xref: /openbmc/linux/drivers/net/ethernet/3com/3c59x.c (revision 8730046c)
1 /* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */
2 /*
3 	Written 1996-1999 by Donald Becker.
4 
5 	This software may be used and distributed according to the terms
6 	of the GNU General Public License, incorporated herein by reference.
7 
8 	This driver is for the 3Com "Vortex" and "Boomerang" series ethercards.
9 	Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597
10 	and the EtherLink XL 3c900 and 3c905 cards.
11 
12 	Problem reports and questions should be directed to
13 	vortex@scyld.com
14 
15 	The author may be reached as becker@scyld.com, or C/O
16 	Scyld Computing Corporation
17 	410 Severn Ave., Suite 210
18 	Annapolis MD 21403
19 
20 */
21 
22 /*
23  * FIXME: This driver _could_ support MTU changing, but doesn't.  See Don's hamachi.c implementation
24  * as well as other drivers
25  *
26  * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k
27  * due to dead code elimination.  There will be some performance benefits from this due to
28  * elimination of all the tests and reduced cache footprint.
29  */
30 
31 
32 #define DRV_NAME	"3c59x"
33 
34 
35 
36 /* A few values that may be tweaked. */
37 /* Keep the ring sizes a power of two for efficiency. */
38 #define TX_RING_SIZE	16
39 #define RX_RING_SIZE	32
40 #define PKT_BUF_SZ		1536			/* Size of each temporary Rx buffer.*/
41 
42 /* "Knobs" that adjust features and parameters. */
43 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
44    Setting to > 1512 effectively disables this feature. */
45 #ifndef __arm__
46 static int rx_copybreak = 200;
47 #else
48 /* ARM systems perform better by disregarding the bus-master
49    transfer capability of these cards. -- rmk */
50 static int rx_copybreak = 1513;
51 #endif
52 /* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
53 static const int mtu = 1500;
54 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
55 static int max_interrupt_work = 32;
56 /* Tx timeout interval (millisecs) */
57 static int watchdog = 5000;
58 
59 /* Allow aggregation of Tx interrupts.  Saves CPU load at the cost
60  * of possible Tx stalls if the system is blocking interrupts
61  * somewhere else.  Undefine this to disable.
62  */
63 #define tx_interrupt_mitigation 1
64 
65 /* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */
66 #define vortex_debug debug
67 #ifdef VORTEX_DEBUG
68 static int vortex_debug = VORTEX_DEBUG;
69 #else
70 static int vortex_debug = 1;
71 #endif
72 
73 #include <linux/module.h>
74 #include <linux/kernel.h>
75 #include <linux/string.h>
76 #include <linux/timer.h>
77 #include <linux/errno.h>
78 #include <linux/in.h>
79 #include <linux/ioport.h>
80 #include <linux/interrupt.h>
81 #include <linux/pci.h>
82 #include <linux/mii.h>
83 #include <linux/init.h>
84 #include <linux/netdevice.h>
85 #include <linux/etherdevice.h>
86 #include <linux/skbuff.h>
87 #include <linux/ethtool.h>
88 #include <linux/highmem.h>
89 #include <linux/eisa.h>
90 #include <linux/bitops.h>
91 #include <linux/jiffies.h>
92 #include <linux/gfp.h>
93 #include <asm/irq.h>			/* For nr_irqs only. */
94 #include <asm/io.h>
95 #include <linux/uaccess.h>
96 
97 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package.
98    This is only in the support-all-kernels source code. */
99 
100 #define RUN_AT(x) (jiffies + (x))
101 
102 #include <linux/delay.h>
103 
104 
105 static const char version[] =
106 	DRV_NAME ": Donald Becker and others.\n";
107 
108 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
109 MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver ");
110 MODULE_LICENSE("GPL");
111 
112 
113 /* Operational parameter that usually are not changed. */
114 
115 /* The Vortex size is twice that of the original EtherLinkIII series: the
116    runtime register window, window 1, is now always mapped in.
117    The Boomerang size is twice as large as the Vortex -- it has additional
118    bus master control registers. */
119 #define VORTEX_TOTAL_SIZE 0x20
120 #define BOOMERANG_TOTAL_SIZE 0x40
121 
122 /* Set iff a MII transceiver on any interface requires mdio preamble.
123    This only set with the original DP83840 on older 3c905 boards, so the extra
124    code size of a per-interface flag is not worthwhile. */
125 static char mii_preamble_required;
126 
127 #define PFX DRV_NAME ": "
128 
129 
130 
131 /*
132 				Theory of Operation
133 
134 I. Board Compatibility
135 
136 This device driver is designed for the 3Com FastEtherLink and FastEtherLink
137 XL, 3Com's PCI to 10/100baseT adapters.  It also works with the 10Mbs
138 versions of the FastEtherLink cards.  The supported product IDs are
139   3c590, 3c592, 3c595, 3c597, 3c900, 3c905
140 
141 The related ISA 3c515 is supported with a separate driver, 3c515.c, included
142 with the kernel source or available from
143     cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html
144 
145 II. Board-specific settings
146 
147 PCI bus devices are configured by the system at boot time, so no jumpers
148 need to be set on the board.  The system BIOS should be set to assign the
149 PCI INTA signal to an otherwise unused system IRQ line.
150 
151 The EEPROM settings for media type and forced-full-duplex are observed.
152 The EEPROM media type should be left at the default "autoselect" unless using
153 10base2 or AUI connections which cannot be reliably detected.
154 
155 III. Driver operation
156 
157 The 3c59x series use an interface that's very similar to the previous 3c5x9
158 series.  The primary interface is two programmed-I/O FIFOs, with an
159 alternate single-contiguous-region bus-master transfer (see next).
160 
161 The 3c900 "Boomerang" series uses a full-bus-master interface with separate
162 lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
163 DEC Tulip and Intel Speedo3.  The first chip version retains a compatible
164 programmed-I/O interface that has been removed in 'B' and subsequent board
165 revisions.
166 
167 One extension that is advertised in a very large font is that the adapters
168 are capable of being bus masters.  On the Vortex chip this capability was
169 only for a single contiguous region making it far less useful than the full
170 bus master capability.  There is a significant performance impact of taking
171 an extra interrupt or polling for the completion of each transfer, as well
172 as difficulty sharing the single transfer engine between the transmit and
173 receive threads.  Using DMA transfers is a win only with large blocks or
174 with the flawed versions of the Intel Orion motherboard PCI controller.
175 
176 The Boomerang chip's full-bus-master interface is useful, and has the
177 currently-unused advantages over other similar chips that queued transmit
178 packets may be reordered and receive buffer groups are associated with a
179 single frame.
180 
181 With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme.
182 Rather than a fixed intermediate receive buffer, this scheme allocates
183 full-sized skbuffs as receive buffers.  The value RX_COPYBREAK is used as
184 the copying breakpoint: it is chosen to trade-off the memory wasted by
185 passing the full-sized skbuff to the queue layer for all frames vs. the
186 copying cost of copying a frame to a correctly-sized skbuff.
187 
188 IIIC. Synchronization
189 The driver runs as two independent, single-threaded flows of control.  One
190 is the send-packet routine, which enforces single-threaded use by the
191 dev->tbusy flag.  The other thread is the interrupt handler, which is single
192 threaded by the hardware and other software.
193 
194 IV. Notes
195 
196 Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development
197 3c590, 3c595, and 3c900 boards.
198 The name "Vortex" is the internal 3Com project name for the PCI ASIC, and
199 the EISA version is called "Demon".  According to Terry these names come
200 from rides at the local amusement park.
201 
202 The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes!
203 This driver only supports ethernet packets because of the skbuff allocation
204 limit of 4K.
205 */
206 
207 /* This table drives the PCI probe routines.  It's mostly boilerplate in all
208    of the drivers, and will likely be provided by some future kernel.
209 */
210 enum pci_flags_bit {
211 	PCI_USES_MASTER=4,
212 };
213 
214 enum {	IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8,
215 	EEPROM_8BIT=0x10,	/* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */
216 	HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100,
217 	INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800,
218 	EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000,
219 	EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, };
220 
221 enum vortex_chips {
222 	CH_3C590 = 0,
223 	CH_3C592,
224 	CH_3C597,
225 	CH_3C595_1,
226 	CH_3C595_2,
227 
228 	CH_3C595_3,
229 	CH_3C900_1,
230 	CH_3C900_2,
231 	CH_3C900_3,
232 	CH_3C900_4,
233 
234 	CH_3C900_5,
235 	CH_3C900B_FL,
236 	CH_3C905_1,
237 	CH_3C905_2,
238 	CH_3C905B_TX,
239 	CH_3C905B_1,
240 
241 	CH_3C905B_2,
242 	CH_3C905B_FX,
243 	CH_3C905C,
244 	CH_3C9202,
245 	CH_3C980,
246 	CH_3C9805,
247 
248 	CH_3CSOHO100_TX,
249 	CH_3C555,
250 	CH_3C556,
251 	CH_3C556B,
252 	CH_3C575,
253 
254 	CH_3C575_1,
255 	CH_3CCFE575,
256 	CH_3CCFE575CT,
257 	CH_3CCFE656,
258 	CH_3CCFEM656,
259 
260 	CH_3CCFEM656_1,
261 	CH_3C450,
262 	CH_3C920,
263 	CH_3C982A,
264 	CH_3C982B,
265 
266 	CH_905BT4,
267 	CH_920B_EMB_WNM,
268 };
269 
270 
271 /* note: this array directly indexed by above enums, and MUST
272  * be kept in sync with both the enums above, and the PCI device
273  * table below
274  */
275 static struct vortex_chip_info {
276 	const char *name;
277 	int flags;
278 	int drv_flags;
279 	int io_size;
280 } vortex_info_tbl[] = {
281 	{"3c590 Vortex 10Mbps",
282 	 PCI_USES_MASTER, IS_VORTEX, 32, },
283 	{"3c592 EISA 10Mbps Demon/Vortex",					/* AKPM: from Don's 3c59x_cb.c 0.49H */
284 	 PCI_USES_MASTER, IS_VORTEX, 32, },
285 	{"3c597 EISA Fast Demon/Vortex",					/* AKPM: from Don's 3c59x_cb.c 0.49H */
286 	 PCI_USES_MASTER, IS_VORTEX, 32, },
287 	{"3c595 Vortex 100baseTx",
288 	 PCI_USES_MASTER, IS_VORTEX, 32, },
289 	{"3c595 Vortex 100baseT4",
290 	 PCI_USES_MASTER, IS_VORTEX, 32, },
291 
292 	{"3c595 Vortex 100base-MII",
293 	 PCI_USES_MASTER, IS_VORTEX, 32, },
294 	{"3c900 Boomerang 10baseT",
295 	 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
296 	{"3c900 Boomerang 10Mbps Combo",
297 	 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
298 	{"3c900 Cyclone 10Mbps TPO",						/* AKPM: from Don's 0.99M */
299 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
300 	{"3c900 Cyclone 10Mbps Combo",
301 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
302 
303 	{"3c900 Cyclone 10Mbps TPC",						/* AKPM: from Don's 0.99M */
304 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
305 	{"3c900B-FL Cyclone 10base-FL",
306 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
307 	{"3c905 Boomerang 100baseTx",
308 	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
309 	{"3c905 Boomerang 100baseT4",
310 	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
311 	{"3C905B-TX Fast Etherlink XL PCI",
312 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
313 	{"3c905B Cyclone 100baseTx",
314 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
315 
316 	{"3c905B Cyclone 10/100/BNC",
317 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
318 	{"3c905B-FX Cyclone 100baseFx",
319 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
320 	{"3c905C Tornado",
321 	PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
322 	{"3c920B-EMB-WNM (ATI Radeon 9100 IGP)",
323 	 PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, },
324 	{"3c980 Cyclone",
325 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
326 
327 	{"3c980C Python-T",
328 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
329 	{"3cSOHO100-TX Hurricane",
330 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
331 	{"3c555 Laptop Hurricane",
332 	 PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, },
333 	{"3c556 Laptop Tornado",
334 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR|
335 									HAS_HWCKSM, 128, },
336 	{"3c556B Laptop Hurricane",
337 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR|
338 	                                WNO_XCVR_PWR|HAS_HWCKSM, 128, },
339 
340 	{"3c575 [Megahertz] 10/100 LAN 	CardBus",
341 	PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
342 	{"3c575 Boomerang CardBus",
343 	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
344 	{"3CCFE575BT Cyclone CardBus",
345 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|
346 									INVERT_LED_PWR|HAS_HWCKSM, 128, },
347 	{"3CCFE575CT Tornado CardBus",
348 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
349 									MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
350 	{"3CCFE656 Cyclone CardBus",
351 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
352 									INVERT_LED_PWR|HAS_HWCKSM, 128, },
353 
354 	{"3CCFEM656B Cyclone+Winmodem CardBus",
355 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
356 									INVERT_LED_PWR|HAS_HWCKSM, 128, },
357 	{"3CXFEM656C Tornado+Winmodem CardBus",			/* From pcmcia-cs-3.1.5 */
358 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
359 									MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
360 	{"3c450 HomePNA Tornado",						/* AKPM: from Don's 0.99Q */
361 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
362 	{"3c920 Tornado",
363 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
364 	{"3c982 Hydra Dual Port A",
365 	 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
366 
367 	{"3c982 Hydra Dual Port B",
368 	 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
369 	{"3c905B-T4",
370 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
371 	{"3c920B-EMB-WNM Tornado",
372 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
373 
374 	{NULL,}, /* NULL terminated list. */
375 };
376 
377 
378 static const struct pci_device_id vortex_pci_tbl[] = {
379 	{ 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 },
380 	{ 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 },
381 	{ 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 },
382 	{ 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 },
383 	{ 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 },
384 
385 	{ 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 },
386 	{ 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 },
387 	{ 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 },
388 	{ 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 },
389 	{ 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 },
390 
391 	{ 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 },
392 	{ 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL },
393 	{ 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 },
394 	{ 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 },
395 	{ 0x10B7, 0x9054, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_TX },
396 	{ 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 },
397 
398 	{ 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 },
399 	{ 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX },
400 	{ 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C },
401 	{ 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 },
402 	{ 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 },
403 	{ 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 },
404 
405 	{ 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX },
406 	{ 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 },
407 	{ 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 },
408 	{ 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B },
409 	{ 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 },
410 
411 	{ 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 },
412 	{ 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 },
413 	{ 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT },
414 	{ 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 },
415 	{ 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 },
416 
417 	{ 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 },
418 	{ 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 },
419 	{ 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 },
420 	{ 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A },
421 	{ 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B },
422 
423 	{ 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 },
424 	{ 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM },
425 
426 	{0,}						/* 0 terminated list. */
427 };
428 MODULE_DEVICE_TABLE(pci, vortex_pci_tbl);
429 
430 
431 /* Operational definitions.
432    These are not used by other compilation units and thus are not
433    exported in a ".h" file.
434 
435    First the windows.  There are eight register windows, with the command
436    and status registers available in each.
437    */
438 #define EL3_CMD 0x0e
439 #define EL3_STATUS 0x0e
440 
441 /* The top five bits written to EL3_CMD are a command, the lower
442    11 bits are the parameter, if applicable.
443    Note that 11 parameters bits was fine for ethernet, but the new chip
444    can handle FDDI length frames (~4500 octets) and now parameters count
445    32-bit 'Dwords' rather than octets. */
446 
447 enum vortex_cmd {
448 	TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11,
449 	RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11,
450 	UpStall = 6<<11, UpUnstall = (6<<11)+1,
451 	DownStall = (6<<11)+2, DownUnstall = (6<<11)+3,
452 	RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11,
453 	FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11,
454 	SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11,
455 	SetTxThreshold = 18<<11, SetTxStart = 19<<11,
456 	StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11,
457 	StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,};
458 
459 /* The SetRxFilter command accepts the following classes: */
460 enum RxFilter {
461 	RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 };
462 
463 /* Bits in the general status register. */
464 enum vortex_status {
465 	IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004,
466 	TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
467 	IntReq = 0x0040, StatsFull = 0x0080,
468 	DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10,
469 	DMAInProgress = 1<<11,			/* DMA controller is still busy.*/
470 	CmdInProgress = 1<<12,			/* EL3_CMD is still busy.*/
471 };
472 
473 /* Register window 1 offsets, the window used in normal operation.
474    On the Vortex this window is always mapped at offsets 0x10-0x1f. */
475 enum Window1 {
476 	TX_FIFO = 0x10,  RX_FIFO = 0x10,  RxErrors = 0x14,
477 	RxStatus = 0x18,  Timer=0x1A, TxStatus = 0x1B,
478 	TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
479 };
480 enum Window0 {
481 	Wn0EepromCmd = 10,		/* Window 0: EEPROM command register. */
482 	Wn0EepromData = 12,		/* Window 0: EEPROM results register. */
483 	IntrStatus=0x0E,		/* Valid in all windows. */
484 };
485 enum Win0_EEPROM_bits {
486 	EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
487 	EEPROM_EWENB = 0x30,		/* Enable erasing/writing for 10 msec. */
488 	EEPROM_EWDIS = 0x00,		/* Disable EWENB before 10 msec timeout. */
489 };
490 /* EEPROM locations. */
491 enum eeprom_offset {
492 	PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3,
493 	EtherLink3ID=7, IFXcvrIO=8, IRQLine=9,
494 	NodeAddr01=10, NodeAddr23=11, NodeAddr45=12,
495 	DriverTune=13, Checksum=15};
496 
497 enum Window2 {			/* Window 2. */
498 	Wn2_ResetOptions=12,
499 };
500 enum Window3 {			/* Window 3: MAC/config bits. */
501 	Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8,
502 };
503 
504 #define BFEXT(value, offset, bitcount)  \
505     ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1))
506 
507 #define BFINS(lhs, rhs, offset, bitcount)					\
508 	(((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) |	\
509 	(((rhs) & ((1 << (bitcount)) - 1)) << (offset)))
510 
511 #define RAM_SIZE(v)		BFEXT(v, 0, 3)
512 #define RAM_WIDTH(v)	BFEXT(v, 3, 1)
513 #define RAM_SPEED(v)	BFEXT(v, 4, 2)
514 #define ROM_SIZE(v)		BFEXT(v, 6, 2)
515 #define RAM_SPLIT(v)	BFEXT(v, 16, 2)
516 #define XCVR(v)			BFEXT(v, 20, 4)
517 #define AUTOSELECT(v)	BFEXT(v, 24, 1)
518 
519 enum Window4 {		/* Window 4: Xcvr/media bits. */
520 	Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10,
521 };
522 enum Win4_Media_bits {
523 	Media_SQE = 0x0008,		/* Enable SQE error counting for AUI. */
524 	Media_10TP = 0x00C0,	/* Enable link beat and jabber for 10baseT. */
525 	Media_Lnk = 0x0080,		/* Enable just link beat for 100TX/100FX. */
526 	Media_LnkBeat = 0x0800,
527 };
528 enum Window7 {					/* Window 7: Bus Master control. */
529 	Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6,
530 	Wn7_MasterStatus = 12,
531 };
532 /* Boomerang bus master control registers. */
533 enum MasterCtrl {
534 	PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c,
535 	TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38,
536 };
537 
538 /* The Rx and Tx descriptor lists.
539    Caution Alpha hackers: these types are 32 bits!  Note also the 8 byte
540    alignment contraint on tx_ring[] and rx_ring[]. */
541 #define LAST_FRAG 	0x80000000			/* Last Addr/Len pair in descriptor. */
542 #define DN_COMPLETE	0x00010000			/* This packet has been downloaded */
543 struct boom_rx_desc {
544 	__le32 next;					/* Last entry points to 0.   */
545 	__le32 status;
546 	__le32 addr;					/* Up to 63 addr/len pairs possible. */
547 	__le32 length;					/* Set LAST_FRAG to indicate last pair. */
548 };
549 /* Values for the Rx status entry. */
550 enum rx_desc_status {
551 	RxDComplete=0x00008000, RxDError=0x4000,
552 	/* See boomerang_rx() for actual error bits */
553 	IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27,
554 	IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31,
555 };
556 
557 #ifdef MAX_SKB_FRAGS
558 #define DO_ZEROCOPY 1
559 #else
560 #define DO_ZEROCOPY 0
561 #endif
562 
563 struct boom_tx_desc {
564 	__le32 next;					/* Last entry points to 0.   */
565 	__le32 status;					/* bits 0:12 length, others see below.  */
566 #if DO_ZEROCOPY
567 	struct {
568 		__le32 addr;
569 		__le32 length;
570 	} frag[1+MAX_SKB_FRAGS];
571 #else
572 		__le32 addr;
573 		__le32 length;
574 #endif
575 };
576 
577 /* Values for the Tx status entry. */
578 enum tx_desc_status {
579 	CRCDisable=0x2000, TxDComplete=0x8000,
580 	AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000,
581 	TxIntrUploaded=0x80000000,		/* IRQ when in FIFO, but maybe not sent. */
582 };
583 
584 /* Chip features we care about in vp->capabilities, read from the EEPROM. */
585 enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 };
586 
587 struct vortex_extra_stats {
588 	unsigned long tx_deferred;
589 	unsigned long tx_max_collisions;
590 	unsigned long tx_multiple_collisions;
591 	unsigned long tx_single_collisions;
592 	unsigned long rx_bad_ssd;
593 };
594 
595 struct vortex_private {
596 	/* The Rx and Tx rings should be quad-word-aligned. */
597 	struct boom_rx_desc* rx_ring;
598 	struct boom_tx_desc* tx_ring;
599 	dma_addr_t rx_ring_dma;
600 	dma_addr_t tx_ring_dma;
601 	/* The addresses of transmit- and receive-in-place skbuffs. */
602 	struct sk_buff* rx_skbuff[RX_RING_SIZE];
603 	struct sk_buff* tx_skbuff[TX_RING_SIZE];
604 	unsigned int cur_rx, cur_tx;		/* The next free ring entry */
605 	unsigned int dirty_rx, dirty_tx;	/* The ring entries to be free()ed. */
606 	struct vortex_extra_stats xstats;	/* NIC-specific extra stats */
607 	struct sk_buff *tx_skb;				/* Packet being eaten by bus master ctrl.  */
608 	dma_addr_t tx_skb_dma;				/* Allocated DMA address for bus master ctrl DMA.   */
609 
610 	/* PCI configuration space information. */
611 	struct device *gendev;
612 	void __iomem *ioaddr;			/* IO address space */
613 	void __iomem *cb_fn_base;		/* CardBus function status addr space. */
614 
615 	/* Some values here only for performance evaluation and path-coverage */
616 	int rx_nocopy, rx_copy, queued_packet, rx_csumhits;
617 	int card_idx;
618 
619 	/* The remainder are related to chip state, mostly media selection. */
620 	struct timer_list timer;			/* Media selection timer. */
621 	struct timer_list rx_oom_timer;		/* Rx skb allocation retry timer */
622 	int options;						/* User-settable misc. driver options. */
623 	unsigned int media_override:4, 		/* Passed-in media type. */
624 		default_media:4,				/* Read from the EEPROM/Wn3_Config. */
625 		full_duplex:1, autoselect:1,
626 		bus_master:1,					/* Vortex can only do a fragment bus-m. */
627 		full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang  */
628 		flow_ctrl:1,					/* Use 802.3x flow control (PAUSE only) */
629 		partner_flow_ctrl:1,			/* Partner supports flow control */
630 		has_nway:1,
631 		enable_wol:1,					/* Wake-on-LAN is enabled */
632 		pm_state_valid:1,				/* pci_dev->saved_config_space has sane contents */
633 		open:1,
634 		medialock:1,
635 		large_frames:1,			/* accept large frames */
636 		handling_irq:1;			/* private in_irq indicator */
637 	/* {get|set}_wol operations are already serialized by rtnl.
638 	 * no additional locking is required for the enable_wol and acpi_set_WOL()
639 	 */
640 	int drv_flags;
641 	u16 status_enable;
642 	u16 intr_enable;
643 	u16 available_media;				/* From Wn3_Options. */
644 	u16 capabilities, info1, info2;		/* Various, from EEPROM. */
645 	u16 advertising;					/* NWay media advertisement */
646 	unsigned char phys[2];				/* MII device addresses. */
647 	u16 deferred;						/* Resend these interrupts when we
648 										 * bale from the ISR */
649 	u16 io_size;						/* Size of PCI region (for release_region) */
650 
651 	/* Serialises access to hardware other than MII and variables below.
652 	 * The lock hierarchy is rtnl_lock > {lock, mii_lock} > window_lock. */
653 	spinlock_t lock;
654 
655 	spinlock_t mii_lock;		/* Serialises access to MII */
656 	struct mii_if_info mii;		/* MII lib hooks/info */
657 	spinlock_t window_lock;		/* Serialises access to windowed regs */
658 	int window;			/* Register window */
659 };
660 
661 static void window_set(struct vortex_private *vp, int window)
662 {
663 	if (window != vp->window) {
664 		iowrite16(SelectWindow + window, vp->ioaddr + EL3_CMD);
665 		vp->window = window;
666 	}
667 }
668 
669 #define DEFINE_WINDOW_IO(size)						\
670 static u ## size							\
671 window_read ## size(struct vortex_private *vp, int window, int addr)	\
672 {									\
673 	unsigned long flags;						\
674 	u ## size ret;							\
675 	spin_lock_irqsave(&vp->window_lock, flags);			\
676 	window_set(vp, window);						\
677 	ret = ioread ## size(vp->ioaddr + addr);			\
678 	spin_unlock_irqrestore(&vp->window_lock, flags);		\
679 	return ret;							\
680 }									\
681 static void								\
682 window_write ## size(struct vortex_private *vp, u ## size value,	\
683 		     int window, int addr)				\
684 {									\
685 	unsigned long flags;						\
686 	spin_lock_irqsave(&vp->window_lock, flags);			\
687 	window_set(vp, window);						\
688 	iowrite ## size(value, vp->ioaddr + addr);			\
689 	spin_unlock_irqrestore(&vp->window_lock, flags);		\
690 }
691 DEFINE_WINDOW_IO(8)
692 DEFINE_WINDOW_IO(16)
693 DEFINE_WINDOW_IO(32)
694 
695 #ifdef CONFIG_PCI
696 #define DEVICE_PCI(dev) ((dev_is_pci(dev)) ? to_pci_dev((dev)) : NULL)
697 #else
698 #define DEVICE_PCI(dev) NULL
699 #endif
700 
701 #define VORTEX_PCI(vp)							\
702 	((struct pci_dev *) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL))
703 
704 #ifdef CONFIG_EISA
705 #define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL)
706 #else
707 #define DEVICE_EISA(dev) NULL
708 #endif
709 
710 #define VORTEX_EISA(vp)							\
711 	((struct eisa_device *) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL))
712 
713 /* The action to take with a media selection timer tick.
714    Note that we deviate from the 3Com order by checking 10base2 before AUI.
715  */
716 enum xcvr_types {
717 	XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
718 	XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10,
719 };
720 
721 static const struct media_table {
722 	char *name;
723 	unsigned int media_bits:16,		/* Bits to set in Wn4_Media register. */
724 		mask:8,						/* The transceiver-present bit in Wn3_Config.*/
725 		next:8;						/* The media type to try next. */
726 	int wait;						/* Time before we check media status. */
727 } media_tbl[] = {
728   {	"10baseT",   Media_10TP,0x08, XCVR_10base2, (14*HZ)/10},
729   { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10},
730   { "undefined", 0,			0x80, XCVR_10baseT, 10000},
731   { "10base2",   0,			0x10, XCVR_AUI,		(1*HZ)/10},
732   { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10},
733   { "100baseFX", Media_Lnk, 0x04, XCVR_MII,		(14*HZ)/10},
734   { "MII",		 0,			0x41, XCVR_10baseT, 3*HZ },
735   { "undefined", 0,			0x01, XCVR_10baseT, 10000},
736   { "Autonegotiate", 0,		0x41, XCVR_10baseT, 3*HZ},
737   { "MII-External",	 0,		0x41, XCVR_10baseT, 3*HZ },
738   { "Default",	 0,			0xFF, XCVR_10baseT, 10000},
739 };
740 
741 static struct {
742 	const char str[ETH_GSTRING_LEN];
743 } ethtool_stats_keys[] = {
744 	{ "tx_deferred" },
745 	{ "tx_max_collisions" },
746 	{ "tx_multiple_collisions" },
747 	{ "tx_single_collisions" },
748 	{ "rx_bad_ssd" },
749 };
750 
751 /* number of ETHTOOL_GSTATS u64's */
752 #define VORTEX_NUM_STATS    5
753 
754 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
755 				   int chip_idx, int card_idx);
756 static int vortex_up(struct net_device *dev);
757 static void vortex_down(struct net_device *dev, int final);
758 static int vortex_open(struct net_device *dev);
759 static void mdio_sync(struct vortex_private *vp, int bits);
760 static int mdio_read(struct net_device *dev, int phy_id, int location);
761 static void mdio_write(struct net_device *vp, int phy_id, int location, int value);
762 static void vortex_timer(unsigned long arg);
763 static void rx_oom_timer(unsigned long arg);
764 static netdev_tx_t vortex_start_xmit(struct sk_buff *skb,
765 				     struct net_device *dev);
766 static netdev_tx_t boomerang_start_xmit(struct sk_buff *skb,
767 					struct net_device *dev);
768 static int vortex_rx(struct net_device *dev);
769 static int boomerang_rx(struct net_device *dev);
770 static irqreturn_t vortex_interrupt(int irq, void *dev_id);
771 static irqreturn_t boomerang_interrupt(int irq, void *dev_id);
772 static int vortex_close(struct net_device *dev);
773 static void dump_tx_ring(struct net_device *dev);
774 static void update_stats(void __iomem *ioaddr, struct net_device *dev);
775 static struct net_device_stats *vortex_get_stats(struct net_device *dev);
776 static void set_rx_mode(struct net_device *dev);
777 #ifdef CONFIG_PCI
778 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
779 #endif
780 static void vortex_tx_timeout(struct net_device *dev);
781 static void acpi_set_WOL(struct net_device *dev);
782 static const struct ethtool_ops vortex_ethtool_ops;
783 static void set_8021q_mode(struct net_device *dev, int enable);
784 
785 /* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
786 /* Option count limit only -- unlimited interfaces are supported. */
787 #define MAX_UNITS 8
788 static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 };
789 static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
790 static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
791 static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
792 static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
793 static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
794 static int global_options = -1;
795 static int global_full_duplex = -1;
796 static int global_enable_wol = -1;
797 static int global_use_mmio = -1;
798 
799 /* Variables to work-around the Compaq PCI BIOS32 problem. */
800 static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900;
801 static struct net_device *compaq_net_device;
802 
803 static int vortex_cards_found;
804 
805 module_param(debug, int, 0);
806 module_param(global_options, int, 0);
807 module_param_array(options, int, NULL, 0);
808 module_param(global_full_duplex, int, 0);
809 module_param_array(full_duplex, int, NULL, 0);
810 module_param_array(hw_checksums, int, NULL, 0);
811 module_param_array(flow_ctrl, int, NULL, 0);
812 module_param(global_enable_wol, int, 0);
813 module_param_array(enable_wol, int, NULL, 0);
814 module_param(rx_copybreak, int, 0);
815 module_param(max_interrupt_work, int, 0);
816 module_param(compaq_ioaddr, int, 0);
817 module_param(compaq_irq, int, 0);
818 module_param(compaq_device_id, int, 0);
819 module_param(watchdog, int, 0);
820 module_param(global_use_mmio, int, 0);
821 module_param_array(use_mmio, int, NULL, 0);
822 MODULE_PARM_DESC(debug, "3c59x debug level (0-6)");
823 MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex");
824 MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset");
825 MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)");
826 MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset");
827 MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)");
828 MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)");
829 MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)");
830 MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset");
831 MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames");
832 MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt");
833 MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)");
834 MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)");
835 MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)");
836 MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds");
837 MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset");
838 MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)");
839 
840 #ifdef CONFIG_NET_POLL_CONTROLLER
841 static void poll_vortex(struct net_device *dev)
842 {
843 	struct vortex_private *vp = netdev_priv(dev);
844 	unsigned long flags;
845 	local_irq_save(flags);
846 	(vp->full_bus_master_rx ? boomerang_interrupt:vortex_interrupt)(dev->irq,dev);
847 	local_irq_restore(flags);
848 }
849 #endif
850 
851 #ifdef CONFIG_PM
852 
853 static int vortex_suspend(struct device *dev)
854 {
855 	struct pci_dev *pdev = to_pci_dev(dev);
856 	struct net_device *ndev = pci_get_drvdata(pdev);
857 
858 	if (!ndev || !netif_running(ndev))
859 		return 0;
860 
861 	netif_device_detach(ndev);
862 	vortex_down(ndev, 1);
863 
864 	return 0;
865 }
866 
867 static int vortex_resume(struct device *dev)
868 {
869 	struct pci_dev *pdev = to_pci_dev(dev);
870 	struct net_device *ndev = pci_get_drvdata(pdev);
871 	int err;
872 
873 	if (!ndev || !netif_running(ndev))
874 		return 0;
875 
876 	err = vortex_up(ndev);
877 	if (err)
878 		return err;
879 
880 	netif_device_attach(ndev);
881 
882 	return 0;
883 }
884 
885 static const struct dev_pm_ops vortex_pm_ops = {
886 	.suspend = vortex_suspend,
887 	.resume = vortex_resume,
888 	.freeze = vortex_suspend,
889 	.thaw = vortex_resume,
890 	.poweroff = vortex_suspend,
891 	.restore = vortex_resume,
892 };
893 
894 #define VORTEX_PM_OPS (&vortex_pm_ops)
895 
896 #else /* !CONFIG_PM */
897 
898 #define VORTEX_PM_OPS NULL
899 
900 #endif /* !CONFIG_PM */
901 
902 #ifdef CONFIG_EISA
903 static struct eisa_device_id vortex_eisa_ids[] = {
904 	{ "TCM5920", CH_3C592 },
905 	{ "TCM5970", CH_3C597 },
906 	{ "" }
907 };
908 MODULE_DEVICE_TABLE(eisa, vortex_eisa_ids);
909 
910 static int vortex_eisa_probe(struct device *device)
911 {
912 	void __iomem *ioaddr;
913 	struct eisa_device *edev;
914 
915 	edev = to_eisa_device(device);
916 
917 	if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME))
918 		return -EBUSY;
919 
920 	ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE);
921 
922 	if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12,
923 					  edev->id.driver_data, vortex_cards_found)) {
924 		release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
925 		return -ENODEV;
926 	}
927 
928 	vortex_cards_found++;
929 
930 	return 0;
931 }
932 
933 static int vortex_eisa_remove(struct device *device)
934 {
935 	struct eisa_device *edev;
936 	struct net_device *dev;
937 	struct vortex_private *vp;
938 	void __iomem *ioaddr;
939 
940 	edev = to_eisa_device(device);
941 	dev = eisa_get_drvdata(edev);
942 
943 	if (!dev) {
944 		pr_err("vortex_eisa_remove called for Compaq device!\n");
945 		BUG();
946 	}
947 
948 	vp = netdev_priv(dev);
949 	ioaddr = vp->ioaddr;
950 
951 	unregister_netdev(dev);
952 	iowrite16(TotalReset|0x14, ioaddr + EL3_CMD);
953 	release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
954 
955 	free_netdev(dev);
956 	return 0;
957 }
958 
959 static struct eisa_driver vortex_eisa_driver = {
960 	.id_table = vortex_eisa_ids,
961 	.driver   = {
962 		.name    = "3c59x",
963 		.probe   = vortex_eisa_probe,
964 		.remove  = vortex_eisa_remove
965 	}
966 };
967 
968 #endif /* CONFIG_EISA */
969 
970 /* returns count found (>= 0), or negative on error */
971 static int __init vortex_eisa_init(void)
972 {
973 	int eisa_found = 0;
974 	int orig_cards_found = vortex_cards_found;
975 
976 #ifdef CONFIG_EISA
977 	int err;
978 
979 	err = eisa_driver_register (&vortex_eisa_driver);
980 	if (!err) {
981 		/*
982 		 * Because of the way EISA bus is probed, we cannot assume
983 		 * any device have been found when we exit from
984 		 * eisa_driver_register (the bus root driver may not be
985 		 * initialized yet). So we blindly assume something was
986 		 * found, and let the sysfs magic happened...
987 		 */
988 		eisa_found = 1;
989 	}
990 #endif
991 
992 	/* Special code to work-around the Compaq PCI BIOS32 problem. */
993 	if (compaq_ioaddr) {
994 		vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE),
995 			      compaq_irq, compaq_device_id, vortex_cards_found++);
996 	}
997 
998 	return vortex_cards_found - orig_cards_found + eisa_found;
999 }
1000 
1001 /* returns count (>= 0), or negative on error */
1002 static int vortex_init_one(struct pci_dev *pdev,
1003 			   const struct pci_device_id *ent)
1004 {
1005 	int rc, unit, pci_bar;
1006 	struct vortex_chip_info *vci;
1007 	void __iomem *ioaddr;
1008 
1009 	/* wake up and enable device */
1010 	rc = pci_enable_device(pdev);
1011 	if (rc < 0)
1012 		goto out;
1013 
1014 	rc = pci_request_regions(pdev, DRV_NAME);
1015 	if (rc < 0)
1016 		goto out_disable;
1017 
1018 	unit = vortex_cards_found;
1019 
1020 	if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) {
1021 		/* Determine the default if the user didn't override us */
1022 		vci = &vortex_info_tbl[ent->driver_data];
1023 		pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0;
1024 	} else if (unit < MAX_UNITS && use_mmio[unit] >= 0)
1025 		pci_bar = use_mmio[unit] ? 1 : 0;
1026 	else
1027 		pci_bar = global_use_mmio ? 1 : 0;
1028 
1029 	ioaddr = pci_iomap(pdev, pci_bar, 0);
1030 	if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */
1031 		ioaddr = pci_iomap(pdev, 0, 0);
1032 	if (!ioaddr) {
1033 		rc = -ENOMEM;
1034 		goto out_release;
1035 	}
1036 
1037 	rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq,
1038 			   ent->driver_data, unit);
1039 	if (rc < 0)
1040 		goto out_iounmap;
1041 
1042 	vortex_cards_found++;
1043 	goto out;
1044 
1045 out_iounmap:
1046 	pci_iounmap(pdev, ioaddr);
1047 out_release:
1048 	pci_release_regions(pdev);
1049 out_disable:
1050 	pci_disable_device(pdev);
1051 out:
1052 	return rc;
1053 }
1054 
1055 static const struct net_device_ops boomrang_netdev_ops = {
1056 	.ndo_open		= vortex_open,
1057 	.ndo_stop		= vortex_close,
1058 	.ndo_start_xmit		= boomerang_start_xmit,
1059 	.ndo_tx_timeout		= vortex_tx_timeout,
1060 	.ndo_get_stats		= vortex_get_stats,
1061 #ifdef CONFIG_PCI
1062 	.ndo_do_ioctl 		= vortex_ioctl,
1063 #endif
1064 	.ndo_set_rx_mode	= set_rx_mode,
1065 	.ndo_set_mac_address 	= eth_mac_addr,
1066 	.ndo_validate_addr	= eth_validate_addr,
1067 #ifdef CONFIG_NET_POLL_CONTROLLER
1068 	.ndo_poll_controller	= poll_vortex,
1069 #endif
1070 };
1071 
1072 static const struct net_device_ops vortex_netdev_ops = {
1073 	.ndo_open		= vortex_open,
1074 	.ndo_stop		= vortex_close,
1075 	.ndo_start_xmit		= vortex_start_xmit,
1076 	.ndo_tx_timeout		= vortex_tx_timeout,
1077 	.ndo_get_stats		= vortex_get_stats,
1078 #ifdef CONFIG_PCI
1079 	.ndo_do_ioctl 		= vortex_ioctl,
1080 #endif
1081 	.ndo_set_rx_mode	= set_rx_mode,
1082 	.ndo_set_mac_address 	= eth_mac_addr,
1083 	.ndo_validate_addr	= eth_validate_addr,
1084 #ifdef CONFIG_NET_POLL_CONTROLLER
1085 	.ndo_poll_controller	= poll_vortex,
1086 #endif
1087 };
1088 
1089 /*
1090  * Start up the PCI/EISA device which is described by *gendev.
1091  * Return 0 on success.
1092  *
1093  * NOTE: pdev can be NULL, for the case of a Compaq device
1094  */
1095 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
1096 			 int chip_idx, int card_idx)
1097 {
1098 	struct vortex_private *vp;
1099 	int option;
1100 	unsigned int eeprom[0x40], checksum = 0;		/* EEPROM contents */
1101 	int i, step;
1102 	struct net_device *dev;
1103 	static int printed_version;
1104 	int retval, print_info;
1105 	struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx];
1106 	const char *print_name = "3c59x";
1107 	struct pci_dev *pdev = NULL;
1108 	struct eisa_device *edev = NULL;
1109 
1110 	if (!printed_version) {
1111 		pr_info("%s", version);
1112 		printed_version = 1;
1113 	}
1114 
1115 	if (gendev) {
1116 		if ((pdev = DEVICE_PCI(gendev))) {
1117 			print_name = pci_name(pdev);
1118 		}
1119 
1120 		if ((edev = DEVICE_EISA(gendev))) {
1121 			print_name = dev_name(&edev->dev);
1122 		}
1123 	}
1124 
1125 	dev = alloc_etherdev(sizeof(*vp));
1126 	retval = -ENOMEM;
1127 	if (!dev)
1128 		goto out;
1129 
1130 	SET_NETDEV_DEV(dev, gendev);
1131 	vp = netdev_priv(dev);
1132 
1133 	option = global_options;
1134 
1135 	/* The lower four bits are the media type. */
1136 	if (dev->mem_start) {
1137 		/*
1138 		 * The 'options' param is passed in as the third arg to the
1139 		 * LILO 'ether=' argument for non-modular use
1140 		 */
1141 		option = dev->mem_start;
1142 	}
1143 	else if (card_idx < MAX_UNITS) {
1144 		if (options[card_idx] >= 0)
1145 			option = options[card_idx];
1146 	}
1147 
1148 	if (option > 0) {
1149 		if (option & 0x8000)
1150 			vortex_debug = 7;
1151 		if (option & 0x4000)
1152 			vortex_debug = 2;
1153 		if (option & 0x0400)
1154 			vp->enable_wol = 1;
1155 	}
1156 
1157 	print_info = (vortex_debug > 1);
1158 	if (print_info)
1159 		pr_info("See Documentation/networking/vortex.txt\n");
1160 
1161 	pr_info("%s: 3Com %s %s at %p.\n",
1162 	       print_name,
1163 	       pdev ? "PCI" : "EISA",
1164 	       vci->name,
1165 	       ioaddr);
1166 
1167 	dev->base_addr = (unsigned long)ioaddr;
1168 	dev->irq = irq;
1169 	dev->mtu = mtu;
1170 	vp->ioaddr = ioaddr;
1171 	vp->large_frames = mtu > 1500;
1172 	vp->drv_flags = vci->drv_flags;
1173 	vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0;
1174 	vp->io_size = vci->io_size;
1175 	vp->card_idx = card_idx;
1176 	vp->window = -1;
1177 
1178 	/* module list only for Compaq device */
1179 	if (gendev == NULL) {
1180 		compaq_net_device = dev;
1181 	}
1182 
1183 	/* PCI-only startup logic */
1184 	if (pdev) {
1185 		/* enable bus-mastering if necessary */
1186 		if (vci->flags & PCI_USES_MASTER)
1187 			pci_set_master(pdev);
1188 
1189 		if (vci->drv_flags & IS_VORTEX) {
1190 			u8 pci_latency;
1191 			u8 new_latency = 248;
1192 
1193 			/* Check the PCI latency value.  On the 3c590 series the latency timer
1194 			   must be set to the maximum value to avoid data corruption that occurs
1195 			   when the timer expires during a transfer.  This bug exists the Vortex
1196 			   chip only. */
1197 			pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
1198 			if (pci_latency < new_latency) {
1199 				pr_info("%s: Overriding PCI latency timer (CFLT) setting of %d, new value is %d.\n",
1200 					print_name, pci_latency, new_latency);
1201 				pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency);
1202 			}
1203 		}
1204 	}
1205 
1206 	spin_lock_init(&vp->lock);
1207 	spin_lock_init(&vp->mii_lock);
1208 	spin_lock_init(&vp->window_lock);
1209 	vp->gendev = gendev;
1210 	vp->mii.dev = dev;
1211 	vp->mii.mdio_read = mdio_read;
1212 	vp->mii.mdio_write = mdio_write;
1213 	vp->mii.phy_id_mask = 0x1f;
1214 	vp->mii.reg_num_mask = 0x1f;
1215 
1216 	/* Makes sure rings are at least 16 byte aligned. */
1217 	vp->rx_ring = pci_alloc_consistent(pdev, sizeof(struct boom_rx_desc) * RX_RING_SIZE
1218 					   + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1219 					   &vp->rx_ring_dma);
1220 	retval = -ENOMEM;
1221 	if (!vp->rx_ring)
1222 		goto free_device;
1223 
1224 	vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE);
1225 	vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE;
1226 
1227 	/* if we are a PCI driver, we store info in pdev->driver_data
1228 	 * instead of a module list */
1229 	if (pdev)
1230 		pci_set_drvdata(pdev, dev);
1231 	if (edev)
1232 		eisa_set_drvdata(edev, dev);
1233 
1234 	vp->media_override = 7;
1235 	if (option >= 0) {
1236 		vp->media_override = ((option & 7) == 2)  ?  0  :  option & 15;
1237 		if (vp->media_override != 7)
1238 			vp->medialock = 1;
1239 		vp->full_duplex = (option & 0x200) ? 1 : 0;
1240 		vp->bus_master = (option & 16) ? 1 : 0;
1241 	}
1242 
1243 	if (global_full_duplex > 0)
1244 		vp->full_duplex = 1;
1245 	if (global_enable_wol > 0)
1246 		vp->enable_wol = 1;
1247 
1248 	if (card_idx < MAX_UNITS) {
1249 		if (full_duplex[card_idx] > 0)
1250 			vp->full_duplex = 1;
1251 		if (flow_ctrl[card_idx] > 0)
1252 			vp->flow_ctrl = 1;
1253 		if (enable_wol[card_idx] > 0)
1254 			vp->enable_wol = 1;
1255 	}
1256 
1257 	vp->mii.force_media = vp->full_duplex;
1258 	vp->options = option;
1259 	/* Read the station address from the EEPROM. */
1260 	{
1261 		int base;
1262 
1263 		if (vci->drv_flags & EEPROM_8BIT)
1264 			base = 0x230;
1265 		else if (vci->drv_flags & EEPROM_OFFSET)
1266 			base = EEPROM_Read + 0x30;
1267 		else
1268 			base = EEPROM_Read;
1269 
1270 		for (i = 0; i < 0x40; i++) {
1271 			int timer;
1272 			window_write16(vp, base + i, 0, Wn0EepromCmd);
1273 			/* Pause for at least 162 us. for the read to take place. */
1274 			for (timer = 10; timer >= 0; timer--) {
1275 				udelay(162);
1276 				if ((window_read16(vp, 0, Wn0EepromCmd) &
1277 				     0x8000) == 0)
1278 					break;
1279 			}
1280 			eeprom[i] = window_read16(vp, 0, Wn0EepromData);
1281 		}
1282 	}
1283 	for (i = 0; i < 0x18; i++)
1284 		checksum ^= eeprom[i];
1285 	checksum = (checksum ^ (checksum >> 8)) & 0xff;
1286 	if (checksum != 0x00) {		/* Grrr, needless incompatible change 3Com. */
1287 		while (i < 0x21)
1288 			checksum ^= eeprom[i++];
1289 		checksum = (checksum ^ (checksum >> 8)) & 0xff;
1290 	}
1291 	if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO))
1292 		pr_cont(" ***INVALID CHECKSUM %4.4x*** ", checksum);
1293 	for (i = 0; i < 3; i++)
1294 		((__be16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]);
1295 	if (print_info)
1296 		pr_cont(" %pM", dev->dev_addr);
1297 	/* Unfortunately an all zero eeprom passes the checksum and this
1298 	   gets found in the wild in failure cases. Crypto is hard 8) */
1299 	if (!is_valid_ether_addr(dev->dev_addr)) {
1300 		retval = -EINVAL;
1301 		pr_err("*** EEPROM MAC address is invalid.\n");
1302 		goto free_ring;	/* With every pack */
1303 	}
1304 	for (i = 0; i < 6; i++)
1305 		window_write8(vp, dev->dev_addr[i], 2, i);
1306 
1307 	if (print_info)
1308 		pr_cont(", IRQ %d\n", dev->irq);
1309 	/* Tell them about an invalid IRQ. */
1310 	if (dev->irq <= 0 || dev->irq >= nr_irqs)
1311 		pr_warn(" *** Warning: IRQ %d is unlikely to work! ***\n",
1312 			dev->irq);
1313 
1314 	step = (window_read8(vp, 4, Wn4_NetDiag) & 0x1e) >> 1;
1315 	if (print_info) {
1316 		pr_info("  product code %02x%02x rev %02x.%d date %02d-%02d-%02d\n",
1317 			eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14],
1318 			step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9);
1319 	}
1320 
1321 
1322 	if (pdev && vci->drv_flags & HAS_CB_FNS) {
1323 		unsigned short n;
1324 
1325 		vp->cb_fn_base = pci_iomap(pdev, 2, 0);
1326 		if (!vp->cb_fn_base) {
1327 			retval = -ENOMEM;
1328 			goto free_ring;
1329 		}
1330 
1331 		if (print_info) {
1332 			pr_info("%s: CardBus functions mapped %16.16llx->%p\n",
1333 				print_name,
1334 				(unsigned long long)pci_resource_start(pdev, 2),
1335 				vp->cb_fn_base);
1336 		}
1337 
1338 		n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1339 		if (vp->drv_flags & INVERT_LED_PWR)
1340 			n |= 0x10;
1341 		if (vp->drv_flags & INVERT_MII_PWR)
1342 			n |= 0x4000;
1343 		window_write16(vp, n, 2, Wn2_ResetOptions);
1344 		if (vp->drv_flags & WNO_XCVR_PWR) {
1345 			window_write16(vp, 0x0800, 0, 0);
1346 		}
1347 	}
1348 
1349 	/* Extract our information from the EEPROM data. */
1350 	vp->info1 = eeprom[13];
1351 	vp->info2 = eeprom[15];
1352 	vp->capabilities = eeprom[16];
1353 
1354 	if (vp->info1 & 0x8000) {
1355 		vp->full_duplex = 1;
1356 		if (print_info)
1357 			pr_info("Full duplex capable\n");
1358 	}
1359 
1360 	{
1361 		static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"};
1362 		unsigned int config;
1363 		vp->available_media = window_read16(vp, 3, Wn3_Options);
1364 		if ((vp->available_media & 0xff) == 0)		/* Broken 3c916 */
1365 			vp->available_media = 0x40;
1366 		config = window_read32(vp, 3, Wn3_Config);
1367 		if (print_info) {
1368 			pr_debug("  Internal config register is %4.4x, transceivers %#x.\n",
1369 				config, window_read16(vp, 3, Wn3_Options));
1370 			pr_info("  %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
1371 				   8 << RAM_SIZE(config),
1372 				   RAM_WIDTH(config) ? "word" : "byte",
1373 				   ram_split[RAM_SPLIT(config)],
1374 				   AUTOSELECT(config) ? "autoselect/" : "",
1375 				   XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" :
1376 				   media_tbl[XCVR(config)].name);
1377 		}
1378 		vp->default_media = XCVR(config);
1379 		if (vp->default_media == XCVR_NWAY)
1380 			vp->has_nway = 1;
1381 		vp->autoselect = AUTOSELECT(config);
1382 	}
1383 
1384 	if (vp->media_override != 7) {
1385 		pr_info("%s:  Media override to transceiver type %d (%s).\n",
1386 				print_name, vp->media_override,
1387 				media_tbl[vp->media_override].name);
1388 		dev->if_port = vp->media_override;
1389 	} else
1390 		dev->if_port = vp->default_media;
1391 
1392 	if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) ||
1393 		dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1394 		int phy, phy_idx = 0;
1395 		mii_preamble_required++;
1396 		if (vp->drv_flags & EXTRA_PREAMBLE)
1397 			mii_preamble_required++;
1398 		mdio_sync(vp, 32);
1399 		mdio_read(dev, 24, MII_BMSR);
1400 		for (phy = 0; phy < 32 && phy_idx < 1; phy++) {
1401 			int mii_status, phyx;
1402 
1403 			/*
1404 			 * For the 3c905CX we look at index 24 first, because it bogusly
1405 			 * reports an external PHY at all indices
1406 			 */
1407 			if (phy == 0)
1408 				phyx = 24;
1409 			else if (phy <= 24)
1410 				phyx = phy - 1;
1411 			else
1412 				phyx = phy;
1413 			mii_status = mdio_read(dev, phyx, MII_BMSR);
1414 			if (mii_status  &&  mii_status != 0xffff) {
1415 				vp->phys[phy_idx++] = phyx;
1416 				if (print_info) {
1417 					pr_info("  MII transceiver found at address %d, status %4x.\n",
1418 						phyx, mii_status);
1419 				}
1420 				if ((mii_status & 0x0040) == 0)
1421 					mii_preamble_required++;
1422 			}
1423 		}
1424 		mii_preamble_required--;
1425 		if (phy_idx == 0) {
1426 			pr_warn("  ***WARNING*** No MII transceivers found!\n");
1427 			vp->phys[0] = 24;
1428 		} else {
1429 			vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE);
1430 			if (vp->full_duplex) {
1431 				/* Only advertise the FD media types. */
1432 				vp->advertising &= ~0x02A0;
1433 				mdio_write(dev, vp->phys[0], 4, vp->advertising);
1434 			}
1435 		}
1436 		vp->mii.phy_id = vp->phys[0];
1437 	}
1438 
1439 	if (vp->capabilities & CapBusMaster) {
1440 		vp->full_bus_master_tx = 1;
1441 		if (print_info) {
1442 			pr_info("  Enabling bus-master transmits and %s receives.\n",
1443 			(vp->info2 & 1) ? "early" : "whole-frame" );
1444 		}
1445 		vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2;
1446 		vp->bus_master = 0;		/* AKPM: vortex only */
1447 	}
1448 
1449 	/* The 3c59x-specific entries in the device structure. */
1450 	if (vp->full_bus_master_tx) {
1451 		dev->netdev_ops = &boomrang_netdev_ops;
1452 		/* Actually, it still should work with iommu. */
1453 		if (card_idx < MAX_UNITS &&
1454 		    ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) ||
1455 				hw_checksums[card_idx] == 1)) {
1456 			dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1457 		}
1458 	} else
1459 		dev->netdev_ops =  &vortex_netdev_ops;
1460 
1461 	if (print_info) {
1462 		pr_info("%s: scatter/gather %sabled. h/w checksums %sabled\n",
1463 				print_name,
1464 				(dev->features & NETIF_F_SG) ? "en":"dis",
1465 				(dev->features & NETIF_F_IP_CSUM) ? "en":"dis");
1466 	}
1467 
1468 	dev->ethtool_ops = &vortex_ethtool_ops;
1469 	dev->watchdog_timeo = (watchdog * HZ) / 1000;
1470 
1471 	if (pdev) {
1472 		vp->pm_state_valid = 1;
1473 		pci_save_state(pdev);
1474  		acpi_set_WOL(dev);
1475 	}
1476 	retval = register_netdev(dev);
1477 	if (retval == 0)
1478 		return 0;
1479 
1480 free_ring:
1481 	pci_free_consistent(pdev,
1482 						sizeof(struct boom_rx_desc) * RX_RING_SIZE
1483 							+ sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1484 						vp->rx_ring,
1485 						vp->rx_ring_dma);
1486 free_device:
1487 	free_netdev(dev);
1488 	pr_err(PFX "vortex_probe1 fails.  Returns %d\n", retval);
1489 out:
1490 	return retval;
1491 }
1492 
1493 static void
1494 issue_and_wait(struct net_device *dev, int cmd)
1495 {
1496 	struct vortex_private *vp = netdev_priv(dev);
1497 	void __iomem *ioaddr = vp->ioaddr;
1498 	int i;
1499 
1500 	iowrite16(cmd, ioaddr + EL3_CMD);
1501 	for (i = 0; i < 2000; i++) {
1502 		if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
1503 			return;
1504 	}
1505 
1506 	/* OK, that didn't work.  Do it the slow way.  One second */
1507 	for (i = 0; i < 100000; i++) {
1508 		if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) {
1509 			if (vortex_debug > 1)
1510 				pr_info("%s: command 0x%04x took %d usecs\n",
1511 					   dev->name, cmd, i * 10);
1512 			return;
1513 		}
1514 		udelay(10);
1515 	}
1516 	pr_err("%s: command 0x%04x did not complete! Status=0x%x\n",
1517 			   dev->name, cmd, ioread16(ioaddr + EL3_STATUS));
1518 }
1519 
1520 static void
1521 vortex_set_duplex(struct net_device *dev)
1522 {
1523 	struct vortex_private *vp = netdev_priv(dev);
1524 
1525 	pr_info("%s:  setting %s-duplex.\n",
1526 		dev->name, (vp->full_duplex) ? "full" : "half");
1527 
1528 	/* Set the full-duplex bit. */
1529 	window_write16(vp,
1530 		       ((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) |
1531 		       (vp->large_frames ? 0x40 : 0) |
1532 		       ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ?
1533 			0x100 : 0),
1534 		       3, Wn3_MAC_Ctrl);
1535 }
1536 
1537 static void vortex_check_media(struct net_device *dev, unsigned int init)
1538 {
1539 	struct vortex_private *vp = netdev_priv(dev);
1540 	unsigned int ok_to_print = 0;
1541 
1542 	if (vortex_debug > 3)
1543 		ok_to_print = 1;
1544 
1545 	if (mii_check_media(&vp->mii, ok_to_print, init)) {
1546 		vp->full_duplex = vp->mii.full_duplex;
1547 		vortex_set_duplex(dev);
1548 	} else if (init) {
1549 		vortex_set_duplex(dev);
1550 	}
1551 }
1552 
1553 static int
1554 vortex_up(struct net_device *dev)
1555 {
1556 	struct vortex_private *vp = netdev_priv(dev);
1557 	void __iomem *ioaddr = vp->ioaddr;
1558 	unsigned int config;
1559 	int i, mii_reg1, mii_reg5, err = 0;
1560 
1561 	if (VORTEX_PCI(vp)) {
1562 		pci_set_power_state(VORTEX_PCI(vp), PCI_D0);	/* Go active */
1563 		if (vp->pm_state_valid)
1564 			pci_restore_state(VORTEX_PCI(vp));
1565 		err = pci_enable_device(VORTEX_PCI(vp));
1566 		if (err) {
1567 			pr_warn("%s: Could not enable device\n", dev->name);
1568 			goto err_out;
1569 		}
1570 	}
1571 
1572 	/* Before initializing select the active media port. */
1573 	config = window_read32(vp, 3, Wn3_Config);
1574 
1575 	if (vp->media_override != 7) {
1576 		pr_info("%s: Media override to transceiver %d (%s).\n",
1577 			   dev->name, vp->media_override,
1578 			   media_tbl[vp->media_override].name);
1579 		dev->if_port = vp->media_override;
1580 	} else if (vp->autoselect) {
1581 		if (vp->has_nway) {
1582 			if (vortex_debug > 1)
1583 				pr_info("%s: using NWAY device table, not %d\n",
1584 								dev->name, dev->if_port);
1585 			dev->if_port = XCVR_NWAY;
1586 		} else {
1587 			/* Find first available media type, starting with 100baseTx. */
1588 			dev->if_port = XCVR_100baseTx;
1589 			while (! (vp->available_media & media_tbl[dev->if_port].mask))
1590 				dev->if_port = media_tbl[dev->if_port].next;
1591 			if (vortex_debug > 1)
1592 				pr_info("%s: first available media type: %s\n",
1593 					dev->name, media_tbl[dev->if_port].name);
1594 		}
1595 	} else {
1596 		dev->if_port = vp->default_media;
1597 		if (vortex_debug > 1)
1598 			pr_info("%s: using default media %s\n",
1599 				dev->name, media_tbl[dev->if_port].name);
1600 	}
1601 
1602 	setup_timer(&vp->timer, vortex_timer, (unsigned long)dev);
1603 	mod_timer(&vp->timer, RUN_AT(media_tbl[dev->if_port].wait));
1604 	setup_timer(&vp->rx_oom_timer, rx_oom_timer, (unsigned long)dev);
1605 
1606 	if (vortex_debug > 1)
1607 		pr_debug("%s: Initial media type %s.\n",
1608 			   dev->name, media_tbl[dev->if_port].name);
1609 
1610 	vp->full_duplex = vp->mii.force_media;
1611 	config = BFINS(config, dev->if_port, 20, 4);
1612 	if (vortex_debug > 6)
1613 		pr_debug("vortex_up(): writing 0x%x to InternalConfig\n", config);
1614 	window_write32(vp, config, 3, Wn3_Config);
1615 
1616 	if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1617 		mii_reg1 = mdio_read(dev, vp->phys[0], MII_BMSR);
1618 		mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA);
1619 		vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0);
1620 		vp->mii.full_duplex = vp->full_duplex;
1621 
1622 		vortex_check_media(dev, 1);
1623 	}
1624 	else
1625 		vortex_set_duplex(dev);
1626 
1627 	issue_and_wait(dev, TxReset);
1628 	/*
1629 	 * Don't reset the PHY - that upsets autonegotiation during DHCP operations.
1630 	 */
1631 	issue_and_wait(dev, RxReset|0x04);
1632 
1633 
1634 	iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
1635 
1636 	if (vortex_debug > 1) {
1637 		pr_debug("%s: vortex_up() irq %d media status %4.4x.\n",
1638 			   dev->name, dev->irq, window_read16(vp, 4, Wn4_Media));
1639 	}
1640 
1641 	/* Set the station address and mask in window 2 each time opened. */
1642 	for (i = 0; i < 6; i++)
1643 		window_write8(vp, dev->dev_addr[i], 2, i);
1644 	for (; i < 12; i+=2)
1645 		window_write16(vp, 0, 2, i);
1646 
1647 	if (vp->cb_fn_base) {
1648 		unsigned short n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1649 		if (vp->drv_flags & INVERT_LED_PWR)
1650 			n |= 0x10;
1651 		if (vp->drv_flags & INVERT_MII_PWR)
1652 			n |= 0x4000;
1653 		window_write16(vp, n, 2, Wn2_ResetOptions);
1654 	}
1655 
1656 	if (dev->if_port == XCVR_10base2)
1657 		/* Start the thinnet transceiver. We should really wait 50ms...*/
1658 		iowrite16(StartCoax, ioaddr + EL3_CMD);
1659 	if (dev->if_port != XCVR_NWAY) {
1660 		window_write16(vp,
1661 			       (window_read16(vp, 4, Wn4_Media) &
1662 				~(Media_10TP|Media_SQE)) |
1663 			       media_tbl[dev->if_port].media_bits,
1664 			       4, Wn4_Media);
1665 	}
1666 
1667 	/* Switch to the stats window, and clear all stats by reading. */
1668 	iowrite16(StatsDisable, ioaddr + EL3_CMD);
1669 	for (i = 0; i < 10; i++)
1670 		window_read8(vp, 6, i);
1671 	window_read16(vp, 6, 10);
1672 	window_read16(vp, 6, 12);
1673 	/* New: On the Vortex we must also clear the BadSSD counter. */
1674 	window_read8(vp, 4, 12);
1675 	/* ..and on the Boomerang we enable the extra statistics bits. */
1676 	window_write16(vp, 0x0040, 4, Wn4_NetDiag);
1677 
1678 	if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1679 		vp->cur_rx = vp->dirty_rx = 0;
1680 		/* Initialize the RxEarly register as recommended. */
1681 		iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD);
1682 		iowrite32(0x0020, ioaddr + PktStatus);
1683 		iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr);
1684 	}
1685 	if (vp->full_bus_master_tx) { 		/* Boomerang bus master Tx. */
1686 		vp->cur_tx = vp->dirty_tx = 0;
1687 		if (vp->drv_flags & IS_BOOMERANG)
1688 			iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */
1689 		/* Clear the Rx, Tx rings. */
1690 		for (i = 0; i < RX_RING_SIZE; i++)	/* AKPM: this is done in vortex_open, too */
1691 			vp->rx_ring[i].status = 0;
1692 		for (i = 0; i < TX_RING_SIZE; i++)
1693 			vp->tx_skbuff[i] = NULL;
1694 		iowrite32(0, ioaddr + DownListPtr);
1695 	}
1696 	/* Set receiver mode: presumably accept b-case and phys addr only. */
1697 	set_rx_mode(dev);
1698 	/* enable 802.1q tagged frames */
1699 	set_8021q_mode(dev, 1);
1700 	iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
1701 
1702 	iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
1703 	iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
1704 	/* Allow status bits to be seen. */
1705 	vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete|
1706 		(vp->full_bus_master_tx ? DownComplete : TxAvailable) |
1707 		(vp->full_bus_master_rx ? UpComplete : RxComplete) |
1708 		(vp->bus_master ? DMADone : 0);
1709 	vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable |
1710 		(vp->full_bus_master_rx ? 0 : RxComplete) |
1711 		StatsFull | HostError | TxComplete | IntReq
1712 		| (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete;
1713 	iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1714 	/* Ack all pending events, and set active indicator mask. */
1715 	iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
1716 		 ioaddr + EL3_CMD);
1717 	iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1718 	if (vp->cb_fn_base)			/* The PCMCIA people are idiots.  */
1719 		iowrite32(0x8000, vp->cb_fn_base + 4);
1720 	netif_start_queue (dev);
1721 	netdev_reset_queue(dev);
1722 err_out:
1723 	return err;
1724 }
1725 
1726 static int
1727 vortex_open(struct net_device *dev)
1728 {
1729 	struct vortex_private *vp = netdev_priv(dev);
1730 	int i;
1731 	int retval;
1732 
1733 	/* Use the now-standard shared IRQ implementation. */
1734 	if ((retval = request_irq(dev->irq, vp->full_bus_master_rx ?
1735 				boomerang_interrupt : vortex_interrupt, IRQF_SHARED, dev->name, dev))) {
1736 		pr_err("%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1737 		goto err;
1738 	}
1739 
1740 	if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1741 		if (vortex_debug > 2)
1742 			pr_debug("%s:  Filling in the Rx ring.\n", dev->name);
1743 		for (i = 0; i < RX_RING_SIZE; i++) {
1744 			struct sk_buff *skb;
1745 			vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1));
1746 			vp->rx_ring[i].status = 0;	/* Clear complete bit. */
1747 			vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG);
1748 
1749 			skb = __netdev_alloc_skb(dev, PKT_BUF_SZ + NET_IP_ALIGN,
1750 						 GFP_KERNEL);
1751 			vp->rx_skbuff[i] = skb;
1752 			if (skb == NULL)
1753 				break;			/* Bad news!  */
1754 
1755 			skb_reserve(skb, NET_IP_ALIGN);	/* Align IP on 16 byte boundaries */
1756 			vp->rx_ring[i].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
1757 		}
1758 		if (i != RX_RING_SIZE) {
1759 			pr_emerg("%s: no memory for rx ring\n", dev->name);
1760 			retval = -ENOMEM;
1761 			goto err_free_skb;
1762 		}
1763 		/* Wrap the ring. */
1764 		vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma);
1765 	}
1766 
1767 	retval = vortex_up(dev);
1768 	if (!retval)
1769 		goto out;
1770 
1771 err_free_skb:
1772 	for (i = 0; i < RX_RING_SIZE; i++) {
1773 		if (vp->rx_skbuff[i]) {
1774 			dev_kfree_skb(vp->rx_skbuff[i]);
1775 			vp->rx_skbuff[i] = NULL;
1776 		}
1777 	}
1778 	free_irq(dev->irq, dev);
1779 err:
1780 	if (vortex_debug > 1)
1781 		pr_err("%s: vortex_open() fails: returning %d\n", dev->name, retval);
1782 out:
1783 	return retval;
1784 }
1785 
1786 static void
1787 vortex_timer(unsigned long data)
1788 {
1789 	struct net_device *dev = (struct net_device *)data;
1790 	struct vortex_private *vp = netdev_priv(dev);
1791 	void __iomem *ioaddr = vp->ioaddr;
1792 	int next_tick = 60*HZ;
1793 	int ok = 0;
1794 	int media_status;
1795 
1796 	if (vortex_debug > 2) {
1797 		pr_debug("%s: Media selection timer tick happened, %s.\n",
1798 			   dev->name, media_tbl[dev->if_port].name);
1799 		pr_debug("dev->watchdog_timeo=%d\n", dev->watchdog_timeo);
1800 	}
1801 
1802 	media_status = window_read16(vp, 4, Wn4_Media);
1803 	switch (dev->if_port) {
1804 	case XCVR_10baseT:  case XCVR_100baseTx:  case XCVR_100baseFx:
1805 		if (media_status & Media_LnkBeat) {
1806 			netif_carrier_on(dev);
1807 			ok = 1;
1808 			if (vortex_debug > 1)
1809 				pr_debug("%s: Media %s has link beat, %x.\n",
1810 					   dev->name, media_tbl[dev->if_port].name, media_status);
1811 		} else {
1812 			netif_carrier_off(dev);
1813 			if (vortex_debug > 1) {
1814 				pr_debug("%s: Media %s has no link beat, %x.\n",
1815 					   dev->name, media_tbl[dev->if_port].name, media_status);
1816 			}
1817 		}
1818 		break;
1819 	case XCVR_MII: case XCVR_NWAY:
1820 		{
1821 			ok = 1;
1822 			vortex_check_media(dev, 0);
1823 		}
1824 		break;
1825 	  default:					/* Other media types handled by Tx timeouts. */
1826 		if (vortex_debug > 1)
1827 		  pr_debug("%s: Media %s has no indication, %x.\n",
1828 				 dev->name, media_tbl[dev->if_port].name, media_status);
1829 		ok = 1;
1830 	}
1831 
1832 	if (dev->flags & IFF_SLAVE || !netif_carrier_ok(dev))
1833 		next_tick = 5*HZ;
1834 
1835 	if (vp->medialock)
1836 		goto leave_media_alone;
1837 
1838 	if (!ok) {
1839 		unsigned int config;
1840 
1841 		spin_lock_irq(&vp->lock);
1842 
1843 		do {
1844 			dev->if_port = media_tbl[dev->if_port].next;
1845 		} while ( ! (vp->available_media & media_tbl[dev->if_port].mask));
1846 		if (dev->if_port == XCVR_Default) { /* Go back to default. */
1847 		  dev->if_port = vp->default_media;
1848 		  if (vortex_debug > 1)
1849 			pr_debug("%s: Media selection failing, using default %s port.\n",
1850 				   dev->name, media_tbl[dev->if_port].name);
1851 		} else {
1852 			if (vortex_debug > 1)
1853 				pr_debug("%s: Media selection failed, now trying %s port.\n",
1854 					   dev->name, media_tbl[dev->if_port].name);
1855 			next_tick = media_tbl[dev->if_port].wait;
1856 		}
1857 		window_write16(vp,
1858 			       (media_status & ~(Media_10TP|Media_SQE)) |
1859 			       media_tbl[dev->if_port].media_bits,
1860 			       4, Wn4_Media);
1861 
1862 		config = window_read32(vp, 3, Wn3_Config);
1863 		config = BFINS(config, dev->if_port, 20, 4);
1864 		window_write32(vp, config, 3, Wn3_Config);
1865 
1866 		iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax,
1867 			 ioaddr + EL3_CMD);
1868 		if (vortex_debug > 1)
1869 			pr_debug("wrote 0x%08x to Wn3_Config\n", config);
1870 		/* AKPM: FIXME: Should reset Rx & Tx here.  P60 of 3c90xc.pdf */
1871 
1872 		spin_unlock_irq(&vp->lock);
1873 	}
1874 
1875 leave_media_alone:
1876 	if (vortex_debug > 2)
1877 	  pr_debug("%s: Media selection timer finished, %s.\n",
1878 			 dev->name, media_tbl[dev->if_port].name);
1879 
1880 	mod_timer(&vp->timer, RUN_AT(next_tick));
1881 	if (vp->deferred)
1882 		iowrite16(FakeIntr, ioaddr + EL3_CMD);
1883 }
1884 
1885 static void vortex_tx_timeout(struct net_device *dev)
1886 {
1887 	struct vortex_private *vp = netdev_priv(dev);
1888 	void __iomem *ioaddr = vp->ioaddr;
1889 
1890 	pr_err("%s: transmit timed out, tx_status %2.2x status %4.4x.\n",
1891 		   dev->name, ioread8(ioaddr + TxStatus),
1892 		   ioread16(ioaddr + EL3_STATUS));
1893 	pr_err("  diagnostics: net %04x media %04x dma %08x fifo %04x\n",
1894 			window_read16(vp, 4, Wn4_NetDiag),
1895 			window_read16(vp, 4, Wn4_Media),
1896 			ioread32(ioaddr + PktStatus),
1897 			window_read16(vp, 4, Wn4_FIFODiag));
1898 	/* Slight code bloat to be user friendly. */
1899 	if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88)
1900 		pr_err("%s: Transmitter encountered 16 collisions --"
1901 			   " network cable problem?\n", dev->name);
1902 	if (ioread16(ioaddr + EL3_STATUS) & IntLatch) {
1903 		pr_err("%s: Interrupt posted but not delivered --"
1904 			   " IRQ blocked by another device?\n", dev->name);
1905 		/* Bad idea here.. but we might as well handle a few events. */
1906 		{
1907 			/*
1908 			 * Block interrupts because vortex_interrupt does a bare spin_lock()
1909 			 */
1910 			unsigned long flags;
1911 			local_irq_save(flags);
1912 			if (vp->full_bus_master_tx)
1913 				boomerang_interrupt(dev->irq, dev);
1914 			else
1915 				vortex_interrupt(dev->irq, dev);
1916 			local_irq_restore(flags);
1917 		}
1918 	}
1919 
1920 	if (vortex_debug > 0)
1921 		dump_tx_ring(dev);
1922 
1923 	issue_and_wait(dev, TxReset);
1924 
1925 	dev->stats.tx_errors++;
1926 	if (vp->full_bus_master_tx) {
1927 		pr_debug("%s: Resetting the Tx ring pointer.\n", dev->name);
1928 		if (vp->cur_tx - vp->dirty_tx > 0  &&  ioread32(ioaddr + DownListPtr) == 0)
1929 			iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc),
1930 				 ioaddr + DownListPtr);
1931 		if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE) {
1932 			netif_wake_queue (dev);
1933 			netdev_reset_queue (dev);
1934 		}
1935 		if (vp->drv_flags & IS_BOOMERANG)
1936 			iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold);
1937 		iowrite16(DownUnstall, ioaddr + EL3_CMD);
1938 	} else {
1939 		dev->stats.tx_dropped++;
1940 		netif_wake_queue(dev);
1941 		netdev_reset_queue(dev);
1942 	}
1943 	/* Issue Tx Enable */
1944 	iowrite16(TxEnable, ioaddr + EL3_CMD);
1945 	netif_trans_update(dev); /* prevent tx timeout */
1946 }
1947 
1948 /*
1949  * Handle uncommon interrupt sources.  This is a separate routine to minimize
1950  * the cache impact.
1951  */
1952 static void
1953 vortex_error(struct net_device *dev, int status)
1954 {
1955 	struct vortex_private *vp = netdev_priv(dev);
1956 	void __iomem *ioaddr = vp->ioaddr;
1957 	int do_tx_reset = 0, reset_mask = 0;
1958 	unsigned char tx_status = 0;
1959 
1960 	if (vortex_debug > 2) {
1961 		pr_err("%s: vortex_error(), status=0x%x\n", dev->name, status);
1962 	}
1963 
1964 	if (status & TxComplete) {			/* Really "TxError" for us. */
1965 		tx_status = ioread8(ioaddr + TxStatus);
1966 		/* Presumably a tx-timeout. We must merely re-enable. */
1967 		if (vortex_debug > 2 ||
1968 		    (tx_status != 0x88 && vortex_debug > 0)) {
1969 			pr_err("%s: Transmit error, Tx status register %2.2x.\n",
1970 				   dev->name, tx_status);
1971 			if (tx_status == 0x82) {
1972 				pr_err("Probably a duplex mismatch.  See "
1973 						"Documentation/networking/vortex.txt\n");
1974 			}
1975 			dump_tx_ring(dev);
1976 		}
1977 		if (tx_status & 0x14)  dev->stats.tx_fifo_errors++;
1978 		if (tx_status & 0x38)  dev->stats.tx_aborted_errors++;
1979 		if (tx_status & 0x08)  vp->xstats.tx_max_collisions++;
1980 		iowrite8(0, ioaddr + TxStatus);
1981 		if (tx_status & 0x30) {			/* txJabber or txUnderrun */
1982 			do_tx_reset = 1;
1983 		} else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET))  {	/* maxCollisions */
1984 			do_tx_reset = 1;
1985 			reset_mask = 0x0108;		/* Reset interface logic, but not download logic */
1986 		} else {				/* Merely re-enable the transmitter. */
1987 			iowrite16(TxEnable, ioaddr + EL3_CMD);
1988 		}
1989 	}
1990 
1991 	if (status & RxEarly)				/* Rx early is unused. */
1992 		iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD);
1993 
1994 	if (status & StatsFull) {			/* Empty statistics. */
1995 		static int DoneDidThat;
1996 		if (vortex_debug > 4)
1997 			pr_debug("%s: Updating stats.\n", dev->name);
1998 		update_stats(ioaddr, dev);
1999 		/* HACK: Disable statistics as an interrupt source. */
2000 		/* This occurs when we have the wrong media type! */
2001 		if (DoneDidThat == 0  &&
2002 			ioread16(ioaddr + EL3_STATUS) & StatsFull) {
2003 			pr_warn("%s: Updating statistics failed, disabling stats as an interrupt source\n",
2004 				dev->name);
2005 			iowrite16(SetIntrEnb |
2006 				  (window_read16(vp, 5, 10) & ~StatsFull),
2007 				  ioaddr + EL3_CMD);
2008 			vp->intr_enable &= ~StatsFull;
2009 			DoneDidThat++;
2010 		}
2011 	}
2012 	if (status & IntReq) {		/* Restore all interrupt sources.  */
2013 		iowrite16(vp->status_enable, ioaddr + EL3_CMD);
2014 		iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
2015 	}
2016 	if (status & HostError) {
2017 		u16 fifo_diag;
2018 		fifo_diag = window_read16(vp, 4, Wn4_FIFODiag);
2019 		pr_err("%s: Host error, FIFO diagnostic register %4.4x.\n",
2020 			   dev->name, fifo_diag);
2021 		/* Adapter failure requires Tx/Rx reset and reinit. */
2022 		if (vp->full_bus_master_tx) {
2023 			int bus_status = ioread32(ioaddr + PktStatus);
2024 			/* 0x80000000 PCI master abort. */
2025 			/* 0x40000000 PCI target abort. */
2026 			if (vortex_debug)
2027 				pr_err("%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status);
2028 
2029 			/* In this case, blow the card away */
2030 			/* Must not enter D3 or we can't legally issue the reset! */
2031 			vortex_down(dev, 0);
2032 			issue_and_wait(dev, TotalReset | 0xff);
2033 			vortex_up(dev);		/* AKPM: bug.  vortex_up() assumes that the rx ring is full. It may not be. */
2034 		} else if (fifo_diag & 0x0400)
2035 			do_tx_reset = 1;
2036 		if (fifo_diag & 0x3000) {
2037 			/* Reset Rx fifo and upload logic */
2038 			issue_and_wait(dev, RxReset|0x07);
2039 			/* Set the Rx filter to the current state. */
2040 			set_rx_mode(dev);
2041 			/* enable 802.1q VLAN tagged frames */
2042 			set_8021q_mode(dev, 1);
2043 			iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
2044 			iowrite16(AckIntr | HostError, ioaddr + EL3_CMD);
2045 		}
2046 	}
2047 
2048 	if (do_tx_reset) {
2049 		issue_and_wait(dev, TxReset|reset_mask);
2050 		iowrite16(TxEnable, ioaddr + EL3_CMD);
2051 		if (!vp->full_bus_master_tx)
2052 			netif_wake_queue(dev);
2053 	}
2054 }
2055 
2056 static netdev_tx_t
2057 vortex_start_xmit(struct sk_buff *skb, struct net_device *dev)
2058 {
2059 	struct vortex_private *vp = netdev_priv(dev);
2060 	void __iomem *ioaddr = vp->ioaddr;
2061 	int skblen = skb->len;
2062 
2063 	/* Put out the doubleword header... */
2064 	iowrite32(skb->len, ioaddr + TX_FIFO);
2065 	if (vp->bus_master) {
2066 		/* Set the bus-master controller to transfer the packet. */
2067 		int len = (skb->len + 3) & ~3;
2068 		vp->tx_skb_dma = pci_map_single(VORTEX_PCI(vp), skb->data, len,
2069 						PCI_DMA_TODEVICE);
2070 		spin_lock_irq(&vp->window_lock);
2071 		window_set(vp, 7);
2072 		iowrite32(vp->tx_skb_dma, ioaddr + Wn7_MasterAddr);
2073 		iowrite16(len, ioaddr + Wn7_MasterLen);
2074 		spin_unlock_irq(&vp->window_lock);
2075 		vp->tx_skb = skb;
2076 		skb_tx_timestamp(skb);
2077 		iowrite16(StartDMADown, ioaddr + EL3_CMD);
2078 		/* netif_wake_queue() will be called at the DMADone interrupt. */
2079 	} else {
2080 		/* ... and the packet rounded to a doubleword. */
2081 		skb_tx_timestamp(skb);
2082 		iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
2083 		dev_consume_skb_any (skb);
2084 		if (ioread16(ioaddr + TxFree) > 1536) {
2085 			netif_start_queue (dev);	/* AKPM: redundant? */
2086 		} else {
2087 			/* Interrupt us when the FIFO has room for max-sized packet. */
2088 			netif_stop_queue(dev);
2089 			iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2090 		}
2091 	}
2092 
2093 	netdev_sent_queue(dev, skblen);
2094 
2095 	/* Clear the Tx status stack. */
2096 	{
2097 		int tx_status;
2098 		int i = 32;
2099 
2100 		while (--i > 0	&&	(tx_status = ioread8(ioaddr + TxStatus)) > 0) {
2101 			if (tx_status & 0x3C) {		/* A Tx-disabling error occurred.  */
2102 				if (vortex_debug > 2)
2103 				  pr_debug("%s: Tx error, status %2.2x.\n",
2104 						 dev->name, tx_status);
2105 				if (tx_status & 0x04) dev->stats.tx_fifo_errors++;
2106 				if (tx_status & 0x38) dev->stats.tx_aborted_errors++;
2107 				if (tx_status & 0x30) {
2108 					issue_and_wait(dev, TxReset);
2109 				}
2110 				iowrite16(TxEnable, ioaddr + EL3_CMD);
2111 			}
2112 			iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */
2113 		}
2114 	}
2115 	return NETDEV_TX_OK;
2116 }
2117 
2118 static netdev_tx_t
2119 boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev)
2120 {
2121 	struct vortex_private *vp = netdev_priv(dev);
2122 	void __iomem *ioaddr = vp->ioaddr;
2123 	/* Calculate the next Tx descriptor entry. */
2124 	int entry = vp->cur_tx % TX_RING_SIZE;
2125 	int skblen = skb->len;
2126 	struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE];
2127 	unsigned long flags;
2128 	dma_addr_t dma_addr;
2129 
2130 	if (vortex_debug > 6) {
2131 		pr_debug("boomerang_start_xmit()\n");
2132 		pr_debug("%s: Trying to send a packet, Tx index %d.\n",
2133 			   dev->name, vp->cur_tx);
2134 	}
2135 
2136 	/*
2137 	 * We can't allow a recursion from our interrupt handler back into the
2138 	 * tx routine, as they take the same spin lock, and that causes
2139 	 * deadlock.  Just return NETDEV_TX_BUSY and let the stack try again in
2140 	 * a bit
2141 	 */
2142 	if (vp->handling_irq)
2143 		return NETDEV_TX_BUSY;
2144 
2145 	if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) {
2146 		if (vortex_debug > 0)
2147 			pr_warn("%s: BUG! Tx Ring full, refusing to send buffer\n",
2148 				dev->name);
2149 		netif_stop_queue(dev);
2150 		return NETDEV_TX_BUSY;
2151 	}
2152 
2153 	vp->tx_skbuff[entry] = skb;
2154 
2155 	vp->tx_ring[entry].next = 0;
2156 #if DO_ZEROCOPY
2157 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2158 			vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2159 	else
2160 			vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum);
2161 
2162 	if (!skb_shinfo(skb)->nr_frags) {
2163 		dma_addr = pci_map_single(VORTEX_PCI(vp), skb->data, skb->len,
2164 					  PCI_DMA_TODEVICE);
2165 		if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr))
2166 			goto out_dma_err;
2167 
2168 		vp->tx_ring[entry].frag[0].addr = cpu_to_le32(dma_addr);
2169 		vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG);
2170 	} else {
2171 		int i;
2172 
2173 		dma_addr = pci_map_single(VORTEX_PCI(vp), skb->data,
2174 					  skb_headlen(skb), PCI_DMA_TODEVICE);
2175 		if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr))
2176 			goto out_dma_err;
2177 
2178 		vp->tx_ring[entry].frag[0].addr = cpu_to_le32(dma_addr);
2179 		vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb_headlen(skb));
2180 
2181 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2182 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2183 
2184 			dma_addr = skb_frag_dma_map(&VORTEX_PCI(vp)->dev, frag,
2185 						    0,
2186 						    frag->size,
2187 						    DMA_TO_DEVICE);
2188 			if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr)) {
2189 				for(i = i-1; i >= 0; i--)
2190 					dma_unmap_page(&VORTEX_PCI(vp)->dev,
2191 						       le32_to_cpu(vp->tx_ring[entry].frag[i+1].addr),
2192 						       le32_to_cpu(vp->tx_ring[entry].frag[i+1].length),
2193 						       DMA_TO_DEVICE);
2194 
2195 				pci_unmap_single(VORTEX_PCI(vp),
2196 						 le32_to_cpu(vp->tx_ring[entry].frag[0].addr),
2197 						 le32_to_cpu(vp->tx_ring[entry].frag[0].length),
2198 						 PCI_DMA_TODEVICE);
2199 
2200 				goto out_dma_err;
2201 			}
2202 
2203 			vp->tx_ring[entry].frag[i+1].addr =
2204 						cpu_to_le32(dma_addr);
2205 
2206 			if (i == skb_shinfo(skb)->nr_frags-1)
2207 					vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag)|LAST_FRAG);
2208 			else
2209 					vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag));
2210 		}
2211 	}
2212 #else
2213 	dma_addr = pci_map_single(VORTEX_PCI(vp), skb->data, skb->len, PCI_DMA_TODEVICE);
2214 	if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr))
2215 		goto out_dma_err;
2216 	vp->tx_ring[entry].addr = cpu_to_le32(dma_addr);
2217 	vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG);
2218 	vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2219 #endif
2220 
2221 	spin_lock_irqsave(&vp->lock, flags);
2222 	/* Wait for the stall to complete. */
2223 	issue_and_wait(dev, DownStall);
2224 	prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc));
2225 	if (ioread32(ioaddr + DownListPtr) == 0) {
2226 		iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr);
2227 		vp->queued_packet++;
2228 	}
2229 
2230 	vp->cur_tx++;
2231 	netdev_sent_queue(dev, skblen);
2232 
2233 	if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) {
2234 		netif_stop_queue (dev);
2235 	} else {					/* Clear previous interrupt enable. */
2236 #if defined(tx_interrupt_mitigation)
2237 		/* Dubious. If in boomeang_interrupt "faster" cyclone ifdef
2238 		 * were selected, this would corrupt DN_COMPLETE. No?
2239 		 */
2240 		prev_entry->status &= cpu_to_le32(~TxIntrUploaded);
2241 #endif
2242 	}
2243 	skb_tx_timestamp(skb);
2244 	iowrite16(DownUnstall, ioaddr + EL3_CMD);
2245 	spin_unlock_irqrestore(&vp->lock, flags);
2246 out:
2247 	return NETDEV_TX_OK;
2248 out_dma_err:
2249 	dev_err(&VORTEX_PCI(vp)->dev, "Error mapping dma buffer\n");
2250 	goto out;
2251 }
2252 
2253 /* The interrupt handler does all of the Rx thread work and cleans up
2254    after the Tx thread. */
2255 
2256 /*
2257  * This is the ISR for the vortex series chips.
2258  * full_bus_master_tx == 0 && full_bus_master_rx == 0
2259  */
2260 
2261 static irqreturn_t
2262 vortex_interrupt(int irq, void *dev_id)
2263 {
2264 	struct net_device *dev = dev_id;
2265 	struct vortex_private *vp = netdev_priv(dev);
2266 	void __iomem *ioaddr;
2267 	int status;
2268 	int work_done = max_interrupt_work;
2269 	int handled = 0;
2270 	unsigned int bytes_compl = 0, pkts_compl = 0;
2271 
2272 	ioaddr = vp->ioaddr;
2273 	spin_lock(&vp->lock);
2274 
2275 	status = ioread16(ioaddr + EL3_STATUS);
2276 
2277 	if (vortex_debug > 6)
2278 		pr_debug("vortex_interrupt(). status=0x%4x\n", status);
2279 
2280 	if ((status & IntLatch) == 0)
2281 		goto handler_exit;		/* No interrupt: shared IRQs cause this */
2282 	handled = 1;
2283 
2284 	if (status & IntReq) {
2285 		status |= vp->deferred;
2286 		vp->deferred = 0;
2287 	}
2288 
2289 	if (status == 0xffff)		/* h/w no longer present (hotplug)? */
2290 		goto handler_exit;
2291 
2292 	if (vortex_debug > 4)
2293 		pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2294 			   dev->name, status, ioread8(ioaddr + Timer));
2295 
2296 	spin_lock(&vp->window_lock);
2297 	window_set(vp, 7);
2298 
2299 	do {
2300 		if (vortex_debug > 5)
2301 				pr_debug("%s: In interrupt loop, status %4.4x.\n",
2302 					   dev->name, status);
2303 		if (status & RxComplete)
2304 			vortex_rx(dev);
2305 
2306 		if (status & TxAvailable) {
2307 			if (vortex_debug > 5)
2308 				pr_debug("	TX room bit was handled.\n");
2309 			/* There's room in the FIFO for a full-sized packet. */
2310 			iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD);
2311 			netif_wake_queue (dev);
2312 		}
2313 
2314 		if (status & DMADone) {
2315 			if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) {
2316 				iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
2317 				pci_unmap_single(VORTEX_PCI(vp), vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, PCI_DMA_TODEVICE);
2318 				pkts_compl++;
2319 				bytes_compl += vp->tx_skb->len;
2320 				dev_kfree_skb_irq(vp->tx_skb); /* Release the transferred buffer */
2321 				if (ioread16(ioaddr + TxFree) > 1536) {
2322 					/*
2323 					 * AKPM: FIXME: I don't think we need this.  If the queue was stopped due to
2324 					 * insufficient FIFO room, the TxAvailable test will succeed and call
2325 					 * netif_wake_queue()
2326 					 */
2327 					netif_wake_queue(dev);
2328 				} else { /* Interrupt when FIFO has room for max-sized packet. */
2329 					iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2330 					netif_stop_queue(dev);
2331 				}
2332 			}
2333 		}
2334 		/* Check for all uncommon interrupts at once. */
2335 		if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) {
2336 			if (status == 0xffff)
2337 				break;
2338 			if (status & RxEarly)
2339 				vortex_rx(dev);
2340 			spin_unlock(&vp->window_lock);
2341 			vortex_error(dev, status);
2342 			spin_lock(&vp->window_lock);
2343 			window_set(vp, 7);
2344 		}
2345 
2346 		if (--work_done < 0) {
2347 			pr_warn("%s: Too much work in interrupt, status %4.4x\n",
2348 				dev->name, status);
2349 			/* Disable all pending interrupts. */
2350 			do {
2351 				vp->deferred |= status;
2352 				iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2353 					 ioaddr + EL3_CMD);
2354 				iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2355 			} while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2356 			/* The timer will reenable interrupts. */
2357 			mod_timer(&vp->timer, jiffies + 1*HZ);
2358 			break;
2359 		}
2360 		/* Acknowledge the IRQ. */
2361 		iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2362 	} while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
2363 
2364 	netdev_completed_queue(dev, pkts_compl, bytes_compl);
2365 	spin_unlock(&vp->window_lock);
2366 
2367 	if (vortex_debug > 4)
2368 		pr_debug("%s: exiting interrupt, status %4.4x.\n",
2369 			   dev->name, status);
2370 handler_exit:
2371 	spin_unlock(&vp->lock);
2372 	return IRQ_RETVAL(handled);
2373 }
2374 
2375 /*
2376  * This is the ISR for the boomerang series chips.
2377  * full_bus_master_tx == 1 && full_bus_master_rx == 1
2378  */
2379 
2380 static irqreturn_t
2381 boomerang_interrupt(int irq, void *dev_id)
2382 {
2383 	struct net_device *dev = dev_id;
2384 	struct vortex_private *vp = netdev_priv(dev);
2385 	void __iomem *ioaddr;
2386 	int status;
2387 	int work_done = max_interrupt_work;
2388 	int handled = 0;
2389 	unsigned int bytes_compl = 0, pkts_compl = 0;
2390 
2391 	ioaddr = vp->ioaddr;
2392 
2393 
2394 	/*
2395 	 * It seems dopey to put the spinlock this early, but we could race against vortex_tx_timeout
2396 	 * and boomerang_start_xmit
2397 	 */
2398 	spin_lock(&vp->lock);
2399 	vp->handling_irq = 1;
2400 
2401 	status = ioread16(ioaddr + EL3_STATUS);
2402 
2403 	if (vortex_debug > 6)
2404 		pr_debug("boomerang_interrupt. status=0x%4x\n", status);
2405 
2406 	if ((status & IntLatch) == 0)
2407 		goto handler_exit;		/* No interrupt: shared IRQs can cause this */
2408 	handled = 1;
2409 
2410 	if (status == 0xffff) {		/* h/w no longer present (hotplug)? */
2411 		if (vortex_debug > 1)
2412 			pr_debug("boomerang_interrupt(1): status = 0xffff\n");
2413 		goto handler_exit;
2414 	}
2415 
2416 	if (status & IntReq) {
2417 		status |= vp->deferred;
2418 		vp->deferred = 0;
2419 	}
2420 
2421 	if (vortex_debug > 4)
2422 		pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2423 			   dev->name, status, ioread8(ioaddr + Timer));
2424 	do {
2425 		if (vortex_debug > 5)
2426 				pr_debug("%s: In interrupt loop, status %4.4x.\n",
2427 					   dev->name, status);
2428 		if (status & UpComplete) {
2429 			iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD);
2430 			if (vortex_debug > 5)
2431 				pr_debug("boomerang_interrupt->boomerang_rx\n");
2432 			boomerang_rx(dev);
2433 		}
2434 
2435 		if (status & DownComplete) {
2436 			unsigned int dirty_tx = vp->dirty_tx;
2437 
2438 			iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD);
2439 			while (vp->cur_tx - dirty_tx > 0) {
2440 				int entry = dirty_tx % TX_RING_SIZE;
2441 #if 1	/* AKPM: the latter is faster, but cyclone-only */
2442 				if (ioread32(ioaddr + DownListPtr) ==
2443 					vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc))
2444 					break;			/* It still hasn't been processed. */
2445 #else
2446 				if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0)
2447 					break;			/* It still hasn't been processed. */
2448 #endif
2449 
2450 				if (vp->tx_skbuff[entry]) {
2451 					struct sk_buff *skb = vp->tx_skbuff[entry];
2452 #if DO_ZEROCOPY
2453 					int i;
2454 					pci_unmap_single(VORTEX_PCI(vp),
2455 							le32_to_cpu(vp->tx_ring[entry].frag[0].addr),
2456 							le32_to_cpu(vp->tx_ring[entry].frag[0].length)&0xFFF,
2457 							PCI_DMA_TODEVICE);
2458 
2459 					for (i=1; i<=skb_shinfo(skb)->nr_frags; i++)
2460 							pci_unmap_page(VORTEX_PCI(vp),
2461 											 le32_to_cpu(vp->tx_ring[entry].frag[i].addr),
2462 											 le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF,
2463 											 PCI_DMA_TODEVICE);
2464 #else
2465 					pci_unmap_single(VORTEX_PCI(vp),
2466 						le32_to_cpu(vp->tx_ring[entry].addr), skb->len, PCI_DMA_TODEVICE);
2467 #endif
2468 					pkts_compl++;
2469 					bytes_compl += skb->len;
2470 					dev_kfree_skb_irq(skb);
2471 					vp->tx_skbuff[entry] = NULL;
2472 				} else {
2473 					pr_debug("boomerang_interrupt: no skb!\n");
2474 				}
2475 				/* dev->stats.tx_packets++;  Counted below. */
2476 				dirty_tx++;
2477 			}
2478 			vp->dirty_tx = dirty_tx;
2479 			if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) {
2480 				if (vortex_debug > 6)
2481 					pr_debug("boomerang_interrupt: wake queue\n");
2482 				netif_wake_queue (dev);
2483 			}
2484 		}
2485 
2486 		/* Check for all uncommon interrupts at once. */
2487 		if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq))
2488 			vortex_error(dev, status);
2489 
2490 		if (--work_done < 0) {
2491 			pr_warn("%s: Too much work in interrupt, status %4.4x\n",
2492 				dev->name, status);
2493 			/* Disable all pending interrupts. */
2494 			do {
2495 				vp->deferred |= status;
2496 				iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2497 					 ioaddr + EL3_CMD);
2498 				iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2499 			} while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2500 			/* The timer will reenable interrupts. */
2501 			mod_timer(&vp->timer, jiffies + 1*HZ);
2502 			break;
2503 		}
2504 		/* Acknowledge the IRQ. */
2505 		iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2506 		if (vp->cb_fn_base)			/* The PCMCIA people are idiots.  */
2507 			iowrite32(0x8000, vp->cb_fn_base + 4);
2508 
2509 	} while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch);
2510 	netdev_completed_queue(dev, pkts_compl, bytes_compl);
2511 
2512 	if (vortex_debug > 4)
2513 		pr_debug("%s: exiting interrupt, status %4.4x.\n",
2514 			   dev->name, status);
2515 handler_exit:
2516 	vp->handling_irq = 0;
2517 	spin_unlock(&vp->lock);
2518 	return IRQ_RETVAL(handled);
2519 }
2520 
2521 static int vortex_rx(struct net_device *dev)
2522 {
2523 	struct vortex_private *vp = netdev_priv(dev);
2524 	void __iomem *ioaddr = vp->ioaddr;
2525 	int i;
2526 	short rx_status;
2527 
2528 	if (vortex_debug > 5)
2529 		pr_debug("vortex_rx(): status %4.4x, rx_status %4.4x.\n",
2530 			   ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus));
2531 	while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) {
2532 		if (rx_status & 0x4000) { /* Error, update stats. */
2533 			unsigned char rx_error = ioread8(ioaddr + RxErrors);
2534 			if (vortex_debug > 2)
2535 				pr_debug(" Rx error: status %2.2x.\n", rx_error);
2536 			dev->stats.rx_errors++;
2537 			if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2538 			if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2539 			if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2540 			if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2541 			if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2542 		} else {
2543 			/* The packet length: up to 4.5K!. */
2544 			int pkt_len = rx_status & 0x1fff;
2545 			struct sk_buff *skb;
2546 
2547 			skb = netdev_alloc_skb(dev, pkt_len + 5);
2548 			if (vortex_debug > 4)
2549 				pr_debug("Receiving packet size %d status %4.4x.\n",
2550 					   pkt_len, rx_status);
2551 			if (skb != NULL) {
2552 				skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
2553 				/* 'skb_put()' points to the start of sk_buff data area. */
2554 				if (vp->bus_master &&
2555 					! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) {
2556 					dma_addr_t dma = pci_map_single(VORTEX_PCI(vp), skb_put(skb, pkt_len),
2557 									   pkt_len, PCI_DMA_FROMDEVICE);
2558 					iowrite32(dma, ioaddr + Wn7_MasterAddr);
2559 					iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
2560 					iowrite16(StartDMAUp, ioaddr + EL3_CMD);
2561 					while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)
2562 						;
2563 					pci_unmap_single(VORTEX_PCI(vp), dma, pkt_len, PCI_DMA_FROMDEVICE);
2564 				} else {
2565 					ioread32_rep(ioaddr + RX_FIFO,
2566 					             skb_put(skb, pkt_len),
2567 						     (pkt_len + 3) >> 2);
2568 				}
2569 				iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
2570 				skb->protocol = eth_type_trans(skb, dev);
2571 				netif_rx(skb);
2572 				dev->stats.rx_packets++;
2573 				/* Wait a limited time to go to next packet. */
2574 				for (i = 200; i >= 0; i--)
2575 					if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
2576 						break;
2577 				continue;
2578 			} else if (vortex_debug > 0)
2579 				pr_notice("%s: No memory to allocate a sk_buff of size %d.\n",
2580 					dev->name, pkt_len);
2581 			dev->stats.rx_dropped++;
2582 		}
2583 		issue_and_wait(dev, RxDiscard);
2584 	}
2585 
2586 	return 0;
2587 }
2588 
2589 static int
2590 boomerang_rx(struct net_device *dev)
2591 {
2592 	struct vortex_private *vp = netdev_priv(dev);
2593 	int entry = vp->cur_rx % RX_RING_SIZE;
2594 	void __iomem *ioaddr = vp->ioaddr;
2595 	int rx_status;
2596 	int rx_work_limit = vp->dirty_rx + RX_RING_SIZE - vp->cur_rx;
2597 
2598 	if (vortex_debug > 5)
2599 		pr_debug("boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS));
2600 
2601 	while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){
2602 		if (--rx_work_limit < 0)
2603 			break;
2604 		if (rx_status & RxDError) { /* Error, update stats. */
2605 			unsigned char rx_error = rx_status >> 16;
2606 			if (vortex_debug > 2)
2607 				pr_debug(" Rx error: status %2.2x.\n", rx_error);
2608 			dev->stats.rx_errors++;
2609 			if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2610 			if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2611 			if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2612 			if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2613 			if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2614 		} else {
2615 			/* The packet length: up to 4.5K!. */
2616 			int pkt_len = rx_status & 0x1fff;
2617 			struct sk_buff *skb;
2618 			dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr);
2619 
2620 			if (vortex_debug > 4)
2621 				pr_debug("Receiving packet size %d status %4.4x.\n",
2622 					   pkt_len, rx_status);
2623 
2624 			/* Check if the packet is long enough to just accept without
2625 			   copying to a properly sized skbuff. */
2626 			if (pkt_len < rx_copybreak &&
2627 			    (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
2628 				skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
2629 				pci_dma_sync_single_for_cpu(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2630 				/* 'skb_put()' points to the start of sk_buff data area. */
2631 				memcpy(skb_put(skb, pkt_len),
2632 					   vp->rx_skbuff[entry]->data,
2633 					   pkt_len);
2634 				pci_dma_sync_single_for_device(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2635 				vp->rx_copy++;
2636 			} else {
2637 				/* Pass up the skbuff already on the Rx ring. */
2638 				skb = vp->rx_skbuff[entry];
2639 				vp->rx_skbuff[entry] = NULL;
2640 				skb_put(skb, pkt_len);
2641 				pci_unmap_single(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2642 				vp->rx_nocopy++;
2643 			}
2644 			skb->protocol = eth_type_trans(skb, dev);
2645 			{					/* Use hardware checksum info. */
2646 				int csum_bits = rx_status & 0xee000000;
2647 				if (csum_bits &&
2648 					(csum_bits == (IPChksumValid | TCPChksumValid) ||
2649 					 csum_bits == (IPChksumValid | UDPChksumValid))) {
2650 					skb->ip_summed = CHECKSUM_UNNECESSARY;
2651 					vp->rx_csumhits++;
2652 				}
2653 			}
2654 			netif_rx(skb);
2655 			dev->stats.rx_packets++;
2656 		}
2657 		entry = (++vp->cur_rx) % RX_RING_SIZE;
2658 	}
2659 	/* Refill the Rx ring buffers. */
2660 	for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) {
2661 		struct sk_buff *skb;
2662 		entry = vp->dirty_rx % RX_RING_SIZE;
2663 		if (vp->rx_skbuff[entry] == NULL) {
2664 			skb = netdev_alloc_skb_ip_align(dev, PKT_BUF_SZ);
2665 			if (skb == NULL) {
2666 				static unsigned long last_jif;
2667 				if (time_after(jiffies, last_jif + 10 * HZ)) {
2668 					pr_warn("%s: memory shortage\n",
2669 						dev->name);
2670 					last_jif = jiffies;
2671 				}
2672 				if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)
2673 					mod_timer(&vp->rx_oom_timer, RUN_AT(HZ * 1));
2674 				break;			/* Bad news!  */
2675 			}
2676 
2677 			vp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
2678 			vp->rx_skbuff[entry] = skb;
2679 		}
2680 		vp->rx_ring[entry].status = 0;	/* Clear complete bit. */
2681 		iowrite16(UpUnstall, ioaddr + EL3_CMD);
2682 	}
2683 	return 0;
2684 }
2685 
2686 /*
2687  * If we've hit a total OOM refilling the Rx ring we poll once a second
2688  * for some memory.  Otherwise there is no way to restart the rx process.
2689  */
2690 static void
2691 rx_oom_timer(unsigned long arg)
2692 {
2693 	struct net_device *dev = (struct net_device *)arg;
2694 	struct vortex_private *vp = netdev_priv(dev);
2695 
2696 	spin_lock_irq(&vp->lock);
2697 	if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)	/* This test is redundant, but makes me feel good */
2698 		boomerang_rx(dev);
2699 	if (vortex_debug > 1) {
2700 		pr_debug("%s: rx_oom_timer %s\n", dev->name,
2701 			((vp->cur_rx - vp->dirty_rx) != RX_RING_SIZE) ? "succeeded" : "retrying");
2702 	}
2703 	spin_unlock_irq(&vp->lock);
2704 }
2705 
2706 static void
2707 vortex_down(struct net_device *dev, int final_down)
2708 {
2709 	struct vortex_private *vp = netdev_priv(dev);
2710 	void __iomem *ioaddr = vp->ioaddr;
2711 
2712 	netdev_reset_queue(dev);
2713 	netif_stop_queue(dev);
2714 
2715 	del_timer_sync(&vp->rx_oom_timer);
2716 	del_timer_sync(&vp->timer);
2717 
2718 	/* Turn off statistics ASAP.  We update dev->stats below. */
2719 	iowrite16(StatsDisable, ioaddr + EL3_CMD);
2720 
2721 	/* Disable the receiver and transmitter. */
2722 	iowrite16(RxDisable, ioaddr + EL3_CMD);
2723 	iowrite16(TxDisable, ioaddr + EL3_CMD);
2724 
2725 	/* Disable receiving 802.1q tagged frames */
2726 	set_8021q_mode(dev, 0);
2727 
2728 	if (dev->if_port == XCVR_10base2)
2729 		/* Turn off thinnet power.  Green! */
2730 		iowrite16(StopCoax, ioaddr + EL3_CMD);
2731 
2732 	iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
2733 
2734 	update_stats(ioaddr, dev);
2735 	if (vp->full_bus_master_rx)
2736 		iowrite32(0, ioaddr + UpListPtr);
2737 	if (vp->full_bus_master_tx)
2738 		iowrite32(0, ioaddr + DownListPtr);
2739 
2740 	if (final_down && VORTEX_PCI(vp)) {
2741 		vp->pm_state_valid = 1;
2742 		pci_save_state(VORTEX_PCI(vp));
2743 		acpi_set_WOL(dev);
2744 	}
2745 }
2746 
2747 static int
2748 vortex_close(struct net_device *dev)
2749 {
2750 	struct vortex_private *vp = netdev_priv(dev);
2751 	void __iomem *ioaddr = vp->ioaddr;
2752 	int i;
2753 
2754 	if (netif_device_present(dev))
2755 		vortex_down(dev, 1);
2756 
2757 	if (vortex_debug > 1) {
2758 		pr_debug("%s: vortex_close() status %4.4x, Tx status %2.2x.\n",
2759 			   dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus));
2760 		pr_debug("%s: vortex close stats: rx_nocopy %d rx_copy %d"
2761 			   " tx_queued %d Rx pre-checksummed %d.\n",
2762 			   dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits);
2763 	}
2764 
2765 #if DO_ZEROCOPY
2766 	if (vp->rx_csumhits &&
2767 	    (vp->drv_flags & HAS_HWCKSM) == 0 &&
2768 	    (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) {
2769 		pr_warn("%s supports hardware checksums, and we're not using them!\n",
2770 			dev->name);
2771 	}
2772 #endif
2773 
2774 	free_irq(dev->irq, dev);
2775 
2776 	if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
2777 		for (i = 0; i < RX_RING_SIZE; i++)
2778 			if (vp->rx_skbuff[i]) {
2779 				pci_unmap_single(	VORTEX_PCI(vp), le32_to_cpu(vp->rx_ring[i].addr),
2780 									PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2781 				dev_kfree_skb(vp->rx_skbuff[i]);
2782 				vp->rx_skbuff[i] = NULL;
2783 			}
2784 	}
2785 	if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
2786 		for (i = 0; i < TX_RING_SIZE; i++) {
2787 			if (vp->tx_skbuff[i]) {
2788 				struct sk_buff *skb = vp->tx_skbuff[i];
2789 #if DO_ZEROCOPY
2790 				int k;
2791 
2792 				for (k=0; k<=skb_shinfo(skb)->nr_frags; k++)
2793 						pci_unmap_single(VORTEX_PCI(vp),
2794 										 le32_to_cpu(vp->tx_ring[i].frag[k].addr),
2795 										 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF,
2796 										 PCI_DMA_TODEVICE);
2797 #else
2798 				pci_unmap_single(VORTEX_PCI(vp), le32_to_cpu(vp->tx_ring[i].addr), skb->len, PCI_DMA_TODEVICE);
2799 #endif
2800 				dev_kfree_skb(skb);
2801 				vp->tx_skbuff[i] = NULL;
2802 			}
2803 		}
2804 	}
2805 
2806 	return 0;
2807 }
2808 
2809 static void
2810 dump_tx_ring(struct net_device *dev)
2811 {
2812 	if (vortex_debug > 0) {
2813 	struct vortex_private *vp = netdev_priv(dev);
2814 		void __iomem *ioaddr = vp->ioaddr;
2815 
2816 		if (vp->full_bus_master_tx) {
2817 			int i;
2818 			int stalled = ioread32(ioaddr + PktStatus) & 0x04;	/* Possible racy. But it's only debug stuff */
2819 
2820 			pr_err("  Flags; bus-master %d, dirty %d(%d) current %d(%d)\n",
2821 					vp->full_bus_master_tx,
2822 					vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE,
2823 					vp->cur_tx, vp->cur_tx % TX_RING_SIZE);
2824 			pr_err("  Transmit list %8.8x vs. %p.\n",
2825 				   ioread32(ioaddr + DownListPtr),
2826 				   &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]);
2827 			issue_and_wait(dev, DownStall);
2828 			for (i = 0; i < TX_RING_SIZE; i++) {
2829 				unsigned int length;
2830 
2831 #if DO_ZEROCOPY
2832 				length = le32_to_cpu(vp->tx_ring[i].frag[0].length);
2833 #else
2834 				length = le32_to_cpu(vp->tx_ring[i].length);
2835 #endif
2836 				pr_err("  %d: @%p  length %8.8x status %8.8x\n",
2837 					   i, &vp->tx_ring[i], length,
2838 					   le32_to_cpu(vp->tx_ring[i].status));
2839 			}
2840 			if (!stalled)
2841 				iowrite16(DownUnstall, ioaddr + EL3_CMD);
2842 		}
2843 	}
2844 }
2845 
2846 static struct net_device_stats *vortex_get_stats(struct net_device *dev)
2847 {
2848 	struct vortex_private *vp = netdev_priv(dev);
2849 	void __iomem *ioaddr = vp->ioaddr;
2850 	unsigned long flags;
2851 
2852 	if (netif_device_present(dev)) {	/* AKPM: Used to be netif_running */
2853 		spin_lock_irqsave (&vp->lock, flags);
2854 		update_stats(ioaddr, dev);
2855 		spin_unlock_irqrestore (&vp->lock, flags);
2856 	}
2857 	return &dev->stats;
2858 }
2859 
2860 /*  Update statistics.
2861 	Unlike with the EL3 we need not worry about interrupts changing
2862 	the window setting from underneath us, but we must still guard
2863 	against a race condition with a StatsUpdate interrupt updating the
2864 	table.  This is done by checking that the ASM (!) code generated uses
2865 	atomic updates with '+='.
2866 	*/
2867 static void update_stats(void __iomem *ioaddr, struct net_device *dev)
2868 {
2869 	struct vortex_private *vp = netdev_priv(dev);
2870 
2871 	/* Unlike the 3c5x9 we need not turn off stats updates while reading. */
2872 	/* Switch to the stats window, and read everything. */
2873 	dev->stats.tx_carrier_errors		+= window_read8(vp, 6, 0);
2874 	dev->stats.tx_heartbeat_errors		+= window_read8(vp, 6, 1);
2875 	dev->stats.tx_window_errors		+= window_read8(vp, 6, 4);
2876 	dev->stats.rx_fifo_errors		+= window_read8(vp, 6, 5);
2877 	dev->stats.tx_packets			+= window_read8(vp, 6, 6);
2878 	dev->stats.tx_packets			+= (window_read8(vp, 6, 9) &
2879 						    0x30) << 4;
2880 	/* Rx packets	*/			window_read8(vp, 6, 7);   /* Must read to clear */
2881 	/* Don't bother with register 9, an extension of registers 6&7.
2882 	   If we do use the 6&7 values the atomic update assumption above
2883 	   is invalid. */
2884 	dev->stats.rx_bytes 			+= window_read16(vp, 6, 10);
2885 	dev->stats.tx_bytes 			+= window_read16(vp, 6, 12);
2886 	/* Extra stats for get_ethtool_stats() */
2887 	vp->xstats.tx_multiple_collisions	+= window_read8(vp, 6, 2);
2888 	vp->xstats.tx_single_collisions         += window_read8(vp, 6, 3);
2889 	vp->xstats.tx_deferred			+= window_read8(vp, 6, 8);
2890 	vp->xstats.rx_bad_ssd			+= window_read8(vp, 4, 12);
2891 
2892 	dev->stats.collisions = vp->xstats.tx_multiple_collisions
2893 		+ vp->xstats.tx_single_collisions
2894 		+ vp->xstats.tx_max_collisions;
2895 
2896 	{
2897 		u8 up = window_read8(vp, 4, 13);
2898 		dev->stats.rx_bytes += (up & 0x0f) << 16;
2899 		dev->stats.tx_bytes += (up & 0xf0) << 12;
2900 	}
2901 }
2902 
2903 static int vortex_nway_reset(struct net_device *dev)
2904 {
2905 	struct vortex_private *vp = netdev_priv(dev);
2906 
2907 	return mii_nway_restart(&vp->mii);
2908 }
2909 
2910 static int vortex_get_link_ksettings(struct net_device *dev,
2911 				     struct ethtool_link_ksettings *cmd)
2912 {
2913 	struct vortex_private *vp = netdev_priv(dev);
2914 
2915 	return mii_ethtool_get_link_ksettings(&vp->mii, cmd);
2916 }
2917 
2918 static int vortex_set_link_ksettings(struct net_device *dev,
2919 				     const struct ethtool_link_ksettings *cmd)
2920 {
2921 	struct vortex_private *vp = netdev_priv(dev);
2922 
2923 	return mii_ethtool_set_link_ksettings(&vp->mii, cmd);
2924 }
2925 
2926 static u32 vortex_get_msglevel(struct net_device *dev)
2927 {
2928 	return vortex_debug;
2929 }
2930 
2931 static void vortex_set_msglevel(struct net_device *dev, u32 dbg)
2932 {
2933 	vortex_debug = dbg;
2934 }
2935 
2936 static int vortex_get_sset_count(struct net_device *dev, int sset)
2937 {
2938 	switch (sset) {
2939 	case ETH_SS_STATS:
2940 		return VORTEX_NUM_STATS;
2941 	default:
2942 		return -EOPNOTSUPP;
2943 	}
2944 }
2945 
2946 static void vortex_get_ethtool_stats(struct net_device *dev,
2947 	struct ethtool_stats *stats, u64 *data)
2948 {
2949 	struct vortex_private *vp = netdev_priv(dev);
2950 	void __iomem *ioaddr = vp->ioaddr;
2951 	unsigned long flags;
2952 
2953 	spin_lock_irqsave(&vp->lock, flags);
2954 	update_stats(ioaddr, dev);
2955 	spin_unlock_irqrestore(&vp->lock, flags);
2956 
2957 	data[0] = vp->xstats.tx_deferred;
2958 	data[1] = vp->xstats.tx_max_collisions;
2959 	data[2] = vp->xstats.tx_multiple_collisions;
2960 	data[3] = vp->xstats.tx_single_collisions;
2961 	data[4] = vp->xstats.rx_bad_ssd;
2962 }
2963 
2964 
2965 static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2966 {
2967 	switch (stringset) {
2968 	case ETH_SS_STATS:
2969 		memcpy(data, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
2970 		break;
2971 	default:
2972 		WARN_ON(1);
2973 		break;
2974 	}
2975 }
2976 
2977 static void vortex_get_drvinfo(struct net_device *dev,
2978 					struct ethtool_drvinfo *info)
2979 {
2980 	struct vortex_private *vp = netdev_priv(dev);
2981 
2982 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2983 	if (VORTEX_PCI(vp)) {
2984 		strlcpy(info->bus_info, pci_name(VORTEX_PCI(vp)),
2985 			sizeof(info->bus_info));
2986 	} else {
2987 		if (VORTEX_EISA(vp))
2988 			strlcpy(info->bus_info, dev_name(vp->gendev),
2989 				sizeof(info->bus_info));
2990 		else
2991 			snprintf(info->bus_info, sizeof(info->bus_info),
2992 				"EISA 0x%lx %d", dev->base_addr, dev->irq);
2993 	}
2994 }
2995 
2996 static void vortex_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2997 {
2998 	struct vortex_private *vp = netdev_priv(dev);
2999 
3000 	if (!VORTEX_PCI(vp))
3001 		return;
3002 
3003 	wol->supported = WAKE_MAGIC;
3004 
3005 	wol->wolopts = 0;
3006 	if (vp->enable_wol)
3007 		wol->wolopts |= WAKE_MAGIC;
3008 }
3009 
3010 static int vortex_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3011 {
3012 	struct vortex_private *vp = netdev_priv(dev);
3013 
3014 	if (!VORTEX_PCI(vp))
3015 		return -EOPNOTSUPP;
3016 
3017 	if (wol->wolopts & ~WAKE_MAGIC)
3018 		return -EINVAL;
3019 
3020 	if (wol->wolopts & WAKE_MAGIC)
3021 		vp->enable_wol = 1;
3022 	else
3023 		vp->enable_wol = 0;
3024 	acpi_set_WOL(dev);
3025 
3026 	return 0;
3027 }
3028 
3029 static const struct ethtool_ops vortex_ethtool_ops = {
3030 	.get_drvinfo		= vortex_get_drvinfo,
3031 	.get_strings            = vortex_get_strings,
3032 	.get_msglevel           = vortex_get_msglevel,
3033 	.set_msglevel           = vortex_set_msglevel,
3034 	.get_ethtool_stats      = vortex_get_ethtool_stats,
3035 	.get_sset_count		= vortex_get_sset_count,
3036 	.get_link               = ethtool_op_get_link,
3037 	.nway_reset             = vortex_nway_reset,
3038 	.get_wol                = vortex_get_wol,
3039 	.set_wol                = vortex_set_wol,
3040 	.get_ts_info		= ethtool_op_get_ts_info,
3041 	.get_link_ksettings     = vortex_get_link_ksettings,
3042 	.set_link_ksettings     = vortex_set_link_ksettings,
3043 };
3044 
3045 #ifdef CONFIG_PCI
3046 /*
3047  *	Must power the device up to do MDIO operations
3048  */
3049 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3050 {
3051 	int err;
3052 	struct vortex_private *vp = netdev_priv(dev);
3053 	pci_power_t state = 0;
3054 
3055 	if(VORTEX_PCI(vp))
3056 		state = VORTEX_PCI(vp)->current_state;
3057 
3058 	/* The kernel core really should have pci_get_power_state() */
3059 
3060 	if(state != 0)
3061 		pci_set_power_state(VORTEX_PCI(vp), PCI_D0);
3062 	err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL);
3063 	if(state != 0)
3064 		pci_set_power_state(VORTEX_PCI(vp), state);
3065 
3066 	return err;
3067 }
3068 #endif
3069 
3070 
3071 /* Pre-Cyclone chips have no documented multicast filter, so the only
3072    multicast setting is to receive all multicast frames.  At least
3073    the chip has a very clean way to set the mode, unlike many others. */
3074 static void set_rx_mode(struct net_device *dev)
3075 {
3076 	struct vortex_private *vp = netdev_priv(dev);
3077 	void __iomem *ioaddr = vp->ioaddr;
3078 	int new_mode;
3079 
3080 	if (dev->flags & IFF_PROMISC) {
3081 		if (vortex_debug > 3)
3082 			pr_notice("%s: Setting promiscuous mode.\n", dev->name);
3083 		new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm;
3084 	} else	if (!netdev_mc_empty(dev) || dev->flags & IFF_ALLMULTI) {
3085 		new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast;
3086 	} else
3087 		new_mode = SetRxFilter | RxStation | RxBroadcast;
3088 
3089 	iowrite16(new_mode, ioaddr + EL3_CMD);
3090 }
3091 
3092 #if IS_ENABLED(CONFIG_VLAN_8021Q)
3093 /* Setup the card so that it can receive frames with an 802.1q VLAN tag.
3094    Note that this must be done after each RxReset due to some backwards
3095    compatibility logic in the Cyclone and Tornado ASICs */
3096 
3097 /* The Ethernet Type used for 802.1q tagged frames */
3098 #define VLAN_ETHER_TYPE 0x8100
3099 
3100 static void set_8021q_mode(struct net_device *dev, int enable)
3101 {
3102 	struct vortex_private *vp = netdev_priv(dev);
3103 	int mac_ctrl;
3104 
3105 	if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) {
3106 		/* cyclone and tornado chipsets can recognize 802.1q
3107 		 * tagged frames and treat them correctly */
3108 
3109 		int max_pkt_size = dev->mtu+14;	/* MTU+Ethernet header */
3110 		if (enable)
3111 			max_pkt_size += 4;	/* 802.1Q VLAN tag */
3112 
3113 		window_write16(vp, max_pkt_size, 3, Wn3_MaxPktSize);
3114 
3115 		/* set VlanEtherType to let the hardware checksumming
3116 		   treat tagged frames correctly */
3117 		window_write16(vp, VLAN_ETHER_TYPE, 7, Wn7_VlanEtherType);
3118 	} else {
3119 		/* on older cards we have to enable large frames */
3120 
3121 		vp->large_frames = dev->mtu > 1500 || enable;
3122 
3123 		mac_ctrl = window_read16(vp, 3, Wn3_MAC_Ctrl);
3124 		if (vp->large_frames)
3125 			mac_ctrl |= 0x40;
3126 		else
3127 			mac_ctrl &= ~0x40;
3128 		window_write16(vp, mac_ctrl, 3, Wn3_MAC_Ctrl);
3129 	}
3130 }
3131 #else
3132 
3133 static void set_8021q_mode(struct net_device *dev, int enable)
3134 {
3135 }
3136 
3137 
3138 #endif
3139 
3140 /* MII transceiver control section.
3141    Read and write the MII registers using software-generated serial
3142    MDIO protocol.  See the MII specifications or DP83840A data sheet
3143    for details. */
3144 
3145 /* The maximum data clock rate is 2.5 Mhz.  The minimum timing is usually
3146    met by back-to-back PCI I/O cycles, but we insert a delay to avoid
3147    "overclocking" issues. */
3148 static void mdio_delay(struct vortex_private *vp)
3149 {
3150 	window_read32(vp, 4, Wn4_PhysicalMgmt);
3151 }
3152 
3153 #define MDIO_SHIFT_CLK	0x01
3154 #define MDIO_DIR_WRITE	0x04
3155 #define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE)
3156 #define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE)
3157 #define MDIO_DATA_READ	0x02
3158 #define MDIO_ENB_IN		0x00
3159 
3160 /* Generate the preamble required for initial synchronization and
3161    a few older transceivers. */
3162 static void mdio_sync(struct vortex_private *vp, int bits)
3163 {
3164 	/* Establish sync by sending at least 32 logic ones. */
3165 	while (-- bits >= 0) {
3166 		window_write16(vp, MDIO_DATA_WRITE1, 4, Wn4_PhysicalMgmt);
3167 		mdio_delay(vp);
3168 		window_write16(vp, MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK,
3169 			       4, Wn4_PhysicalMgmt);
3170 		mdio_delay(vp);
3171 	}
3172 }
3173 
3174 static int mdio_read(struct net_device *dev, int phy_id, int location)
3175 {
3176 	int i;
3177 	struct vortex_private *vp = netdev_priv(dev);
3178 	int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
3179 	unsigned int retval = 0;
3180 
3181 	spin_lock_bh(&vp->mii_lock);
3182 
3183 	if (mii_preamble_required)
3184 		mdio_sync(vp, 32);
3185 
3186 	/* Shift the read command bits out. */
3187 	for (i = 14; i >= 0; i--) {
3188 		int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3189 		window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3190 		mdio_delay(vp);
3191 		window_write16(vp, dataval | MDIO_SHIFT_CLK,
3192 			       4, Wn4_PhysicalMgmt);
3193 		mdio_delay(vp);
3194 	}
3195 	/* Read the two transition, 16 data, and wire-idle bits. */
3196 	for (i = 19; i > 0; i--) {
3197 		window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3198 		mdio_delay(vp);
3199 		retval = (retval << 1) |
3200 			((window_read16(vp, 4, Wn4_PhysicalMgmt) &
3201 			  MDIO_DATA_READ) ? 1 : 0);
3202 		window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3203 			       4, Wn4_PhysicalMgmt);
3204 		mdio_delay(vp);
3205 	}
3206 
3207 	spin_unlock_bh(&vp->mii_lock);
3208 
3209 	return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff;
3210 }
3211 
3212 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
3213 {
3214 	struct vortex_private *vp = netdev_priv(dev);
3215 	int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value;
3216 	int i;
3217 
3218 	spin_lock_bh(&vp->mii_lock);
3219 
3220 	if (mii_preamble_required)
3221 		mdio_sync(vp, 32);
3222 
3223 	/* Shift the command bits out. */
3224 	for (i = 31; i >= 0; i--) {
3225 		int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3226 		window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3227 		mdio_delay(vp);
3228 		window_write16(vp, dataval | MDIO_SHIFT_CLK,
3229 			       4, Wn4_PhysicalMgmt);
3230 		mdio_delay(vp);
3231 	}
3232 	/* Leave the interface idle. */
3233 	for (i = 1; i >= 0; i--) {
3234 		window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3235 		mdio_delay(vp);
3236 		window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3237 			       4, Wn4_PhysicalMgmt);
3238 		mdio_delay(vp);
3239 	}
3240 
3241 	spin_unlock_bh(&vp->mii_lock);
3242 }
3243 
3244 /* ACPI: Advanced Configuration and Power Interface. */
3245 /* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */
3246 static void acpi_set_WOL(struct net_device *dev)
3247 {
3248 	struct vortex_private *vp = netdev_priv(dev);
3249 	void __iomem *ioaddr = vp->ioaddr;
3250 
3251 	device_set_wakeup_enable(vp->gendev, vp->enable_wol);
3252 
3253 	if (vp->enable_wol) {
3254 		/* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */
3255 		window_write16(vp, 2, 7, 0x0c);
3256 		/* The RxFilter must accept the WOL frames. */
3257 		iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD);
3258 		iowrite16(RxEnable, ioaddr + EL3_CMD);
3259 
3260 		if (pci_enable_wake(VORTEX_PCI(vp), PCI_D3hot, 1)) {
3261 			pr_info("%s: WOL not supported.\n", pci_name(VORTEX_PCI(vp)));
3262 
3263 			vp->enable_wol = 0;
3264 			return;
3265 		}
3266 
3267 		if (VORTEX_PCI(vp)->current_state < PCI_D3hot)
3268 			return;
3269 
3270 		/* Change the power state to D3; RxEnable doesn't take effect. */
3271 		pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot);
3272 	}
3273 }
3274 
3275 
3276 static void vortex_remove_one(struct pci_dev *pdev)
3277 {
3278 	struct net_device *dev = pci_get_drvdata(pdev);
3279 	struct vortex_private *vp;
3280 
3281 	if (!dev) {
3282 		pr_err("vortex_remove_one called for Compaq device!\n");
3283 		BUG();
3284 	}
3285 
3286 	vp = netdev_priv(dev);
3287 
3288 	if (vp->cb_fn_base)
3289 		pci_iounmap(pdev, vp->cb_fn_base);
3290 
3291 	unregister_netdev(dev);
3292 
3293 	pci_set_power_state(pdev, PCI_D0);	/* Go active */
3294 	if (vp->pm_state_valid)
3295 		pci_restore_state(pdev);
3296 	pci_disable_device(pdev);
3297 
3298 	/* Should really use issue_and_wait() here */
3299 	iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14),
3300 	     vp->ioaddr + EL3_CMD);
3301 
3302 	pci_iounmap(pdev, vp->ioaddr);
3303 
3304 	pci_free_consistent(pdev,
3305 						sizeof(struct boom_rx_desc) * RX_RING_SIZE
3306 							+ sizeof(struct boom_tx_desc) * TX_RING_SIZE,
3307 						vp->rx_ring,
3308 						vp->rx_ring_dma);
3309 
3310 	pci_release_regions(pdev);
3311 
3312 	free_netdev(dev);
3313 }
3314 
3315 
3316 static struct pci_driver vortex_driver = {
3317 	.name		= "3c59x",
3318 	.probe		= vortex_init_one,
3319 	.remove		= vortex_remove_one,
3320 	.id_table	= vortex_pci_tbl,
3321 	.driver.pm	= VORTEX_PM_OPS,
3322 };
3323 
3324 
3325 static int vortex_have_pci;
3326 static int vortex_have_eisa;
3327 
3328 
3329 static int __init vortex_init(void)
3330 {
3331 	int pci_rc, eisa_rc;
3332 
3333 	pci_rc = pci_register_driver(&vortex_driver);
3334 	eisa_rc = vortex_eisa_init();
3335 
3336 	if (pci_rc == 0)
3337 		vortex_have_pci = 1;
3338 	if (eisa_rc > 0)
3339 		vortex_have_eisa = 1;
3340 
3341 	return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV;
3342 }
3343 
3344 
3345 static void __exit vortex_eisa_cleanup(void)
3346 {
3347 	void __iomem *ioaddr;
3348 
3349 #ifdef CONFIG_EISA
3350 	/* Take care of the EISA devices */
3351 	eisa_driver_unregister(&vortex_eisa_driver);
3352 #endif
3353 
3354 	if (compaq_net_device) {
3355 		ioaddr = ioport_map(compaq_net_device->base_addr,
3356 		                    VORTEX_TOTAL_SIZE);
3357 
3358 		unregister_netdev(compaq_net_device);
3359 		iowrite16(TotalReset, ioaddr + EL3_CMD);
3360 		release_region(compaq_net_device->base_addr,
3361 		               VORTEX_TOTAL_SIZE);
3362 
3363 		free_netdev(compaq_net_device);
3364 	}
3365 }
3366 
3367 
3368 static void __exit vortex_cleanup(void)
3369 {
3370 	if (vortex_have_pci)
3371 		pci_unregister_driver(&vortex_driver);
3372 	if (vortex_have_eisa)
3373 		vortex_eisa_cleanup();
3374 }
3375 
3376 
3377 module_init(vortex_init);
3378 module_exit(vortex_cleanup);
3379