 
3095 		/* set VlanEtherType to let the hardware checksumming
3096 		   treat tagged frames correctly */
3097 		window_write16(vp, VLAN_ETHER_TYPE, 7, Wn7_VlanEtherType);
3098 	} else {
3099 		/* on older cards we have to enable large frames */
3100 
3101 		vp->large_frames = dev->mtu > 1500 || enable;
3102 
3103 		mac_ctrl = window_read16(vp, 3, Wn3_MAC_Ctrl);
3104 		if (vp->large_frames)
3105 			mac_ctrl |= 0x40;
3106 		else
3107 			mac_ctrl &= ~0x40;
3108 		window_write16(vp, mac_ctrl, 3, Wn3_MAC_Ctrl);
3109 	}
3110 }
3111 #else
3112 
3113 static void set_8021q_mode(struct net_device *dev, int enable)
3114 {
3115 }
3116 
3117 
3118 #endif
3119 
3120 /* MII transceiver control section.
3121    Read and write the MII registers using software-generated serial
3122    MDIO protocol.  See the MII specifications or DP83840A data sheet
3123    for details. */
3124 
3125 /* The maximum data clock rate is 2.5 Mhz.  The minimum timing is usually
3126    met by back-to-back PCI I/O cycles, but we insert a delay to avoid
3127    "overclocking" issues. */
3128 static void mdio_delay(struct vortex_private *vp)
3129 {
3130 	window_read32(vp, 4, Wn4_PhysicalMgmt);
3131 }
3132 
3133 #define MDIO_SHIFT_CLK	0x01
3134 #define MDIO_DIR_WRITE	0x04
3135 #define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE)
3136 #define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE)
3137 #define MDIO_DATA_READ	0x02
3138 #define MDIO_ENB_IN		0x00
3139 
3140 /* Generate the preamble required for initial synchronization and
3141    a few older transceivers. */
3142 static void mdio_sync(struct vortex_private *vp, int bits)
3143 {
3144 	/* Establish sync by sending at least 32 logic ones. */
3145 	while (-- bits >= 0) {
3146 		window_write16(vp, MDIO_DATA_WRITE1, 4, Wn4_PhysicalMgmt);
3147 		mdio_delay(vp);
3148 		window_write16(vp, MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK,
3149 			       4, Wn4_PhysicalMgmt);
3150 		mdio_delay(vp);
3151 	}
3152 }
3153 
3154 static int mdio_read(struct net_device *dev, int phy_id, int location)
3155 {
3156 	int i;
3157 	struct vortex_private *vp = netdev_priv(dev);
3158 	int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
3159 	unsigned int retval = 0;
3160 
3161 	spin_lock_bh(&vp->mii_lock);
3162 
3163 	if (mii_preamble_required)
3164 		mdio_sync(vp, 32);
3165 
3166 	/* Shift the read command bits out. */
3167 	for (i = 14; i >= 0; i--) {
3168 		int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3169 		window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3170 		mdio_delay(vp);
3171 		window_write16(vp, dataval | MDIO_SHIFT_CLK,
3172 			       4, Wn4_PhysicalMgmt);
3173 		mdio_delay(vp);
3174 	}
3175 	/* Read the two transition, 16 data, and wire-idle bits. */
3176 	for (i = 19; i > 0; i--) {
3177 		window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3178 		mdio_delay(vp);
3179 		retval = (retval << 1) |
3180 			((window_read16(vp, 4, Wn4_PhysicalMgmt) &
3181 			  MDIO_DATA_READ) ? 1 : 0);
3182 		window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3183 			       4, Wn4_PhysicalMgmt);
3184 		mdio_delay(vp);
3185 	}
3186 
3187 	spin_unlock_bh(&vp->mii_lock);
3188 
3189 	return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff;
3190 }
3191 
3192 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
3193 {
3194 	struct vortex_private *vp = netdev_priv(dev);
3195 	int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value;
3196 	int i;
3197 
3198 	spin_lock_bh(&vp->mii_lock);
3199 
3200 	if (mii_preamble_required)
3201 		mdio_sync(vp, 32);
3202 
3203 	/* Shift the command bits out. */
3204 	for (i = 31; i >= 0; i--) {
3205 		int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3206 		window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3207 		mdio_delay(vp);
3208 		window_write16(vp, dataval | MDIO_SHIFT_CLK,
3209 			       4, Wn4_PhysicalMgmt);
3210 		mdio_delay(vp);
3211 	}
3212 	/* Leave the interface idle. */
3213 	for (i = 1; i >= 0; i--) {
3214 		window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3215 		mdio_delay(vp);
3216 		window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3217 			       4, Wn4_PhysicalMgmt);
3218 		mdio_delay(vp);
3219 	}
3220 
3221 	spin_unlock_bh(&vp->mii_lock);
3222 }
3223 
3224 /* ACPI: Advanced Configuration and Power Interface. */
3225 /* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */
3226 static void acpi_set_WOL(struct net_device *dev)
3227 {
3228 	struct vortex_private *vp = netdev_priv(dev);
3229 	void __iomem *ioaddr = vp->ioaddr;
3230 
3231 	device_set_wakeup_enable(vp->gendev, vp->enable_wol);
3232 
3233 	if (vp->enable_wol) {
3234 		/* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */
3235 		window_write16(vp, 2, 7, 0x0c);
3236 		/* The RxFilter must accept the WOL frames. */
3237 		iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD);
3238 		iowrite16(RxEnable, ioaddr + EL3_CMD);
3239 
3240 		if (pci_enable_wake(VORTEX_PCI(vp), PCI_D3hot, 1)) {
3241 			pr_info("%s: WOL not supported.\n", pci_name(VORTEX_PCI(vp)));
3242 
3243 			vp->enable_wol = 0;
3244 			return;
3245 		}
3246 
3247 		if (VORTEX_PCI(vp)->current_state < PCI_D3hot)
3248 			return;
3249 
3250 		/* Change the power state to D3; RxEnable doesn't take effect. */
3251 		pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot);
3252 	}
3253 }
3254 
3255 
3256 static void vortex_remove_one(struct pci_dev *pdev)
3257 {
3258 	struct net_device *dev = pci_get_drvdata(pdev);
3259 	struct vortex_private *vp;
3260 
3261 	if (!dev) {
3262 		pr_err("vortex_remove_one called for Compaq device!\n");
3263 		BUG();
3264 	}
3265 
3266 	vp = netdev_priv(dev);
3267 
3268 	if (vp->cb_fn_base)
3269 		pci_iounmap(pdev, vp->cb_fn_base);
3270 
3271 	unregister_netdev(dev);
3272 
3273 	pci_set_power_state(pdev, PCI_D0);	/* Go active */
3274 	if (vp->pm_state_valid)
3275 		pci_restore_state(pdev);
3276 	pci_disable_device(pdev);
3277 
3278 	/* Should really use issue_and_wait() here */
3279 	iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14),
3280 	     vp->ioaddr + EL3_CMD);
3281 
3282 	pci_iounmap(pdev, vp->ioaddr);
3283 
3284 	dma_free_coherent(&pdev->dev,
3285 			sizeof(struct boom_rx_desc) * RX_RING_SIZE +
3286 			sizeof(struct boom_tx_desc) * TX_RING_SIZE,
3287 			vp->rx_ring, vp->rx_ring_dma);
3288 
3289 	pci_release_regions(pdev);
3290 
3291 	free_netdev(dev);
3292 }
3293 
3294 
3295 static struct pci_driver vortex_driver = {
3296 	.name		= "3c59x",
3297 	.probe		= vortex_init_one,
3298 	.remove		= vortex_remove_one,
3299 	.id_table	= vortex_pci_tbl,
3300 	.driver.pm	= VORTEX_PM_OPS,
3301 };
3302 
3303 
3304 static int vortex_have_pci;
3305 static int vortex_have_eisa;
3306 
3307 
3308 static int __init vortex_init(void)
3309 {
3310 	int pci_rc, eisa_rc;
3311 
3312 	pci_rc = pci_register_driver(&vortex_driver);
3313 	eisa_rc = vortex_eisa_init();
3314 
3315 	if (pci_rc == 0)
3316 		vortex_have_pci = 1;
3317 	if (eisa_rc > 0)
3318 		vortex_have_eisa = 1;
3319 
3320 	return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV;
3321 }
3322 
3323 
3324 static void __exit vortex_eisa_cleanup(void)
3325 {
3326 	void __iomem *ioaddr;
3327 
3328 #ifdef CONFIG_EISA
3329 	/* Take care of the EISA devices */
3330 	eisa_driver_unregister(&vortex_eisa_driver);
3331 #endif
3332 
3333 	if (compaq_net_device) {
3334 		ioaddr = ioport_map(compaq_net_device->base_addr,
3335 		                    VORTEX_TOTAL_SIZE);
3336 
3337 		unregister_netdev(compaq_net_device);
3338 		iowrite16(TotalReset, ioaddr + EL3_CMD);
3339 		release_region(compaq_net_device->base_addr,
3340 		               VORTEX_TOTAL_SIZE);
3341 
3342 		free_netdev(compaq_net_device);
3343 	}
3344 }
3345 
3346 
3347 static void __exit vortex_cleanup(void)
3348 {
3349 	if (vortex_have_pci)
3350 		pci_unregister_driver(&vortex_driver);
3351 	if (vortex_have_eisa)
3352 		vortex_eisa_cleanup();
3353 }
3354 
3355 
3356 module_init(vortex_init);
3357 module_exit(vortex_cleanup);
3358