1 /* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */ 2 /* 3 Written 1996-1999 by Donald Becker. 4 5 This software may be used and distributed according to the terms 6 of the GNU General Public License, incorporated herein by reference. 7 8 This driver is for the 3Com "Vortex" and "Boomerang" series ethercards. 9 Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597 10 and the EtherLink XL 3c900 and 3c905 cards. 11 12 Problem reports and questions should be directed to 13 vortex@scyld.com 14 15 The author may be reached as becker@scyld.com, or C/O 16 Scyld Computing Corporation 17 410 Severn Ave., Suite 210 18 Annapolis MD 21403 19 20 */ 21 22 /* 23 * FIXME: This driver _could_ support MTU changing, but doesn't. See Don's hamachi.c implementation 24 * as well as other drivers 25 * 26 * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k 27 * due to dead code elimination. There will be some performance benefits from this due to 28 * elimination of all the tests and reduced cache footprint. 29 */ 30 31 32 #define DRV_NAME "3c59x" 33 34 35 36 /* A few values that may be tweaked. */ 37 /* Keep the ring sizes a power of two for efficiency. */ 38 #define TX_RING_SIZE 16 39 #define RX_RING_SIZE 32 40 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/ 41 42 /* "Knobs" that adjust features and parameters. */ 43 /* Set the copy breakpoint for the copy-only-tiny-frames scheme. 44 Setting to > 1512 effectively disables this feature. */ 45 #ifndef __arm__ 46 static int rx_copybreak = 200; 47 #else 48 /* ARM systems perform better by disregarding the bus-master 49 transfer capability of these cards. -- rmk */ 50 static int rx_copybreak = 1513; 51 #endif 52 /* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */ 53 static const int mtu = 1500; 54 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */ 55 static int max_interrupt_work = 32; 56 /* Tx timeout interval (millisecs) */ 57 static int watchdog = 5000; 58 59 /* Allow aggregation of Tx interrupts. Saves CPU load at the cost 60 * of possible Tx stalls if the system is blocking interrupts 61 * somewhere else. Undefine this to disable. 62 */ 63 #define tx_interrupt_mitigation 1 64 65 /* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */ 66 #define vortex_debug debug 67 #ifdef VORTEX_DEBUG 68 static int vortex_debug = VORTEX_DEBUG; 69 #else 70 static int vortex_debug = 1; 71 #endif 72 73 #include <linux/module.h> 74 #include <linux/kernel.h> 75 #include <linux/string.h> 76 #include <linux/timer.h> 77 #include <linux/errno.h> 78 #include <linux/in.h> 79 #include <linux/ioport.h> 80 #include <linux/interrupt.h> 81 #include <linux/pci.h> 82 #include <linux/mii.h> 83 #include <linux/init.h> 84 #include <linux/netdevice.h> 85 #include <linux/etherdevice.h> 86 #include <linux/skbuff.h> 87 #include <linux/ethtool.h> 88 #include <linux/highmem.h> 89 #include <linux/eisa.h> 90 #include <linux/bitops.h> 91 #include <linux/jiffies.h> 92 #include <linux/gfp.h> 93 #include <asm/irq.h> /* For nr_irqs only. */ 94 #include <asm/io.h> 95 #include <linux/uaccess.h> 96 97 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package. 98 This is only in the support-all-kernels source code. */ 99 100 #define RUN_AT(x) (jiffies + (x)) 101 102 #include <linux/delay.h> 103 104 105 static const char version[] = 106 DRV_NAME ": Donald Becker and others.\n"; 107 108 MODULE_AUTHOR("Donald Becker <becker@scyld.com>"); 109 MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver "); 110 MODULE_LICENSE("GPL"); 111 112 113 /* Operational parameter that usually are not changed. */ 114 115 /* The Vortex size is twice that of the original EtherLinkIII series: the 116 runtime register window, window 1, is now always mapped in. 117 The Boomerang size is twice as large as the Vortex -- it has additional 118 bus master control registers. */ 119 #define VORTEX_TOTAL_SIZE 0x20 120 #define BOOMERANG_TOTAL_SIZE 0x40 121 122 /* Set iff a MII transceiver on any interface requires mdio preamble. 123 This only set with the original DP83840 on older 3c905 boards, so the extra 124 code size of a per-interface flag is not worthwhile. */ 125 static char mii_preamble_required; 126 127 #define PFX DRV_NAME ": " 128 129 130 131 /* 132 Theory of Operation 133 134 I. Board Compatibility 135 136 This device driver is designed for the 3Com FastEtherLink and FastEtherLink 137 XL, 3Com's PCI to 10/100baseT adapters. It also works with the 10Mbs 138 versions of the FastEtherLink cards. The supported product IDs are 139 3c590, 3c592, 3c595, 3c597, 3c900, 3c905 140 141 The related ISA 3c515 is supported with a separate driver, 3c515.c, included 142 with the kernel source or available from 143 cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html 144 145 II. Board-specific settings 146 147 PCI bus devices are configured by the system at boot time, so no jumpers 148 need to be set on the board. The system BIOS should be set to assign the 149 PCI INTA signal to an otherwise unused system IRQ line. 150 151 The EEPROM settings for media type and forced-full-duplex are observed. 152 The EEPROM media type should be left at the default "autoselect" unless using 153 10base2 or AUI connections which cannot be reliably detected. 154 155 III. Driver operation 156 157 The 3c59x series use an interface that's very similar to the previous 3c5x9 158 series. The primary interface is two programmed-I/O FIFOs, with an 159 alternate single-contiguous-region bus-master transfer (see next). 160 161 The 3c900 "Boomerang" series uses a full-bus-master interface with separate 162 lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet, 163 DEC Tulip and Intel Speedo3. The first chip version retains a compatible 164 programmed-I/O interface that has been removed in 'B' and subsequent board 165 revisions. 166 167 One extension that is advertised in a very large font is that the adapters 168 are capable of being bus masters. On the Vortex chip this capability was 169 only for a single contiguous region making it far less useful than the full 170 bus master capability. There is a significant performance impact of taking 171 an extra interrupt or polling for the completion of each transfer, as well 172 as difficulty sharing the single transfer engine between the transmit and 173 receive threads. Using DMA transfers is a win only with large blocks or 174 with the flawed versions of the Intel Orion motherboard PCI controller. 175 176 The Boomerang chip's full-bus-master interface is useful, and has the 177 currently-unused advantages over other similar chips that queued transmit 178 packets may be reordered and receive buffer groups are associated with a 179 single frame. 180 181 With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme. 182 Rather than a fixed intermediate receive buffer, this scheme allocates 183 full-sized skbuffs as receive buffers. The value RX_COPYBREAK is used as 184 the copying breakpoint: it is chosen to trade-off the memory wasted by 185 passing the full-sized skbuff to the queue layer for all frames vs. the 186 copying cost of copying a frame to a correctly-sized skbuff. 187 188 IIIC. Synchronization 189 The driver runs as two independent, single-threaded flows of control. One 190 is the send-packet routine, which enforces single-threaded use by the 191 dev->tbusy flag. The other thread is the interrupt handler, which is single 192 threaded by the hardware and other software. 193 194 IV. Notes 195 196 Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development 197 3c590, 3c595, and 3c900 boards. 198 The name "Vortex" is the internal 3Com project name for the PCI ASIC, and 199 the EISA version is called "Demon". According to Terry these names come 200 from rides at the local amusement park. 201 202 The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes! 203 This driver only supports ethernet packets because of the skbuff allocation 204 limit of 4K. 205 */ 206 207 /* This table drives the PCI probe routines. It's mostly boilerplate in all 208 of the drivers, and will likely be provided by some future kernel. 209 */ 210 enum pci_flags_bit { 211 PCI_USES_MASTER=4, 212 }; 213 214 enum { IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8, 215 EEPROM_8BIT=0x10, /* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */ 216 HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100, 217 INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800, 218 EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000, 219 EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, }; 220 221 enum vortex_chips { 222 CH_3C590 = 0, 223 CH_3C592, 224 CH_3C597, 225 CH_3C595_1, 226 CH_3C595_2, 227 228 CH_3C595_3, 229 CH_3C900_1, 230 CH_3C900_2, 231 CH_3C900_3, 232 CH_3C900_4, 233 234 CH_3C900_5, 235 CH_3C900B_FL, 236 CH_3C905_1, 237 CH_3C905_2, 238 CH_3C905B_TX, 239 CH_3C905B_1, 240 241 CH_3C905B_2, 242 CH_3C905B_FX, 243 CH_3C905C, 244 CH_3C9202, 245 CH_3C980, 246 CH_3C9805, 247 248 CH_3CSOHO100_TX, 249 CH_3C555, 250 CH_3C556, 251 CH_3C556B, 252 CH_3C575, 253 254 CH_3C575_1, 255 CH_3CCFE575, 256 CH_3CCFE575CT, 257 CH_3CCFE656, 258 CH_3CCFEM656, 259 260 CH_3CCFEM656_1, 261 CH_3C450, 262 CH_3C920, 263 CH_3C982A, 264 CH_3C982B, 265 266 CH_905BT4, 267 CH_920B_EMB_WNM, 268 }; 269 270 271 /* note: this array directly indexed by above enums, and MUST 272 * be kept in sync with both the enums above, and the PCI device 273 * table below 274 */ 275 static struct vortex_chip_info { 276 const char *name; 277 int flags; 278 int drv_flags; 279 int io_size; 280 } vortex_info_tbl[] = { 281 {"3c590 Vortex 10Mbps", 282 PCI_USES_MASTER, IS_VORTEX, 32, }, 283 {"3c592 EISA 10Mbps Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */ 284 PCI_USES_MASTER, IS_VORTEX, 32, }, 285 {"3c597 EISA Fast Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */ 286 PCI_USES_MASTER, IS_VORTEX, 32, }, 287 {"3c595 Vortex 100baseTx", 288 PCI_USES_MASTER, IS_VORTEX, 32, }, 289 {"3c595 Vortex 100baseT4", 290 PCI_USES_MASTER, IS_VORTEX, 32, }, 291 292 {"3c595 Vortex 100base-MII", 293 PCI_USES_MASTER, IS_VORTEX, 32, }, 294 {"3c900 Boomerang 10baseT", 295 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, }, 296 {"3c900 Boomerang 10Mbps Combo", 297 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, }, 298 {"3c900 Cyclone 10Mbps TPO", /* AKPM: from Don's 0.99M */ 299 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, }, 300 {"3c900 Cyclone 10Mbps Combo", 301 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, }, 302 303 {"3c900 Cyclone 10Mbps TPC", /* AKPM: from Don's 0.99M */ 304 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, }, 305 {"3c900B-FL Cyclone 10base-FL", 306 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, }, 307 {"3c905 Boomerang 100baseTx", 308 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, }, 309 {"3c905 Boomerang 100baseT4", 310 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, }, 311 {"3C905B-TX Fast Etherlink XL PCI", 312 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, }, 313 {"3c905B Cyclone 100baseTx", 314 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, }, 315 316 {"3c905B Cyclone 10/100/BNC", 317 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, }, 318 {"3c905B-FX Cyclone 100baseFx", 319 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, }, 320 {"3c905C Tornado", 321 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, }, 322 {"3c920B-EMB-WNM (ATI Radeon 9100 IGP)", 323 PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, }, 324 {"3c980 Cyclone", 325 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM|EXTRA_PREAMBLE, 128, }, 326 327 {"3c980C Python-T", 328 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, }, 329 {"3cSOHO100-TX Hurricane", 330 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, }, 331 {"3c555 Laptop Hurricane", 332 PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, }, 333 {"3c556 Laptop Tornado", 334 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR| 335 HAS_HWCKSM, 128, }, 336 {"3c556B Laptop Hurricane", 337 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR| 338 WNO_XCVR_PWR|HAS_HWCKSM, 128, }, 339 340 {"3c575 [Megahertz] 10/100 LAN CardBus", 341 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, }, 342 {"3c575 Boomerang CardBus", 343 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, }, 344 {"3CCFE575BT Cyclone CardBus", 345 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT| 346 INVERT_LED_PWR|HAS_HWCKSM, 128, }, 347 {"3CCFE575CT Tornado CardBus", 348 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR| 349 MAX_COLLISION_RESET|HAS_HWCKSM, 128, }, 350 {"3CCFE656 Cyclone CardBus", 351 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR| 352 INVERT_LED_PWR|HAS_HWCKSM, 128, }, 353 354 {"3CCFEM656B Cyclone+Winmodem CardBus", 355 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR| 356 INVERT_LED_PWR|HAS_HWCKSM, 128, }, 357 {"3CXFEM656C Tornado+Winmodem CardBus", /* From pcmcia-cs-3.1.5 */ 358 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR| 359 MAX_COLLISION_RESET|HAS_HWCKSM, 128, }, 360 {"3c450 HomePNA Tornado", /* AKPM: from Don's 0.99Q */ 361 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, }, 362 {"3c920 Tornado", 363 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, }, 364 {"3c982 Hydra Dual Port A", 365 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, }, 366 367 {"3c982 Hydra Dual Port B", 368 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, }, 369 {"3c905B-T4", 370 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, }, 371 {"3c920B-EMB-WNM Tornado", 372 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, }, 373 374 {NULL,}, /* NULL terminated list. */ 375 }; 376 377 378 static const struct pci_device_id vortex_pci_tbl[] = { 379 { 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 }, 380 { 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 }, 381 { 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 }, 382 { 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 }, 383 { 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 }, 384 385 { 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 }, 386 { 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 }, 387 { 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 }, 388 { 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 }, 389 { 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 }, 390 391 { 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 }, 392 { 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL }, 393 { 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 }, 394 { 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 }, 395 { 0x10B7, 0x9054, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_TX }, 396 { 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 }, 397 398 { 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 }, 399 { 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX }, 400 { 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C }, 401 { 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 }, 402 { 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 }, 403 { 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 }, 404 405 { 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX }, 406 { 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 }, 407 { 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 }, 408 { 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B }, 409 { 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 }, 410 411 { 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 }, 412 { 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 }, 413 { 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT }, 414 { 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 }, 415 { 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 }, 416 417 { 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 }, 418 { 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 }, 419 { 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 }, 420 { 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A }, 421 { 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B }, 422 423 { 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 }, 424 { 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM }, 425 426 {0,} /* 0 terminated list. */ 427 }; 428 MODULE_DEVICE_TABLE(pci, vortex_pci_tbl); 429 430 431 /* Operational definitions. 432 These are not used by other compilation units and thus are not 433 exported in a ".h" file. 434 435 First the windows. There are eight register windows, with the command 436 and status registers available in each. 437 */ 438 #define EL3_CMD 0x0e 439 #define EL3_STATUS 0x0e 440 441 /* The top five bits written to EL3_CMD are a command, the lower 442 11 bits are the parameter, if applicable. 443 Note that 11 parameters bits was fine for ethernet, but the new chip 444 can handle FDDI length frames (~4500 octets) and now parameters count 445 32-bit 'Dwords' rather than octets. */ 446 447 enum vortex_cmd { 448 TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11, 449 RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11, 450 UpStall = 6<<11, UpUnstall = (6<<11)+1, 451 DownStall = (6<<11)+2, DownUnstall = (6<<11)+3, 452 RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11, 453 FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11, 454 SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11, 455 SetTxThreshold = 18<<11, SetTxStart = 19<<11, 456 StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11, 457 StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,}; 458 459 /* The SetRxFilter command accepts the following classes: */ 460 enum RxFilter { 461 RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 }; 462 463 /* Bits in the general status register. */ 464 enum vortex_status { 465 IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004, 466 TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020, 467 IntReq = 0x0040, StatsFull = 0x0080, 468 DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10, 469 DMAInProgress = 1<<11, /* DMA controller is still busy.*/ 470 CmdInProgress = 1<<12, /* EL3_CMD is still busy.*/ 471 }; 472 473 /* Register window 1 offsets, the window used in normal operation. 474 On the Vortex this window is always mapped at offsets 0x10-0x1f. */ 475 enum Window1 { 476 TX_FIFO = 0x10, RX_FIFO = 0x10, RxErrors = 0x14, 477 RxStatus = 0x18, Timer=0x1A, TxStatus = 0x1B, 478 TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */ 479 }; 480 enum Window0 { 481 Wn0EepromCmd = 10, /* Window 0: EEPROM command register. */ 482 Wn0EepromData = 12, /* Window 0: EEPROM results register. */ 483 IntrStatus=0x0E, /* Valid in all windows. */ 484 }; 485 enum Win0_EEPROM_bits { 486 EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0, 487 EEPROM_EWENB = 0x30, /* Enable erasing/writing for 10 msec. */ 488 EEPROM_EWDIS = 0x00, /* Disable EWENB before 10 msec timeout. */ 489 }; 490 /* EEPROM locations. */ 491 enum eeprom_offset { 492 PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3, 493 EtherLink3ID=7, IFXcvrIO=8, IRQLine=9, 494 NodeAddr01=10, NodeAddr23=11, NodeAddr45=12, 495 DriverTune=13, Checksum=15}; 496 497 enum Window2 { /* Window 2. */ 498 Wn2_ResetOptions=12, 499 }; 500 enum Window3 { /* Window 3: MAC/config bits. */ 501 Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8, 502 }; 503 504 #define BFEXT(value, offset, bitcount) \ 505 ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1)) 506 507 #define BFINS(lhs, rhs, offset, bitcount) \ 508 (((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) | \ 509 (((rhs) & ((1 << (bitcount)) - 1)) << (offset))) 510 511 #define RAM_SIZE(v) BFEXT(v, 0, 3) 512 #define RAM_WIDTH(v) BFEXT(v, 3, 1) 513 #define RAM_SPEED(v) BFEXT(v, 4, 2) 514 #define ROM_SIZE(v) BFEXT(v, 6, 2) 515 #define RAM_SPLIT(v) BFEXT(v, 16, 2) 516 #define XCVR(v) BFEXT(v, 20, 4) 517 #define AUTOSELECT(v) BFEXT(v, 24, 1) 518 519 enum Window4 { /* Window 4: Xcvr/media bits. */ 520 Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10, 521 }; 522 enum Win4_Media_bits { 523 Media_SQE = 0x0008, /* Enable SQE error counting for AUI. */ 524 Media_10TP = 0x00C0, /* Enable link beat and jabber for 10baseT. */ 525 Media_Lnk = 0x0080, /* Enable just link beat for 100TX/100FX. */ 526 Media_LnkBeat = 0x0800, 527 }; 528 enum Window7 { /* Window 7: Bus Master control. */ 529 Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6, 530 Wn7_MasterStatus = 12, 531 }; 532 /* Boomerang bus master control registers. */ 533 enum MasterCtrl { 534 PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c, 535 TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38, 536 }; 537 538 /* The Rx and Tx descriptor lists. 539 Caution Alpha hackers: these types are 32 bits! Note also the 8 byte 540 alignment contraint on tx_ring[] and rx_ring[]. */ 541 #define LAST_FRAG 0x80000000 /* Last Addr/Len pair in descriptor. */ 542 #define DN_COMPLETE 0x00010000 /* This packet has been downloaded */ 543 struct boom_rx_desc { 544 __le32 next; /* Last entry points to 0. */ 545 __le32 status; 546 __le32 addr; /* Up to 63 addr/len pairs possible. */ 547 __le32 length; /* Set LAST_FRAG to indicate last pair. */ 548 }; 549 /* Values for the Rx status entry. */ 550 enum rx_desc_status { 551 RxDComplete=0x00008000, RxDError=0x4000, 552 /* See boomerang_rx() for actual error bits */ 553 IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27, 554 IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31, 555 }; 556 557 #ifdef MAX_SKB_FRAGS 558 #define DO_ZEROCOPY 1 559 #else 560 #define DO_ZEROCOPY 0 561 #endif 562 563 struct boom_tx_desc { 564 __le32 next; /* Last entry points to 0. */ 565 __le32 status; /* bits 0:12 length, others see below. */ 566 #if DO_ZEROCOPY 567 struct { 568 __le32 addr; 569 __le32 length; 570 } frag[1+MAX_SKB_FRAGS]; 571 #else 572 __le32 addr; 573 __le32 length; 574 #endif 575 }; 576 577 /* Values for the Tx status entry. */ 578 enum tx_desc_status { 579 CRCDisable=0x2000, TxDComplete=0x8000, 580 AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000, 581 TxIntrUploaded=0x80000000, /* IRQ when in FIFO, but maybe not sent. */ 582 }; 583 584 /* Chip features we care about in vp->capabilities, read from the EEPROM. */ 585 enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 }; 586 587 struct vortex_extra_stats { 588 unsigned long tx_deferred; 589 unsigned long tx_max_collisions; 590 unsigned long tx_multiple_collisions; 591 unsigned long tx_single_collisions; 592 unsigned long rx_bad_ssd; 593 }; 594 595 struct vortex_private { 596 /* The Rx and Tx rings should be quad-word-aligned. */ 597 struct boom_rx_desc* rx_ring; 598 struct boom_tx_desc* tx_ring; 599 dma_addr_t rx_ring_dma; 600 dma_addr_t tx_ring_dma; 601 /* The addresses of transmit- and receive-in-place skbuffs. */ 602 struct sk_buff* rx_skbuff[RX_RING_SIZE]; 603 struct sk_buff* tx_skbuff[TX_RING_SIZE]; 604 unsigned int cur_rx, cur_tx; /* The next free ring entry */ 605 unsigned int dirty_rx, dirty_tx; /* The ring entries to be free()ed. */ 606 struct vortex_extra_stats xstats; /* NIC-specific extra stats */ 607 struct sk_buff *tx_skb; /* Packet being eaten by bus master ctrl. */ 608 dma_addr_t tx_skb_dma; /* Allocated DMA address for bus master ctrl DMA. */ 609 610 /* PCI configuration space information. */ 611 struct device *gendev; 612 void __iomem *ioaddr; /* IO address space */ 613 void __iomem *cb_fn_base; /* CardBus function status addr space. */ 614 615 /* Some values here only for performance evaluation and path-coverage */ 616 int rx_nocopy, rx_copy, queued_packet, rx_csumhits; 617 int card_idx; 618 619 /* The remainder are related to chip state, mostly media selection. */ 620 struct timer_list timer; /* Media selection timer. */ 621 struct timer_list rx_oom_timer; /* Rx skb allocation retry timer */ 622 int options; /* User-settable misc. driver options. */ 623 unsigned int media_override:4, /* Passed-in media type. */ 624 default_media:4, /* Read from the EEPROM/Wn3_Config. */ 625 full_duplex:1, autoselect:1, 626 bus_master:1, /* Vortex can only do a fragment bus-m. */ 627 full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang */ 628 flow_ctrl:1, /* Use 802.3x flow control (PAUSE only) */ 629 partner_flow_ctrl:1, /* Partner supports flow control */ 630 has_nway:1, 631 enable_wol:1, /* Wake-on-LAN is enabled */ 632 pm_state_valid:1, /* pci_dev->saved_config_space has sane contents */ 633 open:1, 634 medialock:1, 635 large_frames:1, /* accept large frames */ 636 handling_irq:1; /* private in_irq indicator */ 637 /* {get|set}_wol operations are already serialized by rtnl. 638 * no additional locking is required for the enable_wol and acpi_set_WOL() 639 */ 640 int drv_flags; 641 u16 status_enable; 642 u16 intr_enable; 643 u16 available_media; /* From Wn3_Options. */ 644 u16 capabilities, info1, info2; /* Various, from EEPROM. */ 645 u16 advertising; /* NWay media advertisement */ 646 unsigned char phys[2]; /* MII device addresses. */ 647 u16 deferred; /* Resend these interrupts when we 648 * bale from the ISR */ 649 u16 io_size; /* Size of PCI region (for release_region) */ 650 651 /* Serialises access to hardware other than MII and variables below. 652 * The lock hierarchy is rtnl_lock > {lock, mii_lock} > window_lock. */ 653 spinlock_t lock; 654 655 spinlock_t mii_lock; /* Serialises access to MII */ 656 struct mii_if_info mii; /* MII lib hooks/info */ 657 spinlock_t window_lock; /* Serialises access to windowed regs */ 658 int window; /* Register window */ 659 }; 660 661 static void window_set(struct vortex_private *vp, int window) 662 { 663 if (window != vp->window) { 664 iowrite16(SelectWindow + window, vp->ioaddr + EL3_CMD); 665 vp->window = window; 666 } 667 } 668 669 #define DEFINE_WINDOW_IO(size) \ 670 static u ## size \ 671 window_read ## size(struct vortex_private *vp, int window, int addr) \ 672 { \ 673 unsigned long flags; \ 674 u ## size ret; \ 675 spin_lock_irqsave(&vp->window_lock, flags); \ 676 window_set(vp, window); \ 677 ret = ioread ## size(vp->ioaddr + addr); \ 678 spin_unlock_irqrestore(&vp->window_lock, flags); \ 679 return ret; \ 680 } \ 681 static void \ 682 window_write ## size(struct vortex_private *vp, u ## size value, \ 683 int window, int addr) \ 684 { \ 685 unsigned long flags; \ 686 spin_lock_irqsave(&vp->window_lock, flags); \ 687 window_set(vp, window); \ 688 iowrite ## size(value, vp->ioaddr + addr); \ 689 spin_unlock_irqrestore(&vp->window_lock, flags); \ 690 } 691 DEFINE_WINDOW_IO(8) 692 DEFINE_WINDOW_IO(16) 693 DEFINE_WINDOW_IO(32) 694 695 #ifdef CONFIG_PCI 696 #define DEVICE_PCI(dev) ((dev_is_pci(dev)) ? to_pci_dev((dev)) : NULL) 697 #else 698 #define DEVICE_PCI(dev) NULL 699 #endif 700 701 #define VORTEX_PCI(vp) \ 702 ((struct pci_dev *) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL)) 703 704 #ifdef CONFIG_EISA 705 #define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL) 706 #else 707 #define DEVICE_EISA(dev) NULL 708 #endif 709 710 #define VORTEX_EISA(vp) \ 711 ((struct eisa_device *) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL)) 712 713 /* The action to take with a media selection timer tick. 714 Note that we deviate from the 3Com order by checking 10base2 before AUI. 715 */ 716 enum xcvr_types { 717 XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx, 718 XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10, 719 }; 720 721 static const struct media_table { 722 char *name; 723 unsigned int media_bits:16, /* Bits to set in Wn4_Media register. */ 724 mask:8, /* The transceiver-present bit in Wn3_Config.*/ 725 next:8; /* The media type to try next. */ 726 int wait; /* Time before we check media status. */ 727 } media_tbl[] = { 728 { "10baseT", Media_10TP,0x08, XCVR_10base2, (14*HZ)/10}, 729 { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10}, 730 { "undefined", 0, 0x80, XCVR_10baseT, 10000}, 731 { "10base2", 0, 0x10, XCVR_AUI, (1*HZ)/10}, 732 { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10}, 733 { "100baseFX", Media_Lnk, 0x04, XCVR_MII, (14*HZ)/10}, 734 { "MII", 0, 0x41, XCVR_10baseT, 3*HZ }, 735 { "undefined", 0, 0x01, XCVR_10baseT, 10000}, 736 { "Autonegotiate", 0, 0x41, XCVR_10baseT, 3*HZ}, 737 { "MII-External", 0, 0x41, XCVR_10baseT, 3*HZ }, 738 { "Default", 0, 0xFF, XCVR_10baseT, 10000}, 739 }; 740 741 static struct { 742 const char str[ETH_GSTRING_LEN]; 743 } ethtool_stats_keys[] = { 744 { "tx_deferred" }, 745 { "tx_max_collisions" }, 746 { "tx_multiple_collisions" }, 747 { "tx_single_collisions" }, 748 { "rx_bad_ssd" }, 749 }; 750 751 /* number of ETHTOOL_GSTATS u64's */ 752 #define VORTEX_NUM_STATS 5 753 754 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq, 755 int chip_idx, int card_idx); 756 static int vortex_up(struct net_device *dev); 757 static void vortex_down(struct net_device *dev, int final); 758 static int vortex_open(struct net_device *dev); 759 static void mdio_sync(struct vortex_private *vp, int bits); 760 static int mdio_read(struct net_device *dev, int phy_id, int location); 761 static void mdio_write(struct net_device *vp, int phy_id, int location, int value); 762 static void vortex_timer(unsigned long arg); 763 static void rx_oom_timer(unsigned long arg); 764 static netdev_tx_t vortex_start_xmit(struct sk_buff *skb, 765 struct net_device *dev); 766 static netdev_tx_t boomerang_start_xmit(struct sk_buff *skb, 767 struct net_device *dev); 768 static int vortex_rx(struct net_device *dev); 769 static int boomerang_rx(struct net_device *dev); 770 static irqreturn_t vortex_interrupt(int irq, void *dev_id); 771 static irqreturn_t boomerang_interrupt(int irq, void *dev_id); 772 static int vortex_close(struct net_device *dev); 773 static void dump_tx_ring(struct net_device *dev); 774 static void update_stats(void __iomem *ioaddr, struct net_device *dev); 775 static struct net_device_stats *vortex_get_stats(struct net_device *dev); 776 static void set_rx_mode(struct net_device *dev); 777 #ifdef CONFIG_PCI 778 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); 779 #endif 780 static void vortex_tx_timeout(struct net_device *dev); 781 static void acpi_set_WOL(struct net_device *dev); 782 static const struct ethtool_ops vortex_ethtool_ops; 783 static void set_8021q_mode(struct net_device *dev, int enable); 784 785 /* This driver uses 'options' to pass the media type, full-duplex flag, etc. */ 786 /* Option count limit only -- unlimited interfaces are supported. */ 787 #define MAX_UNITS 8 788 static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 }; 789 static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 }; 790 static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 }; 791 static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 }; 792 static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 }; 793 static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 }; 794 static int global_options = -1; 795 static int global_full_duplex = -1; 796 static int global_enable_wol = -1; 797 static int global_use_mmio = -1; 798 799 /* Variables to work-around the Compaq PCI BIOS32 problem. */ 800 static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900; 801 static struct net_device *compaq_net_device; 802 803 static int vortex_cards_found; 804 805 module_param(debug, int, 0); 806 module_param(global_options, int, 0); 807 module_param_array(options, int, NULL, 0); 808 module_param(global_full_duplex, int, 0); 809 module_param_array(full_duplex, int, NULL, 0); 810 module_param_array(hw_checksums, int, NULL, 0); 811 module_param_array(flow_ctrl, int, NULL, 0); 812 module_param(global_enable_wol, int, 0); 813 module_param_array(enable_wol, int, NULL, 0); 814 module_param(rx_copybreak, int, 0); 815 module_param(max_interrupt_work, int, 0); 816 module_param(compaq_ioaddr, int, 0); 817 module_param(compaq_irq, int, 0); 818 module_param(compaq_device_id, int, 0); 819 module_param(watchdog, int, 0); 820 module_param(global_use_mmio, int, 0); 821 module_param_array(use_mmio, int, NULL, 0); 822 MODULE_PARM_DESC(debug, "3c59x debug level (0-6)"); 823 MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex"); 824 MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset"); 825 MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)"); 826 MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset"); 827 MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)"); 828 MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)"); 829 MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)"); 830 MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset"); 831 MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames"); 832 MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt"); 833 MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)"); 834 MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)"); 835 MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)"); 836 MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds"); 837 MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset"); 838 MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)"); 839 840 #ifdef CONFIG_NET_POLL_CONTROLLER 841 static void poll_vortex(struct net_device *dev) 842 { 843 struct vortex_private *vp = netdev_priv(dev); 844 unsigned long flags; 845 local_irq_save(flags); 846 (vp->full_bus_master_rx ? boomerang_interrupt:vortex_interrupt)(dev->irq,dev); 847 local_irq_restore(flags); 848 } 849 #endif 850 851 #ifdef CONFIG_PM 852 853 static int vortex_suspend(struct device *dev) 854 { 855 struct pci_dev *pdev = to_pci_dev(dev); 856 struct net_device *ndev = pci_get_drvdata(pdev); 857 858 if (!ndev || !netif_running(ndev)) 859 return 0; 860 861 netif_device_detach(ndev); 862 vortex_down(ndev, 1); 863 864 return 0; 865 } 866 867 static int vortex_resume(struct device *dev) 868 { 869 struct pci_dev *pdev = to_pci_dev(dev); 870 struct net_device *ndev = pci_get_drvdata(pdev); 871 int err; 872 873 if (!ndev || !netif_running(ndev)) 874 return 0; 875 876 err = vortex_up(ndev); 877 if (err) 878 return err; 879 880 netif_device_attach(ndev); 881 882 return 0; 883 } 884 885 static const struct dev_pm_ops vortex_pm_ops = { 886 .suspend = vortex_suspend, 887 .resume = vortex_resume, 888 .freeze = vortex_suspend, 889 .thaw = vortex_resume, 890 .poweroff = vortex_suspend, 891 .restore = vortex_resume, 892 }; 893 894 #define VORTEX_PM_OPS (&vortex_pm_ops) 895 896 #else /* !CONFIG_PM */ 897 898 #define VORTEX_PM_OPS NULL 899 900 #endif /* !CONFIG_PM */ 901 902 #ifdef CONFIG_EISA 903 static struct eisa_device_id vortex_eisa_ids[] = { 904 { "TCM5920", CH_3C592 }, 905 { "TCM5970", CH_3C597 }, 906 { "" } 907 }; 908 MODULE_DEVICE_TABLE(eisa, vortex_eisa_ids); 909 910 static int vortex_eisa_probe(struct device *device) 911 { 912 void __iomem *ioaddr; 913 struct eisa_device *edev; 914 915 edev = to_eisa_device(device); 916 917 if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME)) 918 return -EBUSY; 919 920 ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE); 921 922 if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12, 923 edev->id.driver_data, vortex_cards_found)) { 924 release_region(edev->base_addr, VORTEX_TOTAL_SIZE); 925 return -ENODEV; 926 } 927 928 vortex_cards_found++; 929 930 return 0; 931 } 932 933 static int vortex_eisa_remove(struct device *device) 934 { 935 struct eisa_device *edev; 936 struct net_device *dev; 937 struct vortex_private *vp; 938 void __iomem *ioaddr; 939 940 edev = to_eisa_device(device); 941 dev = eisa_get_drvdata(edev); 942 943 if (!dev) { 944 pr_err("vortex_eisa_remove called for Compaq device!\n"); 945 BUG(); 946 } 947 948 vp = netdev_priv(dev); 949 ioaddr = vp->ioaddr; 950 951 unregister_netdev(dev); 952 iowrite16(TotalReset|0x14, ioaddr + EL3_CMD); 953 release_region(edev->base_addr, VORTEX_TOTAL_SIZE); 954 955 free_netdev(dev); 956 return 0; 957 } 958 959 static struct eisa_driver vortex_eisa_driver = { 960 .id_table = vortex_eisa_ids, 961 .driver = { 962 .name = "3c59x", 963 .probe = vortex_eisa_probe, 964 .remove = vortex_eisa_remove 965 } 966 }; 967 968 #endif /* CONFIG_EISA */ 969 970 /* returns count found (>= 0), or negative on error */ 971 static int __init vortex_eisa_init(void) 972 { 973 int eisa_found = 0; 974 int orig_cards_found = vortex_cards_found; 975 976 #ifdef CONFIG_EISA 977 int err; 978 979 err = eisa_driver_register (&vortex_eisa_driver); 980 if (!err) { 981 /* 982 * Because of the way EISA bus is probed, we cannot assume 983 * any device have been found when we exit from 984 * eisa_driver_register (the bus root driver may not be 985 * initialized yet). So we blindly assume something was 986 * found, and let the sysfs magic happened... 987 */ 988 eisa_found = 1; 989 } 990 #endif 991 992 /* Special code to work-around the Compaq PCI BIOS32 problem. */ 993 if (compaq_ioaddr) { 994 vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE), 995 compaq_irq, compaq_device_id, vortex_cards_found++); 996 } 997 998 return vortex_cards_found - orig_cards_found + eisa_found; 999 } 1000 1001 /* returns count (>= 0), or negative on error */ 1002 static int vortex_init_one(struct pci_dev *pdev, 1003 const struct pci_device_id *ent) 1004 { 1005 int rc, unit, pci_bar; 1006 struct vortex_chip_info *vci; 1007 void __iomem *ioaddr; 1008 1009 /* wake up and enable device */ 1010 rc = pci_enable_device(pdev); 1011 if (rc < 0) 1012 goto out; 1013 1014 rc = pci_request_regions(pdev, DRV_NAME); 1015 if (rc < 0) 1016 goto out_disable; 1017 1018 unit = vortex_cards_found; 1019 1020 if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) { 1021 /* Determine the default if the user didn't override us */ 1022 vci = &vortex_info_tbl[ent->driver_data]; 1023 pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0; 1024 } else if (unit < MAX_UNITS && use_mmio[unit] >= 0) 1025 pci_bar = use_mmio[unit] ? 1 : 0; 1026 else 1027 pci_bar = global_use_mmio ? 1 : 0; 1028 1029 ioaddr = pci_iomap(pdev, pci_bar, 0); 1030 if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */ 1031 ioaddr = pci_iomap(pdev, 0, 0); 1032 if (!ioaddr) { 1033 rc = -ENOMEM; 1034 goto out_release; 1035 } 1036 1037 rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq, 1038 ent->driver_data, unit); 1039 if (rc < 0) 1040 goto out_iounmap; 1041 1042 vortex_cards_found++; 1043 goto out; 1044 1045 out_iounmap: 1046 pci_iounmap(pdev, ioaddr); 1047 out_release: 1048 pci_release_regions(pdev); 1049 out_disable: 1050 pci_disable_device(pdev); 1051 out: 1052 return rc; 1053 } 1054 1055 static const struct net_device_ops boomrang_netdev_ops = { 1056 .ndo_open = vortex_open, 1057 .ndo_stop = vortex_close, 1058 .ndo_start_xmit = boomerang_start_xmit, 1059 .ndo_tx_timeout = vortex_tx_timeout, 1060 .ndo_get_stats = vortex_get_stats, 1061 #ifdef CONFIG_PCI 1062 .ndo_do_ioctl = vortex_ioctl, 1063 #endif 1064 .ndo_set_rx_mode = set_rx_mode, 1065 .ndo_set_mac_address = eth_mac_addr, 1066 .ndo_validate_addr = eth_validate_addr, 1067 #ifdef CONFIG_NET_POLL_CONTROLLER 1068 .ndo_poll_controller = poll_vortex, 1069 #endif 1070 }; 1071 1072 static const struct net_device_ops vortex_netdev_ops = { 1073 .ndo_open = vortex_open, 1074 .ndo_stop = vortex_close, 1075 .ndo_start_xmit = vortex_start_xmit, 1076 .ndo_tx_timeout = vortex_tx_timeout, 1077 .ndo_get_stats = vortex_get_stats, 1078 #ifdef CONFIG_PCI 1079 .ndo_do_ioctl = vortex_ioctl, 1080 #endif 1081 .ndo_set_rx_mode = set_rx_mode, 1082 .ndo_set_mac_address = eth_mac_addr, 1083 .ndo_validate_addr = eth_validate_addr, 1084 #ifdef CONFIG_NET_POLL_CONTROLLER 1085 .ndo_poll_controller = poll_vortex, 1086 #endif 1087 }; 1088 1089 /* 1090 * Start up the PCI/EISA device which is described by *gendev. 1091 * Return 0 on success. 1092 * 1093 * NOTE: pdev can be NULL, for the case of a Compaq device 1094 */ 1095 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq, 1096 int chip_idx, int card_idx) 1097 { 1098 struct vortex_private *vp; 1099 int option; 1100 unsigned int eeprom[0x40], checksum = 0; /* EEPROM contents */ 1101 int i, step; 1102 struct net_device *dev; 1103 static int printed_version; 1104 int retval, print_info; 1105 struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx]; 1106 const char *print_name = "3c59x"; 1107 struct pci_dev *pdev = NULL; 1108 struct eisa_device *edev = NULL; 1109 1110 if (!printed_version) { 1111 pr_info("%s", version); 1112 printed_version = 1; 1113 } 1114 1115 if (gendev) { 1116 if ((pdev = DEVICE_PCI(gendev))) { 1117 print_name = pci_name(pdev); 1118 } 1119 1120 if ((edev = DEVICE_EISA(gendev))) { 1121 print_name = dev_name(&edev->dev); 1122 } 1123 } 1124 1125 dev = alloc_etherdev(sizeof(*vp)); 1126 retval = -ENOMEM; 1127 if (!dev) 1128 goto out; 1129 1130 SET_NETDEV_DEV(dev, gendev); 1131 vp = netdev_priv(dev); 1132 1133 option = global_options; 1134 1135 /* The lower four bits are the media type. */ 1136 if (dev->mem_start) { 1137 /* 1138 * The 'options' param is passed in as the third arg to the 1139 * LILO 'ether=' argument for non-modular use 1140 */ 1141 option = dev->mem_start; 1142 } 1143 else if (card_idx < MAX_UNITS) { 1144 if (options[card_idx] >= 0) 1145 option = options[card_idx]; 1146 } 1147 1148 if (option > 0) { 1149 if (option & 0x8000) 1150 vortex_debug = 7; 1151 if (option & 0x4000) 1152 vortex_debug = 2; 1153 if (option & 0x0400) 1154 vp->enable_wol = 1; 1155 } 1156 1157 print_info = (vortex_debug > 1); 1158 if (print_info) 1159 pr_info("See Documentation/networking/vortex.txt\n"); 1160 1161 pr_info("%s: 3Com %s %s at %p.\n", 1162 print_name, 1163 pdev ? "PCI" : "EISA", 1164 vci->name, 1165 ioaddr); 1166 1167 dev->base_addr = (unsigned long)ioaddr; 1168 dev->irq = irq; 1169 dev->mtu = mtu; 1170 vp->ioaddr = ioaddr; 1171 vp->large_frames = mtu > 1500; 1172 vp->drv_flags = vci->drv_flags; 1173 vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0; 1174 vp->io_size = vci->io_size; 1175 vp->card_idx = card_idx; 1176 vp->window = -1; 1177 1178 /* module list only for Compaq device */ 1179 if (gendev == NULL) { 1180 compaq_net_device = dev; 1181 } 1182 1183 /* PCI-only startup logic */ 1184 if (pdev) { 1185 /* enable bus-mastering if necessary */ 1186 if (vci->flags & PCI_USES_MASTER) 1187 pci_set_master(pdev); 1188 1189 if (vci->drv_flags & IS_VORTEX) { 1190 u8 pci_latency; 1191 u8 new_latency = 248; 1192 1193 /* Check the PCI latency value. On the 3c590 series the latency timer 1194 must be set to the maximum value to avoid data corruption that occurs 1195 when the timer expires during a transfer. This bug exists the Vortex 1196 chip only. */ 1197 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency); 1198 if (pci_latency < new_latency) { 1199 pr_info("%s: Overriding PCI latency timer (CFLT) setting of %d, new value is %d.\n", 1200 print_name, pci_latency, new_latency); 1201 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency); 1202 } 1203 } 1204 } 1205 1206 spin_lock_init(&vp->lock); 1207 spin_lock_init(&vp->mii_lock); 1208 spin_lock_init(&vp->window_lock); 1209 vp->gendev = gendev; 1210 vp->mii.dev = dev; 1211 vp->mii.mdio_read = mdio_read; 1212 vp->mii.mdio_write = mdio_write; 1213 vp->mii.phy_id_mask = 0x1f; 1214 vp->mii.reg_num_mask = 0x1f; 1215 1216 /* Makes sure rings are at least 16 byte aligned. */ 1217 vp->rx_ring = pci_alloc_consistent(pdev, sizeof(struct boom_rx_desc) * RX_RING_SIZE 1218 + sizeof(struct boom_tx_desc) * TX_RING_SIZE, 1219 &vp->rx_ring_dma); 1220 retval = -ENOMEM; 1221 if (!vp->rx_ring) 1222 goto free_device; 1223 1224 vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE); 1225 vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE; 1226 1227 /* if we are a PCI driver, we store info in pdev->driver_data 1228 * instead of a module list */ 1229 if (pdev) 1230 pci_set_drvdata(pdev, dev); 1231 if (edev) 1232 eisa_set_drvdata(edev, dev); 1233 1234 vp->media_override = 7; 1235 if (option >= 0) { 1236 vp->media_override = ((option & 7) == 2) ? 0 : option & 15; 1237 if (vp->media_override != 7) 1238 vp->medialock = 1; 1239 vp->full_duplex = (option & 0x200) ? 1 : 0; 1240 vp->bus_master = (option & 16) ? 1 : 0; 1241 } 1242 1243 if (global_full_duplex > 0) 1244 vp->full_duplex = 1; 1245 if (global_enable_wol > 0) 1246 vp->enable_wol = 1; 1247 1248 if (card_idx < MAX_UNITS) { 1249 if (full_duplex[card_idx] > 0) 1250 vp->full_duplex = 1; 1251 if (flow_ctrl[card_idx] > 0) 1252 vp->flow_ctrl = 1; 1253 if (enable_wol[card_idx] > 0) 1254 vp->enable_wol = 1; 1255 } 1256 1257 vp->mii.force_media = vp->full_duplex; 1258 vp->options = option; 1259 /* Read the station address from the EEPROM. */ 1260 { 1261 int base; 1262 1263 if (vci->drv_flags & EEPROM_8BIT) 1264 base = 0x230; 1265 else if (vci->drv_flags & EEPROM_OFFSET) 1266 base = EEPROM_Read + 0x30; 1267 else 1268 base = EEPROM_Read; 1269 1270 for (i = 0; i < 0x40; i++) { 1271 int timer; 1272 window_write16(vp, base + i, 0, Wn0EepromCmd); 1273 /* Pause for at least 162 us. for the read to take place. */ 1274 for (timer = 10; timer >= 0; timer--) { 1275 udelay(162); 1276 if ((window_read16(vp, 0, Wn0EepromCmd) & 1277 0x8000) == 0) 1278 break; 1279 } 1280 eeprom[i] = window_read16(vp, 0, Wn0EepromData); 1281 } 1282 } 1283 for (i = 0; i < 0x18; i++) 1284 checksum ^= eeprom[i]; 1285 checksum = (checksum ^ (checksum >> 8)) & 0xff; 1286 if (checksum != 0x00) { /* Grrr, needless incompatible change 3Com. */ 1287 while (i < 0x21) 1288 checksum ^= eeprom[i++]; 1289 checksum = (checksum ^ (checksum >> 8)) & 0xff; 1290 } 1291 if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO)) 1292 pr_cont(" ***INVALID CHECKSUM %4.4x*** ", checksum); 1293 for (i = 0; i < 3; i++) 1294 ((__be16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]); 1295 if (print_info) 1296 pr_cont(" %pM", dev->dev_addr); 1297 /* Unfortunately an all zero eeprom passes the checksum and this 1298 gets found in the wild in failure cases. Crypto is hard 8) */ 1299 if (!is_valid_ether_addr(dev->dev_addr)) { 1300 retval = -EINVAL; 1301 pr_err("*** EEPROM MAC address is invalid.\n"); 1302 goto free_ring; /* With every pack */ 1303 } 1304 for (i = 0; i < 6; i++) 1305 window_write8(vp, dev->dev_addr[i], 2, i); 1306 1307 if (print_info) 1308 pr_cont(", IRQ %d\n", dev->irq); 1309 /* Tell them about an invalid IRQ. */ 1310 if (dev->irq <= 0 || dev->irq >= nr_irqs) 1311 pr_warn(" *** Warning: IRQ %d is unlikely to work! ***\n", 1312 dev->irq); 1313 1314 step = (window_read8(vp, 4, Wn4_NetDiag) & 0x1e) >> 1; 1315 if (print_info) { 1316 pr_info(" product code %02x%02x rev %02x.%d date %02d-%02d-%02d\n", 1317 eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14], 1318 step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9); 1319 } 1320 1321 1322 if (pdev && vci->drv_flags & HAS_CB_FNS) { 1323 unsigned short n; 1324 1325 vp->cb_fn_base = pci_iomap(pdev, 2, 0); 1326 if (!vp->cb_fn_base) { 1327 retval = -ENOMEM; 1328 goto free_ring; 1329 } 1330 1331 if (print_info) { 1332 pr_info("%s: CardBus functions mapped %16.16llx->%p\n", 1333 print_name, 1334 (unsigned long long)pci_resource_start(pdev, 2), 1335 vp->cb_fn_base); 1336 } 1337 1338 n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010; 1339 if (vp->drv_flags & INVERT_LED_PWR) 1340 n |= 0x10; 1341 if (vp->drv_flags & INVERT_MII_PWR) 1342 n |= 0x4000; 1343 window_write16(vp, n, 2, Wn2_ResetOptions); 1344 if (vp->drv_flags & WNO_XCVR_PWR) { 1345 window_write16(vp, 0x0800, 0, 0); 1346 } 1347 } 1348 1349 /* Extract our information from the EEPROM data. */ 1350 vp->info1 = eeprom[13]; 1351 vp->info2 = eeprom[15]; 1352 vp->capabilities = eeprom[16]; 1353 1354 if (vp->info1 & 0x8000) { 1355 vp->full_duplex = 1; 1356 if (print_info) 1357 pr_info("Full duplex capable\n"); 1358 } 1359 1360 { 1361 static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"}; 1362 unsigned int config; 1363 vp->available_media = window_read16(vp, 3, Wn3_Options); 1364 if ((vp->available_media & 0xff) == 0) /* Broken 3c916 */ 1365 vp->available_media = 0x40; 1366 config = window_read32(vp, 3, Wn3_Config); 1367 if (print_info) { 1368 pr_debug(" Internal config register is %4.4x, transceivers %#x.\n", 1369 config, window_read16(vp, 3, Wn3_Options)); 1370 pr_info(" %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n", 1371 8 << RAM_SIZE(config), 1372 RAM_WIDTH(config) ? "word" : "byte", 1373 ram_split[RAM_SPLIT(config)], 1374 AUTOSELECT(config) ? "autoselect/" : "", 1375 XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" : 1376 media_tbl[XCVR(config)].name); 1377 } 1378 vp->default_media = XCVR(config); 1379 if (vp->default_media == XCVR_NWAY) 1380 vp->has_nway = 1; 1381 vp->autoselect = AUTOSELECT(config); 1382 } 1383 1384 if (vp->media_override != 7) { 1385 pr_info("%s: Media override to transceiver type %d (%s).\n", 1386 print_name, vp->media_override, 1387 media_tbl[vp->media_override].name); 1388 dev->if_port = vp->media_override; 1389 } else 1390 dev->if_port = vp->default_media; 1391 1392 if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) || 1393 dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) { 1394 int phy, phy_idx = 0; 1395 mii_preamble_required++; 1396 if (vp->drv_flags & EXTRA_PREAMBLE) 1397 mii_preamble_required++; 1398 mdio_sync(vp, 32); 1399 mdio_read(dev, 24, MII_BMSR); 1400 for (phy = 0; phy < 32 && phy_idx < 1; phy++) { 1401 int mii_status, phyx; 1402 1403 /* 1404 * For the 3c905CX we look at index 24 first, because it bogusly 1405 * reports an external PHY at all indices 1406 */ 1407 if (phy == 0) 1408 phyx = 24; 1409 else if (phy <= 24) 1410 phyx = phy - 1; 1411 else 1412 phyx = phy; 1413 mii_status = mdio_read(dev, phyx, MII_BMSR); 1414 if (mii_status && mii_status != 0xffff) { 1415 vp->phys[phy_idx++] = phyx; 1416 if (print_info) { 1417 pr_info(" MII transceiver found at address %d, status %4x.\n", 1418 phyx, mii_status); 1419 } 1420 if ((mii_status & 0x0040) == 0) 1421 mii_preamble_required++; 1422 } 1423 } 1424 mii_preamble_required--; 1425 if (phy_idx == 0) { 1426 pr_warn(" ***WARNING*** No MII transceivers found!\n"); 1427 vp->phys[0] = 24; 1428 } else { 1429 vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE); 1430 if (vp->full_duplex) { 1431 /* Only advertise the FD media types. */ 1432 vp->advertising &= ~0x02A0; 1433 mdio_write(dev, vp->phys[0], 4, vp->advertising); 1434 } 1435 } 1436 vp->mii.phy_id = vp->phys[0]; 1437 } 1438 1439 if (vp->capabilities & CapBusMaster) { 1440 vp->full_bus_master_tx = 1; 1441 if (print_info) { 1442 pr_info(" Enabling bus-master transmits and %s receives.\n", 1443 (vp->info2 & 1) ? "early" : "whole-frame" ); 1444 } 1445 vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2; 1446 vp->bus_master = 0; /* AKPM: vortex only */ 1447 } 1448 1449 /* The 3c59x-specific entries in the device structure. */ 1450 if (vp->full_bus_master_tx) { 1451 dev->netdev_ops = &boomrang_netdev_ops; 1452 /* Actually, it still should work with iommu. */ 1453 if (card_idx < MAX_UNITS && 1454 ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) || 1455 hw_checksums[card_idx] == 1)) { 1456 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG; 1457 } 1458 } else 1459 dev->netdev_ops = &vortex_netdev_ops; 1460 1461 if (print_info) { 1462 pr_info("%s: scatter/gather %sabled. h/w checksums %sabled\n", 1463 print_name, 1464 (dev->features & NETIF_F_SG) ? "en":"dis", 1465 (dev->features & NETIF_F_IP_CSUM) ? "en":"dis"); 1466 } 1467 1468 dev->ethtool_ops = &vortex_ethtool_ops; 1469 dev->watchdog_timeo = (watchdog * HZ) / 1000; 1470 1471 if (pdev) { 1472 vp->pm_state_valid = 1; 1473 pci_save_state(pdev); 1474 acpi_set_WOL(dev); 1475 } 1476 retval = register_netdev(dev); 1477 if (retval == 0) 1478 return 0; 1479 1480 free_ring: 1481 pci_free_consistent(pdev, 1482 sizeof(struct boom_rx_desc) * RX_RING_SIZE 1483 + sizeof(struct boom_tx_desc) * TX_RING_SIZE, 1484 vp->rx_ring, 1485 vp->rx_ring_dma); 1486 free_device: 1487 free_netdev(dev); 1488 pr_err(PFX "vortex_probe1 fails. Returns %d\n", retval); 1489 out: 1490 return retval; 1491 } 1492 1493 static void 1494 issue_and_wait(struct net_device *dev, int cmd) 1495 { 1496 struct vortex_private *vp = netdev_priv(dev); 1497 void __iomem *ioaddr = vp->ioaddr; 1498 int i; 1499 1500 iowrite16(cmd, ioaddr + EL3_CMD); 1501 for (i = 0; i < 2000; i++) { 1502 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) 1503 return; 1504 } 1505 1506 /* OK, that didn't work. Do it the slow way. One second */ 1507 for (i = 0; i < 100000; i++) { 1508 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) { 1509 if (vortex_debug > 1) 1510 pr_info("%s: command 0x%04x took %d usecs\n", 1511 dev->name, cmd, i * 10); 1512 return; 1513 } 1514 udelay(10); 1515 } 1516 pr_err("%s: command 0x%04x did not complete! Status=0x%x\n", 1517 dev->name, cmd, ioread16(ioaddr + EL3_STATUS)); 1518 } 1519 1520 static void 1521 vortex_set_duplex(struct net_device *dev) 1522 { 1523 struct vortex_private *vp = netdev_priv(dev); 1524 1525 pr_info("%s: setting %s-duplex.\n", 1526 dev->name, (vp->full_duplex) ? "full" : "half"); 1527 1528 /* Set the full-duplex bit. */ 1529 window_write16(vp, 1530 ((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) | 1531 (vp->large_frames ? 0x40 : 0) | 1532 ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ? 1533 0x100 : 0), 1534 3, Wn3_MAC_Ctrl); 1535 } 1536 1537 static void vortex_check_media(struct net_device *dev, unsigned int init) 1538 { 1539 struct vortex_private *vp = netdev_priv(dev); 1540 unsigned int ok_to_print = 0; 1541 1542 if (vortex_debug > 3) 1543 ok_to_print = 1; 1544 1545 if (mii_check_media(&vp->mii, ok_to_print, init)) { 1546 vp->full_duplex = vp->mii.full_duplex; 1547 vortex_set_duplex(dev); 1548 } else if (init) { 1549 vortex_set_duplex(dev); 1550 } 1551 } 1552 1553 static int 1554 vortex_up(struct net_device *dev) 1555 { 1556 struct vortex_private *vp = netdev_priv(dev); 1557 void __iomem *ioaddr = vp->ioaddr; 1558 unsigned int config; 1559 int i, mii_reg1, mii_reg5, err = 0; 1560 1561 if (VORTEX_PCI(vp)) { 1562 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); /* Go active */ 1563 if (vp->pm_state_valid) 1564 pci_restore_state(VORTEX_PCI(vp)); 1565 err = pci_enable_device(VORTEX_PCI(vp)); 1566 if (err) { 1567 pr_warn("%s: Could not enable device\n", dev->name); 1568 goto err_out; 1569 } 1570 } 1571 1572 /* Before initializing select the active media port. */ 1573 config = window_read32(vp, 3, Wn3_Config); 1574 1575 if (vp->media_override != 7) { 1576 pr_info("%s: Media override to transceiver %d (%s).\n", 1577 dev->name, vp->media_override, 1578 media_tbl[vp->media_override].name); 1579 dev->if_port = vp->media_override; 1580 } else if (vp->autoselect) { 1581 if (vp->has_nway) { 1582 if (vortex_debug > 1) 1583 pr_info("%s: using NWAY device table, not %d\n", 1584 dev->name, dev->if_port); 1585 dev->if_port = XCVR_NWAY; 1586 } else { 1587 /* Find first available media type, starting with 100baseTx. */ 1588 dev->if_port = XCVR_100baseTx; 1589 while (! (vp->available_media & media_tbl[dev->if_port].mask)) 1590 dev->if_port = media_tbl[dev->if_port].next; 1591 if (vortex_debug > 1) 1592 pr_info("%s: first available media type: %s\n", 1593 dev->name, media_tbl[dev->if_port].name); 1594 } 1595 } else { 1596 dev->if_port = vp->default_media; 1597 if (vortex_debug > 1) 1598 pr_info("%s: using default media %s\n", 1599 dev->name, media_tbl[dev->if_port].name); 1600 } 1601 1602 setup_timer(&vp->timer, vortex_timer, (unsigned long)dev); 1603 mod_timer(&vp->timer, RUN_AT(media_tbl[dev->if_port].wait)); 1604 setup_timer(&vp->rx_oom_timer, rx_oom_timer, (unsigned long)dev); 1605 1606 if (vortex_debug > 1) 1607 pr_debug("%s: Initial media type %s.\n", 1608 dev->name, media_tbl[dev->if_port].name); 1609 1610 vp->full_duplex = vp->mii.force_media; 1611 config = BFINS(config, dev->if_port, 20, 4); 1612 if (vortex_debug > 6) 1613 pr_debug("vortex_up(): writing 0x%x to InternalConfig\n", config); 1614 window_write32(vp, config, 3, Wn3_Config); 1615 1616 if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) { 1617 mii_reg1 = mdio_read(dev, vp->phys[0], MII_BMSR); 1618 mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA); 1619 vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0); 1620 vp->mii.full_duplex = vp->full_duplex; 1621 1622 vortex_check_media(dev, 1); 1623 } 1624 else 1625 vortex_set_duplex(dev); 1626 1627 issue_and_wait(dev, TxReset); 1628 /* 1629 * Don't reset the PHY - that upsets autonegotiation during DHCP operations. 1630 */ 1631 issue_and_wait(dev, RxReset|0x04); 1632 1633 1634 iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD); 1635 1636 if (vortex_debug > 1) { 1637 pr_debug("%s: vortex_up() irq %d media status %4.4x.\n", 1638 dev->name, dev->irq, window_read16(vp, 4, Wn4_Media)); 1639 } 1640 1641 /* Set the station address and mask in window 2 each time opened. */ 1642 for (i = 0; i < 6; i++) 1643 window_write8(vp, dev->dev_addr[i], 2, i); 1644 for (; i < 12; i+=2) 1645 window_write16(vp, 0, 2, i); 1646 1647 if (vp->cb_fn_base) { 1648 unsigned short n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010; 1649 if (vp->drv_flags & INVERT_LED_PWR) 1650 n |= 0x10; 1651 if (vp->drv_flags & INVERT_MII_PWR) 1652 n |= 0x4000; 1653 window_write16(vp, n, 2, Wn2_ResetOptions); 1654 } 1655 1656 if (dev->if_port == XCVR_10base2) 1657 /* Start the thinnet transceiver. We should really wait 50ms...*/ 1658 iowrite16(StartCoax, ioaddr + EL3_CMD); 1659 if (dev->if_port != XCVR_NWAY) { 1660 window_write16(vp, 1661 (window_read16(vp, 4, Wn4_Media) & 1662 ~(Media_10TP|Media_SQE)) | 1663 media_tbl[dev->if_port].media_bits, 1664 4, Wn4_Media); 1665 } 1666 1667 /* Switch to the stats window, and clear all stats by reading. */ 1668 iowrite16(StatsDisable, ioaddr + EL3_CMD); 1669 for (i = 0; i < 10; i++) 1670 window_read8(vp, 6, i); 1671 window_read16(vp, 6, 10); 1672 window_read16(vp, 6, 12); 1673 /* New: On the Vortex we must also clear the BadSSD counter. */ 1674 window_read8(vp, 4, 12); 1675 /* ..and on the Boomerang we enable the extra statistics bits. */ 1676 window_write16(vp, 0x0040, 4, Wn4_NetDiag); 1677 1678 if (vp->full_bus_master_rx) { /* Boomerang bus master. */ 1679 vp->cur_rx = vp->dirty_rx = 0; 1680 /* Initialize the RxEarly register as recommended. */ 1681 iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD); 1682 iowrite32(0x0020, ioaddr + PktStatus); 1683 iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr); 1684 } 1685 if (vp->full_bus_master_tx) { /* Boomerang bus master Tx. */ 1686 vp->cur_tx = vp->dirty_tx = 0; 1687 if (vp->drv_flags & IS_BOOMERANG) 1688 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */ 1689 /* Clear the Rx, Tx rings. */ 1690 for (i = 0; i < RX_RING_SIZE; i++) /* AKPM: this is done in vortex_open, too */ 1691 vp->rx_ring[i].status = 0; 1692 for (i = 0; i < TX_RING_SIZE; i++) 1693 vp->tx_skbuff[i] = NULL; 1694 iowrite32(0, ioaddr + DownListPtr); 1695 } 1696 /* Set receiver mode: presumably accept b-case and phys addr only. */ 1697 set_rx_mode(dev); 1698 /* enable 802.1q tagged frames */ 1699 set_8021q_mode(dev, 1); 1700 iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */ 1701 1702 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */ 1703 iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */ 1704 /* Allow status bits to be seen. */ 1705 vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete| 1706 (vp->full_bus_master_tx ? DownComplete : TxAvailable) | 1707 (vp->full_bus_master_rx ? UpComplete : RxComplete) | 1708 (vp->bus_master ? DMADone : 0); 1709 vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable | 1710 (vp->full_bus_master_rx ? 0 : RxComplete) | 1711 StatsFull | HostError | TxComplete | IntReq 1712 | (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete; 1713 iowrite16(vp->status_enable, ioaddr + EL3_CMD); 1714 /* Ack all pending events, and set active indicator mask. */ 1715 iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq, 1716 ioaddr + EL3_CMD); 1717 iowrite16(vp->intr_enable, ioaddr + EL3_CMD); 1718 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */ 1719 iowrite32(0x8000, vp->cb_fn_base + 4); 1720 netif_start_queue (dev); 1721 netdev_reset_queue(dev); 1722 err_out: 1723 return err; 1724 } 1725 1726 static int 1727 vortex_open(struct net_device *dev) 1728 { 1729 struct vortex_private *vp = netdev_priv(dev); 1730 int i; 1731 int retval; 1732 1733 /* Use the now-standard shared IRQ implementation. */ 1734 if ((retval = request_irq(dev->irq, vp->full_bus_master_rx ? 1735 boomerang_interrupt : vortex_interrupt, IRQF_SHARED, dev->name, dev))) { 1736 pr_err("%s: Could not reserve IRQ %d\n", dev->name, dev->irq); 1737 goto err; 1738 } 1739 1740 if (vp->full_bus_master_rx) { /* Boomerang bus master. */ 1741 if (vortex_debug > 2) 1742 pr_debug("%s: Filling in the Rx ring.\n", dev->name); 1743 for (i = 0; i < RX_RING_SIZE; i++) { 1744 struct sk_buff *skb; 1745 vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1)); 1746 vp->rx_ring[i].status = 0; /* Clear complete bit. */ 1747 vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG); 1748 1749 skb = __netdev_alloc_skb(dev, PKT_BUF_SZ + NET_IP_ALIGN, 1750 GFP_KERNEL); 1751 vp->rx_skbuff[i] = skb; 1752 if (skb == NULL) 1753 break; /* Bad news! */ 1754 1755 skb_reserve(skb, NET_IP_ALIGN); /* Align IP on 16 byte boundaries */ 1756 vp->rx_ring[i].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE)); 1757 } 1758 if (i != RX_RING_SIZE) { 1759 pr_emerg("%s: no memory for rx ring\n", dev->name); 1760 retval = -ENOMEM; 1761 goto err_free_skb; 1762 } 1763 /* Wrap the ring. */ 1764 vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma); 1765 } 1766 1767 retval = vortex_up(dev); 1768 if (!retval) 1769 goto out; 1770 1771 err_free_skb: 1772 for (i = 0; i < RX_RING_SIZE; i++) { 1773 if (vp->rx_skbuff[i]) { 1774 dev_kfree_skb(vp->rx_skbuff[i]); 1775 vp->rx_skbuff[i] = NULL; 1776 } 1777 } 1778 free_irq(dev->irq, dev); 1779 err: 1780 if (vortex_debug > 1) 1781 pr_err("%s: vortex_open() fails: returning %d\n", dev->name, retval); 1782 out: 1783 return retval; 1784 } 1785 1786 static void 1787 vortex_timer(unsigned long data) 1788 { 1789 struct net_device *dev = (struct net_device *)data; 1790 struct vortex_private *vp = netdev_priv(dev); 1791 void __iomem *ioaddr = vp->ioaddr; 1792 int next_tick = 60*HZ; 1793 int ok = 0; 1794 int media_status; 1795 1796 if (vortex_debug > 2) { 1797 pr_debug("%s: Media selection timer tick happened, %s.\n", 1798 dev->name, media_tbl[dev->if_port].name); 1799 pr_debug("dev->watchdog_timeo=%d\n", dev->watchdog_timeo); 1800 } 1801 1802 media_status = window_read16(vp, 4, Wn4_Media); 1803 switch (dev->if_port) { 1804 case XCVR_10baseT: case XCVR_100baseTx: case XCVR_100baseFx: 1805 if (media_status & Media_LnkBeat) { 1806 netif_carrier_on(dev); 1807 ok = 1; 1808 if (vortex_debug > 1) 1809 pr_debug("%s: Media %s has link beat, %x.\n", 1810 dev->name, media_tbl[dev->if_port].name, media_status); 1811 } else { 1812 netif_carrier_off(dev); 1813 if (vortex_debug > 1) { 1814 pr_debug("%s: Media %s has no link beat, %x.\n", 1815 dev->name, media_tbl[dev->if_port].name, media_status); 1816 } 1817 } 1818 break; 1819 case XCVR_MII: case XCVR_NWAY: 1820 { 1821 ok = 1; 1822 vortex_check_media(dev, 0); 1823 } 1824 break; 1825 default: /* Other media types handled by Tx timeouts. */ 1826 if (vortex_debug > 1) 1827 pr_debug("%s: Media %s has no indication, %x.\n", 1828 dev->name, media_tbl[dev->if_port].name, media_status); 1829 ok = 1; 1830 } 1831 1832 if (dev->flags & IFF_SLAVE || !netif_carrier_ok(dev)) 1833 next_tick = 5*HZ; 1834 1835 if (vp->medialock) 1836 goto leave_media_alone; 1837 1838 if (!ok) { 1839 unsigned int config; 1840 1841 spin_lock_irq(&vp->lock); 1842 1843 do { 1844 dev->if_port = media_tbl[dev->if_port].next; 1845 } while ( ! (vp->available_media & media_tbl[dev->if_port].mask)); 1846 if (dev->if_port == XCVR_Default) { /* Go back to default. */ 1847 dev->if_port = vp->default_media; 1848 if (vortex_debug > 1) 1849 pr_debug("%s: Media selection failing, using default %s port.\n", 1850 dev->name, media_tbl[dev->if_port].name); 1851 } else { 1852 if (vortex_debug > 1) 1853 pr_debug("%s: Media selection failed, now trying %s port.\n", 1854 dev->name, media_tbl[dev->if_port].name); 1855 next_tick = media_tbl[dev->if_port].wait; 1856 } 1857 window_write16(vp, 1858 (media_status & ~(Media_10TP|Media_SQE)) | 1859 media_tbl[dev->if_port].media_bits, 1860 4, Wn4_Media); 1861 1862 config = window_read32(vp, 3, Wn3_Config); 1863 config = BFINS(config, dev->if_port, 20, 4); 1864 window_write32(vp, config, 3, Wn3_Config); 1865 1866 iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax, 1867 ioaddr + EL3_CMD); 1868 if (vortex_debug > 1) 1869 pr_debug("wrote 0x%08x to Wn3_Config\n", config); 1870 /* AKPM: FIXME: Should reset Rx & Tx here. P60 of 3c90xc.pdf */ 1871 1872 spin_unlock_irq(&vp->lock); 1873 } 1874 1875 leave_media_alone: 1876 if (vortex_debug > 2) 1877 pr_debug("%s: Media selection timer finished, %s.\n", 1878 dev->name, media_tbl[dev->if_port].name); 1879 1880 mod_timer(&vp->timer, RUN_AT(next_tick)); 1881 if (vp->deferred) 1882 iowrite16(FakeIntr, ioaddr + EL3_CMD); 1883 } 1884 1885 static void vortex_tx_timeout(struct net_device *dev) 1886 { 1887 struct vortex_private *vp = netdev_priv(dev); 1888 void __iomem *ioaddr = vp->ioaddr; 1889 1890 pr_err("%s: transmit timed out, tx_status %2.2x status %4.4x.\n", 1891 dev->name, ioread8(ioaddr + TxStatus), 1892 ioread16(ioaddr + EL3_STATUS)); 1893 pr_err(" diagnostics: net %04x media %04x dma %08x fifo %04x\n", 1894 window_read16(vp, 4, Wn4_NetDiag), 1895 window_read16(vp, 4, Wn4_Media), 1896 ioread32(ioaddr + PktStatus), 1897 window_read16(vp, 4, Wn4_FIFODiag)); 1898 /* Slight code bloat to be user friendly. */ 1899 if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88) 1900 pr_err("%s: Transmitter encountered 16 collisions --" 1901 " network cable problem?\n", dev->name); 1902 if (ioread16(ioaddr + EL3_STATUS) & IntLatch) { 1903 pr_err("%s: Interrupt posted but not delivered --" 1904 " IRQ blocked by another device?\n", dev->name); 1905 /* Bad idea here.. but we might as well handle a few events. */ 1906 { 1907 /* 1908 * Block interrupts because vortex_interrupt does a bare spin_lock() 1909 */ 1910 unsigned long flags; 1911 local_irq_save(flags); 1912 if (vp->full_bus_master_tx) 1913 boomerang_interrupt(dev->irq, dev); 1914 else 1915 vortex_interrupt(dev->irq, dev); 1916 local_irq_restore(flags); 1917 } 1918 } 1919 1920 if (vortex_debug > 0) 1921 dump_tx_ring(dev); 1922 1923 issue_and_wait(dev, TxReset); 1924 1925 dev->stats.tx_errors++; 1926 if (vp->full_bus_master_tx) { 1927 pr_debug("%s: Resetting the Tx ring pointer.\n", dev->name); 1928 if (vp->cur_tx - vp->dirty_tx > 0 && ioread32(ioaddr + DownListPtr) == 0) 1929 iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc), 1930 ioaddr + DownListPtr); 1931 if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE) { 1932 netif_wake_queue (dev); 1933 netdev_reset_queue (dev); 1934 } 1935 if (vp->drv_flags & IS_BOOMERANG) 1936 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); 1937 iowrite16(DownUnstall, ioaddr + EL3_CMD); 1938 } else { 1939 dev->stats.tx_dropped++; 1940 netif_wake_queue(dev); 1941 netdev_reset_queue(dev); 1942 } 1943 /* Issue Tx Enable */ 1944 iowrite16(TxEnable, ioaddr + EL3_CMD); 1945 netif_trans_update(dev); /* prevent tx timeout */ 1946 } 1947 1948 /* 1949 * Handle uncommon interrupt sources. This is a separate routine to minimize 1950 * the cache impact. 1951 */ 1952 static void 1953 vortex_error(struct net_device *dev, int status) 1954 { 1955 struct vortex_private *vp = netdev_priv(dev); 1956 void __iomem *ioaddr = vp->ioaddr; 1957 int do_tx_reset = 0, reset_mask = 0; 1958 unsigned char tx_status = 0; 1959 1960 if (vortex_debug > 2) { 1961 pr_err("%s: vortex_error(), status=0x%x\n", dev->name, status); 1962 } 1963 1964 if (status & TxComplete) { /* Really "TxError" for us. */ 1965 tx_status = ioread8(ioaddr + TxStatus); 1966 /* Presumably a tx-timeout. We must merely re-enable. */ 1967 if (vortex_debug > 2 || 1968 (tx_status != 0x88 && vortex_debug > 0)) { 1969 pr_err("%s: Transmit error, Tx status register %2.2x.\n", 1970 dev->name, tx_status); 1971 if (tx_status == 0x82) { 1972 pr_err("Probably a duplex mismatch. See " 1973 "Documentation/networking/vortex.txt\n"); 1974 } 1975 dump_tx_ring(dev); 1976 } 1977 if (tx_status & 0x14) dev->stats.tx_fifo_errors++; 1978 if (tx_status & 0x38) dev->stats.tx_aborted_errors++; 1979 if (tx_status & 0x08) vp->xstats.tx_max_collisions++; 1980 iowrite8(0, ioaddr + TxStatus); 1981 if (tx_status & 0x30) { /* txJabber or txUnderrun */ 1982 do_tx_reset = 1; 1983 } else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET)) { /* maxCollisions */ 1984 do_tx_reset = 1; 1985 reset_mask = 0x0108; /* Reset interface logic, but not download logic */ 1986 } else { /* Merely re-enable the transmitter. */ 1987 iowrite16(TxEnable, ioaddr + EL3_CMD); 1988 } 1989 } 1990 1991 if (status & RxEarly) /* Rx early is unused. */ 1992 iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD); 1993 1994 if (status & StatsFull) { /* Empty statistics. */ 1995 static int DoneDidThat; 1996 if (vortex_debug > 4) 1997 pr_debug("%s: Updating stats.\n", dev->name); 1998 update_stats(ioaddr, dev); 1999 /* HACK: Disable statistics as an interrupt source. */ 2000 /* This occurs when we have the wrong media type! */ 2001 if (DoneDidThat == 0 && 2002 ioread16(ioaddr + EL3_STATUS) & StatsFull) { 2003 pr_warn("%s: Updating statistics failed, disabling stats as an interrupt source\n", 2004 dev->name); 2005 iowrite16(SetIntrEnb | 2006 (window_read16(vp, 5, 10) & ~StatsFull), 2007 ioaddr + EL3_CMD); 2008 vp->intr_enable &= ~StatsFull; 2009 DoneDidThat++; 2010 } 2011 } 2012 if (status & IntReq) { /* Restore all interrupt sources. */ 2013 iowrite16(vp->status_enable, ioaddr + EL3_CMD); 2014 iowrite16(vp->intr_enable, ioaddr + EL3_CMD); 2015 } 2016 if (status & HostError) { 2017 u16 fifo_diag; 2018 fifo_diag = window_read16(vp, 4, Wn4_FIFODiag); 2019 pr_err("%s: Host error, FIFO diagnostic register %4.4x.\n", 2020 dev->name, fifo_diag); 2021 /* Adapter failure requires Tx/Rx reset and reinit. */ 2022 if (vp->full_bus_master_tx) { 2023 int bus_status = ioread32(ioaddr + PktStatus); 2024 /* 0x80000000 PCI master abort. */ 2025 /* 0x40000000 PCI target abort. */ 2026 if (vortex_debug) 2027 pr_err("%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status); 2028 2029 /* In this case, blow the card away */ 2030 /* Must not enter D3 or we can't legally issue the reset! */ 2031 vortex_down(dev, 0); 2032 issue_and_wait(dev, TotalReset | 0xff); 2033 vortex_up(dev); /* AKPM: bug. vortex_up() assumes that the rx ring is full. It may not be. */ 2034 } else if (fifo_diag & 0x0400) 2035 do_tx_reset = 1; 2036 if (fifo_diag & 0x3000) { 2037 /* Reset Rx fifo and upload logic */ 2038 issue_and_wait(dev, RxReset|0x07); 2039 /* Set the Rx filter to the current state. */ 2040 set_rx_mode(dev); 2041 /* enable 802.1q VLAN tagged frames */ 2042 set_8021q_mode(dev, 1); 2043 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */ 2044 iowrite16(AckIntr | HostError, ioaddr + EL3_CMD); 2045 } 2046 } 2047 2048 if (do_tx_reset) { 2049 issue_and_wait(dev, TxReset|reset_mask); 2050 iowrite16(TxEnable, ioaddr + EL3_CMD); 2051 if (!vp->full_bus_master_tx) 2052 netif_wake_queue(dev); 2053 } 2054 } 2055 2056 static netdev_tx_t 2057 vortex_start_xmit(struct sk_buff *skb, struct net_device *dev) 2058 { 2059 struct vortex_private *vp = netdev_priv(dev); 2060 void __iomem *ioaddr = vp->ioaddr; 2061 int skblen = skb->len; 2062 2063 /* Put out the doubleword header... */ 2064 iowrite32(skb->len, ioaddr + TX_FIFO); 2065 if (vp->bus_master) { 2066 /* Set the bus-master controller to transfer the packet. */ 2067 int len = (skb->len + 3) & ~3; 2068 vp->tx_skb_dma = pci_map_single(VORTEX_PCI(vp), skb->data, len, 2069 PCI_DMA_TODEVICE); 2070 spin_lock_irq(&vp->window_lock); 2071 window_set(vp, 7); 2072 iowrite32(vp->tx_skb_dma, ioaddr + Wn7_MasterAddr); 2073 iowrite16(len, ioaddr + Wn7_MasterLen); 2074 spin_unlock_irq(&vp->window_lock); 2075 vp->tx_skb = skb; 2076 skb_tx_timestamp(skb); 2077 iowrite16(StartDMADown, ioaddr + EL3_CMD); 2078 /* netif_wake_queue() will be called at the DMADone interrupt. */ 2079 } else { 2080 /* ... and the packet rounded to a doubleword. */ 2081 skb_tx_timestamp(skb); 2082 iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2); 2083 dev_consume_skb_any (skb); 2084 if (ioread16(ioaddr + TxFree) > 1536) { 2085 netif_start_queue (dev); /* AKPM: redundant? */ 2086 } else { 2087 /* Interrupt us when the FIFO has room for max-sized packet. */ 2088 netif_stop_queue(dev); 2089 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD); 2090 } 2091 } 2092 2093 netdev_sent_queue(dev, skblen); 2094 2095 /* Clear the Tx status stack. */ 2096 { 2097 int tx_status; 2098 int i = 32; 2099 2100 while (--i > 0 && (tx_status = ioread8(ioaddr + TxStatus)) > 0) { 2101 if (tx_status & 0x3C) { /* A Tx-disabling error occurred. */ 2102 if (vortex_debug > 2) 2103 pr_debug("%s: Tx error, status %2.2x.\n", 2104 dev->name, tx_status); 2105 if (tx_status & 0x04) dev->stats.tx_fifo_errors++; 2106 if (tx_status & 0x38) dev->stats.tx_aborted_errors++; 2107 if (tx_status & 0x30) { 2108 issue_and_wait(dev, TxReset); 2109 } 2110 iowrite16(TxEnable, ioaddr + EL3_CMD); 2111 } 2112 iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */ 2113 } 2114 } 2115 return NETDEV_TX_OK; 2116 } 2117 2118 static netdev_tx_t 2119 boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev) 2120 { 2121 struct vortex_private *vp = netdev_priv(dev); 2122 void __iomem *ioaddr = vp->ioaddr; 2123 /* Calculate the next Tx descriptor entry. */ 2124 int entry = vp->cur_tx % TX_RING_SIZE; 2125 int skblen = skb->len; 2126 struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE]; 2127 unsigned long flags; 2128 dma_addr_t dma_addr; 2129 2130 if (vortex_debug > 6) { 2131 pr_debug("boomerang_start_xmit()\n"); 2132 pr_debug("%s: Trying to send a packet, Tx index %d.\n", 2133 dev->name, vp->cur_tx); 2134 } 2135 2136 /* 2137 * We can't allow a recursion from our interrupt handler back into the 2138 * tx routine, as they take the same spin lock, and that causes 2139 * deadlock. Just return NETDEV_TX_BUSY and let the stack try again in 2140 * a bit 2141 */ 2142 if (vp->handling_irq) 2143 return NETDEV_TX_BUSY; 2144 2145 if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) { 2146 if (vortex_debug > 0) 2147 pr_warn("%s: BUG! Tx Ring full, refusing to send buffer\n", 2148 dev->name); 2149 netif_stop_queue(dev); 2150 return NETDEV_TX_BUSY; 2151 } 2152 2153 vp->tx_skbuff[entry] = skb; 2154 2155 vp->tx_ring[entry].next = 0; 2156 #if DO_ZEROCOPY 2157 if (skb->ip_summed != CHECKSUM_PARTIAL) 2158 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded); 2159 else 2160 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum); 2161 2162 if (!skb_shinfo(skb)->nr_frags) { 2163 dma_addr = pci_map_single(VORTEX_PCI(vp), skb->data, skb->len, 2164 PCI_DMA_TODEVICE); 2165 if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr)) 2166 goto out_dma_err; 2167 2168 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(dma_addr); 2169 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG); 2170 } else { 2171 int i; 2172 2173 dma_addr = pci_map_single(VORTEX_PCI(vp), skb->data, 2174 skb_headlen(skb), PCI_DMA_TODEVICE); 2175 if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr)) 2176 goto out_dma_err; 2177 2178 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(dma_addr); 2179 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb_headlen(skb)); 2180 2181 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2182 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2183 2184 dma_addr = skb_frag_dma_map(&VORTEX_PCI(vp)->dev, frag, 2185 0, 2186 frag->size, 2187 DMA_TO_DEVICE); 2188 if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr)) { 2189 for(i = i-1; i >= 0; i--) 2190 dma_unmap_page(&VORTEX_PCI(vp)->dev, 2191 le32_to_cpu(vp->tx_ring[entry].frag[i+1].addr), 2192 le32_to_cpu(vp->tx_ring[entry].frag[i+1].length), 2193 DMA_TO_DEVICE); 2194 2195 pci_unmap_single(VORTEX_PCI(vp), 2196 le32_to_cpu(vp->tx_ring[entry].frag[0].addr), 2197 le32_to_cpu(vp->tx_ring[entry].frag[0].length), 2198 PCI_DMA_TODEVICE); 2199 2200 goto out_dma_err; 2201 } 2202 2203 vp->tx_ring[entry].frag[i+1].addr = 2204 cpu_to_le32(dma_addr); 2205 2206 if (i == skb_shinfo(skb)->nr_frags-1) 2207 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag)|LAST_FRAG); 2208 else 2209 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag)); 2210 } 2211 } 2212 #else 2213 dma_addr = pci_map_single(VORTEX_PCI(vp), skb->data, skb->len, PCI_DMA_TODEVICE); 2214 if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr)) 2215 goto out_dma_err; 2216 vp->tx_ring[entry].addr = cpu_to_le32(dma_addr); 2217 vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG); 2218 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded); 2219 #endif 2220 2221 spin_lock_irqsave(&vp->lock, flags); 2222 /* Wait for the stall to complete. */ 2223 issue_and_wait(dev, DownStall); 2224 prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc)); 2225 if (ioread32(ioaddr + DownListPtr) == 0) { 2226 iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr); 2227 vp->queued_packet++; 2228 } 2229 2230 vp->cur_tx++; 2231 netdev_sent_queue(dev, skblen); 2232 2233 if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) { 2234 netif_stop_queue (dev); 2235 } else { /* Clear previous interrupt enable. */ 2236 #if defined(tx_interrupt_mitigation) 2237 /* Dubious. If in boomeang_interrupt "faster" cyclone ifdef 2238 * were selected, this would corrupt DN_COMPLETE. No? 2239 */ 2240 prev_entry->status &= cpu_to_le32(~TxIntrUploaded); 2241 #endif 2242 } 2243 skb_tx_timestamp(skb); 2244 iowrite16(DownUnstall, ioaddr + EL3_CMD); 2245 spin_unlock_irqrestore(&vp->lock, flags); 2246 out: 2247 return NETDEV_TX_OK; 2248 out_dma_err: 2249 dev_err(&VORTEX_PCI(vp)->dev, "Error mapping dma buffer\n"); 2250 goto out; 2251 } 2252 2253 /* The interrupt handler does all of the Rx thread work and cleans up 2254 after the Tx thread. */ 2255 2256 /* 2257 * This is the ISR for the vortex series chips. 2258 * full_bus_master_tx == 0 && full_bus_master_rx == 0 2259 */ 2260 2261 static irqreturn_t 2262 vortex_interrupt(int irq, void *dev_id) 2263 { 2264 struct net_device *dev = dev_id; 2265 struct vortex_private *vp = netdev_priv(dev); 2266 void __iomem *ioaddr; 2267 int status; 2268 int work_done = max_interrupt_work; 2269 int handled = 0; 2270 unsigned int bytes_compl = 0, pkts_compl = 0; 2271 2272 ioaddr = vp->ioaddr; 2273 spin_lock(&vp->lock); 2274 2275 status = ioread16(ioaddr + EL3_STATUS); 2276 2277 if (vortex_debug > 6) 2278 pr_debug("vortex_interrupt(). status=0x%4x\n", status); 2279 2280 if ((status & IntLatch) == 0) 2281 goto handler_exit; /* No interrupt: shared IRQs cause this */ 2282 handled = 1; 2283 2284 if (status & IntReq) { 2285 status |= vp->deferred; 2286 vp->deferred = 0; 2287 } 2288 2289 if (status == 0xffff) /* h/w no longer present (hotplug)? */ 2290 goto handler_exit; 2291 2292 if (vortex_debug > 4) 2293 pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n", 2294 dev->name, status, ioread8(ioaddr + Timer)); 2295 2296 spin_lock(&vp->window_lock); 2297 window_set(vp, 7); 2298 2299 do { 2300 if (vortex_debug > 5) 2301 pr_debug("%s: In interrupt loop, status %4.4x.\n", 2302 dev->name, status); 2303 if (status & RxComplete) 2304 vortex_rx(dev); 2305 2306 if (status & TxAvailable) { 2307 if (vortex_debug > 5) 2308 pr_debug(" TX room bit was handled.\n"); 2309 /* There's room in the FIFO for a full-sized packet. */ 2310 iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD); 2311 netif_wake_queue (dev); 2312 } 2313 2314 if (status & DMADone) { 2315 if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) { 2316 iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */ 2317 pci_unmap_single(VORTEX_PCI(vp), vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, PCI_DMA_TODEVICE); 2318 pkts_compl++; 2319 bytes_compl += vp->tx_skb->len; 2320 dev_kfree_skb_irq(vp->tx_skb); /* Release the transferred buffer */ 2321 if (ioread16(ioaddr + TxFree) > 1536) { 2322 /* 2323 * AKPM: FIXME: I don't think we need this. If the queue was stopped due to 2324 * insufficient FIFO room, the TxAvailable test will succeed and call 2325 * netif_wake_queue() 2326 */ 2327 netif_wake_queue(dev); 2328 } else { /* Interrupt when FIFO has room for max-sized packet. */ 2329 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD); 2330 netif_stop_queue(dev); 2331 } 2332 } 2333 } 2334 /* Check for all uncommon interrupts at once. */ 2335 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) { 2336 if (status == 0xffff) 2337 break; 2338 if (status & RxEarly) 2339 vortex_rx(dev); 2340 spin_unlock(&vp->window_lock); 2341 vortex_error(dev, status); 2342 spin_lock(&vp->window_lock); 2343 window_set(vp, 7); 2344 } 2345 2346 if (--work_done < 0) { 2347 pr_warn("%s: Too much work in interrupt, status %4.4x\n", 2348 dev->name, status); 2349 /* Disable all pending interrupts. */ 2350 do { 2351 vp->deferred |= status; 2352 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable), 2353 ioaddr + EL3_CMD); 2354 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD); 2355 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch); 2356 /* The timer will reenable interrupts. */ 2357 mod_timer(&vp->timer, jiffies + 1*HZ); 2358 break; 2359 } 2360 /* Acknowledge the IRQ. */ 2361 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD); 2362 } while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete)); 2363 2364 netdev_completed_queue(dev, pkts_compl, bytes_compl); 2365 spin_unlock(&vp->window_lock); 2366 2367 if (vortex_debug > 4) 2368 pr_debug("%s: exiting interrupt, status %4.4x.\n", 2369 dev->name, status); 2370 handler_exit: 2371 spin_unlock(&vp->lock); 2372 return IRQ_RETVAL(handled); 2373 } 2374 2375 /* 2376 * This is the ISR for the boomerang series chips. 2377 * full_bus_master_tx == 1 && full_bus_master_rx == 1 2378 */ 2379 2380 static irqreturn_t 2381 boomerang_interrupt(int irq, void *dev_id) 2382 { 2383 struct net_device *dev = dev_id; 2384 struct vortex_private *vp = netdev_priv(dev); 2385 void __iomem *ioaddr; 2386 int status; 2387 int work_done = max_interrupt_work; 2388 int handled = 0; 2389 unsigned int bytes_compl = 0, pkts_compl = 0; 2390 2391 ioaddr = vp->ioaddr; 2392 2393 2394 /* 2395 * It seems dopey to put the spinlock this early, but we could race against vortex_tx_timeout 2396 * and boomerang_start_xmit 2397 */ 2398 spin_lock(&vp->lock); 2399 vp->handling_irq = 1; 2400 2401 status = ioread16(ioaddr + EL3_STATUS); 2402 2403 if (vortex_debug > 6) 2404 pr_debug("boomerang_interrupt. status=0x%4x\n", status); 2405 2406 if ((status & IntLatch) == 0) 2407 goto handler_exit; /* No interrupt: shared IRQs can cause this */ 2408 handled = 1; 2409 2410 if (status == 0xffff) { /* h/w no longer present (hotplug)? */ 2411 if (vortex_debug > 1) 2412 pr_debug("boomerang_interrupt(1): status = 0xffff\n"); 2413 goto handler_exit; 2414 } 2415 2416 if (status & IntReq) { 2417 status |= vp->deferred; 2418 vp->deferred = 0; 2419 } 2420 2421 if (vortex_debug > 4) 2422 pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n", 2423 dev->name, status, ioread8(ioaddr + Timer)); 2424 do { 2425 if (vortex_debug > 5) 2426 pr_debug("%s: In interrupt loop, status %4.4x.\n", 2427 dev->name, status); 2428 if (status & UpComplete) { 2429 iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD); 2430 if (vortex_debug > 5) 2431 pr_debug("boomerang_interrupt->boomerang_rx\n"); 2432 boomerang_rx(dev); 2433 } 2434 2435 if (status & DownComplete) { 2436 unsigned int dirty_tx = vp->dirty_tx; 2437 2438 iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD); 2439 while (vp->cur_tx - dirty_tx > 0) { 2440 int entry = dirty_tx % TX_RING_SIZE; 2441 #if 1 /* AKPM: the latter is faster, but cyclone-only */ 2442 if (ioread32(ioaddr + DownListPtr) == 2443 vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc)) 2444 break; /* It still hasn't been processed. */ 2445 #else 2446 if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0) 2447 break; /* It still hasn't been processed. */ 2448 #endif 2449 2450 if (vp->tx_skbuff[entry]) { 2451 struct sk_buff *skb = vp->tx_skbuff[entry]; 2452 #if DO_ZEROCOPY 2453 int i; 2454 pci_unmap_single(VORTEX_PCI(vp), 2455 le32_to_cpu(vp->tx_ring[entry].frag[0].addr), 2456 le32_to_cpu(vp->tx_ring[entry].frag[0].length)&0xFFF, 2457 PCI_DMA_TODEVICE); 2458 2459 for (i=1; i<=skb_shinfo(skb)->nr_frags; i++) 2460 pci_unmap_page(VORTEX_PCI(vp), 2461 le32_to_cpu(vp->tx_ring[entry].frag[i].addr), 2462 le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF, 2463 PCI_DMA_TODEVICE); 2464 #else 2465 pci_unmap_single(VORTEX_PCI(vp), 2466 le32_to_cpu(vp->tx_ring[entry].addr), skb->len, PCI_DMA_TODEVICE); 2467 #endif 2468 pkts_compl++; 2469 bytes_compl += skb->len; 2470 dev_kfree_skb_irq(skb); 2471 vp->tx_skbuff[entry] = NULL; 2472 } else { 2473 pr_debug("boomerang_interrupt: no skb!\n"); 2474 } 2475 /* dev->stats.tx_packets++; Counted below. */ 2476 dirty_tx++; 2477 } 2478 vp->dirty_tx = dirty_tx; 2479 if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) { 2480 if (vortex_debug > 6) 2481 pr_debug("boomerang_interrupt: wake queue\n"); 2482 netif_wake_queue (dev); 2483 } 2484 } 2485 2486 /* Check for all uncommon interrupts at once. */ 2487 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) 2488 vortex_error(dev, status); 2489 2490 if (--work_done < 0) { 2491 pr_warn("%s: Too much work in interrupt, status %4.4x\n", 2492 dev->name, status); 2493 /* Disable all pending interrupts. */ 2494 do { 2495 vp->deferred |= status; 2496 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable), 2497 ioaddr + EL3_CMD); 2498 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD); 2499 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch); 2500 /* The timer will reenable interrupts. */ 2501 mod_timer(&vp->timer, jiffies + 1*HZ); 2502 break; 2503 } 2504 /* Acknowledge the IRQ. */ 2505 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD); 2506 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */ 2507 iowrite32(0x8000, vp->cb_fn_base + 4); 2508 2509 } while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch); 2510 netdev_completed_queue(dev, pkts_compl, bytes_compl); 2511 2512 if (vortex_debug > 4) 2513 pr_debug("%s: exiting interrupt, status %4.4x.\n", 2514 dev->name, status); 2515 handler_exit: 2516 vp->handling_irq = 0; 2517 spin_unlock(&vp->lock); 2518 return IRQ_RETVAL(handled); 2519 } 2520 2521 static int vortex_rx(struct net_device *dev) 2522 { 2523 struct vortex_private *vp = netdev_priv(dev); 2524 void __iomem *ioaddr = vp->ioaddr; 2525 int i; 2526 short rx_status; 2527 2528 if (vortex_debug > 5) 2529 pr_debug("vortex_rx(): status %4.4x, rx_status %4.4x.\n", 2530 ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus)); 2531 while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) { 2532 if (rx_status & 0x4000) { /* Error, update stats. */ 2533 unsigned char rx_error = ioread8(ioaddr + RxErrors); 2534 if (vortex_debug > 2) 2535 pr_debug(" Rx error: status %2.2x.\n", rx_error); 2536 dev->stats.rx_errors++; 2537 if (rx_error & 0x01) dev->stats.rx_over_errors++; 2538 if (rx_error & 0x02) dev->stats.rx_length_errors++; 2539 if (rx_error & 0x04) dev->stats.rx_frame_errors++; 2540 if (rx_error & 0x08) dev->stats.rx_crc_errors++; 2541 if (rx_error & 0x10) dev->stats.rx_length_errors++; 2542 } else { 2543 /* The packet length: up to 4.5K!. */ 2544 int pkt_len = rx_status & 0x1fff; 2545 struct sk_buff *skb; 2546 2547 skb = netdev_alloc_skb(dev, pkt_len + 5); 2548 if (vortex_debug > 4) 2549 pr_debug("Receiving packet size %d status %4.4x.\n", 2550 pkt_len, rx_status); 2551 if (skb != NULL) { 2552 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */ 2553 /* 'skb_put()' points to the start of sk_buff data area. */ 2554 if (vp->bus_master && 2555 ! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) { 2556 dma_addr_t dma = pci_map_single(VORTEX_PCI(vp), skb_put(skb, pkt_len), 2557 pkt_len, PCI_DMA_FROMDEVICE); 2558 iowrite32(dma, ioaddr + Wn7_MasterAddr); 2559 iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen); 2560 iowrite16(StartDMAUp, ioaddr + EL3_CMD); 2561 while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000) 2562 ; 2563 pci_unmap_single(VORTEX_PCI(vp), dma, pkt_len, PCI_DMA_FROMDEVICE); 2564 } else { 2565 ioread32_rep(ioaddr + RX_FIFO, 2566 skb_put(skb, pkt_len), 2567 (pkt_len + 3) >> 2); 2568 } 2569 iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */ 2570 skb->protocol = eth_type_trans(skb, dev); 2571 netif_rx(skb); 2572 dev->stats.rx_packets++; 2573 /* Wait a limited time to go to next packet. */ 2574 for (i = 200; i >= 0; i--) 2575 if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) 2576 break; 2577 continue; 2578 } else if (vortex_debug > 0) 2579 pr_notice("%s: No memory to allocate a sk_buff of size %d.\n", 2580 dev->name, pkt_len); 2581 dev->stats.rx_dropped++; 2582 } 2583 issue_and_wait(dev, RxDiscard); 2584 } 2585 2586 return 0; 2587 } 2588 2589 static int 2590 boomerang_rx(struct net_device *dev) 2591 { 2592 struct vortex_private *vp = netdev_priv(dev); 2593 int entry = vp->cur_rx % RX_RING_SIZE; 2594 void __iomem *ioaddr = vp->ioaddr; 2595 int rx_status; 2596 int rx_work_limit = vp->dirty_rx + RX_RING_SIZE - vp->cur_rx; 2597 2598 if (vortex_debug > 5) 2599 pr_debug("boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS)); 2600 2601 while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){ 2602 if (--rx_work_limit < 0) 2603 break; 2604 if (rx_status & RxDError) { /* Error, update stats. */ 2605 unsigned char rx_error = rx_status >> 16; 2606 if (vortex_debug > 2) 2607 pr_debug(" Rx error: status %2.2x.\n", rx_error); 2608 dev->stats.rx_errors++; 2609 if (rx_error & 0x01) dev->stats.rx_over_errors++; 2610 if (rx_error & 0x02) dev->stats.rx_length_errors++; 2611 if (rx_error & 0x04) dev->stats.rx_frame_errors++; 2612 if (rx_error & 0x08) dev->stats.rx_crc_errors++; 2613 if (rx_error & 0x10) dev->stats.rx_length_errors++; 2614 } else { 2615 /* The packet length: up to 4.5K!. */ 2616 int pkt_len = rx_status & 0x1fff; 2617 struct sk_buff *skb; 2618 dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr); 2619 2620 if (vortex_debug > 4) 2621 pr_debug("Receiving packet size %d status %4.4x.\n", 2622 pkt_len, rx_status); 2623 2624 /* Check if the packet is long enough to just accept without 2625 copying to a properly sized skbuff. */ 2626 if (pkt_len < rx_copybreak && 2627 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) { 2628 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */ 2629 pci_dma_sync_single_for_cpu(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE); 2630 /* 'skb_put()' points to the start of sk_buff data area. */ 2631 memcpy(skb_put(skb, pkt_len), 2632 vp->rx_skbuff[entry]->data, 2633 pkt_len); 2634 pci_dma_sync_single_for_device(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE); 2635 vp->rx_copy++; 2636 } else { 2637 /* Pass up the skbuff already on the Rx ring. */ 2638 skb = vp->rx_skbuff[entry]; 2639 vp->rx_skbuff[entry] = NULL; 2640 skb_put(skb, pkt_len); 2641 pci_unmap_single(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE); 2642 vp->rx_nocopy++; 2643 } 2644 skb->protocol = eth_type_trans(skb, dev); 2645 { /* Use hardware checksum info. */ 2646 int csum_bits = rx_status & 0xee000000; 2647 if (csum_bits && 2648 (csum_bits == (IPChksumValid | TCPChksumValid) || 2649 csum_bits == (IPChksumValid | UDPChksumValid))) { 2650 skb->ip_summed = CHECKSUM_UNNECESSARY; 2651 vp->rx_csumhits++; 2652 } 2653 } 2654 netif_rx(skb); 2655 dev->stats.rx_packets++; 2656 } 2657 entry = (++vp->cur_rx) % RX_RING_SIZE; 2658 } 2659 /* Refill the Rx ring buffers. */ 2660 for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) { 2661 struct sk_buff *skb; 2662 entry = vp->dirty_rx % RX_RING_SIZE; 2663 if (vp->rx_skbuff[entry] == NULL) { 2664 skb = netdev_alloc_skb_ip_align(dev, PKT_BUF_SZ); 2665 if (skb == NULL) { 2666 static unsigned long last_jif; 2667 if (time_after(jiffies, last_jif + 10 * HZ)) { 2668 pr_warn("%s: memory shortage\n", 2669 dev->name); 2670 last_jif = jiffies; 2671 } 2672 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE) 2673 mod_timer(&vp->rx_oom_timer, RUN_AT(HZ * 1)); 2674 break; /* Bad news! */ 2675 } 2676 2677 vp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE)); 2678 vp->rx_skbuff[entry] = skb; 2679 } 2680 vp->rx_ring[entry].status = 0; /* Clear complete bit. */ 2681 iowrite16(UpUnstall, ioaddr + EL3_CMD); 2682 } 2683 return 0; 2684 } 2685 2686 /* 2687 * If we've hit a total OOM refilling the Rx ring we poll once a second 2688 * for some memory. Otherwise there is no way to restart the rx process. 2689 */ 2690 static void 2691 rx_oom_timer(unsigned long arg) 2692 { 2693 struct net_device *dev = (struct net_device *)arg; 2694 struct vortex_private *vp = netdev_priv(dev); 2695 2696 spin_lock_irq(&vp->lock); 2697 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE) /* This test is redundant, but makes me feel good */ 2698 boomerang_rx(dev); 2699 if (vortex_debug > 1) { 2700 pr_debug("%s: rx_oom_timer %s\n", dev->name, 2701 ((vp->cur_rx - vp->dirty_rx) != RX_RING_SIZE) ? "succeeded" : "retrying"); 2702 } 2703 spin_unlock_irq(&vp->lock); 2704 } 2705 2706 static void 2707 vortex_down(struct net_device *dev, int final_down) 2708 { 2709 struct vortex_private *vp = netdev_priv(dev); 2710 void __iomem *ioaddr = vp->ioaddr; 2711 2712 netdev_reset_queue(dev); 2713 netif_stop_queue(dev); 2714 2715 del_timer_sync(&vp->rx_oom_timer); 2716 del_timer_sync(&vp->timer); 2717 2718 /* Turn off statistics ASAP. We update dev->stats below. */ 2719 iowrite16(StatsDisable, ioaddr + EL3_CMD); 2720 2721 /* Disable the receiver and transmitter. */ 2722 iowrite16(RxDisable, ioaddr + EL3_CMD); 2723 iowrite16(TxDisable, ioaddr + EL3_CMD); 2724 2725 /* Disable receiving 802.1q tagged frames */ 2726 set_8021q_mode(dev, 0); 2727 2728 if (dev->if_port == XCVR_10base2) 2729 /* Turn off thinnet power. Green! */ 2730 iowrite16(StopCoax, ioaddr + EL3_CMD); 2731 2732 iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD); 2733 2734 update_stats(ioaddr, dev); 2735 if (vp->full_bus_master_rx) 2736 iowrite32(0, ioaddr + UpListPtr); 2737 if (vp->full_bus_master_tx) 2738 iowrite32(0, ioaddr + DownListPtr); 2739 2740 if (final_down && VORTEX_PCI(vp)) { 2741 vp->pm_state_valid = 1; 2742 pci_save_state(VORTEX_PCI(vp)); 2743 acpi_set_WOL(dev); 2744 } 2745 } 2746 2747 static int 2748 vortex_close(struct net_device *dev) 2749 { 2750 struct vortex_private *vp = netdev_priv(dev); 2751 void __iomem *ioaddr = vp->ioaddr; 2752 int i; 2753 2754 if (netif_device_present(dev)) 2755 vortex_down(dev, 1); 2756 2757 if (vortex_debug > 1) { 2758 pr_debug("%s: vortex_close() status %4.4x, Tx status %2.2x.\n", 2759 dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus)); 2760 pr_debug("%s: vortex close stats: rx_nocopy %d rx_copy %d" 2761 " tx_queued %d Rx pre-checksummed %d.\n", 2762 dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits); 2763 } 2764 2765 #if DO_ZEROCOPY 2766 if (vp->rx_csumhits && 2767 (vp->drv_flags & HAS_HWCKSM) == 0 && 2768 (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) { 2769 pr_warn("%s supports hardware checksums, and we're not using them!\n", 2770 dev->name); 2771 } 2772 #endif 2773 2774 free_irq(dev->irq, dev); 2775 2776 if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */ 2777 for (i = 0; i < RX_RING_SIZE; i++) 2778 if (vp->rx_skbuff[i]) { 2779 pci_unmap_single( VORTEX_PCI(vp), le32_to_cpu(vp->rx_ring[i].addr), 2780 PKT_BUF_SZ, PCI_DMA_FROMDEVICE); 2781 dev_kfree_skb(vp->rx_skbuff[i]); 2782 vp->rx_skbuff[i] = NULL; 2783 } 2784 } 2785 if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */ 2786 for (i = 0; i < TX_RING_SIZE; i++) { 2787 if (vp->tx_skbuff[i]) { 2788 struct sk_buff *skb = vp->tx_skbuff[i]; 2789 #if DO_ZEROCOPY 2790 int k; 2791 2792 for (k=0; k<=skb_shinfo(skb)->nr_frags; k++) 2793 pci_unmap_single(VORTEX_PCI(vp), 2794 le32_to_cpu(vp->tx_ring[i].frag[k].addr), 2795 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF, 2796 PCI_DMA_TODEVICE); 2797 #else 2798 pci_unmap_single(VORTEX_PCI(vp), le32_to_cpu(vp->tx_ring[i].addr), skb->len, PCI_DMA_TODEVICE); 2799 #endif 2800 dev_kfree_skb(skb); 2801 vp->tx_skbuff[i] = NULL; 2802 } 2803 } 2804 } 2805 2806 return 0; 2807 } 2808 2809 static void 2810 dump_tx_ring(struct net_device *dev) 2811 { 2812 if (vortex_debug > 0) { 2813 struct vortex_private *vp = netdev_priv(dev); 2814 void __iomem *ioaddr = vp->ioaddr; 2815 2816 if (vp->full_bus_master_tx) { 2817 int i; 2818 int stalled = ioread32(ioaddr + PktStatus) & 0x04; /* Possible racy. But it's only debug stuff */ 2819 2820 pr_err(" Flags; bus-master %d, dirty %d(%d) current %d(%d)\n", 2821 vp->full_bus_master_tx, 2822 vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE, 2823 vp->cur_tx, vp->cur_tx % TX_RING_SIZE); 2824 pr_err(" Transmit list %8.8x vs. %p.\n", 2825 ioread32(ioaddr + DownListPtr), 2826 &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]); 2827 issue_and_wait(dev, DownStall); 2828 for (i = 0; i < TX_RING_SIZE; i++) { 2829 unsigned int length; 2830 2831 #if DO_ZEROCOPY 2832 length = le32_to_cpu(vp->tx_ring[i].frag[0].length); 2833 #else 2834 length = le32_to_cpu(vp->tx_ring[i].length); 2835 #endif 2836 pr_err(" %d: @%p length %8.8x status %8.8x\n", 2837 i, &vp->tx_ring[i], length, 2838 le32_to_cpu(vp->tx_ring[i].status)); 2839 } 2840 if (!stalled) 2841 iowrite16(DownUnstall, ioaddr + EL3_CMD); 2842 } 2843 } 2844 } 2845 2846 static struct net_device_stats *vortex_get_stats(struct net_device *dev) 2847 { 2848 struct vortex_private *vp = netdev_priv(dev); 2849 void __iomem *ioaddr = vp->ioaddr; 2850 unsigned long flags; 2851 2852 if (netif_device_present(dev)) { /* AKPM: Used to be netif_running */ 2853 spin_lock_irqsave (&vp->lock, flags); 2854 update_stats(ioaddr, dev); 2855 spin_unlock_irqrestore (&vp->lock, flags); 2856 } 2857 return &dev->stats; 2858 } 2859 2860 /* Update statistics. 2861 Unlike with the EL3 we need not worry about interrupts changing 2862 the window setting from underneath us, but we must still guard 2863 against a race condition with a StatsUpdate interrupt updating the 2864 table. This is done by checking that the ASM (!) code generated uses 2865 atomic updates with '+='. 2866 */ 2867 static void update_stats(void __iomem *ioaddr, struct net_device *dev) 2868 { 2869 struct vortex_private *vp = netdev_priv(dev); 2870 2871 /* Unlike the 3c5x9 we need not turn off stats updates while reading. */ 2872 /* Switch to the stats window, and read everything. */ 2873 dev->stats.tx_carrier_errors += window_read8(vp, 6, 0); 2874 dev->stats.tx_heartbeat_errors += window_read8(vp, 6, 1); 2875 dev->stats.tx_window_errors += window_read8(vp, 6, 4); 2876 dev->stats.rx_fifo_errors += window_read8(vp, 6, 5); 2877 dev->stats.tx_packets += window_read8(vp, 6, 6); 2878 dev->stats.tx_packets += (window_read8(vp, 6, 9) & 2879 0x30) << 4; 2880 /* Rx packets */ window_read8(vp, 6, 7); /* Must read to clear */ 2881 /* Don't bother with register 9, an extension of registers 6&7. 2882 If we do use the 6&7 values the atomic update assumption above 2883 is invalid. */ 2884 dev->stats.rx_bytes += window_read16(vp, 6, 10); 2885 dev->stats.tx_bytes += window_read16(vp, 6, 12); 2886 /* Extra stats for get_ethtool_stats() */ 2887 vp->xstats.tx_multiple_collisions += window_read8(vp, 6, 2); 2888 vp->xstats.tx_single_collisions += window_read8(vp, 6, 3); 2889 vp->xstats.tx_deferred += window_read8(vp, 6, 8); 2890 vp->xstats.rx_bad_ssd += window_read8(vp, 4, 12); 2891 2892 dev->stats.collisions = vp->xstats.tx_multiple_collisions 2893 + vp->xstats.tx_single_collisions 2894 + vp->xstats.tx_max_collisions; 2895 2896 { 2897 u8 up = window_read8(vp, 4, 13); 2898 dev->stats.rx_bytes += (up & 0x0f) << 16; 2899 dev->stats.tx_bytes += (up & 0xf0) << 12; 2900 } 2901 } 2902 2903 static int vortex_nway_reset(struct net_device *dev) 2904 { 2905 struct vortex_private *vp = netdev_priv(dev); 2906 2907 return mii_nway_restart(&vp->mii); 2908 } 2909 2910 static int vortex_get_link_ksettings(struct net_device *dev, 2911 struct ethtool_link_ksettings *cmd) 2912 { 2913 struct vortex_private *vp = netdev_priv(dev); 2914 2915 return mii_ethtool_get_link_ksettings(&vp->mii, cmd); 2916 } 2917 2918 static int vortex_set_link_ksettings(struct net_device *dev, 2919 const struct ethtool_link_ksettings *cmd) 2920 { 2921 struct vortex_private *vp = netdev_priv(dev); 2922 2923 return mii_ethtool_set_link_ksettings(&vp->mii, cmd); 2924 } 2925 2926 static u32 vortex_get_msglevel(struct net_device *dev) 2927 { 2928 return vortex_debug; 2929 } 2930 2931 static void vortex_set_msglevel(struct net_device *dev, u32 dbg) 2932 { 2933 vortex_debug = dbg; 2934 } 2935 2936 static int vortex_get_sset_count(struct net_device *dev, int sset) 2937 { 2938 switch (sset) { 2939 case ETH_SS_STATS: 2940 return VORTEX_NUM_STATS; 2941 default: 2942 return -EOPNOTSUPP; 2943 } 2944 } 2945 2946 static void vortex_get_ethtool_stats(struct net_device *dev, 2947 struct ethtool_stats *stats, u64 *data) 2948 { 2949 struct vortex_private *vp = netdev_priv(dev); 2950 void __iomem *ioaddr = vp->ioaddr; 2951 unsigned long flags; 2952 2953 spin_lock_irqsave(&vp->lock, flags); 2954 update_stats(ioaddr, dev); 2955 spin_unlock_irqrestore(&vp->lock, flags); 2956 2957 data[0] = vp->xstats.tx_deferred; 2958 data[1] = vp->xstats.tx_max_collisions; 2959 data[2] = vp->xstats.tx_multiple_collisions; 2960 data[3] = vp->xstats.tx_single_collisions; 2961 data[4] = vp->xstats.rx_bad_ssd; 2962 } 2963 2964 2965 static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data) 2966 { 2967 switch (stringset) { 2968 case ETH_SS_STATS: 2969 memcpy(data, ðtool_stats_keys, sizeof(ethtool_stats_keys)); 2970 break; 2971 default: 2972 WARN_ON(1); 2973 break; 2974 } 2975 } 2976 2977 static void vortex_get_drvinfo(struct net_device *dev, 2978 struct ethtool_drvinfo *info) 2979 { 2980 struct vortex_private *vp = netdev_priv(dev); 2981 2982 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 2983 if (VORTEX_PCI(vp)) { 2984 strlcpy(info->bus_info, pci_name(VORTEX_PCI(vp)), 2985 sizeof(info->bus_info)); 2986 } else { 2987 if (VORTEX_EISA(vp)) 2988 strlcpy(info->bus_info, dev_name(vp->gendev), 2989 sizeof(info->bus_info)); 2990 else 2991 snprintf(info->bus_info, sizeof(info->bus_info), 2992 "EISA 0x%lx %d", dev->base_addr, dev->irq); 2993 } 2994 } 2995 2996 static void vortex_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2997 { 2998 struct vortex_private *vp = netdev_priv(dev); 2999 3000 if (!VORTEX_PCI(vp)) 3001 return; 3002 3003 wol->supported = WAKE_MAGIC; 3004 3005 wol->wolopts = 0; 3006 if (vp->enable_wol) 3007 wol->wolopts |= WAKE_MAGIC; 3008 } 3009 3010 static int vortex_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 3011 { 3012 struct vortex_private *vp = netdev_priv(dev); 3013 3014 if (!VORTEX_PCI(vp)) 3015 return -EOPNOTSUPP; 3016 3017 if (wol->wolopts & ~WAKE_MAGIC) 3018 return -EINVAL; 3019 3020 if (wol->wolopts & WAKE_MAGIC) 3021 vp->enable_wol = 1; 3022 else 3023 vp->enable_wol = 0; 3024 acpi_set_WOL(dev); 3025 3026 return 0; 3027 } 3028 3029 static const struct ethtool_ops vortex_ethtool_ops = { 3030 .get_drvinfo = vortex_get_drvinfo, 3031 .get_strings = vortex_get_strings, 3032 .get_msglevel = vortex_get_msglevel, 3033 .set_msglevel = vortex_set_msglevel, 3034 .get_ethtool_stats = vortex_get_ethtool_stats, 3035 .get_sset_count = vortex_get_sset_count, 3036 .get_link = ethtool_op_get_link, 3037 .nway_reset = vortex_nway_reset, 3038 .get_wol = vortex_get_wol, 3039 .set_wol = vortex_set_wol, 3040 .get_ts_info = ethtool_op_get_ts_info, 3041 .get_link_ksettings = vortex_get_link_ksettings, 3042 .set_link_ksettings = vortex_set_link_ksettings, 3043 }; 3044 3045 #ifdef CONFIG_PCI 3046 /* 3047 * Must power the device up to do MDIO operations 3048 */ 3049 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 3050 { 3051 int err; 3052 struct vortex_private *vp = netdev_priv(dev); 3053 pci_power_t state = 0; 3054 3055 if(VORTEX_PCI(vp)) 3056 state = VORTEX_PCI(vp)->current_state; 3057 3058 /* The kernel core really should have pci_get_power_state() */ 3059 3060 if(state != 0) 3061 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); 3062 err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL); 3063 if(state != 0) 3064 pci_set_power_state(VORTEX_PCI(vp), state); 3065 3066 return err; 3067 } 3068 #endif 3069 3070 3071 /* Pre-Cyclone chips have no documented multicast filter, so the only 3072 multicast setting is to receive all multicast frames. At least 3073 the chip has a very clean way to set the mode, unlike many others. */ 3074 static void set_rx_mode(struct net_device *dev) 3075 { 3076 struct vortex_private *vp = netdev_priv(dev); 3077 void __iomem *ioaddr = vp->ioaddr; 3078 int new_mode; 3079 3080 if (dev->flags & IFF_PROMISC) { 3081 if (vortex_debug > 3) 3082 pr_notice("%s: Setting promiscuous mode.\n", dev->name); 3083 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm; 3084 } else if (!netdev_mc_empty(dev) || dev->flags & IFF_ALLMULTI) { 3085 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast; 3086 } else 3087 new_mode = SetRxFilter | RxStation | RxBroadcast; 3088 3089 iowrite16(new_mode, ioaddr + EL3_CMD); 3090 } 3091 3092 #if IS_ENABLED(CONFIG_VLAN_8021Q) 3093 /* Setup the card so that it can receive frames with an 802.1q VLAN tag. 3094 Note that this must be done after each RxReset due to some backwards 3095 compatibility logic in the Cyclone and Tornado ASICs */ 3096 3097 /* The Ethernet Type used for 802.1q tagged frames */ 3098 #define VLAN_ETHER_TYPE 0x8100 3099 3100 static void set_8021q_mode(struct net_device *dev, int enable) 3101 { 3102 struct vortex_private *vp = netdev_priv(dev); 3103 int mac_ctrl; 3104 3105 if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) { 3106 /* cyclone and tornado chipsets can recognize 802.1q 3107 * tagged frames and treat them correctly */ 3108 3109 int max_pkt_size = dev->mtu+14; /* MTU+Ethernet header */ 3110 if (enable) 3111 max_pkt_size += 4; /* 802.1Q VLAN tag */ 3112 3113 window_write16(vp, max_pkt_size, 3, Wn3_MaxPktSize); 3114 3115 /* set VlanEtherType to let the hardware checksumming 3116 treat tagged frames correctly */ 3117 window_write16(vp, VLAN_ETHER_TYPE, 7, Wn7_VlanEtherType); 3118 } else { 3119 /* on older cards we have to enable large frames */ 3120 3121 vp->large_frames = dev->mtu > 1500 || enable; 3122 3123 mac_ctrl = window_read16(vp, 3, Wn3_MAC_Ctrl); 3124 if (vp->large_frames) 3125 mac_ctrl |= 0x40; 3126 else 3127 mac_ctrl &= ~0x40; 3128 window_write16(vp, mac_ctrl, 3, Wn3_MAC_Ctrl); 3129 } 3130 } 3131 #else 3132 3133 static void set_8021q_mode(struct net_device *dev, int enable) 3134 { 3135 } 3136 3137 3138 #endif 3139 3140 /* MII transceiver control section. 3141 Read and write the MII registers using software-generated serial 3142 MDIO protocol. See the MII specifications or DP83840A data sheet 3143 for details. */ 3144 3145 /* The maximum data clock rate is 2.5 Mhz. The minimum timing is usually 3146 met by back-to-back PCI I/O cycles, but we insert a delay to avoid 3147 "overclocking" issues. */ 3148 static void mdio_delay(struct vortex_private *vp) 3149 { 3150 window_read32(vp, 4, Wn4_PhysicalMgmt); 3151 } 3152 3153 #define MDIO_SHIFT_CLK 0x01 3154 #define MDIO_DIR_WRITE 0x04 3155 #define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE) 3156 #define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE) 3157 #define MDIO_DATA_READ 0x02 3158 #define MDIO_ENB_IN 0x00 3159 3160 /* Generate the preamble required for initial synchronization and 3161 a few older transceivers. */ 3162 static void mdio_sync(struct vortex_private *vp, int bits) 3163 { 3164 /* Establish sync by sending at least 32 logic ones. */ 3165 while (-- bits >= 0) { 3166 window_write16(vp, MDIO_DATA_WRITE1, 4, Wn4_PhysicalMgmt); 3167 mdio_delay(vp); 3168 window_write16(vp, MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK, 3169 4, Wn4_PhysicalMgmt); 3170 mdio_delay(vp); 3171 } 3172 } 3173 3174 static int mdio_read(struct net_device *dev, int phy_id, int location) 3175 { 3176 int i; 3177 struct vortex_private *vp = netdev_priv(dev); 3178 int read_cmd = (0xf6 << 10) | (phy_id << 5) | location; 3179 unsigned int retval = 0; 3180 3181 spin_lock_bh(&vp->mii_lock); 3182 3183 if (mii_preamble_required) 3184 mdio_sync(vp, 32); 3185 3186 /* Shift the read command bits out. */ 3187 for (i = 14; i >= 0; i--) { 3188 int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0; 3189 window_write16(vp, dataval, 4, Wn4_PhysicalMgmt); 3190 mdio_delay(vp); 3191 window_write16(vp, dataval | MDIO_SHIFT_CLK, 3192 4, Wn4_PhysicalMgmt); 3193 mdio_delay(vp); 3194 } 3195 /* Read the two transition, 16 data, and wire-idle bits. */ 3196 for (i = 19; i > 0; i--) { 3197 window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt); 3198 mdio_delay(vp); 3199 retval = (retval << 1) | 3200 ((window_read16(vp, 4, Wn4_PhysicalMgmt) & 3201 MDIO_DATA_READ) ? 1 : 0); 3202 window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK, 3203 4, Wn4_PhysicalMgmt); 3204 mdio_delay(vp); 3205 } 3206 3207 spin_unlock_bh(&vp->mii_lock); 3208 3209 return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff; 3210 } 3211 3212 static void mdio_write(struct net_device *dev, int phy_id, int location, int value) 3213 { 3214 struct vortex_private *vp = netdev_priv(dev); 3215 int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value; 3216 int i; 3217 3218 spin_lock_bh(&vp->mii_lock); 3219 3220 if (mii_preamble_required) 3221 mdio_sync(vp, 32); 3222 3223 /* Shift the command bits out. */ 3224 for (i = 31; i >= 0; i--) { 3225 int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0; 3226 window_write16(vp, dataval, 4, Wn4_PhysicalMgmt); 3227 mdio_delay(vp); 3228 window_write16(vp, dataval | MDIO_SHIFT_CLK, 3229 4, Wn4_PhysicalMgmt); 3230 mdio_delay(vp); 3231 } 3232 /* Leave the interface idle. */ 3233 for (i = 1; i >= 0; i--) { 3234 window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt); 3235 mdio_delay(vp); 3236 window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK, 3237 4, Wn4_PhysicalMgmt); 3238 mdio_delay(vp); 3239 } 3240 3241 spin_unlock_bh(&vp->mii_lock); 3242 } 3243 3244 /* ACPI: Advanced Configuration and Power Interface. */ 3245 /* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */ 3246 static void acpi_set_WOL(struct net_device *dev) 3247 { 3248 struct vortex_private *vp = netdev_priv(dev); 3249 void __iomem *ioaddr = vp->ioaddr; 3250 3251 device_set_wakeup_enable(vp->gendev, vp->enable_wol); 3252 3253 if (vp->enable_wol) { 3254 /* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */ 3255 window_write16(vp, 2, 7, 0x0c); 3256 /* The RxFilter must accept the WOL frames. */ 3257 iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD); 3258 iowrite16(RxEnable, ioaddr + EL3_CMD); 3259 3260 if (pci_enable_wake(VORTEX_PCI(vp), PCI_D3hot, 1)) { 3261 pr_info("%s: WOL not supported.\n", pci_name(VORTEX_PCI(vp))); 3262 3263 vp->enable_wol = 0; 3264 return; 3265 } 3266 3267 if (VORTEX_PCI(vp)->current_state < PCI_D3hot) 3268 return; 3269 3270 /* Change the power state to D3; RxEnable doesn't take effect. */ 3271 pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot); 3272 } 3273 } 3274 3275 3276 static void vortex_remove_one(struct pci_dev *pdev) 3277 { 3278 struct net_device *dev = pci_get_drvdata(pdev); 3279 struct vortex_private *vp; 3280 3281 if (!dev) { 3282 pr_err("vortex_remove_one called for Compaq device!\n"); 3283 BUG(); 3284 } 3285 3286 vp = netdev_priv(dev); 3287 3288 if (vp->cb_fn_base) 3289 pci_iounmap(pdev, vp->cb_fn_base); 3290 3291 unregister_netdev(dev); 3292 3293 pci_set_power_state(pdev, PCI_D0); /* Go active */ 3294 if (vp->pm_state_valid) 3295 pci_restore_state(pdev); 3296 pci_disable_device(pdev); 3297 3298 /* Should really use issue_and_wait() here */ 3299 iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14), 3300 vp->ioaddr + EL3_CMD); 3301 3302 pci_iounmap(pdev, vp->ioaddr); 3303 3304 pci_free_consistent(pdev, 3305 sizeof(struct boom_rx_desc) * RX_RING_SIZE 3306 + sizeof(struct boom_tx_desc) * TX_RING_SIZE, 3307 vp->rx_ring, 3308 vp->rx_ring_dma); 3309 3310 pci_release_regions(pdev); 3311 3312 free_netdev(dev); 3313 } 3314 3315 3316 static struct pci_driver vortex_driver = { 3317 .name = "3c59x", 3318 .probe = vortex_init_one, 3319 .remove = vortex_remove_one, 3320 .id_table = vortex_pci_tbl, 3321 .driver.pm = VORTEX_PM_OPS, 3322 }; 3323 3324 3325 static int vortex_have_pci; 3326 static int vortex_have_eisa; 3327 3328 3329 static int __init vortex_init(void) 3330 { 3331 int pci_rc, eisa_rc; 3332 3333 pci_rc = pci_register_driver(&vortex_driver); 3334 eisa_rc = vortex_eisa_init(); 3335 3336 if (pci_rc == 0) 3337 vortex_have_pci = 1; 3338 if (eisa_rc > 0) 3339 vortex_have_eisa = 1; 3340 3341 return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV; 3342 } 3343 3344 3345 static void __exit vortex_eisa_cleanup(void) 3346 { 3347 void __iomem *ioaddr; 3348 3349 #ifdef CONFIG_EISA 3350 /* Take care of the EISA devices */ 3351 eisa_driver_unregister(&vortex_eisa_driver); 3352 #endif 3353 3354 if (compaq_net_device) { 3355 ioaddr = ioport_map(compaq_net_device->base_addr, 3356 VORTEX_TOTAL_SIZE); 3357 3358 unregister_netdev(compaq_net_device); 3359 iowrite16(TotalReset, ioaddr + EL3_CMD); 3360 release_region(compaq_net_device->base_addr, 3361 VORTEX_TOTAL_SIZE); 3362 3363 free_netdev(compaq_net_device); 3364 } 3365 } 3366 3367 3368 static void __exit vortex_cleanup(void) 3369 { 3370 if (vortex_have_pci) 3371 pci_unregister_driver(&vortex_driver); 3372 if (vortex_have_eisa) 3373 vortex_eisa_cleanup(); 3374 } 3375 3376 3377 module_init(vortex_init); 3378 module_exit(vortex_cleanup); 3379