xref: /openbmc/linux/drivers/net/ethernet/3com/3c59x.c (revision 8fdff1dc)
1 /* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */
2 /*
3 	Written 1996-1999 by Donald Becker.
4 
5 	This software may be used and distributed according to the terms
6 	of the GNU General Public License, incorporated herein by reference.
7 
8 	This driver is for the 3Com "Vortex" and "Boomerang" series ethercards.
9 	Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597
10 	and the EtherLink XL 3c900 and 3c905 cards.
11 
12 	Problem reports and questions should be directed to
13 	vortex@scyld.com
14 
15 	The author may be reached as becker@scyld.com, or C/O
16 	Scyld Computing Corporation
17 	410 Severn Ave., Suite 210
18 	Annapolis MD 21403
19 
20 */
21 
22 /*
23  * FIXME: This driver _could_ support MTU changing, but doesn't.  See Don's hamachi.c implementation
24  * as well as other drivers
25  *
26  * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k
27  * due to dead code elimination.  There will be some performance benefits from this due to
28  * elimination of all the tests and reduced cache footprint.
29  */
30 
31 
32 #define DRV_NAME	"3c59x"
33 
34 
35 
36 /* A few values that may be tweaked. */
37 /* Keep the ring sizes a power of two for efficiency. */
38 #define TX_RING_SIZE	16
39 #define RX_RING_SIZE	32
40 #define PKT_BUF_SZ		1536			/* Size of each temporary Rx buffer.*/
41 
42 /* "Knobs" that adjust features and parameters. */
43 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
44    Setting to > 1512 effectively disables this feature. */
45 #ifndef __arm__
46 static int rx_copybreak = 200;
47 #else
48 /* ARM systems perform better by disregarding the bus-master
49    transfer capability of these cards. -- rmk */
50 static int rx_copybreak = 1513;
51 #endif
52 /* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
53 static const int mtu = 1500;
54 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
55 static int max_interrupt_work = 32;
56 /* Tx timeout interval (millisecs) */
57 static int watchdog = 5000;
58 
59 /* Allow aggregation of Tx interrupts.  Saves CPU load at the cost
60  * of possible Tx stalls if the system is blocking interrupts
61  * somewhere else.  Undefine this to disable.
62  */
63 #define tx_interrupt_mitigation 1
64 
65 /* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */
66 #define vortex_debug debug
67 #ifdef VORTEX_DEBUG
68 static int vortex_debug = VORTEX_DEBUG;
69 #else
70 static int vortex_debug = 1;
71 #endif
72 
73 #include <linux/module.h>
74 #include <linux/kernel.h>
75 #include <linux/string.h>
76 #include <linux/timer.h>
77 #include <linux/errno.h>
78 #include <linux/in.h>
79 #include <linux/ioport.h>
80 #include <linux/interrupt.h>
81 #include <linux/pci.h>
82 #include <linux/mii.h>
83 #include <linux/init.h>
84 #include <linux/netdevice.h>
85 #include <linux/etherdevice.h>
86 #include <linux/skbuff.h>
87 #include <linux/ethtool.h>
88 #include <linux/highmem.h>
89 #include <linux/eisa.h>
90 #include <linux/bitops.h>
91 #include <linux/jiffies.h>
92 #include <linux/gfp.h>
93 #include <asm/irq.h>			/* For nr_irqs only. */
94 #include <asm/io.h>
95 #include <asm/uaccess.h>
96 
97 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package.
98    This is only in the support-all-kernels source code. */
99 
100 #define RUN_AT(x) (jiffies + (x))
101 
102 #include <linux/delay.h>
103 
104 
105 static const char version[] =
106 	DRV_NAME ": Donald Becker and others.\n";
107 
108 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
109 MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver ");
110 MODULE_LICENSE("GPL");
111 
112 
113 /* Operational parameter that usually are not changed. */
114 
115 /* The Vortex size is twice that of the original EtherLinkIII series: the
116    runtime register window, window 1, is now always mapped in.
117    The Boomerang size is twice as large as the Vortex -- it has additional
118    bus master control registers. */
119 #define VORTEX_TOTAL_SIZE 0x20
120 #define BOOMERANG_TOTAL_SIZE 0x40
121 
122 /* Set iff a MII transceiver on any interface requires mdio preamble.
123    This only set with the original DP83840 on older 3c905 boards, so the extra
124    code size of a per-interface flag is not worthwhile. */
125 static char mii_preamble_required;
126 
127 #define PFX DRV_NAME ": "
128 
129 
130 
131 /*
132 				Theory of Operation
133 
134 I. Board Compatibility
135 
136 This device driver is designed for the 3Com FastEtherLink and FastEtherLink
137 XL, 3Com's PCI to 10/100baseT adapters.  It also works with the 10Mbs
138 versions of the FastEtherLink cards.  The supported product IDs are
139   3c590, 3c592, 3c595, 3c597, 3c900, 3c905
140 
141 The related ISA 3c515 is supported with a separate driver, 3c515.c, included
142 with the kernel source or available from
143     cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html
144 
145 II. Board-specific settings
146 
147 PCI bus devices are configured by the system at boot time, so no jumpers
148 need to be set on the board.  The system BIOS should be set to assign the
149 PCI INTA signal to an otherwise unused system IRQ line.
150 
151 The EEPROM settings for media type and forced-full-duplex are observed.
152 The EEPROM media type should be left at the default "autoselect" unless using
153 10base2 or AUI connections which cannot be reliably detected.
154 
155 III. Driver operation
156 
157 The 3c59x series use an interface that's very similar to the previous 3c5x9
158 series.  The primary interface is two programmed-I/O FIFOs, with an
159 alternate single-contiguous-region bus-master transfer (see next).
160 
161 The 3c900 "Boomerang" series uses a full-bus-master interface with separate
162 lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
163 DEC Tulip and Intel Speedo3.  The first chip version retains a compatible
164 programmed-I/O interface that has been removed in 'B' and subsequent board
165 revisions.
166 
167 One extension that is advertised in a very large font is that the adapters
168 are capable of being bus masters.  On the Vortex chip this capability was
169 only for a single contiguous region making it far less useful than the full
170 bus master capability.  There is a significant performance impact of taking
171 an extra interrupt or polling for the completion of each transfer, as well
172 as difficulty sharing the single transfer engine between the transmit and
173 receive threads.  Using DMA transfers is a win only with large blocks or
174 with the flawed versions of the Intel Orion motherboard PCI controller.
175 
176 The Boomerang chip's full-bus-master interface is useful, and has the
177 currently-unused advantages over other similar chips that queued transmit
178 packets may be reordered and receive buffer groups are associated with a
179 single frame.
180 
181 With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme.
182 Rather than a fixed intermediate receive buffer, this scheme allocates
183 full-sized skbuffs as receive buffers.  The value RX_COPYBREAK is used as
184 the copying breakpoint: it is chosen to trade-off the memory wasted by
185 passing the full-sized skbuff to the queue layer for all frames vs. the
186 copying cost of copying a frame to a correctly-sized skbuff.
187 
188 IIIC. Synchronization
189 The driver runs as two independent, single-threaded flows of control.  One
190 is the send-packet routine, which enforces single-threaded use by the
191 dev->tbusy flag.  The other thread is the interrupt handler, which is single
192 threaded by the hardware and other software.
193 
194 IV. Notes
195 
196 Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development
197 3c590, 3c595, and 3c900 boards.
198 The name "Vortex" is the internal 3Com project name for the PCI ASIC, and
199 the EISA version is called "Demon".  According to Terry these names come
200 from rides at the local amusement park.
201 
202 The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes!
203 This driver only supports ethernet packets because of the skbuff allocation
204 limit of 4K.
205 */
206 
207 /* This table drives the PCI probe routines.  It's mostly boilerplate in all
208    of the drivers, and will likely be provided by some future kernel.
209 */
210 enum pci_flags_bit {
211 	PCI_USES_MASTER=4,
212 };
213 
214 enum {	IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8,
215 	EEPROM_8BIT=0x10,	/* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */
216 	HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100,
217 	INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800,
218 	EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000,
219 	EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, };
220 
221 enum vortex_chips {
222 	CH_3C590 = 0,
223 	CH_3C592,
224 	CH_3C597,
225 	CH_3C595_1,
226 	CH_3C595_2,
227 
228 	CH_3C595_3,
229 	CH_3C900_1,
230 	CH_3C900_2,
231 	CH_3C900_3,
232 	CH_3C900_4,
233 
234 	CH_3C900_5,
235 	CH_3C900B_FL,
236 	CH_3C905_1,
237 	CH_3C905_2,
238 	CH_3C905B_TX,
239 	CH_3C905B_1,
240 
241 	CH_3C905B_2,
242 	CH_3C905B_FX,
243 	CH_3C905C,
244 	CH_3C9202,
245 	CH_3C980,
246 	CH_3C9805,
247 
248 	CH_3CSOHO100_TX,
249 	CH_3C555,
250 	CH_3C556,
251 	CH_3C556B,
252 	CH_3C575,
253 
254 	CH_3C575_1,
255 	CH_3CCFE575,
256 	CH_3CCFE575CT,
257 	CH_3CCFE656,
258 	CH_3CCFEM656,
259 
260 	CH_3CCFEM656_1,
261 	CH_3C450,
262 	CH_3C920,
263 	CH_3C982A,
264 	CH_3C982B,
265 
266 	CH_905BT4,
267 	CH_920B_EMB_WNM,
268 };
269 
270 
271 /* note: this array directly indexed by above enums, and MUST
272  * be kept in sync with both the enums above, and the PCI device
273  * table below
274  */
275 static struct vortex_chip_info {
276 	const char *name;
277 	int flags;
278 	int drv_flags;
279 	int io_size;
280 } vortex_info_tbl[] = {
281 	{"3c590 Vortex 10Mbps",
282 	 PCI_USES_MASTER, IS_VORTEX, 32, },
283 	{"3c592 EISA 10Mbps Demon/Vortex",					/* AKPM: from Don's 3c59x_cb.c 0.49H */
284 	 PCI_USES_MASTER, IS_VORTEX, 32, },
285 	{"3c597 EISA Fast Demon/Vortex",					/* AKPM: from Don's 3c59x_cb.c 0.49H */
286 	 PCI_USES_MASTER, IS_VORTEX, 32, },
287 	{"3c595 Vortex 100baseTx",
288 	 PCI_USES_MASTER, IS_VORTEX, 32, },
289 	{"3c595 Vortex 100baseT4",
290 	 PCI_USES_MASTER, IS_VORTEX, 32, },
291 
292 	{"3c595 Vortex 100base-MII",
293 	 PCI_USES_MASTER, IS_VORTEX, 32, },
294 	{"3c900 Boomerang 10baseT",
295 	 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
296 	{"3c900 Boomerang 10Mbps Combo",
297 	 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
298 	{"3c900 Cyclone 10Mbps TPO",						/* AKPM: from Don's 0.99M */
299 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
300 	{"3c900 Cyclone 10Mbps Combo",
301 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
302 
303 	{"3c900 Cyclone 10Mbps TPC",						/* AKPM: from Don's 0.99M */
304 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
305 	{"3c900B-FL Cyclone 10base-FL",
306 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
307 	{"3c905 Boomerang 100baseTx",
308 	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
309 	{"3c905 Boomerang 100baseT4",
310 	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
311 	{"3C905B-TX Fast Etherlink XL PCI",
312 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
313 	{"3c905B Cyclone 100baseTx",
314 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
315 
316 	{"3c905B Cyclone 10/100/BNC",
317 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
318 	{"3c905B-FX Cyclone 100baseFx",
319 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
320 	{"3c905C Tornado",
321 	PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
322 	{"3c920B-EMB-WNM (ATI Radeon 9100 IGP)",
323 	 PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, },
324 	{"3c980 Cyclone",
325 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
326 
327 	{"3c980C Python-T",
328 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
329 	{"3cSOHO100-TX Hurricane",
330 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
331 	{"3c555 Laptop Hurricane",
332 	 PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, },
333 	{"3c556 Laptop Tornado",
334 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR|
335 									HAS_HWCKSM, 128, },
336 	{"3c556B Laptop Hurricane",
337 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR|
338 	                                WNO_XCVR_PWR|HAS_HWCKSM, 128, },
339 
340 	{"3c575 [Megahertz] 10/100 LAN 	CardBus",
341 	PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
342 	{"3c575 Boomerang CardBus",
343 	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
344 	{"3CCFE575BT Cyclone CardBus",
345 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|
346 									INVERT_LED_PWR|HAS_HWCKSM, 128, },
347 	{"3CCFE575CT Tornado CardBus",
348 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
349 									MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
350 	{"3CCFE656 Cyclone CardBus",
351 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
352 									INVERT_LED_PWR|HAS_HWCKSM, 128, },
353 
354 	{"3CCFEM656B Cyclone+Winmodem CardBus",
355 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
356 									INVERT_LED_PWR|HAS_HWCKSM, 128, },
357 	{"3CXFEM656C Tornado+Winmodem CardBus",			/* From pcmcia-cs-3.1.5 */
358 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
359 									MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
360 	{"3c450 HomePNA Tornado",						/* AKPM: from Don's 0.99Q */
361 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
362 	{"3c920 Tornado",
363 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
364 	{"3c982 Hydra Dual Port A",
365 	 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
366 
367 	{"3c982 Hydra Dual Port B",
368 	 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
369 	{"3c905B-T4",
370 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
371 	{"3c920B-EMB-WNM Tornado",
372 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
373 
374 	{NULL,}, /* NULL terminated list. */
375 };
376 
377 
378 static DEFINE_PCI_DEVICE_TABLE(vortex_pci_tbl) = {
379 	{ 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 },
380 	{ 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 },
381 	{ 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 },
382 	{ 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 },
383 	{ 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 },
384 
385 	{ 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 },
386 	{ 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 },
387 	{ 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 },
388 	{ 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 },
389 	{ 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 },
390 
391 	{ 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 },
392 	{ 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL },
393 	{ 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 },
394 	{ 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 },
395 	{ 0x10B7, 0x9054, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_TX },
396 	{ 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 },
397 
398 	{ 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 },
399 	{ 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX },
400 	{ 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C },
401 	{ 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 },
402 	{ 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 },
403 	{ 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 },
404 
405 	{ 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX },
406 	{ 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 },
407 	{ 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 },
408 	{ 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B },
409 	{ 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 },
410 
411 	{ 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 },
412 	{ 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 },
413 	{ 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT },
414 	{ 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 },
415 	{ 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 },
416 
417 	{ 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 },
418 	{ 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 },
419 	{ 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 },
420 	{ 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A },
421 	{ 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B },
422 
423 	{ 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 },
424 	{ 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM },
425 
426 	{0,}						/* 0 terminated list. */
427 };
428 MODULE_DEVICE_TABLE(pci, vortex_pci_tbl);
429 
430 
431 /* Operational definitions.
432    These are not used by other compilation units and thus are not
433    exported in a ".h" file.
434 
435    First the windows.  There are eight register windows, with the command
436    and status registers available in each.
437    */
438 #define EL3_CMD 0x0e
439 #define EL3_STATUS 0x0e
440 
441 /* The top five bits written to EL3_CMD are a command, the lower
442    11 bits are the parameter, if applicable.
443    Note that 11 parameters bits was fine for ethernet, but the new chip
444    can handle FDDI length frames (~4500 octets) and now parameters count
445    32-bit 'Dwords' rather than octets. */
446 
447 enum vortex_cmd {
448 	TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11,
449 	RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11,
450 	UpStall = 6<<11, UpUnstall = (6<<11)+1,
451 	DownStall = (6<<11)+2, DownUnstall = (6<<11)+3,
452 	RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11,
453 	FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11,
454 	SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11,
455 	SetTxThreshold = 18<<11, SetTxStart = 19<<11,
456 	StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11,
457 	StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,};
458 
459 /* The SetRxFilter command accepts the following classes: */
460 enum RxFilter {
461 	RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 };
462 
463 /* Bits in the general status register. */
464 enum vortex_status {
465 	IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004,
466 	TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
467 	IntReq = 0x0040, StatsFull = 0x0080,
468 	DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10,
469 	DMAInProgress = 1<<11,			/* DMA controller is still busy.*/
470 	CmdInProgress = 1<<12,			/* EL3_CMD is still busy.*/
471 };
472 
473 /* Register window 1 offsets, the window used in normal operation.
474    On the Vortex this window is always mapped at offsets 0x10-0x1f. */
475 enum Window1 {
476 	TX_FIFO = 0x10,  RX_FIFO = 0x10,  RxErrors = 0x14,
477 	RxStatus = 0x18,  Timer=0x1A, TxStatus = 0x1B,
478 	TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
479 };
480 enum Window0 {
481 	Wn0EepromCmd = 10,		/* Window 0: EEPROM command register. */
482 	Wn0EepromData = 12,		/* Window 0: EEPROM results register. */
483 	IntrStatus=0x0E,		/* Valid in all windows. */
484 };
485 enum Win0_EEPROM_bits {
486 	EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
487 	EEPROM_EWENB = 0x30,		/* Enable erasing/writing for 10 msec. */
488 	EEPROM_EWDIS = 0x00,		/* Disable EWENB before 10 msec timeout. */
489 };
490 /* EEPROM locations. */
491 enum eeprom_offset {
492 	PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3,
493 	EtherLink3ID=7, IFXcvrIO=8, IRQLine=9,
494 	NodeAddr01=10, NodeAddr23=11, NodeAddr45=12,
495 	DriverTune=13, Checksum=15};
496 
497 enum Window2 {			/* Window 2. */
498 	Wn2_ResetOptions=12,
499 };
500 enum Window3 {			/* Window 3: MAC/config bits. */
501 	Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8,
502 };
503 
504 #define BFEXT(value, offset, bitcount)  \
505     ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1))
506 
507 #define BFINS(lhs, rhs, offset, bitcount)					\
508 	(((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) |	\
509 	(((rhs) & ((1 << (bitcount)) - 1)) << (offset)))
510 
511 #define RAM_SIZE(v)		BFEXT(v, 0, 3)
512 #define RAM_WIDTH(v)	BFEXT(v, 3, 1)
513 #define RAM_SPEED(v)	BFEXT(v, 4, 2)
514 #define ROM_SIZE(v)		BFEXT(v, 6, 2)
515 #define RAM_SPLIT(v)	BFEXT(v, 16, 2)
516 #define XCVR(v)			BFEXT(v, 20, 4)
517 #define AUTOSELECT(v)	BFEXT(v, 24, 1)
518 
519 enum Window4 {		/* Window 4: Xcvr/media bits. */
520 	Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10,
521 };
522 enum Win4_Media_bits {
523 	Media_SQE = 0x0008,		/* Enable SQE error counting for AUI. */
524 	Media_10TP = 0x00C0,	/* Enable link beat and jabber for 10baseT. */
525 	Media_Lnk = 0x0080,		/* Enable just link beat for 100TX/100FX. */
526 	Media_LnkBeat = 0x0800,
527 };
528 enum Window7 {					/* Window 7: Bus Master control. */
529 	Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6,
530 	Wn7_MasterStatus = 12,
531 };
532 /* Boomerang bus master control registers. */
533 enum MasterCtrl {
534 	PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c,
535 	TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38,
536 };
537 
538 /* The Rx and Tx descriptor lists.
539    Caution Alpha hackers: these types are 32 bits!  Note also the 8 byte
540    alignment contraint on tx_ring[] and rx_ring[]. */
541 #define LAST_FRAG 	0x80000000			/* Last Addr/Len pair in descriptor. */
542 #define DN_COMPLETE	0x00010000			/* This packet has been downloaded */
543 struct boom_rx_desc {
544 	__le32 next;					/* Last entry points to 0.   */
545 	__le32 status;
546 	__le32 addr;					/* Up to 63 addr/len pairs possible. */
547 	__le32 length;					/* Set LAST_FRAG to indicate last pair. */
548 };
549 /* Values for the Rx status entry. */
550 enum rx_desc_status {
551 	RxDComplete=0x00008000, RxDError=0x4000,
552 	/* See boomerang_rx() for actual error bits */
553 	IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27,
554 	IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31,
555 };
556 
557 #ifdef MAX_SKB_FRAGS
558 #define DO_ZEROCOPY 1
559 #else
560 #define DO_ZEROCOPY 0
561 #endif
562 
563 struct boom_tx_desc {
564 	__le32 next;					/* Last entry points to 0.   */
565 	__le32 status;					/* bits 0:12 length, others see below.  */
566 #if DO_ZEROCOPY
567 	struct {
568 		__le32 addr;
569 		__le32 length;
570 	} frag[1+MAX_SKB_FRAGS];
571 #else
572 		__le32 addr;
573 		__le32 length;
574 #endif
575 };
576 
577 /* Values for the Tx status entry. */
578 enum tx_desc_status {
579 	CRCDisable=0x2000, TxDComplete=0x8000,
580 	AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000,
581 	TxIntrUploaded=0x80000000,		/* IRQ when in FIFO, but maybe not sent. */
582 };
583 
584 /* Chip features we care about in vp->capabilities, read from the EEPROM. */
585 enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 };
586 
587 struct vortex_extra_stats {
588 	unsigned long tx_deferred;
589 	unsigned long tx_max_collisions;
590 	unsigned long tx_multiple_collisions;
591 	unsigned long tx_single_collisions;
592 	unsigned long rx_bad_ssd;
593 };
594 
595 struct vortex_private {
596 	/* The Rx and Tx rings should be quad-word-aligned. */
597 	struct boom_rx_desc* rx_ring;
598 	struct boom_tx_desc* tx_ring;
599 	dma_addr_t rx_ring_dma;
600 	dma_addr_t tx_ring_dma;
601 	/* The addresses of transmit- and receive-in-place skbuffs. */
602 	struct sk_buff* rx_skbuff[RX_RING_SIZE];
603 	struct sk_buff* tx_skbuff[TX_RING_SIZE];
604 	unsigned int cur_rx, cur_tx;		/* The next free ring entry */
605 	unsigned int dirty_rx, dirty_tx;	/* The ring entries to be free()ed. */
606 	struct vortex_extra_stats xstats;	/* NIC-specific extra stats */
607 	struct sk_buff *tx_skb;				/* Packet being eaten by bus master ctrl.  */
608 	dma_addr_t tx_skb_dma;				/* Allocated DMA address for bus master ctrl DMA.   */
609 
610 	/* PCI configuration space information. */
611 	struct device *gendev;
612 	void __iomem *ioaddr;			/* IO address space */
613 	void __iomem *cb_fn_base;		/* CardBus function status addr space. */
614 
615 	/* Some values here only for performance evaluation and path-coverage */
616 	int rx_nocopy, rx_copy, queued_packet, rx_csumhits;
617 	int card_idx;
618 
619 	/* The remainder are related to chip state, mostly media selection. */
620 	struct timer_list timer;			/* Media selection timer. */
621 	struct timer_list rx_oom_timer;		/* Rx skb allocation retry timer */
622 	int options;						/* User-settable misc. driver options. */
623 	unsigned int media_override:4, 		/* Passed-in media type. */
624 		default_media:4,				/* Read from the EEPROM/Wn3_Config. */
625 		full_duplex:1, autoselect:1,
626 		bus_master:1,					/* Vortex can only do a fragment bus-m. */
627 		full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang  */
628 		flow_ctrl:1,					/* Use 802.3x flow control (PAUSE only) */
629 		partner_flow_ctrl:1,			/* Partner supports flow control */
630 		has_nway:1,
631 		enable_wol:1,					/* Wake-on-LAN is enabled */
632 		pm_state_valid:1,				/* pci_dev->saved_config_space has sane contents */
633 		open:1,
634 		medialock:1,
635 		must_free_region:1,				/* Flag: if zero, Cardbus owns the I/O region */
636 		large_frames:1,			/* accept large frames */
637 		handling_irq:1;			/* private in_irq indicator */
638 	/* {get|set}_wol operations are already serialized by rtnl.
639 	 * no additional locking is required for the enable_wol and acpi_set_WOL()
640 	 */
641 	int drv_flags;
642 	u16 status_enable;
643 	u16 intr_enable;
644 	u16 available_media;				/* From Wn3_Options. */
645 	u16 capabilities, info1, info2;		/* Various, from EEPROM. */
646 	u16 advertising;					/* NWay media advertisement */
647 	unsigned char phys[2];				/* MII device addresses. */
648 	u16 deferred;						/* Resend these interrupts when we
649 										 * bale from the ISR */
650 	u16 io_size;						/* Size of PCI region (for release_region) */
651 
652 	/* Serialises access to hardware other than MII and variables below.
653 	 * The lock hierarchy is rtnl_lock > {lock, mii_lock} > window_lock. */
654 	spinlock_t lock;
655 
656 	spinlock_t mii_lock;		/* Serialises access to MII */
657 	struct mii_if_info mii;		/* MII lib hooks/info */
658 	spinlock_t window_lock;		/* Serialises access to windowed regs */
659 	int window;			/* Register window */
660 };
661 
662 static void window_set(struct vortex_private *vp, int window)
663 {
664 	if (window != vp->window) {
665 		iowrite16(SelectWindow + window, vp->ioaddr + EL3_CMD);
666 		vp->window = window;
667 	}
668 }
669 
670 #define DEFINE_WINDOW_IO(size)						\
671 static u ## size							\
672 window_read ## size(struct vortex_private *vp, int window, int addr)	\
673 {									\
674 	unsigned long flags;						\
675 	u ## size ret;							\
676 	spin_lock_irqsave(&vp->window_lock, flags);			\
677 	window_set(vp, window);						\
678 	ret = ioread ## size(vp->ioaddr + addr);			\
679 	spin_unlock_irqrestore(&vp->window_lock, flags);		\
680 	return ret;							\
681 }									\
682 static void								\
683 window_write ## size(struct vortex_private *vp, u ## size value,	\
684 		     int window, int addr)				\
685 {									\
686 	unsigned long flags;						\
687 	spin_lock_irqsave(&vp->window_lock, flags);			\
688 	window_set(vp, window);						\
689 	iowrite ## size(value, vp->ioaddr + addr);			\
690 	spin_unlock_irqrestore(&vp->window_lock, flags);		\
691 }
692 DEFINE_WINDOW_IO(8)
693 DEFINE_WINDOW_IO(16)
694 DEFINE_WINDOW_IO(32)
695 
696 #ifdef CONFIG_PCI
697 #define DEVICE_PCI(dev) (((dev)->bus == &pci_bus_type) ? to_pci_dev((dev)) : NULL)
698 #else
699 #define DEVICE_PCI(dev) NULL
700 #endif
701 
702 #define VORTEX_PCI(vp)							\
703 	((struct pci_dev *) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL))
704 
705 #ifdef CONFIG_EISA
706 #define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL)
707 #else
708 #define DEVICE_EISA(dev) NULL
709 #endif
710 
711 #define VORTEX_EISA(vp)							\
712 	((struct eisa_device *) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL))
713 
714 /* The action to take with a media selection timer tick.
715    Note that we deviate from the 3Com order by checking 10base2 before AUI.
716  */
717 enum xcvr_types {
718 	XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
719 	XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10,
720 };
721 
722 static const struct media_table {
723 	char *name;
724 	unsigned int media_bits:16,		/* Bits to set in Wn4_Media register. */
725 		mask:8,						/* The transceiver-present bit in Wn3_Config.*/
726 		next:8;						/* The media type to try next. */
727 	int wait;						/* Time before we check media status. */
728 } media_tbl[] = {
729   {	"10baseT",   Media_10TP,0x08, XCVR_10base2, (14*HZ)/10},
730   { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10},
731   { "undefined", 0,			0x80, XCVR_10baseT, 10000},
732   { "10base2",   0,			0x10, XCVR_AUI,		(1*HZ)/10},
733   { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10},
734   { "100baseFX", Media_Lnk, 0x04, XCVR_MII,		(14*HZ)/10},
735   { "MII",		 0,			0x41, XCVR_10baseT, 3*HZ },
736   { "undefined", 0,			0x01, XCVR_10baseT, 10000},
737   { "Autonegotiate", 0,		0x41, XCVR_10baseT, 3*HZ},
738   { "MII-External",	 0,		0x41, XCVR_10baseT, 3*HZ },
739   { "Default",	 0,			0xFF, XCVR_10baseT, 10000},
740 };
741 
742 static struct {
743 	const char str[ETH_GSTRING_LEN];
744 } ethtool_stats_keys[] = {
745 	{ "tx_deferred" },
746 	{ "tx_max_collisions" },
747 	{ "tx_multiple_collisions" },
748 	{ "tx_single_collisions" },
749 	{ "rx_bad_ssd" },
750 };
751 
752 /* number of ETHTOOL_GSTATS u64's */
753 #define VORTEX_NUM_STATS    5
754 
755 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
756 				   int chip_idx, int card_idx);
757 static int vortex_up(struct net_device *dev);
758 static void vortex_down(struct net_device *dev, int final);
759 static int vortex_open(struct net_device *dev);
760 static void mdio_sync(struct vortex_private *vp, int bits);
761 static int mdio_read(struct net_device *dev, int phy_id, int location);
762 static void mdio_write(struct net_device *vp, int phy_id, int location, int value);
763 static void vortex_timer(unsigned long arg);
764 static void rx_oom_timer(unsigned long arg);
765 static netdev_tx_t vortex_start_xmit(struct sk_buff *skb,
766 				     struct net_device *dev);
767 static netdev_tx_t boomerang_start_xmit(struct sk_buff *skb,
768 					struct net_device *dev);
769 static int vortex_rx(struct net_device *dev);
770 static int boomerang_rx(struct net_device *dev);
771 static irqreturn_t vortex_interrupt(int irq, void *dev_id);
772 static irqreturn_t boomerang_interrupt(int irq, void *dev_id);
773 static int vortex_close(struct net_device *dev);
774 static void dump_tx_ring(struct net_device *dev);
775 static void update_stats(void __iomem *ioaddr, struct net_device *dev);
776 static struct net_device_stats *vortex_get_stats(struct net_device *dev);
777 static void set_rx_mode(struct net_device *dev);
778 #ifdef CONFIG_PCI
779 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
780 #endif
781 static void vortex_tx_timeout(struct net_device *dev);
782 static void acpi_set_WOL(struct net_device *dev);
783 static const struct ethtool_ops vortex_ethtool_ops;
784 static void set_8021q_mode(struct net_device *dev, int enable);
785 
786 /* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
787 /* Option count limit only -- unlimited interfaces are supported. */
788 #define MAX_UNITS 8
789 static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 };
790 static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
791 static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
792 static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
793 static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
794 static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
795 static int global_options = -1;
796 static int global_full_duplex = -1;
797 static int global_enable_wol = -1;
798 static int global_use_mmio = -1;
799 
800 /* Variables to work-around the Compaq PCI BIOS32 problem. */
801 static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900;
802 static struct net_device *compaq_net_device;
803 
804 static int vortex_cards_found;
805 
806 module_param(debug, int, 0);
807 module_param(global_options, int, 0);
808 module_param_array(options, int, NULL, 0);
809 module_param(global_full_duplex, int, 0);
810 module_param_array(full_duplex, int, NULL, 0);
811 module_param_array(hw_checksums, int, NULL, 0);
812 module_param_array(flow_ctrl, int, NULL, 0);
813 module_param(global_enable_wol, int, 0);
814 module_param_array(enable_wol, int, NULL, 0);
815 module_param(rx_copybreak, int, 0);
816 module_param(max_interrupt_work, int, 0);
817 module_param(compaq_ioaddr, int, 0);
818 module_param(compaq_irq, int, 0);
819 module_param(compaq_device_id, int, 0);
820 module_param(watchdog, int, 0);
821 module_param(global_use_mmio, int, 0);
822 module_param_array(use_mmio, int, NULL, 0);
823 MODULE_PARM_DESC(debug, "3c59x debug level (0-6)");
824 MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex");
825 MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset");
826 MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)");
827 MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset");
828 MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)");
829 MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)");
830 MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)");
831 MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset");
832 MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames");
833 MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt");
834 MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)");
835 MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)");
836 MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)");
837 MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds");
838 MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset");
839 MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)");
840 
841 #ifdef CONFIG_NET_POLL_CONTROLLER
842 static void poll_vortex(struct net_device *dev)
843 {
844 	struct vortex_private *vp = netdev_priv(dev);
845 	unsigned long flags;
846 	local_irq_save(flags);
847 	(vp->full_bus_master_rx ? boomerang_interrupt:vortex_interrupt)(dev->irq,dev);
848 	local_irq_restore(flags);
849 }
850 #endif
851 
852 #ifdef CONFIG_PM
853 
854 static int vortex_suspend(struct device *dev)
855 {
856 	struct pci_dev *pdev = to_pci_dev(dev);
857 	struct net_device *ndev = pci_get_drvdata(pdev);
858 
859 	if (!ndev || !netif_running(ndev))
860 		return 0;
861 
862 	netif_device_detach(ndev);
863 	vortex_down(ndev, 1);
864 
865 	return 0;
866 }
867 
868 static int vortex_resume(struct device *dev)
869 {
870 	struct pci_dev *pdev = to_pci_dev(dev);
871 	struct net_device *ndev = pci_get_drvdata(pdev);
872 	int err;
873 
874 	if (!ndev || !netif_running(ndev))
875 		return 0;
876 
877 	err = vortex_up(ndev);
878 	if (err)
879 		return err;
880 
881 	netif_device_attach(ndev);
882 
883 	return 0;
884 }
885 
886 static const struct dev_pm_ops vortex_pm_ops = {
887 	.suspend = vortex_suspend,
888 	.resume = vortex_resume,
889 	.freeze = vortex_suspend,
890 	.thaw = vortex_resume,
891 	.poweroff = vortex_suspend,
892 	.restore = vortex_resume,
893 };
894 
895 #define VORTEX_PM_OPS (&vortex_pm_ops)
896 
897 #else /* !CONFIG_PM */
898 
899 #define VORTEX_PM_OPS NULL
900 
901 #endif /* !CONFIG_PM */
902 
903 #ifdef CONFIG_EISA
904 static struct eisa_device_id vortex_eisa_ids[] = {
905 	{ "TCM5920", CH_3C592 },
906 	{ "TCM5970", CH_3C597 },
907 	{ "" }
908 };
909 MODULE_DEVICE_TABLE(eisa, vortex_eisa_ids);
910 
911 static int __init vortex_eisa_probe(struct device *device)
912 {
913 	void __iomem *ioaddr;
914 	struct eisa_device *edev;
915 
916 	edev = to_eisa_device(device);
917 
918 	if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME))
919 		return -EBUSY;
920 
921 	ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE);
922 
923 	if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12,
924 					  edev->id.driver_data, vortex_cards_found)) {
925 		release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
926 		return -ENODEV;
927 	}
928 
929 	vortex_cards_found++;
930 
931 	return 0;
932 }
933 
934 static int vortex_eisa_remove(struct device *device)
935 {
936 	struct eisa_device *edev;
937 	struct net_device *dev;
938 	struct vortex_private *vp;
939 	void __iomem *ioaddr;
940 
941 	edev = to_eisa_device(device);
942 	dev = eisa_get_drvdata(edev);
943 
944 	if (!dev) {
945 		pr_err("vortex_eisa_remove called for Compaq device!\n");
946 		BUG();
947 	}
948 
949 	vp = netdev_priv(dev);
950 	ioaddr = vp->ioaddr;
951 
952 	unregister_netdev(dev);
953 	iowrite16(TotalReset|0x14, ioaddr + EL3_CMD);
954 	release_region(dev->base_addr, VORTEX_TOTAL_SIZE);
955 
956 	free_netdev(dev);
957 	return 0;
958 }
959 
960 static struct eisa_driver vortex_eisa_driver = {
961 	.id_table = vortex_eisa_ids,
962 	.driver   = {
963 		.name    = "3c59x",
964 		.probe   = vortex_eisa_probe,
965 		.remove  = vortex_eisa_remove
966 	}
967 };
968 
969 #endif /* CONFIG_EISA */
970 
971 /* returns count found (>= 0), or negative on error */
972 static int __init vortex_eisa_init(void)
973 {
974 	int eisa_found = 0;
975 	int orig_cards_found = vortex_cards_found;
976 
977 #ifdef CONFIG_EISA
978 	int err;
979 
980 	err = eisa_driver_register (&vortex_eisa_driver);
981 	if (!err) {
982 		/*
983 		 * Because of the way EISA bus is probed, we cannot assume
984 		 * any device have been found when we exit from
985 		 * eisa_driver_register (the bus root driver may not be
986 		 * initialized yet). So we blindly assume something was
987 		 * found, and let the sysfs magic happened...
988 		 */
989 		eisa_found = 1;
990 	}
991 #endif
992 
993 	/* Special code to work-around the Compaq PCI BIOS32 problem. */
994 	if (compaq_ioaddr) {
995 		vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE),
996 			      compaq_irq, compaq_device_id, vortex_cards_found++);
997 	}
998 
999 	return vortex_cards_found - orig_cards_found + eisa_found;
1000 }
1001 
1002 /* returns count (>= 0), or negative on error */
1003 static int vortex_init_one(struct pci_dev *pdev,
1004 			   const struct pci_device_id *ent)
1005 {
1006 	int rc, unit, pci_bar;
1007 	struct vortex_chip_info *vci;
1008 	void __iomem *ioaddr;
1009 
1010 	/* wake up and enable device */
1011 	rc = pci_enable_device(pdev);
1012 	if (rc < 0)
1013 		goto out;
1014 
1015 	unit = vortex_cards_found;
1016 
1017 	if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) {
1018 		/* Determine the default if the user didn't override us */
1019 		vci = &vortex_info_tbl[ent->driver_data];
1020 		pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0;
1021 	} else if (unit < MAX_UNITS && use_mmio[unit] >= 0)
1022 		pci_bar = use_mmio[unit] ? 1 : 0;
1023 	else
1024 		pci_bar = global_use_mmio ? 1 : 0;
1025 
1026 	ioaddr = pci_iomap(pdev, pci_bar, 0);
1027 	if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */
1028 		ioaddr = pci_iomap(pdev, 0, 0);
1029 	if (!ioaddr) {
1030 		pci_disable_device(pdev);
1031 		rc = -ENOMEM;
1032 		goto out;
1033 	}
1034 
1035 	rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq,
1036 			   ent->driver_data, unit);
1037 	if (rc < 0) {
1038 		pci_iounmap(pdev, ioaddr);
1039 		pci_disable_device(pdev);
1040 		goto out;
1041 	}
1042 
1043 	vortex_cards_found++;
1044 
1045 out:
1046 	return rc;
1047 }
1048 
1049 static const struct net_device_ops boomrang_netdev_ops = {
1050 	.ndo_open		= vortex_open,
1051 	.ndo_stop		= vortex_close,
1052 	.ndo_start_xmit		= boomerang_start_xmit,
1053 	.ndo_tx_timeout		= vortex_tx_timeout,
1054 	.ndo_get_stats		= vortex_get_stats,
1055 #ifdef CONFIG_PCI
1056 	.ndo_do_ioctl 		= vortex_ioctl,
1057 #endif
1058 	.ndo_set_rx_mode	= set_rx_mode,
1059 	.ndo_change_mtu		= eth_change_mtu,
1060 	.ndo_set_mac_address 	= eth_mac_addr,
1061 	.ndo_validate_addr	= eth_validate_addr,
1062 #ifdef CONFIG_NET_POLL_CONTROLLER
1063 	.ndo_poll_controller	= poll_vortex,
1064 #endif
1065 };
1066 
1067 static const struct net_device_ops vortex_netdev_ops = {
1068 	.ndo_open		= vortex_open,
1069 	.ndo_stop		= vortex_close,
1070 	.ndo_start_xmit		= vortex_start_xmit,
1071 	.ndo_tx_timeout		= vortex_tx_timeout,
1072 	.ndo_get_stats		= vortex_get_stats,
1073 #ifdef CONFIG_PCI
1074 	.ndo_do_ioctl 		= vortex_ioctl,
1075 #endif
1076 	.ndo_set_rx_mode	= set_rx_mode,
1077 	.ndo_change_mtu		= eth_change_mtu,
1078 	.ndo_set_mac_address 	= eth_mac_addr,
1079 	.ndo_validate_addr	= eth_validate_addr,
1080 #ifdef CONFIG_NET_POLL_CONTROLLER
1081 	.ndo_poll_controller	= poll_vortex,
1082 #endif
1083 };
1084 
1085 /*
1086  * Start up the PCI/EISA device which is described by *gendev.
1087  * Return 0 on success.
1088  *
1089  * NOTE: pdev can be NULL, for the case of a Compaq device
1090  */
1091 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
1092 			 int chip_idx, int card_idx)
1093 {
1094 	struct vortex_private *vp;
1095 	int option;
1096 	unsigned int eeprom[0x40], checksum = 0;		/* EEPROM contents */
1097 	int i, step;
1098 	struct net_device *dev;
1099 	static int printed_version;
1100 	int retval, print_info;
1101 	struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx];
1102 	const char *print_name = "3c59x";
1103 	struct pci_dev *pdev = NULL;
1104 	struct eisa_device *edev = NULL;
1105 
1106 	if (!printed_version) {
1107 		pr_info("%s", version);
1108 		printed_version = 1;
1109 	}
1110 
1111 	if (gendev) {
1112 		if ((pdev = DEVICE_PCI(gendev))) {
1113 			print_name = pci_name(pdev);
1114 		}
1115 
1116 		if ((edev = DEVICE_EISA(gendev))) {
1117 			print_name = dev_name(&edev->dev);
1118 		}
1119 	}
1120 
1121 	dev = alloc_etherdev(sizeof(*vp));
1122 	retval = -ENOMEM;
1123 	if (!dev)
1124 		goto out;
1125 
1126 	SET_NETDEV_DEV(dev, gendev);
1127 	vp = netdev_priv(dev);
1128 
1129 	option = global_options;
1130 
1131 	/* The lower four bits are the media type. */
1132 	if (dev->mem_start) {
1133 		/*
1134 		 * The 'options' param is passed in as the third arg to the
1135 		 * LILO 'ether=' argument for non-modular use
1136 		 */
1137 		option = dev->mem_start;
1138 	}
1139 	else if (card_idx < MAX_UNITS) {
1140 		if (options[card_idx] >= 0)
1141 			option = options[card_idx];
1142 	}
1143 
1144 	if (option > 0) {
1145 		if (option & 0x8000)
1146 			vortex_debug = 7;
1147 		if (option & 0x4000)
1148 			vortex_debug = 2;
1149 		if (option & 0x0400)
1150 			vp->enable_wol = 1;
1151 	}
1152 
1153 	print_info = (vortex_debug > 1);
1154 	if (print_info)
1155 		pr_info("See Documentation/networking/vortex.txt\n");
1156 
1157 	pr_info("%s: 3Com %s %s at %p.\n",
1158 	       print_name,
1159 	       pdev ? "PCI" : "EISA",
1160 	       vci->name,
1161 	       ioaddr);
1162 
1163 	dev->base_addr = (unsigned long)ioaddr;
1164 	dev->irq = irq;
1165 	dev->mtu = mtu;
1166 	vp->ioaddr = ioaddr;
1167 	vp->large_frames = mtu > 1500;
1168 	vp->drv_flags = vci->drv_flags;
1169 	vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0;
1170 	vp->io_size = vci->io_size;
1171 	vp->card_idx = card_idx;
1172 	vp->window = -1;
1173 
1174 	/* module list only for Compaq device */
1175 	if (gendev == NULL) {
1176 		compaq_net_device = dev;
1177 	}
1178 
1179 	/* PCI-only startup logic */
1180 	if (pdev) {
1181 		/* EISA resources already marked, so only PCI needs to do this here */
1182 		/* Ignore return value, because Cardbus drivers already allocate for us */
1183 		if (request_region(dev->base_addr, vci->io_size, print_name) != NULL)
1184 			vp->must_free_region = 1;
1185 
1186 		/* enable bus-mastering if necessary */
1187 		if (vci->flags & PCI_USES_MASTER)
1188 			pci_set_master(pdev);
1189 
1190 		if (vci->drv_flags & IS_VORTEX) {
1191 			u8 pci_latency;
1192 			u8 new_latency = 248;
1193 
1194 			/* Check the PCI latency value.  On the 3c590 series the latency timer
1195 			   must be set to the maximum value to avoid data corruption that occurs
1196 			   when the timer expires during a transfer.  This bug exists the Vortex
1197 			   chip only. */
1198 			pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
1199 			if (pci_latency < new_latency) {
1200 				pr_info("%s: Overriding PCI latency timer (CFLT) setting of %d, new value is %d.\n",
1201 					print_name, pci_latency, new_latency);
1202 				pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency);
1203 			}
1204 		}
1205 	}
1206 
1207 	spin_lock_init(&vp->lock);
1208 	spin_lock_init(&vp->mii_lock);
1209 	spin_lock_init(&vp->window_lock);
1210 	vp->gendev = gendev;
1211 	vp->mii.dev = dev;
1212 	vp->mii.mdio_read = mdio_read;
1213 	vp->mii.mdio_write = mdio_write;
1214 	vp->mii.phy_id_mask = 0x1f;
1215 	vp->mii.reg_num_mask = 0x1f;
1216 
1217 	/* Makes sure rings are at least 16 byte aligned. */
1218 	vp->rx_ring = pci_alloc_consistent(pdev, sizeof(struct boom_rx_desc) * RX_RING_SIZE
1219 					   + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1220 					   &vp->rx_ring_dma);
1221 	retval = -ENOMEM;
1222 	if (!vp->rx_ring)
1223 		goto free_region;
1224 
1225 	vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE);
1226 	vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE;
1227 
1228 	/* if we are a PCI driver, we store info in pdev->driver_data
1229 	 * instead of a module list */
1230 	if (pdev)
1231 		pci_set_drvdata(pdev, dev);
1232 	if (edev)
1233 		eisa_set_drvdata(edev, dev);
1234 
1235 	vp->media_override = 7;
1236 	if (option >= 0) {
1237 		vp->media_override = ((option & 7) == 2)  ?  0  :  option & 15;
1238 		if (vp->media_override != 7)
1239 			vp->medialock = 1;
1240 		vp->full_duplex = (option & 0x200) ? 1 : 0;
1241 		vp->bus_master = (option & 16) ? 1 : 0;
1242 	}
1243 
1244 	if (global_full_duplex > 0)
1245 		vp->full_duplex = 1;
1246 	if (global_enable_wol > 0)
1247 		vp->enable_wol = 1;
1248 
1249 	if (card_idx < MAX_UNITS) {
1250 		if (full_duplex[card_idx] > 0)
1251 			vp->full_duplex = 1;
1252 		if (flow_ctrl[card_idx] > 0)
1253 			vp->flow_ctrl = 1;
1254 		if (enable_wol[card_idx] > 0)
1255 			vp->enable_wol = 1;
1256 	}
1257 
1258 	vp->mii.force_media = vp->full_duplex;
1259 	vp->options = option;
1260 	/* Read the station address from the EEPROM. */
1261 	{
1262 		int base;
1263 
1264 		if (vci->drv_flags & EEPROM_8BIT)
1265 			base = 0x230;
1266 		else if (vci->drv_flags & EEPROM_OFFSET)
1267 			base = EEPROM_Read + 0x30;
1268 		else
1269 			base = EEPROM_Read;
1270 
1271 		for (i = 0; i < 0x40; i++) {
1272 			int timer;
1273 			window_write16(vp, base + i, 0, Wn0EepromCmd);
1274 			/* Pause for at least 162 us. for the read to take place. */
1275 			for (timer = 10; timer >= 0; timer--) {
1276 				udelay(162);
1277 				if ((window_read16(vp, 0, Wn0EepromCmd) &
1278 				     0x8000) == 0)
1279 					break;
1280 			}
1281 			eeprom[i] = window_read16(vp, 0, Wn0EepromData);
1282 		}
1283 	}
1284 	for (i = 0; i < 0x18; i++)
1285 		checksum ^= eeprom[i];
1286 	checksum = (checksum ^ (checksum >> 8)) & 0xff;
1287 	if (checksum != 0x00) {		/* Grrr, needless incompatible change 3Com. */
1288 		while (i < 0x21)
1289 			checksum ^= eeprom[i++];
1290 		checksum = (checksum ^ (checksum >> 8)) & 0xff;
1291 	}
1292 	if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO))
1293 		pr_cont(" ***INVALID CHECKSUM %4.4x*** ", checksum);
1294 	for (i = 0; i < 3; i++)
1295 		((__be16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]);
1296 	memcpy(dev->perm_addr, dev->dev_addr, dev->addr_len);
1297 	if (print_info)
1298 		pr_cont(" %pM", dev->dev_addr);
1299 	/* Unfortunately an all zero eeprom passes the checksum and this
1300 	   gets found in the wild in failure cases. Crypto is hard 8) */
1301 	if (!is_valid_ether_addr(dev->dev_addr)) {
1302 		retval = -EINVAL;
1303 		pr_err("*** EEPROM MAC address is invalid.\n");
1304 		goto free_ring;	/* With every pack */
1305 	}
1306 	for (i = 0; i < 6; i++)
1307 		window_write8(vp, dev->dev_addr[i], 2, i);
1308 
1309 	if (print_info)
1310 		pr_cont(", IRQ %d\n", dev->irq);
1311 	/* Tell them about an invalid IRQ. */
1312 	if (dev->irq <= 0 || dev->irq >= nr_irqs)
1313 		pr_warning(" *** Warning: IRQ %d is unlikely to work! ***\n",
1314 			   dev->irq);
1315 
1316 	step = (window_read8(vp, 4, Wn4_NetDiag) & 0x1e) >> 1;
1317 	if (print_info) {
1318 		pr_info("  product code %02x%02x rev %02x.%d date %02d-%02d-%02d\n",
1319 			eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14],
1320 			step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9);
1321 	}
1322 
1323 
1324 	if (pdev && vci->drv_flags & HAS_CB_FNS) {
1325 		unsigned short n;
1326 
1327 		vp->cb_fn_base = pci_iomap(pdev, 2, 0);
1328 		if (!vp->cb_fn_base) {
1329 			retval = -ENOMEM;
1330 			goto free_ring;
1331 		}
1332 
1333 		if (print_info) {
1334 			pr_info("%s: CardBus functions mapped %16.16llx->%p\n",
1335 				print_name,
1336 				(unsigned long long)pci_resource_start(pdev, 2),
1337 				vp->cb_fn_base);
1338 		}
1339 
1340 		n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1341 		if (vp->drv_flags & INVERT_LED_PWR)
1342 			n |= 0x10;
1343 		if (vp->drv_flags & INVERT_MII_PWR)
1344 			n |= 0x4000;
1345 		window_write16(vp, n, 2, Wn2_ResetOptions);
1346 		if (vp->drv_flags & WNO_XCVR_PWR) {
1347 			window_write16(vp, 0x0800, 0, 0);
1348 		}
1349 	}
1350 
1351 	/* Extract our information from the EEPROM data. */
1352 	vp->info1 = eeprom[13];
1353 	vp->info2 = eeprom[15];
1354 	vp->capabilities = eeprom[16];
1355 
1356 	if (vp->info1 & 0x8000) {
1357 		vp->full_duplex = 1;
1358 		if (print_info)
1359 			pr_info("Full duplex capable\n");
1360 	}
1361 
1362 	{
1363 		static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"};
1364 		unsigned int config;
1365 		vp->available_media = window_read16(vp, 3, Wn3_Options);
1366 		if ((vp->available_media & 0xff) == 0)		/* Broken 3c916 */
1367 			vp->available_media = 0x40;
1368 		config = window_read32(vp, 3, Wn3_Config);
1369 		if (print_info) {
1370 			pr_debug("  Internal config register is %4.4x, transceivers %#x.\n",
1371 				config, window_read16(vp, 3, Wn3_Options));
1372 			pr_info("  %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
1373 				   8 << RAM_SIZE(config),
1374 				   RAM_WIDTH(config) ? "word" : "byte",
1375 				   ram_split[RAM_SPLIT(config)],
1376 				   AUTOSELECT(config) ? "autoselect/" : "",
1377 				   XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" :
1378 				   media_tbl[XCVR(config)].name);
1379 		}
1380 		vp->default_media = XCVR(config);
1381 		if (vp->default_media == XCVR_NWAY)
1382 			vp->has_nway = 1;
1383 		vp->autoselect = AUTOSELECT(config);
1384 	}
1385 
1386 	if (vp->media_override != 7) {
1387 		pr_info("%s:  Media override to transceiver type %d (%s).\n",
1388 				print_name, vp->media_override,
1389 				media_tbl[vp->media_override].name);
1390 		dev->if_port = vp->media_override;
1391 	} else
1392 		dev->if_port = vp->default_media;
1393 
1394 	if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) ||
1395 		dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1396 		int phy, phy_idx = 0;
1397 		mii_preamble_required++;
1398 		if (vp->drv_flags & EXTRA_PREAMBLE)
1399 			mii_preamble_required++;
1400 		mdio_sync(vp, 32);
1401 		mdio_read(dev, 24, MII_BMSR);
1402 		for (phy = 0; phy < 32 && phy_idx < 1; phy++) {
1403 			int mii_status, phyx;
1404 
1405 			/*
1406 			 * For the 3c905CX we look at index 24 first, because it bogusly
1407 			 * reports an external PHY at all indices
1408 			 */
1409 			if (phy == 0)
1410 				phyx = 24;
1411 			else if (phy <= 24)
1412 				phyx = phy - 1;
1413 			else
1414 				phyx = phy;
1415 			mii_status = mdio_read(dev, phyx, MII_BMSR);
1416 			if (mii_status  &&  mii_status != 0xffff) {
1417 				vp->phys[phy_idx++] = phyx;
1418 				if (print_info) {
1419 					pr_info("  MII transceiver found at address %d, status %4x.\n",
1420 						phyx, mii_status);
1421 				}
1422 				if ((mii_status & 0x0040) == 0)
1423 					mii_preamble_required++;
1424 			}
1425 		}
1426 		mii_preamble_required--;
1427 		if (phy_idx == 0) {
1428 			pr_warning("  ***WARNING*** No MII transceivers found!\n");
1429 			vp->phys[0] = 24;
1430 		} else {
1431 			vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE);
1432 			if (vp->full_duplex) {
1433 				/* Only advertise the FD media types. */
1434 				vp->advertising &= ~0x02A0;
1435 				mdio_write(dev, vp->phys[0], 4, vp->advertising);
1436 			}
1437 		}
1438 		vp->mii.phy_id = vp->phys[0];
1439 	}
1440 
1441 	if (vp->capabilities & CapBusMaster) {
1442 		vp->full_bus_master_tx = 1;
1443 		if (print_info) {
1444 			pr_info("  Enabling bus-master transmits and %s receives.\n",
1445 			(vp->info2 & 1) ? "early" : "whole-frame" );
1446 		}
1447 		vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2;
1448 		vp->bus_master = 0;		/* AKPM: vortex only */
1449 	}
1450 
1451 	/* The 3c59x-specific entries in the device structure. */
1452 	if (vp->full_bus_master_tx) {
1453 		dev->netdev_ops = &boomrang_netdev_ops;
1454 		/* Actually, it still should work with iommu. */
1455 		if (card_idx < MAX_UNITS &&
1456 		    ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) ||
1457 				hw_checksums[card_idx] == 1)) {
1458 			dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1459 		}
1460 	} else
1461 		dev->netdev_ops =  &vortex_netdev_ops;
1462 
1463 	if (print_info) {
1464 		pr_info("%s: scatter/gather %sabled. h/w checksums %sabled\n",
1465 				print_name,
1466 				(dev->features & NETIF_F_SG) ? "en":"dis",
1467 				(dev->features & NETIF_F_IP_CSUM) ? "en":"dis");
1468 	}
1469 
1470 	dev->ethtool_ops = &vortex_ethtool_ops;
1471 	dev->watchdog_timeo = (watchdog * HZ) / 1000;
1472 
1473 	if (pdev) {
1474 		vp->pm_state_valid = 1;
1475  		pci_save_state(VORTEX_PCI(vp));
1476  		acpi_set_WOL(dev);
1477 	}
1478 	retval = register_netdev(dev);
1479 	if (retval == 0)
1480 		return 0;
1481 
1482 free_ring:
1483 	pci_free_consistent(pdev,
1484 						sizeof(struct boom_rx_desc) * RX_RING_SIZE
1485 							+ sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1486 						vp->rx_ring,
1487 						vp->rx_ring_dma);
1488 free_region:
1489 	if (vp->must_free_region)
1490 		release_region(dev->base_addr, vci->io_size);
1491 	free_netdev(dev);
1492 	pr_err(PFX "vortex_probe1 fails.  Returns %d\n", retval);
1493 out:
1494 	return retval;
1495 }
1496 
1497 static void
1498 issue_and_wait(struct net_device *dev, int cmd)
1499 {
1500 	struct vortex_private *vp = netdev_priv(dev);
1501 	void __iomem *ioaddr = vp->ioaddr;
1502 	int i;
1503 
1504 	iowrite16(cmd, ioaddr + EL3_CMD);
1505 	for (i = 0; i < 2000; i++) {
1506 		if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
1507 			return;
1508 	}
1509 
1510 	/* OK, that didn't work.  Do it the slow way.  One second */
1511 	for (i = 0; i < 100000; i++) {
1512 		if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) {
1513 			if (vortex_debug > 1)
1514 				pr_info("%s: command 0x%04x took %d usecs\n",
1515 					   dev->name, cmd, i * 10);
1516 			return;
1517 		}
1518 		udelay(10);
1519 	}
1520 	pr_err("%s: command 0x%04x did not complete! Status=0x%x\n",
1521 			   dev->name, cmd, ioread16(ioaddr + EL3_STATUS));
1522 }
1523 
1524 static void
1525 vortex_set_duplex(struct net_device *dev)
1526 {
1527 	struct vortex_private *vp = netdev_priv(dev);
1528 
1529 	pr_info("%s:  setting %s-duplex.\n",
1530 		dev->name, (vp->full_duplex) ? "full" : "half");
1531 
1532 	/* Set the full-duplex bit. */
1533 	window_write16(vp,
1534 		       ((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) |
1535 		       (vp->large_frames ? 0x40 : 0) |
1536 		       ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ?
1537 			0x100 : 0),
1538 		       3, Wn3_MAC_Ctrl);
1539 }
1540 
1541 static void vortex_check_media(struct net_device *dev, unsigned int init)
1542 {
1543 	struct vortex_private *vp = netdev_priv(dev);
1544 	unsigned int ok_to_print = 0;
1545 
1546 	if (vortex_debug > 3)
1547 		ok_to_print = 1;
1548 
1549 	if (mii_check_media(&vp->mii, ok_to_print, init)) {
1550 		vp->full_duplex = vp->mii.full_duplex;
1551 		vortex_set_duplex(dev);
1552 	} else if (init) {
1553 		vortex_set_duplex(dev);
1554 	}
1555 }
1556 
1557 static int
1558 vortex_up(struct net_device *dev)
1559 {
1560 	struct vortex_private *vp = netdev_priv(dev);
1561 	void __iomem *ioaddr = vp->ioaddr;
1562 	unsigned int config;
1563 	int i, mii_reg1, mii_reg5, err = 0;
1564 
1565 	if (VORTEX_PCI(vp)) {
1566 		pci_set_power_state(VORTEX_PCI(vp), PCI_D0);	/* Go active */
1567 		if (vp->pm_state_valid)
1568 			pci_restore_state(VORTEX_PCI(vp));
1569 		err = pci_enable_device(VORTEX_PCI(vp));
1570 		if (err) {
1571 			pr_warning("%s: Could not enable device\n",
1572 				dev->name);
1573 			goto err_out;
1574 		}
1575 	}
1576 
1577 	/* Before initializing select the active media port. */
1578 	config = window_read32(vp, 3, Wn3_Config);
1579 
1580 	if (vp->media_override != 7) {
1581 		pr_info("%s: Media override to transceiver %d (%s).\n",
1582 			   dev->name, vp->media_override,
1583 			   media_tbl[vp->media_override].name);
1584 		dev->if_port = vp->media_override;
1585 	} else if (vp->autoselect) {
1586 		if (vp->has_nway) {
1587 			if (vortex_debug > 1)
1588 				pr_info("%s: using NWAY device table, not %d\n",
1589 								dev->name, dev->if_port);
1590 			dev->if_port = XCVR_NWAY;
1591 		} else {
1592 			/* Find first available media type, starting with 100baseTx. */
1593 			dev->if_port = XCVR_100baseTx;
1594 			while (! (vp->available_media & media_tbl[dev->if_port].mask))
1595 				dev->if_port = media_tbl[dev->if_port].next;
1596 			if (vortex_debug > 1)
1597 				pr_info("%s: first available media type: %s\n",
1598 					dev->name, media_tbl[dev->if_port].name);
1599 		}
1600 	} else {
1601 		dev->if_port = vp->default_media;
1602 		if (vortex_debug > 1)
1603 			pr_info("%s: using default media %s\n",
1604 				dev->name, media_tbl[dev->if_port].name);
1605 	}
1606 
1607 	init_timer(&vp->timer);
1608 	vp->timer.expires = RUN_AT(media_tbl[dev->if_port].wait);
1609 	vp->timer.data = (unsigned long)dev;
1610 	vp->timer.function = vortex_timer;		/* timer handler */
1611 	add_timer(&vp->timer);
1612 
1613 	init_timer(&vp->rx_oom_timer);
1614 	vp->rx_oom_timer.data = (unsigned long)dev;
1615 	vp->rx_oom_timer.function = rx_oom_timer;
1616 
1617 	if (vortex_debug > 1)
1618 		pr_debug("%s: Initial media type %s.\n",
1619 			   dev->name, media_tbl[dev->if_port].name);
1620 
1621 	vp->full_duplex = vp->mii.force_media;
1622 	config = BFINS(config, dev->if_port, 20, 4);
1623 	if (vortex_debug > 6)
1624 		pr_debug("vortex_up(): writing 0x%x to InternalConfig\n", config);
1625 	window_write32(vp, config, 3, Wn3_Config);
1626 
1627 	if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1628 		mii_reg1 = mdio_read(dev, vp->phys[0], MII_BMSR);
1629 		mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA);
1630 		vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0);
1631 		vp->mii.full_duplex = vp->full_duplex;
1632 
1633 		vortex_check_media(dev, 1);
1634 	}
1635 	else
1636 		vortex_set_duplex(dev);
1637 
1638 	issue_and_wait(dev, TxReset);
1639 	/*
1640 	 * Don't reset the PHY - that upsets autonegotiation during DHCP operations.
1641 	 */
1642 	issue_and_wait(dev, RxReset|0x04);
1643 
1644 
1645 	iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
1646 
1647 	if (vortex_debug > 1) {
1648 		pr_debug("%s: vortex_up() irq %d media status %4.4x.\n",
1649 			   dev->name, dev->irq, window_read16(vp, 4, Wn4_Media));
1650 	}
1651 
1652 	/* Set the station address and mask in window 2 each time opened. */
1653 	for (i = 0; i < 6; i++)
1654 		window_write8(vp, dev->dev_addr[i], 2, i);
1655 	for (; i < 12; i+=2)
1656 		window_write16(vp, 0, 2, i);
1657 
1658 	if (vp->cb_fn_base) {
1659 		unsigned short n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1660 		if (vp->drv_flags & INVERT_LED_PWR)
1661 			n |= 0x10;
1662 		if (vp->drv_flags & INVERT_MII_PWR)
1663 			n |= 0x4000;
1664 		window_write16(vp, n, 2, Wn2_ResetOptions);
1665 	}
1666 
1667 	if (dev->if_port == XCVR_10base2)
1668 		/* Start the thinnet transceiver. We should really wait 50ms...*/
1669 		iowrite16(StartCoax, ioaddr + EL3_CMD);
1670 	if (dev->if_port != XCVR_NWAY) {
1671 		window_write16(vp,
1672 			       (window_read16(vp, 4, Wn4_Media) &
1673 				~(Media_10TP|Media_SQE)) |
1674 			       media_tbl[dev->if_port].media_bits,
1675 			       4, Wn4_Media);
1676 	}
1677 
1678 	/* Switch to the stats window, and clear all stats by reading. */
1679 	iowrite16(StatsDisable, ioaddr + EL3_CMD);
1680 	for (i = 0; i < 10; i++)
1681 		window_read8(vp, 6, i);
1682 	window_read16(vp, 6, 10);
1683 	window_read16(vp, 6, 12);
1684 	/* New: On the Vortex we must also clear the BadSSD counter. */
1685 	window_read8(vp, 4, 12);
1686 	/* ..and on the Boomerang we enable the extra statistics bits. */
1687 	window_write16(vp, 0x0040, 4, Wn4_NetDiag);
1688 
1689 	if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1690 		vp->cur_rx = vp->dirty_rx = 0;
1691 		/* Initialize the RxEarly register as recommended. */
1692 		iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD);
1693 		iowrite32(0x0020, ioaddr + PktStatus);
1694 		iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr);
1695 	}
1696 	if (vp->full_bus_master_tx) { 		/* Boomerang bus master Tx. */
1697 		vp->cur_tx = vp->dirty_tx = 0;
1698 		if (vp->drv_flags & IS_BOOMERANG)
1699 			iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */
1700 		/* Clear the Rx, Tx rings. */
1701 		for (i = 0; i < RX_RING_SIZE; i++)	/* AKPM: this is done in vortex_open, too */
1702 			vp->rx_ring[i].status = 0;
1703 		for (i = 0; i < TX_RING_SIZE; i++)
1704 			vp->tx_skbuff[i] = NULL;
1705 		iowrite32(0, ioaddr + DownListPtr);
1706 	}
1707 	/* Set receiver mode: presumably accept b-case and phys addr only. */
1708 	set_rx_mode(dev);
1709 	/* enable 802.1q tagged frames */
1710 	set_8021q_mode(dev, 1);
1711 	iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
1712 
1713 	iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
1714 	iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
1715 	/* Allow status bits to be seen. */
1716 	vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete|
1717 		(vp->full_bus_master_tx ? DownComplete : TxAvailable) |
1718 		(vp->full_bus_master_rx ? UpComplete : RxComplete) |
1719 		(vp->bus_master ? DMADone : 0);
1720 	vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable |
1721 		(vp->full_bus_master_rx ? 0 : RxComplete) |
1722 		StatsFull | HostError | TxComplete | IntReq
1723 		| (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete;
1724 	iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1725 	/* Ack all pending events, and set active indicator mask. */
1726 	iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
1727 		 ioaddr + EL3_CMD);
1728 	iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1729 	if (vp->cb_fn_base)			/* The PCMCIA people are idiots.  */
1730 		iowrite32(0x8000, vp->cb_fn_base + 4);
1731 	netif_start_queue (dev);
1732 err_out:
1733 	return err;
1734 }
1735 
1736 static int
1737 vortex_open(struct net_device *dev)
1738 {
1739 	struct vortex_private *vp = netdev_priv(dev);
1740 	int i;
1741 	int retval;
1742 
1743 	/* Use the now-standard shared IRQ implementation. */
1744 	if ((retval = request_irq(dev->irq, vp->full_bus_master_rx ?
1745 				boomerang_interrupt : vortex_interrupt, IRQF_SHARED, dev->name, dev))) {
1746 		pr_err("%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1747 		goto err;
1748 	}
1749 
1750 	if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1751 		if (vortex_debug > 2)
1752 			pr_debug("%s:  Filling in the Rx ring.\n", dev->name);
1753 		for (i = 0; i < RX_RING_SIZE; i++) {
1754 			struct sk_buff *skb;
1755 			vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1));
1756 			vp->rx_ring[i].status = 0;	/* Clear complete bit. */
1757 			vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG);
1758 
1759 			skb = __netdev_alloc_skb(dev, PKT_BUF_SZ + NET_IP_ALIGN,
1760 						 GFP_KERNEL);
1761 			vp->rx_skbuff[i] = skb;
1762 			if (skb == NULL)
1763 				break;			/* Bad news!  */
1764 
1765 			skb_reserve(skb, NET_IP_ALIGN);	/* Align IP on 16 byte boundaries */
1766 			vp->rx_ring[i].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
1767 		}
1768 		if (i != RX_RING_SIZE) {
1769 			int j;
1770 			pr_emerg("%s: no memory for rx ring\n", dev->name);
1771 			for (j = 0; j < i; j++) {
1772 				if (vp->rx_skbuff[j]) {
1773 					dev_kfree_skb(vp->rx_skbuff[j]);
1774 					vp->rx_skbuff[j] = NULL;
1775 				}
1776 			}
1777 			retval = -ENOMEM;
1778 			goto err_free_irq;
1779 		}
1780 		/* Wrap the ring. */
1781 		vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma);
1782 	}
1783 
1784 	retval = vortex_up(dev);
1785 	if (!retval)
1786 		goto out;
1787 
1788 err_free_irq:
1789 	free_irq(dev->irq, dev);
1790 err:
1791 	if (vortex_debug > 1)
1792 		pr_err("%s: vortex_open() fails: returning %d\n", dev->name, retval);
1793 out:
1794 	return retval;
1795 }
1796 
1797 static void
1798 vortex_timer(unsigned long data)
1799 {
1800 	struct net_device *dev = (struct net_device *)data;
1801 	struct vortex_private *vp = netdev_priv(dev);
1802 	void __iomem *ioaddr = vp->ioaddr;
1803 	int next_tick = 60*HZ;
1804 	int ok = 0;
1805 	int media_status;
1806 
1807 	if (vortex_debug > 2) {
1808 		pr_debug("%s: Media selection timer tick happened, %s.\n",
1809 			   dev->name, media_tbl[dev->if_port].name);
1810 		pr_debug("dev->watchdog_timeo=%d\n", dev->watchdog_timeo);
1811 	}
1812 
1813 	media_status = window_read16(vp, 4, Wn4_Media);
1814 	switch (dev->if_port) {
1815 	case XCVR_10baseT:  case XCVR_100baseTx:  case XCVR_100baseFx:
1816 		if (media_status & Media_LnkBeat) {
1817 			netif_carrier_on(dev);
1818 			ok = 1;
1819 			if (vortex_debug > 1)
1820 				pr_debug("%s: Media %s has link beat, %x.\n",
1821 					   dev->name, media_tbl[dev->if_port].name, media_status);
1822 		} else {
1823 			netif_carrier_off(dev);
1824 			if (vortex_debug > 1) {
1825 				pr_debug("%s: Media %s has no link beat, %x.\n",
1826 					   dev->name, media_tbl[dev->if_port].name, media_status);
1827 			}
1828 		}
1829 		break;
1830 	case XCVR_MII: case XCVR_NWAY:
1831 		{
1832 			ok = 1;
1833 			vortex_check_media(dev, 0);
1834 		}
1835 		break;
1836 	  default:					/* Other media types handled by Tx timeouts. */
1837 		if (vortex_debug > 1)
1838 		  pr_debug("%s: Media %s has no indication, %x.\n",
1839 				 dev->name, media_tbl[dev->if_port].name, media_status);
1840 		ok = 1;
1841 	}
1842 
1843 	if (dev->flags & IFF_SLAVE || !netif_carrier_ok(dev))
1844 		next_tick = 5*HZ;
1845 
1846 	if (vp->medialock)
1847 		goto leave_media_alone;
1848 
1849 	if (!ok) {
1850 		unsigned int config;
1851 
1852 		spin_lock_irq(&vp->lock);
1853 
1854 		do {
1855 			dev->if_port = media_tbl[dev->if_port].next;
1856 		} while ( ! (vp->available_media & media_tbl[dev->if_port].mask));
1857 		if (dev->if_port == XCVR_Default) { /* Go back to default. */
1858 		  dev->if_port = vp->default_media;
1859 		  if (vortex_debug > 1)
1860 			pr_debug("%s: Media selection failing, using default %s port.\n",
1861 				   dev->name, media_tbl[dev->if_port].name);
1862 		} else {
1863 			if (vortex_debug > 1)
1864 				pr_debug("%s: Media selection failed, now trying %s port.\n",
1865 					   dev->name, media_tbl[dev->if_port].name);
1866 			next_tick = media_tbl[dev->if_port].wait;
1867 		}
1868 		window_write16(vp,
1869 			       (media_status & ~(Media_10TP|Media_SQE)) |
1870 			       media_tbl[dev->if_port].media_bits,
1871 			       4, Wn4_Media);
1872 
1873 		config = window_read32(vp, 3, Wn3_Config);
1874 		config = BFINS(config, dev->if_port, 20, 4);
1875 		window_write32(vp, config, 3, Wn3_Config);
1876 
1877 		iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax,
1878 			 ioaddr + EL3_CMD);
1879 		if (vortex_debug > 1)
1880 			pr_debug("wrote 0x%08x to Wn3_Config\n", config);
1881 		/* AKPM: FIXME: Should reset Rx & Tx here.  P60 of 3c90xc.pdf */
1882 
1883 		spin_unlock_irq(&vp->lock);
1884 	}
1885 
1886 leave_media_alone:
1887 	if (vortex_debug > 2)
1888 	  pr_debug("%s: Media selection timer finished, %s.\n",
1889 			 dev->name, media_tbl[dev->if_port].name);
1890 
1891 	mod_timer(&vp->timer, RUN_AT(next_tick));
1892 	if (vp->deferred)
1893 		iowrite16(FakeIntr, ioaddr + EL3_CMD);
1894 }
1895 
1896 static void vortex_tx_timeout(struct net_device *dev)
1897 {
1898 	struct vortex_private *vp = netdev_priv(dev);
1899 	void __iomem *ioaddr = vp->ioaddr;
1900 
1901 	pr_err("%s: transmit timed out, tx_status %2.2x status %4.4x.\n",
1902 		   dev->name, ioread8(ioaddr + TxStatus),
1903 		   ioread16(ioaddr + EL3_STATUS));
1904 	pr_err("  diagnostics: net %04x media %04x dma %08x fifo %04x\n",
1905 			window_read16(vp, 4, Wn4_NetDiag),
1906 			window_read16(vp, 4, Wn4_Media),
1907 			ioread32(ioaddr + PktStatus),
1908 			window_read16(vp, 4, Wn4_FIFODiag));
1909 	/* Slight code bloat to be user friendly. */
1910 	if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88)
1911 		pr_err("%s: Transmitter encountered 16 collisions --"
1912 			   " network cable problem?\n", dev->name);
1913 	if (ioread16(ioaddr + EL3_STATUS) & IntLatch) {
1914 		pr_err("%s: Interrupt posted but not delivered --"
1915 			   " IRQ blocked by another device?\n", dev->name);
1916 		/* Bad idea here.. but we might as well handle a few events. */
1917 		{
1918 			/*
1919 			 * Block interrupts because vortex_interrupt does a bare spin_lock()
1920 			 */
1921 			unsigned long flags;
1922 			local_irq_save(flags);
1923 			if (vp->full_bus_master_tx)
1924 				boomerang_interrupt(dev->irq, dev);
1925 			else
1926 				vortex_interrupt(dev->irq, dev);
1927 			local_irq_restore(flags);
1928 		}
1929 	}
1930 
1931 	if (vortex_debug > 0)
1932 		dump_tx_ring(dev);
1933 
1934 	issue_and_wait(dev, TxReset);
1935 
1936 	dev->stats.tx_errors++;
1937 	if (vp->full_bus_master_tx) {
1938 		pr_debug("%s: Resetting the Tx ring pointer.\n", dev->name);
1939 		if (vp->cur_tx - vp->dirty_tx > 0  &&  ioread32(ioaddr + DownListPtr) == 0)
1940 			iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc),
1941 				 ioaddr + DownListPtr);
1942 		if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE)
1943 			netif_wake_queue (dev);
1944 		if (vp->drv_flags & IS_BOOMERANG)
1945 			iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold);
1946 		iowrite16(DownUnstall, ioaddr + EL3_CMD);
1947 	} else {
1948 		dev->stats.tx_dropped++;
1949 		netif_wake_queue(dev);
1950 	}
1951 
1952 	/* Issue Tx Enable */
1953 	iowrite16(TxEnable, ioaddr + EL3_CMD);
1954 	dev->trans_start = jiffies; /* prevent tx timeout */
1955 }
1956 
1957 /*
1958  * Handle uncommon interrupt sources.  This is a separate routine to minimize
1959  * the cache impact.
1960  */
1961 static void
1962 vortex_error(struct net_device *dev, int status)
1963 {
1964 	struct vortex_private *vp = netdev_priv(dev);
1965 	void __iomem *ioaddr = vp->ioaddr;
1966 	int do_tx_reset = 0, reset_mask = 0;
1967 	unsigned char tx_status = 0;
1968 
1969 	if (vortex_debug > 2) {
1970 		pr_err("%s: vortex_error(), status=0x%x\n", dev->name, status);
1971 	}
1972 
1973 	if (status & TxComplete) {			/* Really "TxError" for us. */
1974 		tx_status = ioread8(ioaddr + TxStatus);
1975 		/* Presumably a tx-timeout. We must merely re-enable. */
1976 		if (vortex_debug > 2 ||
1977 		    (tx_status != 0x88 && vortex_debug > 0)) {
1978 			pr_err("%s: Transmit error, Tx status register %2.2x.\n",
1979 				   dev->name, tx_status);
1980 			if (tx_status == 0x82) {
1981 				pr_err("Probably a duplex mismatch.  See "
1982 						"Documentation/networking/vortex.txt\n");
1983 			}
1984 			dump_tx_ring(dev);
1985 		}
1986 		if (tx_status & 0x14)  dev->stats.tx_fifo_errors++;
1987 		if (tx_status & 0x38)  dev->stats.tx_aborted_errors++;
1988 		if (tx_status & 0x08)  vp->xstats.tx_max_collisions++;
1989 		iowrite8(0, ioaddr + TxStatus);
1990 		if (tx_status & 0x30) {			/* txJabber or txUnderrun */
1991 			do_tx_reset = 1;
1992 		} else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET))  {	/* maxCollisions */
1993 			do_tx_reset = 1;
1994 			reset_mask = 0x0108;		/* Reset interface logic, but not download logic */
1995 		} else {				/* Merely re-enable the transmitter. */
1996 			iowrite16(TxEnable, ioaddr + EL3_CMD);
1997 		}
1998 	}
1999 
2000 	if (status & RxEarly)				/* Rx early is unused. */
2001 		iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD);
2002 
2003 	if (status & StatsFull) {			/* Empty statistics. */
2004 		static int DoneDidThat;
2005 		if (vortex_debug > 4)
2006 			pr_debug("%s: Updating stats.\n", dev->name);
2007 		update_stats(ioaddr, dev);
2008 		/* HACK: Disable statistics as an interrupt source. */
2009 		/* This occurs when we have the wrong media type! */
2010 		if (DoneDidThat == 0  &&
2011 			ioread16(ioaddr + EL3_STATUS) & StatsFull) {
2012 			pr_warning("%s: Updating statistics failed, disabling "
2013 				   "stats as an interrupt source.\n", dev->name);
2014 			iowrite16(SetIntrEnb |
2015 				  (window_read16(vp, 5, 10) & ~StatsFull),
2016 				  ioaddr + EL3_CMD);
2017 			vp->intr_enable &= ~StatsFull;
2018 			DoneDidThat++;
2019 		}
2020 	}
2021 	if (status & IntReq) {		/* Restore all interrupt sources.  */
2022 		iowrite16(vp->status_enable, ioaddr + EL3_CMD);
2023 		iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
2024 	}
2025 	if (status & HostError) {
2026 		u16 fifo_diag;
2027 		fifo_diag = window_read16(vp, 4, Wn4_FIFODiag);
2028 		pr_err("%s: Host error, FIFO diagnostic register %4.4x.\n",
2029 			   dev->name, fifo_diag);
2030 		/* Adapter failure requires Tx/Rx reset and reinit. */
2031 		if (vp->full_bus_master_tx) {
2032 			int bus_status = ioread32(ioaddr + PktStatus);
2033 			/* 0x80000000 PCI master abort. */
2034 			/* 0x40000000 PCI target abort. */
2035 			if (vortex_debug)
2036 				pr_err("%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status);
2037 
2038 			/* In this case, blow the card away */
2039 			/* Must not enter D3 or we can't legally issue the reset! */
2040 			vortex_down(dev, 0);
2041 			issue_and_wait(dev, TotalReset | 0xff);
2042 			vortex_up(dev);		/* AKPM: bug.  vortex_up() assumes that the rx ring is full. It may not be. */
2043 		} else if (fifo_diag & 0x0400)
2044 			do_tx_reset = 1;
2045 		if (fifo_diag & 0x3000) {
2046 			/* Reset Rx fifo and upload logic */
2047 			issue_and_wait(dev, RxReset|0x07);
2048 			/* Set the Rx filter to the current state. */
2049 			set_rx_mode(dev);
2050 			/* enable 802.1q VLAN tagged frames */
2051 			set_8021q_mode(dev, 1);
2052 			iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
2053 			iowrite16(AckIntr | HostError, ioaddr + EL3_CMD);
2054 		}
2055 	}
2056 
2057 	if (do_tx_reset) {
2058 		issue_and_wait(dev, TxReset|reset_mask);
2059 		iowrite16(TxEnable, ioaddr + EL3_CMD);
2060 		if (!vp->full_bus_master_tx)
2061 			netif_wake_queue(dev);
2062 	}
2063 }
2064 
2065 static netdev_tx_t
2066 vortex_start_xmit(struct sk_buff *skb, struct net_device *dev)
2067 {
2068 	struct vortex_private *vp = netdev_priv(dev);
2069 	void __iomem *ioaddr = vp->ioaddr;
2070 
2071 	/* Put out the doubleword header... */
2072 	iowrite32(skb->len, ioaddr + TX_FIFO);
2073 	if (vp->bus_master) {
2074 		/* Set the bus-master controller to transfer the packet. */
2075 		int len = (skb->len + 3) & ~3;
2076 		vp->tx_skb_dma = pci_map_single(VORTEX_PCI(vp), skb->data, len,
2077 						PCI_DMA_TODEVICE);
2078 		spin_lock_irq(&vp->window_lock);
2079 		window_set(vp, 7);
2080 		iowrite32(vp->tx_skb_dma, ioaddr + Wn7_MasterAddr);
2081 		iowrite16(len, ioaddr + Wn7_MasterLen);
2082 		spin_unlock_irq(&vp->window_lock);
2083 		vp->tx_skb = skb;
2084 		iowrite16(StartDMADown, ioaddr + EL3_CMD);
2085 		/* netif_wake_queue() will be called at the DMADone interrupt. */
2086 	} else {
2087 		/* ... and the packet rounded to a doubleword. */
2088 		iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
2089 		dev_kfree_skb (skb);
2090 		if (ioread16(ioaddr + TxFree) > 1536) {
2091 			netif_start_queue (dev);	/* AKPM: redundant? */
2092 		} else {
2093 			/* Interrupt us when the FIFO has room for max-sized packet. */
2094 			netif_stop_queue(dev);
2095 			iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2096 		}
2097 	}
2098 
2099 
2100 	/* Clear the Tx status stack. */
2101 	{
2102 		int tx_status;
2103 		int i = 32;
2104 
2105 		while (--i > 0	&&	(tx_status = ioread8(ioaddr + TxStatus)) > 0) {
2106 			if (tx_status & 0x3C) {		/* A Tx-disabling error occurred.  */
2107 				if (vortex_debug > 2)
2108 				  pr_debug("%s: Tx error, status %2.2x.\n",
2109 						 dev->name, tx_status);
2110 				if (tx_status & 0x04) dev->stats.tx_fifo_errors++;
2111 				if (tx_status & 0x38) dev->stats.tx_aborted_errors++;
2112 				if (tx_status & 0x30) {
2113 					issue_and_wait(dev, TxReset);
2114 				}
2115 				iowrite16(TxEnable, ioaddr + EL3_CMD);
2116 			}
2117 			iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */
2118 		}
2119 	}
2120 	return NETDEV_TX_OK;
2121 }
2122 
2123 static netdev_tx_t
2124 boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev)
2125 {
2126 	struct vortex_private *vp = netdev_priv(dev);
2127 	void __iomem *ioaddr = vp->ioaddr;
2128 	/* Calculate the next Tx descriptor entry. */
2129 	int entry = vp->cur_tx % TX_RING_SIZE;
2130 	struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE];
2131 	unsigned long flags;
2132 
2133 	if (vortex_debug > 6) {
2134 		pr_debug("boomerang_start_xmit()\n");
2135 		pr_debug("%s: Trying to send a packet, Tx index %d.\n",
2136 			   dev->name, vp->cur_tx);
2137 	}
2138 
2139 	/*
2140 	 * We can't allow a recursion from our interrupt handler back into the
2141 	 * tx routine, as they take the same spin lock, and that causes
2142 	 * deadlock.  Just return NETDEV_TX_BUSY and let the stack try again in
2143 	 * a bit
2144 	 */
2145 	if (vp->handling_irq)
2146 		return NETDEV_TX_BUSY;
2147 
2148 	if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) {
2149 		if (vortex_debug > 0)
2150 			pr_warning("%s: BUG! Tx Ring full, refusing to send buffer.\n",
2151 				   dev->name);
2152 		netif_stop_queue(dev);
2153 		return NETDEV_TX_BUSY;
2154 	}
2155 
2156 	vp->tx_skbuff[entry] = skb;
2157 
2158 	vp->tx_ring[entry].next = 0;
2159 #if DO_ZEROCOPY
2160 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2161 			vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2162 	else
2163 			vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum);
2164 
2165 	if (!skb_shinfo(skb)->nr_frags) {
2166 		vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2167 										skb->len, PCI_DMA_TODEVICE));
2168 		vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG);
2169 	} else {
2170 		int i;
2171 
2172 		vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2173 										skb_headlen(skb), PCI_DMA_TODEVICE));
2174 		vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb_headlen(skb));
2175 
2176 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2177 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2178 
2179 			vp->tx_ring[entry].frag[i+1].addr =
2180 					cpu_to_le32(pci_map_single(
2181 						VORTEX_PCI(vp),
2182 						(void *)skb_frag_address(frag),
2183 						skb_frag_size(frag), PCI_DMA_TODEVICE));
2184 
2185 			if (i == skb_shinfo(skb)->nr_frags-1)
2186 					vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag)|LAST_FRAG);
2187 			else
2188 					vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag));
2189 		}
2190 	}
2191 #else
2192 	vp->tx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, skb->len, PCI_DMA_TODEVICE));
2193 	vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG);
2194 	vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2195 #endif
2196 
2197 	spin_lock_irqsave(&vp->lock, flags);
2198 	/* Wait for the stall to complete. */
2199 	issue_and_wait(dev, DownStall);
2200 	prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc));
2201 	if (ioread32(ioaddr + DownListPtr) == 0) {
2202 		iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr);
2203 		vp->queued_packet++;
2204 	}
2205 
2206 	vp->cur_tx++;
2207 	if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) {
2208 		netif_stop_queue (dev);
2209 	} else {					/* Clear previous interrupt enable. */
2210 #if defined(tx_interrupt_mitigation)
2211 		/* Dubious. If in boomeang_interrupt "faster" cyclone ifdef
2212 		 * were selected, this would corrupt DN_COMPLETE. No?
2213 		 */
2214 		prev_entry->status &= cpu_to_le32(~TxIntrUploaded);
2215 #endif
2216 	}
2217 	iowrite16(DownUnstall, ioaddr + EL3_CMD);
2218 	spin_unlock_irqrestore(&vp->lock, flags);
2219 	return NETDEV_TX_OK;
2220 }
2221 
2222 /* The interrupt handler does all of the Rx thread work and cleans up
2223    after the Tx thread. */
2224 
2225 /*
2226  * This is the ISR for the vortex series chips.
2227  * full_bus_master_tx == 0 && full_bus_master_rx == 0
2228  */
2229 
2230 static irqreturn_t
2231 vortex_interrupt(int irq, void *dev_id)
2232 {
2233 	struct net_device *dev = dev_id;
2234 	struct vortex_private *vp = netdev_priv(dev);
2235 	void __iomem *ioaddr;
2236 	int status;
2237 	int work_done = max_interrupt_work;
2238 	int handled = 0;
2239 
2240 	ioaddr = vp->ioaddr;
2241 	spin_lock(&vp->lock);
2242 
2243 	status = ioread16(ioaddr + EL3_STATUS);
2244 
2245 	if (vortex_debug > 6)
2246 		pr_debug("vortex_interrupt(). status=0x%4x\n", status);
2247 
2248 	if ((status & IntLatch) == 0)
2249 		goto handler_exit;		/* No interrupt: shared IRQs cause this */
2250 	handled = 1;
2251 
2252 	if (status & IntReq) {
2253 		status |= vp->deferred;
2254 		vp->deferred = 0;
2255 	}
2256 
2257 	if (status == 0xffff)		/* h/w no longer present (hotplug)? */
2258 		goto handler_exit;
2259 
2260 	if (vortex_debug > 4)
2261 		pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2262 			   dev->name, status, ioread8(ioaddr + Timer));
2263 
2264 	spin_lock(&vp->window_lock);
2265 	window_set(vp, 7);
2266 
2267 	do {
2268 		if (vortex_debug > 5)
2269 				pr_debug("%s: In interrupt loop, status %4.4x.\n",
2270 					   dev->name, status);
2271 		if (status & RxComplete)
2272 			vortex_rx(dev);
2273 
2274 		if (status & TxAvailable) {
2275 			if (vortex_debug > 5)
2276 				pr_debug("	TX room bit was handled.\n");
2277 			/* There's room in the FIFO for a full-sized packet. */
2278 			iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD);
2279 			netif_wake_queue (dev);
2280 		}
2281 
2282 		if (status & DMADone) {
2283 			if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) {
2284 				iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
2285 				pci_unmap_single(VORTEX_PCI(vp), vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, PCI_DMA_TODEVICE);
2286 				dev_kfree_skb_irq(vp->tx_skb); /* Release the transferred buffer */
2287 				if (ioread16(ioaddr + TxFree) > 1536) {
2288 					/*
2289 					 * AKPM: FIXME: I don't think we need this.  If the queue was stopped due to
2290 					 * insufficient FIFO room, the TxAvailable test will succeed and call
2291 					 * netif_wake_queue()
2292 					 */
2293 					netif_wake_queue(dev);
2294 				} else { /* Interrupt when FIFO has room for max-sized packet. */
2295 					iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2296 					netif_stop_queue(dev);
2297 				}
2298 			}
2299 		}
2300 		/* Check for all uncommon interrupts at once. */
2301 		if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) {
2302 			if (status == 0xffff)
2303 				break;
2304 			if (status & RxEarly)
2305 				vortex_rx(dev);
2306 			spin_unlock(&vp->window_lock);
2307 			vortex_error(dev, status);
2308 			spin_lock(&vp->window_lock);
2309 			window_set(vp, 7);
2310 		}
2311 
2312 		if (--work_done < 0) {
2313 			pr_warning("%s: Too much work in interrupt, status %4.4x.\n",
2314 				dev->name, status);
2315 			/* Disable all pending interrupts. */
2316 			do {
2317 				vp->deferred |= status;
2318 				iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2319 					 ioaddr + EL3_CMD);
2320 				iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2321 			} while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2322 			/* The timer will reenable interrupts. */
2323 			mod_timer(&vp->timer, jiffies + 1*HZ);
2324 			break;
2325 		}
2326 		/* Acknowledge the IRQ. */
2327 		iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2328 	} while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
2329 
2330 	spin_unlock(&vp->window_lock);
2331 
2332 	if (vortex_debug > 4)
2333 		pr_debug("%s: exiting interrupt, status %4.4x.\n",
2334 			   dev->name, status);
2335 handler_exit:
2336 	spin_unlock(&vp->lock);
2337 	return IRQ_RETVAL(handled);
2338 }
2339 
2340 /*
2341  * This is the ISR for the boomerang series chips.
2342  * full_bus_master_tx == 1 && full_bus_master_rx == 1
2343  */
2344 
2345 static irqreturn_t
2346 boomerang_interrupt(int irq, void *dev_id)
2347 {
2348 	struct net_device *dev = dev_id;
2349 	struct vortex_private *vp = netdev_priv(dev);
2350 	void __iomem *ioaddr;
2351 	int status;
2352 	int work_done = max_interrupt_work;
2353 
2354 	ioaddr = vp->ioaddr;
2355 
2356 
2357 	/*
2358 	 * It seems dopey to put the spinlock this early, but we could race against vortex_tx_timeout
2359 	 * and boomerang_start_xmit
2360 	 */
2361 	spin_lock(&vp->lock);
2362 	vp->handling_irq = 1;
2363 
2364 	status = ioread16(ioaddr + EL3_STATUS);
2365 
2366 	if (vortex_debug > 6)
2367 		pr_debug("boomerang_interrupt. status=0x%4x\n", status);
2368 
2369 	if ((status & IntLatch) == 0)
2370 		goto handler_exit;		/* No interrupt: shared IRQs can cause this */
2371 
2372 	if (status == 0xffff) {		/* h/w no longer present (hotplug)? */
2373 		if (vortex_debug > 1)
2374 			pr_debug("boomerang_interrupt(1): status = 0xffff\n");
2375 		goto handler_exit;
2376 	}
2377 
2378 	if (status & IntReq) {
2379 		status |= vp->deferred;
2380 		vp->deferred = 0;
2381 	}
2382 
2383 	if (vortex_debug > 4)
2384 		pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2385 			   dev->name, status, ioread8(ioaddr + Timer));
2386 	do {
2387 		if (vortex_debug > 5)
2388 				pr_debug("%s: In interrupt loop, status %4.4x.\n",
2389 					   dev->name, status);
2390 		if (status & UpComplete) {
2391 			iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD);
2392 			if (vortex_debug > 5)
2393 				pr_debug("boomerang_interrupt->boomerang_rx\n");
2394 			boomerang_rx(dev);
2395 		}
2396 
2397 		if (status & DownComplete) {
2398 			unsigned int dirty_tx = vp->dirty_tx;
2399 
2400 			iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD);
2401 			while (vp->cur_tx - dirty_tx > 0) {
2402 				int entry = dirty_tx % TX_RING_SIZE;
2403 #if 1	/* AKPM: the latter is faster, but cyclone-only */
2404 				if (ioread32(ioaddr + DownListPtr) ==
2405 					vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc))
2406 					break;			/* It still hasn't been processed. */
2407 #else
2408 				if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0)
2409 					break;			/* It still hasn't been processed. */
2410 #endif
2411 
2412 				if (vp->tx_skbuff[entry]) {
2413 					struct sk_buff *skb = vp->tx_skbuff[entry];
2414 #if DO_ZEROCOPY
2415 					int i;
2416 					for (i=0; i<=skb_shinfo(skb)->nr_frags; i++)
2417 							pci_unmap_single(VORTEX_PCI(vp),
2418 											 le32_to_cpu(vp->tx_ring[entry].frag[i].addr),
2419 											 le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF,
2420 											 PCI_DMA_TODEVICE);
2421 #else
2422 					pci_unmap_single(VORTEX_PCI(vp),
2423 						le32_to_cpu(vp->tx_ring[entry].addr), skb->len, PCI_DMA_TODEVICE);
2424 #endif
2425 					dev_kfree_skb_irq(skb);
2426 					vp->tx_skbuff[entry] = NULL;
2427 				} else {
2428 					pr_debug("boomerang_interrupt: no skb!\n");
2429 				}
2430 				/* dev->stats.tx_packets++;  Counted below. */
2431 				dirty_tx++;
2432 			}
2433 			vp->dirty_tx = dirty_tx;
2434 			if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) {
2435 				if (vortex_debug > 6)
2436 					pr_debug("boomerang_interrupt: wake queue\n");
2437 				netif_wake_queue (dev);
2438 			}
2439 		}
2440 
2441 		/* Check for all uncommon interrupts at once. */
2442 		if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq))
2443 			vortex_error(dev, status);
2444 
2445 		if (--work_done < 0) {
2446 			pr_warning("%s: Too much work in interrupt, status %4.4x.\n",
2447 				dev->name, status);
2448 			/* Disable all pending interrupts. */
2449 			do {
2450 				vp->deferred |= status;
2451 				iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2452 					 ioaddr + EL3_CMD);
2453 				iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2454 			} while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2455 			/* The timer will reenable interrupts. */
2456 			mod_timer(&vp->timer, jiffies + 1*HZ);
2457 			break;
2458 		}
2459 		/* Acknowledge the IRQ. */
2460 		iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2461 		if (vp->cb_fn_base)			/* The PCMCIA people are idiots.  */
2462 			iowrite32(0x8000, vp->cb_fn_base + 4);
2463 
2464 	} while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch);
2465 
2466 	if (vortex_debug > 4)
2467 		pr_debug("%s: exiting interrupt, status %4.4x.\n",
2468 			   dev->name, status);
2469 handler_exit:
2470 	vp->handling_irq = 0;
2471 	spin_unlock(&vp->lock);
2472 	return IRQ_HANDLED;
2473 }
2474 
2475 static int vortex_rx(struct net_device *dev)
2476 {
2477 	struct vortex_private *vp = netdev_priv(dev);
2478 	void __iomem *ioaddr = vp->ioaddr;
2479 	int i;
2480 	short rx_status;
2481 
2482 	if (vortex_debug > 5)
2483 		pr_debug("vortex_rx(): status %4.4x, rx_status %4.4x.\n",
2484 			   ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus));
2485 	while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) {
2486 		if (rx_status & 0x4000) { /* Error, update stats. */
2487 			unsigned char rx_error = ioread8(ioaddr + RxErrors);
2488 			if (vortex_debug > 2)
2489 				pr_debug(" Rx error: status %2.2x.\n", rx_error);
2490 			dev->stats.rx_errors++;
2491 			if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2492 			if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2493 			if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2494 			if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2495 			if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2496 		} else {
2497 			/* The packet length: up to 4.5K!. */
2498 			int pkt_len = rx_status & 0x1fff;
2499 			struct sk_buff *skb;
2500 
2501 			skb = netdev_alloc_skb(dev, pkt_len + 5);
2502 			if (vortex_debug > 4)
2503 				pr_debug("Receiving packet size %d status %4.4x.\n",
2504 					   pkt_len, rx_status);
2505 			if (skb != NULL) {
2506 				skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
2507 				/* 'skb_put()' points to the start of sk_buff data area. */
2508 				if (vp->bus_master &&
2509 					! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) {
2510 					dma_addr_t dma = pci_map_single(VORTEX_PCI(vp), skb_put(skb, pkt_len),
2511 									   pkt_len, PCI_DMA_FROMDEVICE);
2512 					iowrite32(dma, ioaddr + Wn7_MasterAddr);
2513 					iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
2514 					iowrite16(StartDMAUp, ioaddr + EL3_CMD);
2515 					while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)
2516 						;
2517 					pci_unmap_single(VORTEX_PCI(vp), dma, pkt_len, PCI_DMA_FROMDEVICE);
2518 				} else {
2519 					ioread32_rep(ioaddr + RX_FIFO,
2520 					             skb_put(skb, pkt_len),
2521 						     (pkt_len + 3) >> 2);
2522 				}
2523 				iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
2524 				skb->protocol = eth_type_trans(skb, dev);
2525 				netif_rx(skb);
2526 				dev->stats.rx_packets++;
2527 				/* Wait a limited time to go to next packet. */
2528 				for (i = 200; i >= 0; i--)
2529 					if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
2530 						break;
2531 				continue;
2532 			} else if (vortex_debug > 0)
2533 				pr_notice("%s: No memory to allocate a sk_buff of size %d.\n",
2534 					dev->name, pkt_len);
2535 			dev->stats.rx_dropped++;
2536 		}
2537 		issue_and_wait(dev, RxDiscard);
2538 	}
2539 
2540 	return 0;
2541 }
2542 
2543 static int
2544 boomerang_rx(struct net_device *dev)
2545 {
2546 	struct vortex_private *vp = netdev_priv(dev);
2547 	int entry = vp->cur_rx % RX_RING_SIZE;
2548 	void __iomem *ioaddr = vp->ioaddr;
2549 	int rx_status;
2550 	int rx_work_limit = vp->dirty_rx + RX_RING_SIZE - vp->cur_rx;
2551 
2552 	if (vortex_debug > 5)
2553 		pr_debug("boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS));
2554 
2555 	while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){
2556 		if (--rx_work_limit < 0)
2557 			break;
2558 		if (rx_status & RxDError) { /* Error, update stats. */
2559 			unsigned char rx_error = rx_status >> 16;
2560 			if (vortex_debug > 2)
2561 				pr_debug(" Rx error: status %2.2x.\n", rx_error);
2562 			dev->stats.rx_errors++;
2563 			if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2564 			if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2565 			if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2566 			if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2567 			if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2568 		} else {
2569 			/* The packet length: up to 4.5K!. */
2570 			int pkt_len = rx_status & 0x1fff;
2571 			struct sk_buff *skb;
2572 			dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr);
2573 
2574 			if (vortex_debug > 4)
2575 				pr_debug("Receiving packet size %d status %4.4x.\n",
2576 					   pkt_len, rx_status);
2577 
2578 			/* Check if the packet is long enough to just accept without
2579 			   copying to a properly sized skbuff. */
2580 			if (pkt_len < rx_copybreak &&
2581 			    (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
2582 				skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
2583 				pci_dma_sync_single_for_cpu(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2584 				/* 'skb_put()' points to the start of sk_buff data area. */
2585 				memcpy(skb_put(skb, pkt_len),
2586 					   vp->rx_skbuff[entry]->data,
2587 					   pkt_len);
2588 				pci_dma_sync_single_for_device(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2589 				vp->rx_copy++;
2590 			} else {
2591 				/* Pass up the skbuff already on the Rx ring. */
2592 				skb = vp->rx_skbuff[entry];
2593 				vp->rx_skbuff[entry] = NULL;
2594 				skb_put(skb, pkt_len);
2595 				pci_unmap_single(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2596 				vp->rx_nocopy++;
2597 			}
2598 			skb->protocol = eth_type_trans(skb, dev);
2599 			{					/* Use hardware checksum info. */
2600 				int csum_bits = rx_status & 0xee000000;
2601 				if (csum_bits &&
2602 					(csum_bits == (IPChksumValid | TCPChksumValid) ||
2603 					 csum_bits == (IPChksumValid | UDPChksumValid))) {
2604 					skb->ip_summed = CHECKSUM_UNNECESSARY;
2605 					vp->rx_csumhits++;
2606 				}
2607 			}
2608 			netif_rx(skb);
2609 			dev->stats.rx_packets++;
2610 		}
2611 		entry = (++vp->cur_rx) % RX_RING_SIZE;
2612 	}
2613 	/* Refill the Rx ring buffers. */
2614 	for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) {
2615 		struct sk_buff *skb;
2616 		entry = vp->dirty_rx % RX_RING_SIZE;
2617 		if (vp->rx_skbuff[entry] == NULL) {
2618 			skb = netdev_alloc_skb_ip_align(dev, PKT_BUF_SZ);
2619 			if (skb == NULL) {
2620 				static unsigned long last_jif;
2621 				if (time_after(jiffies, last_jif + 10 * HZ)) {
2622 					pr_warning("%s: memory shortage\n", dev->name);
2623 					last_jif = jiffies;
2624 				}
2625 				if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)
2626 					mod_timer(&vp->rx_oom_timer, RUN_AT(HZ * 1));
2627 				break;			/* Bad news!  */
2628 			}
2629 
2630 			vp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
2631 			vp->rx_skbuff[entry] = skb;
2632 		}
2633 		vp->rx_ring[entry].status = 0;	/* Clear complete bit. */
2634 		iowrite16(UpUnstall, ioaddr + EL3_CMD);
2635 	}
2636 	return 0;
2637 }
2638 
2639 /*
2640  * If we've hit a total OOM refilling the Rx ring we poll once a second
2641  * for some memory.  Otherwise there is no way to restart the rx process.
2642  */
2643 static void
2644 rx_oom_timer(unsigned long arg)
2645 {
2646 	struct net_device *dev = (struct net_device *)arg;
2647 	struct vortex_private *vp = netdev_priv(dev);
2648 
2649 	spin_lock_irq(&vp->lock);
2650 	if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)	/* This test is redundant, but makes me feel good */
2651 		boomerang_rx(dev);
2652 	if (vortex_debug > 1) {
2653 		pr_debug("%s: rx_oom_timer %s\n", dev->name,
2654 			((vp->cur_rx - vp->dirty_rx) != RX_RING_SIZE) ? "succeeded" : "retrying");
2655 	}
2656 	spin_unlock_irq(&vp->lock);
2657 }
2658 
2659 static void
2660 vortex_down(struct net_device *dev, int final_down)
2661 {
2662 	struct vortex_private *vp = netdev_priv(dev);
2663 	void __iomem *ioaddr = vp->ioaddr;
2664 
2665 	netif_stop_queue (dev);
2666 
2667 	del_timer_sync(&vp->rx_oom_timer);
2668 	del_timer_sync(&vp->timer);
2669 
2670 	/* Turn off statistics ASAP.  We update dev->stats below. */
2671 	iowrite16(StatsDisable, ioaddr + EL3_CMD);
2672 
2673 	/* Disable the receiver and transmitter. */
2674 	iowrite16(RxDisable, ioaddr + EL3_CMD);
2675 	iowrite16(TxDisable, ioaddr + EL3_CMD);
2676 
2677 	/* Disable receiving 802.1q tagged frames */
2678 	set_8021q_mode(dev, 0);
2679 
2680 	if (dev->if_port == XCVR_10base2)
2681 		/* Turn off thinnet power.  Green! */
2682 		iowrite16(StopCoax, ioaddr + EL3_CMD);
2683 
2684 	iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
2685 
2686 	update_stats(ioaddr, dev);
2687 	if (vp->full_bus_master_rx)
2688 		iowrite32(0, ioaddr + UpListPtr);
2689 	if (vp->full_bus_master_tx)
2690 		iowrite32(0, ioaddr + DownListPtr);
2691 
2692 	if (final_down && VORTEX_PCI(vp)) {
2693 		vp->pm_state_valid = 1;
2694 		pci_save_state(VORTEX_PCI(vp));
2695 		acpi_set_WOL(dev);
2696 	}
2697 }
2698 
2699 static int
2700 vortex_close(struct net_device *dev)
2701 {
2702 	struct vortex_private *vp = netdev_priv(dev);
2703 	void __iomem *ioaddr = vp->ioaddr;
2704 	int i;
2705 
2706 	if (netif_device_present(dev))
2707 		vortex_down(dev, 1);
2708 
2709 	if (vortex_debug > 1) {
2710 		pr_debug("%s: vortex_close() status %4.4x, Tx status %2.2x.\n",
2711 			   dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus));
2712 		pr_debug("%s: vortex close stats: rx_nocopy %d rx_copy %d"
2713 			   " tx_queued %d Rx pre-checksummed %d.\n",
2714 			   dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits);
2715 	}
2716 
2717 #if DO_ZEROCOPY
2718 	if (vp->rx_csumhits &&
2719 	    (vp->drv_flags & HAS_HWCKSM) == 0 &&
2720 	    (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) {
2721 		pr_warning("%s supports hardware checksums, and we're not using them!\n", dev->name);
2722 	}
2723 #endif
2724 
2725 	free_irq(dev->irq, dev);
2726 
2727 	if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
2728 		for (i = 0; i < RX_RING_SIZE; i++)
2729 			if (vp->rx_skbuff[i]) {
2730 				pci_unmap_single(	VORTEX_PCI(vp), le32_to_cpu(vp->rx_ring[i].addr),
2731 									PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2732 				dev_kfree_skb(vp->rx_skbuff[i]);
2733 				vp->rx_skbuff[i] = NULL;
2734 			}
2735 	}
2736 	if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
2737 		for (i = 0; i < TX_RING_SIZE; i++) {
2738 			if (vp->tx_skbuff[i]) {
2739 				struct sk_buff *skb = vp->tx_skbuff[i];
2740 #if DO_ZEROCOPY
2741 				int k;
2742 
2743 				for (k=0; k<=skb_shinfo(skb)->nr_frags; k++)
2744 						pci_unmap_single(VORTEX_PCI(vp),
2745 										 le32_to_cpu(vp->tx_ring[i].frag[k].addr),
2746 										 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF,
2747 										 PCI_DMA_TODEVICE);
2748 #else
2749 				pci_unmap_single(VORTEX_PCI(vp), le32_to_cpu(vp->tx_ring[i].addr), skb->len, PCI_DMA_TODEVICE);
2750 #endif
2751 				dev_kfree_skb(skb);
2752 				vp->tx_skbuff[i] = NULL;
2753 			}
2754 		}
2755 	}
2756 
2757 	return 0;
2758 }
2759 
2760 static void
2761 dump_tx_ring(struct net_device *dev)
2762 {
2763 	if (vortex_debug > 0) {
2764 	struct vortex_private *vp = netdev_priv(dev);
2765 		void __iomem *ioaddr = vp->ioaddr;
2766 
2767 		if (vp->full_bus_master_tx) {
2768 			int i;
2769 			int stalled = ioread32(ioaddr + PktStatus) & 0x04;	/* Possible racy. But it's only debug stuff */
2770 
2771 			pr_err("  Flags; bus-master %d, dirty %d(%d) current %d(%d)\n",
2772 					vp->full_bus_master_tx,
2773 					vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE,
2774 					vp->cur_tx, vp->cur_tx % TX_RING_SIZE);
2775 			pr_err("  Transmit list %8.8x vs. %p.\n",
2776 				   ioread32(ioaddr + DownListPtr),
2777 				   &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]);
2778 			issue_and_wait(dev, DownStall);
2779 			for (i = 0; i < TX_RING_SIZE; i++) {
2780 				unsigned int length;
2781 
2782 #if DO_ZEROCOPY
2783 				length = le32_to_cpu(vp->tx_ring[i].frag[0].length);
2784 #else
2785 				length = le32_to_cpu(vp->tx_ring[i].length);
2786 #endif
2787 				pr_err("  %d: @%p  length %8.8x status %8.8x\n",
2788 					   i, &vp->tx_ring[i], length,
2789 					   le32_to_cpu(vp->tx_ring[i].status));
2790 			}
2791 			if (!stalled)
2792 				iowrite16(DownUnstall, ioaddr + EL3_CMD);
2793 		}
2794 	}
2795 }
2796 
2797 static struct net_device_stats *vortex_get_stats(struct net_device *dev)
2798 {
2799 	struct vortex_private *vp = netdev_priv(dev);
2800 	void __iomem *ioaddr = vp->ioaddr;
2801 	unsigned long flags;
2802 
2803 	if (netif_device_present(dev)) {	/* AKPM: Used to be netif_running */
2804 		spin_lock_irqsave (&vp->lock, flags);
2805 		update_stats(ioaddr, dev);
2806 		spin_unlock_irqrestore (&vp->lock, flags);
2807 	}
2808 	return &dev->stats;
2809 }
2810 
2811 /*  Update statistics.
2812 	Unlike with the EL3 we need not worry about interrupts changing
2813 	the window setting from underneath us, but we must still guard
2814 	against a race condition with a StatsUpdate interrupt updating the
2815 	table.  This is done by checking that the ASM (!) code generated uses
2816 	atomic updates with '+='.
2817 	*/
2818 static void update_stats(void __iomem *ioaddr, struct net_device *dev)
2819 {
2820 	struct vortex_private *vp = netdev_priv(dev);
2821 
2822 	/* Unlike the 3c5x9 we need not turn off stats updates while reading. */
2823 	/* Switch to the stats window, and read everything. */
2824 	dev->stats.tx_carrier_errors		+= window_read8(vp, 6, 0);
2825 	dev->stats.tx_heartbeat_errors		+= window_read8(vp, 6, 1);
2826 	dev->stats.tx_window_errors		+= window_read8(vp, 6, 4);
2827 	dev->stats.rx_fifo_errors		+= window_read8(vp, 6, 5);
2828 	dev->stats.tx_packets			+= window_read8(vp, 6, 6);
2829 	dev->stats.tx_packets			+= (window_read8(vp, 6, 9) &
2830 						    0x30) << 4;
2831 	/* Rx packets	*/			window_read8(vp, 6, 7);   /* Must read to clear */
2832 	/* Don't bother with register 9, an extension of registers 6&7.
2833 	   If we do use the 6&7 values the atomic update assumption above
2834 	   is invalid. */
2835 	dev->stats.rx_bytes 			+= window_read16(vp, 6, 10);
2836 	dev->stats.tx_bytes 			+= window_read16(vp, 6, 12);
2837 	/* Extra stats for get_ethtool_stats() */
2838 	vp->xstats.tx_multiple_collisions	+= window_read8(vp, 6, 2);
2839 	vp->xstats.tx_single_collisions         += window_read8(vp, 6, 3);
2840 	vp->xstats.tx_deferred			+= window_read8(vp, 6, 8);
2841 	vp->xstats.rx_bad_ssd			+= window_read8(vp, 4, 12);
2842 
2843 	dev->stats.collisions = vp->xstats.tx_multiple_collisions
2844 		+ vp->xstats.tx_single_collisions
2845 		+ vp->xstats.tx_max_collisions;
2846 
2847 	{
2848 		u8 up = window_read8(vp, 4, 13);
2849 		dev->stats.rx_bytes += (up & 0x0f) << 16;
2850 		dev->stats.tx_bytes += (up & 0xf0) << 12;
2851 	}
2852 }
2853 
2854 static int vortex_nway_reset(struct net_device *dev)
2855 {
2856 	struct vortex_private *vp = netdev_priv(dev);
2857 
2858 	return mii_nway_restart(&vp->mii);
2859 }
2860 
2861 static int vortex_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2862 {
2863 	struct vortex_private *vp = netdev_priv(dev);
2864 
2865 	return mii_ethtool_gset(&vp->mii, cmd);
2866 }
2867 
2868 static int vortex_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2869 {
2870 	struct vortex_private *vp = netdev_priv(dev);
2871 
2872 	return mii_ethtool_sset(&vp->mii, cmd);
2873 }
2874 
2875 static u32 vortex_get_msglevel(struct net_device *dev)
2876 {
2877 	return vortex_debug;
2878 }
2879 
2880 static void vortex_set_msglevel(struct net_device *dev, u32 dbg)
2881 {
2882 	vortex_debug = dbg;
2883 }
2884 
2885 static int vortex_get_sset_count(struct net_device *dev, int sset)
2886 {
2887 	switch (sset) {
2888 	case ETH_SS_STATS:
2889 		return VORTEX_NUM_STATS;
2890 	default:
2891 		return -EOPNOTSUPP;
2892 	}
2893 }
2894 
2895 static void vortex_get_ethtool_stats(struct net_device *dev,
2896 	struct ethtool_stats *stats, u64 *data)
2897 {
2898 	struct vortex_private *vp = netdev_priv(dev);
2899 	void __iomem *ioaddr = vp->ioaddr;
2900 	unsigned long flags;
2901 
2902 	spin_lock_irqsave(&vp->lock, flags);
2903 	update_stats(ioaddr, dev);
2904 	spin_unlock_irqrestore(&vp->lock, flags);
2905 
2906 	data[0] = vp->xstats.tx_deferred;
2907 	data[1] = vp->xstats.tx_max_collisions;
2908 	data[2] = vp->xstats.tx_multiple_collisions;
2909 	data[3] = vp->xstats.tx_single_collisions;
2910 	data[4] = vp->xstats.rx_bad_ssd;
2911 }
2912 
2913 
2914 static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2915 {
2916 	switch (stringset) {
2917 	case ETH_SS_STATS:
2918 		memcpy(data, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
2919 		break;
2920 	default:
2921 		WARN_ON(1);
2922 		break;
2923 	}
2924 }
2925 
2926 static void vortex_get_drvinfo(struct net_device *dev,
2927 					struct ethtool_drvinfo *info)
2928 {
2929 	struct vortex_private *vp = netdev_priv(dev);
2930 
2931 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2932 	if (VORTEX_PCI(vp)) {
2933 		strlcpy(info->bus_info, pci_name(VORTEX_PCI(vp)),
2934 			sizeof(info->bus_info));
2935 	} else {
2936 		if (VORTEX_EISA(vp))
2937 			strlcpy(info->bus_info, dev_name(vp->gendev),
2938 				sizeof(info->bus_info));
2939 		else
2940 			snprintf(info->bus_info, sizeof(info->bus_info),
2941 				"EISA 0x%lx %d", dev->base_addr, dev->irq);
2942 	}
2943 }
2944 
2945 static void vortex_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2946 {
2947 	struct vortex_private *vp = netdev_priv(dev);
2948 
2949 	if (!VORTEX_PCI(vp))
2950 		return;
2951 
2952 	wol->supported = WAKE_MAGIC;
2953 
2954 	wol->wolopts = 0;
2955 	if (vp->enable_wol)
2956 		wol->wolopts |= WAKE_MAGIC;
2957 }
2958 
2959 static int vortex_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2960 {
2961 	struct vortex_private *vp = netdev_priv(dev);
2962 
2963 	if (!VORTEX_PCI(vp))
2964 		return -EOPNOTSUPP;
2965 
2966 	if (wol->wolopts & ~WAKE_MAGIC)
2967 		return -EINVAL;
2968 
2969 	if (wol->wolopts & WAKE_MAGIC)
2970 		vp->enable_wol = 1;
2971 	else
2972 		vp->enable_wol = 0;
2973 	acpi_set_WOL(dev);
2974 
2975 	return 0;
2976 }
2977 
2978 static const struct ethtool_ops vortex_ethtool_ops = {
2979 	.get_drvinfo		= vortex_get_drvinfo,
2980 	.get_strings            = vortex_get_strings,
2981 	.get_msglevel           = vortex_get_msglevel,
2982 	.set_msglevel           = vortex_set_msglevel,
2983 	.get_ethtool_stats      = vortex_get_ethtool_stats,
2984 	.get_sset_count		= vortex_get_sset_count,
2985 	.get_settings           = vortex_get_settings,
2986 	.set_settings           = vortex_set_settings,
2987 	.get_link               = ethtool_op_get_link,
2988 	.nway_reset             = vortex_nway_reset,
2989 	.get_wol                = vortex_get_wol,
2990 	.set_wol                = vortex_set_wol,
2991 };
2992 
2993 #ifdef CONFIG_PCI
2994 /*
2995  *	Must power the device up to do MDIO operations
2996  */
2997 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
2998 {
2999 	int err;
3000 	struct vortex_private *vp = netdev_priv(dev);
3001 	pci_power_t state = 0;
3002 
3003 	if(VORTEX_PCI(vp))
3004 		state = VORTEX_PCI(vp)->current_state;
3005 
3006 	/* The kernel core really should have pci_get_power_state() */
3007 
3008 	if(state != 0)
3009 		pci_set_power_state(VORTEX_PCI(vp), PCI_D0);
3010 	err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL);
3011 	if(state != 0)
3012 		pci_set_power_state(VORTEX_PCI(vp), state);
3013 
3014 	return err;
3015 }
3016 #endif
3017 
3018 
3019 /* Pre-Cyclone chips have no documented multicast filter, so the only
3020    multicast setting is to receive all multicast frames.  At least
3021    the chip has a very clean way to set the mode, unlike many others. */
3022 static void set_rx_mode(struct net_device *dev)
3023 {
3024 	struct vortex_private *vp = netdev_priv(dev);
3025 	void __iomem *ioaddr = vp->ioaddr;
3026 	int new_mode;
3027 
3028 	if (dev->flags & IFF_PROMISC) {
3029 		if (vortex_debug > 3)
3030 			pr_notice("%s: Setting promiscuous mode.\n", dev->name);
3031 		new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm;
3032 	} else	if (!netdev_mc_empty(dev) || dev->flags & IFF_ALLMULTI) {
3033 		new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast;
3034 	} else
3035 		new_mode = SetRxFilter | RxStation | RxBroadcast;
3036 
3037 	iowrite16(new_mode, ioaddr + EL3_CMD);
3038 }
3039 
3040 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
3041 /* Setup the card so that it can receive frames with an 802.1q VLAN tag.
3042    Note that this must be done after each RxReset due to some backwards
3043    compatibility logic in the Cyclone and Tornado ASICs */
3044 
3045 /* The Ethernet Type used for 802.1q tagged frames */
3046 #define VLAN_ETHER_TYPE 0x8100
3047 
3048 static void set_8021q_mode(struct net_device *dev, int enable)
3049 {
3050 	struct vortex_private *vp = netdev_priv(dev);
3051 	int mac_ctrl;
3052 
3053 	if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) {
3054 		/* cyclone and tornado chipsets can recognize 802.1q
3055 		 * tagged frames and treat them correctly */
3056 
3057 		int max_pkt_size = dev->mtu+14;	/* MTU+Ethernet header */
3058 		if (enable)
3059 			max_pkt_size += 4;	/* 802.1Q VLAN tag */
3060 
3061 		window_write16(vp, max_pkt_size, 3, Wn3_MaxPktSize);
3062 
3063 		/* set VlanEtherType to let the hardware checksumming
3064 		   treat tagged frames correctly */
3065 		window_write16(vp, VLAN_ETHER_TYPE, 7, Wn7_VlanEtherType);
3066 	} else {
3067 		/* on older cards we have to enable large frames */
3068 
3069 		vp->large_frames = dev->mtu > 1500 || enable;
3070 
3071 		mac_ctrl = window_read16(vp, 3, Wn3_MAC_Ctrl);
3072 		if (vp->large_frames)
3073 			mac_ctrl |= 0x40;
3074 		else
3075 			mac_ctrl &= ~0x40;
3076 		window_write16(vp, mac_ctrl, 3, Wn3_MAC_Ctrl);
3077 	}
3078 }
3079 #else
3080 
3081 static void set_8021q_mode(struct net_device *dev, int enable)
3082 {
3083 }
3084 
3085 
3086 #endif
3087 
3088 /* MII transceiver control section.
3089    Read and write the MII registers using software-generated serial
3090    MDIO protocol.  See the MII specifications or DP83840A data sheet
3091    for details. */
3092 
3093 /* The maximum data clock rate is 2.5 Mhz.  The minimum timing is usually
3094    met by back-to-back PCI I/O cycles, but we insert a delay to avoid
3095    "overclocking" issues. */
3096 static void mdio_delay(struct vortex_private *vp)
3097 {
3098 	window_read32(vp, 4, Wn4_PhysicalMgmt);
3099 }
3100 
3101 #define MDIO_SHIFT_CLK	0x01
3102 #define MDIO_DIR_WRITE	0x04
3103 #define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE)
3104 #define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE)
3105 #define MDIO_DATA_READ	0x02
3106 #define MDIO_ENB_IN		0x00
3107 
3108 /* Generate the preamble required for initial synchronization and
3109    a few older transceivers. */
3110 static void mdio_sync(struct vortex_private *vp, int bits)
3111 {
3112 	/* Establish sync by sending at least 32 logic ones. */
3113 	while (-- bits >= 0) {
3114 		window_write16(vp, MDIO_DATA_WRITE1, 4, Wn4_PhysicalMgmt);
3115 		mdio_delay(vp);
3116 		window_write16(vp, MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK,
3117 			       4, Wn4_PhysicalMgmt);
3118 		mdio_delay(vp);
3119 	}
3120 }
3121 
3122 static int mdio_read(struct net_device *dev, int phy_id, int location)
3123 {
3124 	int i;
3125 	struct vortex_private *vp = netdev_priv(dev);
3126 	int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
3127 	unsigned int retval = 0;
3128 
3129 	spin_lock_bh(&vp->mii_lock);
3130 
3131 	if (mii_preamble_required)
3132 		mdio_sync(vp, 32);
3133 
3134 	/* Shift the read command bits out. */
3135 	for (i = 14; i >= 0; i--) {
3136 		int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3137 		window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3138 		mdio_delay(vp);
3139 		window_write16(vp, dataval | MDIO_SHIFT_CLK,
3140 			       4, Wn4_PhysicalMgmt);
3141 		mdio_delay(vp);
3142 	}
3143 	/* Read the two transition, 16 data, and wire-idle bits. */
3144 	for (i = 19; i > 0; i--) {
3145 		window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3146 		mdio_delay(vp);
3147 		retval = (retval << 1) |
3148 			((window_read16(vp, 4, Wn4_PhysicalMgmt) &
3149 			  MDIO_DATA_READ) ? 1 : 0);
3150 		window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3151 			       4, Wn4_PhysicalMgmt);
3152 		mdio_delay(vp);
3153 	}
3154 
3155 	spin_unlock_bh(&vp->mii_lock);
3156 
3157 	return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff;
3158 }
3159 
3160 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
3161 {
3162 	struct vortex_private *vp = netdev_priv(dev);
3163 	int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value;
3164 	int i;
3165 
3166 	spin_lock_bh(&vp->mii_lock);
3167 
3168 	if (mii_preamble_required)
3169 		mdio_sync(vp, 32);
3170 
3171 	/* Shift the command bits out. */
3172 	for (i = 31; i >= 0; i--) {
3173 		int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3174 		window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3175 		mdio_delay(vp);
3176 		window_write16(vp, dataval | MDIO_SHIFT_CLK,
3177 			       4, Wn4_PhysicalMgmt);
3178 		mdio_delay(vp);
3179 	}
3180 	/* Leave the interface idle. */
3181 	for (i = 1; i >= 0; i--) {
3182 		window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3183 		mdio_delay(vp);
3184 		window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3185 			       4, Wn4_PhysicalMgmt);
3186 		mdio_delay(vp);
3187 	}
3188 
3189 	spin_unlock_bh(&vp->mii_lock);
3190 }
3191 
3192 /* ACPI: Advanced Configuration and Power Interface. */
3193 /* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */
3194 static void acpi_set_WOL(struct net_device *dev)
3195 {
3196 	struct vortex_private *vp = netdev_priv(dev);
3197 	void __iomem *ioaddr = vp->ioaddr;
3198 
3199 	device_set_wakeup_enable(vp->gendev, vp->enable_wol);
3200 
3201 	if (vp->enable_wol) {
3202 		/* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */
3203 		window_write16(vp, 2, 7, 0x0c);
3204 		/* The RxFilter must accept the WOL frames. */
3205 		iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD);
3206 		iowrite16(RxEnable, ioaddr + EL3_CMD);
3207 
3208 		if (pci_enable_wake(VORTEX_PCI(vp), PCI_D3hot, 1)) {
3209 			pr_info("%s: WOL not supported.\n", pci_name(VORTEX_PCI(vp)));
3210 
3211 			vp->enable_wol = 0;
3212 			return;
3213 		}
3214 
3215 		if (VORTEX_PCI(vp)->current_state < PCI_D3hot)
3216 			return;
3217 
3218 		/* Change the power state to D3; RxEnable doesn't take effect. */
3219 		pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot);
3220 	}
3221 }
3222 
3223 
3224 static void vortex_remove_one(struct pci_dev *pdev)
3225 {
3226 	struct net_device *dev = pci_get_drvdata(pdev);
3227 	struct vortex_private *vp;
3228 
3229 	if (!dev) {
3230 		pr_err("vortex_remove_one called for Compaq device!\n");
3231 		BUG();
3232 	}
3233 
3234 	vp = netdev_priv(dev);
3235 
3236 	if (vp->cb_fn_base)
3237 		pci_iounmap(VORTEX_PCI(vp), vp->cb_fn_base);
3238 
3239 	unregister_netdev(dev);
3240 
3241 	if (VORTEX_PCI(vp)) {
3242 		pci_set_power_state(VORTEX_PCI(vp), PCI_D0);	/* Go active */
3243 		if (vp->pm_state_valid)
3244 			pci_restore_state(VORTEX_PCI(vp));
3245 		pci_disable_device(VORTEX_PCI(vp));
3246 	}
3247 	/* Should really use issue_and_wait() here */
3248 	iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14),
3249 	     vp->ioaddr + EL3_CMD);
3250 
3251 	pci_iounmap(VORTEX_PCI(vp), vp->ioaddr);
3252 
3253 	pci_free_consistent(pdev,
3254 						sizeof(struct boom_rx_desc) * RX_RING_SIZE
3255 							+ sizeof(struct boom_tx_desc) * TX_RING_SIZE,
3256 						vp->rx_ring,
3257 						vp->rx_ring_dma);
3258 	if (vp->must_free_region)
3259 		release_region(dev->base_addr, vp->io_size);
3260 	free_netdev(dev);
3261 }
3262 
3263 
3264 static struct pci_driver vortex_driver = {
3265 	.name		= "3c59x",
3266 	.probe		= vortex_init_one,
3267 	.remove		= vortex_remove_one,
3268 	.id_table	= vortex_pci_tbl,
3269 	.driver.pm	= VORTEX_PM_OPS,
3270 };
3271 
3272 
3273 static int vortex_have_pci;
3274 static int vortex_have_eisa;
3275 
3276 
3277 static int __init vortex_init(void)
3278 {
3279 	int pci_rc, eisa_rc;
3280 
3281 	pci_rc = pci_register_driver(&vortex_driver);
3282 	eisa_rc = vortex_eisa_init();
3283 
3284 	if (pci_rc == 0)
3285 		vortex_have_pci = 1;
3286 	if (eisa_rc > 0)
3287 		vortex_have_eisa = 1;
3288 
3289 	return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV;
3290 }
3291 
3292 
3293 static void __exit vortex_eisa_cleanup(void)
3294 {
3295 	struct vortex_private *vp;
3296 	void __iomem *ioaddr;
3297 
3298 #ifdef CONFIG_EISA
3299 	/* Take care of the EISA devices */
3300 	eisa_driver_unregister(&vortex_eisa_driver);
3301 #endif
3302 
3303 	if (compaq_net_device) {
3304 		vp = netdev_priv(compaq_net_device);
3305 		ioaddr = ioport_map(compaq_net_device->base_addr,
3306 		                    VORTEX_TOTAL_SIZE);
3307 
3308 		unregister_netdev(compaq_net_device);
3309 		iowrite16(TotalReset, ioaddr + EL3_CMD);
3310 		release_region(compaq_net_device->base_addr,
3311 		               VORTEX_TOTAL_SIZE);
3312 
3313 		free_netdev(compaq_net_device);
3314 	}
3315 }
3316 
3317 
3318 static void __exit vortex_cleanup(void)
3319 {
3320 	if (vortex_have_pci)
3321 		pci_unregister_driver(&vortex_driver);
3322 	if (vortex_have_eisa)
3323 		vortex_eisa_cleanup();
3324 }
3325 
3326 
3327 module_init(vortex_init);
3328 module_exit(vortex_cleanup);
3329