1 /* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */ 2 /* 3 Written 1996-1999 by Donald Becker. 4 5 This software may be used and distributed according to the terms 6 of the GNU General Public License, incorporated herein by reference. 7 8 This driver is for the 3Com "Vortex" and "Boomerang" series ethercards. 9 Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597 10 and the EtherLink XL 3c900 and 3c905 cards. 11 12 Problem reports and questions should be directed to 13 vortex@scyld.com 14 15 The author may be reached as becker@scyld.com, or C/O 16 Scyld Computing Corporation 17 410 Severn Ave., Suite 210 18 Annapolis MD 21403 19 20 */ 21 22 /* 23 * FIXME: This driver _could_ support MTU changing, but doesn't. See Don's hamachi.c implementation 24 * as well as other drivers 25 * 26 * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k 27 * due to dead code elimination. There will be some performance benefits from this due to 28 * elimination of all the tests and reduced cache footprint. 29 */ 30 31 32 #define DRV_NAME "3c59x" 33 34 35 36 /* A few values that may be tweaked. */ 37 /* Keep the ring sizes a power of two for efficiency. */ 38 #define TX_RING_SIZE 16 39 #define RX_RING_SIZE 32 40 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/ 41 42 /* "Knobs" that adjust features and parameters. */ 43 /* Set the copy breakpoint for the copy-only-tiny-frames scheme. 44 Setting to > 1512 effectively disables this feature. */ 45 #ifndef __arm__ 46 static int rx_copybreak = 200; 47 #else 48 /* ARM systems perform better by disregarding the bus-master 49 transfer capability of these cards. -- rmk */ 50 static int rx_copybreak = 1513; 51 #endif 52 /* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */ 53 static const int mtu = 1500; 54 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */ 55 static int max_interrupt_work = 32; 56 /* Tx timeout interval (millisecs) */ 57 static int watchdog = 5000; 58 59 /* Allow aggregation of Tx interrupts. Saves CPU load at the cost 60 * of possible Tx stalls if the system is blocking interrupts 61 * somewhere else. Undefine this to disable. 62 */ 63 #define tx_interrupt_mitigation 1 64 65 /* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */ 66 #define vortex_debug debug 67 #ifdef VORTEX_DEBUG 68 static int vortex_debug = VORTEX_DEBUG; 69 #else 70 static int vortex_debug = 1; 71 #endif 72 73 #include <linux/module.h> 74 #include <linux/kernel.h> 75 #include <linux/string.h> 76 #include <linux/timer.h> 77 #include <linux/errno.h> 78 #include <linux/in.h> 79 #include <linux/ioport.h> 80 #include <linux/interrupt.h> 81 #include <linux/pci.h> 82 #include <linux/mii.h> 83 #include <linux/init.h> 84 #include <linux/netdevice.h> 85 #include <linux/etherdevice.h> 86 #include <linux/skbuff.h> 87 #include <linux/ethtool.h> 88 #include <linux/highmem.h> 89 #include <linux/eisa.h> 90 #include <linux/bitops.h> 91 #include <linux/jiffies.h> 92 #include <linux/gfp.h> 93 #include <asm/irq.h> /* For nr_irqs only. */ 94 #include <asm/io.h> 95 #include <asm/uaccess.h> 96 97 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package. 98 This is only in the support-all-kernels source code. */ 99 100 #define RUN_AT(x) (jiffies + (x)) 101 102 #include <linux/delay.h> 103 104 105 static const char version[] = 106 DRV_NAME ": Donald Becker and others.\n"; 107 108 MODULE_AUTHOR("Donald Becker <becker@scyld.com>"); 109 MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver "); 110 MODULE_LICENSE("GPL"); 111 112 113 /* Operational parameter that usually are not changed. */ 114 115 /* The Vortex size is twice that of the original EtherLinkIII series: the 116 runtime register window, window 1, is now always mapped in. 117 The Boomerang size is twice as large as the Vortex -- it has additional 118 bus master control registers. */ 119 #define VORTEX_TOTAL_SIZE 0x20 120 #define BOOMERANG_TOTAL_SIZE 0x40 121 122 /* Set iff a MII transceiver on any interface requires mdio preamble. 123 This only set with the original DP83840 on older 3c905 boards, so the extra 124 code size of a per-interface flag is not worthwhile. */ 125 static char mii_preamble_required; 126 127 #define PFX DRV_NAME ": " 128 129 130 131 /* 132 Theory of Operation 133 134 I. Board Compatibility 135 136 This device driver is designed for the 3Com FastEtherLink and FastEtherLink 137 XL, 3Com's PCI to 10/100baseT adapters. It also works with the 10Mbs 138 versions of the FastEtherLink cards. The supported product IDs are 139 3c590, 3c592, 3c595, 3c597, 3c900, 3c905 140 141 The related ISA 3c515 is supported with a separate driver, 3c515.c, included 142 with the kernel source or available from 143 cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html 144 145 II. Board-specific settings 146 147 PCI bus devices are configured by the system at boot time, so no jumpers 148 need to be set on the board. The system BIOS should be set to assign the 149 PCI INTA signal to an otherwise unused system IRQ line. 150 151 The EEPROM settings for media type and forced-full-duplex are observed. 152 The EEPROM media type should be left at the default "autoselect" unless using 153 10base2 or AUI connections which cannot be reliably detected. 154 155 III. Driver operation 156 157 The 3c59x series use an interface that's very similar to the previous 3c5x9 158 series. The primary interface is two programmed-I/O FIFOs, with an 159 alternate single-contiguous-region bus-master transfer (see next). 160 161 The 3c900 "Boomerang" series uses a full-bus-master interface with separate 162 lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet, 163 DEC Tulip and Intel Speedo3. The first chip version retains a compatible 164 programmed-I/O interface that has been removed in 'B' and subsequent board 165 revisions. 166 167 One extension that is advertised in a very large font is that the adapters 168 are capable of being bus masters. On the Vortex chip this capability was 169 only for a single contiguous region making it far less useful than the full 170 bus master capability. There is a significant performance impact of taking 171 an extra interrupt or polling for the completion of each transfer, as well 172 as difficulty sharing the single transfer engine between the transmit and 173 receive threads. Using DMA transfers is a win only with large blocks or 174 with the flawed versions of the Intel Orion motherboard PCI controller. 175 176 The Boomerang chip's full-bus-master interface is useful, and has the 177 currently-unused advantages over other similar chips that queued transmit 178 packets may be reordered and receive buffer groups are associated with a 179 single frame. 180 181 With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme. 182 Rather than a fixed intermediate receive buffer, this scheme allocates 183 full-sized skbuffs as receive buffers. The value RX_COPYBREAK is used as 184 the copying breakpoint: it is chosen to trade-off the memory wasted by 185 passing the full-sized skbuff to the queue layer for all frames vs. the 186 copying cost of copying a frame to a correctly-sized skbuff. 187 188 IIIC. Synchronization 189 The driver runs as two independent, single-threaded flows of control. One 190 is the send-packet routine, which enforces single-threaded use by the 191 dev->tbusy flag. The other thread is the interrupt handler, which is single 192 threaded by the hardware and other software. 193 194 IV. Notes 195 196 Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development 197 3c590, 3c595, and 3c900 boards. 198 The name "Vortex" is the internal 3Com project name for the PCI ASIC, and 199 the EISA version is called "Demon". According to Terry these names come 200 from rides at the local amusement park. 201 202 The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes! 203 This driver only supports ethernet packets because of the skbuff allocation 204 limit of 4K. 205 */ 206 207 /* This table drives the PCI probe routines. It's mostly boilerplate in all 208 of the drivers, and will likely be provided by some future kernel. 209 */ 210 enum pci_flags_bit { 211 PCI_USES_MASTER=4, 212 }; 213 214 enum { IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8, 215 EEPROM_8BIT=0x10, /* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */ 216 HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100, 217 INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800, 218 EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000, 219 EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, }; 220 221 enum vortex_chips { 222 CH_3C590 = 0, 223 CH_3C592, 224 CH_3C597, 225 CH_3C595_1, 226 CH_3C595_2, 227 228 CH_3C595_3, 229 CH_3C900_1, 230 CH_3C900_2, 231 CH_3C900_3, 232 CH_3C900_4, 233 234 CH_3C900_5, 235 CH_3C900B_FL, 236 CH_3C905_1, 237 CH_3C905_2, 238 CH_3C905B_TX, 239 CH_3C905B_1, 240 241 CH_3C905B_2, 242 CH_3C905B_FX, 243 CH_3C905C, 244 CH_3C9202, 245 CH_3C980, 246 CH_3C9805, 247 248 CH_3CSOHO100_TX, 249 CH_3C555, 250 CH_3C556, 251 CH_3C556B, 252 CH_3C575, 253 254 CH_3C575_1, 255 CH_3CCFE575, 256 CH_3CCFE575CT, 257 CH_3CCFE656, 258 CH_3CCFEM656, 259 260 CH_3CCFEM656_1, 261 CH_3C450, 262 CH_3C920, 263 CH_3C982A, 264 CH_3C982B, 265 266 CH_905BT4, 267 CH_920B_EMB_WNM, 268 }; 269 270 271 /* note: this array directly indexed by above enums, and MUST 272 * be kept in sync with both the enums above, and the PCI device 273 * table below 274 */ 275 static struct vortex_chip_info { 276 const char *name; 277 int flags; 278 int drv_flags; 279 int io_size; 280 } vortex_info_tbl[] = { 281 {"3c590 Vortex 10Mbps", 282 PCI_USES_MASTER, IS_VORTEX, 32, }, 283 {"3c592 EISA 10Mbps Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */ 284 PCI_USES_MASTER, IS_VORTEX, 32, }, 285 {"3c597 EISA Fast Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */ 286 PCI_USES_MASTER, IS_VORTEX, 32, }, 287 {"3c595 Vortex 100baseTx", 288 PCI_USES_MASTER, IS_VORTEX, 32, }, 289 {"3c595 Vortex 100baseT4", 290 PCI_USES_MASTER, IS_VORTEX, 32, }, 291 292 {"3c595 Vortex 100base-MII", 293 PCI_USES_MASTER, IS_VORTEX, 32, }, 294 {"3c900 Boomerang 10baseT", 295 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, }, 296 {"3c900 Boomerang 10Mbps Combo", 297 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, }, 298 {"3c900 Cyclone 10Mbps TPO", /* AKPM: from Don's 0.99M */ 299 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, }, 300 {"3c900 Cyclone 10Mbps Combo", 301 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, }, 302 303 {"3c900 Cyclone 10Mbps TPC", /* AKPM: from Don's 0.99M */ 304 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, }, 305 {"3c900B-FL Cyclone 10base-FL", 306 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, }, 307 {"3c905 Boomerang 100baseTx", 308 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, }, 309 {"3c905 Boomerang 100baseT4", 310 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, }, 311 {"3C905B-TX Fast Etherlink XL PCI", 312 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, }, 313 {"3c905B Cyclone 100baseTx", 314 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, }, 315 316 {"3c905B Cyclone 10/100/BNC", 317 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, }, 318 {"3c905B-FX Cyclone 100baseFx", 319 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, }, 320 {"3c905C Tornado", 321 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, }, 322 {"3c920B-EMB-WNM (ATI Radeon 9100 IGP)", 323 PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, }, 324 {"3c980 Cyclone", 325 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM|EXTRA_PREAMBLE, 128, }, 326 327 {"3c980C Python-T", 328 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, }, 329 {"3cSOHO100-TX Hurricane", 330 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, }, 331 {"3c555 Laptop Hurricane", 332 PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, }, 333 {"3c556 Laptop Tornado", 334 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR| 335 HAS_HWCKSM, 128, }, 336 {"3c556B Laptop Hurricane", 337 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR| 338 WNO_XCVR_PWR|HAS_HWCKSM, 128, }, 339 340 {"3c575 [Megahertz] 10/100 LAN CardBus", 341 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, }, 342 {"3c575 Boomerang CardBus", 343 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, }, 344 {"3CCFE575BT Cyclone CardBus", 345 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT| 346 INVERT_LED_PWR|HAS_HWCKSM, 128, }, 347 {"3CCFE575CT Tornado CardBus", 348 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR| 349 MAX_COLLISION_RESET|HAS_HWCKSM, 128, }, 350 {"3CCFE656 Cyclone CardBus", 351 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR| 352 INVERT_LED_PWR|HAS_HWCKSM, 128, }, 353 354 {"3CCFEM656B Cyclone+Winmodem CardBus", 355 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR| 356 INVERT_LED_PWR|HAS_HWCKSM, 128, }, 357 {"3CXFEM656C Tornado+Winmodem CardBus", /* From pcmcia-cs-3.1.5 */ 358 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR| 359 MAX_COLLISION_RESET|HAS_HWCKSM, 128, }, 360 {"3c450 HomePNA Tornado", /* AKPM: from Don's 0.99Q */ 361 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, }, 362 {"3c920 Tornado", 363 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, }, 364 {"3c982 Hydra Dual Port A", 365 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, }, 366 367 {"3c982 Hydra Dual Port B", 368 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, }, 369 {"3c905B-T4", 370 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, }, 371 {"3c920B-EMB-WNM Tornado", 372 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, }, 373 374 {NULL,}, /* NULL terminated list. */ 375 }; 376 377 378 static DEFINE_PCI_DEVICE_TABLE(vortex_pci_tbl) = { 379 { 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 }, 380 { 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 }, 381 { 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 }, 382 { 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 }, 383 { 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 }, 384 385 { 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 }, 386 { 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 }, 387 { 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 }, 388 { 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 }, 389 { 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 }, 390 391 { 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 }, 392 { 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL }, 393 { 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 }, 394 { 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 }, 395 { 0x10B7, 0x9054, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_TX }, 396 { 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 }, 397 398 { 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 }, 399 { 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX }, 400 { 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C }, 401 { 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 }, 402 { 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 }, 403 { 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 }, 404 405 { 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX }, 406 { 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 }, 407 { 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 }, 408 { 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B }, 409 { 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 }, 410 411 { 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 }, 412 { 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 }, 413 { 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT }, 414 { 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 }, 415 { 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 }, 416 417 { 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 }, 418 { 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 }, 419 { 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 }, 420 { 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A }, 421 { 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B }, 422 423 { 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 }, 424 { 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM }, 425 426 {0,} /* 0 terminated list. */ 427 }; 428 MODULE_DEVICE_TABLE(pci, vortex_pci_tbl); 429 430 431 /* Operational definitions. 432 These are not used by other compilation units and thus are not 433 exported in a ".h" file. 434 435 First the windows. There are eight register windows, with the command 436 and status registers available in each. 437 */ 438 #define EL3_CMD 0x0e 439 #define EL3_STATUS 0x0e 440 441 /* The top five bits written to EL3_CMD are a command, the lower 442 11 bits are the parameter, if applicable. 443 Note that 11 parameters bits was fine for ethernet, but the new chip 444 can handle FDDI length frames (~4500 octets) and now parameters count 445 32-bit 'Dwords' rather than octets. */ 446 447 enum vortex_cmd { 448 TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11, 449 RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11, 450 UpStall = 6<<11, UpUnstall = (6<<11)+1, 451 DownStall = (6<<11)+2, DownUnstall = (6<<11)+3, 452 RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11, 453 FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11, 454 SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11, 455 SetTxThreshold = 18<<11, SetTxStart = 19<<11, 456 StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11, 457 StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,}; 458 459 /* The SetRxFilter command accepts the following classes: */ 460 enum RxFilter { 461 RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 }; 462 463 /* Bits in the general status register. */ 464 enum vortex_status { 465 IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004, 466 TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020, 467 IntReq = 0x0040, StatsFull = 0x0080, 468 DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10, 469 DMAInProgress = 1<<11, /* DMA controller is still busy.*/ 470 CmdInProgress = 1<<12, /* EL3_CMD is still busy.*/ 471 }; 472 473 /* Register window 1 offsets, the window used in normal operation. 474 On the Vortex this window is always mapped at offsets 0x10-0x1f. */ 475 enum Window1 { 476 TX_FIFO = 0x10, RX_FIFO = 0x10, RxErrors = 0x14, 477 RxStatus = 0x18, Timer=0x1A, TxStatus = 0x1B, 478 TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */ 479 }; 480 enum Window0 { 481 Wn0EepromCmd = 10, /* Window 0: EEPROM command register. */ 482 Wn0EepromData = 12, /* Window 0: EEPROM results register. */ 483 IntrStatus=0x0E, /* Valid in all windows. */ 484 }; 485 enum Win0_EEPROM_bits { 486 EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0, 487 EEPROM_EWENB = 0x30, /* Enable erasing/writing for 10 msec. */ 488 EEPROM_EWDIS = 0x00, /* Disable EWENB before 10 msec timeout. */ 489 }; 490 /* EEPROM locations. */ 491 enum eeprom_offset { 492 PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3, 493 EtherLink3ID=7, IFXcvrIO=8, IRQLine=9, 494 NodeAddr01=10, NodeAddr23=11, NodeAddr45=12, 495 DriverTune=13, Checksum=15}; 496 497 enum Window2 { /* Window 2. */ 498 Wn2_ResetOptions=12, 499 }; 500 enum Window3 { /* Window 3: MAC/config bits. */ 501 Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8, 502 }; 503 504 #define BFEXT(value, offset, bitcount) \ 505 ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1)) 506 507 #define BFINS(lhs, rhs, offset, bitcount) \ 508 (((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) | \ 509 (((rhs) & ((1 << (bitcount)) - 1)) << (offset))) 510 511 #define RAM_SIZE(v) BFEXT(v, 0, 3) 512 #define RAM_WIDTH(v) BFEXT(v, 3, 1) 513 #define RAM_SPEED(v) BFEXT(v, 4, 2) 514 #define ROM_SIZE(v) BFEXT(v, 6, 2) 515 #define RAM_SPLIT(v) BFEXT(v, 16, 2) 516 #define XCVR(v) BFEXT(v, 20, 4) 517 #define AUTOSELECT(v) BFEXT(v, 24, 1) 518 519 enum Window4 { /* Window 4: Xcvr/media bits. */ 520 Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10, 521 }; 522 enum Win4_Media_bits { 523 Media_SQE = 0x0008, /* Enable SQE error counting for AUI. */ 524 Media_10TP = 0x00C0, /* Enable link beat and jabber for 10baseT. */ 525 Media_Lnk = 0x0080, /* Enable just link beat for 100TX/100FX. */ 526 Media_LnkBeat = 0x0800, 527 }; 528 enum Window7 { /* Window 7: Bus Master control. */ 529 Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6, 530 Wn7_MasterStatus = 12, 531 }; 532 /* Boomerang bus master control registers. */ 533 enum MasterCtrl { 534 PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c, 535 TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38, 536 }; 537 538 /* The Rx and Tx descriptor lists. 539 Caution Alpha hackers: these types are 32 bits! Note also the 8 byte 540 alignment contraint on tx_ring[] and rx_ring[]. */ 541 #define LAST_FRAG 0x80000000 /* Last Addr/Len pair in descriptor. */ 542 #define DN_COMPLETE 0x00010000 /* This packet has been downloaded */ 543 struct boom_rx_desc { 544 __le32 next; /* Last entry points to 0. */ 545 __le32 status; 546 __le32 addr; /* Up to 63 addr/len pairs possible. */ 547 __le32 length; /* Set LAST_FRAG to indicate last pair. */ 548 }; 549 /* Values for the Rx status entry. */ 550 enum rx_desc_status { 551 RxDComplete=0x00008000, RxDError=0x4000, 552 /* See boomerang_rx() for actual error bits */ 553 IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27, 554 IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31, 555 }; 556 557 #ifdef MAX_SKB_FRAGS 558 #define DO_ZEROCOPY 1 559 #else 560 #define DO_ZEROCOPY 0 561 #endif 562 563 struct boom_tx_desc { 564 __le32 next; /* Last entry points to 0. */ 565 __le32 status; /* bits 0:12 length, others see below. */ 566 #if DO_ZEROCOPY 567 struct { 568 __le32 addr; 569 __le32 length; 570 } frag[1+MAX_SKB_FRAGS]; 571 #else 572 __le32 addr; 573 __le32 length; 574 #endif 575 }; 576 577 /* Values for the Tx status entry. */ 578 enum tx_desc_status { 579 CRCDisable=0x2000, TxDComplete=0x8000, 580 AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000, 581 TxIntrUploaded=0x80000000, /* IRQ when in FIFO, but maybe not sent. */ 582 }; 583 584 /* Chip features we care about in vp->capabilities, read from the EEPROM. */ 585 enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 }; 586 587 struct vortex_extra_stats { 588 unsigned long tx_deferred; 589 unsigned long tx_max_collisions; 590 unsigned long tx_multiple_collisions; 591 unsigned long tx_single_collisions; 592 unsigned long rx_bad_ssd; 593 }; 594 595 struct vortex_private { 596 /* The Rx and Tx rings should be quad-word-aligned. */ 597 struct boom_rx_desc* rx_ring; 598 struct boom_tx_desc* tx_ring; 599 dma_addr_t rx_ring_dma; 600 dma_addr_t tx_ring_dma; 601 /* The addresses of transmit- and receive-in-place skbuffs. */ 602 struct sk_buff* rx_skbuff[RX_RING_SIZE]; 603 struct sk_buff* tx_skbuff[TX_RING_SIZE]; 604 unsigned int cur_rx, cur_tx; /* The next free ring entry */ 605 unsigned int dirty_rx, dirty_tx; /* The ring entries to be free()ed. */ 606 struct vortex_extra_stats xstats; /* NIC-specific extra stats */ 607 struct sk_buff *tx_skb; /* Packet being eaten by bus master ctrl. */ 608 dma_addr_t tx_skb_dma; /* Allocated DMA address for bus master ctrl DMA. */ 609 610 /* PCI configuration space information. */ 611 struct device *gendev; 612 void __iomem *ioaddr; /* IO address space */ 613 void __iomem *cb_fn_base; /* CardBus function status addr space. */ 614 615 /* Some values here only for performance evaluation and path-coverage */ 616 int rx_nocopy, rx_copy, queued_packet, rx_csumhits; 617 int card_idx; 618 619 /* The remainder are related to chip state, mostly media selection. */ 620 struct timer_list timer; /* Media selection timer. */ 621 struct timer_list rx_oom_timer; /* Rx skb allocation retry timer */ 622 int options; /* User-settable misc. driver options. */ 623 unsigned int media_override:4, /* Passed-in media type. */ 624 default_media:4, /* Read from the EEPROM/Wn3_Config. */ 625 full_duplex:1, autoselect:1, 626 bus_master:1, /* Vortex can only do a fragment bus-m. */ 627 full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang */ 628 flow_ctrl:1, /* Use 802.3x flow control (PAUSE only) */ 629 partner_flow_ctrl:1, /* Partner supports flow control */ 630 has_nway:1, 631 enable_wol:1, /* Wake-on-LAN is enabled */ 632 pm_state_valid:1, /* pci_dev->saved_config_space has sane contents */ 633 open:1, 634 medialock:1, 635 large_frames:1, /* accept large frames */ 636 handling_irq:1; /* private in_irq indicator */ 637 /* {get|set}_wol operations are already serialized by rtnl. 638 * no additional locking is required for the enable_wol and acpi_set_WOL() 639 */ 640 int drv_flags; 641 u16 status_enable; 642 u16 intr_enable; 643 u16 available_media; /* From Wn3_Options. */ 644 u16 capabilities, info1, info2; /* Various, from EEPROM. */ 645 u16 advertising; /* NWay media advertisement */ 646 unsigned char phys[2]; /* MII device addresses. */ 647 u16 deferred; /* Resend these interrupts when we 648 * bale from the ISR */ 649 u16 io_size; /* Size of PCI region (for release_region) */ 650 651 /* Serialises access to hardware other than MII and variables below. 652 * The lock hierarchy is rtnl_lock > {lock, mii_lock} > window_lock. */ 653 spinlock_t lock; 654 655 spinlock_t mii_lock; /* Serialises access to MII */ 656 struct mii_if_info mii; /* MII lib hooks/info */ 657 spinlock_t window_lock; /* Serialises access to windowed regs */ 658 int window; /* Register window */ 659 }; 660 661 static void window_set(struct vortex_private *vp, int window) 662 { 663 if (window != vp->window) { 664 iowrite16(SelectWindow + window, vp->ioaddr + EL3_CMD); 665 vp->window = window; 666 } 667 } 668 669 #define DEFINE_WINDOW_IO(size) \ 670 static u ## size \ 671 window_read ## size(struct vortex_private *vp, int window, int addr) \ 672 { \ 673 unsigned long flags; \ 674 u ## size ret; \ 675 spin_lock_irqsave(&vp->window_lock, flags); \ 676 window_set(vp, window); \ 677 ret = ioread ## size(vp->ioaddr + addr); \ 678 spin_unlock_irqrestore(&vp->window_lock, flags); \ 679 return ret; \ 680 } \ 681 static void \ 682 window_write ## size(struct vortex_private *vp, u ## size value, \ 683 int window, int addr) \ 684 { \ 685 unsigned long flags; \ 686 spin_lock_irqsave(&vp->window_lock, flags); \ 687 window_set(vp, window); \ 688 iowrite ## size(value, vp->ioaddr + addr); \ 689 spin_unlock_irqrestore(&vp->window_lock, flags); \ 690 } 691 DEFINE_WINDOW_IO(8) 692 DEFINE_WINDOW_IO(16) 693 DEFINE_WINDOW_IO(32) 694 695 #ifdef CONFIG_PCI 696 #define DEVICE_PCI(dev) (((dev)->bus == &pci_bus_type) ? to_pci_dev((dev)) : NULL) 697 #else 698 #define DEVICE_PCI(dev) NULL 699 #endif 700 701 #define VORTEX_PCI(vp) \ 702 ((struct pci_dev *) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL)) 703 704 #ifdef CONFIG_EISA 705 #define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL) 706 #else 707 #define DEVICE_EISA(dev) NULL 708 #endif 709 710 #define VORTEX_EISA(vp) \ 711 ((struct eisa_device *) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL)) 712 713 /* The action to take with a media selection timer tick. 714 Note that we deviate from the 3Com order by checking 10base2 before AUI. 715 */ 716 enum xcvr_types { 717 XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx, 718 XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10, 719 }; 720 721 static const struct media_table { 722 char *name; 723 unsigned int media_bits:16, /* Bits to set in Wn4_Media register. */ 724 mask:8, /* The transceiver-present bit in Wn3_Config.*/ 725 next:8; /* The media type to try next. */ 726 int wait; /* Time before we check media status. */ 727 } media_tbl[] = { 728 { "10baseT", Media_10TP,0x08, XCVR_10base2, (14*HZ)/10}, 729 { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10}, 730 { "undefined", 0, 0x80, XCVR_10baseT, 10000}, 731 { "10base2", 0, 0x10, XCVR_AUI, (1*HZ)/10}, 732 { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10}, 733 { "100baseFX", Media_Lnk, 0x04, XCVR_MII, (14*HZ)/10}, 734 { "MII", 0, 0x41, XCVR_10baseT, 3*HZ }, 735 { "undefined", 0, 0x01, XCVR_10baseT, 10000}, 736 { "Autonegotiate", 0, 0x41, XCVR_10baseT, 3*HZ}, 737 { "MII-External", 0, 0x41, XCVR_10baseT, 3*HZ }, 738 { "Default", 0, 0xFF, XCVR_10baseT, 10000}, 739 }; 740 741 static struct { 742 const char str[ETH_GSTRING_LEN]; 743 } ethtool_stats_keys[] = { 744 { "tx_deferred" }, 745 { "tx_max_collisions" }, 746 { "tx_multiple_collisions" }, 747 { "tx_single_collisions" }, 748 { "rx_bad_ssd" }, 749 }; 750 751 /* number of ETHTOOL_GSTATS u64's */ 752 #define VORTEX_NUM_STATS 5 753 754 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq, 755 int chip_idx, int card_idx); 756 static int vortex_up(struct net_device *dev); 757 static void vortex_down(struct net_device *dev, int final); 758 static int vortex_open(struct net_device *dev); 759 static void mdio_sync(struct vortex_private *vp, int bits); 760 static int mdio_read(struct net_device *dev, int phy_id, int location); 761 static void mdio_write(struct net_device *vp, int phy_id, int location, int value); 762 static void vortex_timer(unsigned long arg); 763 static void rx_oom_timer(unsigned long arg); 764 static netdev_tx_t vortex_start_xmit(struct sk_buff *skb, 765 struct net_device *dev); 766 static netdev_tx_t boomerang_start_xmit(struct sk_buff *skb, 767 struct net_device *dev); 768 static int vortex_rx(struct net_device *dev); 769 static int boomerang_rx(struct net_device *dev); 770 static irqreturn_t vortex_interrupt(int irq, void *dev_id); 771 static irqreturn_t boomerang_interrupt(int irq, void *dev_id); 772 static int vortex_close(struct net_device *dev); 773 static void dump_tx_ring(struct net_device *dev); 774 static void update_stats(void __iomem *ioaddr, struct net_device *dev); 775 static struct net_device_stats *vortex_get_stats(struct net_device *dev); 776 static void set_rx_mode(struct net_device *dev); 777 #ifdef CONFIG_PCI 778 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); 779 #endif 780 static void vortex_tx_timeout(struct net_device *dev); 781 static void acpi_set_WOL(struct net_device *dev); 782 static const struct ethtool_ops vortex_ethtool_ops; 783 static void set_8021q_mode(struct net_device *dev, int enable); 784 785 /* This driver uses 'options' to pass the media type, full-duplex flag, etc. */ 786 /* Option count limit only -- unlimited interfaces are supported. */ 787 #define MAX_UNITS 8 788 static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 }; 789 static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 }; 790 static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 }; 791 static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 }; 792 static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 }; 793 static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 }; 794 static int global_options = -1; 795 static int global_full_duplex = -1; 796 static int global_enable_wol = -1; 797 static int global_use_mmio = -1; 798 799 /* Variables to work-around the Compaq PCI BIOS32 problem. */ 800 static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900; 801 static struct net_device *compaq_net_device; 802 803 static int vortex_cards_found; 804 805 module_param(debug, int, 0); 806 module_param(global_options, int, 0); 807 module_param_array(options, int, NULL, 0); 808 module_param(global_full_duplex, int, 0); 809 module_param_array(full_duplex, int, NULL, 0); 810 module_param_array(hw_checksums, int, NULL, 0); 811 module_param_array(flow_ctrl, int, NULL, 0); 812 module_param(global_enable_wol, int, 0); 813 module_param_array(enable_wol, int, NULL, 0); 814 module_param(rx_copybreak, int, 0); 815 module_param(max_interrupt_work, int, 0); 816 module_param(compaq_ioaddr, int, 0); 817 module_param(compaq_irq, int, 0); 818 module_param(compaq_device_id, int, 0); 819 module_param(watchdog, int, 0); 820 module_param(global_use_mmio, int, 0); 821 module_param_array(use_mmio, int, NULL, 0); 822 MODULE_PARM_DESC(debug, "3c59x debug level (0-6)"); 823 MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex"); 824 MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset"); 825 MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)"); 826 MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset"); 827 MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)"); 828 MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)"); 829 MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)"); 830 MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset"); 831 MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames"); 832 MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt"); 833 MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)"); 834 MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)"); 835 MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)"); 836 MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds"); 837 MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset"); 838 MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)"); 839 840 #ifdef CONFIG_NET_POLL_CONTROLLER 841 static void poll_vortex(struct net_device *dev) 842 { 843 struct vortex_private *vp = netdev_priv(dev); 844 unsigned long flags; 845 local_irq_save(flags); 846 (vp->full_bus_master_rx ? boomerang_interrupt:vortex_interrupt)(dev->irq,dev); 847 local_irq_restore(flags); 848 } 849 #endif 850 851 #ifdef CONFIG_PM 852 853 static int vortex_suspend(struct device *dev) 854 { 855 struct pci_dev *pdev = to_pci_dev(dev); 856 struct net_device *ndev = pci_get_drvdata(pdev); 857 858 if (!ndev || !netif_running(ndev)) 859 return 0; 860 861 netif_device_detach(ndev); 862 vortex_down(ndev, 1); 863 864 return 0; 865 } 866 867 static int vortex_resume(struct device *dev) 868 { 869 struct pci_dev *pdev = to_pci_dev(dev); 870 struct net_device *ndev = pci_get_drvdata(pdev); 871 int err; 872 873 if (!ndev || !netif_running(ndev)) 874 return 0; 875 876 err = vortex_up(ndev); 877 if (err) 878 return err; 879 880 netif_device_attach(ndev); 881 882 return 0; 883 } 884 885 static const struct dev_pm_ops vortex_pm_ops = { 886 .suspend = vortex_suspend, 887 .resume = vortex_resume, 888 .freeze = vortex_suspend, 889 .thaw = vortex_resume, 890 .poweroff = vortex_suspend, 891 .restore = vortex_resume, 892 }; 893 894 #define VORTEX_PM_OPS (&vortex_pm_ops) 895 896 #else /* !CONFIG_PM */ 897 898 #define VORTEX_PM_OPS NULL 899 900 #endif /* !CONFIG_PM */ 901 902 #ifdef CONFIG_EISA 903 static struct eisa_device_id vortex_eisa_ids[] = { 904 { "TCM5920", CH_3C592 }, 905 { "TCM5970", CH_3C597 }, 906 { "" } 907 }; 908 MODULE_DEVICE_TABLE(eisa, vortex_eisa_ids); 909 910 static int __init vortex_eisa_probe(struct device *device) 911 { 912 void __iomem *ioaddr; 913 struct eisa_device *edev; 914 915 edev = to_eisa_device(device); 916 917 if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME)) 918 return -EBUSY; 919 920 ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE); 921 922 if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12, 923 edev->id.driver_data, vortex_cards_found)) { 924 release_region(edev->base_addr, VORTEX_TOTAL_SIZE); 925 return -ENODEV; 926 } 927 928 vortex_cards_found++; 929 930 return 0; 931 } 932 933 static int vortex_eisa_remove(struct device *device) 934 { 935 struct eisa_device *edev; 936 struct net_device *dev; 937 struct vortex_private *vp; 938 void __iomem *ioaddr; 939 940 edev = to_eisa_device(device); 941 dev = eisa_get_drvdata(edev); 942 943 if (!dev) { 944 pr_err("vortex_eisa_remove called for Compaq device!\n"); 945 BUG(); 946 } 947 948 vp = netdev_priv(dev); 949 ioaddr = vp->ioaddr; 950 951 unregister_netdev(dev); 952 iowrite16(TotalReset|0x14, ioaddr + EL3_CMD); 953 release_region(edev->base_addr, VORTEX_TOTAL_SIZE); 954 955 free_netdev(dev); 956 return 0; 957 } 958 959 static struct eisa_driver vortex_eisa_driver = { 960 .id_table = vortex_eisa_ids, 961 .driver = { 962 .name = "3c59x", 963 .probe = vortex_eisa_probe, 964 .remove = vortex_eisa_remove 965 } 966 }; 967 968 #endif /* CONFIG_EISA */ 969 970 /* returns count found (>= 0), or negative on error */ 971 static int __init vortex_eisa_init(void) 972 { 973 int eisa_found = 0; 974 int orig_cards_found = vortex_cards_found; 975 976 #ifdef CONFIG_EISA 977 int err; 978 979 err = eisa_driver_register (&vortex_eisa_driver); 980 if (!err) { 981 /* 982 * Because of the way EISA bus is probed, we cannot assume 983 * any device have been found when we exit from 984 * eisa_driver_register (the bus root driver may not be 985 * initialized yet). So we blindly assume something was 986 * found, and let the sysfs magic happened... 987 */ 988 eisa_found = 1; 989 } 990 #endif 991 992 /* Special code to work-around the Compaq PCI BIOS32 problem. */ 993 if (compaq_ioaddr) { 994 vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE), 995 compaq_irq, compaq_device_id, vortex_cards_found++); 996 } 997 998 return vortex_cards_found - orig_cards_found + eisa_found; 999 } 1000 1001 /* returns count (>= 0), or negative on error */ 1002 static int vortex_init_one(struct pci_dev *pdev, 1003 const struct pci_device_id *ent) 1004 { 1005 int rc, unit, pci_bar; 1006 struct vortex_chip_info *vci; 1007 void __iomem *ioaddr; 1008 1009 /* wake up and enable device */ 1010 rc = pci_enable_device(pdev); 1011 if (rc < 0) 1012 goto out; 1013 1014 rc = pci_request_regions(pdev, DRV_NAME); 1015 if (rc < 0) { 1016 pci_disable_device(pdev); 1017 goto out; 1018 } 1019 1020 unit = vortex_cards_found; 1021 1022 if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) { 1023 /* Determine the default if the user didn't override us */ 1024 vci = &vortex_info_tbl[ent->driver_data]; 1025 pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0; 1026 } else if (unit < MAX_UNITS && use_mmio[unit] >= 0) 1027 pci_bar = use_mmio[unit] ? 1 : 0; 1028 else 1029 pci_bar = global_use_mmio ? 1 : 0; 1030 1031 ioaddr = pci_iomap(pdev, pci_bar, 0); 1032 if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */ 1033 ioaddr = pci_iomap(pdev, 0, 0); 1034 if (!ioaddr) { 1035 pci_release_regions(pdev); 1036 pci_disable_device(pdev); 1037 rc = -ENOMEM; 1038 goto out; 1039 } 1040 1041 rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq, 1042 ent->driver_data, unit); 1043 if (rc < 0) { 1044 pci_iounmap(pdev, ioaddr); 1045 pci_release_regions(pdev); 1046 pci_disable_device(pdev); 1047 goto out; 1048 } 1049 1050 vortex_cards_found++; 1051 1052 out: 1053 return rc; 1054 } 1055 1056 static const struct net_device_ops boomrang_netdev_ops = { 1057 .ndo_open = vortex_open, 1058 .ndo_stop = vortex_close, 1059 .ndo_start_xmit = boomerang_start_xmit, 1060 .ndo_tx_timeout = vortex_tx_timeout, 1061 .ndo_get_stats = vortex_get_stats, 1062 #ifdef CONFIG_PCI 1063 .ndo_do_ioctl = vortex_ioctl, 1064 #endif 1065 .ndo_set_rx_mode = set_rx_mode, 1066 .ndo_change_mtu = eth_change_mtu, 1067 .ndo_set_mac_address = eth_mac_addr, 1068 .ndo_validate_addr = eth_validate_addr, 1069 #ifdef CONFIG_NET_POLL_CONTROLLER 1070 .ndo_poll_controller = poll_vortex, 1071 #endif 1072 }; 1073 1074 static const struct net_device_ops vortex_netdev_ops = { 1075 .ndo_open = vortex_open, 1076 .ndo_stop = vortex_close, 1077 .ndo_start_xmit = vortex_start_xmit, 1078 .ndo_tx_timeout = vortex_tx_timeout, 1079 .ndo_get_stats = vortex_get_stats, 1080 #ifdef CONFIG_PCI 1081 .ndo_do_ioctl = vortex_ioctl, 1082 #endif 1083 .ndo_set_rx_mode = set_rx_mode, 1084 .ndo_change_mtu = eth_change_mtu, 1085 .ndo_set_mac_address = eth_mac_addr, 1086 .ndo_validate_addr = eth_validate_addr, 1087 #ifdef CONFIG_NET_POLL_CONTROLLER 1088 .ndo_poll_controller = poll_vortex, 1089 #endif 1090 }; 1091 1092 /* 1093 * Start up the PCI/EISA device which is described by *gendev. 1094 * Return 0 on success. 1095 * 1096 * NOTE: pdev can be NULL, for the case of a Compaq device 1097 */ 1098 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq, 1099 int chip_idx, int card_idx) 1100 { 1101 struct vortex_private *vp; 1102 int option; 1103 unsigned int eeprom[0x40], checksum = 0; /* EEPROM contents */ 1104 int i, step; 1105 struct net_device *dev; 1106 static int printed_version; 1107 int retval, print_info; 1108 struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx]; 1109 const char *print_name = "3c59x"; 1110 struct pci_dev *pdev = NULL; 1111 struct eisa_device *edev = NULL; 1112 1113 if (!printed_version) { 1114 pr_info("%s", version); 1115 printed_version = 1; 1116 } 1117 1118 if (gendev) { 1119 if ((pdev = DEVICE_PCI(gendev))) { 1120 print_name = pci_name(pdev); 1121 } 1122 1123 if ((edev = DEVICE_EISA(gendev))) { 1124 print_name = dev_name(&edev->dev); 1125 } 1126 } 1127 1128 dev = alloc_etherdev(sizeof(*vp)); 1129 retval = -ENOMEM; 1130 if (!dev) 1131 goto out; 1132 1133 SET_NETDEV_DEV(dev, gendev); 1134 vp = netdev_priv(dev); 1135 1136 option = global_options; 1137 1138 /* The lower four bits are the media type. */ 1139 if (dev->mem_start) { 1140 /* 1141 * The 'options' param is passed in as the third arg to the 1142 * LILO 'ether=' argument for non-modular use 1143 */ 1144 option = dev->mem_start; 1145 } 1146 else if (card_idx < MAX_UNITS) { 1147 if (options[card_idx] >= 0) 1148 option = options[card_idx]; 1149 } 1150 1151 if (option > 0) { 1152 if (option & 0x8000) 1153 vortex_debug = 7; 1154 if (option & 0x4000) 1155 vortex_debug = 2; 1156 if (option & 0x0400) 1157 vp->enable_wol = 1; 1158 } 1159 1160 print_info = (vortex_debug > 1); 1161 if (print_info) 1162 pr_info("See Documentation/networking/vortex.txt\n"); 1163 1164 pr_info("%s: 3Com %s %s at %p.\n", 1165 print_name, 1166 pdev ? "PCI" : "EISA", 1167 vci->name, 1168 ioaddr); 1169 1170 dev->base_addr = (unsigned long)ioaddr; 1171 dev->irq = irq; 1172 dev->mtu = mtu; 1173 vp->ioaddr = ioaddr; 1174 vp->large_frames = mtu > 1500; 1175 vp->drv_flags = vci->drv_flags; 1176 vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0; 1177 vp->io_size = vci->io_size; 1178 vp->card_idx = card_idx; 1179 vp->window = -1; 1180 1181 /* module list only for Compaq device */ 1182 if (gendev == NULL) { 1183 compaq_net_device = dev; 1184 } 1185 1186 /* PCI-only startup logic */ 1187 if (pdev) { 1188 /* enable bus-mastering if necessary */ 1189 if (vci->flags & PCI_USES_MASTER) 1190 pci_set_master(pdev); 1191 1192 if (vci->drv_flags & IS_VORTEX) { 1193 u8 pci_latency; 1194 u8 new_latency = 248; 1195 1196 /* Check the PCI latency value. On the 3c590 series the latency timer 1197 must be set to the maximum value to avoid data corruption that occurs 1198 when the timer expires during a transfer. This bug exists the Vortex 1199 chip only. */ 1200 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency); 1201 if (pci_latency < new_latency) { 1202 pr_info("%s: Overriding PCI latency timer (CFLT) setting of %d, new value is %d.\n", 1203 print_name, pci_latency, new_latency); 1204 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency); 1205 } 1206 } 1207 } 1208 1209 spin_lock_init(&vp->lock); 1210 spin_lock_init(&vp->mii_lock); 1211 spin_lock_init(&vp->window_lock); 1212 vp->gendev = gendev; 1213 vp->mii.dev = dev; 1214 vp->mii.mdio_read = mdio_read; 1215 vp->mii.mdio_write = mdio_write; 1216 vp->mii.phy_id_mask = 0x1f; 1217 vp->mii.reg_num_mask = 0x1f; 1218 1219 /* Makes sure rings are at least 16 byte aligned. */ 1220 vp->rx_ring = pci_alloc_consistent(pdev, sizeof(struct boom_rx_desc) * RX_RING_SIZE 1221 + sizeof(struct boom_tx_desc) * TX_RING_SIZE, 1222 &vp->rx_ring_dma); 1223 retval = -ENOMEM; 1224 if (!vp->rx_ring) 1225 goto free_device; 1226 1227 vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE); 1228 vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE; 1229 1230 /* if we are a PCI driver, we store info in pdev->driver_data 1231 * instead of a module list */ 1232 if (pdev) 1233 pci_set_drvdata(pdev, dev); 1234 if (edev) 1235 eisa_set_drvdata(edev, dev); 1236 1237 vp->media_override = 7; 1238 if (option >= 0) { 1239 vp->media_override = ((option & 7) == 2) ? 0 : option & 15; 1240 if (vp->media_override != 7) 1241 vp->medialock = 1; 1242 vp->full_duplex = (option & 0x200) ? 1 : 0; 1243 vp->bus_master = (option & 16) ? 1 : 0; 1244 } 1245 1246 if (global_full_duplex > 0) 1247 vp->full_duplex = 1; 1248 if (global_enable_wol > 0) 1249 vp->enable_wol = 1; 1250 1251 if (card_idx < MAX_UNITS) { 1252 if (full_duplex[card_idx] > 0) 1253 vp->full_duplex = 1; 1254 if (flow_ctrl[card_idx] > 0) 1255 vp->flow_ctrl = 1; 1256 if (enable_wol[card_idx] > 0) 1257 vp->enable_wol = 1; 1258 } 1259 1260 vp->mii.force_media = vp->full_duplex; 1261 vp->options = option; 1262 /* Read the station address from the EEPROM. */ 1263 { 1264 int base; 1265 1266 if (vci->drv_flags & EEPROM_8BIT) 1267 base = 0x230; 1268 else if (vci->drv_flags & EEPROM_OFFSET) 1269 base = EEPROM_Read + 0x30; 1270 else 1271 base = EEPROM_Read; 1272 1273 for (i = 0; i < 0x40; i++) { 1274 int timer; 1275 window_write16(vp, base + i, 0, Wn0EepromCmd); 1276 /* Pause for at least 162 us. for the read to take place. */ 1277 for (timer = 10; timer >= 0; timer--) { 1278 udelay(162); 1279 if ((window_read16(vp, 0, Wn0EepromCmd) & 1280 0x8000) == 0) 1281 break; 1282 } 1283 eeprom[i] = window_read16(vp, 0, Wn0EepromData); 1284 } 1285 } 1286 for (i = 0; i < 0x18; i++) 1287 checksum ^= eeprom[i]; 1288 checksum = (checksum ^ (checksum >> 8)) & 0xff; 1289 if (checksum != 0x00) { /* Grrr, needless incompatible change 3Com. */ 1290 while (i < 0x21) 1291 checksum ^= eeprom[i++]; 1292 checksum = (checksum ^ (checksum >> 8)) & 0xff; 1293 } 1294 if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO)) 1295 pr_cont(" ***INVALID CHECKSUM %4.4x*** ", checksum); 1296 for (i = 0; i < 3; i++) 1297 ((__be16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]); 1298 if (print_info) 1299 pr_cont(" %pM", dev->dev_addr); 1300 /* Unfortunately an all zero eeprom passes the checksum and this 1301 gets found in the wild in failure cases. Crypto is hard 8) */ 1302 if (!is_valid_ether_addr(dev->dev_addr)) { 1303 retval = -EINVAL; 1304 pr_err("*** EEPROM MAC address is invalid.\n"); 1305 goto free_ring; /* With every pack */ 1306 } 1307 for (i = 0; i < 6; i++) 1308 window_write8(vp, dev->dev_addr[i], 2, i); 1309 1310 if (print_info) 1311 pr_cont(", IRQ %d\n", dev->irq); 1312 /* Tell them about an invalid IRQ. */ 1313 if (dev->irq <= 0 || dev->irq >= nr_irqs) 1314 pr_warning(" *** Warning: IRQ %d is unlikely to work! ***\n", 1315 dev->irq); 1316 1317 step = (window_read8(vp, 4, Wn4_NetDiag) & 0x1e) >> 1; 1318 if (print_info) { 1319 pr_info(" product code %02x%02x rev %02x.%d date %02d-%02d-%02d\n", 1320 eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14], 1321 step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9); 1322 } 1323 1324 1325 if (pdev && vci->drv_flags & HAS_CB_FNS) { 1326 unsigned short n; 1327 1328 vp->cb_fn_base = pci_iomap(pdev, 2, 0); 1329 if (!vp->cb_fn_base) { 1330 retval = -ENOMEM; 1331 goto free_ring; 1332 } 1333 1334 if (print_info) { 1335 pr_info("%s: CardBus functions mapped %16.16llx->%p\n", 1336 print_name, 1337 (unsigned long long)pci_resource_start(pdev, 2), 1338 vp->cb_fn_base); 1339 } 1340 1341 n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010; 1342 if (vp->drv_flags & INVERT_LED_PWR) 1343 n |= 0x10; 1344 if (vp->drv_flags & INVERT_MII_PWR) 1345 n |= 0x4000; 1346 window_write16(vp, n, 2, Wn2_ResetOptions); 1347 if (vp->drv_flags & WNO_XCVR_PWR) { 1348 window_write16(vp, 0x0800, 0, 0); 1349 } 1350 } 1351 1352 /* Extract our information from the EEPROM data. */ 1353 vp->info1 = eeprom[13]; 1354 vp->info2 = eeprom[15]; 1355 vp->capabilities = eeprom[16]; 1356 1357 if (vp->info1 & 0x8000) { 1358 vp->full_duplex = 1; 1359 if (print_info) 1360 pr_info("Full duplex capable\n"); 1361 } 1362 1363 { 1364 static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"}; 1365 unsigned int config; 1366 vp->available_media = window_read16(vp, 3, Wn3_Options); 1367 if ((vp->available_media & 0xff) == 0) /* Broken 3c916 */ 1368 vp->available_media = 0x40; 1369 config = window_read32(vp, 3, Wn3_Config); 1370 if (print_info) { 1371 pr_debug(" Internal config register is %4.4x, transceivers %#x.\n", 1372 config, window_read16(vp, 3, Wn3_Options)); 1373 pr_info(" %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n", 1374 8 << RAM_SIZE(config), 1375 RAM_WIDTH(config) ? "word" : "byte", 1376 ram_split[RAM_SPLIT(config)], 1377 AUTOSELECT(config) ? "autoselect/" : "", 1378 XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" : 1379 media_tbl[XCVR(config)].name); 1380 } 1381 vp->default_media = XCVR(config); 1382 if (vp->default_media == XCVR_NWAY) 1383 vp->has_nway = 1; 1384 vp->autoselect = AUTOSELECT(config); 1385 } 1386 1387 if (vp->media_override != 7) { 1388 pr_info("%s: Media override to transceiver type %d (%s).\n", 1389 print_name, vp->media_override, 1390 media_tbl[vp->media_override].name); 1391 dev->if_port = vp->media_override; 1392 } else 1393 dev->if_port = vp->default_media; 1394 1395 if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) || 1396 dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) { 1397 int phy, phy_idx = 0; 1398 mii_preamble_required++; 1399 if (vp->drv_flags & EXTRA_PREAMBLE) 1400 mii_preamble_required++; 1401 mdio_sync(vp, 32); 1402 mdio_read(dev, 24, MII_BMSR); 1403 for (phy = 0; phy < 32 && phy_idx < 1; phy++) { 1404 int mii_status, phyx; 1405 1406 /* 1407 * For the 3c905CX we look at index 24 first, because it bogusly 1408 * reports an external PHY at all indices 1409 */ 1410 if (phy == 0) 1411 phyx = 24; 1412 else if (phy <= 24) 1413 phyx = phy - 1; 1414 else 1415 phyx = phy; 1416 mii_status = mdio_read(dev, phyx, MII_BMSR); 1417 if (mii_status && mii_status != 0xffff) { 1418 vp->phys[phy_idx++] = phyx; 1419 if (print_info) { 1420 pr_info(" MII transceiver found at address %d, status %4x.\n", 1421 phyx, mii_status); 1422 } 1423 if ((mii_status & 0x0040) == 0) 1424 mii_preamble_required++; 1425 } 1426 } 1427 mii_preamble_required--; 1428 if (phy_idx == 0) { 1429 pr_warning(" ***WARNING*** No MII transceivers found!\n"); 1430 vp->phys[0] = 24; 1431 } else { 1432 vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE); 1433 if (vp->full_duplex) { 1434 /* Only advertise the FD media types. */ 1435 vp->advertising &= ~0x02A0; 1436 mdio_write(dev, vp->phys[0], 4, vp->advertising); 1437 } 1438 } 1439 vp->mii.phy_id = vp->phys[0]; 1440 } 1441 1442 if (vp->capabilities & CapBusMaster) { 1443 vp->full_bus_master_tx = 1; 1444 if (print_info) { 1445 pr_info(" Enabling bus-master transmits and %s receives.\n", 1446 (vp->info2 & 1) ? "early" : "whole-frame" ); 1447 } 1448 vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2; 1449 vp->bus_master = 0; /* AKPM: vortex only */ 1450 } 1451 1452 /* The 3c59x-specific entries in the device structure. */ 1453 if (vp->full_bus_master_tx) { 1454 dev->netdev_ops = &boomrang_netdev_ops; 1455 /* Actually, it still should work with iommu. */ 1456 if (card_idx < MAX_UNITS && 1457 ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) || 1458 hw_checksums[card_idx] == 1)) { 1459 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG; 1460 } 1461 } else 1462 dev->netdev_ops = &vortex_netdev_ops; 1463 1464 if (print_info) { 1465 pr_info("%s: scatter/gather %sabled. h/w checksums %sabled\n", 1466 print_name, 1467 (dev->features & NETIF_F_SG) ? "en":"dis", 1468 (dev->features & NETIF_F_IP_CSUM) ? "en":"dis"); 1469 } 1470 1471 dev->ethtool_ops = &vortex_ethtool_ops; 1472 dev->watchdog_timeo = (watchdog * HZ) / 1000; 1473 1474 if (pdev) { 1475 vp->pm_state_valid = 1; 1476 pci_save_state(VORTEX_PCI(vp)); 1477 acpi_set_WOL(dev); 1478 } 1479 retval = register_netdev(dev); 1480 if (retval == 0) 1481 return 0; 1482 1483 free_ring: 1484 pci_free_consistent(pdev, 1485 sizeof(struct boom_rx_desc) * RX_RING_SIZE 1486 + sizeof(struct boom_tx_desc) * TX_RING_SIZE, 1487 vp->rx_ring, 1488 vp->rx_ring_dma); 1489 free_device: 1490 free_netdev(dev); 1491 pr_err(PFX "vortex_probe1 fails. Returns %d\n", retval); 1492 out: 1493 return retval; 1494 } 1495 1496 static void 1497 issue_and_wait(struct net_device *dev, int cmd) 1498 { 1499 struct vortex_private *vp = netdev_priv(dev); 1500 void __iomem *ioaddr = vp->ioaddr; 1501 int i; 1502 1503 iowrite16(cmd, ioaddr + EL3_CMD); 1504 for (i = 0; i < 2000; i++) { 1505 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) 1506 return; 1507 } 1508 1509 /* OK, that didn't work. Do it the slow way. One second */ 1510 for (i = 0; i < 100000; i++) { 1511 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) { 1512 if (vortex_debug > 1) 1513 pr_info("%s: command 0x%04x took %d usecs\n", 1514 dev->name, cmd, i * 10); 1515 return; 1516 } 1517 udelay(10); 1518 } 1519 pr_err("%s: command 0x%04x did not complete! Status=0x%x\n", 1520 dev->name, cmd, ioread16(ioaddr + EL3_STATUS)); 1521 } 1522 1523 static void 1524 vortex_set_duplex(struct net_device *dev) 1525 { 1526 struct vortex_private *vp = netdev_priv(dev); 1527 1528 pr_info("%s: setting %s-duplex.\n", 1529 dev->name, (vp->full_duplex) ? "full" : "half"); 1530 1531 /* Set the full-duplex bit. */ 1532 window_write16(vp, 1533 ((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) | 1534 (vp->large_frames ? 0x40 : 0) | 1535 ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ? 1536 0x100 : 0), 1537 3, Wn3_MAC_Ctrl); 1538 } 1539 1540 static void vortex_check_media(struct net_device *dev, unsigned int init) 1541 { 1542 struct vortex_private *vp = netdev_priv(dev); 1543 unsigned int ok_to_print = 0; 1544 1545 if (vortex_debug > 3) 1546 ok_to_print = 1; 1547 1548 if (mii_check_media(&vp->mii, ok_to_print, init)) { 1549 vp->full_duplex = vp->mii.full_duplex; 1550 vortex_set_duplex(dev); 1551 } else if (init) { 1552 vortex_set_duplex(dev); 1553 } 1554 } 1555 1556 static int 1557 vortex_up(struct net_device *dev) 1558 { 1559 struct vortex_private *vp = netdev_priv(dev); 1560 void __iomem *ioaddr = vp->ioaddr; 1561 unsigned int config; 1562 int i, mii_reg1, mii_reg5, err = 0; 1563 1564 if (VORTEX_PCI(vp)) { 1565 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); /* Go active */ 1566 if (vp->pm_state_valid) 1567 pci_restore_state(VORTEX_PCI(vp)); 1568 err = pci_enable_device(VORTEX_PCI(vp)); 1569 if (err) { 1570 pr_warning("%s: Could not enable device\n", 1571 dev->name); 1572 goto err_out; 1573 } 1574 } 1575 1576 /* Before initializing select the active media port. */ 1577 config = window_read32(vp, 3, Wn3_Config); 1578 1579 if (vp->media_override != 7) { 1580 pr_info("%s: Media override to transceiver %d (%s).\n", 1581 dev->name, vp->media_override, 1582 media_tbl[vp->media_override].name); 1583 dev->if_port = vp->media_override; 1584 } else if (vp->autoselect) { 1585 if (vp->has_nway) { 1586 if (vortex_debug > 1) 1587 pr_info("%s: using NWAY device table, not %d\n", 1588 dev->name, dev->if_port); 1589 dev->if_port = XCVR_NWAY; 1590 } else { 1591 /* Find first available media type, starting with 100baseTx. */ 1592 dev->if_port = XCVR_100baseTx; 1593 while (! (vp->available_media & media_tbl[dev->if_port].mask)) 1594 dev->if_port = media_tbl[dev->if_port].next; 1595 if (vortex_debug > 1) 1596 pr_info("%s: first available media type: %s\n", 1597 dev->name, media_tbl[dev->if_port].name); 1598 } 1599 } else { 1600 dev->if_port = vp->default_media; 1601 if (vortex_debug > 1) 1602 pr_info("%s: using default media %s\n", 1603 dev->name, media_tbl[dev->if_port].name); 1604 } 1605 1606 init_timer(&vp->timer); 1607 vp->timer.expires = RUN_AT(media_tbl[dev->if_port].wait); 1608 vp->timer.data = (unsigned long)dev; 1609 vp->timer.function = vortex_timer; /* timer handler */ 1610 add_timer(&vp->timer); 1611 1612 init_timer(&vp->rx_oom_timer); 1613 vp->rx_oom_timer.data = (unsigned long)dev; 1614 vp->rx_oom_timer.function = rx_oom_timer; 1615 1616 if (vortex_debug > 1) 1617 pr_debug("%s: Initial media type %s.\n", 1618 dev->name, media_tbl[dev->if_port].name); 1619 1620 vp->full_duplex = vp->mii.force_media; 1621 config = BFINS(config, dev->if_port, 20, 4); 1622 if (vortex_debug > 6) 1623 pr_debug("vortex_up(): writing 0x%x to InternalConfig\n", config); 1624 window_write32(vp, config, 3, Wn3_Config); 1625 1626 if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) { 1627 mii_reg1 = mdio_read(dev, vp->phys[0], MII_BMSR); 1628 mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA); 1629 vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0); 1630 vp->mii.full_duplex = vp->full_duplex; 1631 1632 vortex_check_media(dev, 1); 1633 } 1634 else 1635 vortex_set_duplex(dev); 1636 1637 issue_and_wait(dev, TxReset); 1638 /* 1639 * Don't reset the PHY - that upsets autonegotiation during DHCP operations. 1640 */ 1641 issue_and_wait(dev, RxReset|0x04); 1642 1643 1644 iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD); 1645 1646 if (vortex_debug > 1) { 1647 pr_debug("%s: vortex_up() irq %d media status %4.4x.\n", 1648 dev->name, dev->irq, window_read16(vp, 4, Wn4_Media)); 1649 } 1650 1651 /* Set the station address and mask in window 2 each time opened. */ 1652 for (i = 0; i < 6; i++) 1653 window_write8(vp, dev->dev_addr[i], 2, i); 1654 for (; i < 12; i+=2) 1655 window_write16(vp, 0, 2, i); 1656 1657 if (vp->cb_fn_base) { 1658 unsigned short n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010; 1659 if (vp->drv_flags & INVERT_LED_PWR) 1660 n |= 0x10; 1661 if (vp->drv_flags & INVERT_MII_PWR) 1662 n |= 0x4000; 1663 window_write16(vp, n, 2, Wn2_ResetOptions); 1664 } 1665 1666 if (dev->if_port == XCVR_10base2) 1667 /* Start the thinnet transceiver. We should really wait 50ms...*/ 1668 iowrite16(StartCoax, ioaddr + EL3_CMD); 1669 if (dev->if_port != XCVR_NWAY) { 1670 window_write16(vp, 1671 (window_read16(vp, 4, Wn4_Media) & 1672 ~(Media_10TP|Media_SQE)) | 1673 media_tbl[dev->if_port].media_bits, 1674 4, Wn4_Media); 1675 } 1676 1677 /* Switch to the stats window, and clear all stats by reading. */ 1678 iowrite16(StatsDisable, ioaddr + EL3_CMD); 1679 for (i = 0; i < 10; i++) 1680 window_read8(vp, 6, i); 1681 window_read16(vp, 6, 10); 1682 window_read16(vp, 6, 12); 1683 /* New: On the Vortex we must also clear the BadSSD counter. */ 1684 window_read8(vp, 4, 12); 1685 /* ..and on the Boomerang we enable the extra statistics bits. */ 1686 window_write16(vp, 0x0040, 4, Wn4_NetDiag); 1687 1688 if (vp->full_bus_master_rx) { /* Boomerang bus master. */ 1689 vp->cur_rx = vp->dirty_rx = 0; 1690 /* Initialize the RxEarly register as recommended. */ 1691 iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD); 1692 iowrite32(0x0020, ioaddr + PktStatus); 1693 iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr); 1694 } 1695 if (vp->full_bus_master_tx) { /* Boomerang bus master Tx. */ 1696 vp->cur_tx = vp->dirty_tx = 0; 1697 if (vp->drv_flags & IS_BOOMERANG) 1698 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */ 1699 /* Clear the Rx, Tx rings. */ 1700 for (i = 0; i < RX_RING_SIZE; i++) /* AKPM: this is done in vortex_open, too */ 1701 vp->rx_ring[i].status = 0; 1702 for (i = 0; i < TX_RING_SIZE; i++) 1703 vp->tx_skbuff[i] = NULL; 1704 iowrite32(0, ioaddr + DownListPtr); 1705 } 1706 /* Set receiver mode: presumably accept b-case and phys addr only. */ 1707 set_rx_mode(dev); 1708 /* enable 802.1q tagged frames */ 1709 set_8021q_mode(dev, 1); 1710 iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */ 1711 1712 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */ 1713 iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */ 1714 /* Allow status bits to be seen. */ 1715 vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete| 1716 (vp->full_bus_master_tx ? DownComplete : TxAvailable) | 1717 (vp->full_bus_master_rx ? UpComplete : RxComplete) | 1718 (vp->bus_master ? DMADone : 0); 1719 vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable | 1720 (vp->full_bus_master_rx ? 0 : RxComplete) | 1721 StatsFull | HostError | TxComplete | IntReq 1722 | (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete; 1723 iowrite16(vp->status_enable, ioaddr + EL3_CMD); 1724 /* Ack all pending events, and set active indicator mask. */ 1725 iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq, 1726 ioaddr + EL3_CMD); 1727 iowrite16(vp->intr_enable, ioaddr + EL3_CMD); 1728 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */ 1729 iowrite32(0x8000, vp->cb_fn_base + 4); 1730 netif_start_queue (dev); 1731 err_out: 1732 return err; 1733 } 1734 1735 static int 1736 vortex_open(struct net_device *dev) 1737 { 1738 struct vortex_private *vp = netdev_priv(dev); 1739 int i; 1740 int retval; 1741 1742 /* Use the now-standard shared IRQ implementation. */ 1743 if ((retval = request_irq(dev->irq, vp->full_bus_master_rx ? 1744 boomerang_interrupt : vortex_interrupt, IRQF_SHARED, dev->name, dev))) { 1745 pr_err("%s: Could not reserve IRQ %d\n", dev->name, dev->irq); 1746 goto err; 1747 } 1748 1749 if (vp->full_bus_master_rx) { /* Boomerang bus master. */ 1750 if (vortex_debug > 2) 1751 pr_debug("%s: Filling in the Rx ring.\n", dev->name); 1752 for (i = 0; i < RX_RING_SIZE; i++) { 1753 struct sk_buff *skb; 1754 vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1)); 1755 vp->rx_ring[i].status = 0; /* Clear complete bit. */ 1756 vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG); 1757 1758 skb = __netdev_alloc_skb(dev, PKT_BUF_SZ + NET_IP_ALIGN, 1759 GFP_KERNEL); 1760 vp->rx_skbuff[i] = skb; 1761 if (skb == NULL) 1762 break; /* Bad news! */ 1763 1764 skb_reserve(skb, NET_IP_ALIGN); /* Align IP on 16 byte boundaries */ 1765 vp->rx_ring[i].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE)); 1766 } 1767 if (i != RX_RING_SIZE) { 1768 int j; 1769 pr_emerg("%s: no memory for rx ring\n", dev->name); 1770 for (j = 0; j < i; j++) { 1771 if (vp->rx_skbuff[j]) { 1772 dev_kfree_skb(vp->rx_skbuff[j]); 1773 vp->rx_skbuff[j] = NULL; 1774 } 1775 } 1776 retval = -ENOMEM; 1777 goto err_free_irq; 1778 } 1779 /* Wrap the ring. */ 1780 vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma); 1781 } 1782 1783 retval = vortex_up(dev); 1784 if (!retval) 1785 goto out; 1786 1787 err_free_irq: 1788 free_irq(dev->irq, dev); 1789 err: 1790 if (vortex_debug > 1) 1791 pr_err("%s: vortex_open() fails: returning %d\n", dev->name, retval); 1792 out: 1793 return retval; 1794 } 1795 1796 static void 1797 vortex_timer(unsigned long data) 1798 { 1799 struct net_device *dev = (struct net_device *)data; 1800 struct vortex_private *vp = netdev_priv(dev); 1801 void __iomem *ioaddr = vp->ioaddr; 1802 int next_tick = 60*HZ; 1803 int ok = 0; 1804 int media_status; 1805 1806 if (vortex_debug > 2) { 1807 pr_debug("%s: Media selection timer tick happened, %s.\n", 1808 dev->name, media_tbl[dev->if_port].name); 1809 pr_debug("dev->watchdog_timeo=%d\n", dev->watchdog_timeo); 1810 } 1811 1812 media_status = window_read16(vp, 4, Wn4_Media); 1813 switch (dev->if_port) { 1814 case XCVR_10baseT: case XCVR_100baseTx: case XCVR_100baseFx: 1815 if (media_status & Media_LnkBeat) { 1816 netif_carrier_on(dev); 1817 ok = 1; 1818 if (vortex_debug > 1) 1819 pr_debug("%s: Media %s has link beat, %x.\n", 1820 dev->name, media_tbl[dev->if_port].name, media_status); 1821 } else { 1822 netif_carrier_off(dev); 1823 if (vortex_debug > 1) { 1824 pr_debug("%s: Media %s has no link beat, %x.\n", 1825 dev->name, media_tbl[dev->if_port].name, media_status); 1826 } 1827 } 1828 break; 1829 case XCVR_MII: case XCVR_NWAY: 1830 { 1831 ok = 1; 1832 vortex_check_media(dev, 0); 1833 } 1834 break; 1835 default: /* Other media types handled by Tx timeouts. */ 1836 if (vortex_debug > 1) 1837 pr_debug("%s: Media %s has no indication, %x.\n", 1838 dev->name, media_tbl[dev->if_port].name, media_status); 1839 ok = 1; 1840 } 1841 1842 if (dev->flags & IFF_SLAVE || !netif_carrier_ok(dev)) 1843 next_tick = 5*HZ; 1844 1845 if (vp->medialock) 1846 goto leave_media_alone; 1847 1848 if (!ok) { 1849 unsigned int config; 1850 1851 spin_lock_irq(&vp->lock); 1852 1853 do { 1854 dev->if_port = media_tbl[dev->if_port].next; 1855 } while ( ! (vp->available_media & media_tbl[dev->if_port].mask)); 1856 if (dev->if_port == XCVR_Default) { /* Go back to default. */ 1857 dev->if_port = vp->default_media; 1858 if (vortex_debug > 1) 1859 pr_debug("%s: Media selection failing, using default %s port.\n", 1860 dev->name, media_tbl[dev->if_port].name); 1861 } else { 1862 if (vortex_debug > 1) 1863 pr_debug("%s: Media selection failed, now trying %s port.\n", 1864 dev->name, media_tbl[dev->if_port].name); 1865 next_tick = media_tbl[dev->if_port].wait; 1866 } 1867 window_write16(vp, 1868 (media_status & ~(Media_10TP|Media_SQE)) | 1869 media_tbl[dev->if_port].media_bits, 1870 4, Wn4_Media); 1871 1872 config = window_read32(vp, 3, Wn3_Config); 1873 config = BFINS(config, dev->if_port, 20, 4); 1874 window_write32(vp, config, 3, Wn3_Config); 1875 1876 iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax, 1877 ioaddr + EL3_CMD); 1878 if (vortex_debug > 1) 1879 pr_debug("wrote 0x%08x to Wn3_Config\n", config); 1880 /* AKPM: FIXME: Should reset Rx & Tx here. P60 of 3c90xc.pdf */ 1881 1882 spin_unlock_irq(&vp->lock); 1883 } 1884 1885 leave_media_alone: 1886 if (vortex_debug > 2) 1887 pr_debug("%s: Media selection timer finished, %s.\n", 1888 dev->name, media_tbl[dev->if_port].name); 1889 1890 mod_timer(&vp->timer, RUN_AT(next_tick)); 1891 if (vp->deferred) 1892 iowrite16(FakeIntr, ioaddr + EL3_CMD); 1893 } 1894 1895 static void vortex_tx_timeout(struct net_device *dev) 1896 { 1897 struct vortex_private *vp = netdev_priv(dev); 1898 void __iomem *ioaddr = vp->ioaddr; 1899 1900 pr_err("%s: transmit timed out, tx_status %2.2x status %4.4x.\n", 1901 dev->name, ioread8(ioaddr + TxStatus), 1902 ioread16(ioaddr + EL3_STATUS)); 1903 pr_err(" diagnostics: net %04x media %04x dma %08x fifo %04x\n", 1904 window_read16(vp, 4, Wn4_NetDiag), 1905 window_read16(vp, 4, Wn4_Media), 1906 ioread32(ioaddr + PktStatus), 1907 window_read16(vp, 4, Wn4_FIFODiag)); 1908 /* Slight code bloat to be user friendly. */ 1909 if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88) 1910 pr_err("%s: Transmitter encountered 16 collisions --" 1911 " network cable problem?\n", dev->name); 1912 if (ioread16(ioaddr + EL3_STATUS) & IntLatch) { 1913 pr_err("%s: Interrupt posted but not delivered --" 1914 " IRQ blocked by another device?\n", dev->name); 1915 /* Bad idea here.. but we might as well handle a few events. */ 1916 { 1917 /* 1918 * Block interrupts because vortex_interrupt does a bare spin_lock() 1919 */ 1920 unsigned long flags; 1921 local_irq_save(flags); 1922 if (vp->full_bus_master_tx) 1923 boomerang_interrupt(dev->irq, dev); 1924 else 1925 vortex_interrupt(dev->irq, dev); 1926 local_irq_restore(flags); 1927 } 1928 } 1929 1930 if (vortex_debug > 0) 1931 dump_tx_ring(dev); 1932 1933 issue_and_wait(dev, TxReset); 1934 1935 dev->stats.tx_errors++; 1936 if (vp->full_bus_master_tx) { 1937 pr_debug("%s: Resetting the Tx ring pointer.\n", dev->name); 1938 if (vp->cur_tx - vp->dirty_tx > 0 && ioread32(ioaddr + DownListPtr) == 0) 1939 iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc), 1940 ioaddr + DownListPtr); 1941 if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE) 1942 netif_wake_queue (dev); 1943 if (vp->drv_flags & IS_BOOMERANG) 1944 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); 1945 iowrite16(DownUnstall, ioaddr + EL3_CMD); 1946 } else { 1947 dev->stats.tx_dropped++; 1948 netif_wake_queue(dev); 1949 } 1950 1951 /* Issue Tx Enable */ 1952 iowrite16(TxEnable, ioaddr + EL3_CMD); 1953 dev->trans_start = jiffies; /* prevent tx timeout */ 1954 } 1955 1956 /* 1957 * Handle uncommon interrupt sources. This is a separate routine to minimize 1958 * the cache impact. 1959 */ 1960 static void 1961 vortex_error(struct net_device *dev, int status) 1962 { 1963 struct vortex_private *vp = netdev_priv(dev); 1964 void __iomem *ioaddr = vp->ioaddr; 1965 int do_tx_reset = 0, reset_mask = 0; 1966 unsigned char tx_status = 0; 1967 1968 if (vortex_debug > 2) { 1969 pr_err("%s: vortex_error(), status=0x%x\n", dev->name, status); 1970 } 1971 1972 if (status & TxComplete) { /* Really "TxError" for us. */ 1973 tx_status = ioread8(ioaddr + TxStatus); 1974 /* Presumably a tx-timeout. We must merely re-enable. */ 1975 if (vortex_debug > 2 || 1976 (tx_status != 0x88 && vortex_debug > 0)) { 1977 pr_err("%s: Transmit error, Tx status register %2.2x.\n", 1978 dev->name, tx_status); 1979 if (tx_status == 0x82) { 1980 pr_err("Probably a duplex mismatch. See " 1981 "Documentation/networking/vortex.txt\n"); 1982 } 1983 dump_tx_ring(dev); 1984 } 1985 if (tx_status & 0x14) dev->stats.tx_fifo_errors++; 1986 if (tx_status & 0x38) dev->stats.tx_aborted_errors++; 1987 if (tx_status & 0x08) vp->xstats.tx_max_collisions++; 1988 iowrite8(0, ioaddr + TxStatus); 1989 if (tx_status & 0x30) { /* txJabber or txUnderrun */ 1990 do_tx_reset = 1; 1991 } else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET)) { /* maxCollisions */ 1992 do_tx_reset = 1; 1993 reset_mask = 0x0108; /* Reset interface logic, but not download logic */ 1994 } else { /* Merely re-enable the transmitter. */ 1995 iowrite16(TxEnable, ioaddr + EL3_CMD); 1996 } 1997 } 1998 1999 if (status & RxEarly) /* Rx early is unused. */ 2000 iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD); 2001 2002 if (status & StatsFull) { /* Empty statistics. */ 2003 static int DoneDidThat; 2004 if (vortex_debug > 4) 2005 pr_debug("%s: Updating stats.\n", dev->name); 2006 update_stats(ioaddr, dev); 2007 /* HACK: Disable statistics as an interrupt source. */ 2008 /* This occurs when we have the wrong media type! */ 2009 if (DoneDidThat == 0 && 2010 ioread16(ioaddr + EL3_STATUS) & StatsFull) { 2011 pr_warning("%s: Updating statistics failed, disabling " 2012 "stats as an interrupt source.\n", dev->name); 2013 iowrite16(SetIntrEnb | 2014 (window_read16(vp, 5, 10) & ~StatsFull), 2015 ioaddr + EL3_CMD); 2016 vp->intr_enable &= ~StatsFull; 2017 DoneDidThat++; 2018 } 2019 } 2020 if (status & IntReq) { /* Restore all interrupt sources. */ 2021 iowrite16(vp->status_enable, ioaddr + EL3_CMD); 2022 iowrite16(vp->intr_enable, ioaddr + EL3_CMD); 2023 } 2024 if (status & HostError) { 2025 u16 fifo_diag; 2026 fifo_diag = window_read16(vp, 4, Wn4_FIFODiag); 2027 pr_err("%s: Host error, FIFO diagnostic register %4.4x.\n", 2028 dev->name, fifo_diag); 2029 /* Adapter failure requires Tx/Rx reset and reinit. */ 2030 if (vp->full_bus_master_tx) { 2031 int bus_status = ioread32(ioaddr + PktStatus); 2032 /* 0x80000000 PCI master abort. */ 2033 /* 0x40000000 PCI target abort. */ 2034 if (vortex_debug) 2035 pr_err("%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status); 2036 2037 /* In this case, blow the card away */ 2038 /* Must not enter D3 or we can't legally issue the reset! */ 2039 vortex_down(dev, 0); 2040 issue_and_wait(dev, TotalReset | 0xff); 2041 vortex_up(dev); /* AKPM: bug. vortex_up() assumes that the rx ring is full. It may not be. */ 2042 } else if (fifo_diag & 0x0400) 2043 do_tx_reset = 1; 2044 if (fifo_diag & 0x3000) { 2045 /* Reset Rx fifo and upload logic */ 2046 issue_and_wait(dev, RxReset|0x07); 2047 /* Set the Rx filter to the current state. */ 2048 set_rx_mode(dev); 2049 /* enable 802.1q VLAN tagged frames */ 2050 set_8021q_mode(dev, 1); 2051 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */ 2052 iowrite16(AckIntr | HostError, ioaddr + EL3_CMD); 2053 } 2054 } 2055 2056 if (do_tx_reset) { 2057 issue_and_wait(dev, TxReset|reset_mask); 2058 iowrite16(TxEnable, ioaddr + EL3_CMD); 2059 if (!vp->full_bus_master_tx) 2060 netif_wake_queue(dev); 2061 } 2062 } 2063 2064 static netdev_tx_t 2065 vortex_start_xmit(struct sk_buff *skb, struct net_device *dev) 2066 { 2067 struct vortex_private *vp = netdev_priv(dev); 2068 void __iomem *ioaddr = vp->ioaddr; 2069 2070 /* Put out the doubleword header... */ 2071 iowrite32(skb->len, ioaddr + TX_FIFO); 2072 if (vp->bus_master) { 2073 /* Set the bus-master controller to transfer the packet. */ 2074 int len = (skb->len + 3) & ~3; 2075 vp->tx_skb_dma = pci_map_single(VORTEX_PCI(vp), skb->data, len, 2076 PCI_DMA_TODEVICE); 2077 spin_lock_irq(&vp->window_lock); 2078 window_set(vp, 7); 2079 iowrite32(vp->tx_skb_dma, ioaddr + Wn7_MasterAddr); 2080 iowrite16(len, ioaddr + Wn7_MasterLen); 2081 spin_unlock_irq(&vp->window_lock); 2082 vp->tx_skb = skb; 2083 iowrite16(StartDMADown, ioaddr + EL3_CMD); 2084 /* netif_wake_queue() will be called at the DMADone interrupt. */ 2085 } else { 2086 /* ... and the packet rounded to a doubleword. */ 2087 iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2); 2088 dev_kfree_skb (skb); 2089 if (ioread16(ioaddr + TxFree) > 1536) { 2090 netif_start_queue (dev); /* AKPM: redundant? */ 2091 } else { 2092 /* Interrupt us when the FIFO has room for max-sized packet. */ 2093 netif_stop_queue(dev); 2094 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD); 2095 } 2096 } 2097 2098 2099 /* Clear the Tx status stack. */ 2100 { 2101 int tx_status; 2102 int i = 32; 2103 2104 while (--i > 0 && (tx_status = ioread8(ioaddr + TxStatus)) > 0) { 2105 if (tx_status & 0x3C) { /* A Tx-disabling error occurred. */ 2106 if (vortex_debug > 2) 2107 pr_debug("%s: Tx error, status %2.2x.\n", 2108 dev->name, tx_status); 2109 if (tx_status & 0x04) dev->stats.tx_fifo_errors++; 2110 if (tx_status & 0x38) dev->stats.tx_aborted_errors++; 2111 if (tx_status & 0x30) { 2112 issue_and_wait(dev, TxReset); 2113 } 2114 iowrite16(TxEnable, ioaddr + EL3_CMD); 2115 } 2116 iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */ 2117 } 2118 } 2119 return NETDEV_TX_OK; 2120 } 2121 2122 static netdev_tx_t 2123 boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev) 2124 { 2125 struct vortex_private *vp = netdev_priv(dev); 2126 void __iomem *ioaddr = vp->ioaddr; 2127 /* Calculate the next Tx descriptor entry. */ 2128 int entry = vp->cur_tx % TX_RING_SIZE; 2129 struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE]; 2130 unsigned long flags; 2131 2132 if (vortex_debug > 6) { 2133 pr_debug("boomerang_start_xmit()\n"); 2134 pr_debug("%s: Trying to send a packet, Tx index %d.\n", 2135 dev->name, vp->cur_tx); 2136 } 2137 2138 /* 2139 * We can't allow a recursion from our interrupt handler back into the 2140 * tx routine, as they take the same spin lock, and that causes 2141 * deadlock. Just return NETDEV_TX_BUSY and let the stack try again in 2142 * a bit 2143 */ 2144 if (vp->handling_irq) 2145 return NETDEV_TX_BUSY; 2146 2147 if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) { 2148 if (vortex_debug > 0) 2149 pr_warning("%s: BUG! Tx Ring full, refusing to send buffer.\n", 2150 dev->name); 2151 netif_stop_queue(dev); 2152 return NETDEV_TX_BUSY; 2153 } 2154 2155 vp->tx_skbuff[entry] = skb; 2156 2157 vp->tx_ring[entry].next = 0; 2158 #if DO_ZEROCOPY 2159 if (skb->ip_summed != CHECKSUM_PARTIAL) 2160 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded); 2161 else 2162 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum); 2163 2164 if (!skb_shinfo(skb)->nr_frags) { 2165 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, 2166 skb->len, PCI_DMA_TODEVICE)); 2167 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG); 2168 } else { 2169 int i; 2170 2171 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, 2172 skb_headlen(skb), PCI_DMA_TODEVICE)); 2173 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb_headlen(skb)); 2174 2175 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2176 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2177 2178 vp->tx_ring[entry].frag[i+1].addr = 2179 cpu_to_le32(pci_map_single( 2180 VORTEX_PCI(vp), 2181 (void *)skb_frag_address(frag), 2182 skb_frag_size(frag), PCI_DMA_TODEVICE)); 2183 2184 if (i == skb_shinfo(skb)->nr_frags-1) 2185 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag)|LAST_FRAG); 2186 else 2187 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag)); 2188 } 2189 } 2190 #else 2191 vp->tx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, skb->len, PCI_DMA_TODEVICE)); 2192 vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG); 2193 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded); 2194 #endif 2195 2196 spin_lock_irqsave(&vp->lock, flags); 2197 /* Wait for the stall to complete. */ 2198 issue_and_wait(dev, DownStall); 2199 prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc)); 2200 if (ioread32(ioaddr + DownListPtr) == 0) { 2201 iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr); 2202 vp->queued_packet++; 2203 } 2204 2205 vp->cur_tx++; 2206 if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) { 2207 netif_stop_queue (dev); 2208 } else { /* Clear previous interrupt enable. */ 2209 #if defined(tx_interrupt_mitigation) 2210 /* Dubious. If in boomeang_interrupt "faster" cyclone ifdef 2211 * were selected, this would corrupt DN_COMPLETE. No? 2212 */ 2213 prev_entry->status &= cpu_to_le32(~TxIntrUploaded); 2214 #endif 2215 } 2216 iowrite16(DownUnstall, ioaddr + EL3_CMD); 2217 spin_unlock_irqrestore(&vp->lock, flags); 2218 return NETDEV_TX_OK; 2219 } 2220 2221 /* The interrupt handler does all of the Rx thread work and cleans up 2222 after the Tx thread. */ 2223 2224 /* 2225 * This is the ISR for the vortex series chips. 2226 * full_bus_master_tx == 0 && full_bus_master_rx == 0 2227 */ 2228 2229 static irqreturn_t 2230 vortex_interrupt(int irq, void *dev_id) 2231 { 2232 struct net_device *dev = dev_id; 2233 struct vortex_private *vp = netdev_priv(dev); 2234 void __iomem *ioaddr; 2235 int status; 2236 int work_done = max_interrupt_work; 2237 int handled = 0; 2238 2239 ioaddr = vp->ioaddr; 2240 spin_lock(&vp->lock); 2241 2242 status = ioread16(ioaddr + EL3_STATUS); 2243 2244 if (vortex_debug > 6) 2245 pr_debug("vortex_interrupt(). status=0x%4x\n", status); 2246 2247 if ((status & IntLatch) == 0) 2248 goto handler_exit; /* No interrupt: shared IRQs cause this */ 2249 handled = 1; 2250 2251 if (status & IntReq) { 2252 status |= vp->deferred; 2253 vp->deferred = 0; 2254 } 2255 2256 if (status == 0xffff) /* h/w no longer present (hotplug)? */ 2257 goto handler_exit; 2258 2259 if (vortex_debug > 4) 2260 pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n", 2261 dev->name, status, ioread8(ioaddr + Timer)); 2262 2263 spin_lock(&vp->window_lock); 2264 window_set(vp, 7); 2265 2266 do { 2267 if (vortex_debug > 5) 2268 pr_debug("%s: In interrupt loop, status %4.4x.\n", 2269 dev->name, status); 2270 if (status & RxComplete) 2271 vortex_rx(dev); 2272 2273 if (status & TxAvailable) { 2274 if (vortex_debug > 5) 2275 pr_debug(" TX room bit was handled.\n"); 2276 /* There's room in the FIFO for a full-sized packet. */ 2277 iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD); 2278 netif_wake_queue (dev); 2279 } 2280 2281 if (status & DMADone) { 2282 if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) { 2283 iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */ 2284 pci_unmap_single(VORTEX_PCI(vp), vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, PCI_DMA_TODEVICE); 2285 dev_kfree_skb_irq(vp->tx_skb); /* Release the transferred buffer */ 2286 if (ioread16(ioaddr + TxFree) > 1536) { 2287 /* 2288 * AKPM: FIXME: I don't think we need this. If the queue was stopped due to 2289 * insufficient FIFO room, the TxAvailable test will succeed and call 2290 * netif_wake_queue() 2291 */ 2292 netif_wake_queue(dev); 2293 } else { /* Interrupt when FIFO has room for max-sized packet. */ 2294 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD); 2295 netif_stop_queue(dev); 2296 } 2297 } 2298 } 2299 /* Check for all uncommon interrupts at once. */ 2300 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) { 2301 if (status == 0xffff) 2302 break; 2303 if (status & RxEarly) 2304 vortex_rx(dev); 2305 spin_unlock(&vp->window_lock); 2306 vortex_error(dev, status); 2307 spin_lock(&vp->window_lock); 2308 window_set(vp, 7); 2309 } 2310 2311 if (--work_done < 0) { 2312 pr_warning("%s: Too much work in interrupt, status %4.4x.\n", 2313 dev->name, status); 2314 /* Disable all pending interrupts. */ 2315 do { 2316 vp->deferred |= status; 2317 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable), 2318 ioaddr + EL3_CMD); 2319 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD); 2320 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch); 2321 /* The timer will reenable interrupts. */ 2322 mod_timer(&vp->timer, jiffies + 1*HZ); 2323 break; 2324 } 2325 /* Acknowledge the IRQ. */ 2326 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD); 2327 } while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete)); 2328 2329 spin_unlock(&vp->window_lock); 2330 2331 if (vortex_debug > 4) 2332 pr_debug("%s: exiting interrupt, status %4.4x.\n", 2333 dev->name, status); 2334 handler_exit: 2335 spin_unlock(&vp->lock); 2336 return IRQ_RETVAL(handled); 2337 } 2338 2339 /* 2340 * This is the ISR for the boomerang series chips. 2341 * full_bus_master_tx == 1 && full_bus_master_rx == 1 2342 */ 2343 2344 static irqreturn_t 2345 boomerang_interrupt(int irq, void *dev_id) 2346 { 2347 struct net_device *dev = dev_id; 2348 struct vortex_private *vp = netdev_priv(dev); 2349 void __iomem *ioaddr; 2350 int status; 2351 int work_done = max_interrupt_work; 2352 2353 ioaddr = vp->ioaddr; 2354 2355 2356 /* 2357 * It seems dopey to put the spinlock this early, but we could race against vortex_tx_timeout 2358 * and boomerang_start_xmit 2359 */ 2360 spin_lock(&vp->lock); 2361 vp->handling_irq = 1; 2362 2363 status = ioread16(ioaddr + EL3_STATUS); 2364 2365 if (vortex_debug > 6) 2366 pr_debug("boomerang_interrupt. status=0x%4x\n", status); 2367 2368 if ((status & IntLatch) == 0) 2369 goto handler_exit; /* No interrupt: shared IRQs can cause this */ 2370 2371 if (status == 0xffff) { /* h/w no longer present (hotplug)? */ 2372 if (vortex_debug > 1) 2373 pr_debug("boomerang_interrupt(1): status = 0xffff\n"); 2374 goto handler_exit; 2375 } 2376 2377 if (status & IntReq) { 2378 status |= vp->deferred; 2379 vp->deferred = 0; 2380 } 2381 2382 if (vortex_debug > 4) 2383 pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n", 2384 dev->name, status, ioread8(ioaddr + Timer)); 2385 do { 2386 if (vortex_debug > 5) 2387 pr_debug("%s: In interrupt loop, status %4.4x.\n", 2388 dev->name, status); 2389 if (status & UpComplete) { 2390 iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD); 2391 if (vortex_debug > 5) 2392 pr_debug("boomerang_interrupt->boomerang_rx\n"); 2393 boomerang_rx(dev); 2394 } 2395 2396 if (status & DownComplete) { 2397 unsigned int dirty_tx = vp->dirty_tx; 2398 2399 iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD); 2400 while (vp->cur_tx - dirty_tx > 0) { 2401 int entry = dirty_tx % TX_RING_SIZE; 2402 #if 1 /* AKPM: the latter is faster, but cyclone-only */ 2403 if (ioread32(ioaddr + DownListPtr) == 2404 vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc)) 2405 break; /* It still hasn't been processed. */ 2406 #else 2407 if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0) 2408 break; /* It still hasn't been processed. */ 2409 #endif 2410 2411 if (vp->tx_skbuff[entry]) { 2412 struct sk_buff *skb = vp->tx_skbuff[entry]; 2413 #if DO_ZEROCOPY 2414 int i; 2415 for (i=0; i<=skb_shinfo(skb)->nr_frags; i++) 2416 pci_unmap_single(VORTEX_PCI(vp), 2417 le32_to_cpu(vp->tx_ring[entry].frag[i].addr), 2418 le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF, 2419 PCI_DMA_TODEVICE); 2420 #else 2421 pci_unmap_single(VORTEX_PCI(vp), 2422 le32_to_cpu(vp->tx_ring[entry].addr), skb->len, PCI_DMA_TODEVICE); 2423 #endif 2424 dev_kfree_skb_irq(skb); 2425 vp->tx_skbuff[entry] = NULL; 2426 } else { 2427 pr_debug("boomerang_interrupt: no skb!\n"); 2428 } 2429 /* dev->stats.tx_packets++; Counted below. */ 2430 dirty_tx++; 2431 } 2432 vp->dirty_tx = dirty_tx; 2433 if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) { 2434 if (vortex_debug > 6) 2435 pr_debug("boomerang_interrupt: wake queue\n"); 2436 netif_wake_queue (dev); 2437 } 2438 } 2439 2440 /* Check for all uncommon interrupts at once. */ 2441 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) 2442 vortex_error(dev, status); 2443 2444 if (--work_done < 0) { 2445 pr_warning("%s: Too much work in interrupt, status %4.4x.\n", 2446 dev->name, status); 2447 /* Disable all pending interrupts. */ 2448 do { 2449 vp->deferred |= status; 2450 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable), 2451 ioaddr + EL3_CMD); 2452 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD); 2453 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch); 2454 /* The timer will reenable interrupts. */ 2455 mod_timer(&vp->timer, jiffies + 1*HZ); 2456 break; 2457 } 2458 /* Acknowledge the IRQ. */ 2459 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD); 2460 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */ 2461 iowrite32(0x8000, vp->cb_fn_base + 4); 2462 2463 } while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch); 2464 2465 if (vortex_debug > 4) 2466 pr_debug("%s: exiting interrupt, status %4.4x.\n", 2467 dev->name, status); 2468 handler_exit: 2469 vp->handling_irq = 0; 2470 spin_unlock(&vp->lock); 2471 return IRQ_HANDLED; 2472 } 2473 2474 static int vortex_rx(struct net_device *dev) 2475 { 2476 struct vortex_private *vp = netdev_priv(dev); 2477 void __iomem *ioaddr = vp->ioaddr; 2478 int i; 2479 short rx_status; 2480 2481 if (vortex_debug > 5) 2482 pr_debug("vortex_rx(): status %4.4x, rx_status %4.4x.\n", 2483 ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus)); 2484 while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) { 2485 if (rx_status & 0x4000) { /* Error, update stats. */ 2486 unsigned char rx_error = ioread8(ioaddr + RxErrors); 2487 if (vortex_debug > 2) 2488 pr_debug(" Rx error: status %2.2x.\n", rx_error); 2489 dev->stats.rx_errors++; 2490 if (rx_error & 0x01) dev->stats.rx_over_errors++; 2491 if (rx_error & 0x02) dev->stats.rx_length_errors++; 2492 if (rx_error & 0x04) dev->stats.rx_frame_errors++; 2493 if (rx_error & 0x08) dev->stats.rx_crc_errors++; 2494 if (rx_error & 0x10) dev->stats.rx_length_errors++; 2495 } else { 2496 /* The packet length: up to 4.5K!. */ 2497 int pkt_len = rx_status & 0x1fff; 2498 struct sk_buff *skb; 2499 2500 skb = netdev_alloc_skb(dev, pkt_len + 5); 2501 if (vortex_debug > 4) 2502 pr_debug("Receiving packet size %d status %4.4x.\n", 2503 pkt_len, rx_status); 2504 if (skb != NULL) { 2505 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */ 2506 /* 'skb_put()' points to the start of sk_buff data area. */ 2507 if (vp->bus_master && 2508 ! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) { 2509 dma_addr_t dma = pci_map_single(VORTEX_PCI(vp), skb_put(skb, pkt_len), 2510 pkt_len, PCI_DMA_FROMDEVICE); 2511 iowrite32(dma, ioaddr + Wn7_MasterAddr); 2512 iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen); 2513 iowrite16(StartDMAUp, ioaddr + EL3_CMD); 2514 while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000) 2515 ; 2516 pci_unmap_single(VORTEX_PCI(vp), dma, pkt_len, PCI_DMA_FROMDEVICE); 2517 } else { 2518 ioread32_rep(ioaddr + RX_FIFO, 2519 skb_put(skb, pkt_len), 2520 (pkt_len + 3) >> 2); 2521 } 2522 iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */ 2523 skb->protocol = eth_type_trans(skb, dev); 2524 netif_rx(skb); 2525 dev->stats.rx_packets++; 2526 /* Wait a limited time to go to next packet. */ 2527 for (i = 200; i >= 0; i--) 2528 if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) 2529 break; 2530 continue; 2531 } else if (vortex_debug > 0) 2532 pr_notice("%s: No memory to allocate a sk_buff of size %d.\n", 2533 dev->name, pkt_len); 2534 dev->stats.rx_dropped++; 2535 } 2536 issue_and_wait(dev, RxDiscard); 2537 } 2538 2539 return 0; 2540 } 2541 2542 static int 2543 boomerang_rx(struct net_device *dev) 2544 { 2545 struct vortex_private *vp = netdev_priv(dev); 2546 int entry = vp->cur_rx % RX_RING_SIZE; 2547 void __iomem *ioaddr = vp->ioaddr; 2548 int rx_status; 2549 int rx_work_limit = vp->dirty_rx + RX_RING_SIZE - vp->cur_rx; 2550 2551 if (vortex_debug > 5) 2552 pr_debug("boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS)); 2553 2554 while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){ 2555 if (--rx_work_limit < 0) 2556 break; 2557 if (rx_status & RxDError) { /* Error, update stats. */ 2558 unsigned char rx_error = rx_status >> 16; 2559 if (vortex_debug > 2) 2560 pr_debug(" Rx error: status %2.2x.\n", rx_error); 2561 dev->stats.rx_errors++; 2562 if (rx_error & 0x01) dev->stats.rx_over_errors++; 2563 if (rx_error & 0x02) dev->stats.rx_length_errors++; 2564 if (rx_error & 0x04) dev->stats.rx_frame_errors++; 2565 if (rx_error & 0x08) dev->stats.rx_crc_errors++; 2566 if (rx_error & 0x10) dev->stats.rx_length_errors++; 2567 } else { 2568 /* The packet length: up to 4.5K!. */ 2569 int pkt_len = rx_status & 0x1fff; 2570 struct sk_buff *skb; 2571 dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr); 2572 2573 if (vortex_debug > 4) 2574 pr_debug("Receiving packet size %d status %4.4x.\n", 2575 pkt_len, rx_status); 2576 2577 /* Check if the packet is long enough to just accept without 2578 copying to a properly sized skbuff. */ 2579 if (pkt_len < rx_copybreak && 2580 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) { 2581 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */ 2582 pci_dma_sync_single_for_cpu(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE); 2583 /* 'skb_put()' points to the start of sk_buff data area. */ 2584 memcpy(skb_put(skb, pkt_len), 2585 vp->rx_skbuff[entry]->data, 2586 pkt_len); 2587 pci_dma_sync_single_for_device(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE); 2588 vp->rx_copy++; 2589 } else { 2590 /* Pass up the skbuff already on the Rx ring. */ 2591 skb = vp->rx_skbuff[entry]; 2592 vp->rx_skbuff[entry] = NULL; 2593 skb_put(skb, pkt_len); 2594 pci_unmap_single(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE); 2595 vp->rx_nocopy++; 2596 } 2597 skb->protocol = eth_type_trans(skb, dev); 2598 { /* Use hardware checksum info. */ 2599 int csum_bits = rx_status & 0xee000000; 2600 if (csum_bits && 2601 (csum_bits == (IPChksumValid | TCPChksumValid) || 2602 csum_bits == (IPChksumValid | UDPChksumValid))) { 2603 skb->ip_summed = CHECKSUM_UNNECESSARY; 2604 vp->rx_csumhits++; 2605 } 2606 } 2607 netif_rx(skb); 2608 dev->stats.rx_packets++; 2609 } 2610 entry = (++vp->cur_rx) % RX_RING_SIZE; 2611 } 2612 /* Refill the Rx ring buffers. */ 2613 for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) { 2614 struct sk_buff *skb; 2615 entry = vp->dirty_rx % RX_RING_SIZE; 2616 if (vp->rx_skbuff[entry] == NULL) { 2617 skb = netdev_alloc_skb_ip_align(dev, PKT_BUF_SZ); 2618 if (skb == NULL) { 2619 static unsigned long last_jif; 2620 if (time_after(jiffies, last_jif + 10 * HZ)) { 2621 pr_warning("%s: memory shortage\n", dev->name); 2622 last_jif = jiffies; 2623 } 2624 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE) 2625 mod_timer(&vp->rx_oom_timer, RUN_AT(HZ * 1)); 2626 break; /* Bad news! */ 2627 } 2628 2629 vp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE)); 2630 vp->rx_skbuff[entry] = skb; 2631 } 2632 vp->rx_ring[entry].status = 0; /* Clear complete bit. */ 2633 iowrite16(UpUnstall, ioaddr + EL3_CMD); 2634 } 2635 return 0; 2636 } 2637 2638 /* 2639 * If we've hit a total OOM refilling the Rx ring we poll once a second 2640 * for some memory. Otherwise there is no way to restart the rx process. 2641 */ 2642 static void 2643 rx_oom_timer(unsigned long arg) 2644 { 2645 struct net_device *dev = (struct net_device *)arg; 2646 struct vortex_private *vp = netdev_priv(dev); 2647 2648 spin_lock_irq(&vp->lock); 2649 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE) /* This test is redundant, but makes me feel good */ 2650 boomerang_rx(dev); 2651 if (vortex_debug > 1) { 2652 pr_debug("%s: rx_oom_timer %s\n", dev->name, 2653 ((vp->cur_rx - vp->dirty_rx) != RX_RING_SIZE) ? "succeeded" : "retrying"); 2654 } 2655 spin_unlock_irq(&vp->lock); 2656 } 2657 2658 static void 2659 vortex_down(struct net_device *dev, int final_down) 2660 { 2661 struct vortex_private *vp = netdev_priv(dev); 2662 void __iomem *ioaddr = vp->ioaddr; 2663 2664 netif_stop_queue (dev); 2665 2666 del_timer_sync(&vp->rx_oom_timer); 2667 del_timer_sync(&vp->timer); 2668 2669 /* Turn off statistics ASAP. We update dev->stats below. */ 2670 iowrite16(StatsDisable, ioaddr + EL3_CMD); 2671 2672 /* Disable the receiver and transmitter. */ 2673 iowrite16(RxDisable, ioaddr + EL3_CMD); 2674 iowrite16(TxDisable, ioaddr + EL3_CMD); 2675 2676 /* Disable receiving 802.1q tagged frames */ 2677 set_8021q_mode(dev, 0); 2678 2679 if (dev->if_port == XCVR_10base2) 2680 /* Turn off thinnet power. Green! */ 2681 iowrite16(StopCoax, ioaddr + EL3_CMD); 2682 2683 iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD); 2684 2685 update_stats(ioaddr, dev); 2686 if (vp->full_bus_master_rx) 2687 iowrite32(0, ioaddr + UpListPtr); 2688 if (vp->full_bus_master_tx) 2689 iowrite32(0, ioaddr + DownListPtr); 2690 2691 if (final_down && VORTEX_PCI(vp)) { 2692 vp->pm_state_valid = 1; 2693 pci_save_state(VORTEX_PCI(vp)); 2694 acpi_set_WOL(dev); 2695 } 2696 } 2697 2698 static int 2699 vortex_close(struct net_device *dev) 2700 { 2701 struct vortex_private *vp = netdev_priv(dev); 2702 void __iomem *ioaddr = vp->ioaddr; 2703 int i; 2704 2705 if (netif_device_present(dev)) 2706 vortex_down(dev, 1); 2707 2708 if (vortex_debug > 1) { 2709 pr_debug("%s: vortex_close() status %4.4x, Tx status %2.2x.\n", 2710 dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus)); 2711 pr_debug("%s: vortex close stats: rx_nocopy %d rx_copy %d" 2712 " tx_queued %d Rx pre-checksummed %d.\n", 2713 dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits); 2714 } 2715 2716 #if DO_ZEROCOPY 2717 if (vp->rx_csumhits && 2718 (vp->drv_flags & HAS_HWCKSM) == 0 && 2719 (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) { 2720 pr_warning("%s supports hardware checksums, and we're not using them!\n", dev->name); 2721 } 2722 #endif 2723 2724 free_irq(dev->irq, dev); 2725 2726 if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */ 2727 for (i = 0; i < RX_RING_SIZE; i++) 2728 if (vp->rx_skbuff[i]) { 2729 pci_unmap_single( VORTEX_PCI(vp), le32_to_cpu(vp->rx_ring[i].addr), 2730 PKT_BUF_SZ, PCI_DMA_FROMDEVICE); 2731 dev_kfree_skb(vp->rx_skbuff[i]); 2732 vp->rx_skbuff[i] = NULL; 2733 } 2734 } 2735 if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */ 2736 for (i = 0; i < TX_RING_SIZE; i++) { 2737 if (vp->tx_skbuff[i]) { 2738 struct sk_buff *skb = vp->tx_skbuff[i]; 2739 #if DO_ZEROCOPY 2740 int k; 2741 2742 for (k=0; k<=skb_shinfo(skb)->nr_frags; k++) 2743 pci_unmap_single(VORTEX_PCI(vp), 2744 le32_to_cpu(vp->tx_ring[i].frag[k].addr), 2745 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF, 2746 PCI_DMA_TODEVICE); 2747 #else 2748 pci_unmap_single(VORTEX_PCI(vp), le32_to_cpu(vp->tx_ring[i].addr), skb->len, PCI_DMA_TODEVICE); 2749 #endif 2750 dev_kfree_skb(skb); 2751 vp->tx_skbuff[i] = NULL; 2752 } 2753 } 2754 } 2755 2756 return 0; 2757 } 2758 2759 static void 2760 dump_tx_ring(struct net_device *dev) 2761 { 2762 if (vortex_debug > 0) { 2763 struct vortex_private *vp = netdev_priv(dev); 2764 void __iomem *ioaddr = vp->ioaddr; 2765 2766 if (vp->full_bus_master_tx) { 2767 int i; 2768 int stalled = ioread32(ioaddr + PktStatus) & 0x04; /* Possible racy. But it's only debug stuff */ 2769 2770 pr_err(" Flags; bus-master %d, dirty %d(%d) current %d(%d)\n", 2771 vp->full_bus_master_tx, 2772 vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE, 2773 vp->cur_tx, vp->cur_tx % TX_RING_SIZE); 2774 pr_err(" Transmit list %8.8x vs. %p.\n", 2775 ioread32(ioaddr + DownListPtr), 2776 &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]); 2777 issue_and_wait(dev, DownStall); 2778 for (i = 0; i < TX_RING_SIZE; i++) { 2779 unsigned int length; 2780 2781 #if DO_ZEROCOPY 2782 length = le32_to_cpu(vp->tx_ring[i].frag[0].length); 2783 #else 2784 length = le32_to_cpu(vp->tx_ring[i].length); 2785 #endif 2786 pr_err(" %d: @%p length %8.8x status %8.8x\n", 2787 i, &vp->tx_ring[i], length, 2788 le32_to_cpu(vp->tx_ring[i].status)); 2789 } 2790 if (!stalled) 2791 iowrite16(DownUnstall, ioaddr + EL3_CMD); 2792 } 2793 } 2794 } 2795 2796 static struct net_device_stats *vortex_get_stats(struct net_device *dev) 2797 { 2798 struct vortex_private *vp = netdev_priv(dev); 2799 void __iomem *ioaddr = vp->ioaddr; 2800 unsigned long flags; 2801 2802 if (netif_device_present(dev)) { /* AKPM: Used to be netif_running */ 2803 spin_lock_irqsave (&vp->lock, flags); 2804 update_stats(ioaddr, dev); 2805 spin_unlock_irqrestore (&vp->lock, flags); 2806 } 2807 return &dev->stats; 2808 } 2809 2810 /* Update statistics. 2811 Unlike with the EL3 we need not worry about interrupts changing 2812 the window setting from underneath us, but we must still guard 2813 against a race condition with a StatsUpdate interrupt updating the 2814 table. This is done by checking that the ASM (!) code generated uses 2815 atomic updates with '+='. 2816 */ 2817 static void update_stats(void __iomem *ioaddr, struct net_device *dev) 2818 { 2819 struct vortex_private *vp = netdev_priv(dev); 2820 2821 /* Unlike the 3c5x9 we need not turn off stats updates while reading. */ 2822 /* Switch to the stats window, and read everything. */ 2823 dev->stats.tx_carrier_errors += window_read8(vp, 6, 0); 2824 dev->stats.tx_heartbeat_errors += window_read8(vp, 6, 1); 2825 dev->stats.tx_window_errors += window_read8(vp, 6, 4); 2826 dev->stats.rx_fifo_errors += window_read8(vp, 6, 5); 2827 dev->stats.tx_packets += window_read8(vp, 6, 6); 2828 dev->stats.tx_packets += (window_read8(vp, 6, 9) & 2829 0x30) << 4; 2830 /* Rx packets */ window_read8(vp, 6, 7); /* Must read to clear */ 2831 /* Don't bother with register 9, an extension of registers 6&7. 2832 If we do use the 6&7 values the atomic update assumption above 2833 is invalid. */ 2834 dev->stats.rx_bytes += window_read16(vp, 6, 10); 2835 dev->stats.tx_bytes += window_read16(vp, 6, 12); 2836 /* Extra stats for get_ethtool_stats() */ 2837 vp->xstats.tx_multiple_collisions += window_read8(vp, 6, 2); 2838 vp->xstats.tx_single_collisions += window_read8(vp, 6, 3); 2839 vp->xstats.tx_deferred += window_read8(vp, 6, 8); 2840 vp->xstats.rx_bad_ssd += window_read8(vp, 4, 12); 2841 2842 dev->stats.collisions = vp->xstats.tx_multiple_collisions 2843 + vp->xstats.tx_single_collisions 2844 + vp->xstats.tx_max_collisions; 2845 2846 { 2847 u8 up = window_read8(vp, 4, 13); 2848 dev->stats.rx_bytes += (up & 0x0f) << 16; 2849 dev->stats.tx_bytes += (up & 0xf0) << 12; 2850 } 2851 } 2852 2853 static int vortex_nway_reset(struct net_device *dev) 2854 { 2855 struct vortex_private *vp = netdev_priv(dev); 2856 2857 return mii_nway_restart(&vp->mii); 2858 } 2859 2860 static int vortex_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2861 { 2862 struct vortex_private *vp = netdev_priv(dev); 2863 2864 return mii_ethtool_gset(&vp->mii, cmd); 2865 } 2866 2867 static int vortex_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2868 { 2869 struct vortex_private *vp = netdev_priv(dev); 2870 2871 return mii_ethtool_sset(&vp->mii, cmd); 2872 } 2873 2874 static u32 vortex_get_msglevel(struct net_device *dev) 2875 { 2876 return vortex_debug; 2877 } 2878 2879 static void vortex_set_msglevel(struct net_device *dev, u32 dbg) 2880 { 2881 vortex_debug = dbg; 2882 } 2883 2884 static int vortex_get_sset_count(struct net_device *dev, int sset) 2885 { 2886 switch (sset) { 2887 case ETH_SS_STATS: 2888 return VORTEX_NUM_STATS; 2889 default: 2890 return -EOPNOTSUPP; 2891 } 2892 } 2893 2894 static void vortex_get_ethtool_stats(struct net_device *dev, 2895 struct ethtool_stats *stats, u64 *data) 2896 { 2897 struct vortex_private *vp = netdev_priv(dev); 2898 void __iomem *ioaddr = vp->ioaddr; 2899 unsigned long flags; 2900 2901 spin_lock_irqsave(&vp->lock, flags); 2902 update_stats(ioaddr, dev); 2903 spin_unlock_irqrestore(&vp->lock, flags); 2904 2905 data[0] = vp->xstats.tx_deferred; 2906 data[1] = vp->xstats.tx_max_collisions; 2907 data[2] = vp->xstats.tx_multiple_collisions; 2908 data[3] = vp->xstats.tx_single_collisions; 2909 data[4] = vp->xstats.rx_bad_ssd; 2910 } 2911 2912 2913 static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data) 2914 { 2915 switch (stringset) { 2916 case ETH_SS_STATS: 2917 memcpy(data, ðtool_stats_keys, sizeof(ethtool_stats_keys)); 2918 break; 2919 default: 2920 WARN_ON(1); 2921 break; 2922 } 2923 } 2924 2925 static void vortex_get_drvinfo(struct net_device *dev, 2926 struct ethtool_drvinfo *info) 2927 { 2928 struct vortex_private *vp = netdev_priv(dev); 2929 2930 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 2931 if (VORTEX_PCI(vp)) { 2932 strlcpy(info->bus_info, pci_name(VORTEX_PCI(vp)), 2933 sizeof(info->bus_info)); 2934 } else { 2935 if (VORTEX_EISA(vp)) 2936 strlcpy(info->bus_info, dev_name(vp->gendev), 2937 sizeof(info->bus_info)); 2938 else 2939 snprintf(info->bus_info, sizeof(info->bus_info), 2940 "EISA 0x%lx %d", dev->base_addr, dev->irq); 2941 } 2942 } 2943 2944 static void vortex_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2945 { 2946 struct vortex_private *vp = netdev_priv(dev); 2947 2948 if (!VORTEX_PCI(vp)) 2949 return; 2950 2951 wol->supported = WAKE_MAGIC; 2952 2953 wol->wolopts = 0; 2954 if (vp->enable_wol) 2955 wol->wolopts |= WAKE_MAGIC; 2956 } 2957 2958 static int vortex_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2959 { 2960 struct vortex_private *vp = netdev_priv(dev); 2961 2962 if (!VORTEX_PCI(vp)) 2963 return -EOPNOTSUPP; 2964 2965 if (wol->wolopts & ~WAKE_MAGIC) 2966 return -EINVAL; 2967 2968 if (wol->wolopts & WAKE_MAGIC) 2969 vp->enable_wol = 1; 2970 else 2971 vp->enable_wol = 0; 2972 acpi_set_WOL(dev); 2973 2974 return 0; 2975 } 2976 2977 static const struct ethtool_ops vortex_ethtool_ops = { 2978 .get_drvinfo = vortex_get_drvinfo, 2979 .get_strings = vortex_get_strings, 2980 .get_msglevel = vortex_get_msglevel, 2981 .set_msglevel = vortex_set_msglevel, 2982 .get_ethtool_stats = vortex_get_ethtool_stats, 2983 .get_sset_count = vortex_get_sset_count, 2984 .get_settings = vortex_get_settings, 2985 .set_settings = vortex_set_settings, 2986 .get_link = ethtool_op_get_link, 2987 .nway_reset = vortex_nway_reset, 2988 .get_wol = vortex_get_wol, 2989 .set_wol = vortex_set_wol, 2990 }; 2991 2992 #ifdef CONFIG_PCI 2993 /* 2994 * Must power the device up to do MDIO operations 2995 */ 2996 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 2997 { 2998 int err; 2999 struct vortex_private *vp = netdev_priv(dev); 3000 pci_power_t state = 0; 3001 3002 if(VORTEX_PCI(vp)) 3003 state = VORTEX_PCI(vp)->current_state; 3004 3005 /* The kernel core really should have pci_get_power_state() */ 3006 3007 if(state != 0) 3008 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); 3009 err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL); 3010 if(state != 0) 3011 pci_set_power_state(VORTEX_PCI(vp), state); 3012 3013 return err; 3014 } 3015 #endif 3016 3017 3018 /* Pre-Cyclone chips have no documented multicast filter, so the only 3019 multicast setting is to receive all multicast frames. At least 3020 the chip has a very clean way to set the mode, unlike many others. */ 3021 static void set_rx_mode(struct net_device *dev) 3022 { 3023 struct vortex_private *vp = netdev_priv(dev); 3024 void __iomem *ioaddr = vp->ioaddr; 3025 int new_mode; 3026 3027 if (dev->flags & IFF_PROMISC) { 3028 if (vortex_debug > 3) 3029 pr_notice("%s: Setting promiscuous mode.\n", dev->name); 3030 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm; 3031 } else if (!netdev_mc_empty(dev) || dev->flags & IFF_ALLMULTI) { 3032 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast; 3033 } else 3034 new_mode = SetRxFilter | RxStation | RxBroadcast; 3035 3036 iowrite16(new_mode, ioaddr + EL3_CMD); 3037 } 3038 3039 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) 3040 /* Setup the card so that it can receive frames with an 802.1q VLAN tag. 3041 Note that this must be done after each RxReset due to some backwards 3042 compatibility logic in the Cyclone and Tornado ASICs */ 3043 3044 /* The Ethernet Type used for 802.1q tagged frames */ 3045 #define VLAN_ETHER_TYPE 0x8100 3046 3047 static void set_8021q_mode(struct net_device *dev, int enable) 3048 { 3049 struct vortex_private *vp = netdev_priv(dev); 3050 int mac_ctrl; 3051 3052 if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) { 3053 /* cyclone and tornado chipsets can recognize 802.1q 3054 * tagged frames and treat them correctly */ 3055 3056 int max_pkt_size = dev->mtu+14; /* MTU+Ethernet header */ 3057 if (enable) 3058 max_pkt_size += 4; /* 802.1Q VLAN tag */ 3059 3060 window_write16(vp, max_pkt_size, 3, Wn3_MaxPktSize); 3061 3062 /* set VlanEtherType to let the hardware checksumming 3063 treat tagged frames correctly */ 3064 window_write16(vp, VLAN_ETHER_TYPE, 7, Wn7_VlanEtherType); 3065 } else { 3066 /* on older cards we have to enable large frames */ 3067 3068 vp->large_frames = dev->mtu > 1500 || enable; 3069 3070 mac_ctrl = window_read16(vp, 3, Wn3_MAC_Ctrl); 3071 if (vp->large_frames) 3072 mac_ctrl |= 0x40; 3073 else 3074 mac_ctrl &= ~0x40; 3075 window_write16(vp, mac_ctrl, 3, Wn3_MAC_Ctrl); 3076 } 3077 } 3078 #else 3079 3080 static void set_8021q_mode(struct net_device *dev, int enable) 3081 { 3082 } 3083 3084 3085 #endif 3086 3087 /* MII transceiver control section. 3088 Read and write the MII registers using software-generated serial 3089 MDIO protocol. See the MII specifications or DP83840A data sheet 3090 for details. */ 3091 3092 /* The maximum data clock rate is 2.5 Mhz. The minimum timing is usually 3093 met by back-to-back PCI I/O cycles, but we insert a delay to avoid 3094 "overclocking" issues. */ 3095 static void mdio_delay(struct vortex_private *vp) 3096 { 3097 window_read32(vp, 4, Wn4_PhysicalMgmt); 3098 } 3099 3100 #define MDIO_SHIFT_CLK 0x01 3101 #define MDIO_DIR_WRITE 0x04 3102 #define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE) 3103 #define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE) 3104 #define MDIO_DATA_READ 0x02 3105 #define MDIO_ENB_IN 0x00 3106 3107 /* Generate the preamble required for initial synchronization and 3108 a few older transceivers. */ 3109 static void mdio_sync(struct vortex_private *vp, int bits) 3110 { 3111 /* Establish sync by sending at least 32 logic ones. */ 3112 while (-- bits >= 0) { 3113 window_write16(vp, MDIO_DATA_WRITE1, 4, Wn4_PhysicalMgmt); 3114 mdio_delay(vp); 3115 window_write16(vp, MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK, 3116 4, Wn4_PhysicalMgmt); 3117 mdio_delay(vp); 3118 } 3119 } 3120 3121 static int mdio_read(struct net_device *dev, int phy_id, int location) 3122 { 3123 int i; 3124 struct vortex_private *vp = netdev_priv(dev); 3125 int read_cmd = (0xf6 << 10) | (phy_id << 5) | location; 3126 unsigned int retval = 0; 3127 3128 spin_lock_bh(&vp->mii_lock); 3129 3130 if (mii_preamble_required) 3131 mdio_sync(vp, 32); 3132 3133 /* Shift the read command bits out. */ 3134 for (i = 14; i >= 0; i--) { 3135 int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0; 3136 window_write16(vp, dataval, 4, Wn4_PhysicalMgmt); 3137 mdio_delay(vp); 3138 window_write16(vp, dataval | MDIO_SHIFT_CLK, 3139 4, Wn4_PhysicalMgmt); 3140 mdio_delay(vp); 3141 } 3142 /* Read the two transition, 16 data, and wire-idle bits. */ 3143 for (i = 19; i > 0; i--) { 3144 window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt); 3145 mdio_delay(vp); 3146 retval = (retval << 1) | 3147 ((window_read16(vp, 4, Wn4_PhysicalMgmt) & 3148 MDIO_DATA_READ) ? 1 : 0); 3149 window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK, 3150 4, Wn4_PhysicalMgmt); 3151 mdio_delay(vp); 3152 } 3153 3154 spin_unlock_bh(&vp->mii_lock); 3155 3156 return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff; 3157 } 3158 3159 static void mdio_write(struct net_device *dev, int phy_id, int location, int value) 3160 { 3161 struct vortex_private *vp = netdev_priv(dev); 3162 int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value; 3163 int i; 3164 3165 spin_lock_bh(&vp->mii_lock); 3166 3167 if (mii_preamble_required) 3168 mdio_sync(vp, 32); 3169 3170 /* Shift the command bits out. */ 3171 for (i = 31; i >= 0; i--) { 3172 int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0; 3173 window_write16(vp, dataval, 4, Wn4_PhysicalMgmt); 3174 mdio_delay(vp); 3175 window_write16(vp, dataval | MDIO_SHIFT_CLK, 3176 4, Wn4_PhysicalMgmt); 3177 mdio_delay(vp); 3178 } 3179 /* Leave the interface idle. */ 3180 for (i = 1; i >= 0; i--) { 3181 window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt); 3182 mdio_delay(vp); 3183 window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK, 3184 4, Wn4_PhysicalMgmt); 3185 mdio_delay(vp); 3186 } 3187 3188 spin_unlock_bh(&vp->mii_lock); 3189 } 3190 3191 /* ACPI: Advanced Configuration and Power Interface. */ 3192 /* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */ 3193 static void acpi_set_WOL(struct net_device *dev) 3194 { 3195 struct vortex_private *vp = netdev_priv(dev); 3196 void __iomem *ioaddr = vp->ioaddr; 3197 3198 device_set_wakeup_enable(vp->gendev, vp->enable_wol); 3199 3200 if (vp->enable_wol) { 3201 /* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */ 3202 window_write16(vp, 2, 7, 0x0c); 3203 /* The RxFilter must accept the WOL frames. */ 3204 iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD); 3205 iowrite16(RxEnable, ioaddr + EL3_CMD); 3206 3207 if (pci_enable_wake(VORTEX_PCI(vp), PCI_D3hot, 1)) { 3208 pr_info("%s: WOL not supported.\n", pci_name(VORTEX_PCI(vp))); 3209 3210 vp->enable_wol = 0; 3211 return; 3212 } 3213 3214 if (VORTEX_PCI(vp)->current_state < PCI_D3hot) 3215 return; 3216 3217 /* Change the power state to D3; RxEnable doesn't take effect. */ 3218 pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot); 3219 } 3220 } 3221 3222 3223 static void vortex_remove_one(struct pci_dev *pdev) 3224 { 3225 struct net_device *dev = pci_get_drvdata(pdev); 3226 struct vortex_private *vp; 3227 3228 if (!dev) { 3229 pr_err("vortex_remove_one called for Compaq device!\n"); 3230 BUG(); 3231 } 3232 3233 vp = netdev_priv(dev); 3234 3235 if (vp->cb_fn_base) 3236 pci_iounmap(VORTEX_PCI(vp), vp->cb_fn_base); 3237 3238 unregister_netdev(dev); 3239 3240 if (VORTEX_PCI(vp)) { 3241 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); /* Go active */ 3242 if (vp->pm_state_valid) 3243 pci_restore_state(VORTEX_PCI(vp)); 3244 pci_disable_device(VORTEX_PCI(vp)); 3245 } 3246 /* Should really use issue_and_wait() here */ 3247 iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14), 3248 vp->ioaddr + EL3_CMD); 3249 3250 pci_iounmap(VORTEX_PCI(vp), vp->ioaddr); 3251 3252 pci_free_consistent(pdev, 3253 sizeof(struct boom_rx_desc) * RX_RING_SIZE 3254 + sizeof(struct boom_tx_desc) * TX_RING_SIZE, 3255 vp->rx_ring, 3256 vp->rx_ring_dma); 3257 3258 pci_release_regions(pdev); 3259 3260 free_netdev(dev); 3261 } 3262 3263 3264 static struct pci_driver vortex_driver = { 3265 .name = "3c59x", 3266 .probe = vortex_init_one, 3267 .remove = vortex_remove_one, 3268 .id_table = vortex_pci_tbl, 3269 .driver.pm = VORTEX_PM_OPS, 3270 }; 3271 3272 3273 static int vortex_have_pci; 3274 static int vortex_have_eisa; 3275 3276 3277 static int __init vortex_init(void) 3278 { 3279 int pci_rc, eisa_rc; 3280 3281 pci_rc = pci_register_driver(&vortex_driver); 3282 eisa_rc = vortex_eisa_init(); 3283 3284 if (pci_rc == 0) 3285 vortex_have_pci = 1; 3286 if (eisa_rc > 0) 3287 vortex_have_eisa = 1; 3288 3289 return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV; 3290 } 3291 3292 3293 static void __exit vortex_eisa_cleanup(void) 3294 { 3295 struct vortex_private *vp; 3296 void __iomem *ioaddr; 3297 3298 #ifdef CONFIG_EISA 3299 /* Take care of the EISA devices */ 3300 eisa_driver_unregister(&vortex_eisa_driver); 3301 #endif 3302 3303 if (compaq_net_device) { 3304 vp = netdev_priv(compaq_net_device); 3305 ioaddr = ioport_map(compaq_net_device->base_addr, 3306 VORTEX_TOTAL_SIZE); 3307 3308 unregister_netdev(compaq_net_device); 3309 iowrite16(TotalReset, ioaddr + EL3_CMD); 3310 release_region(compaq_net_device->base_addr, 3311 VORTEX_TOTAL_SIZE); 3312 3313 free_netdev(compaq_net_device); 3314 } 3315 } 3316 3317 3318 static void __exit vortex_cleanup(void) 3319 { 3320 if (vortex_have_pci) 3321 pci_unregister_driver(&vortex_driver); 3322 if (vortex_have_eisa) 3323 vortex_eisa_cleanup(); 3324 } 3325 3326 3327 module_init(vortex_init); 3328 module_exit(vortex_cleanup); 3329