xref: /openbmc/linux/drivers/net/ethernet/3com/3c59x.c (revision 9d749629)
1 /* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */
2 /*
3 	Written 1996-1999 by Donald Becker.
4 
5 	This software may be used and distributed according to the terms
6 	of the GNU General Public License, incorporated herein by reference.
7 
8 	This driver is for the 3Com "Vortex" and "Boomerang" series ethercards.
9 	Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597
10 	and the EtherLink XL 3c900 and 3c905 cards.
11 
12 	Problem reports and questions should be directed to
13 	vortex@scyld.com
14 
15 	The author may be reached as becker@scyld.com, or C/O
16 	Scyld Computing Corporation
17 	410 Severn Ave., Suite 210
18 	Annapolis MD 21403
19 
20 */
21 
22 /*
23  * FIXME: This driver _could_ support MTU changing, but doesn't.  See Don's hamachi.c implementation
24  * as well as other drivers
25  *
26  * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k
27  * due to dead code elimination.  There will be some performance benefits from this due to
28  * elimination of all the tests and reduced cache footprint.
29  */
30 
31 
32 #define DRV_NAME	"3c59x"
33 
34 
35 
36 /* A few values that may be tweaked. */
37 /* Keep the ring sizes a power of two for efficiency. */
38 #define TX_RING_SIZE	16
39 #define RX_RING_SIZE	32
40 #define PKT_BUF_SZ		1536			/* Size of each temporary Rx buffer.*/
41 
42 /* "Knobs" that adjust features and parameters. */
43 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
44    Setting to > 1512 effectively disables this feature. */
45 #ifndef __arm__
46 static int rx_copybreak = 200;
47 #else
48 /* ARM systems perform better by disregarding the bus-master
49    transfer capability of these cards. -- rmk */
50 static int rx_copybreak = 1513;
51 #endif
52 /* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
53 static const int mtu = 1500;
54 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
55 static int max_interrupt_work = 32;
56 /* Tx timeout interval (millisecs) */
57 static int watchdog = 5000;
58 
59 /* Allow aggregation of Tx interrupts.  Saves CPU load at the cost
60  * of possible Tx stalls if the system is blocking interrupts
61  * somewhere else.  Undefine this to disable.
62  */
63 #define tx_interrupt_mitigation 1
64 
65 /* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */
66 #define vortex_debug debug
67 #ifdef VORTEX_DEBUG
68 static int vortex_debug = VORTEX_DEBUG;
69 #else
70 static int vortex_debug = 1;
71 #endif
72 
73 #include <linux/module.h>
74 #include <linux/kernel.h>
75 #include <linux/string.h>
76 #include <linux/timer.h>
77 #include <linux/errno.h>
78 #include <linux/in.h>
79 #include <linux/ioport.h>
80 #include <linux/interrupt.h>
81 #include <linux/pci.h>
82 #include <linux/mii.h>
83 #include <linux/init.h>
84 #include <linux/netdevice.h>
85 #include <linux/etherdevice.h>
86 #include <linux/skbuff.h>
87 #include <linux/ethtool.h>
88 #include <linux/highmem.h>
89 #include <linux/eisa.h>
90 #include <linux/bitops.h>
91 #include <linux/jiffies.h>
92 #include <linux/gfp.h>
93 #include <asm/irq.h>			/* For nr_irqs only. */
94 #include <asm/io.h>
95 #include <asm/uaccess.h>
96 
97 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package.
98    This is only in the support-all-kernels source code. */
99 
100 #define RUN_AT(x) (jiffies + (x))
101 
102 #include <linux/delay.h>
103 
104 
105 static const char version[] =
106 	DRV_NAME ": Donald Becker and others.\n";
107 
108 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
109 MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver ");
110 MODULE_LICENSE("GPL");
111 
112 
113 /* Operational parameter that usually are not changed. */
114 
115 /* The Vortex size is twice that of the original EtherLinkIII series: the
116    runtime register window, window 1, is now always mapped in.
117    The Boomerang size is twice as large as the Vortex -- it has additional
118    bus master control registers. */
119 #define VORTEX_TOTAL_SIZE 0x20
120 #define BOOMERANG_TOTAL_SIZE 0x40
121 
122 /* Set iff a MII transceiver on any interface requires mdio preamble.
123    This only set with the original DP83840 on older 3c905 boards, so the extra
124    code size of a per-interface flag is not worthwhile. */
125 static char mii_preamble_required;
126 
127 #define PFX DRV_NAME ": "
128 
129 
130 
131 /*
132 				Theory of Operation
133 
134 I. Board Compatibility
135 
136 This device driver is designed for the 3Com FastEtherLink and FastEtherLink
137 XL, 3Com's PCI to 10/100baseT adapters.  It also works with the 10Mbs
138 versions of the FastEtherLink cards.  The supported product IDs are
139   3c590, 3c592, 3c595, 3c597, 3c900, 3c905
140 
141 The related ISA 3c515 is supported with a separate driver, 3c515.c, included
142 with the kernel source or available from
143     cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html
144 
145 II. Board-specific settings
146 
147 PCI bus devices are configured by the system at boot time, so no jumpers
148 need to be set on the board.  The system BIOS should be set to assign the
149 PCI INTA signal to an otherwise unused system IRQ line.
150 
151 The EEPROM settings for media type and forced-full-duplex are observed.
152 The EEPROM media type should be left at the default "autoselect" unless using
153 10base2 or AUI connections which cannot be reliably detected.
154 
155 III. Driver operation
156 
157 The 3c59x series use an interface that's very similar to the previous 3c5x9
158 series.  The primary interface is two programmed-I/O FIFOs, with an
159 alternate single-contiguous-region bus-master transfer (see next).
160 
161 The 3c900 "Boomerang" series uses a full-bus-master interface with separate
162 lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
163 DEC Tulip and Intel Speedo3.  The first chip version retains a compatible
164 programmed-I/O interface that has been removed in 'B' and subsequent board
165 revisions.
166 
167 One extension that is advertised in a very large font is that the adapters
168 are capable of being bus masters.  On the Vortex chip this capability was
169 only for a single contiguous region making it far less useful than the full
170 bus master capability.  There is a significant performance impact of taking
171 an extra interrupt or polling for the completion of each transfer, as well
172 as difficulty sharing the single transfer engine between the transmit and
173 receive threads.  Using DMA transfers is a win only with large blocks or
174 with the flawed versions of the Intel Orion motherboard PCI controller.
175 
176 The Boomerang chip's full-bus-master interface is useful, and has the
177 currently-unused advantages over other similar chips that queued transmit
178 packets may be reordered and receive buffer groups are associated with a
179 single frame.
180 
181 With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme.
182 Rather than a fixed intermediate receive buffer, this scheme allocates
183 full-sized skbuffs as receive buffers.  The value RX_COPYBREAK is used as
184 the copying breakpoint: it is chosen to trade-off the memory wasted by
185 passing the full-sized skbuff to the queue layer for all frames vs. the
186 copying cost of copying a frame to a correctly-sized skbuff.
187 
188 IIIC. Synchronization
189 The driver runs as two independent, single-threaded flows of control.  One
190 is the send-packet routine, which enforces single-threaded use by the
191 dev->tbusy flag.  The other thread is the interrupt handler, which is single
192 threaded by the hardware and other software.
193 
194 IV. Notes
195 
196 Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development
197 3c590, 3c595, and 3c900 boards.
198 The name "Vortex" is the internal 3Com project name for the PCI ASIC, and
199 the EISA version is called "Demon".  According to Terry these names come
200 from rides at the local amusement park.
201 
202 The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes!
203 This driver only supports ethernet packets because of the skbuff allocation
204 limit of 4K.
205 */
206 
207 /* This table drives the PCI probe routines.  It's mostly boilerplate in all
208    of the drivers, and will likely be provided by some future kernel.
209 */
210 enum pci_flags_bit {
211 	PCI_USES_MASTER=4,
212 };
213 
214 enum {	IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8,
215 	EEPROM_8BIT=0x10,	/* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */
216 	HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100,
217 	INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800,
218 	EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000,
219 	EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, };
220 
221 enum vortex_chips {
222 	CH_3C590 = 0,
223 	CH_3C592,
224 	CH_3C597,
225 	CH_3C595_1,
226 	CH_3C595_2,
227 
228 	CH_3C595_3,
229 	CH_3C900_1,
230 	CH_3C900_2,
231 	CH_3C900_3,
232 	CH_3C900_4,
233 
234 	CH_3C900_5,
235 	CH_3C900B_FL,
236 	CH_3C905_1,
237 	CH_3C905_2,
238 	CH_3C905B_TX,
239 	CH_3C905B_1,
240 
241 	CH_3C905B_2,
242 	CH_3C905B_FX,
243 	CH_3C905C,
244 	CH_3C9202,
245 	CH_3C980,
246 	CH_3C9805,
247 
248 	CH_3CSOHO100_TX,
249 	CH_3C555,
250 	CH_3C556,
251 	CH_3C556B,
252 	CH_3C575,
253 
254 	CH_3C575_1,
255 	CH_3CCFE575,
256 	CH_3CCFE575CT,
257 	CH_3CCFE656,
258 	CH_3CCFEM656,
259 
260 	CH_3CCFEM656_1,
261 	CH_3C450,
262 	CH_3C920,
263 	CH_3C982A,
264 	CH_3C982B,
265 
266 	CH_905BT4,
267 	CH_920B_EMB_WNM,
268 };
269 
270 
271 /* note: this array directly indexed by above enums, and MUST
272  * be kept in sync with both the enums above, and the PCI device
273  * table below
274  */
275 static struct vortex_chip_info {
276 	const char *name;
277 	int flags;
278 	int drv_flags;
279 	int io_size;
280 } vortex_info_tbl[] = {
281 	{"3c590 Vortex 10Mbps",
282 	 PCI_USES_MASTER, IS_VORTEX, 32, },
283 	{"3c592 EISA 10Mbps Demon/Vortex",					/* AKPM: from Don's 3c59x_cb.c 0.49H */
284 	 PCI_USES_MASTER, IS_VORTEX, 32, },
285 	{"3c597 EISA Fast Demon/Vortex",					/* AKPM: from Don's 3c59x_cb.c 0.49H */
286 	 PCI_USES_MASTER, IS_VORTEX, 32, },
287 	{"3c595 Vortex 100baseTx",
288 	 PCI_USES_MASTER, IS_VORTEX, 32, },
289 	{"3c595 Vortex 100baseT4",
290 	 PCI_USES_MASTER, IS_VORTEX, 32, },
291 
292 	{"3c595 Vortex 100base-MII",
293 	 PCI_USES_MASTER, IS_VORTEX, 32, },
294 	{"3c900 Boomerang 10baseT",
295 	 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
296 	{"3c900 Boomerang 10Mbps Combo",
297 	 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
298 	{"3c900 Cyclone 10Mbps TPO",						/* AKPM: from Don's 0.99M */
299 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
300 	{"3c900 Cyclone 10Mbps Combo",
301 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
302 
303 	{"3c900 Cyclone 10Mbps TPC",						/* AKPM: from Don's 0.99M */
304 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
305 	{"3c900B-FL Cyclone 10base-FL",
306 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
307 	{"3c905 Boomerang 100baseTx",
308 	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
309 	{"3c905 Boomerang 100baseT4",
310 	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
311 	{"3C905B-TX Fast Etherlink XL PCI",
312 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
313 	{"3c905B Cyclone 100baseTx",
314 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
315 
316 	{"3c905B Cyclone 10/100/BNC",
317 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
318 	{"3c905B-FX Cyclone 100baseFx",
319 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
320 	{"3c905C Tornado",
321 	PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
322 	{"3c920B-EMB-WNM (ATI Radeon 9100 IGP)",
323 	 PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, },
324 	{"3c980 Cyclone",
325 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
326 
327 	{"3c980C Python-T",
328 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
329 	{"3cSOHO100-TX Hurricane",
330 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
331 	{"3c555 Laptop Hurricane",
332 	 PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, },
333 	{"3c556 Laptop Tornado",
334 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR|
335 									HAS_HWCKSM, 128, },
336 	{"3c556B Laptop Hurricane",
337 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR|
338 	                                WNO_XCVR_PWR|HAS_HWCKSM, 128, },
339 
340 	{"3c575 [Megahertz] 10/100 LAN 	CardBus",
341 	PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
342 	{"3c575 Boomerang CardBus",
343 	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
344 	{"3CCFE575BT Cyclone CardBus",
345 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|
346 									INVERT_LED_PWR|HAS_HWCKSM, 128, },
347 	{"3CCFE575CT Tornado CardBus",
348 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
349 									MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
350 	{"3CCFE656 Cyclone CardBus",
351 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
352 									INVERT_LED_PWR|HAS_HWCKSM, 128, },
353 
354 	{"3CCFEM656B Cyclone+Winmodem CardBus",
355 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
356 									INVERT_LED_PWR|HAS_HWCKSM, 128, },
357 	{"3CXFEM656C Tornado+Winmodem CardBus",			/* From pcmcia-cs-3.1.5 */
358 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
359 									MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
360 	{"3c450 HomePNA Tornado",						/* AKPM: from Don's 0.99Q */
361 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
362 	{"3c920 Tornado",
363 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
364 	{"3c982 Hydra Dual Port A",
365 	 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
366 
367 	{"3c982 Hydra Dual Port B",
368 	 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
369 	{"3c905B-T4",
370 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
371 	{"3c920B-EMB-WNM Tornado",
372 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
373 
374 	{NULL,}, /* NULL terminated list. */
375 };
376 
377 
378 static DEFINE_PCI_DEVICE_TABLE(vortex_pci_tbl) = {
379 	{ 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 },
380 	{ 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 },
381 	{ 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 },
382 	{ 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 },
383 	{ 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 },
384 
385 	{ 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 },
386 	{ 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 },
387 	{ 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 },
388 	{ 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 },
389 	{ 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 },
390 
391 	{ 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 },
392 	{ 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL },
393 	{ 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 },
394 	{ 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 },
395 	{ 0x10B7, 0x9054, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_TX },
396 	{ 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 },
397 
398 	{ 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 },
399 	{ 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX },
400 	{ 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C },
401 	{ 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 },
402 	{ 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 },
403 	{ 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 },
404 
405 	{ 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX },
406 	{ 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 },
407 	{ 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 },
408 	{ 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B },
409 	{ 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 },
410 
411 	{ 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 },
412 	{ 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 },
413 	{ 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT },
414 	{ 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 },
415 	{ 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 },
416 
417 	{ 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 },
418 	{ 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 },
419 	{ 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 },
420 	{ 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A },
421 	{ 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B },
422 
423 	{ 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 },
424 	{ 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM },
425 
426 	{0,}						/* 0 terminated list. */
427 };
428 MODULE_DEVICE_TABLE(pci, vortex_pci_tbl);
429 
430 
431 /* Operational definitions.
432    These are not used by other compilation units and thus are not
433    exported in a ".h" file.
434 
435    First the windows.  There are eight register windows, with the command
436    and status registers available in each.
437    */
438 #define EL3_CMD 0x0e
439 #define EL3_STATUS 0x0e
440 
441 /* The top five bits written to EL3_CMD are a command, the lower
442    11 bits are the parameter, if applicable.
443    Note that 11 parameters bits was fine for ethernet, but the new chip
444    can handle FDDI length frames (~4500 octets) and now parameters count
445    32-bit 'Dwords' rather than octets. */
446 
447 enum vortex_cmd {
448 	TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11,
449 	RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11,
450 	UpStall = 6<<11, UpUnstall = (6<<11)+1,
451 	DownStall = (6<<11)+2, DownUnstall = (6<<11)+3,
452 	RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11,
453 	FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11,
454 	SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11,
455 	SetTxThreshold = 18<<11, SetTxStart = 19<<11,
456 	StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11,
457 	StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,};
458 
459 /* The SetRxFilter command accepts the following classes: */
460 enum RxFilter {
461 	RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 };
462 
463 /* Bits in the general status register. */
464 enum vortex_status {
465 	IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004,
466 	TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
467 	IntReq = 0x0040, StatsFull = 0x0080,
468 	DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10,
469 	DMAInProgress = 1<<11,			/* DMA controller is still busy.*/
470 	CmdInProgress = 1<<12,			/* EL3_CMD is still busy.*/
471 };
472 
473 /* Register window 1 offsets, the window used in normal operation.
474    On the Vortex this window is always mapped at offsets 0x10-0x1f. */
475 enum Window1 {
476 	TX_FIFO = 0x10,  RX_FIFO = 0x10,  RxErrors = 0x14,
477 	RxStatus = 0x18,  Timer=0x1A, TxStatus = 0x1B,
478 	TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
479 };
480 enum Window0 {
481 	Wn0EepromCmd = 10,		/* Window 0: EEPROM command register. */
482 	Wn0EepromData = 12,		/* Window 0: EEPROM results register. */
483 	IntrStatus=0x0E,		/* Valid in all windows. */
484 };
485 enum Win0_EEPROM_bits {
486 	EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
487 	EEPROM_EWENB = 0x30,		/* Enable erasing/writing for 10 msec. */
488 	EEPROM_EWDIS = 0x00,		/* Disable EWENB before 10 msec timeout. */
489 };
490 /* EEPROM locations. */
491 enum eeprom_offset {
492 	PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3,
493 	EtherLink3ID=7, IFXcvrIO=8, IRQLine=9,
494 	NodeAddr01=10, NodeAddr23=11, NodeAddr45=12,
495 	DriverTune=13, Checksum=15};
496 
497 enum Window2 {			/* Window 2. */
498 	Wn2_ResetOptions=12,
499 };
500 enum Window3 {			/* Window 3: MAC/config bits. */
501 	Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8,
502 };
503 
504 #define BFEXT(value, offset, bitcount)  \
505     ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1))
506 
507 #define BFINS(lhs, rhs, offset, bitcount)					\
508 	(((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) |	\
509 	(((rhs) & ((1 << (bitcount)) - 1)) << (offset)))
510 
511 #define RAM_SIZE(v)		BFEXT(v, 0, 3)
512 #define RAM_WIDTH(v)	BFEXT(v, 3, 1)
513 #define RAM_SPEED(v)	BFEXT(v, 4, 2)
514 #define ROM_SIZE(v)		BFEXT(v, 6, 2)
515 #define RAM_SPLIT(v)	BFEXT(v, 16, 2)
516 #define XCVR(v)			BFEXT(v, 20, 4)
517 #define AUTOSELECT(v)	BFEXT(v, 24, 1)
518 
519 enum Window4 {		/* Window 4: Xcvr/media bits. */
520 	Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10,
521 };
522 enum Win4_Media_bits {
523 	Media_SQE = 0x0008,		/* Enable SQE error counting for AUI. */
524 	Media_10TP = 0x00C0,	/* Enable link beat and jabber for 10baseT. */
525 	Media_Lnk = 0x0080,		/* Enable just link beat for 100TX/100FX. */
526 	Media_LnkBeat = 0x0800,
527 };
528 enum Window7 {					/* Window 7: Bus Master control. */
529 	Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6,
530 	Wn7_MasterStatus = 12,
531 };
532 /* Boomerang bus master control registers. */
533 enum MasterCtrl {
534 	PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c,
535 	TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38,
536 };
537 
538 /* The Rx and Tx descriptor lists.
539    Caution Alpha hackers: these types are 32 bits!  Note also the 8 byte
540    alignment contraint on tx_ring[] and rx_ring[]. */
541 #define LAST_FRAG 	0x80000000			/* Last Addr/Len pair in descriptor. */
542 #define DN_COMPLETE	0x00010000			/* This packet has been downloaded */
543 struct boom_rx_desc {
544 	__le32 next;					/* Last entry points to 0.   */
545 	__le32 status;
546 	__le32 addr;					/* Up to 63 addr/len pairs possible. */
547 	__le32 length;					/* Set LAST_FRAG to indicate last pair. */
548 };
549 /* Values for the Rx status entry. */
550 enum rx_desc_status {
551 	RxDComplete=0x00008000, RxDError=0x4000,
552 	/* See boomerang_rx() for actual error bits */
553 	IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27,
554 	IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31,
555 };
556 
557 #ifdef MAX_SKB_FRAGS
558 #define DO_ZEROCOPY 1
559 #else
560 #define DO_ZEROCOPY 0
561 #endif
562 
563 struct boom_tx_desc {
564 	__le32 next;					/* Last entry points to 0.   */
565 	__le32 status;					/* bits 0:12 length, others see below.  */
566 #if DO_ZEROCOPY
567 	struct {
568 		__le32 addr;
569 		__le32 length;
570 	} frag[1+MAX_SKB_FRAGS];
571 #else
572 		__le32 addr;
573 		__le32 length;
574 #endif
575 };
576 
577 /* Values for the Tx status entry. */
578 enum tx_desc_status {
579 	CRCDisable=0x2000, TxDComplete=0x8000,
580 	AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000,
581 	TxIntrUploaded=0x80000000,		/* IRQ when in FIFO, but maybe not sent. */
582 };
583 
584 /* Chip features we care about in vp->capabilities, read from the EEPROM. */
585 enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 };
586 
587 struct vortex_extra_stats {
588 	unsigned long tx_deferred;
589 	unsigned long tx_max_collisions;
590 	unsigned long tx_multiple_collisions;
591 	unsigned long tx_single_collisions;
592 	unsigned long rx_bad_ssd;
593 };
594 
595 struct vortex_private {
596 	/* The Rx and Tx rings should be quad-word-aligned. */
597 	struct boom_rx_desc* rx_ring;
598 	struct boom_tx_desc* tx_ring;
599 	dma_addr_t rx_ring_dma;
600 	dma_addr_t tx_ring_dma;
601 	/* The addresses of transmit- and receive-in-place skbuffs. */
602 	struct sk_buff* rx_skbuff[RX_RING_SIZE];
603 	struct sk_buff* tx_skbuff[TX_RING_SIZE];
604 	unsigned int cur_rx, cur_tx;		/* The next free ring entry */
605 	unsigned int dirty_rx, dirty_tx;	/* The ring entries to be free()ed. */
606 	struct vortex_extra_stats xstats;	/* NIC-specific extra stats */
607 	struct sk_buff *tx_skb;				/* Packet being eaten by bus master ctrl.  */
608 	dma_addr_t tx_skb_dma;				/* Allocated DMA address for bus master ctrl DMA.   */
609 
610 	/* PCI configuration space information. */
611 	struct device *gendev;
612 	void __iomem *ioaddr;			/* IO address space */
613 	void __iomem *cb_fn_base;		/* CardBus function status addr space. */
614 
615 	/* Some values here only for performance evaluation and path-coverage */
616 	int rx_nocopy, rx_copy, queued_packet, rx_csumhits;
617 	int card_idx;
618 
619 	/* The remainder are related to chip state, mostly media selection. */
620 	struct timer_list timer;			/* Media selection timer. */
621 	struct timer_list rx_oom_timer;		/* Rx skb allocation retry timer */
622 	int options;						/* User-settable misc. driver options. */
623 	unsigned int media_override:4, 		/* Passed-in media type. */
624 		default_media:4,				/* Read from the EEPROM/Wn3_Config. */
625 		full_duplex:1, autoselect:1,
626 		bus_master:1,					/* Vortex can only do a fragment bus-m. */
627 		full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang  */
628 		flow_ctrl:1,					/* Use 802.3x flow control (PAUSE only) */
629 		partner_flow_ctrl:1,			/* Partner supports flow control */
630 		has_nway:1,
631 		enable_wol:1,					/* Wake-on-LAN is enabled */
632 		pm_state_valid:1,				/* pci_dev->saved_config_space has sane contents */
633 		open:1,
634 		medialock:1,
635 		must_free_region:1,				/* Flag: if zero, Cardbus owns the I/O region */
636 		large_frames:1,			/* accept large frames */
637 		handling_irq:1;			/* private in_irq indicator */
638 	/* {get|set}_wol operations are already serialized by rtnl.
639 	 * no additional locking is required for the enable_wol and acpi_set_WOL()
640 	 */
641 	int drv_flags;
642 	u16 status_enable;
643 	u16 intr_enable;
644 	u16 available_media;				/* From Wn3_Options. */
645 	u16 capabilities, info1, info2;		/* Various, from EEPROM. */
646 	u16 advertising;					/* NWay media advertisement */
647 	unsigned char phys[2];				/* MII device addresses. */
648 	u16 deferred;						/* Resend these interrupts when we
649 										 * bale from the ISR */
650 	u16 io_size;						/* Size of PCI region (for release_region) */
651 
652 	/* Serialises access to hardware other than MII and variables below.
653 	 * The lock hierarchy is rtnl_lock > {lock, mii_lock} > window_lock. */
654 	spinlock_t lock;
655 
656 	spinlock_t mii_lock;		/* Serialises access to MII */
657 	struct mii_if_info mii;		/* MII lib hooks/info */
658 	spinlock_t window_lock;		/* Serialises access to windowed regs */
659 	int window;			/* Register window */
660 };
661 
662 static void window_set(struct vortex_private *vp, int window)
663 {
664 	if (window != vp->window) {
665 		iowrite16(SelectWindow + window, vp->ioaddr + EL3_CMD);
666 		vp->window = window;
667 	}
668 }
669 
670 #define DEFINE_WINDOW_IO(size)						\
671 static u ## size							\
672 window_read ## size(struct vortex_private *vp, int window, int addr)	\
673 {									\
674 	unsigned long flags;						\
675 	u ## size ret;							\
676 	spin_lock_irqsave(&vp->window_lock, flags);			\
677 	window_set(vp, window);						\
678 	ret = ioread ## size(vp->ioaddr + addr);			\
679 	spin_unlock_irqrestore(&vp->window_lock, flags);		\
680 	return ret;							\
681 }									\
682 static void								\
683 window_write ## size(struct vortex_private *vp, u ## size value,	\
684 		     int window, int addr)				\
685 {									\
686 	unsigned long flags;						\
687 	spin_lock_irqsave(&vp->window_lock, flags);			\
688 	window_set(vp, window);						\
689 	iowrite ## size(value, vp->ioaddr + addr);			\
690 	spin_unlock_irqrestore(&vp->window_lock, flags);		\
691 }
692 DEFINE_WINDOW_IO(8)
693 DEFINE_WINDOW_IO(16)
694 DEFINE_WINDOW_IO(32)
695 
696 #ifdef CONFIG_PCI
697 #define DEVICE_PCI(dev) (((dev)->bus == &pci_bus_type) ? to_pci_dev((dev)) : NULL)
698 #else
699 #define DEVICE_PCI(dev) NULL
700 #endif
701 
702 #define VORTEX_PCI(vp)							\
703 	((struct pci_dev *) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL))
704 
705 #ifdef CONFIG_EISA
706 #define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL)
707 #else
708 #define DEVICE_EISA(dev) NULL
709 #endif
710 
711 #define VORTEX_EISA(vp)							\
712 	((struct eisa_device *) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL))
713 
714 /* The action to take with a media selection timer tick.
715    Note that we deviate from the 3Com order by checking 10base2 before AUI.
716  */
717 enum xcvr_types {
718 	XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
719 	XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10,
720 };
721 
722 static const struct media_table {
723 	char *name;
724 	unsigned int media_bits:16,		/* Bits to set in Wn4_Media register. */
725 		mask:8,						/* The transceiver-present bit in Wn3_Config.*/
726 		next:8;						/* The media type to try next. */
727 	int wait;						/* Time before we check media status. */
728 } media_tbl[] = {
729   {	"10baseT",   Media_10TP,0x08, XCVR_10base2, (14*HZ)/10},
730   { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10},
731   { "undefined", 0,			0x80, XCVR_10baseT, 10000},
732   { "10base2",   0,			0x10, XCVR_AUI,		(1*HZ)/10},
733   { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10},
734   { "100baseFX", Media_Lnk, 0x04, XCVR_MII,		(14*HZ)/10},
735   { "MII",		 0,			0x41, XCVR_10baseT, 3*HZ },
736   { "undefined", 0,			0x01, XCVR_10baseT, 10000},
737   { "Autonegotiate", 0,		0x41, XCVR_10baseT, 3*HZ},
738   { "MII-External",	 0,		0x41, XCVR_10baseT, 3*HZ },
739   { "Default",	 0,			0xFF, XCVR_10baseT, 10000},
740 };
741 
742 static struct {
743 	const char str[ETH_GSTRING_LEN];
744 } ethtool_stats_keys[] = {
745 	{ "tx_deferred" },
746 	{ "tx_max_collisions" },
747 	{ "tx_multiple_collisions" },
748 	{ "tx_single_collisions" },
749 	{ "rx_bad_ssd" },
750 };
751 
752 /* number of ETHTOOL_GSTATS u64's */
753 #define VORTEX_NUM_STATS    5
754 
755 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
756 				   int chip_idx, int card_idx);
757 static int vortex_up(struct net_device *dev);
758 static void vortex_down(struct net_device *dev, int final);
759 static int vortex_open(struct net_device *dev);
760 static void mdio_sync(struct vortex_private *vp, int bits);
761 static int mdio_read(struct net_device *dev, int phy_id, int location);
762 static void mdio_write(struct net_device *vp, int phy_id, int location, int value);
763 static void vortex_timer(unsigned long arg);
764 static void rx_oom_timer(unsigned long arg);
765 static netdev_tx_t vortex_start_xmit(struct sk_buff *skb,
766 				     struct net_device *dev);
767 static netdev_tx_t boomerang_start_xmit(struct sk_buff *skb,
768 					struct net_device *dev);
769 static int vortex_rx(struct net_device *dev);
770 static int boomerang_rx(struct net_device *dev);
771 static irqreturn_t vortex_interrupt(int irq, void *dev_id);
772 static irqreturn_t boomerang_interrupt(int irq, void *dev_id);
773 static int vortex_close(struct net_device *dev);
774 static void dump_tx_ring(struct net_device *dev);
775 static void update_stats(void __iomem *ioaddr, struct net_device *dev);
776 static struct net_device_stats *vortex_get_stats(struct net_device *dev);
777 static void set_rx_mode(struct net_device *dev);
778 #ifdef CONFIG_PCI
779 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
780 #endif
781 static void vortex_tx_timeout(struct net_device *dev);
782 static void acpi_set_WOL(struct net_device *dev);
783 static const struct ethtool_ops vortex_ethtool_ops;
784 static void set_8021q_mode(struct net_device *dev, int enable);
785 
786 /* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
787 /* Option count limit only -- unlimited interfaces are supported. */
788 #define MAX_UNITS 8
789 static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 };
790 static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
791 static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
792 static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
793 static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
794 static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
795 static int global_options = -1;
796 static int global_full_duplex = -1;
797 static int global_enable_wol = -1;
798 static int global_use_mmio = -1;
799 
800 /* Variables to work-around the Compaq PCI BIOS32 problem. */
801 static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900;
802 static struct net_device *compaq_net_device;
803 
804 static int vortex_cards_found;
805 
806 module_param(debug, int, 0);
807 module_param(global_options, int, 0);
808 module_param_array(options, int, NULL, 0);
809 module_param(global_full_duplex, int, 0);
810 module_param_array(full_duplex, int, NULL, 0);
811 module_param_array(hw_checksums, int, NULL, 0);
812 module_param_array(flow_ctrl, int, NULL, 0);
813 module_param(global_enable_wol, int, 0);
814 module_param_array(enable_wol, int, NULL, 0);
815 module_param(rx_copybreak, int, 0);
816 module_param(max_interrupt_work, int, 0);
817 module_param(compaq_ioaddr, int, 0);
818 module_param(compaq_irq, int, 0);
819 module_param(compaq_device_id, int, 0);
820 module_param(watchdog, int, 0);
821 module_param(global_use_mmio, int, 0);
822 module_param_array(use_mmio, int, NULL, 0);
823 MODULE_PARM_DESC(debug, "3c59x debug level (0-6)");
824 MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex");
825 MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset");
826 MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)");
827 MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset");
828 MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)");
829 MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)");
830 MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)");
831 MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset");
832 MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames");
833 MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt");
834 MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)");
835 MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)");
836 MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)");
837 MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds");
838 MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset");
839 MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)");
840 
841 #ifdef CONFIG_NET_POLL_CONTROLLER
842 static void poll_vortex(struct net_device *dev)
843 {
844 	struct vortex_private *vp = netdev_priv(dev);
845 	unsigned long flags;
846 	local_irq_save(flags);
847 	(vp->full_bus_master_rx ? boomerang_interrupt:vortex_interrupt)(dev->irq,dev);
848 	local_irq_restore(flags);
849 }
850 #endif
851 
852 #ifdef CONFIG_PM
853 
854 static int vortex_suspend(struct device *dev)
855 {
856 	struct pci_dev *pdev = to_pci_dev(dev);
857 	struct net_device *ndev = pci_get_drvdata(pdev);
858 
859 	if (!ndev || !netif_running(ndev))
860 		return 0;
861 
862 	netif_device_detach(ndev);
863 	vortex_down(ndev, 1);
864 
865 	return 0;
866 }
867 
868 static int vortex_resume(struct device *dev)
869 {
870 	struct pci_dev *pdev = to_pci_dev(dev);
871 	struct net_device *ndev = pci_get_drvdata(pdev);
872 	int err;
873 
874 	if (!ndev || !netif_running(ndev))
875 		return 0;
876 
877 	err = vortex_up(ndev);
878 	if (err)
879 		return err;
880 
881 	netif_device_attach(ndev);
882 
883 	return 0;
884 }
885 
886 static const struct dev_pm_ops vortex_pm_ops = {
887 	.suspend = vortex_suspend,
888 	.resume = vortex_resume,
889 	.freeze = vortex_suspend,
890 	.thaw = vortex_resume,
891 	.poweroff = vortex_suspend,
892 	.restore = vortex_resume,
893 };
894 
895 #define VORTEX_PM_OPS (&vortex_pm_ops)
896 
897 #else /* !CONFIG_PM */
898 
899 #define VORTEX_PM_OPS NULL
900 
901 #endif /* !CONFIG_PM */
902 
903 #ifdef CONFIG_EISA
904 static struct eisa_device_id vortex_eisa_ids[] = {
905 	{ "TCM5920", CH_3C592 },
906 	{ "TCM5970", CH_3C597 },
907 	{ "" }
908 };
909 MODULE_DEVICE_TABLE(eisa, vortex_eisa_ids);
910 
911 static int __init vortex_eisa_probe(struct device *device)
912 {
913 	void __iomem *ioaddr;
914 	struct eisa_device *edev;
915 
916 	edev = to_eisa_device(device);
917 
918 	if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME))
919 		return -EBUSY;
920 
921 	ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE);
922 
923 	if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12,
924 					  edev->id.driver_data, vortex_cards_found)) {
925 		release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
926 		return -ENODEV;
927 	}
928 
929 	vortex_cards_found++;
930 
931 	return 0;
932 }
933 
934 static int vortex_eisa_remove(struct device *device)
935 {
936 	struct eisa_device *edev;
937 	struct net_device *dev;
938 	struct vortex_private *vp;
939 	void __iomem *ioaddr;
940 
941 	edev = to_eisa_device(device);
942 	dev = eisa_get_drvdata(edev);
943 
944 	if (!dev) {
945 		pr_err("vortex_eisa_remove called for Compaq device!\n");
946 		BUG();
947 	}
948 
949 	vp = netdev_priv(dev);
950 	ioaddr = vp->ioaddr;
951 
952 	unregister_netdev(dev);
953 	iowrite16(TotalReset|0x14, ioaddr + EL3_CMD);
954 	release_region(dev->base_addr, VORTEX_TOTAL_SIZE);
955 
956 	free_netdev(dev);
957 	return 0;
958 }
959 
960 static struct eisa_driver vortex_eisa_driver = {
961 	.id_table = vortex_eisa_ids,
962 	.driver   = {
963 		.name    = "3c59x",
964 		.probe   = vortex_eisa_probe,
965 		.remove  = vortex_eisa_remove
966 	}
967 };
968 
969 #endif /* CONFIG_EISA */
970 
971 /* returns count found (>= 0), or negative on error */
972 static int __init vortex_eisa_init(void)
973 {
974 	int eisa_found = 0;
975 	int orig_cards_found = vortex_cards_found;
976 
977 #ifdef CONFIG_EISA
978 	int err;
979 
980 	err = eisa_driver_register (&vortex_eisa_driver);
981 	if (!err) {
982 		/*
983 		 * Because of the way EISA bus is probed, we cannot assume
984 		 * any device have been found when we exit from
985 		 * eisa_driver_register (the bus root driver may not be
986 		 * initialized yet). So we blindly assume something was
987 		 * found, and let the sysfs magic happened...
988 		 */
989 		eisa_found = 1;
990 	}
991 #endif
992 
993 	/* Special code to work-around the Compaq PCI BIOS32 problem. */
994 	if (compaq_ioaddr) {
995 		vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE),
996 			      compaq_irq, compaq_device_id, vortex_cards_found++);
997 	}
998 
999 	return vortex_cards_found - orig_cards_found + eisa_found;
1000 }
1001 
1002 /* returns count (>= 0), or negative on error */
1003 static int vortex_init_one(struct pci_dev *pdev,
1004 			   const struct pci_device_id *ent)
1005 {
1006 	int rc, unit, pci_bar;
1007 	struct vortex_chip_info *vci;
1008 	void __iomem *ioaddr;
1009 
1010 	/* wake up and enable device */
1011 	rc = pci_enable_device(pdev);
1012 	if (rc < 0)
1013 		goto out;
1014 
1015 	unit = vortex_cards_found;
1016 
1017 	if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) {
1018 		/* Determine the default if the user didn't override us */
1019 		vci = &vortex_info_tbl[ent->driver_data];
1020 		pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0;
1021 	} else if (unit < MAX_UNITS && use_mmio[unit] >= 0)
1022 		pci_bar = use_mmio[unit] ? 1 : 0;
1023 	else
1024 		pci_bar = global_use_mmio ? 1 : 0;
1025 
1026 	ioaddr = pci_iomap(pdev, pci_bar, 0);
1027 	if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */
1028 		ioaddr = pci_iomap(pdev, 0, 0);
1029 	if (!ioaddr) {
1030 		pci_disable_device(pdev);
1031 		rc = -ENOMEM;
1032 		goto out;
1033 	}
1034 
1035 	rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq,
1036 			   ent->driver_data, unit);
1037 	if (rc < 0) {
1038 		pci_iounmap(pdev, ioaddr);
1039 		pci_disable_device(pdev);
1040 		goto out;
1041 	}
1042 
1043 	vortex_cards_found++;
1044 
1045 out:
1046 	return rc;
1047 }
1048 
1049 static const struct net_device_ops boomrang_netdev_ops = {
1050 	.ndo_open		= vortex_open,
1051 	.ndo_stop		= vortex_close,
1052 	.ndo_start_xmit		= boomerang_start_xmit,
1053 	.ndo_tx_timeout		= vortex_tx_timeout,
1054 	.ndo_get_stats		= vortex_get_stats,
1055 #ifdef CONFIG_PCI
1056 	.ndo_do_ioctl 		= vortex_ioctl,
1057 #endif
1058 	.ndo_set_rx_mode	= set_rx_mode,
1059 	.ndo_change_mtu		= eth_change_mtu,
1060 	.ndo_set_mac_address 	= eth_mac_addr,
1061 	.ndo_validate_addr	= eth_validate_addr,
1062 #ifdef CONFIG_NET_POLL_CONTROLLER
1063 	.ndo_poll_controller	= poll_vortex,
1064 #endif
1065 };
1066 
1067 static const struct net_device_ops vortex_netdev_ops = {
1068 	.ndo_open		= vortex_open,
1069 	.ndo_stop		= vortex_close,
1070 	.ndo_start_xmit		= vortex_start_xmit,
1071 	.ndo_tx_timeout		= vortex_tx_timeout,
1072 	.ndo_get_stats		= vortex_get_stats,
1073 #ifdef CONFIG_PCI
1074 	.ndo_do_ioctl 		= vortex_ioctl,
1075 #endif
1076 	.ndo_set_rx_mode	= set_rx_mode,
1077 	.ndo_change_mtu		= eth_change_mtu,
1078 	.ndo_set_mac_address 	= eth_mac_addr,
1079 	.ndo_validate_addr	= eth_validate_addr,
1080 #ifdef CONFIG_NET_POLL_CONTROLLER
1081 	.ndo_poll_controller	= poll_vortex,
1082 #endif
1083 };
1084 
1085 /*
1086  * Start up the PCI/EISA device which is described by *gendev.
1087  * Return 0 on success.
1088  *
1089  * NOTE: pdev can be NULL, for the case of a Compaq device
1090  */
1091 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
1092 			 int chip_idx, int card_idx)
1093 {
1094 	struct vortex_private *vp;
1095 	int option;
1096 	unsigned int eeprom[0x40], checksum = 0;		/* EEPROM contents */
1097 	int i, step;
1098 	struct net_device *dev;
1099 	static int printed_version;
1100 	int retval, print_info;
1101 	struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx];
1102 	const char *print_name = "3c59x";
1103 	struct pci_dev *pdev = NULL;
1104 	struct eisa_device *edev = NULL;
1105 
1106 	if (!printed_version) {
1107 		pr_info("%s", version);
1108 		printed_version = 1;
1109 	}
1110 
1111 	if (gendev) {
1112 		if ((pdev = DEVICE_PCI(gendev))) {
1113 			print_name = pci_name(pdev);
1114 		}
1115 
1116 		if ((edev = DEVICE_EISA(gendev))) {
1117 			print_name = dev_name(&edev->dev);
1118 		}
1119 	}
1120 
1121 	dev = alloc_etherdev(sizeof(*vp));
1122 	retval = -ENOMEM;
1123 	if (!dev)
1124 		goto out;
1125 
1126 	SET_NETDEV_DEV(dev, gendev);
1127 	vp = netdev_priv(dev);
1128 
1129 	option = global_options;
1130 
1131 	/* The lower four bits are the media type. */
1132 	if (dev->mem_start) {
1133 		/*
1134 		 * The 'options' param is passed in as the third arg to the
1135 		 * LILO 'ether=' argument for non-modular use
1136 		 */
1137 		option = dev->mem_start;
1138 	}
1139 	else if (card_idx < MAX_UNITS) {
1140 		if (options[card_idx] >= 0)
1141 			option = options[card_idx];
1142 	}
1143 
1144 	if (option > 0) {
1145 		if (option & 0x8000)
1146 			vortex_debug = 7;
1147 		if (option & 0x4000)
1148 			vortex_debug = 2;
1149 		if (option & 0x0400)
1150 			vp->enable_wol = 1;
1151 	}
1152 
1153 	print_info = (vortex_debug > 1);
1154 	if (print_info)
1155 		pr_info("See Documentation/networking/vortex.txt\n");
1156 
1157 	pr_info("%s: 3Com %s %s at %p.\n",
1158 	       print_name,
1159 	       pdev ? "PCI" : "EISA",
1160 	       vci->name,
1161 	       ioaddr);
1162 
1163 	dev->base_addr = (unsigned long)ioaddr;
1164 	dev->irq = irq;
1165 	dev->mtu = mtu;
1166 	vp->ioaddr = ioaddr;
1167 	vp->large_frames = mtu > 1500;
1168 	vp->drv_flags = vci->drv_flags;
1169 	vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0;
1170 	vp->io_size = vci->io_size;
1171 	vp->card_idx = card_idx;
1172 	vp->window = -1;
1173 
1174 	/* module list only for Compaq device */
1175 	if (gendev == NULL) {
1176 		compaq_net_device = dev;
1177 	}
1178 
1179 	/* PCI-only startup logic */
1180 	if (pdev) {
1181 		/* EISA resources already marked, so only PCI needs to do this here */
1182 		/* Ignore return value, because Cardbus drivers already allocate for us */
1183 		if (request_region(dev->base_addr, vci->io_size, print_name) != NULL)
1184 			vp->must_free_region = 1;
1185 
1186 		/* enable bus-mastering if necessary */
1187 		if (vci->flags & PCI_USES_MASTER)
1188 			pci_set_master(pdev);
1189 
1190 		if (vci->drv_flags & IS_VORTEX) {
1191 			u8 pci_latency;
1192 			u8 new_latency = 248;
1193 
1194 			/* Check the PCI latency value.  On the 3c590 series the latency timer
1195 			   must be set to the maximum value to avoid data corruption that occurs
1196 			   when the timer expires during a transfer.  This bug exists the Vortex
1197 			   chip only. */
1198 			pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
1199 			if (pci_latency < new_latency) {
1200 				pr_info("%s: Overriding PCI latency timer (CFLT) setting of %d, new value is %d.\n",
1201 					print_name, pci_latency, new_latency);
1202 				pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency);
1203 			}
1204 		}
1205 	}
1206 
1207 	spin_lock_init(&vp->lock);
1208 	spin_lock_init(&vp->mii_lock);
1209 	spin_lock_init(&vp->window_lock);
1210 	vp->gendev = gendev;
1211 	vp->mii.dev = dev;
1212 	vp->mii.mdio_read = mdio_read;
1213 	vp->mii.mdio_write = mdio_write;
1214 	vp->mii.phy_id_mask = 0x1f;
1215 	vp->mii.reg_num_mask = 0x1f;
1216 
1217 	/* Makes sure rings are at least 16 byte aligned. */
1218 	vp->rx_ring = pci_alloc_consistent(pdev, sizeof(struct boom_rx_desc) * RX_RING_SIZE
1219 					   + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1220 					   &vp->rx_ring_dma);
1221 	retval = -ENOMEM;
1222 	if (!vp->rx_ring)
1223 		goto free_region;
1224 
1225 	vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE);
1226 	vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE;
1227 
1228 	/* if we are a PCI driver, we store info in pdev->driver_data
1229 	 * instead of a module list */
1230 	if (pdev)
1231 		pci_set_drvdata(pdev, dev);
1232 	if (edev)
1233 		eisa_set_drvdata(edev, dev);
1234 
1235 	vp->media_override = 7;
1236 	if (option >= 0) {
1237 		vp->media_override = ((option & 7) == 2)  ?  0  :  option & 15;
1238 		if (vp->media_override != 7)
1239 			vp->medialock = 1;
1240 		vp->full_duplex = (option & 0x200) ? 1 : 0;
1241 		vp->bus_master = (option & 16) ? 1 : 0;
1242 	}
1243 
1244 	if (global_full_duplex > 0)
1245 		vp->full_duplex = 1;
1246 	if (global_enable_wol > 0)
1247 		vp->enable_wol = 1;
1248 
1249 	if (card_idx < MAX_UNITS) {
1250 		if (full_duplex[card_idx] > 0)
1251 			vp->full_duplex = 1;
1252 		if (flow_ctrl[card_idx] > 0)
1253 			vp->flow_ctrl = 1;
1254 		if (enable_wol[card_idx] > 0)
1255 			vp->enable_wol = 1;
1256 	}
1257 
1258 	vp->mii.force_media = vp->full_duplex;
1259 	vp->options = option;
1260 	/* Read the station address from the EEPROM. */
1261 	{
1262 		int base;
1263 
1264 		if (vci->drv_flags & EEPROM_8BIT)
1265 			base = 0x230;
1266 		else if (vci->drv_flags & EEPROM_OFFSET)
1267 			base = EEPROM_Read + 0x30;
1268 		else
1269 			base = EEPROM_Read;
1270 
1271 		for (i = 0; i < 0x40; i++) {
1272 			int timer;
1273 			window_write16(vp, base + i, 0, Wn0EepromCmd);
1274 			/* Pause for at least 162 us. for the read to take place. */
1275 			for (timer = 10; timer >= 0; timer--) {
1276 				udelay(162);
1277 				if ((window_read16(vp, 0, Wn0EepromCmd) &
1278 				     0x8000) == 0)
1279 					break;
1280 			}
1281 			eeprom[i] = window_read16(vp, 0, Wn0EepromData);
1282 		}
1283 	}
1284 	for (i = 0; i < 0x18; i++)
1285 		checksum ^= eeprom[i];
1286 	checksum = (checksum ^ (checksum >> 8)) & 0xff;
1287 	if (checksum != 0x00) {		/* Grrr, needless incompatible change 3Com. */
1288 		while (i < 0x21)
1289 			checksum ^= eeprom[i++];
1290 		checksum = (checksum ^ (checksum >> 8)) & 0xff;
1291 	}
1292 	if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO))
1293 		pr_cont(" ***INVALID CHECKSUM %4.4x*** ", checksum);
1294 	for (i = 0; i < 3; i++)
1295 		((__be16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]);
1296 	if (print_info)
1297 		pr_cont(" %pM", dev->dev_addr);
1298 	/* Unfortunately an all zero eeprom passes the checksum and this
1299 	   gets found in the wild in failure cases. Crypto is hard 8) */
1300 	if (!is_valid_ether_addr(dev->dev_addr)) {
1301 		retval = -EINVAL;
1302 		pr_err("*** EEPROM MAC address is invalid.\n");
1303 		goto free_ring;	/* With every pack */
1304 	}
1305 	for (i = 0; i < 6; i++)
1306 		window_write8(vp, dev->dev_addr[i], 2, i);
1307 
1308 	if (print_info)
1309 		pr_cont(", IRQ %d\n", dev->irq);
1310 	/* Tell them about an invalid IRQ. */
1311 	if (dev->irq <= 0 || dev->irq >= nr_irqs)
1312 		pr_warning(" *** Warning: IRQ %d is unlikely to work! ***\n",
1313 			   dev->irq);
1314 
1315 	step = (window_read8(vp, 4, Wn4_NetDiag) & 0x1e) >> 1;
1316 	if (print_info) {
1317 		pr_info("  product code %02x%02x rev %02x.%d date %02d-%02d-%02d\n",
1318 			eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14],
1319 			step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9);
1320 	}
1321 
1322 
1323 	if (pdev && vci->drv_flags & HAS_CB_FNS) {
1324 		unsigned short n;
1325 
1326 		vp->cb_fn_base = pci_iomap(pdev, 2, 0);
1327 		if (!vp->cb_fn_base) {
1328 			retval = -ENOMEM;
1329 			goto free_ring;
1330 		}
1331 
1332 		if (print_info) {
1333 			pr_info("%s: CardBus functions mapped %16.16llx->%p\n",
1334 				print_name,
1335 				(unsigned long long)pci_resource_start(pdev, 2),
1336 				vp->cb_fn_base);
1337 		}
1338 
1339 		n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1340 		if (vp->drv_flags & INVERT_LED_PWR)
1341 			n |= 0x10;
1342 		if (vp->drv_flags & INVERT_MII_PWR)
1343 			n |= 0x4000;
1344 		window_write16(vp, n, 2, Wn2_ResetOptions);
1345 		if (vp->drv_flags & WNO_XCVR_PWR) {
1346 			window_write16(vp, 0x0800, 0, 0);
1347 		}
1348 	}
1349 
1350 	/* Extract our information from the EEPROM data. */
1351 	vp->info1 = eeprom[13];
1352 	vp->info2 = eeprom[15];
1353 	vp->capabilities = eeprom[16];
1354 
1355 	if (vp->info1 & 0x8000) {
1356 		vp->full_duplex = 1;
1357 		if (print_info)
1358 			pr_info("Full duplex capable\n");
1359 	}
1360 
1361 	{
1362 		static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"};
1363 		unsigned int config;
1364 		vp->available_media = window_read16(vp, 3, Wn3_Options);
1365 		if ((vp->available_media & 0xff) == 0)		/* Broken 3c916 */
1366 			vp->available_media = 0x40;
1367 		config = window_read32(vp, 3, Wn3_Config);
1368 		if (print_info) {
1369 			pr_debug("  Internal config register is %4.4x, transceivers %#x.\n",
1370 				config, window_read16(vp, 3, Wn3_Options));
1371 			pr_info("  %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
1372 				   8 << RAM_SIZE(config),
1373 				   RAM_WIDTH(config) ? "word" : "byte",
1374 				   ram_split[RAM_SPLIT(config)],
1375 				   AUTOSELECT(config) ? "autoselect/" : "",
1376 				   XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" :
1377 				   media_tbl[XCVR(config)].name);
1378 		}
1379 		vp->default_media = XCVR(config);
1380 		if (vp->default_media == XCVR_NWAY)
1381 			vp->has_nway = 1;
1382 		vp->autoselect = AUTOSELECT(config);
1383 	}
1384 
1385 	if (vp->media_override != 7) {
1386 		pr_info("%s:  Media override to transceiver type %d (%s).\n",
1387 				print_name, vp->media_override,
1388 				media_tbl[vp->media_override].name);
1389 		dev->if_port = vp->media_override;
1390 	} else
1391 		dev->if_port = vp->default_media;
1392 
1393 	if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) ||
1394 		dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1395 		int phy, phy_idx = 0;
1396 		mii_preamble_required++;
1397 		if (vp->drv_flags & EXTRA_PREAMBLE)
1398 			mii_preamble_required++;
1399 		mdio_sync(vp, 32);
1400 		mdio_read(dev, 24, MII_BMSR);
1401 		for (phy = 0; phy < 32 && phy_idx < 1; phy++) {
1402 			int mii_status, phyx;
1403 
1404 			/*
1405 			 * For the 3c905CX we look at index 24 first, because it bogusly
1406 			 * reports an external PHY at all indices
1407 			 */
1408 			if (phy == 0)
1409 				phyx = 24;
1410 			else if (phy <= 24)
1411 				phyx = phy - 1;
1412 			else
1413 				phyx = phy;
1414 			mii_status = mdio_read(dev, phyx, MII_BMSR);
1415 			if (mii_status  &&  mii_status != 0xffff) {
1416 				vp->phys[phy_idx++] = phyx;
1417 				if (print_info) {
1418 					pr_info("  MII transceiver found at address %d, status %4x.\n",
1419 						phyx, mii_status);
1420 				}
1421 				if ((mii_status & 0x0040) == 0)
1422 					mii_preamble_required++;
1423 			}
1424 		}
1425 		mii_preamble_required--;
1426 		if (phy_idx == 0) {
1427 			pr_warning("  ***WARNING*** No MII transceivers found!\n");
1428 			vp->phys[0] = 24;
1429 		} else {
1430 			vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE);
1431 			if (vp->full_duplex) {
1432 				/* Only advertise the FD media types. */
1433 				vp->advertising &= ~0x02A0;
1434 				mdio_write(dev, vp->phys[0], 4, vp->advertising);
1435 			}
1436 		}
1437 		vp->mii.phy_id = vp->phys[0];
1438 	}
1439 
1440 	if (vp->capabilities & CapBusMaster) {
1441 		vp->full_bus_master_tx = 1;
1442 		if (print_info) {
1443 			pr_info("  Enabling bus-master transmits and %s receives.\n",
1444 			(vp->info2 & 1) ? "early" : "whole-frame" );
1445 		}
1446 		vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2;
1447 		vp->bus_master = 0;		/* AKPM: vortex only */
1448 	}
1449 
1450 	/* The 3c59x-specific entries in the device structure. */
1451 	if (vp->full_bus_master_tx) {
1452 		dev->netdev_ops = &boomrang_netdev_ops;
1453 		/* Actually, it still should work with iommu. */
1454 		if (card_idx < MAX_UNITS &&
1455 		    ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) ||
1456 				hw_checksums[card_idx] == 1)) {
1457 			dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1458 		}
1459 	} else
1460 		dev->netdev_ops =  &vortex_netdev_ops;
1461 
1462 	if (print_info) {
1463 		pr_info("%s: scatter/gather %sabled. h/w checksums %sabled\n",
1464 				print_name,
1465 				(dev->features & NETIF_F_SG) ? "en":"dis",
1466 				(dev->features & NETIF_F_IP_CSUM) ? "en":"dis");
1467 	}
1468 
1469 	dev->ethtool_ops = &vortex_ethtool_ops;
1470 	dev->watchdog_timeo = (watchdog * HZ) / 1000;
1471 
1472 	if (pdev) {
1473 		vp->pm_state_valid = 1;
1474  		pci_save_state(VORTEX_PCI(vp));
1475  		acpi_set_WOL(dev);
1476 	}
1477 	retval = register_netdev(dev);
1478 	if (retval == 0)
1479 		return 0;
1480 
1481 free_ring:
1482 	pci_free_consistent(pdev,
1483 						sizeof(struct boom_rx_desc) * RX_RING_SIZE
1484 							+ sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1485 						vp->rx_ring,
1486 						vp->rx_ring_dma);
1487 free_region:
1488 	if (vp->must_free_region)
1489 		release_region(dev->base_addr, vci->io_size);
1490 	free_netdev(dev);
1491 	pr_err(PFX "vortex_probe1 fails.  Returns %d\n", retval);
1492 out:
1493 	return retval;
1494 }
1495 
1496 static void
1497 issue_and_wait(struct net_device *dev, int cmd)
1498 {
1499 	struct vortex_private *vp = netdev_priv(dev);
1500 	void __iomem *ioaddr = vp->ioaddr;
1501 	int i;
1502 
1503 	iowrite16(cmd, ioaddr + EL3_CMD);
1504 	for (i = 0; i < 2000; i++) {
1505 		if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
1506 			return;
1507 	}
1508 
1509 	/* OK, that didn't work.  Do it the slow way.  One second */
1510 	for (i = 0; i < 100000; i++) {
1511 		if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) {
1512 			if (vortex_debug > 1)
1513 				pr_info("%s: command 0x%04x took %d usecs\n",
1514 					   dev->name, cmd, i * 10);
1515 			return;
1516 		}
1517 		udelay(10);
1518 	}
1519 	pr_err("%s: command 0x%04x did not complete! Status=0x%x\n",
1520 			   dev->name, cmd, ioread16(ioaddr + EL3_STATUS));
1521 }
1522 
1523 static void
1524 vortex_set_duplex(struct net_device *dev)
1525 {
1526 	struct vortex_private *vp = netdev_priv(dev);
1527 
1528 	pr_info("%s:  setting %s-duplex.\n",
1529 		dev->name, (vp->full_duplex) ? "full" : "half");
1530 
1531 	/* Set the full-duplex bit. */
1532 	window_write16(vp,
1533 		       ((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) |
1534 		       (vp->large_frames ? 0x40 : 0) |
1535 		       ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ?
1536 			0x100 : 0),
1537 		       3, Wn3_MAC_Ctrl);
1538 }
1539 
1540 static void vortex_check_media(struct net_device *dev, unsigned int init)
1541 {
1542 	struct vortex_private *vp = netdev_priv(dev);
1543 	unsigned int ok_to_print = 0;
1544 
1545 	if (vortex_debug > 3)
1546 		ok_to_print = 1;
1547 
1548 	if (mii_check_media(&vp->mii, ok_to_print, init)) {
1549 		vp->full_duplex = vp->mii.full_duplex;
1550 		vortex_set_duplex(dev);
1551 	} else if (init) {
1552 		vortex_set_duplex(dev);
1553 	}
1554 }
1555 
1556 static int
1557 vortex_up(struct net_device *dev)
1558 {
1559 	struct vortex_private *vp = netdev_priv(dev);
1560 	void __iomem *ioaddr = vp->ioaddr;
1561 	unsigned int config;
1562 	int i, mii_reg1, mii_reg5, err = 0;
1563 
1564 	if (VORTEX_PCI(vp)) {
1565 		pci_set_power_state(VORTEX_PCI(vp), PCI_D0);	/* Go active */
1566 		if (vp->pm_state_valid)
1567 			pci_restore_state(VORTEX_PCI(vp));
1568 		err = pci_enable_device(VORTEX_PCI(vp));
1569 		if (err) {
1570 			pr_warning("%s: Could not enable device\n",
1571 				dev->name);
1572 			goto err_out;
1573 		}
1574 	}
1575 
1576 	/* Before initializing select the active media port. */
1577 	config = window_read32(vp, 3, Wn3_Config);
1578 
1579 	if (vp->media_override != 7) {
1580 		pr_info("%s: Media override to transceiver %d (%s).\n",
1581 			   dev->name, vp->media_override,
1582 			   media_tbl[vp->media_override].name);
1583 		dev->if_port = vp->media_override;
1584 	} else if (vp->autoselect) {
1585 		if (vp->has_nway) {
1586 			if (vortex_debug > 1)
1587 				pr_info("%s: using NWAY device table, not %d\n",
1588 								dev->name, dev->if_port);
1589 			dev->if_port = XCVR_NWAY;
1590 		} else {
1591 			/* Find first available media type, starting with 100baseTx. */
1592 			dev->if_port = XCVR_100baseTx;
1593 			while (! (vp->available_media & media_tbl[dev->if_port].mask))
1594 				dev->if_port = media_tbl[dev->if_port].next;
1595 			if (vortex_debug > 1)
1596 				pr_info("%s: first available media type: %s\n",
1597 					dev->name, media_tbl[dev->if_port].name);
1598 		}
1599 	} else {
1600 		dev->if_port = vp->default_media;
1601 		if (vortex_debug > 1)
1602 			pr_info("%s: using default media %s\n",
1603 				dev->name, media_tbl[dev->if_port].name);
1604 	}
1605 
1606 	init_timer(&vp->timer);
1607 	vp->timer.expires = RUN_AT(media_tbl[dev->if_port].wait);
1608 	vp->timer.data = (unsigned long)dev;
1609 	vp->timer.function = vortex_timer;		/* timer handler */
1610 	add_timer(&vp->timer);
1611 
1612 	init_timer(&vp->rx_oom_timer);
1613 	vp->rx_oom_timer.data = (unsigned long)dev;
1614 	vp->rx_oom_timer.function = rx_oom_timer;
1615 
1616 	if (vortex_debug > 1)
1617 		pr_debug("%s: Initial media type %s.\n",
1618 			   dev->name, media_tbl[dev->if_port].name);
1619 
1620 	vp->full_duplex = vp->mii.force_media;
1621 	config = BFINS(config, dev->if_port, 20, 4);
1622 	if (vortex_debug > 6)
1623 		pr_debug("vortex_up(): writing 0x%x to InternalConfig\n", config);
1624 	window_write32(vp, config, 3, Wn3_Config);
1625 
1626 	if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1627 		mii_reg1 = mdio_read(dev, vp->phys[0], MII_BMSR);
1628 		mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA);
1629 		vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0);
1630 		vp->mii.full_duplex = vp->full_duplex;
1631 
1632 		vortex_check_media(dev, 1);
1633 	}
1634 	else
1635 		vortex_set_duplex(dev);
1636 
1637 	issue_and_wait(dev, TxReset);
1638 	/*
1639 	 * Don't reset the PHY - that upsets autonegotiation during DHCP operations.
1640 	 */
1641 	issue_and_wait(dev, RxReset|0x04);
1642 
1643 
1644 	iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
1645 
1646 	if (vortex_debug > 1) {
1647 		pr_debug("%s: vortex_up() irq %d media status %4.4x.\n",
1648 			   dev->name, dev->irq, window_read16(vp, 4, Wn4_Media));
1649 	}
1650 
1651 	/* Set the station address and mask in window 2 each time opened. */
1652 	for (i = 0; i < 6; i++)
1653 		window_write8(vp, dev->dev_addr[i], 2, i);
1654 	for (; i < 12; i+=2)
1655 		window_write16(vp, 0, 2, i);
1656 
1657 	if (vp->cb_fn_base) {
1658 		unsigned short n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1659 		if (vp->drv_flags & INVERT_LED_PWR)
1660 			n |= 0x10;
1661 		if (vp->drv_flags & INVERT_MII_PWR)
1662 			n |= 0x4000;
1663 		window_write16(vp, n, 2, Wn2_ResetOptions);
1664 	}
1665 
1666 	if (dev->if_port == XCVR_10base2)
1667 		/* Start the thinnet transceiver. We should really wait 50ms...*/
1668 		iowrite16(StartCoax, ioaddr + EL3_CMD);
1669 	if (dev->if_port != XCVR_NWAY) {
1670 		window_write16(vp,
1671 			       (window_read16(vp, 4, Wn4_Media) &
1672 				~(Media_10TP|Media_SQE)) |
1673 			       media_tbl[dev->if_port].media_bits,
1674 			       4, Wn4_Media);
1675 	}
1676 
1677 	/* Switch to the stats window, and clear all stats by reading. */
1678 	iowrite16(StatsDisable, ioaddr + EL3_CMD);
1679 	for (i = 0; i < 10; i++)
1680 		window_read8(vp, 6, i);
1681 	window_read16(vp, 6, 10);
1682 	window_read16(vp, 6, 12);
1683 	/* New: On the Vortex we must also clear the BadSSD counter. */
1684 	window_read8(vp, 4, 12);
1685 	/* ..and on the Boomerang we enable the extra statistics bits. */
1686 	window_write16(vp, 0x0040, 4, Wn4_NetDiag);
1687 
1688 	if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1689 		vp->cur_rx = vp->dirty_rx = 0;
1690 		/* Initialize the RxEarly register as recommended. */
1691 		iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD);
1692 		iowrite32(0x0020, ioaddr + PktStatus);
1693 		iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr);
1694 	}
1695 	if (vp->full_bus_master_tx) { 		/* Boomerang bus master Tx. */
1696 		vp->cur_tx = vp->dirty_tx = 0;
1697 		if (vp->drv_flags & IS_BOOMERANG)
1698 			iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */
1699 		/* Clear the Rx, Tx rings. */
1700 		for (i = 0; i < RX_RING_SIZE; i++)	/* AKPM: this is done in vortex_open, too */
1701 			vp->rx_ring[i].status = 0;
1702 		for (i = 0; i < TX_RING_SIZE; i++)
1703 			vp->tx_skbuff[i] = NULL;
1704 		iowrite32(0, ioaddr + DownListPtr);
1705 	}
1706 	/* Set receiver mode: presumably accept b-case and phys addr only. */
1707 	set_rx_mode(dev);
1708 	/* enable 802.1q tagged frames */
1709 	set_8021q_mode(dev, 1);
1710 	iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
1711 
1712 	iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
1713 	iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
1714 	/* Allow status bits to be seen. */
1715 	vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete|
1716 		(vp->full_bus_master_tx ? DownComplete : TxAvailable) |
1717 		(vp->full_bus_master_rx ? UpComplete : RxComplete) |
1718 		(vp->bus_master ? DMADone : 0);
1719 	vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable |
1720 		(vp->full_bus_master_rx ? 0 : RxComplete) |
1721 		StatsFull | HostError | TxComplete | IntReq
1722 		| (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete;
1723 	iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1724 	/* Ack all pending events, and set active indicator mask. */
1725 	iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
1726 		 ioaddr + EL3_CMD);
1727 	iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1728 	if (vp->cb_fn_base)			/* The PCMCIA people are idiots.  */
1729 		iowrite32(0x8000, vp->cb_fn_base + 4);
1730 	netif_start_queue (dev);
1731 err_out:
1732 	return err;
1733 }
1734 
1735 static int
1736 vortex_open(struct net_device *dev)
1737 {
1738 	struct vortex_private *vp = netdev_priv(dev);
1739 	int i;
1740 	int retval;
1741 
1742 	/* Use the now-standard shared IRQ implementation. */
1743 	if ((retval = request_irq(dev->irq, vp->full_bus_master_rx ?
1744 				boomerang_interrupt : vortex_interrupt, IRQF_SHARED, dev->name, dev))) {
1745 		pr_err("%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1746 		goto err;
1747 	}
1748 
1749 	if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1750 		if (vortex_debug > 2)
1751 			pr_debug("%s:  Filling in the Rx ring.\n", dev->name);
1752 		for (i = 0; i < RX_RING_SIZE; i++) {
1753 			struct sk_buff *skb;
1754 			vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1));
1755 			vp->rx_ring[i].status = 0;	/* Clear complete bit. */
1756 			vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG);
1757 
1758 			skb = __netdev_alloc_skb(dev, PKT_BUF_SZ + NET_IP_ALIGN,
1759 						 GFP_KERNEL);
1760 			vp->rx_skbuff[i] = skb;
1761 			if (skb == NULL)
1762 				break;			/* Bad news!  */
1763 
1764 			skb_reserve(skb, NET_IP_ALIGN);	/* Align IP on 16 byte boundaries */
1765 			vp->rx_ring[i].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
1766 		}
1767 		if (i != RX_RING_SIZE) {
1768 			int j;
1769 			pr_emerg("%s: no memory for rx ring\n", dev->name);
1770 			for (j = 0; j < i; j++) {
1771 				if (vp->rx_skbuff[j]) {
1772 					dev_kfree_skb(vp->rx_skbuff[j]);
1773 					vp->rx_skbuff[j] = NULL;
1774 				}
1775 			}
1776 			retval = -ENOMEM;
1777 			goto err_free_irq;
1778 		}
1779 		/* Wrap the ring. */
1780 		vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma);
1781 	}
1782 
1783 	retval = vortex_up(dev);
1784 	if (!retval)
1785 		goto out;
1786 
1787 err_free_irq:
1788 	free_irq(dev->irq, dev);
1789 err:
1790 	if (vortex_debug > 1)
1791 		pr_err("%s: vortex_open() fails: returning %d\n", dev->name, retval);
1792 out:
1793 	return retval;
1794 }
1795 
1796 static void
1797 vortex_timer(unsigned long data)
1798 {
1799 	struct net_device *dev = (struct net_device *)data;
1800 	struct vortex_private *vp = netdev_priv(dev);
1801 	void __iomem *ioaddr = vp->ioaddr;
1802 	int next_tick = 60*HZ;
1803 	int ok = 0;
1804 	int media_status;
1805 
1806 	if (vortex_debug > 2) {
1807 		pr_debug("%s: Media selection timer tick happened, %s.\n",
1808 			   dev->name, media_tbl[dev->if_port].name);
1809 		pr_debug("dev->watchdog_timeo=%d\n", dev->watchdog_timeo);
1810 	}
1811 
1812 	media_status = window_read16(vp, 4, Wn4_Media);
1813 	switch (dev->if_port) {
1814 	case XCVR_10baseT:  case XCVR_100baseTx:  case XCVR_100baseFx:
1815 		if (media_status & Media_LnkBeat) {
1816 			netif_carrier_on(dev);
1817 			ok = 1;
1818 			if (vortex_debug > 1)
1819 				pr_debug("%s: Media %s has link beat, %x.\n",
1820 					   dev->name, media_tbl[dev->if_port].name, media_status);
1821 		} else {
1822 			netif_carrier_off(dev);
1823 			if (vortex_debug > 1) {
1824 				pr_debug("%s: Media %s has no link beat, %x.\n",
1825 					   dev->name, media_tbl[dev->if_port].name, media_status);
1826 			}
1827 		}
1828 		break;
1829 	case XCVR_MII: case XCVR_NWAY:
1830 		{
1831 			ok = 1;
1832 			vortex_check_media(dev, 0);
1833 		}
1834 		break;
1835 	  default:					/* Other media types handled by Tx timeouts. */
1836 		if (vortex_debug > 1)
1837 		  pr_debug("%s: Media %s has no indication, %x.\n",
1838 				 dev->name, media_tbl[dev->if_port].name, media_status);
1839 		ok = 1;
1840 	}
1841 
1842 	if (dev->flags & IFF_SLAVE || !netif_carrier_ok(dev))
1843 		next_tick = 5*HZ;
1844 
1845 	if (vp->medialock)
1846 		goto leave_media_alone;
1847 
1848 	if (!ok) {
1849 		unsigned int config;
1850 
1851 		spin_lock_irq(&vp->lock);
1852 
1853 		do {
1854 			dev->if_port = media_tbl[dev->if_port].next;
1855 		} while ( ! (vp->available_media & media_tbl[dev->if_port].mask));
1856 		if (dev->if_port == XCVR_Default) { /* Go back to default. */
1857 		  dev->if_port = vp->default_media;
1858 		  if (vortex_debug > 1)
1859 			pr_debug("%s: Media selection failing, using default %s port.\n",
1860 				   dev->name, media_tbl[dev->if_port].name);
1861 		} else {
1862 			if (vortex_debug > 1)
1863 				pr_debug("%s: Media selection failed, now trying %s port.\n",
1864 					   dev->name, media_tbl[dev->if_port].name);
1865 			next_tick = media_tbl[dev->if_port].wait;
1866 		}
1867 		window_write16(vp,
1868 			       (media_status & ~(Media_10TP|Media_SQE)) |
1869 			       media_tbl[dev->if_port].media_bits,
1870 			       4, Wn4_Media);
1871 
1872 		config = window_read32(vp, 3, Wn3_Config);
1873 		config = BFINS(config, dev->if_port, 20, 4);
1874 		window_write32(vp, config, 3, Wn3_Config);
1875 
1876 		iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax,
1877 			 ioaddr + EL3_CMD);
1878 		if (vortex_debug > 1)
1879 			pr_debug("wrote 0x%08x to Wn3_Config\n", config);
1880 		/* AKPM: FIXME: Should reset Rx & Tx here.  P60 of 3c90xc.pdf */
1881 
1882 		spin_unlock_irq(&vp->lock);
1883 	}
1884 
1885 leave_media_alone:
1886 	if (vortex_debug > 2)
1887 	  pr_debug("%s: Media selection timer finished, %s.\n",
1888 			 dev->name, media_tbl[dev->if_port].name);
1889 
1890 	mod_timer(&vp->timer, RUN_AT(next_tick));
1891 	if (vp->deferred)
1892 		iowrite16(FakeIntr, ioaddr + EL3_CMD);
1893 }
1894 
1895 static void vortex_tx_timeout(struct net_device *dev)
1896 {
1897 	struct vortex_private *vp = netdev_priv(dev);
1898 	void __iomem *ioaddr = vp->ioaddr;
1899 
1900 	pr_err("%s: transmit timed out, tx_status %2.2x status %4.4x.\n",
1901 		   dev->name, ioread8(ioaddr + TxStatus),
1902 		   ioread16(ioaddr + EL3_STATUS));
1903 	pr_err("  diagnostics: net %04x media %04x dma %08x fifo %04x\n",
1904 			window_read16(vp, 4, Wn4_NetDiag),
1905 			window_read16(vp, 4, Wn4_Media),
1906 			ioread32(ioaddr + PktStatus),
1907 			window_read16(vp, 4, Wn4_FIFODiag));
1908 	/* Slight code bloat to be user friendly. */
1909 	if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88)
1910 		pr_err("%s: Transmitter encountered 16 collisions --"
1911 			   " network cable problem?\n", dev->name);
1912 	if (ioread16(ioaddr + EL3_STATUS) & IntLatch) {
1913 		pr_err("%s: Interrupt posted but not delivered --"
1914 			   " IRQ blocked by another device?\n", dev->name);
1915 		/* Bad idea here.. but we might as well handle a few events. */
1916 		{
1917 			/*
1918 			 * Block interrupts because vortex_interrupt does a bare spin_lock()
1919 			 */
1920 			unsigned long flags;
1921 			local_irq_save(flags);
1922 			if (vp->full_bus_master_tx)
1923 				boomerang_interrupt(dev->irq, dev);
1924 			else
1925 				vortex_interrupt(dev->irq, dev);
1926 			local_irq_restore(flags);
1927 		}
1928 	}
1929 
1930 	if (vortex_debug > 0)
1931 		dump_tx_ring(dev);
1932 
1933 	issue_and_wait(dev, TxReset);
1934 
1935 	dev->stats.tx_errors++;
1936 	if (vp->full_bus_master_tx) {
1937 		pr_debug("%s: Resetting the Tx ring pointer.\n", dev->name);
1938 		if (vp->cur_tx - vp->dirty_tx > 0  &&  ioread32(ioaddr + DownListPtr) == 0)
1939 			iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc),
1940 				 ioaddr + DownListPtr);
1941 		if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE)
1942 			netif_wake_queue (dev);
1943 		if (vp->drv_flags & IS_BOOMERANG)
1944 			iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold);
1945 		iowrite16(DownUnstall, ioaddr + EL3_CMD);
1946 	} else {
1947 		dev->stats.tx_dropped++;
1948 		netif_wake_queue(dev);
1949 	}
1950 
1951 	/* Issue Tx Enable */
1952 	iowrite16(TxEnable, ioaddr + EL3_CMD);
1953 	dev->trans_start = jiffies; /* prevent tx timeout */
1954 }
1955 
1956 /*
1957  * Handle uncommon interrupt sources.  This is a separate routine to minimize
1958  * the cache impact.
1959  */
1960 static void
1961 vortex_error(struct net_device *dev, int status)
1962 {
1963 	struct vortex_private *vp = netdev_priv(dev);
1964 	void __iomem *ioaddr = vp->ioaddr;
1965 	int do_tx_reset = 0, reset_mask = 0;
1966 	unsigned char tx_status = 0;
1967 
1968 	if (vortex_debug > 2) {
1969 		pr_err("%s: vortex_error(), status=0x%x\n", dev->name, status);
1970 	}
1971 
1972 	if (status & TxComplete) {			/* Really "TxError" for us. */
1973 		tx_status = ioread8(ioaddr + TxStatus);
1974 		/* Presumably a tx-timeout. We must merely re-enable. */
1975 		if (vortex_debug > 2 ||
1976 		    (tx_status != 0x88 && vortex_debug > 0)) {
1977 			pr_err("%s: Transmit error, Tx status register %2.2x.\n",
1978 				   dev->name, tx_status);
1979 			if (tx_status == 0x82) {
1980 				pr_err("Probably a duplex mismatch.  See "
1981 						"Documentation/networking/vortex.txt\n");
1982 			}
1983 			dump_tx_ring(dev);
1984 		}
1985 		if (tx_status & 0x14)  dev->stats.tx_fifo_errors++;
1986 		if (tx_status & 0x38)  dev->stats.tx_aborted_errors++;
1987 		if (tx_status & 0x08)  vp->xstats.tx_max_collisions++;
1988 		iowrite8(0, ioaddr + TxStatus);
1989 		if (tx_status & 0x30) {			/* txJabber or txUnderrun */
1990 			do_tx_reset = 1;
1991 		} else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET))  {	/* maxCollisions */
1992 			do_tx_reset = 1;
1993 			reset_mask = 0x0108;		/* Reset interface logic, but not download logic */
1994 		} else {				/* Merely re-enable the transmitter. */
1995 			iowrite16(TxEnable, ioaddr + EL3_CMD);
1996 		}
1997 	}
1998 
1999 	if (status & RxEarly)				/* Rx early is unused. */
2000 		iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD);
2001 
2002 	if (status & StatsFull) {			/* Empty statistics. */
2003 		static int DoneDidThat;
2004 		if (vortex_debug > 4)
2005 			pr_debug("%s: Updating stats.\n", dev->name);
2006 		update_stats(ioaddr, dev);
2007 		/* HACK: Disable statistics as an interrupt source. */
2008 		/* This occurs when we have the wrong media type! */
2009 		if (DoneDidThat == 0  &&
2010 			ioread16(ioaddr + EL3_STATUS) & StatsFull) {
2011 			pr_warning("%s: Updating statistics failed, disabling "
2012 				   "stats as an interrupt source.\n", dev->name);
2013 			iowrite16(SetIntrEnb |
2014 				  (window_read16(vp, 5, 10) & ~StatsFull),
2015 				  ioaddr + EL3_CMD);
2016 			vp->intr_enable &= ~StatsFull;
2017 			DoneDidThat++;
2018 		}
2019 	}
2020 	if (status & IntReq) {		/* Restore all interrupt sources.  */
2021 		iowrite16(vp->status_enable, ioaddr + EL3_CMD);
2022 		iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
2023 	}
2024 	if (status & HostError) {
2025 		u16 fifo_diag;
2026 		fifo_diag = window_read16(vp, 4, Wn4_FIFODiag);
2027 		pr_err("%s: Host error, FIFO diagnostic register %4.4x.\n",
2028 			   dev->name, fifo_diag);
2029 		/* Adapter failure requires Tx/Rx reset and reinit. */
2030 		if (vp->full_bus_master_tx) {
2031 			int bus_status = ioread32(ioaddr + PktStatus);
2032 			/* 0x80000000 PCI master abort. */
2033 			/* 0x40000000 PCI target abort. */
2034 			if (vortex_debug)
2035 				pr_err("%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status);
2036 
2037 			/* In this case, blow the card away */
2038 			/* Must not enter D3 or we can't legally issue the reset! */
2039 			vortex_down(dev, 0);
2040 			issue_and_wait(dev, TotalReset | 0xff);
2041 			vortex_up(dev);		/* AKPM: bug.  vortex_up() assumes that the rx ring is full. It may not be. */
2042 		} else if (fifo_diag & 0x0400)
2043 			do_tx_reset = 1;
2044 		if (fifo_diag & 0x3000) {
2045 			/* Reset Rx fifo and upload logic */
2046 			issue_and_wait(dev, RxReset|0x07);
2047 			/* Set the Rx filter to the current state. */
2048 			set_rx_mode(dev);
2049 			/* enable 802.1q VLAN tagged frames */
2050 			set_8021q_mode(dev, 1);
2051 			iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
2052 			iowrite16(AckIntr | HostError, ioaddr + EL3_CMD);
2053 		}
2054 	}
2055 
2056 	if (do_tx_reset) {
2057 		issue_and_wait(dev, TxReset|reset_mask);
2058 		iowrite16(TxEnable, ioaddr + EL3_CMD);
2059 		if (!vp->full_bus_master_tx)
2060 			netif_wake_queue(dev);
2061 	}
2062 }
2063 
2064 static netdev_tx_t
2065 vortex_start_xmit(struct sk_buff *skb, struct net_device *dev)
2066 {
2067 	struct vortex_private *vp = netdev_priv(dev);
2068 	void __iomem *ioaddr = vp->ioaddr;
2069 
2070 	/* Put out the doubleword header... */
2071 	iowrite32(skb->len, ioaddr + TX_FIFO);
2072 	if (vp->bus_master) {
2073 		/* Set the bus-master controller to transfer the packet. */
2074 		int len = (skb->len + 3) & ~3;
2075 		vp->tx_skb_dma = pci_map_single(VORTEX_PCI(vp), skb->data, len,
2076 						PCI_DMA_TODEVICE);
2077 		spin_lock_irq(&vp->window_lock);
2078 		window_set(vp, 7);
2079 		iowrite32(vp->tx_skb_dma, ioaddr + Wn7_MasterAddr);
2080 		iowrite16(len, ioaddr + Wn7_MasterLen);
2081 		spin_unlock_irq(&vp->window_lock);
2082 		vp->tx_skb = skb;
2083 		iowrite16(StartDMADown, ioaddr + EL3_CMD);
2084 		/* netif_wake_queue() will be called at the DMADone interrupt. */
2085 	} else {
2086 		/* ... and the packet rounded to a doubleword. */
2087 		iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
2088 		dev_kfree_skb (skb);
2089 		if (ioread16(ioaddr + TxFree) > 1536) {
2090 			netif_start_queue (dev);	/* AKPM: redundant? */
2091 		} else {
2092 			/* Interrupt us when the FIFO has room for max-sized packet. */
2093 			netif_stop_queue(dev);
2094 			iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2095 		}
2096 	}
2097 
2098 
2099 	/* Clear the Tx status stack. */
2100 	{
2101 		int tx_status;
2102 		int i = 32;
2103 
2104 		while (--i > 0	&&	(tx_status = ioread8(ioaddr + TxStatus)) > 0) {
2105 			if (tx_status & 0x3C) {		/* A Tx-disabling error occurred.  */
2106 				if (vortex_debug > 2)
2107 				  pr_debug("%s: Tx error, status %2.2x.\n",
2108 						 dev->name, tx_status);
2109 				if (tx_status & 0x04) dev->stats.tx_fifo_errors++;
2110 				if (tx_status & 0x38) dev->stats.tx_aborted_errors++;
2111 				if (tx_status & 0x30) {
2112 					issue_and_wait(dev, TxReset);
2113 				}
2114 				iowrite16(TxEnable, ioaddr + EL3_CMD);
2115 			}
2116 			iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */
2117 		}
2118 	}
2119 	return NETDEV_TX_OK;
2120 }
2121 
2122 static netdev_tx_t
2123 boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev)
2124 {
2125 	struct vortex_private *vp = netdev_priv(dev);
2126 	void __iomem *ioaddr = vp->ioaddr;
2127 	/* Calculate the next Tx descriptor entry. */
2128 	int entry = vp->cur_tx % TX_RING_SIZE;
2129 	struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE];
2130 	unsigned long flags;
2131 
2132 	if (vortex_debug > 6) {
2133 		pr_debug("boomerang_start_xmit()\n");
2134 		pr_debug("%s: Trying to send a packet, Tx index %d.\n",
2135 			   dev->name, vp->cur_tx);
2136 	}
2137 
2138 	/*
2139 	 * We can't allow a recursion from our interrupt handler back into the
2140 	 * tx routine, as they take the same spin lock, and that causes
2141 	 * deadlock.  Just return NETDEV_TX_BUSY and let the stack try again in
2142 	 * a bit
2143 	 */
2144 	if (vp->handling_irq)
2145 		return NETDEV_TX_BUSY;
2146 
2147 	if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) {
2148 		if (vortex_debug > 0)
2149 			pr_warning("%s: BUG! Tx Ring full, refusing to send buffer.\n",
2150 				   dev->name);
2151 		netif_stop_queue(dev);
2152 		return NETDEV_TX_BUSY;
2153 	}
2154 
2155 	vp->tx_skbuff[entry] = skb;
2156 
2157 	vp->tx_ring[entry].next = 0;
2158 #if DO_ZEROCOPY
2159 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2160 			vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2161 	else
2162 			vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum);
2163 
2164 	if (!skb_shinfo(skb)->nr_frags) {
2165 		vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2166 										skb->len, PCI_DMA_TODEVICE));
2167 		vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG);
2168 	} else {
2169 		int i;
2170 
2171 		vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2172 										skb_headlen(skb), PCI_DMA_TODEVICE));
2173 		vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb_headlen(skb));
2174 
2175 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2176 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2177 
2178 			vp->tx_ring[entry].frag[i+1].addr =
2179 					cpu_to_le32(pci_map_single(
2180 						VORTEX_PCI(vp),
2181 						(void *)skb_frag_address(frag),
2182 						skb_frag_size(frag), PCI_DMA_TODEVICE));
2183 
2184 			if (i == skb_shinfo(skb)->nr_frags-1)
2185 					vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag)|LAST_FRAG);
2186 			else
2187 					vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag));
2188 		}
2189 	}
2190 #else
2191 	vp->tx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, skb->len, PCI_DMA_TODEVICE));
2192 	vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG);
2193 	vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2194 #endif
2195 
2196 	spin_lock_irqsave(&vp->lock, flags);
2197 	/* Wait for the stall to complete. */
2198 	issue_and_wait(dev, DownStall);
2199 	prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc));
2200 	if (ioread32(ioaddr + DownListPtr) == 0) {
2201 		iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr);
2202 		vp->queued_packet++;
2203 	}
2204 
2205 	vp->cur_tx++;
2206 	if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) {
2207 		netif_stop_queue (dev);
2208 	} else {					/* Clear previous interrupt enable. */
2209 #if defined(tx_interrupt_mitigation)
2210 		/* Dubious. If in boomeang_interrupt "faster" cyclone ifdef
2211 		 * were selected, this would corrupt DN_COMPLETE. No?
2212 		 */
2213 		prev_entry->status &= cpu_to_le32(~TxIntrUploaded);
2214 #endif
2215 	}
2216 	iowrite16(DownUnstall, ioaddr + EL3_CMD);
2217 	spin_unlock_irqrestore(&vp->lock, flags);
2218 	return NETDEV_TX_OK;
2219 }
2220 
2221 /* The interrupt handler does all of the Rx thread work and cleans up
2222    after the Tx thread. */
2223 
2224 /*
2225  * This is the ISR for the vortex series chips.
2226  * full_bus_master_tx == 0 && full_bus_master_rx == 0
2227  */
2228 
2229 static irqreturn_t
2230 vortex_interrupt(int irq, void *dev_id)
2231 {
2232 	struct net_device *dev = dev_id;
2233 	struct vortex_private *vp = netdev_priv(dev);
2234 	void __iomem *ioaddr;
2235 	int status;
2236 	int work_done = max_interrupt_work;
2237 	int handled = 0;
2238 
2239 	ioaddr = vp->ioaddr;
2240 	spin_lock(&vp->lock);
2241 
2242 	status = ioread16(ioaddr + EL3_STATUS);
2243 
2244 	if (vortex_debug > 6)
2245 		pr_debug("vortex_interrupt(). status=0x%4x\n", status);
2246 
2247 	if ((status & IntLatch) == 0)
2248 		goto handler_exit;		/* No interrupt: shared IRQs cause this */
2249 	handled = 1;
2250 
2251 	if (status & IntReq) {
2252 		status |= vp->deferred;
2253 		vp->deferred = 0;
2254 	}
2255 
2256 	if (status == 0xffff)		/* h/w no longer present (hotplug)? */
2257 		goto handler_exit;
2258 
2259 	if (vortex_debug > 4)
2260 		pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2261 			   dev->name, status, ioread8(ioaddr + Timer));
2262 
2263 	spin_lock(&vp->window_lock);
2264 	window_set(vp, 7);
2265 
2266 	do {
2267 		if (vortex_debug > 5)
2268 				pr_debug("%s: In interrupt loop, status %4.4x.\n",
2269 					   dev->name, status);
2270 		if (status & RxComplete)
2271 			vortex_rx(dev);
2272 
2273 		if (status & TxAvailable) {
2274 			if (vortex_debug > 5)
2275 				pr_debug("	TX room bit was handled.\n");
2276 			/* There's room in the FIFO for a full-sized packet. */
2277 			iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD);
2278 			netif_wake_queue (dev);
2279 		}
2280 
2281 		if (status & DMADone) {
2282 			if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) {
2283 				iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
2284 				pci_unmap_single(VORTEX_PCI(vp), vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, PCI_DMA_TODEVICE);
2285 				dev_kfree_skb_irq(vp->tx_skb); /* Release the transferred buffer */
2286 				if (ioread16(ioaddr + TxFree) > 1536) {
2287 					/*
2288 					 * AKPM: FIXME: I don't think we need this.  If the queue was stopped due to
2289 					 * insufficient FIFO room, the TxAvailable test will succeed and call
2290 					 * netif_wake_queue()
2291 					 */
2292 					netif_wake_queue(dev);
2293 				} else { /* Interrupt when FIFO has room for max-sized packet. */
2294 					iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2295 					netif_stop_queue(dev);
2296 				}
2297 			}
2298 		}
2299 		/* Check for all uncommon interrupts at once. */
2300 		if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) {
2301 			if (status == 0xffff)
2302 				break;
2303 			if (status & RxEarly)
2304 				vortex_rx(dev);
2305 			spin_unlock(&vp->window_lock);
2306 			vortex_error(dev, status);
2307 			spin_lock(&vp->window_lock);
2308 			window_set(vp, 7);
2309 		}
2310 
2311 		if (--work_done < 0) {
2312 			pr_warning("%s: Too much work in interrupt, status %4.4x.\n",
2313 				dev->name, status);
2314 			/* Disable all pending interrupts. */
2315 			do {
2316 				vp->deferred |= status;
2317 				iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2318 					 ioaddr + EL3_CMD);
2319 				iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2320 			} while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2321 			/* The timer will reenable interrupts. */
2322 			mod_timer(&vp->timer, jiffies + 1*HZ);
2323 			break;
2324 		}
2325 		/* Acknowledge the IRQ. */
2326 		iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2327 	} while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
2328 
2329 	spin_unlock(&vp->window_lock);
2330 
2331 	if (vortex_debug > 4)
2332 		pr_debug("%s: exiting interrupt, status %4.4x.\n",
2333 			   dev->name, status);
2334 handler_exit:
2335 	spin_unlock(&vp->lock);
2336 	return IRQ_RETVAL(handled);
2337 }
2338 
2339 /*
2340  * This is the ISR for the boomerang series chips.
2341  * full_bus_master_tx == 1 && full_bus_master_rx == 1
2342  */
2343 
2344 static irqreturn_t
2345 boomerang_interrupt(int irq, void *dev_id)
2346 {
2347 	struct net_device *dev = dev_id;
2348 	struct vortex_private *vp = netdev_priv(dev);
2349 	void __iomem *ioaddr;
2350 	int status;
2351 	int work_done = max_interrupt_work;
2352 
2353 	ioaddr = vp->ioaddr;
2354 
2355 
2356 	/*
2357 	 * It seems dopey to put the spinlock this early, but we could race against vortex_tx_timeout
2358 	 * and boomerang_start_xmit
2359 	 */
2360 	spin_lock(&vp->lock);
2361 	vp->handling_irq = 1;
2362 
2363 	status = ioread16(ioaddr + EL3_STATUS);
2364 
2365 	if (vortex_debug > 6)
2366 		pr_debug("boomerang_interrupt. status=0x%4x\n", status);
2367 
2368 	if ((status & IntLatch) == 0)
2369 		goto handler_exit;		/* No interrupt: shared IRQs can cause this */
2370 
2371 	if (status == 0xffff) {		/* h/w no longer present (hotplug)? */
2372 		if (vortex_debug > 1)
2373 			pr_debug("boomerang_interrupt(1): status = 0xffff\n");
2374 		goto handler_exit;
2375 	}
2376 
2377 	if (status & IntReq) {
2378 		status |= vp->deferred;
2379 		vp->deferred = 0;
2380 	}
2381 
2382 	if (vortex_debug > 4)
2383 		pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2384 			   dev->name, status, ioread8(ioaddr + Timer));
2385 	do {
2386 		if (vortex_debug > 5)
2387 				pr_debug("%s: In interrupt loop, status %4.4x.\n",
2388 					   dev->name, status);
2389 		if (status & UpComplete) {
2390 			iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD);
2391 			if (vortex_debug > 5)
2392 				pr_debug("boomerang_interrupt->boomerang_rx\n");
2393 			boomerang_rx(dev);
2394 		}
2395 
2396 		if (status & DownComplete) {
2397 			unsigned int dirty_tx = vp->dirty_tx;
2398 
2399 			iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD);
2400 			while (vp->cur_tx - dirty_tx > 0) {
2401 				int entry = dirty_tx % TX_RING_SIZE;
2402 #if 1	/* AKPM: the latter is faster, but cyclone-only */
2403 				if (ioread32(ioaddr + DownListPtr) ==
2404 					vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc))
2405 					break;			/* It still hasn't been processed. */
2406 #else
2407 				if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0)
2408 					break;			/* It still hasn't been processed. */
2409 #endif
2410 
2411 				if (vp->tx_skbuff[entry]) {
2412 					struct sk_buff *skb = vp->tx_skbuff[entry];
2413 #if DO_ZEROCOPY
2414 					int i;
2415 					for (i=0; i<=skb_shinfo(skb)->nr_frags; i++)
2416 							pci_unmap_single(VORTEX_PCI(vp),
2417 											 le32_to_cpu(vp->tx_ring[entry].frag[i].addr),
2418 											 le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF,
2419 											 PCI_DMA_TODEVICE);
2420 #else
2421 					pci_unmap_single(VORTEX_PCI(vp),
2422 						le32_to_cpu(vp->tx_ring[entry].addr), skb->len, PCI_DMA_TODEVICE);
2423 #endif
2424 					dev_kfree_skb_irq(skb);
2425 					vp->tx_skbuff[entry] = NULL;
2426 				} else {
2427 					pr_debug("boomerang_interrupt: no skb!\n");
2428 				}
2429 				/* dev->stats.tx_packets++;  Counted below. */
2430 				dirty_tx++;
2431 			}
2432 			vp->dirty_tx = dirty_tx;
2433 			if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) {
2434 				if (vortex_debug > 6)
2435 					pr_debug("boomerang_interrupt: wake queue\n");
2436 				netif_wake_queue (dev);
2437 			}
2438 		}
2439 
2440 		/* Check for all uncommon interrupts at once. */
2441 		if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq))
2442 			vortex_error(dev, status);
2443 
2444 		if (--work_done < 0) {
2445 			pr_warning("%s: Too much work in interrupt, status %4.4x.\n",
2446 				dev->name, status);
2447 			/* Disable all pending interrupts. */
2448 			do {
2449 				vp->deferred |= status;
2450 				iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2451 					 ioaddr + EL3_CMD);
2452 				iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2453 			} while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2454 			/* The timer will reenable interrupts. */
2455 			mod_timer(&vp->timer, jiffies + 1*HZ);
2456 			break;
2457 		}
2458 		/* Acknowledge the IRQ. */
2459 		iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2460 		if (vp->cb_fn_base)			/* The PCMCIA people are idiots.  */
2461 			iowrite32(0x8000, vp->cb_fn_base + 4);
2462 
2463 	} while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch);
2464 
2465 	if (vortex_debug > 4)
2466 		pr_debug("%s: exiting interrupt, status %4.4x.\n",
2467 			   dev->name, status);
2468 handler_exit:
2469 	vp->handling_irq = 0;
2470 	spin_unlock(&vp->lock);
2471 	return IRQ_HANDLED;
2472 }
2473 
2474 static int vortex_rx(struct net_device *dev)
2475 {
2476 	struct vortex_private *vp = netdev_priv(dev);
2477 	void __iomem *ioaddr = vp->ioaddr;
2478 	int i;
2479 	short rx_status;
2480 
2481 	if (vortex_debug > 5)
2482 		pr_debug("vortex_rx(): status %4.4x, rx_status %4.4x.\n",
2483 			   ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus));
2484 	while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) {
2485 		if (rx_status & 0x4000) { /* Error, update stats. */
2486 			unsigned char rx_error = ioread8(ioaddr + RxErrors);
2487 			if (vortex_debug > 2)
2488 				pr_debug(" Rx error: status %2.2x.\n", rx_error);
2489 			dev->stats.rx_errors++;
2490 			if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2491 			if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2492 			if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2493 			if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2494 			if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2495 		} else {
2496 			/* The packet length: up to 4.5K!. */
2497 			int pkt_len = rx_status & 0x1fff;
2498 			struct sk_buff *skb;
2499 
2500 			skb = netdev_alloc_skb(dev, pkt_len + 5);
2501 			if (vortex_debug > 4)
2502 				pr_debug("Receiving packet size %d status %4.4x.\n",
2503 					   pkt_len, rx_status);
2504 			if (skb != NULL) {
2505 				skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
2506 				/* 'skb_put()' points to the start of sk_buff data area. */
2507 				if (vp->bus_master &&
2508 					! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) {
2509 					dma_addr_t dma = pci_map_single(VORTEX_PCI(vp), skb_put(skb, pkt_len),
2510 									   pkt_len, PCI_DMA_FROMDEVICE);
2511 					iowrite32(dma, ioaddr + Wn7_MasterAddr);
2512 					iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
2513 					iowrite16(StartDMAUp, ioaddr + EL3_CMD);
2514 					while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)
2515 						;
2516 					pci_unmap_single(VORTEX_PCI(vp), dma, pkt_len, PCI_DMA_FROMDEVICE);
2517 				} else {
2518 					ioread32_rep(ioaddr + RX_FIFO,
2519 					             skb_put(skb, pkt_len),
2520 						     (pkt_len + 3) >> 2);
2521 				}
2522 				iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
2523 				skb->protocol = eth_type_trans(skb, dev);
2524 				netif_rx(skb);
2525 				dev->stats.rx_packets++;
2526 				/* Wait a limited time to go to next packet. */
2527 				for (i = 200; i >= 0; i--)
2528 					if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
2529 						break;
2530 				continue;
2531 			} else if (vortex_debug > 0)
2532 				pr_notice("%s: No memory to allocate a sk_buff of size %d.\n",
2533 					dev->name, pkt_len);
2534 			dev->stats.rx_dropped++;
2535 		}
2536 		issue_and_wait(dev, RxDiscard);
2537 	}
2538 
2539 	return 0;
2540 }
2541 
2542 static int
2543 boomerang_rx(struct net_device *dev)
2544 {
2545 	struct vortex_private *vp = netdev_priv(dev);
2546 	int entry = vp->cur_rx % RX_RING_SIZE;
2547 	void __iomem *ioaddr = vp->ioaddr;
2548 	int rx_status;
2549 	int rx_work_limit = vp->dirty_rx + RX_RING_SIZE - vp->cur_rx;
2550 
2551 	if (vortex_debug > 5)
2552 		pr_debug("boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS));
2553 
2554 	while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){
2555 		if (--rx_work_limit < 0)
2556 			break;
2557 		if (rx_status & RxDError) { /* Error, update stats. */
2558 			unsigned char rx_error = rx_status >> 16;
2559 			if (vortex_debug > 2)
2560 				pr_debug(" Rx error: status %2.2x.\n", rx_error);
2561 			dev->stats.rx_errors++;
2562 			if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2563 			if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2564 			if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2565 			if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2566 			if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2567 		} else {
2568 			/* The packet length: up to 4.5K!. */
2569 			int pkt_len = rx_status & 0x1fff;
2570 			struct sk_buff *skb;
2571 			dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr);
2572 
2573 			if (vortex_debug > 4)
2574 				pr_debug("Receiving packet size %d status %4.4x.\n",
2575 					   pkt_len, rx_status);
2576 
2577 			/* Check if the packet is long enough to just accept without
2578 			   copying to a properly sized skbuff. */
2579 			if (pkt_len < rx_copybreak &&
2580 			    (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
2581 				skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
2582 				pci_dma_sync_single_for_cpu(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2583 				/* 'skb_put()' points to the start of sk_buff data area. */
2584 				memcpy(skb_put(skb, pkt_len),
2585 					   vp->rx_skbuff[entry]->data,
2586 					   pkt_len);
2587 				pci_dma_sync_single_for_device(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2588 				vp->rx_copy++;
2589 			} else {
2590 				/* Pass up the skbuff already on the Rx ring. */
2591 				skb = vp->rx_skbuff[entry];
2592 				vp->rx_skbuff[entry] = NULL;
2593 				skb_put(skb, pkt_len);
2594 				pci_unmap_single(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2595 				vp->rx_nocopy++;
2596 			}
2597 			skb->protocol = eth_type_trans(skb, dev);
2598 			{					/* Use hardware checksum info. */
2599 				int csum_bits = rx_status & 0xee000000;
2600 				if (csum_bits &&
2601 					(csum_bits == (IPChksumValid | TCPChksumValid) ||
2602 					 csum_bits == (IPChksumValid | UDPChksumValid))) {
2603 					skb->ip_summed = CHECKSUM_UNNECESSARY;
2604 					vp->rx_csumhits++;
2605 				}
2606 			}
2607 			netif_rx(skb);
2608 			dev->stats.rx_packets++;
2609 		}
2610 		entry = (++vp->cur_rx) % RX_RING_SIZE;
2611 	}
2612 	/* Refill the Rx ring buffers. */
2613 	for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) {
2614 		struct sk_buff *skb;
2615 		entry = vp->dirty_rx % RX_RING_SIZE;
2616 		if (vp->rx_skbuff[entry] == NULL) {
2617 			skb = netdev_alloc_skb_ip_align(dev, PKT_BUF_SZ);
2618 			if (skb == NULL) {
2619 				static unsigned long last_jif;
2620 				if (time_after(jiffies, last_jif + 10 * HZ)) {
2621 					pr_warning("%s: memory shortage\n", dev->name);
2622 					last_jif = jiffies;
2623 				}
2624 				if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)
2625 					mod_timer(&vp->rx_oom_timer, RUN_AT(HZ * 1));
2626 				break;			/* Bad news!  */
2627 			}
2628 
2629 			vp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
2630 			vp->rx_skbuff[entry] = skb;
2631 		}
2632 		vp->rx_ring[entry].status = 0;	/* Clear complete bit. */
2633 		iowrite16(UpUnstall, ioaddr + EL3_CMD);
2634 	}
2635 	return 0;
2636 }
2637 
2638 /*
2639  * If we've hit a total OOM refilling the Rx ring we poll once a second
2640  * for some memory.  Otherwise there is no way to restart the rx process.
2641  */
2642 static void
2643 rx_oom_timer(unsigned long arg)
2644 {
2645 	struct net_device *dev = (struct net_device *)arg;
2646 	struct vortex_private *vp = netdev_priv(dev);
2647 
2648 	spin_lock_irq(&vp->lock);
2649 	if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)	/* This test is redundant, but makes me feel good */
2650 		boomerang_rx(dev);
2651 	if (vortex_debug > 1) {
2652 		pr_debug("%s: rx_oom_timer %s\n", dev->name,
2653 			((vp->cur_rx - vp->dirty_rx) != RX_RING_SIZE) ? "succeeded" : "retrying");
2654 	}
2655 	spin_unlock_irq(&vp->lock);
2656 }
2657 
2658 static void
2659 vortex_down(struct net_device *dev, int final_down)
2660 {
2661 	struct vortex_private *vp = netdev_priv(dev);
2662 	void __iomem *ioaddr = vp->ioaddr;
2663 
2664 	netif_stop_queue (dev);
2665 
2666 	del_timer_sync(&vp->rx_oom_timer);
2667 	del_timer_sync(&vp->timer);
2668 
2669 	/* Turn off statistics ASAP.  We update dev->stats below. */
2670 	iowrite16(StatsDisable, ioaddr + EL3_CMD);
2671 
2672 	/* Disable the receiver and transmitter. */
2673 	iowrite16(RxDisable, ioaddr + EL3_CMD);
2674 	iowrite16(TxDisable, ioaddr + EL3_CMD);
2675 
2676 	/* Disable receiving 802.1q tagged frames */
2677 	set_8021q_mode(dev, 0);
2678 
2679 	if (dev->if_port == XCVR_10base2)
2680 		/* Turn off thinnet power.  Green! */
2681 		iowrite16(StopCoax, ioaddr + EL3_CMD);
2682 
2683 	iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
2684 
2685 	update_stats(ioaddr, dev);
2686 	if (vp->full_bus_master_rx)
2687 		iowrite32(0, ioaddr + UpListPtr);
2688 	if (vp->full_bus_master_tx)
2689 		iowrite32(0, ioaddr + DownListPtr);
2690 
2691 	if (final_down && VORTEX_PCI(vp)) {
2692 		vp->pm_state_valid = 1;
2693 		pci_save_state(VORTEX_PCI(vp));
2694 		acpi_set_WOL(dev);
2695 	}
2696 }
2697 
2698 static int
2699 vortex_close(struct net_device *dev)
2700 {
2701 	struct vortex_private *vp = netdev_priv(dev);
2702 	void __iomem *ioaddr = vp->ioaddr;
2703 	int i;
2704 
2705 	if (netif_device_present(dev))
2706 		vortex_down(dev, 1);
2707 
2708 	if (vortex_debug > 1) {
2709 		pr_debug("%s: vortex_close() status %4.4x, Tx status %2.2x.\n",
2710 			   dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus));
2711 		pr_debug("%s: vortex close stats: rx_nocopy %d rx_copy %d"
2712 			   " tx_queued %d Rx pre-checksummed %d.\n",
2713 			   dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits);
2714 	}
2715 
2716 #if DO_ZEROCOPY
2717 	if (vp->rx_csumhits &&
2718 	    (vp->drv_flags & HAS_HWCKSM) == 0 &&
2719 	    (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) {
2720 		pr_warning("%s supports hardware checksums, and we're not using them!\n", dev->name);
2721 	}
2722 #endif
2723 
2724 	free_irq(dev->irq, dev);
2725 
2726 	if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
2727 		for (i = 0; i < RX_RING_SIZE; i++)
2728 			if (vp->rx_skbuff[i]) {
2729 				pci_unmap_single(	VORTEX_PCI(vp), le32_to_cpu(vp->rx_ring[i].addr),
2730 									PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2731 				dev_kfree_skb(vp->rx_skbuff[i]);
2732 				vp->rx_skbuff[i] = NULL;
2733 			}
2734 	}
2735 	if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
2736 		for (i = 0; i < TX_RING_SIZE; i++) {
2737 			if (vp->tx_skbuff[i]) {
2738 				struct sk_buff *skb = vp->tx_skbuff[i];
2739 #if DO_ZEROCOPY
2740 				int k;
2741 
2742 				for (k=0; k<=skb_shinfo(skb)->nr_frags; k++)
2743 						pci_unmap_single(VORTEX_PCI(vp),
2744 										 le32_to_cpu(vp->tx_ring[i].frag[k].addr),
2745 										 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF,
2746 										 PCI_DMA_TODEVICE);
2747 #else
2748 				pci_unmap_single(VORTEX_PCI(vp), le32_to_cpu(vp->tx_ring[i].addr), skb->len, PCI_DMA_TODEVICE);
2749 #endif
2750 				dev_kfree_skb(skb);
2751 				vp->tx_skbuff[i] = NULL;
2752 			}
2753 		}
2754 	}
2755 
2756 	return 0;
2757 }
2758 
2759 static void
2760 dump_tx_ring(struct net_device *dev)
2761 {
2762 	if (vortex_debug > 0) {
2763 	struct vortex_private *vp = netdev_priv(dev);
2764 		void __iomem *ioaddr = vp->ioaddr;
2765 
2766 		if (vp->full_bus_master_tx) {
2767 			int i;
2768 			int stalled = ioread32(ioaddr + PktStatus) & 0x04;	/* Possible racy. But it's only debug stuff */
2769 
2770 			pr_err("  Flags; bus-master %d, dirty %d(%d) current %d(%d)\n",
2771 					vp->full_bus_master_tx,
2772 					vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE,
2773 					vp->cur_tx, vp->cur_tx % TX_RING_SIZE);
2774 			pr_err("  Transmit list %8.8x vs. %p.\n",
2775 				   ioread32(ioaddr + DownListPtr),
2776 				   &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]);
2777 			issue_and_wait(dev, DownStall);
2778 			for (i = 0; i < TX_RING_SIZE; i++) {
2779 				unsigned int length;
2780 
2781 #if DO_ZEROCOPY
2782 				length = le32_to_cpu(vp->tx_ring[i].frag[0].length);
2783 #else
2784 				length = le32_to_cpu(vp->tx_ring[i].length);
2785 #endif
2786 				pr_err("  %d: @%p  length %8.8x status %8.8x\n",
2787 					   i, &vp->tx_ring[i], length,
2788 					   le32_to_cpu(vp->tx_ring[i].status));
2789 			}
2790 			if (!stalled)
2791 				iowrite16(DownUnstall, ioaddr + EL3_CMD);
2792 		}
2793 	}
2794 }
2795 
2796 static struct net_device_stats *vortex_get_stats(struct net_device *dev)
2797 {
2798 	struct vortex_private *vp = netdev_priv(dev);
2799 	void __iomem *ioaddr = vp->ioaddr;
2800 	unsigned long flags;
2801 
2802 	if (netif_device_present(dev)) {	/* AKPM: Used to be netif_running */
2803 		spin_lock_irqsave (&vp->lock, flags);
2804 		update_stats(ioaddr, dev);
2805 		spin_unlock_irqrestore (&vp->lock, flags);
2806 	}
2807 	return &dev->stats;
2808 }
2809 
2810 /*  Update statistics.
2811 	Unlike with the EL3 we need not worry about interrupts changing
2812 	the window setting from underneath us, but we must still guard
2813 	against a race condition with a StatsUpdate interrupt updating the
2814 	table.  This is done by checking that the ASM (!) code generated uses
2815 	atomic updates with '+='.
2816 	*/
2817 static void update_stats(void __iomem *ioaddr, struct net_device *dev)
2818 {
2819 	struct vortex_private *vp = netdev_priv(dev);
2820 
2821 	/* Unlike the 3c5x9 we need not turn off stats updates while reading. */
2822 	/* Switch to the stats window, and read everything. */
2823 	dev->stats.tx_carrier_errors		+= window_read8(vp, 6, 0);
2824 	dev->stats.tx_heartbeat_errors		+= window_read8(vp, 6, 1);
2825 	dev->stats.tx_window_errors		+= window_read8(vp, 6, 4);
2826 	dev->stats.rx_fifo_errors		+= window_read8(vp, 6, 5);
2827 	dev->stats.tx_packets			+= window_read8(vp, 6, 6);
2828 	dev->stats.tx_packets			+= (window_read8(vp, 6, 9) &
2829 						    0x30) << 4;
2830 	/* Rx packets	*/			window_read8(vp, 6, 7);   /* Must read to clear */
2831 	/* Don't bother with register 9, an extension of registers 6&7.
2832 	   If we do use the 6&7 values the atomic update assumption above
2833 	   is invalid. */
2834 	dev->stats.rx_bytes 			+= window_read16(vp, 6, 10);
2835 	dev->stats.tx_bytes 			+= window_read16(vp, 6, 12);
2836 	/* Extra stats for get_ethtool_stats() */
2837 	vp->xstats.tx_multiple_collisions	+= window_read8(vp, 6, 2);
2838 	vp->xstats.tx_single_collisions         += window_read8(vp, 6, 3);
2839 	vp->xstats.tx_deferred			+= window_read8(vp, 6, 8);
2840 	vp->xstats.rx_bad_ssd			+= window_read8(vp, 4, 12);
2841 
2842 	dev->stats.collisions = vp->xstats.tx_multiple_collisions
2843 		+ vp->xstats.tx_single_collisions
2844 		+ vp->xstats.tx_max_collisions;
2845 
2846 	{
2847 		u8 up = window_read8(vp, 4, 13);
2848 		dev->stats.rx_bytes += (up & 0x0f) << 16;
2849 		dev->stats.tx_bytes += (up & 0xf0) << 12;
2850 	}
2851 }
2852 
2853 static int vortex_nway_reset(struct net_device *dev)
2854 {
2855 	struct vortex_private *vp = netdev_priv(dev);
2856 
2857 	return mii_nway_restart(&vp->mii);
2858 }
2859 
2860 static int vortex_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2861 {
2862 	struct vortex_private *vp = netdev_priv(dev);
2863 
2864 	return mii_ethtool_gset(&vp->mii, cmd);
2865 }
2866 
2867 static int vortex_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2868 {
2869 	struct vortex_private *vp = netdev_priv(dev);
2870 
2871 	return mii_ethtool_sset(&vp->mii, cmd);
2872 }
2873 
2874 static u32 vortex_get_msglevel(struct net_device *dev)
2875 {
2876 	return vortex_debug;
2877 }
2878 
2879 static void vortex_set_msglevel(struct net_device *dev, u32 dbg)
2880 {
2881 	vortex_debug = dbg;
2882 }
2883 
2884 static int vortex_get_sset_count(struct net_device *dev, int sset)
2885 {
2886 	switch (sset) {
2887 	case ETH_SS_STATS:
2888 		return VORTEX_NUM_STATS;
2889 	default:
2890 		return -EOPNOTSUPP;
2891 	}
2892 }
2893 
2894 static void vortex_get_ethtool_stats(struct net_device *dev,
2895 	struct ethtool_stats *stats, u64 *data)
2896 {
2897 	struct vortex_private *vp = netdev_priv(dev);
2898 	void __iomem *ioaddr = vp->ioaddr;
2899 	unsigned long flags;
2900 
2901 	spin_lock_irqsave(&vp->lock, flags);
2902 	update_stats(ioaddr, dev);
2903 	spin_unlock_irqrestore(&vp->lock, flags);
2904 
2905 	data[0] = vp->xstats.tx_deferred;
2906 	data[1] = vp->xstats.tx_max_collisions;
2907 	data[2] = vp->xstats.tx_multiple_collisions;
2908 	data[3] = vp->xstats.tx_single_collisions;
2909 	data[4] = vp->xstats.rx_bad_ssd;
2910 }
2911 
2912 
2913 static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2914 {
2915 	switch (stringset) {
2916 	case ETH_SS_STATS:
2917 		memcpy(data, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
2918 		break;
2919 	default:
2920 		WARN_ON(1);
2921 		break;
2922 	}
2923 }
2924 
2925 static void vortex_get_drvinfo(struct net_device *dev,
2926 					struct ethtool_drvinfo *info)
2927 {
2928 	struct vortex_private *vp = netdev_priv(dev);
2929 
2930 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2931 	if (VORTEX_PCI(vp)) {
2932 		strlcpy(info->bus_info, pci_name(VORTEX_PCI(vp)),
2933 			sizeof(info->bus_info));
2934 	} else {
2935 		if (VORTEX_EISA(vp))
2936 			strlcpy(info->bus_info, dev_name(vp->gendev),
2937 				sizeof(info->bus_info));
2938 		else
2939 			snprintf(info->bus_info, sizeof(info->bus_info),
2940 				"EISA 0x%lx %d", dev->base_addr, dev->irq);
2941 	}
2942 }
2943 
2944 static void vortex_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2945 {
2946 	struct vortex_private *vp = netdev_priv(dev);
2947 
2948 	if (!VORTEX_PCI(vp))
2949 		return;
2950 
2951 	wol->supported = WAKE_MAGIC;
2952 
2953 	wol->wolopts = 0;
2954 	if (vp->enable_wol)
2955 		wol->wolopts |= WAKE_MAGIC;
2956 }
2957 
2958 static int vortex_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2959 {
2960 	struct vortex_private *vp = netdev_priv(dev);
2961 
2962 	if (!VORTEX_PCI(vp))
2963 		return -EOPNOTSUPP;
2964 
2965 	if (wol->wolopts & ~WAKE_MAGIC)
2966 		return -EINVAL;
2967 
2968 	if (wol->wolopts & WAKE_MAGIC)
2969 		vp->enable_wol = 1;
2970 	else
2971 		vp->enable_wol = 0;
2972 	acpi_set_WOL(dev);
2973 
2974 	return 0;
2975 }
2976 
2977 static const struct ethtool_ops vortex_ethtool_ops = {
2978 	.get_drvinfo		= vortex_get_drvinfo,
2979 	.get_strings            = vortex_get_strings,
2980 	.get_msglevel           = vortex_get_msglevel,
2981 	.set_msglevel           = vortex_set_msglevel,
2982 	.get_ethtool_stats      = vortex_get_ethtool_stats,
2983 	.get_sset_count		= vortex_get_sset_count,
2984 	.get_settings           = vortex_get_settings,
2985 	.set_settings           = vortex_set_settings,
2986 	.get_link               = ethtool_op_get_link,
2987 	.nway_reset             = vortex_nway_reset,
2988 	.get_wol                = vortex_get_wol,
2989 	.set_wol                = vortex_set_wol,
2990 };
2991 
2992 #ifdef CONFIG_PCI
2993 /*
2994  *	Must power the device up to do MDIO operations
2995  */
2996 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2997 {
2998 	int err;
2999 	struct vortex_private *vp = netdev_priv(dev);
3000 	pci_power_t state = 0;
3001 
3002 	if(VORTEX_PCI(vp))
3003 		state = VORTEX_PCI(vp)->current_state;
3004 
3005 	/* The kernel core really should have pci_get_power_state() */
3006 
3007 	if(state != 0)
3008 		pci_set_power_state(VORTEX_PCI(vp), PCI_D0);
3009 	err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL);
3010 	if(state != 0)
3011 		pci_set_power_state(VORTEX_PCI(vp), state);
3012 
3013 	return err;
3014 }
3015 #endif
3016 
3017 
3018 /* Pre-Cyclone chips have no documented multicast filter, so the only
3019    multicast setting is to receive all multicast frames.  At least
3020    the chip has a very clean way to set the mode, unlike many others. */
3021 static void set_rx_mode(struct net_device *dev)
3022 {
3023 	struct vortex_private *vp = netdev_priv(dev);
3024 	void __iomem *ioaddr = vp->ioaddr;
3025 	int new_mode;
3026 
3027 	if (dev->flags & IFF_PROMISC) {
3028 		if (vortex_debug > 3)
3029 			pr_notice("%s: Setting promiscuous mode.\n", dev->name);
3030 		new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm;
3031 	} else	if (!netdev_mc_empty(dev) || dev->flags & IFF_ALLMULTI) {
3032 		new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast;
3033 	} else
3034 		new_mode = SetRxFilter | RxStation | RxBroadcast;
3035 
3036 	iowrite16(new_mode, ioaddr + EL3_CMD);
3037 }
3038 
3039 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
3040 /* Setup the card so that it can receive frames with an 802.1q VLAN tag.
3041    Note that this must be done after each RxReset due to some backwards
3042    compatibility logic in the Cyclone and Tornado ASICs */
3043 
3044 /* The Ethernet Type used for 802.1q tagged frames */
3045 #define VLAN_ETHER_TYPE 0x8100
3046 
3047 static void set_8021q_mode(struct net_device *dev, int enable)
3048 {
3049 	struct vortex_private *vp = netdev_priv(dev);
3050 	int mac_ctrl;
3051 
3052 	if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) {
3053 		/* cyclone and tornado chipsets can recognize 802.1q
3054 		 * tagged frames and treat them correctly */
3055 
3056 		int max_pkt_size = dev->mtu+14;	/* MTU+Ethernet header */
3057 		if (enable)
3058 			max_pkt_size += 4;	/* 802.1Q VLAN tag */
3059 
3060 		window_write16(vp, max_pkt_size, 3, Wn3_MaxPktSize);
3061 
3062 		/* set VlanEtherType to let the hardware checksumming
3063 		   treat tagged frames correctly */
3064 		window_write16(vp, VLAN_ETHER_TYPE, 7, Wn7_VlanEtherType);
3065 	} else {
3066 		/* on older cards we have to enable large frames */
3067 
3068 		vp->large_frames = dev->mtu > 1500 || enable;
3069 
3070 		mac_ctrl = window_read16(vp, 3, Wn3_MAC_Ctrl);
3071 		if (vp->large_frames)
3072 			mac_ctrl |= 0x40;
3073 		else
3074 			mac_ctrl &= ~0x40;
3075 		window_write16(vp, mac_ctrl, 3, Wn3_MAC_Ctrl);
3076 	}
3077 }
3078 #else
3079 
3080 static void set_8021q_mode(struct net_device *dev, int enable)
3081 {
3082 }
3083 
3084 
3085 #endif
3086 
3087 /* MII transceiver control section.
3088    Read and write the MII registers using software-generated serial
3089    MDIO protocol.  See the MII specifications or DP83840A data sheet
3090    for details. */
3091 
3092 /* The maximum data clock rate is 2.5 Mhz.  The minimum timing is usually
3093    met by back-to-back PCI I/O cycles, but we insert a delay to avoid
3094    "overclocking" issues. */
3095 static void mdio_delay(struct vortex_private *vp)
3096 {
3097 	window_read32(vp, 4, Wn4_PhysicalMgmt);
3098 }
3099 
3100 #define MDIO_SHIFT_CLK	0x01
3101 #define MDIO_DIR_WRITE	0x04
3102 #define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE)
3103 #define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE)
3104 #define MDIO_DATA_READ	0x02
3105 #define MDIO_ENB_IN		0x00
3106 
3107 /* Generate the preamble required for initial synchronization and
3108    a few older transceivers. */
3109 static void mdio_sync(struct vortex_private *vp, int bits)
3110 {
3111 	/* Establish sync by sending at least 32 logic ones. */
3112 	while (-- bits >= 0) {
3113 		window_write16(vp, MDIO_DATA_WRITE1, 4, Wn4_PhysicalMgmt);
3114 		mdio_delay(vp);
3115 		window_write16(vp, MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK,
3116 			       4, Wn4_PhysicalMgmt);
3117 		mdio_delay(vp);
3118 	}
3119 }
3120 
3121 static int mdio_read(struct net_device *dev, int phy_id, int location)
3122 {
3123 	int i;
3124 	struct vortex_private *vp = netdev_priv(dev);
3125 	int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
3126 	unsigned int retval = 0;
3127 
3128 	spin_lock_bh(&vp->mii_lock);
3129 
3130 	if (mii_preamble_required)
3131 		mdio_sync(vp, 32);
3132 
3133 	/* Shift the read command bits out. */
3134 	for (i = 14; i >= 0; i--) {
3135 		int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3136 		window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3137 		mdio_delay(vp);
3138 		window_write16(vp, dataval | MDIO_SHIFT_CLK,
3139 			       4, Wn4_PhysicalMgmt);
3140 		mdio_delay(vp);
3141 	}
3142 	/* Read the two transition, 16 data, and wire-idle bits. */
3143 	for (i = 19; i > 0; i--) {
3144 		window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3145 		mdio_delay(vp);
3146 		retval = (retval << 1) |
3147 			((window_read16(vp, 4, Wn4_PhysicalMgmt) &
3148 			  MDIO_DATA_READ) ? 1 : 0);
3149 		window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3150 			       4, Wn4_PhysicalMgmt);
3151 		mdio_delay(vp);
3152 	}
3153 
3154 	spin_unlock_bh(&vp->mii_lock);
3155 
3156 	return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff;
3157 }
3158 
3159 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
3160 {
3161 	struct vortex_private *vp = netdev_priv(dev);
3162 	int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value;
3163 	int i;
3164 
3165 	spin_lock_bh(&vp->mii_lock);
3166 
3167 	if (mii_preamble_required)
3168 		mdio_sync(vp, 32);
3169 
3170 	/* Shift the command bits out. */
3171 	for (i = 31; i >= 0; i--) {
3172 		int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3173 		window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3174 		mdio_delay(vp);
3175 		window_write16(vp, dataval | MDIO_SHIFT_CLK,
3176 			       4, Wn4_PhysicalMgmt);
3177 		mdio_delay(vp);
3178 	}
3179 	/* Leave the interface idle. */
3180 	for (i = 1; i >= 0; i--) {
3181 		window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3182 		mdio_delay(vp);
3183 		window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3184 			       4, Wn4_PhysicalMgmt);
3185 		mdio_delay(vp);
3186 	}
3187 
3188 	spin_unlock_bh(&vp->mii_lock);
3189 }
3190 
3191 /* ACPI: Advanced Configuration and Power Interface. */
3192 /* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */
3193 static void acpi_set_WOL(struct net_device *dev)
3194 {
3195 	struct vortex_private *vp = netdev_priv(dev);
3196 	void __iomem *ioaddr = vp->ioaddr;
3197 
3198 	device_set_wakeup_enable(vp->gendev, vp->enable_wol);
3199 
3200 	if (vp->enable_wol) {
3201 		/* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */
3202 		window_write16(vp, 2, 7, 0x0c);
3203 		/* The RxFilter must accept the WOL frames. */
3204 		iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD);
3205 		iowrite16(RxEnable, ioaddr + EL3_CMD);
3206 
3207 		if (pci_enable_wake(VORTEX_PCI(vp), PCI_D3hot, 1)) {
3208 			pr_info("%s: WOL not supported.\n", pci_name(VORTEX_PCI(vp)));
3209 
3210 			vp->enable_wol = 0;
3211 			return;
3212 		}
3213 
3214 		if (VORTEX_PCI(vp)->current_state < PCI_D3hot)
3215 			return;
3216 
3217 		/* Change the power state to D3; RxEnable doesn't take effect. */
3218 		pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot);
3219 	}
3220 }
3221 
3222 
3223 static void vortex_remove_one(struct pci_dev *pdev)
3224 {
3225 	struct net_device *dev = pci_get_drvdata(pdev);
3226 	struct vortex_private *vp;
3227 
3228 	if (!dev) {
3229 		pr_err("vortex_remove_one called for Compaq device!\n");
3230 		BUG();
3231 	}
3232 
3233 	vp = netdev_priv(dev);
3234 
3235 	if (vp->cb_fn_base)
3236 		pci_iounmap(VORTEX_PCI(vp), vp->cb_fn_base);
3237 
3238 	unregister_netdev(dev);
3239 
3240 	if (VORTEX_PCI(vp)) {
3241 		pci_set_power_state(VORTEX_PCI(vp), PCI_D0);	/* Go active */
3242 		if (vp->pm_state_valid)
3243 			pci_restore_state(VORTEX_PCI(vp));
3244 		pci_disable_device(VORTEX_PCI(vp));
3245 	}
3246 	/* Should really use issue_and_wait() here */
3247 	iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14),
3248 	     vp->ioaddr + EL3_CMD);
3249 
3250 	pci_iounmap(VORTEX_PCI(vp), vp->ioaddr);
3251 
3252 	pci_free_consistent(pdev,
3253 						sizeof(struct boom_rx_desc) * RX_RING_SIZE
3254 							+ sizeof(struct boom_tx_desc) * TX_RING_SIZE,
3255 						vp->rx_ring,
3256 						vp->rx_ring_dma);
3257 	if (vp->must_free_region)
3258 		release_region(dev->base_addr, vp->io_size);
3259 	free_netdev(dev);
3260 }
3261 
3262 
3263 static struct pci_driver vortex_driver = {
3264 	.name		= "3c59x",
3265 	.probe		= vortex_init_one,
3266 	.remove		= vortex_remove_one,
3267 	.id_table	= vortex_pci_tbl,
3268 	.driver.pm	= VORTEX_PM_OPS,
3269 };
3270 
3271 
3272 static int vortex_have_pci;
3273 static int vortex_have_eisa;
3274 
3275 
3276 static int __init vortex_init(void)
3277 {
3278 	int pci_rc, eisa_rc;
3279 
3280 	pci_rc = pci_register_driver(&vortex_driver);
3281 	eisa_rc = vortex_eisa_init();
3282 
3283 	if (pci_rc == 0)
3284 		vortex_have_pci = 1;
3285 	if (eisa_rc > 0)
3286 		vortex_have_eisa = 1;
3287 
3288 	return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV;
3289 }
3290 
3291 
3292 static void __exit vortex_eisa_cleanup(void)
3293 {
3294 	struct vortex_private *vp;
3295 	void __iomem *ioaddr;
3296 
3297 #ifdef CONFIG_EISA
3298 	/* Take care of the EISA devices */
3299 	eisa_driver_unregister(&vortex_eisa_driver);
3300 #endif
3301 
3302 	if (compaq_net_device) {
3303 		vp = netdev_priv(compaq_net_device);
3304 		ioaddr = ioport_map(compaq_net_device->base_addr,
3305 		                    VORTEX_TOTAL_SIZE);
3306 
3307 		unregister_netdev(compaq_net_device);
3308 		iowrite16(TotalReset, ioaddr + EL3_CMD);
3309 		release_region(compaq_net_device->base_addr,
3310 		               VORTEX_TOTAL_SIZE);
3311 
3312 		free_netdev(compaq_net_device);
3313 	}
3314 }
3315 
3316 
3317 static void __exit vortex_cleanup(void)
3318 {
3319 	if (vortex_have_pci)
3320 		pci_unregister_driver(&vortex_driver);
3321 	if (vortex_have_eisa)
3322 		vortex_eisa_cleanup();
3323 }
3324 
3325 
3326 module_init(vortex_init);
3327 module_exit(vortex_cleanup);
3328