1 /* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */ 2 /* 3 Written 1996-1999 by Donald Becker. 4 5 This software may be used and distributed according to the terms 6 of the GNU General Public License, incorporated herein by reference. 7 8 This driver is for the 3Com "Vortex" and "Boomerang" series ethercards. 9 Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597 10 and the EtherLink XL 3c900 and 3c905 cards. 11 12 Problem reports and questions should be directed to 13 vortex@scyld.com 14 15 The author may be reached as becker@scyld.com, or C/O 16 Scyld Computing Corporation 17 410 Severn Ave., Suite 210 18 Annapolis MD 21403 19 20 */ 21 22 /* 23 * FIXME: This driver _could_ support MTU changing, but doesn't. See Don's hamachi.c implementation 24 * as well as other drivers 25 * 26 * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k 27 * due to dead code elimination. There will be some performance benefits from this due to 28 * elimination of all the tests and reduced cache footprint. 29 */ 30 31 32 #define DRV_NAME "3c59x" 33 34 35 36 /* A few values that may be tweaked. */ 37 /* Keep the ring sizes a power of two for efficiency. */ 38 #define TX_RING_SIZE 16 39 #define RX_RING_SIZE 32 40 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/ 41 42 /* "Knobs" that adjust features and parameters. */ 43 /* Set the copy breakpoint for the copy-only-tiny-frames scheme. 44 Setting to > 1512 effectively disables this feature. */ 45 #ifndef __arm__ 46 static int rx_copybreak = 200; 47 #else 48 /* ARM systems perform better by disregarding the bus-master 49 transfer capability of these cards. -- rmk */ 50 static int rx_copybreak = 1513; 51 #endif 52 /* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */ 53 static const int mtu = 1500; 54 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */ 55 static int max_interrupt_work = 32; 56 /* Tx timeout interval (millisecs) */ 57 static int watchdog = 5000; 58 59 /* Allow aggregation of Tx interrupts. Saves CPU load at the cost 60 * of possible Tx stalls if the system is blocking interrupts 61 * somewhere else. Undefine this to disable. 62 */ 63 #define tx_interrupt_mitigation 1 64 65 /* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */ 66 #define vortex_debug debug 67 #ifdef VORTEX_DEBUG 68 static int vortex_debug = VORTEX_DEBUG; 69 #else 70 static int vortex_debug = 1; 71 #endif 72 73 #include <linux/module.h> 74 #include <linux/kernel.h> 75 #include <linux/string.h> 76 #include <linux/timer.h> 77 #include <linux/errno.h> 78 #include <linux/in.h> 79 #include <linux/ioport.h> 80 #include <linux/interrupt.h> 81 #include <linux/pci.h> 82 #include <linux/mii.h> 83 #include <linux/init.h> 84 #include <linux/netdevice.h> 85 #include <linux/etherdevice.h> 86 #include <linux/skbuff.h> 87 #include <linux/ethtool.h> 88 #include <linux/highmem.h> 89 #include <linux/eisa.h> 90 #include <linux/bitops.h> 91 #include <linux/jiffies.h> 92 #include <linux/gfp.h> 93 #include <asm/irq.h> /* For nr_irqs only. */ 94 #include <asm/io.h> 95 #include <asm/uaccess.h> 96 97 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package. 98 This is only in the support-all-kernels source code. */ 99 100 #define RUN_AT(x) (jiffies + (x)) 101 102 #include <linux/delay.h> 103 104 105 static const char version[] = 106 DRV_NAME ": Donald Becker and others.\n"; 107 108 MODULE_AUTHOR("Donald Becker <becker@scyld.com>"); 109 MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver "); 110 MODULE_LICENSE("GPL"); 111 112 113 /* Operational parameter that usually are not changed. */ 114 115 /* The Vortex size is twice that of the original EtherLinkIII series: the 116 runtime register window, window 1, is now always mapped in. 117 The Boomerang size is twice as large as the Vortex -- it has additional 118 bus master control registers. */ 119 #define VORTEX_TOTAL_SIZE 0x20 120 #define BOOMERANG_TOTAL_SIZE 0x40 121 122 /* Set iff a MII transceiver on any interface requires mdio preamble. 123 This only set with the original DP83840 on older 3c905 boards, so the extra 124 code size of a per-interface flag is not worthwhile. */ 125 static char mii_preamble_required; 126 127 #define PFX DRV_NAME ": " 128 129 130 131 /* 132 Theory of Operation 133 134 I. Board Compatibility 135 136 This device driver is designed for the 3Com FastEtherLink and FastEtherLink 137 XL, 3Com's PCI to 10/100baseT adapters. It also works with the 10Mbs 138 versions of the FastEtherLink cards. The supported product IDs are 139 3c590, 3c592, 3c595, 3c597, 3c900, 3c905 140 141 The related ISA 3c515 is supported with a separate driver, 3c515.c, included 142 with the kernel source or available from 143 cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html 144 145 II. Board-specific settings 146 147 PCI bus devices are configured by the system at boot time, so no jumpers 148 need to be set on the board. The system BIOS should be set to assign the 149 PCI INTA signal to an otherwise unused system IRQ line. 150 151 The EEPROM settings for media type and forced-full-duplex are observed. 152 The EEPROM media type should be left at the default "autoselect" unless using 153 10base2 or AUI connections which cannot be reliably detected. 154 155 III. Driver operation 156 157 The 3c59x series use an interface that's very similar to the previous 3c5x9 158 series. The primary interface is two programmed-I/O FIFOs, with an 159 alternate single-contiguous-region bus-master transfer (see next). 160 161 The 3c900 "Boomerang" series uses a full-bus-master interface with separate 162 lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet, 163 DEC Tulip and Intel Speedo3. The first chip version retains a compatible 164 programmed-I/O interface that has been removed in 'B' and subsequent board 165 revisions. 166 167 One extension that is advertised in a very large font is that the adapters 168 are capable of being bus masters. On the Vortex chip this capability was 169 only for a single contiguous region making it far less useful than the full 170 bus master capability. There is a significant performance impact of taking 171 an extra interrupt or polling for the completion of each transfer, as well 172 as difficulty sharing the single transfer engine between the transmit and 173 receive threads. Using DMA transfers is a win only with large blocks or 174 with the flawed versions of the Intel Orion motherboard PCI controller. 175 176 The Boomerang chip's full-bus-master interface is useful, and has the 177 currently-unused advantages over other similar chips that queued transmit 178 packets may be reordered and receive buffer groups are associated with a 179 single frame. 180 181 With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme. 182 Rather than a fixed intermediate receive buffer, this scheme allocates 183 full-sized skbuffs as receive buffers. The value RX_COPYBREAK is used as 184 the copying breakpoint: it is chosen to trade-off the memory wasted by 185 passing the full-sized skbuff to the queue layer for all frames vs. the 186 copying cost of copying a frame to a correctly-sized skbuff. 187 188 IIIC. Synchronization 189 The driver runs as two independent, single-threaded flows of control. One 190 is the send-packet routine, which enforces single-threaded use by the 191 dev->tbusy flag. The other thread is the interrupt handler, which is single 192 threaded by the hardware and other software. 193 194 IV. Notes 195 196 Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development 197 3c590, 3c595, and 3c900 boards. 198 The name "Vortex" is the internal 3Com project name for the PCI ASIC, and 199 the EISA version is called "Demon". According to Terry these names come 200 from rides at the local amusement park. 201 202 The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes! 203 This driver only supports ethernet packets because of the skbuff allocation 204 limit of 4K. 205 */ 206 207 /* This table drives the PCI probe routines. It's mostly boilerplate in all 208 of the drivers, and will likely be provided by some future kernel. 209 */ 210 enum pci_flags_bit { 211 PCI_USES_MASTER=4, 212 }; 213 214 enum { IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8, 215 EEPROM_8BIT=0x10, /* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */ 216 HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100, 217 INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800, 218 EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000, 219 EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, }; 220 221 enum vortex_chips { 222 CH_3C590 = 0, 223 CH_3C592, 224 CH_3C597, 225 CH_3C595_1, 226 CH_3C595_2, 227 228 CH_3C595_3, 229 CH_3C900_1, 230 CH_3C900_2, 231 CH_3C900_3, 232 CH_3C900_4, 233 234 CH_3C900_5, 235 CH_3C900B_FL, 236 CH_3C905_1, 237 CH_3C905_2, 238 CH_3C905B_TX, 239 CH_3C905B_1, 240 241 CH_3C905B_2, 242 CH_3C905B_FX, 243 CH_3C905C, 244 CH_3C9202, 245 CH_3C980, 246 CH_3C9805, 247 248 CH_3CSOHO100_TX, 249 CH_3C555, 250 CH_3C556, 251 CH_3C556B, 252 CH_3C575, 253 254 CH_3C575_1, 255 CH_3CCFE575, 256 CH_3CCFE575CT, 257 CH_3CCFE656, 258 CH_3CCFEM656, 259 260 CH_3CCFEM656_1, 261 CH_3C450, 262 CH_3C920, 263 CH_3C982A, 264 CH_3C982B, 265 266 CH_905BT4, 267 CH_920B_EMB_WNM, 268 }; 269 270 271 /* note: this array directly indexed by above enums, and MUST 272 * be kept in sync with both the enums above, and the PCI device 273 * table below 274 */ 275 static struct vortex_chip_info { 276 const char *name; 277 int flags; 278 int drv_flags; 279 int io_size; 280 } vortex_info_tbl[] = { 281 {"3c590 Vortex 10Mbps", 282 PCI_USES_MASTER, IS_VORTEX, 32, }, 283 {"3c592 EISA 10Mbps Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */ 284 PCI_USES_MASTER, IS_VORTEX, 32, }, 285 {"3c597 EISA Fast Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */ 286 PCI_USES_MASTER, IS_VORTEX, 32, }, 287 {"3c595 Vortex 100baseTx", 288 PCI_USES_MASTER, IS_VORTEX, 32, }, 289 {"3c595 Vortex 100baseT4", 290 PCI_USES_MASTER, IS_VORTEX, 32, }, 291 292 {"3c595 Vortex 100base-MII", 293 PCI_USES_MASTER, IS_VORTEX, 32, }, 294 {"3c900 Boomerang 10baseT", 295 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, }, 296 {"3c900 Boomerang 10Mbps Combo", 297 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, }, 298 {"3c900 Cyclone 10Mbps TPO", /* AKPM: from Don's 0.99M */ 299 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, }, 300 {"3c900 Cyclone 10Mbps Combo", 301 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, }, 302 303 {"3c900 Cyclone 10Mbps TPC", /* AKPM: from Don's 0.99M */ 304 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, }, 305 {"3c900B-FL Cyclone 10base-FL", 306 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, }, 307 {"3c905 Boomerang 100baseTx", 308 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, }, 309 {"3c905 Boomerang 100baseT4", 310 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, }, 311 {"3C905B-TX Fast Etherlink XL PCI", 312 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, }, 313 {"3c905B Cyclone 100baseTx", 314 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, }, 315 316 {"3c905B Cyclone 10/100/BNC", 317 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, }, 318 {"3c905B-FX Cyclone 100baseFx", 319 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, }, 320 {"3c905C Tornado", 321 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, }, 322 {"3c920B-EMB-WNM (ATI Radeon 9100 IGP)", 323 PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, }, 324 {"3c980 Cyclone", 325 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM|EXTRA_PREAMBLE, 128, }, 326 327 {"3c980C Python-T", 328 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, }, 329 {"3cSOHO100-TX Hurricane", 330 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, }, 331 {"3c555 Laptop Hurricane", 332 PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, }, 333 {"3c556 Laptop Tornado", 334 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR| 335 HAS_HWCKSM, 128, }, 336 {"3c556B Laptop Hurricane", 337 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR| 338 WNO_XCVR_PWR|HAS_HWCKSM, 128, }, 339 340 {"3c575 [Megahertz] 10/100 LAN CardBus", 341 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, }, 342 {"3c575 Boomerang CardBus", 343 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, }, 344 {"3CCFE575BT Cyclone CardBus", 345 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT| 346 INVERT_LED_PWR|HAS_HWCKSM, 128, }, 347 {"3CCFE575CT Tornado CardBus", 348 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR| 349 MAX_COLLISION_RESET|HAS_HWCKSM, 128, }, 350 {"3CCFE656 Cyclone CardBus", 351 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR| 352 INVERT_LED_PWR|HAS_HWCKSM, 128, }, 353 354 {"3CCFEM656B Cyclone+Winmodem CardBus", 355 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR| 356 INVERT_LED_PWR|HAS_HWCKSM, 128, }, 357 {"3CXFEM656C Tornado+Winmodem CardBus", /* From pcmcia-cs-3.1.5 */ 358 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR| 359 MAX_COLLISION_RESET|HAS_HWCKSM, 128, }, 360 {"3c450 HomePNA Tornado", /* AKPM: from Don's 0.99Q */ 361 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, }, 362 {"3c920 Tornado", 363 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, }, 364 {"3c982 Hydra Dual Port A", 365 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, }, 366 367 {"3c982 Hydra Dual Port B", 368 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, }, 369 {"3c905B-T4", 370 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, }, 371 {"3c920B-EMB-WNM Tornado", 372 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, }, 373 374 {NULL,}, /* NULL terminated list. */ 375 }; 376 377 378 static DEFINE_PCI_DEVICE_TABLE(vortex_pci_tbl) = { 379 { 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 }, 380 { 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 }, 381 { 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 }, 382 { 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 }, 383 { 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 }, 384 385 { 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 }, 386 { 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 }, 387 { 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 }, 388 { 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 }, 389 { 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 }, 390 391 { 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 }, 392 { 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL }, 393 { 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 }, 394 { 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 }, 395 { 0x10B7, 0x9054, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_TX }, 396 { 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 }, 397 398 { 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 }, 399 { 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX }, 400 { 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C }, 401 { 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 }, 402 { 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 }, 403 { 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 }, 404 405 { 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX }, 406 { 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 }, 407 { 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 }, 408 { 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B }, 409 { 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 }, 410 411 { 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 }, 412 { 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 }, 413 { 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT }, 414 { 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 }, 415 { 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 }, 416 417 { 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 }, 418 { 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 }, 419 { 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 }, 420 { 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A }, 421 { 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B }, 422 423 { 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 }, 424 { 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM }, 425 426 {0,} /* 0 terminated list. */ 427 }; 428 MODULE_DEVICE_TABLE(pci, vortex_pci_tbl); 429 430 431 /* Operational definitions. 432 These are not used by other compilation units and thus are not 433 exported in a ".h" file. 434 435 First the windows. There are eight register windows, with the command 436 and status registers available in each. 437 */ 438 #define EL3_CMD 0x0e 439 #define EL3_STATUS 0x0e 440 441 /* The top five bits written to EL3_CMD are a command, the lower 442 11 bits are the parameter, if applicable. 443 Note that 11 parameters bits was fine for ethernet, but the new chip 444 can handle FDDI length frames (~4500 octets) and now parameters count 445 32-bit 'Dwords' rather than octets. */ 446 447 enum vortex_cmd { 448 TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11, 449 RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11, 450 UpStall = 6<<11, UpUnstall = (6<<11)+1, 451 DownStall = (6<<11)+2, DownUnstall = (6<<11)+3, 452 RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11, 453 FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11, 454 SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11, 455 SetTxThreshold = 18<<11, SetTxStart = 19<<11, 456 StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11, 457 StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,}; 458 459 /* The SetRxFilter command accepts the following classes: */ 460 enum RxFilter { 461 RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 }; 462 463 /* Bits in the general status register. */ 464 enum vortex_status { 465 IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004, 466 TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020, 467 IntReq = 0x0040, StatsFull = 0x0080, 468 DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10, 469 DMAInProgress = 1<<11, /* DMA controller is still busy.*/ 470 CmdInProgress = 1<<12, /* EL3_CMD is still busy.*/ 471 }; 472 473 /* Register window 1 offsets, the window used in normal operation. 474 On the Vortex this window is always mapped at offsets 0x10-0x1f. */ 475 enum Window1 { 476 TX_FIFO = 0x10, RX_FIFO = 0x10, RxErrors = 0x14, 477 RxStatus = 0x18, Timer=0x1A, TxStatus = 0x1B, 478 TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */ 479 }; 480 enum Window0 { 481 Wn0EepromCmd = 10, /* Window 0: EEPROM command register. */ 482 Wn0EepromData = 12, /* Window 0: EEPROM results register. */ 483 IntrStatus=0x0E, /* Valid in all windows. */ 484 }; 485 enum Win0_EEPROM_bits { 486 EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0, 487 EEPROM_EWENB = 0x30, /* Enable erasing/writing for 10 msec. */ 488 EEPROM_EWDIS = 0x00, /* Disable EWENB before 10 msec timeout. */ 489 }; 490 /* EEPROM locations. */ 491 enum eeprom_offset { 492 PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3, 493 EtherLink3ID=7, IFXcvrIO=8, IRQLine=9, 494 NodeAddr01=10, NodeAddr23=11, NodeAddr45=12, 495 DriverTune=13, Checksum=15}; 496 497 enum Window2 { /* Window 2. */ 498 Wn2_ResetOptions=12, 499 }; 500 enum Window3 { /* Window 3: MAC/config bits. */ 501 Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8, 502 }; 503 504 #define BFEXT(value, offset, bitcount) \ 505 ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1)) 506 507 #define BFINS(lhs, rhs, offset, bitcount) \ 508 (((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) | \ 509 (((rhs) & ((1 << (bitcount)) - 1)) << (offset))) 510 511 #define RAM_SIZE(v) BFEXT(v, 0, 3) 512 #define RAM_WIDTH(v) BFEXT(v, 3, 1) 513 #define RAM_SPEED(v) BFEXT(v, 4, 2) 514 #define ROM_SIZE(v) BFEXT(v, 6, 2) 515 #define RAM_SPLIT(v) BFEXT(v, 16, 2) 516 #define XCVR(v) BFEXT(v, 20, 4) 517 #define AUTOSELECT(v) BFEXT(v, 24, 1) 518 519 enum Window4 { /* Window 4: Xcvr/media bits. */ 520 Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10, 521 }; 522 enum Win4_Media_bits { 523 Media_SQE = 0x0008, /* Enable SQE error counting for AUI. */ 524 Media_10TP = 0x00C0, /* Enable link beat and jabber for 10baseT. */ 525 Media_Lnk = 0x0080, /* Enable just link beat for 100TX/100FX. */ 526 Media_LnkBeat = 0x0800, 527 }; 528 enum Window7 { /* Window 7: Bus Master control. */ 529 Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6, 530 Wn7_MasterStatus = 12, 531 }; 532 /* Boomerang bus master control registers. */ 533 enum MasterCtrl { 534 PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c, 535 TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38, 536 }; 537 538 /* The Rx and Tx descriptor lists. 539 Caution Alpha hackers: these types are 32 bits! Note also the 8 byte 540 alignment contraint on tx_ring[] and rx_ring[]. */ 541 #define LAST_FRAG 0x80000000 /* Last Addr/Len pair in descriptor. */ 542 #define DN_COMPLETE 0x00010000 /* This packet has been downloaded */ 543 struct boom_rx_desc { 544 __le32 next; /* Last entry points to 0. */ 545 __le32 status; 546 __le32 addr; /* Up to 63 addr/len pairs possible. */ 547 __le32 length; /* Set LAST_FRAG to indicate last pair. */ 548 }; 549 /* Values for the Rx status entry. */ 550 enum rx_desc_status { 551 RxDComplete=0x00008000, RxDError=0x4000, 552 /* See boomerang_rx() for actual error bits */ 553 IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27, 554 IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31, 555 }; 556 557 #ifdef MAX_SKB_FRAGS 558 #define DO_ZEROCOPY 1 559 #else 560 #define DO_ZEROCOPY 0 561 #endif 562 563 struct boom_tx_desc { 564 __le32 next; /* Last entry points to 0. */ 565 __le32 status; /* bits 0:12 length, others see below. */ 566 #if DO_ZEROCOPY 567 struct { 568 __le32 addr; 569 __le32 length; 570 } frag[1+MAX_SKB_FRAGS]; 571 #else 572 __le32 addr; 573 __le32 length; 574 #endif 575 }; 576 577 /* Values for the Tx status entry. */ 578 enum tx_desc_status { 579 CRCDisable=0x2000, TxDComplete=0x8000, 580 AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000, 581 TxIntrUploaded=0x80000000, /* IRQ when in FIFO, but maybe not sent. */ 582 }; 583 584 /* Chip features we care about in vp->capabilities, read from the EEPROM. */ 585 enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 }; 586 587 struct vortex_extra_stats { 588 unsigned long tx_deferred; 589 unsigned long tx_max_collisions; 590 unsigned long tx_multiple_collisions; 591 unsigned long tx_single_collisions; 592 unsigned long rx_bad_ssd; 593 }; 594 595 struct vortex_private { 596 /* The Rx and Tx rings should be quad-word-aligned. */ 597 struct boom_rx_desc* rx_ring; 598 struct boom_tx_desc* tx_ring; 599 dma_addr_t rx_ring_dma; 600 dma_addr_t tx_ring_dma; 601 /* The addresses of transmit- and receive-in-place skbuffs. */ 602 struct sk_buff* rx_skbuff[RX_RING_SIZE]; 603 struct sk_buff* tx_skbuff[TX_RING_SIZE]; 604 unsigned int cur_rx, cur_tx; /* The next free ring entry */ 605 unsigned int dirty_rx, dirty_tx; /* The ring entries to be free()ed. */ 606 struct vortex_extra_stats xstats; /* NIC-specific extra stats */ 607 struct sk_buff *tx_skb; /* Packet being eaten by bus master ctrl. */ 608 dma_addr_t tx_skb_dma; /* Allocated DMA address for bus master ctrl DMA. */ 609 610 /* PCI configuration space information. */ 611 struct device *gendev; 612 void __iomem *ioaddr; /* IO address space */ 613 void __iomem *cb_fn_base; /* CardBus function status addr space. */ 614 615 /* Some values here only for performance evaluation and path-coverage */ 616 int rx_nocopy, rx_copy, queued_packet, rx_csumhits; 617 int card_idx; 618 619 /* The remainder are related to chip state, mostly media selection. */ 620 struct timer_list timer; /* Media selection timer. */ 621 struct timer_list rx_oom_timer; /* Rx skb allocation retry timer */ 622 int options; /* User-settable misc. driver options. */ 623 unsigned int media_override:4, /* Passed-in media type. */ 624 default_media:4, /* Read from the EEPROM/Wn3_Config. */ 625 full_duplex:1, autoselect:1, 626 bus_master:1, /* Vortex can only do a fragment bus-m. */ 627 full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang */ 628 flow_ctrl:1, /* Use 802.3x flow control (PAUSE only) */ 629 partner_flow_ctrl:1, /* Partner supports flow control */ 630 has_nway:1, 631 enable_wol:1, /* Wake-on-LAN is enabled */ 632 pm_state_valid:1, /* pci_dev->saved_config_space has sane contents */ 633 open:1, 634 medialock:1, 635 must_free_region:1, /* Flag: if zero, Cardbus owns the I/O region */ 636 large_frames:1, /* accept large frames */ 637 handling_irq:1; /* private in_irq indicator */ 638 /* {get|set}_wol operations are already serialized by rtnl. 639 * no additional locking is required for the enable_wol and acpi_set_WOL() 640 */ 641 int drv_flags; 642 u16 status_enable; 643 u16 intr_enable; 644 u16 available_media; /* From Wn3_Options. */ 645 u16 capabilities, info1, info2; /* Various, from EEPROM. */ 646 u16 advertising; /* NWay media advertisement */ 647 unsigned char phys[2]; /* MII device addresses. */ 648 u16 deferred; /* Resend these interrupts when we 649 * bale from the ISR */ 650 u16 io_size; /* Size of PCI region (for release_region) */ 651 652 /* Serialises access to hardware other than MII and variables below. 653 * The lock hierarchy is rtnl_lock > {lock, mii_lock} > window_lock. */ 654 spinlock_t lock; 655 656 spinlock_t mii_lock; /* Serialises access to MII */ 657 struct mii_if_info mii; /* MII lib hooks/info */ 658 spinlock_t window_lock; /* Serialises access to windowed regs */ 659 int window; /* Register window */ 660 }; 661 662 static void window_set(struct vortex_private *vp, int window) 663 { 664 if (window != vp->window) { 665 iowrite16(SelectWindow + window, vp->ioaddr + EL3_CMD); 666 vp->window = window; 667 } 668 } 669 670 #define DEFINE_WINDOW_IO(size) \ 671 static u ## size \ 672 window_read ## size(struct vortex_private *vp, int window, int addr) \ 673 { \ 674 unsigned long flags; \ 675 u ## size ret; \ 676 spin_lock_irqsave(&vp->window_lock, flags); \ 677 window_set(vp, window); \ 678 ret = ioread ## size(vp->ioaddr + addr); \ 679 spin_unlock_irqrestore(&vp->window_lock, flags); \ 680 return ret; \ 681 } \ 682 static void \ 683 window_write ## size(struct vortex_private *vp, u ## size value, \ 684 int window, int addr) \ 685 { \ 686 unsigned long flags; \ 687 spin_lock_irqsave(&vp->window_lock, flags); \ 688 window_set(vp, window); \ 689 iowrite ## size(value, vp->ioaddr + addr); \ 690 spin_unlock_irqrestore(&vp->window_lock, flags); \ 691 } 692 DEFINE_WINDOW_IO(8) 693 DEFINE_WINDOW_IO(16) 694 DEFINE_WINDOW_IO(32) 695 696 #ifdef CONFIG_PCI 697 #define DEVICE_PCI(dev) (((dev)->bus == &pci_bus_type) ? to_pci_dev((dev)) : NULL) 698 #else 699 #define DEVICE_PCI(dev) NULL 700 #endif 701 702 #define VORTEX_PCI(vp) \ 703 ((struct pci_dev *) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL)) 704 705 #ifdef CONFIG_EISA 706 #define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL) 707 #else 708 #define DEVICE_EISA(dev) NULL 709 #endif 710 711 #define VORTEX_EISA(vp) \ 712 ((struct eisa_device *) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL)) 713 714 /* The action to take with a media selection timer tick. 715 Note that we deviate from the 3Com order by checking 10base2 before AUI. 716 */ 717 enum xcvr_types { 718 XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx, 719 XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10, 720 }; 721 722 static const struct media_table { 723 char *name; 724 unsigned int media_bits:16, /* Bits to set in Wn4_Media register. */ 725 mask:8, /* The transceiver-present bit in Wn3_Config.*/ 726 next:8; /* The media type to try next. */ 727 int wait; /* Time before we check media status. */ 728 } media_tbl[] = { 729 { "10baseT", Media_10TP,0x08, XCVR_10base2, (14*HZ)/10}, 730 { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10}, 731 { "undefined", 0, 0x80, XCVR_10baseT, 10000}, 732 { "10base2", 0, 0x10, XCVR_AUI, (1*HZ)/10}, 733 { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10}, 734 { "100baseFX", Media_Lnk, 0x04, XCVR_MII, (14*HZ)/10}, 735 { "MII", 0, 0x41, XCVR_10baseT, 3*HZ }, 736 { "undefined", 0, 0x01, XCVR_10baseT, 10000}, 737 { "Autonegotiate", 0, 0x41, XCVR_10baseT, 3*HZ}, 738 { "MII-External", 0, 0x41, XCVR_10baseT, 3*HZ }, 739 { "Default", 0, 0xFF, XCVR_10baseT, 10000}, 740 }; 741 742 static struct { 743 const char str[ETH_GSTRING_LEN]; 744 } ethtool_stats_keys[] = { 745 { "tx_deferred" }, 746 { "tx_max_collisions" }, 747 { "tx_multiple_collisions" }, 748 { "tx_single_collisions" }, 749 { "rx_bad_ssd" }, 750 }; 751 752 /* number of ETHTOOL_GSTATS u64's */ 753 #define VORTEX_NUM_STATS 5 754 755 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq, 756 int chip_idx, int card_idx); 757 static int vortex_up(struct net_device *dev); 758 static void vortex_down(struct net_device *dev, int final); 759 static int vortex_open(struct net_device *dev); 760 static void mdio_sync(struct vortex_private *vp, int bits); 761 static int mdio_read(struct net_device *dev, int phy_id, int location); 762 static void mdio_write(struct net_device *vp, int phy_id, int location, int value); 763 static void vortex_timer(unsigned long arg); 764 static void rx_oom_timer(unsigned long arg); 765 static netdev_tx_t vortex_start_xmit(struct sk_buff *skb, 766 struct net_device *dev); 767 static netdev_tx_t boomerang_start_xmit(struct sk_buff *skb, 768 struct net_device *dev); 769 static int vortex_rx(struct net_device *dev); 770 static int boomerang_rx(struct net_device *dev); 771 static irqreturn_t vortex_interrupt(int irq, void *dev_id); 772 static irqreturn_t boomerang_interrupt(int irq, void *dev_id); 773 static int vortex_close(struct net_device *dev); 774 static void dump_tx_ring(struct net_device *dev); 775 static void update_stats(void __iomem *ioaddr, struct net_device *dev); 776 static struct net_device_stats *vortex_get_stats(struct net_device *dev); 777 static void set_rx_mode(struct net_device *dev); 778 #ifdef CONFIG_PCI 779 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); 780 #endif 781 static void vortex_tx_timeout(struct net_device *dev); 782 static void acpi_set_WOL(struct net_device *dev); 783 static const struct ethtool_ops vortex_ethtool_ops; 784 static void set_8021q_mode(struct net_device *dev, int enable); 785 786 /* This driver uses 'options' to pass the media type, full-duplex flag, etc. */ 787 /* Option count limit only -- unlimited interfaces are supported. */ 788 #define MAX_UNITS 8 789 static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 }; 790 static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 }; 791 static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 }; 792 static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 }; 793 static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 }; 794 static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 }; 795 static int global_options = -1; 796 static int global_full_duplex = -1; 797 static int global_enable_wol = -1; 798 static int global_use_mmio = -1; 799 800 /* Variables to work-around the Compaq PCI BIOS32 problem. */ 801 static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900; 802 static struct net_device *compaq_net_device; 803 804 static int vortex_cards_found; 805 806 module_param(debug, int, 0); 807 module_param(global_options, int, 0); 808 module_param_array(options, int, NULL, 0); 809 module_param(global_full_duplex, int, 0); 810 module_param_array(full_duplex, int, NULL, 0); 811 module_param_array(hw_checksums, int, NULL, 0); 812 module_param_array(flow_ctrl, int, NULL, 0); 813 module_param(global_enable_wol, int, 0); 814 module_param_array(enable_wol, int, NULL, 0); 815 module_param(rx_copybreak, int, 0); 816 module_param(max_interrupt_work, int, 0); 817 module_param(compaq_ioaddr, int, 0); 818 module_param(compaq_irq, int, 0); 819 module_param(compaq_device_id, int, 0); 820 module_param(watchdog, int, 0); 821 module_param(global_use_mmio, int, 0); 822 module_param_array(use_mmio, int, NULL, 0); 823 MODULE_PARM_DESC(debug, "3c59x debug level (0-6)"); 824 MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex"); 825 MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset"); 826 MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)"); 827 MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset"); 828 MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)"); 829 MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)"); 830 MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)"); 831 MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset"); 832 MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames"); 833 MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt"); 834 MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)"); 835 MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)"); 836 MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)"); 837 MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds"); 838 MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset"); 839 MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)"); 840 841 #ifdef CONFIG_NET_POLL_CONTROLLER 842 static void poll_vortex(struct net_device *dev) 843 { 844 struct vortex_private *vp = netdev_priv(dev); 845 unsigned long flags; 846 local_irq_save(flags); 847 (vp->full_bus_master_rx ? boomerang_interrupt:vortex_interrupt)(dev->irq,dev); 848 local_irq_restore(flags); 849 } 850 #endif 851 852 #ifdef CONFIG_PM 853 854 static int vortex_suspend(struct device *dev) 855 { 856 struct pci_dev *pdev = to_pci_dev(dev); 857 struct net_device *ndev = pci_get_drvdata(pdev); 858 859 if (!ndev || !netif_running(ndev)) 860 return 0; 861 862 netif_device_detach(ndev); 863 vortex_down(ndev, 1); 864 865 return 0; 866 } 867 868 static int vortex_resume(struct device *dev) 869 { 870 struct pci_dev *pdev = to_pci_dev(dev); 871 struct net_device *ndev = pci_get_drvdata(pdev); 872 int err; 873 874 if (!ndev || !netif_running(ndev)) 875 return 0; 876 877 err = vortex_up(ndev); 878 if (err) 879 return err; 880 881 netif_device_attach(ndev); 882 883 return 0; 884 } 885 886 static const struct dev_pm_ops vortex_pm_ops = { 887 .suspend = vortex_suspend, 888 .resume = vortex_resume, 889 .freeze = vortex_suspend, 890 .thaw = vortex_resume, 891 .poweroff = vortex_suspend, 892 .restore = vortex_resume, 893 }; 894 895 #define VORTEX_PM_OPS (&vortex_pm_ops) 896 897 #else /* !CONFIG_PM */ 898 899 #define VORTEX_PM_OPS NULL 900 901 #endif /* !CONFIG_PM */ 902 903 #ifdef CONFIG_EISA 904 static struct eisa_device_id vortex_eisa_ids[] = { 905 { "TCM5920", CH_3C592 }, 906 { "TCM5970", CH_3C597 }, 907 { "" } 908 }; 909 MODULE_DEVICE_TABLE(eisa, vortex_eisa_ids); 910 911 static int __init vortex_eisa_probe(struct device *device) 912 { 913 void __iomem *ioaddr; 914 struct eisa_device *edev; 915 916 edev = to_eisa_device(device); 917 918 if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME)) 919 return -EBUSY; 920 921 ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE); 922 923 if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12, 924 edev->id.driver_data, vortex_cards_found)) { 925 release_region(edev->base_addr, VORTEX_TOTAL_SIZE); 926 return -ENODEV; 927 } 928 929 vortex_cards_found++; 930 931 return 0; 932 } 933 934 static int vortex_eisa_remove(struct device *device) 935 { 936 struct eisa_device *edev; 937 struct net_device *dev; 938 struct vortex_private *vp; 939 void __iomem *ioaddr; 940 941 edev = to_eisa_device(device); 942 dev = eisa_get_drvdata(edev); 943 944 if (!dev) { 945 pr_err("vortex_eisa_remove called for Compaq device!\n"); 946 BUG(); 947 } 948 949 vp = netdev_priv(dev); 950 ioaddr = vp->ioaddr; 951 952 unregister_netdev(dev); 953 iowrite16(TotalReset|0x14, ioaddr + EL3_CMD); 954 release_region(dev->base_addr, VORTEX_TOTAL_SIZE); 955 956 free_netdev(dev); 957 return 0; 958 } 959 960 static struct eisa_driver vortex_eisa_driver = { 961 .id_table = vortex_eisa_ids, 962 .driver = { 963 .name = "3c59x", 964 .probe = vortex_eisa_probe, 965 .remove = vortex_eisa_remove 966 } 967 }; 968 969 #endif /* CONFIG_EISA */ 970 971 /* returns count found (>= 0), or negative on error */ 972 static int __init vortex_eisa_init(void) 973 { 974 int eisa_found = 0; 975 int orig_cards_found = vortex_cards_found; 976 977 #ifdef CONFIG_EISA 978 int err; 979 980 err = eisa_driver_register (&vortex_eisa_driver); 981 if (!err) { 982 /* 983 * Because of the way EISA bus is probed, we cannot assume 984 * any device have been found when we exit from 985 * eisa_driver_register (the bus root driver may not be 986 * initialized yet). So we blindly assume something was 987 * found, and let the sysfs magic happened... 988 */ 989 eisa_found = 1; 990 } 991 #endif 992 993 /* Special code to work-around the Compaq PCI BIOS32 problem. */ 994 if (compaq_ioaddr) { 995 vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE), 996 compaq_irq, compaq_device_id, vortex_cards_found++); 997 } 998 999 return vortex_cards_found - orig_cards_found + eisa_found; 1000 } 1001 1002 /* returns count (>= 0), or negative on error */ 1003 static int vortex_init_one(struct pci_dev *pdev, 1004 const struct pci_device_id *ent) 1005 { 1006 int rc, unit, pci_bar; 1007 struct vortex_chip_info *vci; 1008 void __iomem *ioaddr; 1009 1010 /* wake up and enable device */ 1011 rc = pci_enable_device(pdev); 1012 if (rc < 0) 1013 goto out; 1014 1015 unit = vortex_cards_found; 1016 1017 if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) { 1018 /* Determine the default if the user didn't override us */ 1019 vci = &vortex_info_tbl[ent->driver_data]; 1020 pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0; 1021 } else if (unit < MAX_UNITS && use_mmio[unit] >= 0) 1022 pci_bar = use_mmio[unit] ? 1 : 0; 1023 else 1024 pci_bar = global_use_mmio ? 1 : 0; 1025 1026 ioaddr = pci_iomap(pdev, pci_bar, 0); 1027 if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */ 1028 ioaddr = pci_iomap(pdev, 0, 0); 1029 if (!ioaddr) { 1030 pci_disable_device(pdev); 1031 rc = -ENOMEM; 1032 goto out; 1033 } 1034 1035 rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq, 1036 ent->driver_data, unit); 1037 if (rc < 0) { 1038 pci_iounmap(pdev, ioaddr); 1039 pci_disable_device(pdev); 1040 goto out; 1041 } 1042 1043 vortex_cards_found++; 1044 1045 out: 1046 return rc; 1047 } 1048 1049 static const struct net_device_ops boomrang_netdev_ops = { 1050 .ndo_open = vortex_open, 1051 .ndo_stop = vortex_close, 1052 .ndo_start_xmit = boomerang_start_xmit, 1053 .ndo_tx_timeout = vortex_tx_timeout, 1054 .ndo_get_stats = vortex_get_stats, 1055 #ifdef CONFIG_PCI 1056 .ndo_do_ioctl = vortex_ioctl, 1057 #endif 1058 .ndo_set_rx_mode = set_rx_mode, 1059 .ndo_change_mtu = eth_change_mtu, 1060 .ndo_set_mac_address = eth_mac_addr, 1061 .ndo_validate_addr = eth_validate_addr, 1062 #ifdef CONFIG_NET_POLL_CONTROLLER 1063 .ndo_poll_controller = poll_vortex, 1064 #endif 1065 }; 1066 1067 static const struct net_device_ops vortex_netdev_ops = { 1068 .ndo_open = vortex_open, 1069 .ndo_stop = vortex_close, 1070 .ndo_start_xmit = vortex_start_xmit, 1071 .ndo_tx_timeout = vortex_tx_timeout, 1072 .ndo_get_stats = vortex_get_stats, 1073 #ifdef CONFIG_PCI 1074 .ndo_do_ioctl = vortex_ioctl, 1075 #endif 1076 .ndo_set_rx_mode = set_rx_mode, 1077 .ndo_change_mtu = eth_change_mtu, 1078 .ndo_set_mac_address = eth_mac_addr, 1079 .ndo_validate_addr = eth_validate_addr, 1080 #ifdef CONFIG_NET_POLL_CONTROLLER 1081 .ndo_poll_controller = poll_vortex, 1082 #endif 1083 }; 1084 1085 /* 1086 * Start up the PCI/EISA device which is described by *gendev. 1087 * Return 0 on success. 1088 * 1089 * NOTE: pdev can be NULL, for the case of a Compaq device 1090 */ 1091 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq, 1092 int chip_idx, int card_idx) 1093 { 1094 struct vortex_private *vp; 1095 int option; 1096 unsigned int eeprom[0x40], checksum = 0; /* EEPROM contents */ 1097 int i, step; 1098 struct net_device *dev; 1099 static int printed_version; 1100 int retval, print_info; 1101 struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx]; 1102 const char *print_name = "3c59x"; 1103 struct pci_dev *pdev = NULL; 1104 struct eisa_device *edev = NULL; 1105 1106 if (!printed_version) { 1107 pr_info("%s", version); 1108 printed_version = 1; 1109 } 1110 1111 if (gendev) { 1112 if ((pdev = DEVICE_PCI(gendev))) { 1113 print_name = pci_name(pdev); 1114 } 1115 1116 if ((edev = DEVICE_EISA(gendev))) { 1117 print_name = dev_name(&edev->dev); 1118 } 1119 } 1120 1121 dev = alloc_etherdev(sizeof(*vp)); 1122 retval = -ENOMEM; 1123 if (!dev) 1124 goto out; 1125 1126 SET_NETDEV_DEV(dev, gendev); 1127 vp = netdev_priv(dev); 1128 1129 option = global_options; 1130 1131 /* The lower four bits are the media type. */ 1132 if (dev->mem_start) { 1133 /* 1134 * The 'options' param is passed in as the third arg to the 1135 * LILO 'ether=' argument for non-modular use 1136 */ 1137 option = dev->mem_start; 1138 } 1139 else if (card_idx < MAX_UNITS) { 1140 if (options[card_idx] >= 0) 1141 option = options[card_idx]; 1142 } 1143 1144 if (option > 0) { 1145 if (option & 0x8000) 1146 vortex_debug = 7; 1147 if (option & 0x4000) 1148 vortex_debug = 2; 1149 if (option & 0x0400) 1150 vp->enable_wol = 1; 1151 } 1152 1153 print_info = (vortex_debug > 1); 1154 if (print_info) 1155 pr_info("See Documentation/networking/vortex.txt\n"); 1156 1157 pr_info("%s: 3Com %s %s at %p.\n", 1158 print_name, 1159 pdev ? "PCI" : "EISA", 1160 vci->name, 1161 ioaddr); 1162 1163 dev->base_addr = (unsigned long)ioaddr; 1164 dev->irq = irq; 1165 dev->mtu = mtu; 1166 vp->ioaddr = ioaddr; 1167 vp->large_frames = mtu > 1500; 1168 vp->drv_flags = vci->drv_flags; 1169 vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0; 1170 vp->io_size = vci->io_size; 1171 vp->card_idx = card_idx; 1172 vp->window = -1; 1173 1174 /* module list only for Compaq device */ 1175 if (gendev == NULL) { 1176 compaq_net_device = dev; 1177 } 1178 1179 /* PCI-only startup logic */ 1180 if (pdev) { 1181 /* EISA resources already marked, so only PCI needs to do this here */ 1182 /* Ignore return value, because Cardbus drivers already allocate for us */ 1183 if (request_region(dev->base_addr, vci->io_size, print_name) != NULL) 1184 vp->must_free_region = 1; 1185 1186 /* enable bus-mastering if necessary */ 1187 if (vci->flags & PCI_USES_MASTER) 1188 pci_set_master(pdev); 1189 1190 if (vci->drv_flags & IS_VORTEX) { 1191 u8 pci_latency; 1192 u8 new_latency = 248; 1193 1194 /* Check the PCI latency value. On the 3c590 series the latency timer 1195 must be set to the maximum value to avoid data corruption that occurs 1196 when the timer expires during a transfer. This bug exists the Vortex 1197 chip only. */ 1198 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency); 1199 if (pci_latency < new_latency) { 1200 pr_info("%s: Overriding PCI latency timer (CFLT) setting of %d, new value is %d.\n", 1201 print_name, pci_latency, new_latency); 1202 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency); 1203 } 1204 } 1205 } 1206 1207 spin_lock_init(&vp->lock); 1208 spin_lock_init(&vp->mii_lock); 1209 spin_lock_init(&vp->window_lock); 1210 vp->gendev = gendev; 1211 vp->mii.dev = dev; 1212 vp->mii.mdio_read = mdio_read; 1213 vp->mii.mdio_write = mdio_write; 1214 vp->mii.phy_id_mask = 0x1f; 1215 vp->mii.reg_num_mask = 0x1f; 1216 1217 /* Makes sure rings are at least 16 byte aligned. */ 1218 vp->rx_ring = pci_alloc_consistent(pdev, sizeof(struct boom_rx_desc) * RX_RING_SIZE 1219 + sizeof(struct boom_tx_desc) * TX_RING_SIZE, 1220 &vp->rx_ring_dma); 1221 retval = -ENOMEM; 1222 if (!vp->rx_ring) 1223 goto free_region; 1224 1225 vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE); 1226 vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE; 1227 1228 /* if we are a PCI driver, we store info in pdev->driver_data 1229 * instead of a module list */ 1230 if (pdev) 1231 pci_set_drvdata(pdev, dev); 1232 if (edev) 1233 eisa_set_drvdata(edev, dev); 1234 1235 vp->media_override = 7; 1236 if (option >= 0) { 1237 vp->media_override = ((option & 7) == 2) ? 0 : option & 15; 1238 if (vp->media_override != 7) 1239 vp->medialock = 1; 1240 vp->full_duplex = (option & 0x200) ? 1 : 0; 1241 vp->bus_master = (option & 16) ? 1 : 0; 1242 } 1243 1244 if (global_full_duplex > 0) 1245 vp->full_duplex = 1; 1246 if (global_enable_wol > 0) 1247 vp->enable_wol = 1; 1248 1249 if (card_idx < MAX_UNITS) { 1250 if (full_duplex[card_idx] > 0) 1251 vp->full_duplex = 1; 1252 if (flow_ctrl[card_idx] > 0) 1253 vp->flow_ctrl = 1; 1254 if (enable_wol[card_idx] > 0) 1255 vp->enable_wol = 1; 1256 } 1257 1258 vp->mii.force_media = vp->full_duplex; 1259 vp->options = option; 1260 /* Read the station address from the EEPROM. */ 1261 { 1262 int base; 1263 1264 if (vci->drv_flags & EEPROM_8BIT) 1265 base = 0x230; 1266 else if (vci->drv_flags & EEPROM_OFFSET) 1267 base = EEPROM_Read + 0x30; 1268 else 1269 base = EEPROM_Read; 1270 1271 for (i = 0; i < 0x40; i++) { 1272 int timer; 1273 window_write16(vp, base + i, 0, Wn0EepromCmd); 1274 /* Pause for at least 162 us. for the read to take place. */ 1275 for (timer = 10; timer >= 0; timer--) { 1276 udelay(162); 1277 if ((window_read16(vp, 0, Wn0EepromCmd) & 1278 0x8000) == 0) 1279 break; 1280 } 1281 eeprom[i] = window_read16(vp, 0, Wn0EepromData); 1282 } 1283 } 1284 for (i = 0; i < 0x18; i++) 1285 checksum ^= eeprom[i]; 1286 checksum = (checksum ^ (checksum >> 8)) & 0xff; 1287 if (checksum != 0x00) { /* Grrr, needless incompatible change 3Com. */ 1288 while (i < 0x21) 1289 checksum ^= eeprom[i++]; 1290 checksum = (checksum ^ (checksum >> 8)) & 0xff; 1291 } 1292 if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO)) 1293 pr_cont(" ***INVALID CHECKSUM %4.4x*** ", checksum); 1294 for (i = 0; i < 3; i++) 1295 ((__be16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]); 1296 memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len); 1297 if (print_info) 1298 pr_cont(" %pM", dev->dev_addr); 1299 /* Unfortunately an all zero eeprom passes the checksum and this 1300 gets found in the wild in failure cases. Crypto is hard 8) */ 1301 if (!is_valid_ether_addr(dev->dev_addr)) { 1302 retval = -EINVAL; 1303 pr_err("*** EEPROM MAC address is invalid.\n"); 1304 goto free_ring; /* With every pack */ 1305 } 1306 for (i = 0; i < 6; i++) 1307 window_write8(vp, dev->dev_addr[i], 2, i); 1308 1309 if (print_info) 1310 pr_cont(", IRQ %d\n", dev->irq); 1311 /* Tell them about an invalid IRQ. */ 1312 if (dev->irq <= 0 || dev->irq >= nr_irqs) 1313 pr_warning(" *** Warning: IRQ %d is unlikely to work! ***\n", 1314 dev->irq); 1315 1316 step = (window_read8(vp, 4, Wn4_NetDiag) & 0x1e) >> 1; 1317 if (print_info) { 1318 pr_info(" product code %02x%02x rev %02x.%d date %02d-%02d-%02d\n", 1319 eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14], 1320 step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9); 1321 } 1322 1323 1324 if (pdev && vci->drv_flags & HAS_CB_FNS) { 1325 unsigned short n; 1326 1327 vp->cb_fn_base = pci_iomap(pdev, 2, 0); 1328 if (!vp->cb_fn_base) { 1329 retval = -ENOMEM; 1330 goto free_ring; 1331 } 1332 1333 if (print_info) { 1334 pr_info("%s: CardBus functions mapped %16.16llx->%p\n", 1335 print_name, 1336 (unsigned long long)pci_resource_start(pdev, 2), 1337 vp->cb_fn_base); 1338 } 1339 1340 n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010; 1341 if (vp->drv_flags & INVERT_LED_PWR) 1342 n |= 0x10; 1343 if (vp->drv_flags & INVERT_MII_PWR) 1344 n |= 0x4000; 1345 window_write16(vp, n, 2, Wn2_ResetOptions); 1346 if (vp->drv_flags & WNO_XCVR_PWR) { 1347 window_write16(vp, 0x0800, 0, 0); 1348 } 1349 } 1350 1351 /* Extract our information from the EEPROM data. */ 1352 vp->info1 = eeprom[13]; 1353 vp->info2 = eeprom[15]; 1354 vp->capabilities = eeprom[16]; 1355 1356 if (vp->info1 & 0x8000) { 1357 vp->full_duplex = 1; 1358 if (print_info) 1359 pr_info("Full duplex capable\n"); 1360 } 1361 1362 { 1363 static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"}; 1364 unsigned int config; 1365 vp->available_media = window_read16(vp, 3, Wn3_Options); 1366 if ((vp->available_media & 0xff) == 0) /* Broken 3c916 */ 1367 vp->available_media = 0x40; 1368 config = window_read32(vp, 3, Wn3_Config); 1369 if (print_info) { 1370 pr_debug(" Internal config register is %4.4x, transceivers %#x.\n", 1371 config, window_read16(vp, 3, Wn3_Options)); 1372 pr_info(" %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n", 1373 8 << RAM_SIZE(config), 1374 RAM_WIDTH(config) ? "word" : "byte", 1375 ram_split[RAM_SPLIT(config)], 1376 AUTOSELECT(config) ? "autoselect/" : "", 1377 XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" : 1378 media_tbl[XCVR(config)].name); 1379 } 1380 vp->default_media = XCVR(config); 1381 if (vp->default_media == XCVR_NWAY) 1382 vp->has_nway = 1; 1383 vp->autoselect = AUTOSELECT(config); 1384 } 1385 1386 if (vp->media_override != 7) { 1387 pr_info("%s: Media override to transceiver type %d (%s).\n", 1388 print_name, vp->media_override, 1389 media_tbl[vp->media_override].name); 1390 dev->if_port = vp->media_override; 1391 } else 1392 dev->if_port = vp->default_media; 1393 1394 if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) || 1395 dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) { 1396 int phy, phy_idx = 0; 1397 mii_preamble_required++; 1398 if (vp->drv_flags & EXTRA_PREAMBLE) 1399 mii_preamble_required++; 1400 mdio_sync(vp, 32); 1401 mdio_read(dev, 24, MII_BMSR); 1402 for (phy = 0; phy < 32 && phy_idx < 1; phy++) { 1403 int mii_status, phyx; 1404 1405 /* 1406 * For the 3c905CX we look at index 24 first, because it bogusly 1407 * reports an external PHY at all indices 1408 */ 1409 if (phy == 0) 1410 phyx = 24; 1411 else if (phy <= 24) 1412 phyx = phy - 1; 1413 else 1414 phyx = phy; 1415 mii_status = mdio_read(dev, phyx, MII_BMSR); 1416 if (mii_status && mii_status != 0xffff) { 1417 vp->phys[phy_idx++] = phyx; 1418 if (print_info) { 1419 pr_info(" MII transceiver found at address %d, status %4x.\n", 1420 phyx, mii_status); 1421 } 1422 if ((mii_status & 0x0040) == 0) 1423 mii_preamble_required++; 1424 } 1425 } 1426 mii_preamble_required--; 1427 if (phy_idx == 0) { 1428 pr_warning(" ***WARNING*** No MII transceivers found!\n"); 1429 vp->phys[0] = 24; 1430 } else { 1431 vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE); 1432 if (vp->full_duplex) { 1433 /* Only advertise the FD media types. */ 1434 vp->advertising &= ~0x02A0; 1435 mdio_write(dev, vp->phys[0], 4, vp->advertising); 1436 } 1437 } 1438 vp->mii.phy_id = vp->phys[0]; 1439 } 1440 1441 if (vp->capabilities & CapBusMaster) { 1442 vp->full_bus_master_tx = 1; 1443 if (print_info) { 1444 pr_info(" Enabling bus-master transmits and %s receives.\n", 1445 (vp->info2 & 1) ? "early" : "whole-frame" ); 1446 } 1447 vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2; 1448 vp->bus_master = 0; /* AKPM: vortex only */ 1449 } 1450 1451 /* The 3c59x-specific entries in the device structure. */ 1452 if (vp->full_bus_master_tx) { 1453 dev->netdev_ops = &boomrang_netdev_ops; 1454 /* Actually, it still should work with iommu. */ 1455 if (card_idx < MAX_UNITS && 1456 ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) || 1457 hw_checksums[card_idx] == 1)) { 1458 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG; 1459 } 1460 } else 1461 dev->netdev_ops = &vortex_netdev_ops; 1462 1463 if (print_info) { 1464 pr_info("%s: scatter/gather %sabled. h/w checksums %sabled\n", 1465 print_name, 1466 (dev->features & NETIF_F_SG) ? "en":"dis", 1467 (dev->features & NETIF_F_IP_CSUM) ? "en":"dis"); 1468 } 1469 1470 dev->ethtool_ops = &vortex_ethtool_ops; 1471 dev->watchdog_timeo = (watchdog * HZ) / 1000; 1472 1473 if (pdev) { 1474 vp->pm_state_valid = 1; 1475 pci_save_state(VORTEX_PCI(vp)); 1476 acpi_set_WOL(dev); 1477 } 1478 retval = register_netdev(dev); 1479 if (retval == 0) 1480 return 0; 1481 1482 free_ring: 1483 pci_free_consistent(pdev, 1484 sizeof(struct boom_rx_desc) * RX_RING_SIZE 1485 + sizeof(struct boom_tx_desc) * TX_RING_SIZE, 1486 vp->rx_ring, 1487 vp->rx_ring_dma); 1488 free_region: 1489 if (vp->must_free_region) 1490 release_region(dev->base_addr, vci->io_size); 1491 free_netdev(dev); 1492 pr_err(PFX "vortex_probe1 fails. Returns %d\n", retval); 1493 out: 1494 return retval; 1495 } 1496 1497 static void 1498 issue_and_wait(struct net_device *dev, int cmd) 1499 { 1500 struct vortex_private *vp = netdev_priv(dev); 1501 void __iomem *ioaddr = vp->ioaddr; 1502 int i; 1503 1504 iowrite16(cmd, ioaddr + EL3_CMD); 1505 for (i = 0; i < 2000; i++) { 1506 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) 1507 return; 1508 } 1509 1510 /* OK, that didn't work. Do it the slow way. One second */ 1511 for (i = 0; i < 100000; i++) { 1512 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) { 1513 if (vortex_debug > 1) 1514 pr_info("%s: command 0x%04x took %d usecs\n", 1515 dev->name, cmd, i * 10); 1516 return; 1517 } 1518 udelay(10); 1519 } 1520 pr_err("%s: command 0x%04x did not complete! Status=0x%x\n", 1521 dev->name, cmd, ioread16(ioaddr + EL3_STATUS)); 1522 } 1523 1524 static void 1525 vortex_set_duplex(struct net_device *dev) 1526 { 1527 struct vortex_private *vp = netdev_priv(dev); 1528 1529 pr_info("%s: setting %s-duplex.\n", 1530 dev->name, (vp->full_duplex) ? "full" : "half"); 1531 1532 /* Set the full-duplex bit. */ 1533 window_write16(vp, 1534 ((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) | 1535 (vp->large_frames ? 0x40 : 0) | 1536 ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ? 1537 0x100 : 0), 1538 3, Wn3_MAC_Ctrl); 1539 } 1540 1541 static void vortex_check_media(struct net_device *dev, unsigned int init) 1542 { 1543 struct vortex_private *vp = netdev_priv(dev); 1544 unsigned int ok_to_print = 0; 1545 1546 if (vortex_debug > 3) 1547 ok_to_print = 1; 1548 1549 if (mii_check_media(&vp->mii, ok_to_print, init)) { 1550 vp->full_duplex = vp->mii.full_duplex; 1551 vortex_set_duplex(dev); 1552 } else if (init) { 1553 vortex_set_duplex(dev); 1554 } 1555 } 1556 1557 static int 1558 vortex_up(struct net_device *dev) 1559 { 1560 struct vortex_private *vp = netdev_priv(dev); 1561 void __iomem *ioaddr = vp->ioaddr; 1562 unsigned int config; 1563 int i, mii_reg1, mii_reg5, err = 0; 1564 1565 if (VORTEX_PCI(vp)) { 1566 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); /* Go active */ 1567 if (vp->pm_state_valid) 1568 pci_restore_state(VORTEX_PCI(vp)); 1569 err = pci_enable_device(VORTEX_PCI(vp)); 1570 if (err) { 1571 pr_warning("%s: Could not enable device\n", 1572 dev->name); 1573 goto err_out; 1574 } 1575 } 1576 1577 /* Before initializing select the active media port. */ 1578 config = window_read32(vp, 3, Wn3_Config); 1579 1580 if (vp->media_override != 7) { 1581 pr_info("%s: Media override to transceiver %d (%s).\n", 1582 dev->name, vp->media_override, 1583 media_tbl[vp->media_override].name); 1584 dev->if_port = vp->media_override; 1585 } else if (vp->autoselect) { 1586 if (vp->has_nway) { 1587 if (vortex_debug > 1) 1588 pr_info("%s: using NWAY device table, not %d\n", 1589 dev->name, dev->if_port); 1590 dev->if_port = XCVR_NWAY; 1591 } else { 1592 /* Find first available media type, starting with 100baseTx. */ 1593 dev->if_port = XCVR_100baseTx; 1594 while (! (vp->available_media & media_tbl[dev->if_port].mask)) 1595 dev->if_port = media_tbl[dev->if_port].next; 1596 if (vortex_debug > 1) 1597 pr_info("%s: first available media type: %s\n", 1598 dev->name, media_tbl[dev->if_port].name); 1599 } 1600 } else { 1601 dev->if_port = vp->default_media; 1602 if (vortex_debug > 1) 1603 pr_info("%s: using default media %s\n", 1604 dev->name, media_tbl[dev->if_port].name); 1605 } 1606 1607 init_timer(&vp->timer); 1608 vp->timer.expires = RUN_AT(media_tbl[dev->if_port].wait); 1609 vp->timer.data = (unsigned long)dev; 1610 vp->timer.function = vortex_timer; /* timer handler */ 1611 add_timer(&vp->timer); 1612 1613 init_timer(&vp->rx_oom_timer); 1614 vp->rx_oom_timer.data = (unsigned long)dev; 1615 vp->rx_oom_timer.function = rx_oom_timer; 1616 1617 if (vortex_debug > 1) 1618 pr_debug("%s: Initial media type %s.\n", 1619 dev->name, media_tbl[dev->if_port].name); 1620 1621 vp->full_duplex = vp->mii.force_media; 1622 config = BFINS(config, dev->if_port, 20, 4); 1623 if (vortex_debug > 6) 1624 pr_debug("vortex_up(): writing 0x%x to InternalConfig\n", config); 1625 window_write32(vp, config, 3, Wn3_Config); 1626 1627 if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) { 1628 mii_reg1 = mdio_read(dev, vp->phys[0], MII_BMSR); 1629 mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA); 1630 vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0); 1631 vp->mii.full_duplex = vp->full_duplex; 1632 1633 vortex_check_media(dev, 1); 1634 } 1635 else 1636 vortex_set_duplex(dev); 1637 1638 issue_and_wait(dev, TxReset); 1639 /* 1640 * Don't reset the PHY - that upsets autonegotiation during DHCP operations. 1641 */ 1642 issue_and_wait(dev, RxReset|0x04); 1643 1644 1645 iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD); 1646 1647 if (vortex_debug > 1) { 1648 pr_debug("%s: vortex_up() irq %d media status %4.4x.\n", 1649 dev->name, dev->irq, window_read16(vp, 4, Wn4_Media)); 1650 } 1651 1652 /* Set the station address and mask in window 2 each time opened. */ 1653 for (i = 0; i < 6; i++) 1654 window_write8(vp, dev->dev_addr[i], 2, i); 1655 for (; i < 12; i+=2) 1656 window_write16(vp, 0, 2, i); 1657 1658 if (vp->cb_fn_base) { 1659 unsigned short n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010; 1660 if (vp->drv_flags & INVERT_LED_PWR) 1661 n |= 0x10; 1662 if (vp->drv_flags & INVERT_MII_PWR) 1663 n |= 0x4000; 1664 window_write16(vp, n, 2, Wn2_ResetOptions); 1665 } 1666 1667 if (dev->if_port == XCVR_10base2) 1668 /* Start the thinnet transceiver. We should really wait 50ms...*/ 1669 iowrite16(StartCoax, ioaddr + EL3_CMD); 1670 if (dev->if_port != XCVR_NWAY) { 1671 window_write16(vp, 1672 (window_read16(vp, 4, Wn4_Media) & 1673 ~(Media_10TP|Media_SQE)) | 1674 media_tbl[dev->if_port].media_bits, 1675 4, Wn4_Media); 1676 } 1677 1678 /* Switch to the stats window, and clear all stats by reading. */ 1679 iowrite16(StatsDisable, ioaddr + EL3_CMD); 1680 for (i = 0; i < 10; i++) 1681 window_read8(vp, 6, i); 1682 window_read16(vp, 6, 10); 1683 window_read16(vp, 6, 12); 1684 /* New: On the Vortex we must also clear the BadSSD counter. */ 1685 window_read8(vp, 4, 12); 1686 /* ..and on the Boomerang we enable the extra statistics bits. */ 1687 window_write16(vp, 0x0040, 4, Wn4_NetDiag); 1688 1689 if (vp->full_bus_master_rx) { /* Boomerang bus master. */ 1690 vp->cur_rx = vp->dirty_rx = 0; 1691 /* Initialize the RxEarly register as recommended. */ 1692 iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD); 1693 iowrite32(0x0020, ioaddr + PktStatus); 1694 iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr); 1695 } 1696 if (vp->full_bus_master_tx) { /* Boomerang bus master Tx. */ 1697 vp->cur_tx = vp->dirty_tx = 0; 1698 if (vp->drv_flags & IS_BOOMERANG) 1699 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */ 1700 /* Clear the Rx, Tx rings. */ 1701 for (i = 0; i < RX_RING_SIZE; i++) /* AKPM: this is done in vortex_open, too */ 1702 vp->rx_ring[i].status = 0; 1703 for (i = 0; i < TX_RING_SIZE; i++) 1704 vp->tx_skbuff[i] = NULL; 1705 iowrite32(0, ioaddr + DownListPtr); 1706 } 1707 /* Set receiver mode: presumably accept b-case and phys addr only. */ 1708 set_rx_mode(dev); 1709 /* enable 802.1q tagged frames */ 1710 set_8021q_mode(dev, 1); 1711 iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */ 1712 1713 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */ 1714 iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */ 1715 /* Allow status bits to be seen. */ 1716 vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete| 1717 (vp->full_bus_master_tx ? DownComplete : TxAvailable) | 1718 (vp->full_bus_master_rx ? UpComplete : RxComplete) | 1719 (vp->bus_master ? DMADone : 0); 1720 vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable | 1721 (vp->full_bus_master_rx ? 0 : RxComplete) | 1722 StatsFull | HostError | TxComplete | IntReq 1723 | (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete; 1724 iowrite16(vp->status_enable, ioaddr + EL3_CMD); 1725 /* Ack all pending events, and set active indicator mask. */ 1726 iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq, 1727 ioaddr + EL3_CMD); 1728 iowrite16(vp->intr_enable, ioaddr + EL3_CMD); 1729 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */ 1730 iowrite32(0x8000, vp->cb_fn_base + 4); 1731 netif_start_queue (dev); 1732 err_out: 1733 return err; 1734 } 1735 1736 static int 1737 vortex_open(struct net_device *dev) 1738 { 1739 struct vortex_private *vp = netdev_priv(dev); 1740 int i; 1741 int retval; 1742 1743 /* Use the now-standard shared IRQ implementation. */ 1744 if ((retval = request_irq(dev->irq, vp->full_bus_master_rx ? 1745 boomerang_interrupt : vortex_interrupt, IRQF_SHARED, dev->name, dev))) { 1746 pr_err("%s: Could not reserve IRQ %d\n", dev->name, dev->irq); 1747 goto err; 1748 } 1749 1750 if (vp->full_bus_master_rx) { /* Boomerang bus master. */ 1751 if (vortex_debug > 2) 1752 pr_debug("%s: Filling in the Rx ring.\n", dev->name); 1753 for (i = 0; i < RX_RING_SIZE; i++) { 1754 struct sk_buff *skb; 1755 vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1)); 1756 vp->rx_ring[i].status = 0; /* Clear complete bit. */ 1757 vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG); 1758 1759 skb = __netdev_alloc_skb(dev, PKT_BUF_SZ + NET_IP_ALIGN, 1760 GFP_KERNEL); 1761 vp->rx_skbuff[i] = skb; 1762 if (skb == NULL) 1763 break; /* Bad news! */ 1764 1765 skb_reserve(skb, NET_IP_ALIGN); /* Align IP on 16 byte boundaries */ 1766 vp->rx_ring[i].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE)); 1767 } 1768 if (i != RX_RING_SIZE) { 1769 int j; 1770 pr_emerg("%s: no memory for rx ring\n", dev->name); 1771 for (j = 0; j < i; j++) { 1772 if (vp->rx_skbuff[j]) { 1773 dev_kfree_skb(vp->rx_skbuff[j]); 1774 vp->rx_skbuff[j] = NULL; 1775 } 1776 } 1777 retval = -ENOMEM; 1778 goto err_free_irq; 1779 } 1780 /* Wrap the ring. */ 1781 vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma); 1782 } 1783 1784 retval = vortex_up(dev); 1785 if (!retval) 1786 goto out; 1787 1788 err_free_irq: 1789 free_irq(dev->irq, dev); 1790 err: 1791 if (vortex_debug > 1) 1792 pr_err("%s: vortex_open() fails: returning %d\n", dev->name, retval); 1793 out: 1794 return retval; 1795 } 1796 1797 static void 1798 vortex_timer(unsigned long data) 1799 { 1800 struct net_device *dev = (struct net_device *)data; 1801 struct vortex_private *vp = netdev_priv(dev); 1802 void __iomem *ioaddr = vp->ioaddr; 1803 int next_tick = 60*HZ; 1804 int ok = 0; 1805 int media_status; 1806 1807 if (vortex_debug > 2) { 1808 pr_debug("%s: Media selection timer tick happened, %s.\n", 1809 dev->name, media_tbl[dev->if_port].name); 1810 pr_debug("dev->watchdog_timeo=%d\n", dev->watchdog_timeo); 1811 } 1812 1813 media_status = window_read16(vp, 4, Wn4_Media); 1814 switch (dev->if_port) { 1815 case XCVR_10baseT: case XCVR_100baseTx: case XCVR_100baseFx: 1816 if (media_status & Media_LnkBeat) { 1817 netif_carrier_on(dev); 1818 ok = 1; 1819 if (vortex_debug > 1) 1820 pr_debug("%s: Media %s has link beat, %x.\n", 1821 dev->name, media_tbl[dev->if_port].name, media_status); 1822 } else { 1823 netif_carrier_off(dev); 1824 if (vortex_debug > 1) { 1825 pr_debug("%s: Media %s has no link beat, %x.\n", 1826 dev->name, media_tbl[dev->if_port].name, media_status); 1827 } 1828 } 1829 break; 1830 case XCVR_MII: case XCVR_NWAY: 1831 { 1832 ok = 1; 1833 vortex_check_media(dev, 0); 1834 } 1835 break; 1836 default: /* Other media types handled by Tx timeouts. */ 1837 if (vortex_debug > 1) 1838 pr_debug("%s: Media %s has no indication, %x.\n", 1839 dev->name, media_tbl[dev->if_port].name, media_status); 1840 ok = 1; 1841 } 1842 1843 if (dev->flags & IFF_SLAVE || !netif_carrier_ok(dev)) 1844 next_tick = 5*HZ; 1845 1846 if (vp->medialock) 1847 goto leave_media_alone; 1848 1849 if (!ok) { 1850 unsigned int config; 1851 1852 spin_lock_irq(&vp->lock); 1853 1854 do { 1855 dev->if_port = media_tbl[dev->if_port].next; 1856 } while ( ! (vp->available_media & media_tbl[dev->if_port].mask)); 1857 if (dev->if_port == XCVR_Default) { /* Go back to default. */ 1858 dev->if_port = vp->default_media; 1859 if (vortex_debug > 1) 1860 pr_debug("%s: Media selection failing, using default %s port.\n", 1861 dev->name, media_tbl[dev->if_port].name); 1862 } else { 1863 if (vortex_debug > 1) 1864 pr_debug("%s: Media selection failed, now trying %s port.\n", 1865 dev->name, media_tbl[dev->if_port].name); 1866 next_tick = media_tbl[dev->if_port].wait; 1867 } 1868 window_write16(vp, 1869 (media_status & ~(Media_10TP|Media_SQE)) | 1870 media_tbl[dev->if_port].media_bits, 1871 4, Wn4_Media); 1872 1873 config = window_read32(vp, 3, Wn3_Config); 1874 config = BFINS(config, dev->if_port, 20, 4); 1875 window_write32(vp, config, 3, Wn3_Config); 1876 1877 iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax, 1878 ioaddr + EL3_CMD); 1879 if (vortex_debug > 1) 1880 pr_debug("wrote 0x%08x to Wn3_Config\n", config); 1881 /* AKPM: FIXME: Should reset Rx & Tx here. P60 of 3c90xc.pdf */ 1882 1883 spin_unlock_irq(&vp->lock); 1884 } 1885 1886 leave_media_alone: 1887 if (vortex_debug > 2) 1888 pr_debug("%s: Media selection timer finished, %s.\n", 1889 dev->name, media_tbl[dev->if_port].name); 1890 1891 mod_timer(&vp->timer, RUN_AT(next_tick)); 1892 if (vp->deferred) 1893 iowrite16(FakeIntr, ioaddr + EL3_CMD); 1894 } 1895 1896 static void vortex_tx_timeout(struct net_device *dev) 1897 { 1898 struct vortex_private *vp = netdev_priv(dev); 1899 void __iomem *ioaddr = vp->ioaddr; 1900 1901 pr_err("%s: transmit timed out, tx_status %2.2x status %4.4x.\n", 1902 dev->name, ioread8(ioaddr + TxStatus), 1903 ioread16(ioaddr + EL3_STATUS)); 1904 pr_err(" diagnostics: net %04x media %04x dma %08x fifo %04x\n", 1905 window_read16(vp, 4, Wn4_NetDiag), 1906 window_read16(vp, 4, Wn4_Media), 1907 ioread32(ioaddr + PktStatus), 1908 window_read16(vp, 4, Wn4_FIFODiag)); 1909 /* Slight code bloat to be user friendly. */ 1910 if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88) 1911 pr_err("%s: Transmitter encountered 16 collisions --" 1912 " network cable problem?\n", dev->name); 1913 if (ioread16(ioaddr + EL3_STATUS) & IntLatch) { 1914 pr_err("%s: Interrupt posted but not delivered --" 1915 " IRQ blocked by another device?\n", dev->name); 1916 /* Bad idea here.. but we might as well handle a few events. */ 1917 { 1918 /* 1919 * Block interrupts because vortex_interrupt does a bare spin_lock() 1920 */ 1921 unsigned long flags; 1922 local_irq_save(flags); 1923 if (vp->full_bus_master_tx) 1924 boomerang_interrupt(dev->irq, dev); 1925 else 1926 vortex_interrupt(dev->irq, dev); 1927 local_irq_restore(flags); 1928 } 1929 } 1930 1931 if (vortex_debug > 0) 1932 dump_tx_ring(dev); 1933 1934 issue_and_wait(dev, TxReset); 1935 1936 dev->stats.tx_errors++; 1937 if (vp->full_bus_master_tx) { 1938 pr_debug("%s: Resetting the Tx ring pointer.\n", dev->name); 1939 if (vp->cur_tx - vp->dirty_tx > 0 && ioread32(ioaddr + DownListPtr) == 0) 1940 iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc), 1941 ioaddr + DownListPtr); 1942 if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE) 1943 netif_wake_queue (dev); 1944 if (vp->drv_flags & IS_BOOMERANG) 1945 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); 1946 iowrite16(DownUnstall, ioaddr + EL3_CMD); 1947 } else { 1948 dev->stats.tx_dropped++; 1949 netif_wake_queue(dev); 1950 } 1951 1952 /* Issue Tx Enable */ 1953 iowrite16(TxEnable, ioaddr + EL3_CMD); 1954 dev->trans_start = jiffies; /* prevent tx timeout */ 1955 } 1956 1957 /* 1958 * Handle uncommon interrupt sources. This is a separate routine to minimize 1959 * the cache impact. 1960 */ 1961 static void 1962 vortex_error(struct net_device *dev, int status) 1963 { 1964 struct vortex_private *vp = netdev_priv(dev); 1965 void __iomem *ioaddr = vp->ioaddr; 1966 int do_tx_reset = 0, reset_mask = 0; 1967 unsigned char tx_status = 0; 1968 1969 if (vortex_debug > 2) { 1970 pr_err("%s: vortex_error(), status=0x%x\n", dev->name, status); 1971 } 1972 1973 if (status & TxComplete) { /* Really "TxError" for us. */ 1974 tx_status = ioread8(ioaddr + TxStatus); 1975 /* Presumably a tx-timeout. We must merely re-enable. */ 1976 if (vortex_debug > 2 || 1977 (tx_status != 0x88 && vortex_debug > 0)) { 1978 pr_err("%s: Transmit error, Tx status register %2.2x.\n", 1979 dev->name, tx_status); 1980 if (tx_status == 0x82) { 1981 pr_err("Probably a duplex mismatch. See " 1982 "Documentation/networking/vortex.txt\n"); 1983 } 1984 dump_tx_ring(dev); 1985 } 1986 if (tx_status & 0x14) dev->stats.tx_fifo_errors++; 1987 if (tx_status & 0x38) dev->stats.tx_aborted_errors++; 1988 if (tx_status & 0x08) vp->xstats.tx_max_collisions++; 1989 iowrite8(0, ioaddr + TxStatus); 1990 if (tx_status & 0x30) { /* txJabber or txUnderrun */ 1991 do_tx_reset = 1; 1992 } else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET)) { /* maxCollisions */ 1993 do_tx_reset = 1; 1994 reset_mask = 0x0108; /* Reset interface logic, but not download logic */ 1995 } else { /* Merely re-enable the transmitter. */ 1996 iowrite16(TxEnable, ioaddr + EL3_CMD); 1997 } 1998 } 1999 2000 if (status & RxEarly) /* Rx early is unused. */ 2001 iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD); 2002 2003 if (status & StatsFull) { /* Empty statistics. */ 2004 static int DoneDidThat; 2005 if (vortex_debug > 4) 2006 pr_debug("%s: Updating stats.\n", dev->name); 2007 update_stats(ioaddr, dev); 2008 /* HACK: Disable statistics as an interrupt source. */ 2009 /* This occurs when we have the wrong media type! */ 2010 if (DoneDidThat == 0 && 2011 ioread16(ioaddr + EL3_STATUS) & StatsFull) { 2012 pr_warning("%s: Updating statistics failed, disabling " 2013 "stats as an interrupt source.\n", dev->name); 2014 iowrite16(SetIntrEnb | 2015 (window_read16(vp, 5, 10) & ~StatsFull), 2016 ioaddr + EL3_CMD); 2017 vp->intr_enable &= ~StatsFull; 2018 DoneDidThat++; 2019 } 2020 } 2021 if (status & IntReq) { /* Restore all interrupt sources. */ 2022 iowrite16(vp->status_enable, ioaddr + EL3_CMD); 2023 iowrite16(vp->intr_enable, ioaddr + EL3_CMD); 2024 } 2025 if (status & HostError) { 2026 u16 fifo_diag; 2027 fifo_diag = window_read16(vp, 4, Wn4_FIFODiag); 2028 pr_err("%s: Host error, FIFO diagnostic register %4.4x.\n", 2029 dev->name, fifo_diag); 2030 /* Adapter failure requires Tx/Rx reset and reinit. */ 2031 if (vp->full_bus_master_tx) { 2032 int bus_status = ioread32(ioaddr + PktStatus); 2033 /* 0x80000000 PCI master abort. */ 2034 /* 0x40000000 PCI target abort. */ 2035 if (vortex_debug) 2036 pr_err("%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status); 2037 2038 /* In this case, blow the card away */ 2039 /* Must not enter D3 or we can't legally issue the reset! */ 2040 vortex_down(dev, 0); 2041 issue_and_wait(dev, TotalReset | 0xff); 2042 vortex_up(dev); /* AKPM: bug. vortex_up() assumes that the rx ring is full. It may not be. */ 2043 } else if (fifo_diag & 0x0400) 2044 do_tx_reset = 1; 2045 if (fifo_diag & 0x3000) { 2046 /* Reset Rx fifo and upload logic */ 2047 issue_and_wait(dev, RxReset|0x07); 2048 /* Set the Rx filter to the current state. */ 2049 set_rx_mode(dev); 2050 /* enable 802.1q VLAN tagged frames */ 2051 set_8021q_mode(dev, 1); 2052 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */ 2053 iowrite16(AckIntr | HostError, ioaddr + EL3_CMD); 2054 } 2055 } 2056 2057 if (do_tx_reset) { 2058 issue_and_wait(dev, TxReset|reset_mask); 2059 iowrite16(TxEnable, ioaddr + EL3_CMD); 2060 if (!vp->full_bus_master_tx) 2061 netif_wake_queue(dev); 2062 } 2063 } 2064 2065 static netdev_tx_t 2066 vortex_start_xmit(struct sk_buff *skb, struct net_device *dev) 2067 { 2068 struct vortex_private *vp = netdev_priv(dev); 2069 void __iomem *ioaddr = vp->ioaddr; 2070 2071 /* Put out the doubleword header... */ 2072 iowrite32(skb->len, ioaddr + TX_FIFO); 2073 if (vp->bus_master) { 2074 /* Set the bus-master controller to transfer the packet. */ 2075 int len = (skb->len + 3) & ~3; 2076 vp->tx_skb_dma = pci_map_single(VORTEX_PCI(vp), skb->data, len, 2077 PCI_DMA_TODEVICE); 2078 spin_lock_irq(&vp->window_lock); 2079 window_set(vp, 7); 2080 iowrite32(vp->tx_skb_dma, ioaddr + Wn7_MasterAddr); 2081 iowrite16(len, ioaddr + Wn7_MasterLen); 2082 spin_unlock_irq(&vp->window_lock); 2083 vp->tx_skb = skb; 2084 iowrite16(StartDMADown, ioaddr + EL3_CMD); 2085 /* netif_wake_queue() will be called at the DMADone interrupt. */ 2086 } else { 2087 /* ... and the packet rounded to a doubleword. */ 2088 iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2); 2089 dev_kfree_skb (skb); 2090 if (ioread16(ioaddr + TxFree) > 1536) { 2091 netif_start_queue (dev); /* AKPM: redundant? */ 2092 } else { 2093 /* Interrupt us when the FIFO has room for max-sized packet. */ 2094 netif_stop_queue(dev); 2095 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD); 2096 } 2097 } 2098 2099 2100 /* Clear the Tx status stack. */ 2101 { 2102 int tx_status; 2103 int i = 32; 2104 2105 while (--i > 0 && (tx_status = ioread8(ioaddr + TxStatus)) > 0) { 2106 if (tx_status & 0x3C) { /* A Tx-disabling error occurred. */ 2107 if (vortex_debug > 2) 2108 pr_debug("%s: Tx error, status %2.2x.\n", 2109 dev->name, tx_status); 2110 if (tx_status & 0x04) dev->stats.tx_fifo_errors++; 2111 if (tx_status & 0x38) dev->stats.tx_aborted_errors++; 2112 if (tx_status & 0x30) { 2113 issue_and_wait(dev, TxReset); 2114 } 2115 iowrite16(TxEnable, ioaddr + EL3_CMD); 2116 } 2117 iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */ 2118 } 2119 } 2120 return NETDEV_TX_OK; 2121 } 2122 2123 static netdev_tx_t 2124 boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev) 2125 { 2126 struct vortex_private *vp = netdev_priv(dev); 2127 void __iomem *ioaddr = vp->ioaddr; 2128 /* Calculate the next Tx descriptor entry. */ 2129 int entry = vp->cur_tx % TX_RING_SIZE; 2130 struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE]; 2131 unsigned long flags; 2132 2133 if (vortex_debug > 6) { 2134 pr_debug("boomerang_start_xmit()\n"); 2135 pr_debug("%s: Trying to send a packet, Tx index %d.\n", 2136 dev->name, vp->cur_tx); 2137 } 2138 2139 /* 2140 * We can't allow a recursion from our interrupt handler back into the 2141 * tx routine, as they take the same spin lock, and that causes 2142 * deadlock. Just return NETDEV_TX_BUSY and let the stack try again in 2143 * a bit 2144 */ 2145 if (vp->handling_irq) 2146 return NETDEV_TX_BUSY; 2147 2148 if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) { 2149 if (vortex_debug > 0) 2150 pr_warning("%s: BUG! Tx Ring full, refusing to send buffer.\n", 2151 dev->name); 2152 netif_stop_queue(dev); 2153 return NETDEV_TX_BUSY; 2154 } 2155 2156 vp->tx_skbuff[entry] = skb; 2157 2158 vp->tx_ring[entry].next = 0; 2159 #if DO_ZEROCOPY 2160 if (skb->ip_summed != CHECKSUM_PARTIAL) 2161 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded); 2162 else 2163 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum); 2164 2165 if (!skb_shinfo(skb)->nr_frags) { 2166 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, 2167 skb->len, PCI_DMA_TODEVICE)); 2168 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG); 2169 } else { 2170 int i; 2171 2172 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, 2173 skb_headlen(skb), PCI_DMA_TODEVICE)); 2174 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb_headlen(skb)); 2175 2176 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2177 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2178 2179 vp->tx_ring[entry].frag[i+1].addr = 2180 cpu_to_le32(pci_map_single( 2181 VORTEX_PCI(vp), 2182 (void *)skb_frag_address(frag), 2183 skb_frag_size(frag), PCI_DMA_TODEVICE)); 2184 2185 if (i == skb_shinfo(skb)->nr_frags-1) 2186 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag)|LAST_FRAG); 2187 else 2188 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag)); 2189 } 2190 } 2191 #else 2192 vp->tx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, skb->len, PCI_DMA_TODEVICE)); 2193 vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG); 2194 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded); 2195 #endif 2196 2197 spin_lock_irqsave(&vp->lock, flags); 2198 /* Wait for the stall to complete. */ 2199 issue_and_wait(dev, DownStall); 2200 prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc)); 2201 if (ioread32(ioaddr + DownListPtr) == 0) { 2202 iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr); 2203 vp->queued_packet++; 2204 } 2205 2206 vp->cur_tx++; 2207 if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) { 2208 netif_stop_queue (dev); 2209 } else { /* Clear previous interrupt enable. */ 2210 #if defined(tx_interrupt_mitigation) 2211 /* Dubious. If in boomeang_interrupt "faster" cyclone ifdef 2212 * were selected, this would corrupt DN_COMPLETE. No? 2213 */ 2214 prev_entry->status &= cpu_to_le32(~TxIntrUploaded); 2215 #endif 2216 } 2217 iowrite16(DownUnstall, ioaddr + EL3_CMD); 2218 spin_unlock_irqrestore(&vp->lock, flags); 2219 return NETDEV_TX_OK; 2220 } 2221 2222 /* The interrupt handler does all of the Rx thread work and cleans up 2223 after the Tx thread. */ 2224 2225 /* 2226 * This is the ISR for the vortex series chips. 2227 * full_bus_master_tx == 0 && full_bus_master_rx == 0 2228 */ 2229 2230 static irqreturn_t 2231 vortex_interrupt(int irq, void *dev_id) 2232 { 2233 struct net_device *dev = dev_id; 2234 struct vortex_private *vp = netdev_priv(dev); 2235 void __iomem *ioaddr; 2236 int status; 2237 int work_done = max_interrupt_work; 2238 int handled = 0; 2239 2240 ioaddr = vp->ioaddr; 2241 spin_lock(&vp->lock); 2242 2243 status = ioread16(ioaddr + EL3_STATUS); 2244 2245 if (vortex_debug > 6) 2246 pr_debug("vortex_interrupt(). status=0x%4x\n", status); 2247 2248 if ((status & IntLatch) == 0) 2249 goto handler_exit; /* No interrupt: shared IRQs cause this */ 2250 handled = 1; 2251 2252 if (status & IntReq) { 2253 status |= vp->deferred; 2254 vp->deferred = 0; 2255 } 2256 2257 if (status == 0xffff) /* h/w no longer present (hotplug)? */ 2258 goto handler_exit; 2259 2260 if (vortex_debug > 4) 2261 pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n", 2262 dev->name, status, ioread8(ioaddr + Timer)); 2263 2264 spin_lock(&vp->window_lock); 2265 window_set(vp, 7); 2266 2267 do { 2268 if (vortex_debug > 5) 2269 pr_debug("%s: In interrupt loop, status %4.4x.\n", 2270 dev->name, status); 2271 if (status & RxComplete) 2272 vortex_rx(dev); 2273 2274 if (status & TxAvailable) { 2275 if (vortex_debug > 5) 2276 pr_debug(" TX room bit was handled.\n"); 2277 /* There's room in the FIFO for a full-sized packet. */ 2278 iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD); 2279 netif_wake_queue (dev); 2280 } 2281 2282 if (status & DMADone) { 2283 if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) { 2284 iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */ 2285 pci_unmap_single(VORTEX_PCI(vp), vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, PCI_DMA_TODEVICE); 2286 dev_kfree_skb_irq(vp->tx_skb); /* Release the transferred buffer */ 2287 if (ioread16(ioaddr + TxFree) > 1536) { 2288 /* 2289 * AKPM: FIXME: I don't think we need this. If the queue was stopped due to 2290 * insufficient FIFO room, the TxAvailable test will succeed and call 2291 * netif_wake_queue() 2292 */ 2293 netif_wake_queue(dev); 2294 } else { /* Interrupt when FIFO has room for max-sized packet. */ 2295 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD); 2296 netif_stop_queue(dev); 2297 } 2298 } 2299 } 2300 /* Check for all uncommon interrupts at once. */ 2301 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) { 2302 if (status == 0xffff) 2303 break; 2304 if (status & RxEarly) 2305 vortex_rx(dev); 2306 spin_unlock(&vp->window_lock); 2307 vortex_error(dev, status); 2308 spin_lock(&vp->window_lock); 2309 window_set(vp, 7); 2310 } 2311 2312 if (--work_done < 0) { 2313 pr_warning("%s: Too much work in interrupt, status %4.4x.\n", 2314 dev->name, status); 2315 /* Disable all pending interrupts. */ 2316 do { 2317 vp->deferred |= status; 2318 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable), 2319 ioaddr + EL3_CMD); 2320 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD); 2321 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch); 2322 /* The timer will reenable interrupts. */ 2323 mod_timer(&vp->timer, jiffies + 1*HZ); 2324 break; 2325 } 2326 /* Acknowledge the IRQ. */ 2327 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD); 2328 } while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete)); 2329 2330 spin_unlock(&vp->window_lock); 2331 2332 if (vortex_debug > 4) 2333 pr_debug("%s: exiting interrupt, status %4.4x.\n", 2334 dev->name, status); 2335 handler_exit: 2336 spin_unlock(&vp->lock); 2337 return IRQ_RETVAL(handled); 2338 } 2339 2340 /* 2341 * This is the ISR for the boomerang series chips. 2342 * full_bus_master_tx == 1 && full_bus_master_rx == 1 2343 */ 2344 2345 static irqreturn_t 2346 boomerang_interrupt(int irq, void *dev_id) 2347 { 2348 struct net_device *dev = dev_id; 2349 struct vortex_private *vp = netdev_priv(dev); 2350 void __iomem *ioaddr; 2351 int status; 2352 int work_done = max_interrupt_work; 2353 2354 ioaddr = vp->ioaddr; 2355 2356 2357 /* 2358 * It seems dopey to put the spinlock this early, but we could race against vortex_tx_timeout 2359 * and boomerang_start_xmit 2360 */ 2361 spin_lock(&vp->lock); 2362 vp->handling_irq = 1; 2363 2364 status = ioread16(ioaddr + EL3_STATUS); 2365 2366 if (vortex_debug > 6) 2367 pr_debug("boomerang_interrupt. status=0x%4x\n", status); 2368 2369 if ((status & IntLatch) == 0) 2370 goto handler_exit; /* No interrupt: shared IRQs can cause this */ 2371 2372 if (status == 0xffff) { /* h/w no longer present (hotplug)? */ 2373 if (vortex_debug > 1) 2374 pr_debug("boomerang_interrupt(1): status = 0xffff\n"); 2375 goto handler_exit; 2376 } 2377 2378 if (status & IntReq) { 2379 status |= vp->deferred; 2380 vp->deferred = 0; 2381 } 2382 2383 if (vortex_debug > 4) 2384 pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n", 2385 dev->name, status, ioread8(ioaddr + Timer)); 2386 do { 2387 if (vortex_debug > 5) 2388 pr_debug("%s: In interrupt loop, status %4.4x.\n", 2389 dev->name, status); 2390 if (status & UpComplete) { 2391 iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD); 2392 if (vortex_debug > 5) 2393 pr_debug("boomerang_interrupt->boomerang_rx\n"); 2394 boomerang_rx(dev); 2395 } 2396 2397 if (status & DownComplete) { 2398 unsigned int dirty_tx = vp->dirty_tx; 2399 2400 iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD); 2401 while (vp->cur_tx - dirty_tx > 0) { 2402 int entry = dirty_tx % TX_RING_SIZE; 2403 #if 1 /* AKPM: the latter is faster, but cyclone-only */ 2404 if (ioread32(ioaddr + DownListPtr) == 2405 vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc)) 2406 break; /* It still hasn't been processed. */ 2407 #else 2408 if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0) 2409 break; /* It still hasn't been processed. */ 2410 #endif 2411 2412 if (vp->tx_skbuff[entry]) { 2413 struct sk_buff *skb = vp->tx_skbuff[entry]; 2414 #if DO_ZEROCOPY 2415 int i; 2416 for (i=0; i<=skb_shinfo(skb)->nr_frags; i++) 2417 pci_unmap_single(VORTEX_PCI(vp), 2418 le32_to_cpu(vp->tx_ring[entry].frag[i].addr), 2419 le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF, 2420 PCI_DMA_TODEVICE); 2421 #else 2422 pci_unmap_single(VORTEX_PCI(vp), 2423 le32_to_cpu(vp->tx_ring[entry].addr), skb->len, PCI_DMA_TODEVICE); 2424 #endif 2425 dev_kfree_skb_irq(skb); 2426 vp->tx_skbuff[entry] = NULL; 2427 } else { 2428 pr_debug("boomerang_interrupt: no skb!\n"); 2429 } 2430 /* dev->stats.tx_packets++; Counted below. */ 2431 dirty_tx++; 2432 } 2433 vp->dirty_tx = dirty_tx; 2434 if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) { 2435 if (vortex_debug > 6) 2436 pr_debug("boomerang_interrupt: wake queue\n"); 2437 netif_wake_queue (dev); 2438 } 2439 } 2440 2441 /* Check for all uncommon interrupts at once. */ 2442 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) 2443 vortex_error(dev, status); 2444 2445 if (--work_done < 0) { 2446 pr_warning("%s: Too much work in interrupt, status %4.4x.\n", 2447 dev->name, status); 2448 /* Disable all pending interrupts. */ 2449 do { 2450 vp->deferred |= status; 2451 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable), 2452 ioaddr + EL3_CMD); 2453 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD); 2454 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch); 2455 /* The timer will reenable interrupts. */ 2456 mod_timer(&vp->timer, jiffies + 1*HZ); 2457 break; 2458 } 2459 /* Acknowledge the IRQ. */ 2460 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD); 2461 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */ 2462 iowrite32(0x8000, vp->cb_fn_base + 4); 2463 2464 } while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch); 2465 2466 if (vortex_debug > 4) 2467 pr_debug("%s: exiting interrupt, status %4.4x.\n", 2468 dev->name, status); 2469 handler_exit: 2470 vp->handling_irq = 0; 2471 spin_unlock(&vp->lock); 2472 return IRQ_HANDLED; 2473 } 2474 2475 static int vortex_rx(struct net_device *dev) 2476 { 2477 struct vortex_private *vp = netdev_priv(dev); 2478 void __iomem *ioaddr = vp->ioaddr; 2479 int i; 2480 short rx_status; 2481 2482 if (vortex_debug > 5) 2483 pr_debug("vortex_rx(): status %4.4x, rx_status %4.4x.\n", 2484 ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus)); 2485 while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) { 2486 if (rx_status & 0x4000) { /* Error, update stats. */ 2487 unsigned char rx_error = ioread8(ioaddr + RxErrors); 2488 if (vortex_debug > 2) 2489 pr_debug(" Rx error: status %2.2x.\n", rx_error); 2490 dev->stats.rx_errors++; 2491 if (rx_error & 0x01) dev->stats.rx_over_errors++; 2492 if (rx_error & 0x02) dev->stats.rx_length_errors++; 2493 if (rx_error & 0x04) dev->stats.rx_frame_errors++; 2494 if (rx_error & 0x08) dev->stats.rx_crc_errors++; 2495 if (rx_error & 0x10) dev->stats.rx_length_errors++; 2496 } else { 2497 /* The packet length: up to 4.5K!. */ 2498 int pkt_len = rx_status & 0x1fff; 2499 struct sk_buff *skb; 2500 2501 skb = netdev_alloc_skb(dev, pkt_len + 5); 2502 if (vortex_debug > 4) 2503 pr_debug("Receiving packet size %d status %4.4x.\n", 2504 pkt_len, rx_status); 2505 if (skb != NULL) { 2506 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */ 2507 /* 'skb_put()' points to the start of sk_buff data area. */ 2508 if (vp->bus_master && 2509 ! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) { 2510 dma_addr_t dma = pci_map_single(VORTEX_PCI(vp), skb_put(skb, pkt_len), 2511 pkt_len, PCI_DMA_FROMDEVICE); 2512 iowrite32(dma, ioaddr + Wn7_MasterAddr); 2513 iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen); 2514 iowrite16(StartDMAUp, ioaddr + EL3_CMD); 2515 while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000) 2516 ; 2517 pci_unmap_single(VORTEX_PCI(vp), dma, pkt_len, PCI_DMA_FROMDEVICE); 2518 } else { 2519 ioread32_rep(ioaddr + RX_FIFO, 2520 skb_put(skb, pkt_len), 2521 (pkt_len + 3) >> 2); 2522 } 2523 iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */ 2524 skb->protocol = eth_type_trans(skb, dev); 2525 netif_rx(skb); 2526 dev->stats.rx_packets++; 2527 /* Wait a limited time to go to next packet. */ 2528 for (i = 200; i >= 0; i--) 2529 if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) 2530 break; 2531 continue; 2532 } else if (vortex_debug > 0) 2533 pr_notice("%s: No memory to allocate a sk_buff of size %d.\n", 2534 dev->name, pkt_len); 2535 dev->stats.rx_dropped++; 2536 } 2537 issue_and_wait(dev, RxDiscard); 2538 } 2539 2540 return 0; 2541 } 2542 2543 static int 2544 boomerang_rx(struct net_device *dev) 2545 { 2546 struct vortex_private *vp = netdev_priv(dev); 2547 int entry = vp->cur_rx % RX_RING_SIZE; 2548 void __iomem *ioaddr = vp->ioaddr; 2549 int rx_status; 2550 int rx_work_limit = vp->dirty_rx + RX_RING_SIZE - vp->cur_rx; 2551 2552 if (vortex_debug > 5) 2553 pr_debug("boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS)); 2554 2555 while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){ 2556 if (--rx_work_limit < 0) 2557 break; 2558 if (rx_status & RxDError) { /* Error, update stats. */ 2559 unsigned char rx_error = rx_status >> 16; 2560 if (vortex_debug > 2) 2561 pr_debug(" Rx error: status %2.2x.\n", rx_error); 2562 dev->stats.rx_errors++; 2563 if (rx_error & 0x01) dev->stats.rx_over_errors++; 2564 if (rx_error & 0x02) dev->stats.rx_length_errors++; 2565 if (rx_error & 0x04) dev->stats.rx_frame_errors++; 2566 if (rx_error & 0x08) dev->stats.rx_crc_errors++; 2567 if (rx_error & 0x10) dev->stats.rx_length_errors++; 2568 } else { 2569 /* The packet length: up to 4.5K!. */ 2570 int pkt_len = rx_status & 0x1fff; 2571 struct sk_buff *skb; 2572 dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr); 2573 2574 if (vortex_debug > 4) 2575 pr_debug("Receiving packet size %d status %4.4x.\n", 2576 pkt_len, rx_status); 2577 2578 /* Check if the packet is long enough to just accept without 2579 copying to a properly sized skbuff. */ 2580 if (pkt_len < rx_copybreak && 2581 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) { 2582 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */ 2583 pci_dma_sync_single_for_cpu(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE); 2584 /* 'skb_put()' points to the start of sk_buff data area. */ 2585 memcpy(skb_put(skb, pkt_len), 2586 vp->rx_skbuff[entry]->data, 2587 pkt_len); 2588 pci_dma_sync_single_for_device(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE); 2589 vp->rx_copy++; 2590 } else { 2591 /* Pass up the skbuff already on the Rx ring. */ 2592 skb = vp->rx_skbuff[entry]; 2593 vp->rx_skbuff[entry] = NULL; 2594 skb_put(skb, pkt_len); 2595 pci_unmap_single(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE); 2596 vp->rx_nocopy++; 2597 } 2598 skb->protocol = eth_type_trans(skb, dev); 2599 { /* Use hardware checksum info. */ 2600 int csum_bits = rx_status & 0xee000000; 2601 if (csum_bits && 2602 (csum_bits == (IPChksumValid | TCPChksumValid) || 2603 csum_bits == (IPChksumValid | UDPChksumValid))) { 2604 skb->ip_summed = CHECKSUM_UNNECESSARY; 2605 vp->rx_csumhits++; 2606 } 2607 } 2608 netif_rx(skb); 2609 dev->stats.rx_packets++; 2610 } 2611 entry = (++vp->cur_rx) % RX_RING_SIZE; 2612 } 2613 /* Refill the Rx ring buffers. */ 2614 for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) { 2615 struct sk_buff *skb; 2616 entry = vp->dirty_rx % RX_RING_SIZE; 2617 if (vp->rx_skbuff[entry] == NULL) { 2618 skb = netdev_alloc_skb_ip_align(dev, PKT_BUF_SZ); 2619 if (skb == NULL) { 2620 static unsigned long last_jif; 2621 if (time_after(jiffies, last_jif + 10 * HZ)) { 2622 pr_warning("%s: memory shortage\n", dev->name); 2623 last_jif = jiffies; 2624 } 2625 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE) 2626 mod_timer(&vp->rx_oom_timer, RUN_AT(HZ * 1)); 2627 break; /* Bad news! */ 2628 } 2629 2630 vp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE)); 2631 vp->rx_skbuff[entry] = skb; 2632 } 2633 vp->rx_ring[entry].status = 0; /* Clear complete bit. */ 2634 iowrite16(UpUnstall, ioaddr + EL3_CMD); 2635 } 2636 return 0; 2637 } 2638 2639 /* 2640 * If we've hit a total OOM refilling the Rx ring we poll once a second 2641 * for some memory. Otherwise there is no way to restart the rx process. 2642 */ 2643 static void 2644 rx_oom_timer(unsigned long arg) 2645 { 2646 struct net_device *dev = (struct net_device *)arg; 2647 struct vortex_private *vp = netdev_priv(dev); 2648 2649 spin_lock_irq(&vp->lock); 2650 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE) /* This test is redundant, but makes me feel good */ 2651 boomerang_rx(dev); 2652 if (vortex_debug > 1) { 2653 pr_debug("%s: rx_oom_timer %s\n", dev->name, 2654 ((vp->cur_rx - vp->dirty_rx) != RX_RING_SIZE) ? "succeeded" : "retrying"); 2655 } 2656 spin_unlock_irq(&vp->lock); 2657 } 2658 2659 static void 2660 vortex_down(struct net_device *dev, int final_down) 2661 { 2662 struct vortex_private *vp = netdev_priv(dev); 2663 void __iomem *ioaddr = vp->ioaddr; 2664 2665 netif_stop_queue (dev); 2666 2667 del_timer_sync(&vp->rx_oom_timer); 2668 del_timer_sync(&vp->timer); 2669 2670 /* Turn off statistics ASAP. We update dev->stats below. */ 2671 iowrite16(StatsDisable, ioaddr + EL3_CMD); 2672 2673 /* Disable the receiver and transmitter. */ 2674 iowrite16(RxDisable, ioaddr + EL3_CMD); 2675 iowrite16(TxDisable, ioaddr + EL3_CMD); 2676 2677 /* Disable receiving 802.1q tagged frames */ 2678 set_8021q_mode(dev, 0); 2679 2680 if (dev->if_port == XCVR_10base2) 2681 /* Turn off thinnet power. Green! */ 2682 iowrite16(StopCoax, ioaddr + EL3_CMD); 2683 2684 iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD); 2685 2686 update_stats(ioaddr, dev); 2687 if (vp->full_bus_master_rx) 2688 iowrite32(0, ioaddr + UpListPtr); 2689 if (vp->full_bus_master_tx) 2690 iowrite32(0, ioaddr + DownListPtr); 2691 2692 if (final_down && VORTEX_PCI(vp)) { 2693 vp->pm_state_valid = 1; 2694 pci_save_state(VORTEX_PCI(vp)); 2695 acpi_set_WOL(dev); 2696 } 2697 } 2698 2699 static int 2700 vortex_close(struct net_device *dev) 2701 { 2702 struct vortex_private *vp = netdev_priv(dev); 2703 void __iomem *ioaddr = vp->ioaddr; 2704 int i; 2705 2706 if (netif_device_present(dev)) 2707 vortex_down(dev, 1); 2708 2709 if (vortex_debug > 1) { 2710 pr_debug("%s: vortex_close() status %4.4x, Tx status %2.2x.\n", 2711 dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus)); 2712 pr_debug("%s: vortex close stats: rx_nocopy %d rx_copy %d" 2713 " tx_queued %d Rx pre-checksummed %d.\n", 2714 dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits); 2715 } 2716 2717 #if DO_ZEROCOPY 2718 if (vp->rx_csumhits && 2719 (vp->drv_flags & HAS_HWCKSM) == 0 && 2720 (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) { 2721 pr_warning("%s supports hardware checksums, and we're not using them!\n", dev->name); 2722 } 2723 #endif 2724 2725 free_irq(dev->irq, dev); 2726 2727 if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */ 2728 for (i = 0; i < RX_RING_SIZE; i++) 2729 if (vp->rx_skbuff[i]) { 2730 pci_unmap_single( VORTEX_PCI(vp), le32_to_cpu(vp->rx_ring[i].addr), 2731 PKT_BUF_SZ, PCI_DMA_FROMDEVICE); 2732 dev_kfree_skb(vp->rx_skbuff[i]); 2733 vp->rx_skbuff[i] = NULL; 2734 } 2735 } 2736 if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */ 2737 for (i = 0; i < TX_RING_SIZE; i++) { 2738 if (vp->tx_skbuff[i]) { 2739 struct sk_buff *skb = vp->tx_skbuff[i]; 2740 #if DO_ZEROCOPY 2741 int k; 2742 2743 for (k=0; k<=skb_shinfo(skb)->nr_frags; k++) 2744 pci_unmap_single(VORTEX_PCI(vp), 2745 le32_to_cpu(vp->tx_ring[i].frag[k].addr), 2746 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF, 2747 PCI_DMA_TODEVICE); 2748 #else 2749 pci_unmap_single(VORTEX_PCI(vp), le32_to_cpu(vp->tx_ring[i].addr), skb->len, PCI_DMA_TODEVICE); 2750 #endif 2751 dev_kfree_skb(skb); 2752 vp->tx_skbuff[i] = NULL; 2753 } 2754 } 2755 } 2756 2757 return 0; 2758 } 2759 2760 static void 2761 dump_tx_ring(struct net_device *dev) 2762 { 2763 if (vortex_debug > 0) { 2764 struct vortex_private *vp = netdev_priv(dev); 2765 void __iomem *ioaddr = vp->ioaddr; 2766 2767 if (vp->full_bus_master_tx) { 2768 int i; 2769 int stalled = ioread32(ioaddr + PktStatus) & 0x04; /* Possible racy. But it's only debug stuff */ 2770 2771 pr_err(" Flags; bus-master %d, dirty %d(%d) current %d(%d)\n", 2772 vp->full_bus_master_tx, 2773 vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE, 2774 vp->cur_tx, vp->cur_tx % TX_RING_SIZE); 2775 pr_err(" Transmit list %8.8x vs. %p.\n", 2776 ioread32(ioaddr + DownListPtr), 2777 &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]); 2778 issue_and_wait(dev, DownStall); 2779 for (i = 0; i < TX_RING_SIZE; i++) { 2780 unsigned int length; 2781 2782 #if DO_ZEROCOPY 2783 length = le32_to_cpu(vp->tx_ring[i].frag[0].length); 2784 #else 2785 length = le32_to_cpu(vp->tx_ring[i].length); 2786 #endif 2787 pr_err(" %d: @%p length %8.8x status %8.8x\n", 2788 i, &vp->tx_ring[i], length, 2789 le32_to_cpu(vp->tx_ring[i].status)); 2790 } 2791 if (!stalled) 2792 iowrite16(DownUnstall, ioaddr + EL3_CMD); 2793 } 2794 } 2795 } 2796 2797 static struct net_device_stats *vortex_get_stats(struct net_device *dev) 2798 { 2799 struct vortex_private *vp = netdev_priv(dev); 2800 void __iomem *ioaddr = vp->ioaddr; 2801 unsigned long flags; 2802 2803 if (netif_device_present(dev)) { /* AKPM: Used to be netif_running */ 2804 spin_lock_irqsave (&vp->lock, flags); 2805 update_stats(ioaddr, dev); 2806 spin_unlock_irqrestore (&vp->lock, flags); 2807 } 2808 return &dev->stats; 2809 } 2810 2811 /* Update statistics. 2812 Unlike with the EL3 we need not worry about interrupts changing 2813 the window setting from underneath us, but we must still guard 2814 against a race condition with a StatsUpdate interrupt updating the 2815 table. This is done by checking that the ASM (!) code generated uses 2816 atomic updates with '+='. 2817 */ 2818 static void update_stats(void __iomem *ioaddr, struct net_device *dev) 2819 { 2820 struct vortex_private *vp = netdev_priv(dev); 2821 2822 /* Unlike the 3c5x9 we need not turn off stats updates while reading. */ 2823 /* Switch to the stats window, and read everything. */ 2824 dev->stats.tx_carrier_errors += window_read8(vp, 6, 0); 2825 dev->stats.tx_heartbeat_errors += window_read8(vp, 6, 1); 2826 dev->stats.tx_window_errors += window_read8(vp, 6, 4); 2827 dev->stats.rx_fifo_errors += window_read8(vp, 6, 5); 2828 dev->stats.tx_packets += window_read8(vp, 6, 6); 2829 dev->stats.tx_packets += (window_read8(vp, 6, 9) & 2830 0x30) << 4; 2831 /* Rx packets */ window_read8(vp, 6, 7); /* Must read to clear */ 2832 /* Don't bother with register 9, an extension of registers 6&7. 2833 If we do use the 6&7 values the atomic update assumption above 2834 is invalid. */ 2835 dev->stats.rx_bytes += window_read16(vp, 6, 10); 2836 dev->stats.tx_bytes += window_read16(vp, 6, 12); 2837 /* Extra stats for get_ethtool_stats() */ 2838 vp->xstats.tx_multiple_collisions += window_read8(vp, 6, 2); 2839 vp->xstats.tx_single_collisions += window_read8(vp, 6, 3); 2840 vp->xstats.tx_deferred += window_read8(vp, 6, 8); 2841 vp->xstats.rx_bad_ssd += window_read8(vp, 4, 12); 2842 2843 dev->stats.collisions = vp->xstats.tx_multiple_collisions 2844 + vp->xstats.tx_single_collisions 2845 + vp->xstats.tx_max_collisions; 2846 2847 { 2848 u8 up = window_read8(vp, 4, 13); 2849 dev->stats.rx_bytes += (up & 0x0f) << 16; 2850 dev->stats.tx_bytes += (up & 0xf0) << 12; 2851 } 2852 } 2853 2854 static int vortex_nway_reset(struct net_device *dev) 2855 { 2856 struct vortex_private *vp = netdev_priv(dev); 2857 2858 return mii_nway_restart(&vp->mii); 2859 } 2860 2861 static int vortex_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2862 { 2863 struct vortex_private *vp = netdev_priv(dev); 2864 2865 return mii_ethtool_gset(&vp->mii, cmd); 2866 } 2867 2868 static int vortex_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2869 { 2870 struct vortex_private *vp = netdev_priv(dev); 2871 2872 return mii_ethtool_sset(&vp->mii, cmd); 2873 } 2874 2875 static u32 vortex_get_msglevel(struct net_device *dev) 2876 { 2877 return vortex_debug; 2878 } 2879 2880 static void vortex_set_msglevel(struct net_device *dev, u32 dbg) 2881 { 2882 vortex_debug = dbg; 2883 } 2884 2885 static int vortex_get_sset_count(struct net_device *dev, int sset) 2886 { 2887 switch (sset) { 2888 case ETH_SS_STATS: 2889 return VORTEX_NUM_STATS; 2890 default: 2891 return -EOPNOTSUPP; 2892 } 2893 } 2894 2895 static void vortex_get_ethtool_stats(struct net_device *dev, 2896 struct ethtool_stats *stats, u64 *data) 2897 { 2898 struct vortex_private *vp = netdev_priv(dev); 2899 void __iomem *ioaddr = vp->ioaddr; 2900 unsigned long flags; 2901 2902 spin_lock_irqsave(&vp->lock, flags); 2903 update_stats(ioaddr, dev); 2904 spin_unlock_irqrestore(&vp->lock, flags); 2905 2906 data[0] = vp->xstats.tx_deferred; 2907 data[1] = vp->xstats.tx_max_collisions; 2908 data[2] = vp->xstats.tx_multiple_collisions; 2909 data[3] = vp->xstats.tx_single_collisions; 2910 data[4] = vp->xstats.rx_bad_ssd; 2911 } 2912 2913 2914 static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data) 2915 { 2916 switch (stringset) { 2917 case ETH_SS_STATS: 2918 memcpy(data, ðtool_stats_keys, sizeof(ethtool_stats_keys)); 2919 break; 2920 default: 2921 WARN_ON(1); 2922 break; 2923 } 2924 } 2925 2926 static void vortex_get_drvinfo(struct net_device *dev, 2927 struct ethtool_drvinfo *info) 2928 { 2929 struct vortex_private *vp = netdev_priv(dev); 2930 2931 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 2932 if (VORTEX_PCI(vp)) { 2933 strlcpy(info->bus_info, pci_name(VORTEX_PCI(vp)), 2934 sizeof(info->bus_info)); 2935 } else { 2936 if (VORTEX_EISA(vp)) 2937 strlcpy(info->bus_info, dev_name(vp->gendev), 2938 sizeof(info->bus_info)); 2939 else 2940 snprintf(info->bus_info, sizeof(info->bus_info), 2941 "EISA 0x%lx %d", dev->base_addr, dev->irq); 2942 } 2943 } 2944 2945 static void vortex_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2946 { 2947 struct vortex_private *vp = netdev_priv(dev); 2948 2949 if (!VORTEX_PCI(vp)) 2950 return; 2951 2952 wol->supported = WAKE_MAGIC; 2953 2954 wol->wolopts = 0; 2955 if (vp->enable_wol) 2956 wol->wolopts |= WAKE_MAGIC; 2957 } 2958 2959 static int vortex_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2960 { 2961 struct vortex_private *vp = netdev_priv(dev); 2962 2963 if (!VORTEX_PCI(vp)) 2964 return -EOPNOTSUPP; 2965 2966 if (wol->wolopts & ~WAKE_MAGIC) 2967 return -EINVAL; 2968 2969 if (wol->wolopts & WAKE_MAGIC) 2970 vp->enable_wol = 1; 2971 else 2972 vp->enable_wol = 0; 2973 acpi_set_WOL(dev); 2974 2975 return 0; 2976 } 2977 2978 static const struct ethtool_ops vortex_ethtool_ops = { 2979 .get_drvinfo = vortex_get_drvinfo, 2980 .get_strings = vortex_get_strings, 2981 .get_msglevel = vortex_get_msglevel, 2982 .set_msglevel = vortex_set_msglevel, 2983 .get_ethtool_stats = vortex_get_ethtool_stats, 2984 .get_sset_count = vortex_get_sset_count, 2985 .get_settings = vortex_get_settings, 2986 .set_settings = vortex_set_settings, 2987 .get_link = ethtool_op_get_link, 2988 .nway_reset = vortex_nway_reset, 2989 .get_wol = vortex_get_wol, 2990 .set_wol = vortex_set_wol, 2991 }; 2992 2993 #ifdef CONFIG_PCI 2994 /* 2995 * Must power the device up to do MDIO operations 2996 */ 2997 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 2998 { 2999 int err; 3000 struct vortex_private *vp = netdev_priv(dev); 3001 pci_power_t state = 0; 3002 3003 if(VORTEX_PCI(vp)) 3004 state = VORTEX_PCI(vp)->current_state; 3005 3006 /* The kernel core really should have pci_get_power_state() */ 3007 3008 if(state != 0) 3009 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); 3010 err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL); 3011 if(state != 0) 3012 pci_set_power_state(VORTEX_PCI(vp), state); 3013 3014 return err; 3015 } 3016 #endif 3017 3018 3019 /* Pre-Cyclone chips have no documented multicast filter, so the only 3020 multicast setting is to receive all multicast frames. At least 3021 the chip has a very clean way to set the mode, unlike many others. */ 3022 static void set_rx_mode(struct net_device *dev) 3023 { 3024 struct vortex_private *vp = netdev_priv(dev); 3025 void __iomem *ioaddr = vp->ioaddr; 3026 int new_mode; 3027 3028 if (dev->flags & IFF_PROMISC) { 3029 if (vortex_debug > 3) 3030 pr_notice("%s: Setting promiscuous mode.\n", dev->name); 3031 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm; 3032 } else if (!netdev_mc_empty(dev) || dev->flags & IFF_ALLMULTI) { 3033 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast; 3034 } else 3035 new_mode = SetRxFilter | RxStation | RxBroadcast; 3036 3037 iowrite16(new_mode, ioaddr + EL3_CMD); 3038 } 3039 3040 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE) 3041 /* Setup the card so that it can receive frames with an 802.1q VLAN tag. 3042 Note that this must be done after each RxReset due to some backwards 3043 compatibility logic in the Cyclone and Tornado ASICs */ 3044 3045 /* The Ethernet Type used for 802.1q tagged frames */ 3046 #define VLAN_ETHER_TYPE 0x8100 3047 3048 static void set_8021q_mode(struct net_device *dev, int enable) 3049 { 3050 struct vortex_private *vp = netdev_priv(dev); 3051 int mac_ctrl; 3052 3053 if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) { 3054 /* cyclone and tornado chipsets can recognize 802.1q 3055 * tagged frames and treat them correctly */ 3056 3057 int max_pkt_size = dev->mtu+14; /* MTU+Ethernet header */ 3058 if (enable) 3059 max_pkt_size += 4; /* 802.1Q VLAN tag */ 3060 3061 window_write16(vp, max_pkt_size, 3, Wn3_MaxPktSize); 3062 3063 /* set VlanEtherType to let the hardware checksumming 3064 treat tagged frames correctly */ 3065 window_write16(vp, VLAN_ETHER_TYPE, 7, Wn7_VlanEtherType); 3066 } else { 3067 /* on older cards we have to enable large frames */ 3068 3069 vp->large_frames = dev->mtu > 1500 || enable; 3070 3071 mac_ctrl = window_read16(vp, 3, Wn3_MAC_Ctrl); 3072 if (vp->large_frames) 3073 mac_ctrl |= 0x40; 3074 else 3075 mac_ctrl &= ~0x40; 3076 window_write16(vp, mac_ctrl, 3, Wn3_MAC_Ctrl); 3077 } 3078 } 3079 #else 3080 3081 static void set_8021q_mode(struct net_device *dev, int enable) 3082 { 3083 } 3084 3085 3086 #endif 3087 3088 /* MII transceiver control section. 3089 Read and write the MII registers using software-generated serial 3090 MDIO protocol. See the MII specifications or DP83840A data sheet 3091 for details. */ 3092 3093 /* The maximum data clock rate is 2.5 Mhz. The minimum timing is usually 3094 met by back-to-back PCI I/O cycles, but we insert a delay to avoid 3095 "overclocking" issues. */ 3096 static void mdio_delay(struct vortex_private *vp) 3097 { 3098 window_read32(vp, 4, Wn4_PhysicalMgmt); 3099 } 3100 3101 #define MDIO_SHIFT_CLK 0x01 3102 #define MDIO_DIR_WRITE 0x04 3103 #define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE) 3104 #define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE) 3105 #define MDIO_DATA_READ 0x02 3106 #define MDIO_ENB_IN 0x00 3107 3108 /* Generate the preamble required for initial synchronization and 3109 a few older transceivers. */ 3110 static void mdio_sync(struct vortex_private *vp, int bits) 3111 { 3112 /* Establish sync by sending at least 32 logic ones. */ 3113 while (-- bits >= 0) { 3114 window_write16(vp, MDIO_DATA_WRITE1, 4, Wn4_PhysicalMgmt); 3115 mdio_delay(vp); 3116 window_write16(vp, MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK, 3117 4, Wn4_PhysicalMgmt); 3118 mdio_delay(vp); 3119 } 3120 } 3121 3122 static int mdio_read(struct net_device *dev, int phy_id, int location) 3123 { 3124 int i; 3125 struct vortex_private *vp = netdev_priv(dev); 3126 int read_cmd = (0xf6 << 10) | (phy_id << 5) | location; 3127 unsigned int retval = 0; 3128 3129 spin_lock_bh(&vp->mii_lock); 3130 3131 if (mii_preamble_required) 3132 mdio_sync(vp, 32); 3133 3134 /* Shift the read command bits out. */ 3135 for (i = 14; i >= 0; i--) { 3136 int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0; 3137 window_write16(vp, dataval, 4, Wn4_PhysicalMgmt); 3138 mdio_delay(vp); 3139 window_write16(vp, dataval | MDIO_SHIFT_CLK, 3140 4, Wn4_PhysicalMgmt); 3141 mdio_delay(vp); 3142 } 3143 /* Read the two transition, 16 data, and wire-idle bits. */ 3144 for (i = 19; i > 0; i--) { 3145 window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt); 3146 mdio_delay(vp); 3147 retval = (retval << 1) | 3148 ((window_read16(vp, 4, Wn4_PhysicalMgmt) & 3149 MDIO_DATA_READ) ? 1 : 0); 3150 window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK, 3151 4, Wn4_PhysicalMgmt); 3152 mdio_delay(vp); 3153 } 3154 3155 spin_unlock_bh(&vp->mii_lock); 3156 3157 return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff; 3158 } 3159 3160 static void mdio_write(struct net_device *dev, int phy_id, int location, int value) 3161 { 3162 struct vortex_private *vp = netdev_priv(dev); 3163 int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value; 3164 int i; 3165 3166 spin_lock_bh(&vp->mii_lock); 3167 3168 if (mii_preamble_required) 3169 mdio_sync(vp, 32); 3170 3171 /* Shift the command bits out. */ 3172 for (i = 31; i >= 0; i--) { 3173 int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0; 3174 window_write16(vp, dataval, 4, Wn4_PhysicalMgmt); 3175 mdio_delay(vp); 3176 window_write16(vp, dataval | MDIO_SHIFT_CLK, 3177 4, Wn4_PhysicalMgmt); 3178 mdio_delay(vp); 3179 } 3180 /* Leave the interface idle. */ 3181 for (i = 1; i >= 0; i--) { 3182 window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt); 3183 mdio_delay(vp); 3184 window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK, 3185 4, Wn4_PhysicalMgmt); 3186 mdio_delay(vp); 3187 } 3188 3189 spin_unlock_bh(&vp->mii_lock); 3190 } 3191 3192 /* ACPI: Advanced Configuration and Power Interface. */ 3193 /* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */ 3194 static void acpi_set_WOL(struct net_device *dev) 3195 { 3196 struct vortex_private *vp = netdev_priv(dev); 3197 void __iomem *ioaddr = vp->ioaddr; 3198 3199 device_set_wakeup_enable(vp->gendev, vp->enable_wol); 3200 3201 if (vp->enable_wol) { 3202 /* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */ 3203 window_write16(vp, 2, 7, 0x0c); 3204 /* The RxFilter must accept the WOL frames. */ 3205 iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD); 3206 iowrite16(RxEnable, ioaddr + EL3_CMD); 3207 3208 if (pci_enable_wake(VORTEX_PCI(vp), PCI_D3hot, 1)) { 3209 pr_info("%s: WOL not supported.\n", pci_name(VORTEX_PCI(vp))); 3210 3211 vp->enable_wol = 0; 3212 return; 3213 } 3214 3215 if (VORTEX_PCI(vp)->current_state < PCI_D3hot) 3216 return; 3217 3218 /* Change the power state to D3; RxEnable doesn't take effect. */ 3219 pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot); 3220 } 3221 } 3222 3223 3224 static void vortex_remove_one(struct pci_dev *pdev) 3225 { 3226 struct net_device *dev = pci_get_drvdata(pdev); 3227 struct vortex_private *vp; 3228 3229 if (!dev) { 3230 pr_err("vortex_remove_one called for Compaq device!\n"); 3231 BUG(); 3232 } 3233 3234 vp = netdev_priv(dev); 3235 3236 if (vp->cb_fn_base) 3237 pci_iounmap(VORTEX_PCI(vp), vp->cb_fn_base); 3238 3239 unregister_netdev(dev); 3240 3241 if (VORTEX_PCI(vp)) { 3242 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); /* Go active */ 3243 if (vp->pm_state_valid) 3244 pci_restore_state(VORTEX_PCI(vp)); 3245 pci_disable_device(VORTEX_PCI(vp)); 3246 } 3247 /* Should really use issue_and_wait() here */ 3248 iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14), 3249 vp->ioaddr + EL3_CMD); 3250 3251 pci_iounmap(VORTEX_PCI(vp), vp->ioaddr); 3252 3253 pci_free_consistent(pdev, 3254 sizeof(struct boom_rx_desc) * RX_RING_SIZE 3255 + sizeof(struct boom_tx_desc) * TX_RING_SIZE, 3256 vp->rx_ring, 3257 vp->rx_ring_dma); 3258 if (vp->must_free_region) 3259 release_region(dev->base_addr, vp->io_size); 3260 free_netdev(dev); 3261 } 3262 3263 3264 static struct pci_driver vortex_driver = { 3265 .name = "3c59x", 3266 .probe = vortex_init_one, 3267 .remove = vortex_remove_one, 3268 .id_table = vortex_pci_tbl, 3269 .driver.pm = VORTEX_PM_OPS, 3270 }; 3271 3272 3273 static int vortex_have_pci; 3274 static int vortex_have_eisa; 3275 3276 3277 static int __init vortex_init(void) 3278 { 3279 int pci_rc, eisa_rc; 3280 3281 pci_rc = pci_register_driver(&vortex_driver); 3282 eisa_rc = vortex_eisa_init(); 3283 3284 if (pci_rc == 0) 3285 vortex_have_pci = 1; 3286 if (eisa_rc > 0) 3287 vortex_have_eisa = 1; 3288 3289 return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV; 3290 } 3291 3292 3293 static void __exit vortex_eisa_cleanup(void) 3294 { 3295 struct vortex_private *vp; 3296 void __iomem *ioaddr; 3297 3298 #ifdef CONFIG_EISA 3299 /* Take care of the EISA devices */ 3300 eisa_driver_unregister(&vortex_eisa_driver); 3301 #endif 3302 3303 if (compaq_net_device) { 3304 vp = netdev_priv(compaq_net_device); 3305 ioaddr = ioport_map(compaq_net_device->base_addr, 3306 VORTEX_TOTAL_SIZE); 3307 3308 unregister_netdev(compaq_net_device); 3309 iowrite16(TotalReset, ioaddr + EL3_CMD); 3310 release_region(compaq_net_device->base_addr, 3311 VORTEX_TOTAL_SIZE); 3312 3313 free_netdev(compaq_net_device); 3314 } 3315 } 3316 3317 3318 static void __exit vortex_cleanup(void) 3319 { 3320 if (vortex_have_pci) 3321 pci_unregister_driver(&vortex_driver); 3322 if (vortex_have_eisa) 3323 vortex_eisa_cleanup(); 3324 } 3325 3326 3327 module_init(vortex_init); 3328 module_exit(vortex_cleanup); 3329