1 /* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */ 2 /* 3 Written 1996-1999 by Donald Becker. 4 5 This software may be used and distributed according to the terms 6 of the GNU General Public License, incorporated herein by reference. 7 8 This driver is for the 3Com "Vortex" and "Boomerang" series ethercards. 9 Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597 10 and the EtherLink XL 3c900 and 3c905 cards. 11 12 Problem reports and questions should be directed to 13 vortex@scyld.com 14 15 The author may be reached as becker@scyld.com, or C/O 16 Scyld Computing Corporation 17 410 Severn Ave., Suite 210 18 Annapolis MD 21403 19 20 */ 21 22 /* 23 * FIXME: This driver _could_ support MTU changing, but doesn't. See Don's hamachi.c implementation 24 * as well as other drivers 25 * 26 * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k 27 * due to dead code elimination. There will be some performance benefits from this due to 28 * elimination of all the tests and reduced cache footprint. 29 */ 30 31 32 #define DRV_NAME "3c59x" 33 34 35 36 /* A few values that may be tweaked. */ 37 /* Keep the ring sizes a power of two for efficiency. */ 38 #define TX_RING_SIZE 16 39 #define RX_RING_SIZE 32 40 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/ 41 42 /* "Knobs" that adjust features and parameters. */ 43 /* Set the copy breakpoint for the copy-only-tiny-frames scheme. 44 Setting to > 1512 effectively disables this feature. */ 45 #ifndef __arm__ 46 static int rx_copybreak = 200; 47 #else 48 /* ARM systems perform better by disregarding the bus-master 49 transfer capability of these cards. -- rmk */ 50 static int rx_copybreak = 1513; 51 #endif 52 /* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */ 53 static const int mtu = 1500; 54 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */ 55 static int max_interrupt_work = 32; 56 /* Tx timeout interval (millisecs) */ 57 static int watchdog = 5000; 58 59 /* Allow aggregation of Tx interrupts. Saves CPU load at the cost 60 * of possible Tx stalls if the system is blocking interrupts 61 * somewhere else. Undefine this to disable. 62 */ 63 #define tx_interrupt_mitigation 1 64 65 /* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */ 66 #define vortex_debug debug 67 #ifdef VORTEX_DEBUG 68 static int vortex_debug = VORTEX_DEBUG; 69 #else 70 static int vortex_debug = 1; 71 #endif 72 73 #include <linux/module.h> 74 #include <linux/kernel.h> 75 #include <linux/string.h> 76 #include <linux/timer.h> 77 #include <linux/errno.h> 78 #include <linux/in.h> 79 #include <linux/ioport.h> 80 #include <linux/interrupt.h> 81 #include <linux/pci.h> 82 #include <linux/mii.h> 83 #include <linux/init.h> 84 #include <linux/netdevice.h> 85 #include <linux/etherdevice.h> 86 #include <linux/skbuff.h> 87 #include <linux/ethtool.h> 88 #include <linux/highmem.h> 89 #include <linux/eisa.h> 90 #include <linux/bitops.h> 91 #include <linux/jiffies.h> 92 #include <linux/gfp.h> 93 #include <asm/irq.h> /* For nr_irqs only. */ 94 #include <asm/io.h> 95 #include <asm/uaccess.h> 96 97 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package. 98 This is only in the support-all-kernels source code. */ 99 100 #define RUN_AT(x) (jiffies + (x)) 101 102 #include <linux/delay.h> 103 104 105 static const char version[] = 106 DRV_NAME ": Donald Becker and others.\n"; 107 108 MODULE_AUTHOR("Donald Becker <becker@scyld.com>"); 109 MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver "); 110 MODULE_LICENSE("GPL"); 111 112 113 /* Operational parameter that usually are not changed. */ 114 115 /* The Vortex size is twice that of the original EtherLinkIII series: the 116 runtime register window, window 1, is now always mapped in. 117 The Boomerang size is twice as large as the Vortex -- it has additional 118 bus master control registers. */ 119 #define VORTEX_TOTAL_SIZE 0x20 120 #define BOOMERANG_TOTAL_SIZE 0x40 121 122 /* Set iff a MII transceiver on any interface requires mdio preamble. 123 This only set with the original DP83840 on older 3c905 boards, so the extra 124 code size of a per-interface flag is not worthwhile. */ 125 static char mii_preamble_required; 126 127 #define PFX DRV_NAME ": " 128 129 130 131 /* 132 Theory of Operation 133 134 I. Board Compatibility 135 136 This device driver is designed for the 3Com FastEtherLink and FastEtherLink 137 XL, 3Com's PCI to 10/100baseT adapters. It also works with the 10Mbs 138 versions of the FastEtherLink cards. The supported product IDs are 139 3c590, 3c592, 3c595, 3c597, 3c900, 3c905 140 141 The related ISA 3c515 is supported with a separate driver, 3c515.c, included 142 with the kernel source or available from 143 cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html 144 145 II. Board-specific settings 146 147 PCI bus devices are configured by the system at boot time, so no jumpers 148 need to be set on the board. The system BIOS should be set to assign the 149 PCI INTA signal to an otherwise unused system IRQ line. 150 151 The EEPROM settings for media type and forced-full-duplex are observed. 152 The EEPROM media type should be left at the default "autoselect" unless using 153 10base2 or AUI connections which cannot be reliably detected. 154 155 III. Driver operation 156 157 The 3c59x series use an interface that's very similar to the previous 3c5x9 158 series. The primary interface is two programmed-I/O FIFOs, with an 159 alternate single-contiguous-region bus-master transfer (see next). 160 161 The 3c900 "Boomerang" series uses a full-bus-master interface with separate 162 lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet, 163 DEC Tulip and Intel Speedo3. The first chip version retains a compatible 164 programmed-I/O interface that has been removed in 'B' and subsequent board 165 revisions. 166 167 One extension that is advertised in a very large font is that the adapters 168 are capable of being bus masters. On the Vortex chip this capability was 169 only for a single contiguous region making it far less useful than the full 170 bus master capability. There is a significant performance impact of taking 171 an extra interrupt or polling for the completion of each transfer, as well 172 as difficulty sharing the single transfer engine between the transmit and 173 receive threads. Using DMA transfers is a win only with large blocks or 174 with the flawed versions of the Intel Orion motherboard PCI controller. 175 176 The Boomerang chip's full-bus-master interface is useful, and has the 177 currently-unused advantages over other similar chips that queued transmit 178 packets may be reordered and receive buffer groups are associated with a 179 single frame. 180 181 With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme. 182 Rather than a fixed intermediate receive buffer, this scheme allocates 183 full-sized skbuffs as receive buffers. The value RX_COPYBREAK is used as 184 the copying breakpoint: it is chosen to trade-off the memory wasted by 185 passing the full-sized skbuff to the queue layer for all frames vs. the 186 copying cost of copying a frame to a correctly-sized skbuff. 187 188 IIIC. Synchronization 189 The driver runs as two independent, single-threaded flows of control. One 190 is the send-packet routine, which enforces single-threaded use by the 191 dev->tbusy flag. The other thread is the interrupt handler, which is single 192 threaded by the hardware and other software. 193 194 IV. Notes 195 196 Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development 197 3c590, 3c595, and 3c900 boards. 198 The name "Vortex" is the internal 3Com project name for the PCI ASIC, and 199 the EISA version is called "Demon". According to Terry these names come 200 from rides at the local amusement park. 201 202 The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes! 203 This driver only supports ethernet packets because of the skbuff allocation 204 limit of 4K. 205 */ 206 207 /* This table drives the PCI probe routines. It's mostly boilerplate in all 208 of the drivers, and will likely be provided by some future kernel. 209 */ 210 enum pci_flags_bit { 211 PCI_USES_MASTER=4, 212 }; 213 214 enum { IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8, 215 EEPROM_8BIT=0x10, /* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */ 216 HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100, 217 INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800, 218 EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000, 219 EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, }; 220 221 enum vortex_chips { 222 CH_3C590 = 0, 223 CH_3C592, 224 CH_3C597, 225 CH_3C595_1, 226 CH_3C595_2, 227 228 CH_3C595_3, 229 CH_3C900_1, 230 CH_3C900_2, 231 CH_3C900_3, 232 CH_3C900_4, 233 234 CH_3C900_5, 235 CH_3C900B_FL, 236 CH_3C905_1, 237 CH_3C905_2, 238 CH_3C905B_TX, 239 CH_3C905B_1, 240 241 CH_3C905B_2, 242 CH_3C905B_FX, 243 CH_3C905C, 244 CH_3C9202, 245 CH_3C980, 246 CH_3C9805, 247 248 CH_3CSOHO100_TX, 249 CH_3C555, 250 CH_3C556, 251 CH_3C556B, 252 CH_3C575, 253 254 CH_3C575_1, 255 CH_3CCFE575, 256 CH_3CCFE575CT, 257 CH_3CCFE656, 258 CH_3CCFEM656, 259 260 CH_3CCFEM656_1, 261 CH_3C450, 262 CH_3C920, 263 CH_3C982A, 264 CH_3C982B, 265 266 CH_905BT4, 267 CH_920B_EMB_WNM, 268 }; 269 270 271 /* note: this array directly indexed by above enums, and MUST 272 * be kept in sync with both the enums above, and the PCI device 273 * table below 274 */ 275 static struct vortex_chip_info { 276 const char *name; 277 int flags; 278 int drv_flags; 279 int io_size; 280 } vortex_info_tbl[] = { 281 {"3c590 Vortex 10Mbps", 282 PCI_USES_MASTER, IS_VORTEX, 32, }, 283 {"3c592 EISA 10Mbps Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */ 284 PCI_USES_MASTER, IS_VORTEX, 32, }, 285 {"3c597 EISA Fast Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */ 286 PCI_USES_MASTER, IS_VORTEX, 32, }, 287 {"3c595 Vortex 100baseTx", 288 PCI_USES_MASTER, IS_VORTEX, 32, }, 289 {"3c595 Vortex 100baseT4", 290 PCI_USES_MASTER, IS_VORTEX, 32, }, 291 292 {"3c595 Vortex 100base-MII", 293 PCI_USES_MASTER, IS_VORTEX, 32, }, 294 {"3c900 Boomerang 10baseT", 295 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, }, 296 {"3c900 Boomerang 10Mbps Combo", 297 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, }, 298 {"3c900 Cyclone 10Mbps TPO", /* AKPM: from Don's 0.99M */ 299 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, }, 300 {"3c900 Cyclone 10Mbps Combo", 301 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, }, 302 303 {"3c900 Cyclone 10Mbps TPC", /* AKPM: from Don's 0.99M */ 304 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, }, 305 {"3c900B-FL Cyclone 10base-FL", 306 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, }, 307 {"3c905 Boomerang 100baseTx", 308 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, }, 309 {"3c905 Boomerang 100baseT4", 310 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, }, 311 {"3C905B-TX Fast Etherlink XL PCI", 312 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, }, 313 {"3c905B Cyclone 100baseTx", 314 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, }, 315 316 {"3c905B Cyclone 10/100/BNC", 317 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, }, 318 {"3c905B-FX Cyclone 100baseFx", 319 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, }, 320 {"3c905C Tornado", 321 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, }, 322 {"3c920B-EMB-WNM (ATI Radeon 9100 IGP)", 323 PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, }, 324 {"3c980 Cyclone", 325 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM|EXTRA_PREAMBLE, 128, }, 326 327 {"3c980C Python-T", 328 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, }, 329 {"3cSOHO100-TX Hurricane", 330 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, }, 331 {"3c555 Laptop Hurricane", 332 PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, }, 333 {"3c556 Laptop Tornado", 334 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR| 335 HAS_HWCKSM, 128, }, 336 {"3c556B Laptop Hurricane", 337 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR| 338 WNO_XCVR_PWR|HAS_HWCKSM, 128, }, 339 340 {"3c575 [Megahertz] 10/100 LAN CardBus", 341 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, }, 342 {"3c575 Boomerang CardBus", 343 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, }, 344 {"3CCFE575BT Cyclone CardBus", 345 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT| 346 INVERT_LED_PWR|HAS_HWCKSM, 128, }, 347 {"3CCFE575CT Tornado CardBus", 348 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR| 349 MAX_COLLISION_RESET|HAS_HWCKSM, 128, }, 350 {"3CCFE656 Cyclone CardBus", 351 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR| 352 INVERT_LED_PWR|HAS_HWCKSM, 128, }, 353 354 {"3CCFEM656B Cyclone+Winmodem CardBus", 355 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR| 356 INVERT_LED_PWR|HAS_HWCKSM, 128, }, 357 {"3CXFEM656C Tornado+Winmodem CardBus", /* From pcmcia-cs-3.1.5 */ 358 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR| 359 MAX_COLLISION_RESET|HAS_HWCKSM, 128, }, 360 {"3c450 HomePNA Tornado", /* AKPM: from Don's 0.99Q */ 361 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, }, 362 {"3c920 Tornado", 363 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, }, 364 {"3c982 Hydra Dual Port A", 365 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, }, 366 367 {"3c982 Hydra Dual Port B", 368 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, }, 369 {"3c905B-T4", 370 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, }, 371 {"3c920B-EMB-WNM Tornado", 372 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, }, 373 374 {NULL,}, /* NULL terminated list. */ 375 }; 376 377 378 static const struct pci_device_id vortex_pci_tbl[] = { 379 { 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 }, 380 { 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 }, 381 { 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 }, 382 { 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 }, 383 { 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 }, 384 385 { 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 }, 386 { 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 }, 387 { 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 }, 388 { 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 }, 389 { 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 }, 390 391 { 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 }, 392 { 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL }, 393 { 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 }, 394 { 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 }, 395 { 0x10B7, 0x9054, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_TX }, 396 { 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 }, 397 398 { 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 }, 399 { 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX }, 400 { 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C }, 401 { 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 }, 402 { 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 }, 403 { 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 }, 404 405 { 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX }, 406 { 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 }, 407 { 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 }, 408 { 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B }, 409 { 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 }, 410 411 { 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 }, 412 { 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 }, 413 { 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT }, 414 { 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 }, 415 { 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 }, 416 417 { 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 }, 418 { 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 }, 419 { 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 }, 420 { 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A }, 421 { 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B }, 422 423 { 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 }, 424 { 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM }, 425 426 {0,} /* 0 terminated list. */ 427 }; 428 MODULE_DEVICE_TABLE(pci, vortex_pci_tbl); 429 430 431 /* Operational definitions. 432 These are not used by other compilation units and thus are not 433 exported in a ".h" file. 434 435 First the windows. There are eight register windows, with the command 436 and status registers available in each. 437 */ 438 #define EL3_CMD 0x0e 439 #define EL3_STATUS 0x0e 440 441 /* The top five bits written to EL3_CMD are a command, the lower 442 11 bits are the parameter, if applicable. 443 Note that 11 parameters bits was fine for ethernet, but the new chip 444 can handle FDDI length frames (~4500 octets) and now parameters count 445 32-bit 'Dwords' rather than octets. */ 446 447 enum vortex_cmd { 448 TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11, 449 RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11, 450 UpStall = 6<<11, UpUnstall = (6<<11)+1, 451 DownStall = (6<<11)+2, DownUnstall = (6<<11)+3, 452 RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11, 453 FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11, 454 SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11, 455 SetTxThreshold = 18<<11, SetTxStart = 19<<11, 456 StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11, 457 StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,}; 458 459 /* The SetRxFilter command accepts the following classes: */ 460 enum RxFilter { 461 RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 }; 462 463 /* Bits in the general status register. */ 464 enum vortex_status { 465 IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004, 466 TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020, 467 IntReq = 0x0040, StatsFull = 0x0080, 468 DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10, 469 DMAInProgress = 1<<11, /* DMA controller is still busy.*/ 470 CmdInProgress = 1<<12, /* EL3_CMD is still busy.*/ 471 }; 472 473 /* Register window 1 offsets, the window used in normal operation. 474 On the Vortex this window is always mapped at offsets 0x10-0x1f. */ 475 enum Window1 { 476 TX_FIFO = 0x10, RX_FIFO = 0x10, RxErrors = 0x14, 477 RxStatus = 0x18, Timer=0x1A, TxStatus = 0x1B, 478 TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */ 479 }; 480 enum Window0 { 481 Wn0EepromCmd = 10, /* Window 0: EEPROM command register. */ 482 Wn0EepromData = 12, /* Window 0: EEPROM results register. */ 483 IntrStatus=0x0E, /* Valid in all windows. */ 484 }; 485 enum Win0_EEPROM_bits { 486 EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0, 487 EEPROM_EWENB = 0x30, /* Enable erasing/writing for 10 msec. */ 488 EEPROM_EWDIS = 0x00, /* Disable EWENB before 10 msec timeout. */ 489 }; 490 /* EEPROM locations. */ 491 enum eeprom_offset { 492 PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3, 493 EtherLink3ID=7, IFXcvrIO=8, IRQLine=9, 494 NodeAddr01=10, NodeAddr23=11, NodeAddr45=12, 495 DriverTune=13, Checksum=15}; 496 497 enum Window2 { /* Window 2. */ 498 Wn2_ResetOptions=12, 499 }; 500 enum Window3 { /* Window 3: MAC/config bits. */ 501 Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8, 502 }; 503 504 #define BFEXT(value, offset, bitcount) \ 505 ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1)) 506 507 #define BFINS(lhs, rhs, offset, bitcount) \ 508 (((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) | \ 509 (((rhs) & ((1 << (bitcount)) - 1)) << (offset))) 510 511 #define RAM_SIZE(v) BFEXT(v, 0, 3) 512 #define RAM_WIDTH(v) BFEXT(v, 3, 1) 513 #define RAM_SPEED(v) BFEXT(v, 4, 2) 514 #define ROM_SIZE(v) BFEXT(v, 6, 2) 515 #define RAM_SPLIT(v) BFEXT(v, 16, 2) 516 #define XCVR(v) BFEXT(v, 20, 4) 517 #define AUTOSELECT(v) BFEXT(v, 24, 1) 518 519 enum Window4 { /* Window 4: Xcvr/media bits. */ 520 Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10, 521 }; 522 enum Win4_Media_bits { 523 Media_SQE = 0x0008, /* Enable SQE error counting for AUI. */ 524 Media_10TP = 0x00C0, /* Enable link beat and jabber for 10baseT. */ 525 Media_Lnk = 0x0080, /* Enable just link beat for 100TX/100FX. */ 526 Media_LnkBeat = 0x0800, 527 }; 528 enum Window7 { /* Window 7: Bus Master control. */ 529 Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6, 530 Wn7_MasterStatus = 12, 531 }; 532 /* Boomerang bus master control registers. */ 533 enum MasterCtrl { 534 PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c, 535 TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38, 536 }; 537 538 /* The Rx and Tx descriptor lists. 539 Caution Alpha hackers: these types are 32 bits! Note also the 8 byte 540 alignment contraint on tx_ring[] and rx_ring[]. */ 541 #define LAST_FRAG 0x80000000 /* Last Addr/Len pair in descriptor. */ 542 #define DN_COMPLETE 0x00010000 /* This packet has been downloaded */ 543 struct boom_rx_desc { 544 __le32 next; /* Last entry points to 0. */ 545 __le32 status; 546 __le32 addr; /* Up to 63 addr/len pairs possible. */ 547 __le32 length; /* Set LAST_FRAG to indicate last pair. */ 548 }; 549 /* Values for the Rx status entry. */ 550 enum rx_desc_status { 551 RxDComplete=0x00008000, RxDError=0x4000, 552 /* See boomerang_rx() for actual error bits */ 553 IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27, 554 IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31, 555 }; 556 557 #ifdef MAX_SKB_FRAGS 558 #define DO_ZEROCOPY 1 559 #else 560 #define DO_ZEROCOPY 0 561 #endif 562 563 struct boom_tx_desc { 564 __le32 next; /* Last entry points to 0. */ 565 __le32 status; /* bits 0:12 length, others see below. */ 566 #if DO_ZEROCOPY 567 struct { 568 __le32 addr; 569 __le32 length; 570 } frag[1+MAX_SKB_FRAGS]; 571 #else 572 __le32 addr; 573 __le32 length; 574 #endif 575 }; 576 577 /* Values for the Tx status entry. */ 578 enum tx_desc_status { 579 CRCDisable=0x2000, TxDComplete=0x8000, 580 AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000, 581 TxIntrUploaded=0x80000000, /* IRQ when in FIFO, but maybe not sent. */ 582 }; 583 584 /* Chip features we care about in vp->capabilities, read from the EEPROM. */ 585 enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 }; 586 587 struct vortex_extra_stats { 588 unsigned long tx_deferred; 589 unsigned long tx_max_collisions; 590 unsigned long tx_multiple_collisions; 591 unsigned long tx_single_collisions; 592 unsigned long rx_bad_ssd; 593 }; 594 595 struct vortex_private { 596 /* The Rx and Tx rings should be quad-word-aligned. */ 597 struct boom_rx_desc* rx_ring; 598 struct boom_tx_desc* tx_ring; 599 dma_addr_t rx_ring_dma; 600 dma_addr_t tx_ring_dma; 601 /* The addresses of transmit- and receive-in-place skbuffs. */ 602 struct sk_buff* rx_skbuff[RX_RING_SIZE]; 603 struct sk_buff* tx_skbuff[TX_RING_SIZE]; 604 unsigned int cur_rx, cur_tx; /* The next free ring entry */ 605 unsigned int dirty_rx, dirty_tx; /* The ring entries to be free()ed. */ 606 struct vortex_extra_stats xstats; /* NIC-specific extra stats */ 607 struct sk_buff *tx_skb; /* Packet being eaten by bus master ctrl. */ 608 dma_addr_t tx_skb_dma; /* Allocated DMA address for bus master ctrl DMA. */ 609 610 /* PCI configuration space information. */ 611 struct device *gendev; 612 void __iomem *ioaddr; /* IO address space */ 613 void __iomem *cb_fn_base; /* CardBus function status addr space. */ 614 615 /* Some values here only for performance evaluation and path-coverage */ 616 int rx_nocopy, rx_copy, queued_packet, rx_csumhits; 617 int card_idx; 618 619 /* The remainder are related to chip state, mostly media selection. */ 620 struct timer_list timer; /* Media selection timer. */ 621 struct timer_list rx_oom_timer; /* Rx skb allocation retry timer */ 622 int options; /* User-settable misc. driver options. */ 623 unsigned int media_override:4, /* Passed-in media type. */ 624 default_media:4, /* Read from the EEPROM/Wn3_Config. */ 625 full_duplex:1, autoselect:1, 626 bus_master:1, /* Vortex can only do a fragment bus-m. */ 627 full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang */ 628 flow_ctrl:1, /* Use 802.3x flow control (PAUSE only) */ 629 partner_flow_ctrl:1, /* Partner supports flow control */ 630 has_nway:1, 631 enable_wol:1, /* Wake-on-LAN is enabled */ 632 pm_state_valid:1, /* pci_dev->saved_config_space has sane contents */ 633 open:1, 634 medialock:1, 635 large_frames:1, /* accept large frames */ 636 handling_irq:1; /* private in_irq indicator */ 637 /* {get|set}_wol operations are already serialized by rtnl. 638 * no additional locking is required for the enable_wol and acpi_set_WOL() 639 */ 640 int drv_flags; 641 u16 status_enable; 642 u16 intr_enable; 643 u16 available_media; /* From Wn3_Options. */ 644 u16 capabilities, info1, info2; /* Various, from EEPROM. */ 645 u16 advertising; /* NWay media advertisement */ 646 unsigned char phys[2]; /* MII device addresses. */ 647 u16 deferred; /* Resend these interrupts when we 648 * bale from the ISR */ 649 u16 io_size; /* Size of PCI region (for release_region) */ 650 651 /* Serialises access to hardware other than MII and variables below. 652 * The lock hierarchy is rtnl_lock > {lock, mii_lock} > window_lock. */ 653 spinlock_t lock; 654 655 spinlock_t mii_lock; /* Serialises access to MII */ 656 struct mii_if_info mii; /* MII lib hooks/info */ 657 spinlock_t window_lock; /* Serialises access to windowed regs */ 658 int window; /* Register window */ 659 }; 660 661 static void window_set(struct vortex_private *vp, int window) 662 { 663 if (window != vp->window) { 664 iowrite16(SelectWindow + window, vp->ioaddr + EL3_CMD); 665 vp->window = window; 666 } 667 } 668 669 #define DEFINE_WINDOW_IO(size) \ 670 static u ## size \ 671 window_read ## size(struct vortex_private *vp, int window, int addr) \ 672 { \ 673 unsigned long flags; \ 674 u ## size ret; \ 675 spin_lock_irqsave(&vp->window_lock, flags); \ 676 window_set(vp, window); \ 677 ret = ioread ## size(vp->ioaddr + addr); \ 678 spin_unlock_irqrestore(&vp->window_lock, flags); \ 679 return ret; \ 680 } \ 681 static void \ 682 window_write ## size(struct vortex_private *vp, u ## size value, \ 683 int window, int addr) \ 684 { \ 685 unsigned long flags; \ 686 spin_lock_irqsave(&vp->window_lock, flags); \ 687 window_set(vp, window); \ 688 iowrite ## size(value, vp->ioaddr + addr); \ 689 spin_unlock_irqrestore(&vp->window_lock, flags); \ 690 } 691 DEFINE_WINDOW_IO(8) 692 DEFINE_WINDOW_IO(16) 693 DEFINE_WINDOW_IO(32) 694 695 #ifdef CONFIG_PCI 696 #define DEVICE_PCI(dev) ((dev_is_pci(dev)) ? to_pci_dev((dev)) : NULL) 697 #else 698 #define DEVICE_PCI(dev) NULL 699 #endif 700 701 #define VORTEX_PCI(vp) \ 702 ((struct pci_dev *) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL)) 703 704 #ifdef CONFIG_EISA 705 #define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL) 706 #else 707 #define DEVICE_EISA(dev) NULL 708 #endif 709 710 #define VORTEX_EISA(vp) \ 711 ((struct eisa_device *) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL)) 712 713 /* The action to take with a media selection timer tick. 714 Note that we deviate from the 3Com order by checking 10base2 before AUI. 715 */ 716 enum xcvr_types { 717 XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx, 718 XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10, 719 }; 720 721 static const struct media_table { 722 char *name; 723 unsigned int media_bits:16, /* Bits to set in Wn4_Media register. */ 724 mask:8, /* The transceiver-present bit in Wn3_Config.*/ 725 next:8; /* The media type to try next. */ 726 int wait; /* Time before we check media status. */ 727 } media_tbl[] = { 728 { "10baseT", Media_10TP,0x08, XCVR_10base2, (14*HZ)/10}, 729 { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10}, 730 { "undefined", 0, 0x80, XCVR_10baseT, 10000}, 731 { "10base2", 0, 0x10, XCVR_AUI, (1*HZ)/10}, 732 { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10}, 733 { "100baseFX", Media_Lnk, 0x04, XCVR_MII, (14*HZ)/10}, 734 { "MII", 0, 0x41, XCVR_10baseT, 3*HZ }, 735 { "undefined", 0, 0x01, XCVR_10baseT, 10000}, 736 { "Autonegotiate", 0, 0x41, XCVR_10baseT, 3*HZ}, 737 { "MII-External", 0, 0x41, XCVR_10baseT, 3*HZ }, 738 { "Default", 0, 0xFF, XCVR_10baseT, 10000}, 739 }; 740 741 static struct { 742 const char str[ETH_GSTRING_LEN]; 743 } ethtool_stats_keys[] = { 744 { "tx_deferred" }, 745 { "tx_max_collisions" }, 746 { "tx_multiple_collisions" }, 747 { "tx_single_collisions" }, 748 { "rx_bad_ssd" }, 749 }; 750 751 /* number of ETHTOOL_GSTATS u64's */ 752 #define VORTEX_NUM_STATS 5 753 754 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq, 755 int chip_idx, int card_idx); 756 static int vortex_up(struct net_device *dev); 757 static void vortex_down(struct net_device *dev, int final); 758 static int vortex_open(struct net_device *dev); 759 static void mdio_sync(struct vortex_private *vp, int bits); 760 static int mdio_read(struct net_device *dev, int phy_id, int location); 761 static void mdio_write(struct net_device *vp, int phy_id, int location, int value); 762 static void vortex_timer(unsigned long arg); 763 static void rx_oom_timer(unsigned long arg); 764 static netdev_tx_t vortex_start_xmit(struct sk_buff *skb, 765 struct net_device *dev); 766 static netdev_tx_t boomerang_start_xmit(struct sk_buff *skb, 767 struct net_device *dev); 768 static int vortex_rx(struct net_device *dev); 769 static int boomerang_rx(struct net_device *dev); 770 static irqreturn_t vortex_interrupt(int irq, void *dev_id); 771 static irqreturn_t boomerang_interrupt(int irq, void *dev_id); 772 static int vortex_close(struct net_device *dev); 773 static void dump_tx_ring(struct net_device *dev); 774 static void update_stats(void __iomem *ioaddr, struct net_device *dev); 775 static struct net_device_stats *vortex_get_stats(struct net_device *dev); 776 static void set_rx_mode(struct net_device *dev); 777 #ifdef CONFIG_PCI 778 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); 779 #endif 780 static void vortex_tx_timeout(struct net_device *dev); 781 static void acpi_set_WOL(struct net_device *dev); 782 static const struct ethtool_ops vortex_ethtool_ops; 783 static void set_8021q_mode(struct net_device *dev, int enable); 784 785 /* This driver uses 'options' to pass the media type, full-duplex flag, etc. */ 786 /* Option count limit only -- unlimited interfaces are supported. */ 787 #define MAX_UNITS 8 788 static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 }; 789 static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 }; 790 static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 }; 791 static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 }; 792 static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 }; 793 static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 }; 794 static int global_options = -1; 795 static int global_full_duplex = -1; 796 static int global_enable_wol = -1; 797 static int global_use_mmio = -1; 798 799 /* Variables to work-around the Compaq PCI BIOS32 problem. */ 800 static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900; 801 static struct net_device *compaq_net_device; 802 803 static int vortex_cards_found; 804 805 module_param(debug, int, 0); 806 module_param(global_options, int, 0); 807 module_param_array(options, int, NULL, 0); 808 module_param(global_full_duplex, int, 0); 809 module_param_array(full_duplex, int, NULL, 0); 810 module_param_array(hw_checksums, int, NULL, 0); 811 module_param_array(flow_ctrl, int, NULL, 0); 812 module_param(global_enable_wol, int, 0); 813 module_param_array(enable_wol, int, NULL, 0); 814 module_param(rx_copybreak, int, 0); 815 module_param(max_interrupt_work, int, 0); 816 module_param(compaq_ioaddr, int, 0); 817 module_param(compaq_irq, int, 0); 818 module_param(compaq_device_id, int, 0); 819 module_param(watchdog, int, 0); 820 module_param(global_use_mmio, int, 0); 821 module_param_array(use_mmio, int, NULL, 0); 822 MODULE_PARM_DESC(debug, "3c59x debug level (0-6)"); 823 MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex"); 824 MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset"); 825 MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)"); 826 MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset"); 827 MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)"); 828 MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)"); 829 MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)"); 830 MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset"); 831 MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames"); 832 MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt"); 833 MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)"); 834 MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)"); 835 MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)"); 836 MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds"); 837 MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset"); 838 MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)"); 839 840 #ifdef CONFIG_NET_POLL_CONTROLLER 841 static void poll_vortex(struct net_device *dev) 842 { 843 struct vortex_private *vp = netdev_priv(dev); 844 unsigned long flags; 845 local_irq_save(flags); 846 (vp->full_bus_master_rx ? boomerang_interrupt:vortex_interrupt)(dev->irq,dev); 847 local_irq_restore(flags); 848 } 849 #endif 850 851 #ifdef CONFIG_PM 852 853 static int vortex_suspend(struct device *dev) 854 { 855 struct pci_dev *pdev = to_pci_dev(dev); 856 struct net_device *ndev = pci_get_drvdata(pdev); 857 858 if (!ndev || !netif_running(ndev)) 859 return 0; 860 861 netif_device_detach(ndev); 862 vortex_down(ndev, 1); 863 864 return 0; 865 } 866 867 static int vortex_resume(struct device *dev) 868 { 869 struct pci_dev *pdev = to_pci_dev(dev); 870 struct net_device *ndev = pci_get_drvdata(pdev); 871 int err; 872 873 if (!ndev || !netif_running(ndev)) 874 return 0; 875 876 err = vortex_up(ndev); 877 if (err) 878 return err; 879 880 netif_device_attach(ndev); 881 882 return 0; 883 } 884 885 static const struct dev_pm_ops vortex_pm_ops = { 886 .suspend = vortex_suspend, 887 .resume = vortex_resume, 888 .freeze = vortex_suspend, 889 .thaw = vortex_resume, 890 .poweroff = vortex_suspend, 891 .restore = vortex_resume, 892 }; 893 894 #define VORTEX_PM_OPS (&vortex_pm_ops) 895 896 #else /* !CONFIG_PM */ 897 898 #define VORTEX_PM_OPS NULL 899 900 #endif /* !CONFIG_PM */ 901 902 #ifdef CONFIG_EISA 903 static struct eisa_device_id vortex_eisa_ids[] = { 904 { "TCM5920", CH_3C592 }, 905 { "TCM5970", CH_3C597 }, 906 { "" } 907 }; 908 MODULE_DEVICE_TABLE(eisa, vortex_eisa_ids); 909 910 static int __init vortex_eisa_probe(struct device *device) 911 { 912 void __iomem *ioaddr; 913 struct eisa_device *edev; 914 915 edev = to_eisa_device(device); 916 917 if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME)) 918 return -EBUSY; 919 920 ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE); 921 922 if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12, 923 edev->id.driver_data, vortex_cards_found)) { 924 release_region(edev->base_addr, VORTEX_TOTAL_SIZE); 925 return -ENODEV; 926 } 927 928 vortex_cards_found++; 929 930 return 0; 931 } 932 933 static int vortex_eisa_remove(struct device *device) 934 { 935 struct eisa_device *edev; 936 struct net_device *dev; 937 struct vortex_private *vp; 938 void __iomem *ioaddr; 939 940 edev = to_eisa_device(device); 941 dev = eisa_get_drvdata(edev); 942 943 if (!dev) { 944 pr_err("vortex_eisa_remove called for Compaq device!\n"); 945 BUG(); 946 } 947 948 vp = netdev_priv(dev); 949 ioaddr = vp->ioaddr; 950 951 unregister_netdev(dev); 952 iowrite16(TotalReset|0x14, ioaddr + EL3_CMD); 953 release_region(edev->base_addr, VORTEX_TOTAL_SIZE); 954 955 free_netdev(dev); 956 return 0; 957 } 958 959 static struct eisa_driver vortex_eisa_driver = { 960 .id_table = vortex_eisa_ids, 961 .driver = { 962 .name = "3c59x", 963 .probe = vortex_eisa_probe, 964 .remove = vortex_eisa_remove 965 } 966 }; 967 968 #endif /* CONFIG_EISA */ 969 970 /* returns count found (>= 0), or negative on error */ 971 static int __init vortex_eisa_init(void) 972 { 973 int eisa_found = 0; 974 int orig_cards_found = vortex_cards_found; 975 976 #ifdef CONFIG_EISA 977 int err; 978 979 err = eisa_driver_register (&vortex_eisa_driver); 980 if (!err) { 981 /* 982 * Because of the way EISA bus is probed, we cannot assume 983 * any device have been found when we exit from 984 * eisa_driver_register (the bus root driver may not be 985 * initialized yet). So we blindly assume something was 986 * found, and let the sysfs magic happened... 987 */ 988 eisa_found = 1; 989 } 990 #endif 991 992 /* Special code to work-around the Compaq PCI BIOS32 problem. */ 993 if (compaq_ioaddr) { 994 vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE), 995 compaq_irq, compaq_device_id, vortex_cards_found++); 996 } 997 998 return vortex_cards_found - orig_cards_found + eisa_found; 999 } 1000 1001 /* returns count (>= 0), or negative on error */ 1002 static int vortex_init_one(struct pci_dev *pdev, 1003 const struct pci_device_id *ent) 1004 { 1005 int rc, unit, pci_bar; 1006 struct vortex_chip_info *vci; 1007 void __iomem *ioaddr; 1008 1009 /* wake up and enable device */ 1010 rc = pci_enable_device(pdev); 1011 if (rc < 0) 1012 goto out; 1013 1014 rc = pci_request_regions(pdev, DRV_NAME); 1015 if (rc < 0) 1016 goto out_disable; 1017 1018 unit = vortex_cards_found; 1019 1020 if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) { 1021 /* Determine the default if the user didn't override us */ 1022 vci = &vortex_info_tbl[ent->driver_data]; 1023 pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0; 1024 } else if (unit < MAX_UNITS && use_mmio[unit] >= 0) 1025 pci_bar = use_mmio[unit] ? 1 : 0; 1026 else 1027 pci_bar = global_use_mmio ? 1 : 0; 1028 1029 ioaddr = pci_iomap(pdev, pci_bar, 0); 1030 if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */ 1031 ioaddr = pci_iomap(pdev, 0, 0); 1032 if (!ioaddr) { 1033 rc = -ENOMEM; 1034 goto out_release; 1035 } 1036 1037 rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq, 1038 ent->driver_data, unit); 1039 if (rc < 0) 1040 goto out_iounmap; 1041 1042 vortex_cards_found++; 1043 goto out; 1044 1045 out_iounmap: 1046 pci_iounmap(pdev, ioaddr); 1047 out_release: 1048 pci_release_regions(pdev); 1049 out_disable: 1050 pci_disable_device(pdev); 1051 out: 1052 return rc; 1053 } 1054 1055 static const struct net_device_ops boomrang_netdev_ops = { 1056 .ndo_open = vortex_open, 1057 .ndo_stop = vortex_close, 1058 .ndo_start_xmit = boomerang_start_xmit, 1059 .ndo_tx_timeout = vortex_tx_timeout, 1060 .ndo_get_stats = vortex_get_stats, 1061 #ifdef CONFIG_PCI 1062 .ndo_do_ioctl = vortex_ioctl, 1063 #endif 1064 .ndo_set_rx_mode = set_rx_mode, 1065 .ndo_change_mtu = eth_change_mtu, 1066 .ndo_set_mac_address = eth_mac_addr, 1067 .ndo_validate_addr = eth_validate_addr, 1068 #ifdef CONFIG_NET_POLL_CONTROLLER 1069 .ndo_poll_controller = poll_vortex, 1070 #endif 1071 }; 1072 1073 static const struct net_device_ops vortex_netdev_ops = { 1074 .ndo_open = vortex_open, 1075 .ndo_stop = vortex_close, 1076 .ndo_start_xmit = vortex_start_xmit, 1077 .ndo_tx_timeout = vortex_tx_timeout, 1078 .ndo_get_stats = vortex_get_stats, 1079 #ifdef CONFIG_PCI 1080 .ndo_do_ioctl = vortex_ioctl, 1081 #endif 1082 .ndo_set_rx_mode = set_rx_mode, 1083 .ndo_change_mtu = eth_change_mtu, 1084 .ndo_set_mac_address = eth_mac_addr, 1085 .ndo_validate_addr = eth_validate_addr, 1086 #ifdef CONFIG_NET_POLL_CONTROLLER 1087 .ndo_poll_controller = poll_vortex, 1088 #endif 1089 }; 1090 1091 /* 1092 * Start up the PCI/EISA device which is described by *gendev. 1093 * Return 0 on success. 1094 * 1095 * NOTE: pdev can be NULL, for the case of a Compaq device 1096 */ 1097 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq, 1098 int chip_idx, int card_idx) 1099 { 1100 struct vortex_private *vp; 1101 int option; 1102 unsigned int eeprom[0x40], checksum = 0; /* EEPROM contents */ 1103 int i, step; 1104 struct net_device *dev; 1105 static int printed_version; 1106 int retval, print_info; 1107 struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx]; 1108 const char *print_name = "3c59x"; 1109 struct pci_dev *pdev = NULL; 1110 struct eisa_device *edev = NULL; 1111 1112 if (!printed_version) { 1113 pr_info("%s", version); 1114 printed_version = 1; 1115 } 1116 1117 if (gendev) { 1118 if ((pdev = DEVICE_PCI(gendev))) { 1119 print_name = pci_name(pdev); 1120 } 1121 1122 if ((edev = DEVICE_EISA(gendev))) { 1123 print_name = dev_name(&edev->dev); 1124 } 1125 } 1126 1127 dev = alloc_etherdev(sizeof(*vp)); 1128 retval = -ENOMEM; 1129 if (!dev) 1130 goto out; 1131 1132 SET_NETDEV_DEV(dev, gendev); 1133 vp = netdev_priv(dev); 1134 1135 option = global_options; 1136 1137 /* The lower four bits are the media type. */ 1138 if (dev->mem_start) { 1139 /* 1140 * The 'options' param is passed in as the third arg to the 1141 * LILO 'ether=' argument for non-modular use 1142 */ 1143 option = dev->mem_start; 1144 } 1145 else if (card_idx < MAX_UNITS) { 1146 if (options[card_idx] >= 0) 1147 option = options[card_idx]; 1148 } 1149 1150 if (option > 0) { 1151 if (option & 0x8000) 1152 vortex_debug = 7; 1153 if (option & 0x4000) 1154 vortex_debug = 2; 1155 if (option & 0x0400) 1156 vp->enable_wol = 1; 1157 } 1158 1159 print_info = (vortex_debug > 1); 1160 if (print_info) 1161 pr_info("See Documentation/networking/vortex.txt\n"); 1162 1163 pr_info("%s: 3Com %s %s at %p.\n", 1164 print_name, 1165 pdev ? "PCI" : "EISA", 1166 vci->name, 1167 ioaddr); 1168 1169 dev->base_addr = (unsigned long)ioaddr; 1170 dev->irq = irq; 1171 dev->mtu = mtu; 1172 vp->ioaddr = ioaddr; 1173 vp->large_frames = mtu > 1500; 1174 vp->drv_flags = vci->drv_flags; 1175 vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0; 1176 vp->io_size = vci->io_size; 1177 vp->card_idx = card_idx; 1178 vp->window = -1; 1179 1180 /* module list only for Compaq device */ 1181 if (gendev == NULL) { 1182 compaq_net_device = dev; 1183 } 1184 1185 /* PCI-only startup logic */ 1186 if (pdev) { 1187 /* enable bus-mastering if necessary */ 1188 if (vci->flags & PCI_USES_MASTER) 1189 pci_set_master(pdev); 1190 1191 if (vci->drv_flags & IS_VORTEX) { 1192 u8 pci_latency; 1193 u8 new_latency = 248; 1194 1195 /* Check the PCI latency value. On the 3c590 series the latency timer 1196 must be set to the maximum value to avoid data corruption that occurs 1197 when the timer expires during a transfer. This bug exists the Vortex 1198 chip only. */ 1199 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency); 1200 if (pci_latency < new_latency) { 1201 pr_info("%s: Overriding PCI latency timer (CFLT) setting of %d, new value is %d.\n", 1202 print_name, pci_latency, new_latency); 1203 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency); 1204 } 1205 } 1206 } 1207 1208 spin_lock_init(&vp->lock); 1209 spin_lock_init(&vp->mii_lock); 1210 spin_lock_init(&vp->window_lock); 1211 vp->gendev = gendev; 1212 vp->mii.dev = dev; 1213 vp->mii.mdio_read = mdio_read; 1214 vp->mii.mdio_write = mdio_write; 1215 vp->mii.phy_id_mask = 0x1f; 1216 vp->mii.reg_num_mask = 0x1f; 1217 1218 /* Makes sure rings are at least 16 byte aligned. */ 1219 vp->rx_ring = pci_alloc_consistent(pdev, sizeof(struct boom_rx_desc) * RX_RING_SIZE 1220 + sizeof(struct boom_tx_desc) * TX_RING_SIZE, 1221 &vp->rx_ring_dma); 1222 retval = -ENOMEM; 1223 if (!vp->rx_ring) 1224 goto free_device; 1225 1226 vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE); 1227 vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE; 1228 1229 /* if we are a PCI driver, we store info in pdev->driver_data 1230 * instead of a module list */ 1231 if (pdev) 1232 pci_set_drvdata(pdev, dev); 1233 if (edev) 1234 eisa_set_drvdata(edev, dev); 1235 1236 vp->media_override = 7; 1237 if (option >= 0) { 1238 vp->media_override = ((option & 7) == 2) ? 0 : option & 15; 1239 if (vp->media_override != 7) 1240 vp->medialock = 1; 1241 vp->full_duplex = (option & 0x200) ? 1 : 0; 1242 vp->bus_master = (option & 16) ? 1 : 0; 1243 } 1244 1245 if (global_full_duplex > 0) 1246 vp->full_duplex = 1; 1247 if (global_enable_wol > 0) 1248 vp->enable_wol = 1; 1249 1250 if (card_idx < MAX_UNITS) { 1251 if (full_duplex[card_idx] > 0) 1252 vp->full_duplex = 1; 1253 if (flow_ctrl[card_idx] > 0) 1254 vp->flow_ctrl = 1; 1255 if (enable_wol[card_idx] > 0) 1256 vp->enable_wol = 1; 1257 } 1258 1259 vp->mii.force_media = vp->full_duplex; 1260 vp->options = option; 1261 /* Read the station address from the EEPROM. */ 1262 { 1263 int base; 1264 1265 if (vci->drv_flags & EEPROM_8BIT) 1266 base = 0x230; 1267 else if (vci->drv_flags & EEPROM_OFFSET) 1268 base = EEPROM_Read + 0x30; 1269 else 1270 base = EEPROM_Read; 1271 1272 for (i = 0; i < 0x40; i++) { 1273 int timer; 1274 window_write16(vp, base + i, 0, Wn0EepromCmd); 1275 /* Pause for at least 162 us. for the read to take place. */ 1276 for (timer = 10; timer >= 0; timer--) { 1277 udelay(162); 1278 if ((window_read16(vp, 0, Wn0EepromCmd) & 1279 0x8000) == 0) 1280 break; 1281 } 1282 eeprom[i] = window_read16(vp, 0, Wn0EepromData); 1283 } 1284 } 1285 for (i = 0; i < 0x18; i++) 1286 checksum ^= eeprom[i]; 1287 checksum = (checksum ^ (checksum >> 8)) & 0xff; 1288 if (checksum != 0x00) { /* Grrr, needless incompatible change 3Com. */ 1289 while (i < 0x21) 1290 checksum ^= eeprom[i++]; 1291 checksum = (checksum ^ (checksum >> 8)) & 0xff; 1292 } 1293 if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO)) 1294 pr_cont(" ***INVALID CHECKSUM %4.4x*** ", checksum); 1295 for (i = 0; i < 3; i++) 1296 ((__be16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]); 1297 if (print_info) 1298 pr_cont(" %pM", dev->dev_addr); 1299 /* Unfortunately an all zero eeprom passes the checksum and this 1300 gets found in the wild in failure cases. Crypto is hard 8) */ 1301 if (!is_valid_ether_addr(dev->dev_addr)) { 1302 retval = -EINVAL; 1303 pr_err("*** EEPROM MAC address is invalid.\n"); 1304 goto free_ring; /* With every pack */ 1305 } 1306 for (i = 0; i < 6; i++) 1307 window_write8(vp, dev->dev_addr[i], 2, i); 1308 1309 if (print_info) 1310 pr_cont(", IRQ %d\n", dev->irq); 1311 /* Tell them about an invalid IRQ. */ 1312 if (dev->irq <= 0 || dev->irq >= nr_irqs) 1313 pr_warn(" *** Warning: IRQ %d is unlikely to work! ***\n", 1314 dev->irq); 1315 1316 step = (window_read8(vp, 4, Wn4_NetDiag) & 0x1e) >> 1; 1317 if (print_info) { 1318 pr_info(" product code %02x%02x rev %02x.%d date %02d-%02d-%02d\n", 1319 eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14], 1320 step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9); 1321 } 1322 1323 1324 if (pdev && vci->drv_flags & HAS_CB_FNS) { 1325 unsigned short n; 1326 1327 vp->cb_fn_base = pci_iomap(pdev, 2, 0); 1328 if (!vp->cb_fn_base) { 1329 retval = -ENOMEM; 1330 goto free_ring; 1331 } 1332 1333 if (print_info) { 1334 pr_info("%s: CardBus functions mapped %16.16llx->%p\n", 1335 print_name, 1336 (unsigned long long)pci_resource_start(pdev, 2), 1337 vp->cb_fn_base); 1338 } 1339 1340 n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010; 1341 if (vp->drv_flags & INVERT_LED_PWR) 1342 n |= 0x10; 1343 if (vp->drv_flags & INVERT_MII_PWR) 1344 n |= 0x4000; 1345 window_write16(vp, n, 2, Wn2_ResetOptions); 1346 if (vp->drv_flags & WNO_XCVR_PWR) { 1347 window_write16(vp, 0x0800, 0, 0); 1348 } 1349 } 1350 1351 /* Extract our information from the EEPROM data. */ 1352 vp->info1 = eeprom[13]; 1353 vp->info2 = eeprom[15]; 1354 vp->capabilities = eeprom[16]; 1355 1356 if (vp->info1 & 0x8000) { 1357 vp->full_duplex = 1; 1358 if (print_info) 1359 pr_info("Full duplex capable\n"); 1360 } 1361 1362 { 1363 static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"}; 1364 unsigned int config; 1365 vp->available_media = window_read16(vp, 3, Wn3_Options); 1366 if ((vp->available_media & 0xff) == 0) /* Broken 3c916 */ 1367 vp->available_media = 0x40; 1368 config = window_read32(vp, 3, Wn3_Config); 1369 if (print_info) { 1370 pr_debug(" Internal config register is %4.4x, transceivers %#x.\n", 1371 config, window_read16(vp, 3, Wn3_Options)); 1372 pr_info(" %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n", 1373 8 << RAM_SIZE(config), 1374 RAM_WIDTH(config) ? "word" : "byte", 1375 ram_split[RAM_SPLIT(config)], 1376 AUTOSELECT(config) ? "autoselect/" : "", 1377 XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" : 1378 media_tbl[XCVR(config)].name); 1379 } 1380 vp->default_media = XCVR(config); 1381 if (vp->default_media == XCVR_NWAY) 1382 vp->has_nway = 1; 1383 vp->autoselect = AUTOSELECT(config); 1384 } 1385 1386 if (vp->media_override != 7) { 1387 pr_info("%s: Media override to transceiver type %d (%s).\n", 1388 print_name, vp->media_override, 1389 media_tbl[vp->media_override].name); 1390 dev->if_port = vp->media_override; 1391 } else 1392 dev->if_port = vp->default_media; 1393 1394 if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) || 1395 dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) { 1396 int phy, phy_idx = 0; 1397 mii_preamble_required++; 1398 if (vp->drv_flags & EXTRA_PREAMBLE) 1399 mii_preamble_required++; 1400 mdio_sync(vp, 32); 1401 mdio_read(dev, 24, MII_BMSR); 1402 for (phy = 0; phy < 32 && phy_idx < 1; phy++) { 1403 int mii_status, phyx; 1404 1405 /* 1406 * For the 3c905CX we look at index 24 first, because it bogusly 1407 * reports an external PHY at all indices 1408 */ 1409 if (phy == 0) 1410 phyx = 24; 1411 else if (phy <= 24) 1412 phyx = phy - 1; 1413 else 1414 phyx = phy; 1415 mii_status = mdio_read(dev, phyx, MII_BMSR); 1416 if (mii_status && mii_status != 0xffff) { 1417 vp->phys[phy_idx++] = phyx; 1418 if (print_info) { 1419 pr_info(" MII transceiver found at address %d, status %4x.\n", 1420 phyx, mii_status); 1421 } 1422 if ((mii_status & 0x0040) == 0) 1423 mii_preamble_required++; 1424 } 1425 } 1426 mii_preamble_required--; 1427 if (phy_idx == 0) { 1428 pr_warn(" ***WARNING*** No MII transceivers found!\n"); 1429 vp->phys[0] = 24; 1430 } else { 1431 vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE); 1432 if (vp->full_duplex) { 1433 /* Only advertise the FD media types. */ 1434 vp->advertising &= ~0x02A0; 1435 mdio_write(dev, vp->phys[0], 4, vp->advertising); 1436 } 1437 } 1438 vp->mii.phy_id = vp->phys[0]; 1439 } 1440 1441 if (vp->capabilities & CapBusMaster) { 1442 vp->full_bus_master_tx = 1; 1443 if (print_info) { 1444 pr_info(" Enabling bus-master transmits and %s receives.\n", 1445 (vp->info2 & 1) ? "early" : "whole-frame" ); 1446 } 1447 vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2; 1448 vp->bus_master = 0; /* AKPM: vortex only */ 1449 } 1450 1451 /* The 3c59x-specific entries in the device structure. */ 1452 if (vp->full_bus_master_tx) { 1453 dev->netdev_ops = &boomrang_netdev_ops; 1454 /* Actually, it still should work with iommu. */ 1455 if (card_idx < MAX_UNITS && 1456 ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) || 1457 hw_checksums[card_idx] == 1)) { 1458 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG; 1459 } 1460 } else 1461 dev->netdev_ops = &vortex_netdev_ops; 1462 1463 if (print_info) { 1464 pr_info("%s: scatter/gather %sabled. h/w checksums %sabled\n", 1465 print_name, 1466 (dev->features & NETIF_F_SG) ? "en":"dis", 1467 (dev->features & NETIF_F_IP_CSUM) ? "en":"dis"); 1468 } 1469 1470 dev->ethtool_ops = &vortex_ethtool_ops; 1471 dev->watchdog_timeo = (watchdog * HZ) / 1000; 1472 1473 if (pdev) { 1474 vp->pm_state_valid = 1; 1475 pci_save_state(pdev); 1476 acpi_set_WOL(dev); 1477 } 1478 retval = register_netdev(dev); 1479 if (retval == 0) 1480 return 0; 1481 1482 free_ring: 1483 pci_free_consistent(pdev, 1484 sizeof(struct boom_rx_desc) * RX_RING_SIZE 1485 + sizeof(struct boom_tx_desc) * TX_RING_SIZE, 1486 vp->rx_ring, 1487 vp->rx_ring_dma); 1488 free_device: 1489 free_netdev(dev); 1490 pr_err(PFX "vortex_probe1 fails. Returns %d\n", retval); 1491 out: 1492 return retval; 1493 } 1494 1495 static void 1496 issue_and_wait(struct net_device *dev, int cmd) 1497 { 1498 struct vortex_private *vp = netdev_priv(dev); 1499 void __iomem *ioaddr = vp->ioaddr; 1500 int i; 1501 1502 iowrite16(cmd, ioaddr + EL3_CMD); 1503 for (i = 0; i < 2000; i++) { 1504 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) 1505 return; 1506 } 1507 1508 /* OK, that didn't work. Do it the slow way. One second */ 1509 for (i = 0; i < 100000; i++) { 1510 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) { 1511 if (vortex_debug > 1) 1512 pr_info("%s: command 0x%04x took %d usecs\n", 1513 dev->name, cmd, i * 10); 1514 return; 1515 } 1516 udelay(10); 1517 } 1518 pr_err("%s: command 0x%04x did not complete! Status=0x%x\n", 1519 dev->name, cmd, ioread16(ioaddr + EL3_STATUS)); 1520 } 1521 1522 static void 1523 vortex_set_duplex(struct net_device *dev) 1524 { 1525 struct vortex_private *vp = netdev_priv(dev); 1526 1527 pr_info("%s: setting %s-duplex.\n", 1528 dev->name, (vp->full_duplex) ? "full" : "half"); 1529 1530 /* Set the full-duplex bit. */ 1531 window_write16(vp, 1532 ((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) | 1533 (vp->large_frames ? 0x40 : 0) | 1534 ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ? 1535 0x100 : 0), 1536 3, Wn3_MAC_Ctrl); 1537 } 1538 1539 static void vortex_check_media(struct net_device *dev, unsigned int init) 1540 { 1541 struct vortex_private *vp = netdev_priv(dev); 1542 unsigned int ok_to_print = 0; 1543 1544 if (vortex_debug > 3) 1545 ok_to_print = 1; 1546 1547 if (mii_check_media(&vp->mii, ok_to_print, init)) { 1548 vp->full_duplex = vp->mii.full_duplex; 1549 vortex_set_duplex(dev); 1550 } else if (init) { 1551 vortex_set_duplex(dev); 1552 } 1553 } 1554 1555 static int 1556 vortex_up(struct net_device *dev) 1557 { 1558 struct vortex_private *vp = netdev_priv(dev); 1559 void __iomem *ioaddr = vp->ioaddr; 1560 unsigned int config; 1561 int i, mii_reg1, mii_reg5, err = 0; 1562 1563 if (VORTEX_PCI(vp)) { 1564 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); /* Go active */ 1565 if (vp->pm_state_valid) 1566 pci_restore_state(VORTEX_PCI(vp)); 1567 err = pci_enable_device(VORTEX_PCI(vp)); 1568 if (err) { 1569 pr_warn("%s: Could not enable device\n", dev->name); 1570 goto err_out; 1571 } 1572 } 1573 1574 /* Before initializing select the active media port. */ 1575 config = window_read32(vp, 3, Wn3_Config); 1576 1577 if (vp->media_override != 7) { 1578 pr_info("%s: Media override to transceiver %d (%s).\n", 1579 dev->name, vp->media_override, 1580 media_tbl[vp->media_override].name); 1581 dev->if_port = vp->media_override; 1582 } else if (vp->autoselect) { 1583 if (vp->has_nway) { 1584 if (vortex_debug > 1) 1585 pr_info("%s: using NWAY device table, not %d\n", 1586 dev->name, dev->if_port); 1587 dev->if_port = XCVR_NWAY; 1588 } else { 1589 /* Find first available media type, starting with 100baseTx. */ 1590 dev->if_port = XCVR_100baseTx; 1591 while (! (vp->available_media & media_tbl[dev->if_port].mask)) 1592 dev->if_port = media_tbl[dev->if_port].next; 1593 if (vortex_debug > 1) 1594 pr_info("%s: first available media type: %s\n", 1595 dev->name, media_tbl[dev->if_port].name); 1596 } 1597 } else { 1598 dev->if_port = vp->default_media; 1599 if (vortex_debug > 1) 1600 pr_info("%s: using default media %s\n", 1601 dev->name, media_tbl[dev->if_port].name); 1602 } 1603 1604 init_timer(&vp->timer); 1605 vp->timer.expires = RUN_AT(media_tbl[dev->if_port].wait); 1606 vp->timer.data = (unsigned long)dev; 1607 vp->timer.function = vortex_timer; /* timer handler */ 1608 add_timer(&vp->timer); 1609 1610 init_timer(&vp->rx_oom_timer); 1611 vp->rx_oom_timer.data = (unsigned long)dev; 1612 vp->rx_oom_timer.function = rx_oom_timer; 1613 1614 if (vortex_debug > 1) 1615 pr_debug("%s: Initial media type %s.\n", 1616 dev->name, media_tbl[dev->if_port].name); 1617 1618 vp->full_duplex = vp->mii.force_media; 1619 config = BFINS(config, dev->if_port, 20, 4); 1620 if (vortex_debug > 6) 1621 pr_debug("vortex_up(): writing 0x%x to InternalConfig\n", config); 1622 window_write32(vp, config, 3, Wn3_Config); 1623 1624 if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) { 1625 mii_reg1 = mdio_read(dev, vp->phys[0], MII_BMSR); 1626 mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA); 1627 vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0); 1628 vp->mii.full_duplex = vp->full_duplex; 1629 1630 vortex_check_media(dev, 1); 1631 } 1632 else 1633 vortex_set_duplex(dev); 1634 1635 issue_and_wait(dev, TxReset); 1636 /* 1637 * Don't reset the PHY - that upsets autonegotiation during DHCP operations. 1638 */ 1639 issue_and_wait(dev, RxReset|0x04); 1640 1641 1642 iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD); 1643 1644 if (vortex_debug > 1) { 1645 pr_debug("%s: vortex_up() irq %d media status %4.4x.\n", 1646 dev->name, dev->irq, window_read16(vp, 4, Wn4_Media)); 1647 } 1648 1649 /* Set the station address and mask in window 2 each time opened. */ 1650 for (i = 0; i < 6; i++) 1651 window_write8(vp, dev->dev_addr[i], 2, i); 1652 for (; i < 12; i+=2) 1653 window_write16(vp, 0, 2, i); 1654 1655 if (vp->cb_fn_base) { 1656 unsigned short n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010; 1657 if (vp->drv_flags & INVERT_LED_PWR) 1658 n |= 0x10; 1659 if (vp->drv_flags & INVERT_MII_PWR) 1660 n |= 0x4000; 1661 window_write16(vp, n, 2, Wn2_ResetOptions); 1662 } 1663 1664 if (dev->if_port == XCVR_10base2) 1665 /* Start the thinnet transceiver. We should really wait 50ms...*/ 1666 iowrite16(StartCoax, ioaddr + EL3_CMD); 1667 if (dev->if_port != XCVR_NWAY) { 1668 window_write16(vp, 1669 (window_read16(vp, 4, Wn4_Media) & 1670 ~(Media_10TP|Media_SQE)) | 1671 media_tbl[dev->if_port].media_bits, 1672 4, Wn4_Media); 1673 } 1674 1675 /* Switch to the stats window, and clear all stats by reading. */ 1676 iowrite16(StatsDisable, ioaddr + EL3_CMD); 1677 for (i = 0; i < 10; i++) 1678 window_read8(vp, 6, i); 1679 window_read16(vp, 6, 10); 1680 window_read16(vp, 6, 12); 1681 /* New: On the Vortex we must also clear the BadSSD counter. */ 1682 window_read8(vp, 4, 12); 1683 /* ..and on the Boomerang we enable the extra statistics bits. */ 1684 window_write16(vp, 0x0040, 4, Wn4_NetDiag); 1685 1686 if (vp->full_bus_master_rx) { /* Boomerang bus master. */ 1687 vp->cur_rx = vp->dirty_rx = 0; 1688 /* Initialize the RxEarly register as recommended. */ 1689 iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD); 1690 iowrite32(0x0020, ioaddr + PktStatus); 1691 iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr); 1692 } 1693 if (vp->full_bus_master_tx) { /* Boomerang bus master Tx. */ 1694 vp->cur_tx = vp->dirty_tx = 0; 1695 if (vp->drv_flags & IS_BOOMERANG) 1696 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */ 1697 /* Clear the Rx, Tx rings. */ 1698 for (i = 0; i < RX_RING_SIZE; i++) /* AKPM: this is done in vortex_open, too */ 1699 vp->rx_ring[i].status = 0; 1700 for (i = 0; i < TX_RING_SIZE; i++) 1701 vp->tx_skbuff[i] = NULL; 1702 iowrite32(0, ioaddr + DownListPtr); 1703 } 1704 /* Set receiver mode: presumably accept b-case and phys addr only. */ 1705 set_rx_mode(dev); 1706 /* enable 802.1q tagged frames */ 1707 set_8021q_mode(dev, 1); 1708 iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */ 1709 1710 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */ 1711 iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */ 1712 /* Allow status bits to be seen. */ 1713 vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete| 1714 (vp->full_bus_master_tx ? DownComplete : TxAvailable) | 1715 (vp->full_bus_master_rx ? UpComplete : RxComplete) | 1716 (vp->bus_master ? DMADone : 0); 1717 vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable | 1718 (vp->full_bus_master_rx ? 0 : RxComplete) | 1719 StatsFull | HostError | TxComplete | IntReq 1720 | (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete; 1721 iowrite16(vp->status_enable, ioaddr + EL3_CMD); 1722 /* Ack all pending events, and set active indicator mask. */ 1723 iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq, 1724 ioaddr + EL3_CMD); 1725 iowrite16(vp->intr_enable, ioaddr + EL3_CMD); 1726 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */ 1727 iowrite32(0x8000, vp->cb_fn_base + 4); 1728 netif_start_queue (dev); 1729 netdev_reset_queue(dev); 1730 err_out: 1731 return err; 1732 } 1733 1734 static int 1735 vortex_open(struct net_device *dev) 1736 { 1737 struct vortex_private *vp = netdev_priv(dev); 1738 int i; 1739 int retval; 1740 1741 /* Use the now-standard shared IRQ implementation. */ 1742 if ((retval = request_irq(dev->irq, vp->full_bus_master_rx ? 1743 boomerang_interrupt : vortex_interrupt, IRQF_SHARED, dev->name, dev))) { 1744 pr_err("%s: Could not reserve IRQ %d\n", dev->name, dev->irq); 1745 goto err; 1746 } 1747 1748 if (vp->full_bus_master_rx) { /* Boomerang bus master. */ 1749 if (vortex_debug > 2) 1750 pr_debug("%s: Filling in the Rx ring.\n", dev->name); 1751 for (i = 0; i < RX_RING_SIZE; i++) { 1752 struct sk_buff *skb; 1753 vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1)); 1754 vp->rx_ring[i].status = 0; /* Clear complete bit. */ 1755 vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG); 1756 1757 skb = __netdev_alloc_skb(dev, PKT_BUF_SZ + NET_IP_ALIGN, 1758 GFP_KERNEL); 1759 vp->rx_skbuff[i] = skb; 1760 if (skb == NULL) 1761 break; /* Bad news! */ 1762 1763 skb_reserve(skb, NET_IP_ALIGN); /* Align IP on 16 byte boundaries */ 1764 vp->rx_ring[i].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE)); 1765 } 1766 if (i != RX_RING_SIZE) { 1767 pr_emerg("%s: no memory for rx ring\n", dev->name); 1768 retval = -ENOMEM; 1769 goto err_free_skb; 1770 } 1771 /* Wrap the ring. */ 1772 vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma); 1773 } 1774 1775 retval = vortex_up(dev); 1776 if (!retval) 1777 goto out; 1778 1779 err_free_skb: 1780 for (i = 0; i < RX_RING_SIZE; i++) { 1781 if (vp->rx_skbuff[i]) { 1782 dev_kfree_skb(vp->rx_skbuff[i]); 1783 vp->rx_skbuff[i] = NULL; 1784 } 1785 } 1786 free_irq(dev->irq, dev); 1787 err: 1788 if (vortex_debug > 1) 1789 pr_err("%s: vortex_open() fails: returning %d\n", dev->name, retval); 1790 out: 1791 return retval; 1792 } 1793 1794 static void 1795 vortex_timer(unsigned long data) 1796 { 1797 struct net_device *dev = (struct net_device *)data; 1798 struct vortex_private *vp = netdev_priv(dev); 1799 void __iomem *ioaddr = vp->ioaddr; 1800 int next_tick = 60*HZ; 1801 int ok = 0; 1802 int media_status; 1803 1804 if (vortex_debug > 2) { 1805 pr_debug("%s: Media selection timer tick happened, %s.\n", 1806 dev->name, media_tbl[dev->if_port].name); 1807 pr_debug("dev->watchdog_timeo=%d\n", dev->watchdog_timeo); 1808 } 1809 1810 media_status = window_read16(vp, 4, Wn4_Media); 1811 switch (dev->if_port) { 1812 case XCVR_10baseT: case XCVR_100baseTx: case XCVR_100baseFx: 1813 if (media_status & Media_LnkBeat) { 1814 netif_carrier_on(dev); 1815 ok = 1; 1816 if (vortex_debug > 1) 1817 pr_debug("%s: Media %s has link beat, %x.\n", 1818 dev->name, media_tbl[dev->if_port].name, media_status); 1819 } else { 1820 netif_carrier_off(dev); 1821 if (vortex_debug > 1) { 1822 pr_debug("%s: Media %s has no link beat, %x.\n", 1823 dev->name, media_tbl[dev->if_port].name, media_status); 1824 } 1825 } 1826 break; 1827 case XCVR_MII: case XCVR_NWAY: 1828 { 1829 ok = 1; 1830 vortex_check_media(dev, 0); 1831 } 1832 break; 1833 default: /* Other media types handled by Tx timeouts. */ 1834 if (vortex_debug > 1) 1835 pr_debug("%s: Media %s has no indication, %x.\n", 1836 dev->name, media_tbl[dev->if_port].name, media_status); 1837 ok = 1; 1838 } 1839 1840 if (dev->flags & IFF_SLAVE || !netif_carrier_ok(dev)) 1841 next_tick = 5*HZ; 1842 1843 if (vp->medialock) 1844 goto leave_media_alone; 1845 1846 if (!ok) { 1847 unsigned int config; 1848 1849 spin_lock_irq(&vp->lock); 1850 1851 do { 1852 dev->if_port = media_tbl[dev->if_port].next; 1853 } while ( ! (vp->available_media & media_tbl[dev->if_port].mask)); 1854 if (dev->if_port == XCVR_Default) { /* Go back to default. */ 1855 dev->if_port = vp->default_media; 1856 if (vortex_debug > 1) 1857 pr_debug("%s: Media selection failing, using default %s port.\n", 1858 dev->name, media_tbl[dev->if_port].name); 1859 } else { 1860 if (vortex_debug > 1) 1861 pr_debug("%s: Media selection failed, now trying %s port.\n", 1862 dev->name, media_tbl[dev->if_port].name); 1863 next_tick = media_tbl[dev->if_port].wait; 1864 } 1865 window_write16(vp, 1866 (media_status & ~(Media_10TP|Media_SQE)) | 1867 media_tbl[dev->if_port].media_bits, 1868 4, Wn4_Media); 1869 1870 config = window_read32(vp, 3, Wn3_Config); 1871 config = BFINS(config, dev->if_port, 20, 4); 1872 window_write32(vp, config, 3, Wn3_Config); 1873 1874 iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax, 1875 ioaddr + EL3_CMD); 1876 if (vortex_debug > 1) 1877 pr_debug("wrote 0x%08x to Wn3_Config\n", config); 1878 /* AKPM: FIXME: Should reset Rx & Tx here. P60 of 3c90xc.pdf */ 1879 1880 spin_unlock_irq(&vp->lock); 1881 } 1882 1883 leave_media_alone: 1884 if (vortex_debug > 2) 1885 pr_debug("%s: Media selection timer finished, %s.\n", 1886 dev->name, media_tbl[dev->if_port].name); 1887 1888 mod_timer(&vp->timer, RUN_AT(next_tick)); 1889 if (vp->deferred) 1890 iowrite16(FakeIntr, ioaddr + EL3_CMD); 1891 } 1892 1893 static void vortex_tx_timeout(struct net_device *dev) 1894 { 1895 struct vortex_private *vp = netdev_priv(dev); 1896 void __iomem *ioaddr = vp->ioaddr; 1897 1898 pr_err("%s: transmit timed out, tx_status %2.2x status %4.4x.\n", 1899 dev->name, ioread8(ioaddr + TxStatus), 1900 ioread16(ioaddr + EL3_STATUS)); 1901 pr_err(" diagnostics: net %04x media %04x dma %08x fifo %04x\n", 1902 window_read16(vp, 4, Wn4_NetDiag), 1903 window_read16(vp, 4, Wn4_Media), 1904 ioread32(ioaddr + PktStatus), 1905 window_read16(vp, 4, Wn4_FIFODiag)); 1906 /* Slight code bloat to be user friendly. */ 1907 if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88) 1908 pr_err("%s: Transmitter encountered 16 collisions --" 1909 " network cable problem?\n", dev->name); 1910 if (ioread16(ioaddr + EL3_STATUS) & IntLatch) { 1911 pr_err("%s: Interrupt posted but not delivered --" 1912 " IRQ blocked by another device?\n", dev->name); 1913 /* Bad idea here.. but we might as well handle a few events. */ 1914 { 1915 /* 1916 * Block interrupts because vortex_interrupt does a bare spin_lock() 1917 */ 1918 unsigned long flags; 1919 local_irq_save(flags); 1920 if (vp->full_bus_master_tx) 1921 boomerang_interrupt(dev->irq, dev); 1922 else 1923 vortex_interrupt(dev->irq, dev); 1924 local_irq_restore(flags); 1925 } 1926 } 1927 1928 if (vortex_debug > 0) 1929 dump_tx_ring(dev); 1930 1931 issue_and_wait(dev, TxReset); 1932 1933 dev->stats.tx_errors++; 1934 if (vp->full_bus_master_tx) { 1935 pr_debug("%s: Resetting the Tx ring pointer.\n", dev->name); 1936 if (vp->cur_tx - vp->dirty_tx > 0 && ioread32(ioaddr + DownListPtr) == 0) 1937 iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc), 1938 ioaddr + DownListPtr); 1939 if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE) { 1940 netif_wake_queue (dev); 1941 netdev_reset_queue (dev); 1942 } 1943 if (vp->drv_flags & IS_BOOMERANG) 1944 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); 1945 iowrite16(DownUnstall, ioaddr + EL3_CMD); 1946 } else { 1947 dev->stats.tx_dropped++; 1948 netif_wake_queue(dev); 1949 netdev_reset_queue(dev); 1950 } 1951 /* Issue Tx Enable */ 1952 iowrite16(TxEnable, ioaddr + EL3_CMD); 1953 dev->trans_start = jiffies; /* prevent tx timeout */ 1954 } 1955 1956 /* 1957 * Handle uncommon interrupt sources. This is a separate routine to minimize 1958 * the cache impact. 1959 */ 1960 static void 1961 vortex_error(struct net_device *dev, int status) 1962 { 1963 struct vortex_private *vp = netdev_priv(dev); 1964 void __iomem *ioaddr = vp->ioaddr; 1965 int do_tx_reset = 0, reset_mask = 0; 1966 unsigned char tx_status = 0; 1967 1968 if (vortex_debug > 2) { 1969 pr_err("%s: vortex_error(), status=0x%x\n", dev->name, status); 1970 } 1971 1972 if (status & TxComplete) { /* Really "TxError" for us. */ 1973 tx_status = ioread8(ioaddr + TxStatus); 1974 /* Presumably a tx-timeout. We must merely re-enable. */ 1975 if (vortex_debug > 2 || 1976 (tx_status != 0x88 && vortex_debug > 0)) { 1977 pr_err("%s: Transmit error, Tx status register %2.2x.\n", 1978 dev->name, tx_status); 1979 if (tx_status == 0x82) { 1980 pr_err("Probably a duplex mismatch. See " 1981 "Documentation/networking/vortex.txt\n"); 1982 } 1983 dump_tx_ring(dev); 1984 } 1985 if (tx_status & 0x14) dev->stats.tx_fifo_errors++; 1986 if (tx_status & 0x38) dev->stats.tx_aborted_errors++; 1987 if (tx_status & 0x08) vp->xstats.tx_max_collisions++; 1988 iowrite8(0, ioaddr + TxStatus); 1989 if (tx_status & 0x30) { /* txJabber or txUnderrun */ 1990 do_tx_reset = 1; 1991 } else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET)) { /* maxCollisions */ 1992 do_tx_reset = 1; 1993 reset_mask = 0x0108; /* Reset interface logic, but not download logic */ 1994 } else { /* Merely re-enable the transmitter. */ 1995 iowrite16(TxEnable, ioaddr + EL3_CMD); 1996 } 1997 } 1998 1999 if (status & RxEarly) /* Rx early is unused. */ 2000 iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD); 2001 2002 if (status & StatsFull) { /* Empty statistics. */ 2003 static int DoneDidThat; 2004 if (vortex_debug > 4) 2005 pr_debug("%s: Updating stats.\n", dev->name); 2006 update_stats(ioaddr, dev); 2007 /* HACK: Disable statistics as an interrupt source. */ 2008 /* This occurs when we have the wrong media type! */ 2009 if (DoneDidThat == 0 && 2010 ioread16(ioaddr + EL3_STATUS) & StatsFull) { 2011 pr_warn("%s: Updating statistics failed, disabling stats as an interrupt source\n", 2012 dev->name); 2013 iowrite16(SetIntrEnb | 2014 (window_read16(vp, 5, 10) & ~StatsFull), 2015 ioaddr + EL3_CMD); 2016 vp->intr_enable &= ~StatsFull; 2017 DoneDidThat++; 2018 } 2019 } 2020 if (status & IntReq) { /* Restore all interrupt sources. */ 2021 iowrite16(vp->status_enable, ioaddr + EL3_CMD); 2022 iowrite16(vp->intr_enable, ioaddr + EL3_CMD); 2023 } 2024 if (status & HostError) { 2025 u16 fifo_diag; 2026 fifo_diag = window_read16(vp, 4, Wn4_FIFODiag); 2027 pr_err("%s: Host error, FIFO diagnostic register %4.4x.\n", 2028 dev->name, fifo_diag); 2029 /* Adapter failure requires Tx/Rx reset and reinit. */ 2030 if (vp->full_bus_master_tx) { 2031 int bus_status = ioread32(ioaddr + PktStatus); 2032 /* 0x80000000 PCI master abort. */ 2033 /* 0x40000000 PCI target abort. */ 2034 if (vortex_debug) 2035 pr_err("%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status); 2036 2037 /* In this case, blow the card away */ 2038 /* Must not enter D3 or we can't legally issue the reset! */ 2039 vortex_down(dev, 0); 2040 issue_and_wait(dev, TotalReset | 0xff); 2041 vortex_up(dev); /* AKPM: bug. vortex_up() assumes that the rx ring is full. It may not be. */ 2042 } else if (fifo_diag & 0x0400) 2043 do_tx_reset = 1; 2044 if (fifo_diag & 0x3000) { 2045 /* Reset Rx fifo and upload logic */ 2046 issue_and_wait(dev, RxReset|0x07); 2047 /* Set the Rx filter to the current state. */ 2048 set_rx_mode(dev); 2049 /* enable 802.1q VLAN tagged frames */ 2050 set_8021q_mode(dev, 1); 2051 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */ 2052 iowrite16(AckIntr | HostError, ioaddr + EL3_CMD); 2053 } 2054 } 2055 2056 if (do_tx_reset) { 2057 issue_and_wait(dev, TxReset|reset_mask); 2058 iowrite16(TxEnable, ioaddr + EL3_CMD); 2059 if (!vp->full_bus_master_tx) 2060 netif_wake_queue(dev); 2061 } 2062 } 2063 2064 static netdev_tx_t 2065 vortex_start_xmit(struct sk_buff *skb, struct net_device *dev) 2066 { 2067 struct vortex_private *vp = netdev_priv(dev); 2068 void __iomem *ioaddr = vp->ioaddr; 2069 int skblen = skb->len; 2070 2071 /* Put out the doubleword header... */ 2072 iowrite32(skb->len, ioaddr + TX_FIFO); 2073 if (vp->bus_master) { 2074 /* Set the bus-master controller to transfer the packet. */ 2075 int len = (skb->len + 3) & ~3; 2076 vp->tx_skb_dma = pci_map_single(VORTEX_PCI(vp), skb->data, len, 2077 PCI_DMA_TODEVICE); 2078 spin_lock_irq(&vp->window_lock); 2079 window_set(vp, 7); 2080 iowrite32(vp->tx_skb_dma, ioaddr + Wn7_MasterAddr); 2081 iowrite16(len, ioaddr + Wn7_MasterLen); 2082 spin_unlock_irq(&vp->window_lock); 2083 vp->tx_skb = skb; 2084 skb_tx_timestamp(skb); 2085 iowrite16(StartDMADown, ioaddr + EL3_CMD); 2086 /* netif_wake_queue() will be called at the DMADone interrupt. */ 2087 } else { 2088 /* ... and the packet rounded to a doubleword. */ 2089 skb_tx_timestamp(skb); 2090 iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2); 2091 dev_consume_skb_any (skb); 2092 if (ioread16(ioaddr + TxFree) > 1536) { 2093 netif_start_queue (dev); /* AKPM: redundant? */ 2094 } else { 2095 /* Interrupt us when the FIFO has room for max-sized packet. */ 2096 netif_stop_queue(dev); 2097 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD); 2098 } 2099 } 2100 2101 netdev_sent_queue(dev, skblen); 2102 2103 /* Clear the Tx status stack. */ 2104 { 2105 int tx_status; 2106 int i = 32; 2107 2108 while (--i > 0 && (tx_status = ioread8(ioaddr + TxStatus)) > 0) { 2109 if (tx_status & 0x3C) { /* A Tx-disabling error occurred. */ 2110 if (vortex_debug > 2) 2111 pr_debug("%s: Tx error, status %2.2x.\n", 2112 dev->name, tx_status); 2113 if (tx_status & 0x04) dev->stats.tx_fifo_errors++; 2114 if (tx_status & 0x38) dev->stats.tx_aborted_errors++; 2115 if (tx_status & 0x30) { 2116 issue_and_wait(dev, TxReset); 2117 } 2118 iowrite16(TxEnable, ioaddr + EL3_CMD); 2119 } 2120 iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */ 2121 } 2122 } 2123 return NETDEV_TX_OK; 2124 } 2125 2126 static netdev_tx_t 2127 boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev) 2128 { 2129 struct vortex_private *vp = netdev_priv(dev); 2130 void __iomem *ioaddr = vp->ioaddr; 2131 /* Calculate the next Tx descriptor entry. */ 2132 int entry = vp->cur_tx % TX_RING_SIZE; 2133 int skblen = skb->len; 2134 struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE]; 2135 unsigned long flags; 2136 dma_addr_t dma_addr; 2137 2138 if (vortex_debug > 6) { 2139 pr_debug("boomerang_start_xmit()\n"); 2140 pr_debug("%s: Trying to send a packet, Tx index %d.\n", 2141 dev->name, vp->cur_tx); 2142 } 2143 2144 /* 2145 * We can't allow a recursion from our interrupt handler back into the 2146 * tx routine, as they take the same spin lock, and that causes 2147 * deadlock. Just return NETDEV_TX_BUSY and let the stack try again in 2148 * a bit 2149 */ 2150 if (vp->handling_irq) 2151 return NETDEV_TX_BUSY; 2152 2153 if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) { 2154 if (vortex_debug > 0) 2155 pr_warn("%s: BUG! Tx Ring full, refusing to send buffer\n", 2156 dev->name); 2157 netif_stop_queue(dev); 2158 return NETDEV_TX_BUSY; 2159 } 2160 2161 vp->tx_skbuff[entry] = skb; 2162 2163 vp->tx_ring[entry].next = 0; 2164 #if DO_ZEROCOPY 2165 if (skb->ip_summed != CHECKSUM_PARTIAL) 2166 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded); 2167 else 2168 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum); 2169 2170 if (!skb_shinfo(skb)->nr_frags) { 2171 dma_addr = pci_map_single(VORTEX_PCI(vp), skb->data, skb->len, 2172 PCI_DMA_TODEVICE); 2173 if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr)) 2174 goto out_dma_err; 2175 2176 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(dma_addr); 2177 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG); 2178 } else { 2179 int i; 2180 2181 dma_addr = pci_map_single(VORTEX_PCI(vp), skb->data, 2182 skb_headlen(skb), PCI_DMA_TODEVICE); 2183 if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr)) 2184 goto out_dma_err; 2185 2186 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(dma_addr); 2187 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb_headlen(skb)); 2188 2189 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2190 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2191 2192 dma_addr = skb_frag_dma_map(&VORTEX_PCI(vp)->dev, frag, 2193 0, 2194 frag->size, 2195 DMA_TO_DEVICE); 2196 if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr)) { 2197 for(i = i-1; i >= 0; i--) 2198 dma_unmap_page(&VORTEX_PCI(vp)->dev, 2199 le32_to_cpu(vp->tx_ring[entry].frag[i+1].addr), 2200 le32_to_cpu(vp->tx_ring[entry].frag[i+1].length), 2201 DMA_TO_DEVICE); 2202 2203 pci_unmap_single(VORTEX_PCI(vp), 2204 le32_to_cpu(vp->tx_ring[entry].frag[0].addr), 2205 le32_to_cpu(vp->tx_ring[entry].frag[0].length), 2206 PCI_DMA_TODEVICE); 2207 2208 goto out_dma_err; 2209 } 2210 2211 vp->tx_ring[entry].frag[i+1].addr = 2212 cpu_to_le32(dma_addr); 2213 2214 if (i == skb_shinfo(skb)->nr_frags-1) 2215 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag)|LAST_FRAG); 2216 else 2217 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag)); 2218 } 2219 } 2220 #else 2221 dma_addr = pci_map_single(VORTEX_PCI(vp), skb->data, skb->len, PCI_DMA_TODEVICE); 2222 if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr)) 2223 goto out_dma_err; 2224 vp->tx_ring[entry].addr = cpu_to_le32(dma_addr); 2225 vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG); 2226 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded); 2227 #endif 2228 2229 spin_lock_irqsave(&vp->lock, flags); 2230 /* Wait for the stall to complete. */ 2231 issue_and_wait(dev, DownStall); 2232 prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc)); 2233 if (ioread32(ioaddr + DownListPtr) == 0) { 2234 iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr); 2235 vp->queued_packet++; 2236 } 2237 2238 vp->cur_tx++; 2239 netdev_sent_queue(dev, skblen); 2240 2241 if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) { 2242 netif_stop_queue (dev); 2243 } else { /* Clear previous interrupt enable. */ 2244 #if defined(tx_interrupt_mitigation) 2245 /* Dubious. If in boomeang_interrupt "faster" cyclone ifdef 2246 * were selected, this would corrupt DN_COMPLETE. No? 2247 */ 2248 prev_entry->status &= cpu_to_le32(~TxIntrUploaded); 2249 #endif 2250 } 2251 skb_tx_timestamp(skb); 2252 iowrite16(DownUnstall, ioaddr + EL3_CMD); 2253 spin_unlock_irqrestore(&vp->lock, flags); 2254 out: 2255 return NETDEV_TX_OK; 2256 out_dma_err: 2257 dev_err(&VORTEX_PCI(vp)->dev, "Error mapping dma buffer\n"); 2258 goto out; 2259 } 2260 2261 /* The interrupt handler does all of the Rx thread work and cleans up 2262 after the Tx thread. */ 2263 2264 /* 2265 * This is the ISR for the vortex series chips. 2266 * full_bus_master_tx == 0 && full_bus_master_rx == 0 2267 */ 2268 2269 static irqreturn_t 2270 vortex_interrupt(int irq, void *dev_id) 2271 { 2272 struct net_device *dev = dev_id; 2273 struct vortex_private *vp = netdev_priv(dev); 2274 void __iomem *ioaddr; 2275 int status; 2276 int work_done = max_interrupt_work; 2277 int handled = 0; 2278 unsigned int bytes_compl = 0, pkts_compl = 0; 2279 2280 ioaddr = vp->ioaddr; 2281 spin_lock(&vp->lock); 2282 2283 status = ioread16(ioaddr + EL3_STATUS); 2284 2285 if (vortex_debug > 6) 2286 pr_debug("vortex_interrupt(). status=0x%4x\n", status); 2287 2288 if ((status & IntLatch) == 0) 2289 goto handler_exit; /* No interrupt: shared IRQs cause this */ 2290 handled = 1; 2291 2292 if (status & IntReq) { 2293 status |= vp->deferred; 2294 vp->deferred = 0; 2295 } 2296 2297 if (status == 0xffff) /* h/w no longer present (hotplug)? */ 2298 goto handler_exit; 2299 2300 if (vortex_debug > 4) 2301 pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n", 2302 dev->name, status, ioread8(ioaddr + Timer)); 2303 2304 spin_lock(&vp->window_lock); 2305 window_set(vp, 7); 2306 2307 do { 2308 if (vortex_debug > 5) 2309 pr_debug("%s: In interrupt loop, status %4.4x.\n", 2310 dev->name, status); 2311 if (status & RxComplete) 2312 vortex_rx(dev); 2313 2314 if (status & TxAvailable) { 2315 if (vortex_debug > 5) 2316 pr_debug(" TX room bit was handled.\n"); 2317 /* There's room in the FIFO for a full-sized packet. */ 2318 iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD); 2319 netif_wake_queue (dev); 2320 } 2321 2322 if (status & DMADone) { 2323 if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) { 2324 iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */ 2325 pci_unmap_single(VORTEX_PCI(vp), vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, PCI_DMA_TODEVICE); 2326 pkts_compl++; 2327 bytes_compl += vp->tx_skb->len; 2328 dev_kfree_skb_irq(vp->tx_skb); /* Release the transferred buffer */ 2329 if (ioread16(ioaddr + TxFree) > 1536) { 2330 /* 2331 * AKPM: FIXME: I don't think we need this. If the queue was stopped due to 2332 * insufficient FIFO room, the TxAvailable test will succeed and call 2333 * netif_wake_queue() 2334 */ 2335 netif_wake_queue(dev); 2336 } else { /* Interrupt when FIFO has room for max-sized packet. */ 2337 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD); 2338 netif_stop_queue(dev); 2339 } 2340 } 2341 } 2342 /* Check for all uncommon interrupts at once. */ 2343 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) { 2344 if (status == 0xffff) 2345 break; 2346 if (status & RxEarly) 2347 vortex_rx(dev); 2348 spin_unlock(&vp->window_lock); 2349 vortex_error(dev, status); 2350 spin_lock(&vp->window_lock); 2351 window_set(vp, 7); 2352 } 2353 2354 if (--work_done < 0) { 2355 pr_warn("%s: Too much work in interrupt, status %4.4x\n", 2356 dev->name, status); 2357 /* Disable all pending interrupts. */ 2358 do { 2359 vp->deferred |= status; 2360 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable), 2361 ioaddr + EL3_CMD); 2362 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD); 2363 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch); 2364 /* The timer will reenable interrupts. */ 2365 mod_timer(&vp->timer, jiffies + 1*HZ); 2366 break; 2367 } 2368 /* Acknowledge the IRQ. */ 2369 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD); 2370 } while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete)); 2371 2372 netdev_completed_queue(dev, pkts_compl, bytes_compl); 2373 spin_unlock(&vp->window_lock); 2374 2375 if (vortex_debug > 4) 2376 pr_debug("%s: exiting interrupt, status %4.4x.\n", 2377 dev->name, status); 2378 handler_exit: 2379 spin_unlock(&vp->lock); 2380 return IRQ_RETVAL(handled); 2381 } 2382 2383 /* 2384 * This is the ISR for the boomerang series chips. 2385 * full_bus_master_tx == 1 && full_bus_master_rx == 1 2386 */ 2387 2388 static irqreturn_t 2389 boomerang_interrupt(int irq, void *dev_id) 2390 { 2391 struct net_device *dev = dev_id; 2392 struct vortex_private *vp = netdev_priv(dev); 2393 void __iomem *ioaddr; 2394 int status; 2395 int work_done = max_interrupt_work; 2396 int handled = 0; 2397 unsigned int bytes_compl = 0, pkts_compl = 0; 2398 2399 ioaddr = vp->ioaddr; 2400 2401 2402 /* 2403 * It seems dopey to put the spinlock this early, but we could race against vortex_tx_timeout 2404 * and boomerang_start_xmit 2405 */ 2406 spin_lock(&vp->lock); 2407 vp->handling_irq = 1; 2408 2409 status = ioread16(ioaddr + EL3_STATUS); 2410 2411 if (vortex_debug > 6) 2412 pr_debug("boomerang_interrupt. status=0x%4x\n", status); 2413 2414 if ((status & IntLatch) == 0) 2415 goto handler_exit; /* No interrupt: shared IRQs can cause this */ 2416 handled = 1; 2417 2418 if (status == 0xffff) { /* h/w no longer present (hotplug)? */ 2419 if (vortex_debug > 1) 2420 pr_debug("boomerang_interrupt(1): status = 0xffff\n"); 2421 goto handler_exit; 2422 } 2423 2424 if (status & IntReq) { 2425 status |= vp->deferred; 2426 vp->deferred = 0; 2427 } 2428 2429 if (vortex_debug > 4) 2430 pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n", 2431 dev->name, status, ioread8(ioaddr + Timer)); 2432 do { 2433 if (vortex_debug > 5) 2434 pr_debug("%s: In interrupt loop, status %4.4x.\n", 2435 dev->name, status); 2436 if (status & UpComplete) { 2437 iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD); 2438 if (vortex_debug > 5) 2439 pr_debug("boomerang_interrupt->boomerang_rx\n"); 2440 boomerang_rx(dev); 2441 } 2442 2443 if (status & DownComplete) { 2444 unsigned int dirty_tx = vp->dirty_tx; 2445 2446 iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD); 2447 while (vp->cur_tx - dirty_tx > 0) { 2448 int entry = dirty_tx % TX_RING_SIZE; 2449 #if 1 /* AKPM: the latter is faster, but cyclone-only */ 2450 if (ioread32(ioaddr + DownListPtr) == 2451 vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc)) 2452 break; /* It still hasn't been processed. */ 2453 #else 2454 if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0) 2455 break; /* It still hasn't been processed. */ 2456 #endif 2457 2458 if (vp->tx_skbuff[entry]) { 2459 struct sk_buff *skb = vp->tx_skbuff[entry]; 2460 #if DO_ZEROCOPY 2461 int i; 2462 for (i=0; i<=skb_shinfo(skb)->nr_frags; i++) 2463 pci_unmap_single(VORTEX_PCI(vp), 2464 le32_to_cpu(vp->tx_ring[entry].frag[i].addr), 2465 le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF, 2466 PCI_DMA_TODEVICE); 2467 #else 2468 pci_unmap_single(VORTEX_PCI(vp), 2469 le32_to_cpu(vp->tx_ring[entry].addr), skb->len, PCI_DMA_TODEVICE); 2470 #endif 2471 pkts_compl++; 2472 bytes_compl += skb->len; 2473 dev_kfree_skb_irq(skb); 2474 vp->tx_skbuff[entry] = NULL; 2475 } else { 2476 pr_debug("boomerang_interrupt: no skb!\n"); 2477 } 2478 /* dev->stats.tx_packets++; Counted below. */ 2479 dirty_tx++; 2480 } 2481 vp->dirty_tx = dirty_tx; 2482 if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) { 2483 if (vortex_debug > 6) 2484 pr_debug("boomerang_interrupt: wake queue\n"); 2485 netif_wake_queue (dev); 2486 } 2487 } 2488 2489 /* Check for all uncommon interrupts at once. */ 2490 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) 2491 vortex_error(dev, status); 2492 2493 if (--work_done < 0) { 2494 pr_warn("%s: Too much work in interrupt, status %4.4x\n", 2495 dev->name, status); 2496 /* Disable all pending interrupts. */ 2497 do { 2498 vp->deferred |= status; 2499 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable), 2500 ioaddr + EL3_CMD); 2501 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD); 2502 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch); 2503 /* The timer will reenable interrupts. */ 2504 mod_timer(&vp->timer, jiffies + 1*HZ); 2505 break; 2506 } 2507 /* Acknowledge the IRQ. */ 2508 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD); 2509 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */ 2510 iowrite32(0x8000, vp->cb_fn_base + 4); 2511 2512 } while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch); 2513 netdev_completed_queue(dev, pkts_compl, bytes_compl); 2514 2515 if (vortex_debug > 4) 2516 pr_debug("%s: exiting interrupt, status %4.4x.\n", 2517 dev->name, status); 2518 handler_exit: 2519 vp->handling_irq = 0; 2520 spin_unlock(&vp->lock); 2521 return IRQ_RETVAL(handled); 2522 } 2523 2524 static int vortex_rx(struct net_device *dev) 2525 { 2526 struct vortex_private *vp = netdev_priv(dev); 2527 void __iomem *ioaddr = vp->ioaddr; 2528 int i; 2529 short rx_status; 2530 2531 if (vortex_debug > 5) 2532 pr_debug("vortex_rx(): status %4.4x, rx_status %4.4x.\n", 2533 ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus)); 2534 while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) { 2535 if (rx_status & 0x4000) { /* Error, update stats. */ 2536 unsigned char rx_error = ioread8(ioaddr + RxErrors); 2537 if (vortex_debug > 2) 2538 pr_debug(" Rx error: status %2.2x.\n", rx_error); 2539 dev->stats.rx_errors++; 2540 if (rx_error & 0x01) dev->stats.rx_over_errors++; 2541 if (rx_error & 0x02) dev->stats.rx_length_errors++; 2542 if (rx_error & 0x04) dev->stats.rx_frame_errors++; 2543 if (rx_error & 0x08) dev->stats.rx_crc_errors++; 2544 if (rx_error & 0x10) dev->stats.rx_length_errors++; 2545 } else { 2546 /* The packet length: up to 4.5K!. */ 2547 int pkt_len = rx_status & 0x1fff; 2548 struct sk_buff *skb; 2549 2550 skb = netdev_alloc_skb(dev, pkt_len + 5); 2551 if (vortex_debug > 4) 2552 pr_debug("Receiving packet size %d status %4.4x.\n", 2553 pkt_len, rx_status); 2554 if (skb != NULL) { 2555 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */ 2556 /* 'skb_put()' points to the start of sk_buff data area. */ 2557 if (vp->bus_master && 2558 ! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) { 2559 dma_addr_t dma = pci_map_single(VORTEX_PCI(vp), skb_put(skb, pkt_len), 2560 pkt_len, PCI_DMA_FROMDEVICE); 2561 iowrite32(dma, ioaddr + Wn7_MasterAddr); 2562 iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen); 2563 iowrite16(StartDMAUp, ioaddr + EL3_CMD); 2564 while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000) 2565 ; 2566 pci_unmap_single(VORTEX_PCI(vp), dma, pkt_len, PCI_DMA_FROMDEVICE); 2567 } else { 2568 ioread32_rep(ioaddr + RX_FIFO, 2569 skb_put(skb, pkt_len), 2570 (pkt_len + 3) >> 2); 2571 } 2572 iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */ 2573 skb->protocol = eth_type_trans(skb, dev); 2574 netif_rx(skb); 2575 dev->stats.rx_packets++; 2576 /* Wait a limited time to go to next packet. */ 2577 for (i = 200; i >= 0; i--) 2578 if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) 2579 break; 2580 continue; 2581 } else if (vortex_debug > 0) 2582 pr_notice("%s: No memory to allocate a sk_buff of size %d.\n", 2583 dev->name, pkt_len); 2584 dev->stats.rx_dropped++; 2585 } 2586 issue_and_wait(dev, RxDiscard); 2587 } 2588 2589 return 0; 2590 } 2591 2592 static int 2593 boomerang_rx(struct net_device *dev) 2594 { 2595 struct vortex_private *vp = netdev_priv(dev); 2596 int entry = vp->cur_rx % RX_RING_SIZE; 2597 void __iomem *ioaddr = vp->ioaddr; 2598 int rx_status; 2599 int rx_work_limit = vp->dirty_rx + RX_RING_SIZE - vp->cur_rx; 2600 2601 if (vortex_debug > 5) 2602 pr_debug("boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS)); 2603 2604 while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){ 2605 if (--rx_work_limit < 0) 2606 break; 2607 if (rx_status & RxDError) { /* Error, update stats. */ 2608 unsigned char rx_error = rx_status >> 16; 2609 if (vortex_debug > 2) 2610 pr_debug(" Rx error: status %2.2x.\n", rx_error); 2611 dev->stats.rx_errors++; 2612 if (rx_error & 0x01) dev->stats.rx_over_errors++; 2613 if (rx_error & 0x02) dev->stats.rx_length_errors++; 2614 if (rx_error & 0x04) dev->stats.rx_frame_errors++; 2615 if (rx_error & 0x08) dev->stats.rx_crc_errors++; 2616 if (rx_error & 0x10) dev->stats.rx_length_errors++; 2617 } else { 2618 /* The packet length: up to 4.5K!. */ 2619 int pkt_len = rx_status & 0x1fff; 2620 struct sk_buff *skb; 2621 dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr); 2622 2623 if (vortex_debug > 4) 2624 pr_debug("Receiving packet size %d status %4.4x.\n", 2625 pkt_len, rx_status); 2626 2627 /* Check if the packet is long enough to just accept without 2628 copying to a properly sized skbuff. */ 2629 if (pkt_len < rx_copybreak && 2630 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) { 2631 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */ 2632 pci_dma_sync_single_for_cpu(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE); 2633 /* 'skb_put()' points to the start of sk_buff data area. */ 2634 memcpy(skb_put(skb, pkt_len), 2635 vp->rx_skbuff[entry]->data, 2636 pkt_len); 2637 pci_dma_sync_single_for_device(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE); 2638 vp->rx_copy++; 2639 } else { 2640 /* Pass up the skbuff already on the Rx ring. */ 2641 skb = vp->rx_skbuff[entry]; 2642 vp->rx_skbuff[entry] = NULL; 2643 skb_put(skb, pkt_len); 2644 pci_unmap_single(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE); 2645 vp->rx_nocopy++; 2646 } 2647 skb->protocol = eth_type_trans(skb, dev); 2648 { /* Use hardware checksum info. */ 2649 int csum_bits = rx_status & 0xee000000; 2650 if (csum_bits && 2651 (csum_bits == (IPChksumValid | TCPChksumValid) || 2652 csum_bits == (IPChksumValid | UDPChksumValid))) { 2653 skb->ip_summed = CHECKSUM_UNNECESSARY; 2654 vp->rx_csumhits++; 2655 } 2656 } 2657 netif_rx(skb); 2658 dev->stats.rx_packets++; 2659 } 2660 entry = (++vp->cur_rx) % RX_RING_SIZE; 2661 } 2662 /* Refill the Rx ring buffers. */ 2663 for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) { 2664 struct sk_buff *skb; 2665 entry = vp->dirty_rx % RX_RING_SIZE; 2666 if (vp->rx_skbuff[entry] == NULL) { 2667 skb = netdev_alloc_skb_ip_align(dev, PKT_BUF_SZ); 2668 if (skb == NULL) { 2669 static unsigned long last_jif; 2670 if (time_after(jiffies, last_jif + 10 * HZ)) { 2671 pr_warn("%s: memory shortage\n", 2672 dev->name); 2673 last_jif = jiffies; 2674 } 2675 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE) 2676 mod_timer(&vp->rx_oom_timer, RUN_AT(HZ * 1)); 2677 break; /* Bad news! */ 2678 } 2679 2680 vp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE)); 2681 vp->rx_skbuff[entry] = skb; 2682 } 2683 vp->rx_ring[entry].status = 0; /* Clear complete bit. */ 2684 iowrite16(UpUnstall, ioaddr + EL3_CMD); 2685 } 2686 return 0; 2687 } 2688 2689 /* 2690 * If we've hit a total OOM refilling the Rx ring we poll once a second 2691 * for some memory. Otherwise there is no way to restart the rx process. 2692 */ 2693 static void 2694 rx_oom_timer(unsigned long arg) 2695 { 2696 struct net_device *dev = (struct net_device *)arg; 2697 struct vortex_private *vp = netdev_priv(dev); 2698 2699 spin_lock_irq(&vp->lock); 2700 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE) /* This test is redundant, but makes me feel good */ 2701 boomerang_rx(dev); 2702 if (vortex_debug > 1) { 2703 pr_debug("%s: rx_oom_timer %s\n", dev->name, 2704 ((vp->cur_rx - vp->dirty_rx) != RX_RING_SIZE) ? "succeeded" : "retrying"); 2705 } 2706 spin_unlock_irq(&vp->lock); 2707 } 2708 2709 static void 2710 vortex_down(struct net_device *dev, int final_down) 2711 { 2712 struct vortex_private *vp = netdev_priv(dev); 2713 void __iomem *ioaddr = vp->ioaddr; 2714 2715 netdev_reset_queue(dev); 2716 netif_stop_queue(dev); 2717 2718 del_timer_sync(&vp->rx_oom_timer); 2719 del_timer_sync(&vp->timer); 2720 2721 /* Turn off statistics ASAP. We update dev->stats below. */ 2722 iowrite16(StatsDisable, ioaddr + EL3_CMD); 2723 2724 /* Disable the receiver and transmitter. */ 2725 iowrite16(RxDisable, ioaddr + EL3_CMD); 2726 iowrite16(TxDisable, ioaddr + EL3_CMD); 2727 2728 /* Disable receiving 802.1q tagged frames */ 2729 set_8021q_mode(dev, 0); 2730 2731 if (dev->if_port == XCVR_10base2) 2732 /* Turn off thinnet power. Green! */ 2733 iowrite16(StopCoax, ioaddr + EL3_CMD); 2734 2735 iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD); 2736 2737 update_stats(ioaddr, dev); 2738 if (vp->full_bus_master_rx) 2739 iowrite32(0, ioaddr + UpListPtr); 2740 if (vp->full_bus_master_tx) 2741 iowrite32(0, ioaddr + DownListPtr); 2742 2743 if (final_down && VORTEX_PCI(vp)) { 2744 vp->pm_state_valid = 1; 2745 pci_save_state(VORTEX_PCI(vp)); 2746 acpi_set_WOL(dev); 2747 } 2748 } 2749 2750 static int 2751 vortex_close(struct net_device *dev) 2752 { 2753 struct vortex_private *vp = netdev_priv(dev); 2754 void __iomem *ioaddr = vp->ioaddr; 2755 int i; 2756 2757 if (netif_device_present(dev)) 2758 vortex_down(dev, 1); 2759 2760 if (vortex_debug > 1) { 2761 pr_debug("%s: vortex_close() status %4.4x, Tx status %2.2x.\n", 2762 dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus)); 2763 pr_debug("%s: vortex close stats: rx_nocopy %d rx_copy %d" 2764 " tx_queued %d Rx pre-checksummed %d.\n", 2765 dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits); 2766 } 2767 2768 #if DO_ZEROCOPY 2769 if (vp->rx_csumhits && 2770 (vp->drv_flags & HAS_HWCKSM) == 0 && 2771 (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) { 2772 pr_warn("%s supports hardware checksums, and we're not using them!\n", 2773 dev->name); 2774 } 2775 #endif 2776 2777 free_irq(dev->irq, dev); 2778 2779 if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */ 2780 for (i = 0; i < RX_RING_SIZE; i++) 2781 if (vp->rx_skbuff[i]) { 2782 pci_unmap_single( VORTEX_PCI(vp), le32_to_cpu(vp->rx_ring[i].addr), 2783 PKT_BUF_SZ, PCI_DMA_FROMDEVICE); 2784 dev_kfree_skb(vp->rx_skbuff[i]); 2785 vp->rx_skbuff[i] = NULL; 2786 } 2787 } 2788 if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */ 2789 for (i = 0; i < TX_RING_SIZE; i++) { 2790 if (vp->tx_skbuff[i]) { 2791 struct sk_buff *skb = vp->tx_skbuff[i]; 2792 #if DO_ZEROCOPY 2793 int k; 2794 2795 for (k=0; k<=skb_shinfo(skb)->nr_frags; k++) 2796 pci_unmap_single(VORTEX_PCI(vp), 2797 le32_to_cpu(vp->tx_ring[i].frag[k].addr), 2798 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF, 2799 PCI_DMA_TODEVICE); 2800 #else 2801 pci_unmap_single(VORTEX_PCI(vp), le32_to_cpu(vp->tx_ring[i].addr), skb->len, PCI_DMA_TODEVICE); 2802 #endif 2803 dev_kfree_skb(skb); 2804 vp->tx_skbuff[i] = NULL; 2805 } 2806 } 2807 } 2808 2809 return 0; 2810 } 2811 2812 static void 2813 dump_tx_ring(struct net_device *dev) 2814 { 2815 if (vortex_debug > 0) { 2816 struct vortex_private *vp = netdev_priv(dev); 2817 void __iomem *ioaddr = vp->ioaddr; 2818 2819 if (vp->full_bus_master_tx) { 2820 int i; 2821 int stalled = ioread32(ioaddr + PktStatus) & 0x04; /* Possible racy. But it's only debug stuff */ 2822 2823 pr_err(" Flags; bus-master %d, dirty %d(%d) current %d(%d)\n", 2824 vp->full_bus_master_tx, 2825 vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE, 2826 vp->cur_tx, vp->cur_tx % TX_RING_SIZE); 2827 pr_err(" Transmit list %8.8x vs. %p.\n", 2828 ioread32(ioaddr + DownListPtr), 2829 &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]); 2830 issue_and_wait(dev, DownStall); 2831 for (i = 0; i < TX_RING_SIZE; i++) { 2832 unsigned int length; 2833 2834 #if DO_ZEROCOPY 2835 length = le32_to_cpu(vp->tx_ring[i].frag[0].length); 2836 #else 2837 length = le32_to_cpu(vp->tx_ring[i].length); 2838 #endif 2839 pr_err(" %d: @%p length %8.8x status %8.8x\n", 2840 i, &vp->tx_ring[i], length, 2841 le32_to_cpu(vp->tx_ring[i].status)); 2842 } 2843 if (!stalled) 2844 iowrite16(DownUnstall, ioaddr + EL3_CMD); 2845 } 2846 } 2847 } 2848 2849 static struct net_device_stats *vortex_get_stats(struct net_device *dev) 2850 { 2851 struct vortex_private *vp = netdev_priv(dev); 2852 void __iomem *ioaddr = vp->ioaddr; 2853 unsigned long flags; 2854 2855 if (netif_device_present(dev)) { /* AKPM: Used to be netif_running */ 2856 spin_lock_irqsave (&vp->lock, flags); 2857 update_stats(ioaddr, dev); 2858 spin_unlock_irqrestore (&vp->lock, flags); 2859 } 2860 return &dev->stats; 2861 } 2862 2863 /* Update statistics. 2864 Unlike with the EL3 we need not worry about interrupts changing 2865 the window setting from underneath us, but we must still guard 2866 against a race condition with a StatsUpdate interrupt updating the 2867 table. This is done by checking that the ASM (!) code generated uses 2868 atomic updates with '+='. 2869 */ 2870 static void update_stats(void __iomem *ioaddr, struct net_device *dev) 2871 { 2872 struct vortex_private *vp = netdev_priv(dev); 2873 2874 /* Unlike the 3c5x9 we need not turn off stats updates while reading. */ 2875 /* Switch to the stats window, and read everything. */ 2876 dev->stats.tx_carrier_errors += window_read8(vp, 6, 0); 2877 dev->stats.tx_heartbeat_errors += window_read8(vp, 6, 1); 2878 dev->stats.tx_window_errors += window_read8(vp, 6, 4); 2879 dev->stats.rx_fifo_errors += window_read8(vp, 6, 5); 2880 dev->stats.tx_packets += window_read8(vp, 6, 6); 2881 dev->stats.tx_packets += (window_read8(vp, 6, 9) & 2882 0x30) << 4; 2883 /* Rx packets */ window_read8(vp, 6, 7); /* Must read to clear */ 2884 /* Don't bother with register 9, an extension of registers 6&7. 2885 If we do use the 6&7 values the atomic update assumption above 2886 is invalid. */ 2887 dev->stats.rx_bytes += window_read16(vp, 6, 10); 2888 dev->stats.tx_bytes += window_read16(vp, 6, 12); 2889 /* Extra stats for get_ethtool_stats() */ 2890 vp->xstats.tx_multiple_collisions += window_read8(vp, 6, 2); 2891 vp->xstats.tx_single_collisions += window_read8(vp, 6, 3); 2892 vp->xstats.tx_deferred += window_read8(vp, 6, 8); 2893 vp->xstats.rx_bad_ssd += window_read8(vp, 4, 12); 2894 2895 dev->stats.collisions = vp->xstats.tx_multiple_collisions 2896 + vp->xstats.tx_single_collisions 2897 + vp->xstats.tx_max_collisions; 2898 2899 { 2900 u8 up = window_read8(vp, 4, 13); 2901 dev->stats.rx_bytes += (up & 0x0f) << 16; 2902 dev->stats.tx_bytes += (up & 0xf0) << 12; 2903 } 2904 } 2905 2906 static int vortex_nway_reset(struct net_device *dev) 2907 { 2908 struct vortex_private *vp = netdev_priv(dev); 2909 2910 return mii_nway_restart(&vp->mii); 2911 } 2912 2913 static int vortex_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2914 { 2915 struct vortex_private *vp = netdev_priv(dev); 2916 2917 return mii_ethtool_gset(&vp->mii, cmd); 2918 } 2919 2920 static int vortex_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2921 { 2922 struct vortex_private *vp = netdev_priv(dev); 2923 2924 return mii_ethtool_sset(&vp->mii, cmd); 2925 } 2926 2927 static u32 vortex_get_msglevel(struct net_device *dev) 2928 { 2929 return vortex_debug; 2930 } 2931 2932 static void vortex_set_msglevel(struct net_device *dev, u32 dbg) 2933 { 2934 vortex_debug = dbg; 2935 } 2936 2937 static int vortex_get_sset_count(struct net_device *dev, int sset) 2938 { 2939 switch (sset) { 2940 case ETH_SS_STATS: 2941 return VORTEX_NUM_STATS; 2942 default: 2943 return -EOPNOTSUPP; 2944 } 2945 } 2946 2947 static void vortex_get_ethtool_stats(struct net_device *dev, 2948 struct ethtool_stats *stats, u64 *data) 2949 { 2950 struct vortex_private *vp = netdev_priv(dev); 2951 void __iomem *ioaddr = vp->ioaddr; 2952 unsigned long flags; 2953 2954 spin_lock_irqsave(&vp->lock, flags); 2955 update_stats(ioaddr, dev); 2956 spin_unlock_irqrestore(&vp->lock, flags); 2957 2958 data[0] = vp->xstats.tx_deferred; 2959 data[1] = vp->xstats.tx_max_collisions; 2960 data[2] = vp->xstats.tx_multiple_collisions; 2961 data[3] = vp->xstats.tx_single_collisions; 2962 data[4] = vp->xstats.rx_bad_ssd; 2963 } 2964 2965 2966 static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data) 2967 { 2968 switch (stringset) { 2969 case ETH_SS_STATS: 2970 memcpy(data, ðtool_stats_keys, sizeof(ethtool_stats_keys)); 2971 break; 2972 default: 2973 WARN_ON(1); 2974 break; 2975 } 2976 } 2977 2978 static void vortex_get_drvinfo(struct net_device *dev, 2979 struct ethtool_drvinfo *info) 2980 { 2981 struct vortex_private *vp = netdev_priv(dev); 2982 2983 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 2984 if (VORTEX_PCI(vp)) { 2985 strlcpy(info->bus_info, pci_name(VORTEX_PCI(vp)), 2986 sizeof(info->bus_info)); 2987 } else { 2988 if (VORTEX_EISA(vp)) 2989 strlcpy(info->bus_info, dev_name(vp->gendev), 2990 sizeof(info->bus_info)); 2991 else 2992 snprintf(info->bus_info, sizeof(info->bus_info), 2993 "EISA 0x%lx %d", dev->base_addr, dev->irq); 2994 } 2995 } 2996 2997 static void vortex_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2998 { 2999 struct vortex_private *vp = netdev_priv(dev); 3000 3001 if (!VORTEX_PCI(vp)) 3002 return; 3003 3004 wol->supported = WAKE_MAGIC; 3005 3006 wol->wolopts = 0; 3007 if (vp->enable_wol) 3008 wol->wolopts |= WAKE_MAGIC; 3009 } 3010 3011 static int vortex_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 3012 { 3013 struct vortex_private *vp = netdev_priv(dev); 3014 3015 if (!VORTEX_PCI(vp)) 3016 return -EOPNOTSUPP; 3017 3018 if (wol->wolopts & ~WAKE_MAGIC) 3019 return -EINVAL; 3020 3021 if (wol->wolopts & WAKE_MAGIC) 3022 vp->enable_wol = 1; 3023 else 3024 vp->enable_wol = 0; 3025 acpi_set_WOL(dev); 3026 3027 return 0; 3028 } 3029 3030 static const struct ethtool_ops vortex_ethtool_ops = { 3031 .get_drvinfo = vortex_get_drvinfo, 3032 .get_strings = vortex_get_strings, 3033 .get_msglevel = vortex_get_msglevel, 3034 .set_msglevel = vortex_set_msglevel, 3035 .get_ethtool_stats = vortex_get_ethtool_stats, 3036 .get_sset_count = vortex_get_sset_count, 3037 .get_settings = vortex_get_settings, 3038 .set_settings = vortex_set_settings, 3039 .get_link = ethtool_op_get_link, 3040 .nway_reset = vortex_nway_reset, 3041 .get_wol = vortex_get_wol, 3042 .set_wol = vortex_set_wol, 3043 .get_ts_info = ethtool_op_get_ts_info, 3044 }; 3045 3046 #ifdef CONFIG_PCI 3047 /* 3048 * Must power the device up to do MDIO operations 3049 */ 3050 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 3051 { 3052 int err; 3053 struct vortex_private *vp = netdev_priv(dev); 3054 pci_power_t state = 0; 3055 3056 if(VORTEX_PCI(vp)) 3057 state = VORTEX_PCI(vp)->current_state; 3058 3059 /* The kernel core really should have pci_get_power_state() */ 3060 3061 if(state != 0) 3062 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); 3063 err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL); 3064 if(state != 0) 3065 pci_set_power_state(VORTEX_PCI(vp), state); 3066 3067 return err; 3068 } 3069 #endif 3070 3071 3072 /* Pre-Cyclone chips have no documented multicast filter, so the only 3073 multicast setting is to receive all multicast frames. At least 3074 the chip has a very clean way to set the mode, unlike many others. */ 3075 static void set_rx_mode(struct net_device *dev) 3076 { 3077 struct vortex_private *vp = netdev_priv(dev); 3078 void __iomem *ioaddr = vp->ioaddr; 3079 int new_mode; 3080 3081 if (dev->flags & IFF_PROMISC) { 3082 if (vortex_debug > 3) 3083 pr_notice("%s: Setting promiscuous mode.\n", dev->name); 3084 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm; 3085 } else if (!netdev_mc_empty(dev) || dev->flags & IFF_ALLMULTI) { 3086 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast; 3087 } else 3088 new_mode = SetRxFilter | RxStation | RxBroadcast; 3089 3090 iowrite16(new_mode, ioaddr + EL3_CMD); 3091 } 3092 3093 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) 3094 /* Setup the card so that it can receive frames with an 802.1q VLAN tag. 3095 Note that this must be done after each RxReset due to some backwards 3096 compatibility logic in the Cyclone and Tornado ASICs */ 3097 3098 /* The Ethernet Type used for 802.1q tagged frames */ 3099 #define VLAN_ETHER_TYPE 0x8100 3100 3101 static void set_8021q_mode(struct net_device *dev, int enable) 3102 { 3103 struct vortex_private *vp = netdev_priv(dev); 3104 int mac_ctrl; 3105 3106 if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) { 3107 /* cyclone and tornado chipsets can recognize 802.1q 3108 * tagged frames and treat them correctly */ 3109 3110 int max_pkt_size = dev->mtu+14; /* MTU+Ethernet header */ 3111 if (enable) 3112 max_pkt_size += 4; /* 802.1Q VLAN tag */ 3113 3114 window_write16(vp, max_pkt_size, 3, Wn3_MaxPktSize); 3115 3116 /* set VlanEtherType to let the hardware checksumming 3117 treat tagged frames correctly */ 3118 window_write16(vp, VLAN_ETHER_TYPE, 7, Wn7_VlanEtherType); 3119 } else { 3120 /* on older cards we have to enable large frames */ 3121 3122 vp->large_frames = dev->mtu > 1500 || enable; 3123 3124 mac_ctrl = window_read16(vp, 3, Wn3_MAC_Ctrl); 3125 if (vp->large_frames) 3126 mac_ctrl |= 0x40; 3127 else 3128 mac_ctrl &= ~0x40; 3129 window_write16(vp, mac_ctrl, 3, Wn3_MAC_Ctrl); 3130 } 3131 } 3132 #else 3133 3134 static void set_8021q_mode(struct net_device *dev, int enable) 3135 { 3136 } 3137 3138 3139 #endif 3140 3141 /* MII transceiver control section. 3142 Read and write the MII registers using software-generated serial 3143 MDIO protocol. See the MII specifications or DP83840A data sheet 3144 for details. */ 3145 3146 /* The maximum data clock rate is 2.5 Mhz. The minimum timing is usually 3147 met by back-to-back PCI I/O cycles, but we insert a delay to avoid 3148 "overclocking" issues. */ 3149 static void mdio_delay(struct vortex_private *vp) 3150 { 3151 window_read32(vp, 4, Wn4_PhysicalMgmt); 3152 } 3153 3154 #define MDIO_SHIFT_CLK 0x01 3155 #define MDIO_DIR_WRITE 0x04 3156 #define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE) 3157 #define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE) 3158 #define MDIO_DATA_READ 0x02 3159 #define MDIO_ENB_IN 0x00 3160 3161 /* Generate the preamble required for initial synchronization and 3162 a few older transceivers. */ 3163 static void mdio_sync(struct vortex_private *vp, int bits) 3164 { 3165 /* Establish sync by sending at least 32 logic ones. */ 3166 while (-- bits >= 0) { 3167 window_write16(vp, MDIO_DATA_WRITE1, 4, Wn4_PhysicalMgmt); 3168 mdio_delay(vp); 3169 window_write16(vp, MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK, 3170 4, Wn4_PhysicalMgmt); 3171 mdio_delay(vp); 3172 } 3173 } 3174 3175 static int mdio_read(struct net_device *dev, int phy_id, int location) 3176 { 3177 int i; 3178 struct vortex_private *vp = netdev_priv(dev); 3179 int read_cmd = (0xf6 << 10) | (phy_id << 5) | location; 3180 unsigned int retval = 0; 3181 3182 spin_lock_bh(&vp->mii_lock); 3183 3184 if (mii_preamble_required) 3185 mdio_sync(vp, 32); 3186 3187 /* Shift the read command bits out. */ 3188 for (i = 14; i >= 0; i--) { 3189 int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0; 3190 window_write16(vp, dataval, 4, Wn4_PhysicalMgmt); 3191 mdio_delay(vp); 3192 window_write16(vp, dataval | MDIO_SHIFT_CLK, 3193 4, Wn4_PhysicalMgmt); 3194 mdio_delay(vp); 3195 } 3196 /* Read the two transition, 16 data, and wire-idle bits. */ 3197 for (i = 19; i > 0; i--) { 3198 window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt); 3199 mdio_delay(vp); 3200 retval = (retval << 1) | 3201 ((window_read16(vp, 4, Wn4_PhysicalMgmt) & 3202 MDIO_DATA_READ) ? 1 : 0); 3203 window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK, 3204 4, Wn4_PhysicalMgmt); 3205 mdio_delay(vp); 3206 } 3207 3208 spin_unlock_bh(&vp->mii_lock); 3209 3210 return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff; 3211 } 3212 3213 static void mdio_write(struct net_device *dev, int phy_id, int location, int value) 3214 { 3215 struct vortex_private *vp = netdev_priv(dev); 3216 int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value; 3217 int i; 3218 3219 spin_lock_bh(&vp->mii_lock); 3220 3221 if (mii_preamble_required) 3222 mdio_sync(vp, 32); 3223 3224 /* Shift the command bits out. */ 3225 for (i = 31; i >= 0; i--) { 3226 int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0; 3227 window_write16(vp, dataval, 4, Wn4_PhysicalMgmt); 3228 mdio_delay(vp); 3229 window_write16(vp, dataval | MDIO_SHIFT_CLK, 3230 4, Wn4_PhysicalMgmt); 3231 mdio_delay(vp); 3232 } 3233 /* Leave the interface idle. */ 3234 for (i = 1; i >= 0; i--) { 3235 window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt); 3236 mdio_delay(vp); 3237 window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK, 3238 4, Wn4_PhysicalMgmt); 3239 mdio_delay(vp); 3240 } 3241 3242 spin_unlock_bh(&vp->mii_lock); 3243 } 3244 3245 /* ACPI: Advanced Configuration and Power Interface. */ 3246 /* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */ 3247 static void acpi_set_WOL(struct net_device *dev) 3248 { 3249 struct vortex_private *vp = netdev_priv(dev); 3250 void __iomem *ioaddr = vp->ioaddr; 3251 3252 device_set_wakeup_enable(vp->gendev, vp->enable_wol); 3253 3254 if (vp->enable_wol) { 3255 /* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */ 3256 window_write16(vp, 2, 7, 0x0c); 3257 /* The RxFilter must accept the WOL frames. */ 3258 iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD); 3259 iowrite16(RxEnable, ioaddr + EL3_CMD); 3260 3261 if (pci_enable_wake(VORTEX_PCI(vp), PCI_D3hot, 1)) { 3262 pr_info("%s: WOL not supported.\n", pci_name(VORTEX_PCI(vp))); 3263 3264 vp->enable_wol = 0; 3265 return; 3266 } 3267 3268 if (VORTEX_PCI(vp)->current_state < PCI_D3hot) 3269 return; 3270 3271 /* Change the power state to D3; RxEnable doesn't take effect. */ 3272 pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot); 3273 } 3274 } 3275 3276 3277 static void vortex_remove_one(struct pci_dev *pdev) 3278 { 3279 struct net_device *dev = pci_get_drvdata(pdev); 3280 struct vortex_private *vp; 3281 3282 if (!dev) { 3283 pr_err("vortex_remove_one called for Compaq device!\n"); 3284 BUG(); 3285 } 3286 3287 vp = netdev_priv(dev); 3288 3289 if (vp->cb_fn_base) 3290 pci_iounmap(pdev, vp->cb_fn_base); 3291 3292 unregister_netdev(dev); 3293 3294 pci_set_power_state(pdev, PCI_D0); /* Go active */ 3295 if (vp->pm_state_valid) 3296 pci_restore_state(pdev); 3297 pci_disable_device(pdev); 3298 3299 /* Should really use issue_and_wait() here */ 3300 iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14), 3301 vp->ioaddr + EL3_CMD); 3302 3303 pci_iounmap(pdev, vp->ioaddr); 3304 3305 pci_free_consistent(pdev, 3306 sizeof(struct boom_rx_desc) * RX_RING_SIZE 3307 + sizeof(struct boom_tx_desc) * TX_RING_SIZE, 3308 vp->rx_ring, 3309 vp->rx_ring_dma); 3310 3311 pci_release_regions(pdev); 3312 3313 free_netdev(dev); 3314 } 3315 3316 3317 static struct pci_driver vortex_driver = { 3318 .name = "3c59x", 3319 .probe = vortex_init_one, 3320 .remove = vortex_remove_one, 3321 .id_table = vortex_pci_tbl, 3322 .driver.pm = VORTEX_PM_OPS, 3323 }; 3324 3325 3326 static int vortex_have_pci; 3327 static int vortex_have_eisa; 3328 3329 3330 static int __init vortex_init(void) 3331 { 3332 int pci_rc, eisa_rc; 3333 3334 pci_rc = pci_register_driver(&vortex_driver); 3335 eisa_rc = vortex_eisa_init(); 3336 3337 if (pci_rc == 0) 3338 vortex_have_pci = 1; 3339 if (eisa_rc > 0) 3340 vortex_have_eisa = 1; 3341 3342 return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV; 3343 } 3344 3345 3346 static void __exit vortex_eisa_cleanup(void) 3347 { 3348 void __iomem *ioaddr; 3349 3350 #ifdef CONFIG_EISA 3351 /* Take care of the EISA devices */ 3352 eisa_driver_unregister(&vortex_eisa_driver); 3353 #endif 3354 3355 if (compaq_net_device) { 3356 ioaddr = ioport_map(compaq_net_device->base_addr, 3357 VORTEX_TOTAL_SIZE); 3358 3359 unregister_netdev(compaq_net_device); 3360 iowrite16(TotalReset, ioaddr + EL3_CMD); 3361 release_region(compaq_net_device->base_addr, 3362 VORTEX_TOTAL_SIZE); 3363 3364 free_netdev(compaq_net_device); 3365 } 3366 } 3367 3368 3369 static void __exit vortex_cleanup(void) 3370 { 3371 if (vortex_have_pci) 3372 pci_unregister_driver(&vortex_driver); 3373 if (vortex_have_eisa) 3374 vortex_eisa_cleanup(); 3375 } 3376 3377 3378 module_init(vortex_init); 3379 module_exit(vortex_cleanup); 3380