xref: /openbmc/linux/drivers/net/ethernet/3com/3c59x.c (revision 82003e04)
1 /* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */
2 /*
3 	Written 1996-1999 by Donald Becker.
4 
5 	This software may be used and distributed according to the terms
6 	of the GNU General Public License, incorporated herein by reference.
7 
8 	This driver is for the 3Com "Vortex" and "Boomerang" series ethercards.
9 	Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597
10 	and the EtherLink XL 3c900 and 3c905 cards.
11 
12 	Problem reports and questions should be directed to
13 	vortex@scyld.com
14 
15 	The author may be reached as becker@scyld.com, or C/O
16 	Scyld Computing Corporation
17 	410 Severn Ave., Suite 210
18 	Annapolis MD 21403
19 
20 */
21 
22 /*
23  * FIXME: This driver _could_ support MTU changing, but doesn't.  See Don's hamachi.c implementation
24  * as well as other drivers
25  *
26  * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k
27  * due to dead code elimination.  There will be some performance benefits from this due to
28  * elimination of all the tests and reduced cache footprint.
29  */
30 
31 
32 #define DRV_NAME	"3c59x"
33 
34 
35 
36 /* A few values that may be tweaked. */
37 /* Keep the ring sizes a power of two for efficiency. */
38 #define TX_RING_SIZE	16
39 #define RX_RING_SIZE	32
40 #define PKT_BUF_SZ		1536			/* Size of each temporary Rx buffer.*/
41 
42 /* "Knobs" that adjust features and parameters. */
43 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
44    Setting to > 1512 effectively disables this feature. */
45 #ifndef __arm__
46 static int rx_copybreak = 200;
47 #else
48 /* ARM systems perform better by disregarding the bus-master
49    transfer capability of these cards. -- rmk */
50 static int rx_copybreak = 1513;
51 #endif
52 /* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
53 static const int mtu = 1500;
54 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
55 static int max_interrupt_work = 32;
56 /* Tx timeout interval (millisecs) */
57 static int watchdog = 5000;
58 
59 /* Allow aggregation of Tx interrupts.  Saves CPU load at the cost
60  * of possible Tx stalls if the system is blocking interrupts
61  * somewhere else.  Undefine this to disable.
62  */
63 #define tx_interrupt_mitigation 1
64 
65 /* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */
66 #define vortex_debug debug
67 #ifdef VORTEX_DEBUG
68 static int vortex_debug = VORTEX_DEBUG;
69 #else
70 static int vortex_debug = 1;
71 #endif
72 
73 #include <linux/module.h>
74 #include <linux/kernel.h>
75 #include <linux/string.h>
76 #include <linux/timer.h>
77 #include <linux/errno.h>
78 #include <linux/in.h>
79 #include <linux/ioport.h>
80 #include <linux/interrupt.h>
81 #include <linux/pci.h>
82 #include <linux/mii.h>
83 #include <linux/init.h>
84 #include <linux/netdevice.h>
85 #include <linux/etherdevice.h>
86 #include <linux/skbuff.h>
87 #include <linux/ethtool.h>
88 #include <linux/highmem.h>
89 #include <linux/eisa.h>
90 #include <linux/bitops.h>
91 #include <linux/jiffies.h>
92 #include <linux/gfp.h>
93 #include <asm/irq.h>			/* For nr_irqs only. */
94 #include <asm/io.h>
95 #include <asm/uaccess.h>
96 
97 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package.
98    This is only in the support-all-kernels source code. */
99 
100 #define RUN_AT(x) (jiffies + (x))
101 
102 #include <linux/delay.h>
103 
104 
105 static const char version[] =
106 	DRV_NAME ": Donald Becker and others.\n";
107 
108 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
109 MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver ");
110 MODULE_LICENSE("GPL");
111 
112 
113 /* Operational parameter that usually are not changed. */
114 
115 /* The Vortex size is twice that of the original EtherLinkIII series: the
116    runtime register window, window 1, is now always mapped in.
117    The Boomerang size is twice as large as the Vortex -- it has additional
118    bus master control registers. */
119 #define VORTEX_TOTAL_SIZE 0x20
120 #define BOOMERANG_TOTAL_SIZE 0x40
121 
122 /* Set iff a MII transceiver on any interface requires mdio preamble.
123    This only set with the original DP83840 on older 3c905 boards, so the extra
124    code size of a per-interface flag is not worthwhile. */
125 static char mii_preamble_required;
126 
127 #define PFX DRV_NAME ": "
128 
129 
130 
131 /*
132 				Theory of Operation
133 
134 I. Board Compatibility
135 
136 This device driver is designed for the 3Com FastEtherLink and FastEtherLink
137 XL, 3Com's PCI to 10/100baseT adapters.  It also works with the 10Mbs
138 versions of the FastEtherLink cards.  The supported product IDs are
139   3c590, 3c592, 3c595, 3c597, 3c900, 3c905
140 
141 The related ISA 3c515 is supported with a separate driver, 3c515.c, included
142 with the kernel source or available from
143     cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html
144 
145 II. Board-specific settings
146 
147 PCI bus devices are configured by the system at boot time, so no jumpers
148 need to be set on the board.  The system BIOS should be set to assign the
149 PCI INTA signal to an otherwise unused system IRQ line.
150 
151 The EEPROM settings for media type and forced-full-duplex are observed.
152 The EEPROM media type should be left at the default "autoselect" unless using
153 10base2 or AUI connections which cannot be reliably detected.
154 
155 III. Driver operation
156 
157 The 3c59x series use an interface that's very similar to the previous 3c5x9
158 series.  The primary interface is two programmed-I/O FIFOs, with an
159 alternate single-contiguous-region bus-master transfer (see next).
160 
161 The 3c900 "Boomerang" series uses a full-bus-master interface with separate
162 lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
163 DEC Tulip and Intel Speedo3.  The first chip version retains a compatible
164 programmed-I/O interface that has been removed in 'B' and subsequent board
165 revisions.
166 
167 One extension that is advertised in a very large font is that the adapters
168 are capable of being bus masters.  On the Vortex chip this capability was
169 only for a single contiguous region making it far less useful than the full
170 bus master capability.  There is a significant performance impact of taking
171 an extra interrupt or polling for the completion of each transfer, as well
172 as difficulty sharing the single transfer engine between the transmit and
173 receive threads.  Using DMA transfers is a win only with large blocks or
174 with the flawed versions of the Intel Orion motherboard PCI controller.
175 
176 The Boomerang chip's full-bus-master interface is useful, and has the
177 currently-unused advantages over other similar chips that queued transmit
178 packets may be reordered and receive buffer groups are associated with a
179 single frame.
180 
181 With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme.
182 Rather than a fixed intermediate receive buffer, this scheme allocates
183 full-sized skbuffs as receive buffers.  The value RX_COPYBREAK is used as
184 the copying breakpoint: it is chosen to trade-off the memory wasted by
185 passing the full-sized skbuff to the queue layer for all frames vs. the
186 copying cost of copying a frame to a correctly-sized skbuff.
187 
188 IIIC. Synchronization
189 The driver runs as two independent, single-threaded flows of control.  One
190 is the send-packet routine, which enforces single-threaded use by the
191 dev->tbusy flag.  The other thread is the interrupt handler, which is single
192 threaded by the hardware and other software.
193 
194 IV. Notes
195 
196 Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development
197 3c590, 3c595, and 3c900 boards.
198 The name "Vortex" is the internal 3Com project name for the PCI ASIC, and
199 the EISA version is called "Demon".  According to Terry these names come
200 from rides at the local amusement park.
201 
202 The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes!
203 This driver only supports ethernet packets because of the skbuff allocation
204 limit of 4K.
205 */
206 
207 /* This table drives the PCI probe routines.  It's mostly boilerplate in all
208    of the drivers, and will likely be provided by some future kernel.
209 */
210 enum pci_flags_bit {
211 	PCI_USES_MASTER=4,
212 };
213 
214 enum {	IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8,
215 	EEPROM_8BIT=0x10,	/* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */
216 	HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100,
217 	INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800,
218 	EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000,
219 	EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, };
220 
221 enum vortex_chips {
222 	CH_3C590 = 0,
223 	CH_3C592,
224 	CH_3C597,
225 	CH_3C595_1,
226 	CH_3C595_2,
227 
228 	CH_3C595_3,
229 	CH_3C900_1,
230 	CH_3C900_2,
231 	CH_3C900_3,
232 	CH_3C900_4,
233 
234 	CH_3C900_5,
235 	CH_3C900B_FL,
236 	CH_3C905_1,
237 	CH_3C905_2,
238 	CH_3C905B_TX,
239 	CH_3C905B_1,
240 
241 	CH_3C905B_2,
242 	CH_3C905B_FX,
243 	CH_3C905C,
244 	CH_3C9202,
245 	CH_3C980,
246 	CH_3C9805,
247 
248 	CH_3CSOHO100_TX,
249 	CH_3C555,
250 	CH_3C556,
251 	CH_3C556B,
252 	CH_3C575,
253 
254 	CH_3C575_1,
255 	CH_3CCFE575,
256 	CH_3CCFE575CT,
257 	CH_3CCFE656,
258 	CH_3CCFEM656,
259 
260 	CH_3CCFEM656_1,
261 	CH_3C450,
262 	CH_3C920,
263 	CH_3C982A,
264 	CH_3C982B,
265 
266 	CH_905BT4,
267 	CH_920B_EMB_WNM,
268 };
269 
270 
271 /* note: this array directly indexed by above enums, and MUST
272  * be kept in sync with both the enums above, and the PCI device
273  * table below
274  */
275 static struct vortex_chip_info {
276 	const char *name;
277 	int flags;
278 	int drv_flags;
279 	int io_size;
280 } vortex_info_tbl[] = {
281 	{"3c590 Vortex 10Mbps",
282 	 PCI_USES_MASTER, IS_VORTEX, 32, },
283 	{"3c592 EISA 10Mbps Demon/Vortex",					/* AKPM: from Don's 3c59x_cb.c 0.49H */
284 	 PCI_USES_MASTER, IS_VORTEX, 32, },
285 	{"3c597 EISA Fast Demon/Vortex",					/* AKPM: from Don's 3c59x_cb.c 0.49H */
286 	 PCI_USES_MASTER, IS_VORTEX, 32, },
287 	{"3c595 Vortex 100baseTx",
288 	 PCI_USES_MASTER, IS_VORTEX, 32, },
289 	{"3c595 Vortex 100baseT4",
290 	 PCI_USES_MASTER, IS_VORTEX, 32, },
291 
292 	{"3c595 Vortex 100base-MII",
293 	 PCI_USES_MASTER, IS_VORTEX, 32, },
294 	{"3c900 Boomerang 10baseT",
295 	 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
296 	{"3c900 Boomerang 10Mbps Combo",
297 	 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
298 	{"3c900 Cyclone 10Mbps TPO",						/* AKPM: from Don's 0.99M */
299 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
300 	{"3c900 Cyclone 10Mbps Combo",
301 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
302 
303 	{"3c900 Cyclone 10Mbps TPC",						/* AKPM: from Don's 0.99M */
304 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
305 	{"3c900B-FL Cyclone 10base-FL",
306 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
307 	{"3c905 Boomerang 100baseTx",
308 	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
309 	{"3c905 Boomerang 100baseT4",
310 	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
311 	{"3C905B-TX Fast Etherlink XL PCI",
312 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
313 	{"3c905B Cyclone 100baseTx",
314 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
315 
316 	{"3c905B Cyclone 10/100/BNC",
317 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
318 	{"3c905B-FX Cyclone 100baseFx",
319 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
320 	{"3c905C Tornado",
321 	PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
322 	{"3c920B-EMB-WNM (ATI Radeon 9100 IGP)",
323 	 PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, },
324 	{"3c980 Cyclone",
325 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
326 
327 	{"3c980C Python-T",
328 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
329 	{"3cSOHO100-TX Hurricane",
330 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
331 	{"3c555 Laptop Hurricane",
332 	 PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, },
333 	{"3c556 Laptop Tornado",
334 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR|
335 									HAS_HWCKSM, 128, },
336 	{"3c556B Laptop Hurricane",
337 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR|
338 	                                WNO_XCVR_PWR|HAS_HWCKSM, 128, },
339 
340 	{"3c575 [Megahertz] 10/100 LAN 	CardBus",
341 	PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
342 	{"3c575 Boomerang CardBus",
343 	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
344 	{"3CCFE575BT Cyclone CardBus",
345 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|
346 									INVERT_LED_PWR|HAS_HWCKSM, 128, },
347 	{"3CCFE575CT Tornado CardBus",
348 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
349 									MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
350 	{"3CCFE656 Cyclone CardBus",
351 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
352 									INVERT_LED_PWR|HAS_HWCKSM, 128, },
353 
354 	{"3CCFEM656B Cyclone+Winmodem CardBus",
355 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
356 									INVERT_LED_PWR|HAS_HWCKSM, 128, },
357 	{"3CXFEM656C Tornado+Winmodem CardBus",			/* From pcmcia-cs-3.1.5 */
358 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
359 									MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
360 	{"3c450 HomePNA Tornado",						/* AKPM: from Don's 0.99Q */
361 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
362 	{"3c920 Tornado",
363 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
364 	{"3c982 Hydra Dual Port A",
365 	 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
366 
367 	{"3c982 Hydra Dual Port B",
368 	 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
369 	{"3c905B-T4",
370 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
371 	{"3c920B-EMB-WNM Tornado",
372 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
373 
374 	{NULL,}, /* NULL terminated list. */
375 };
376 
377 
378 static const struct pci_device_id vortex_pci_tbl[] = {
379 	{ 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 },
380 	{ 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 },
381 	{ 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 },
382 	{ 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 },
383 	{ 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 },
384 
385 	{ 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 },
386 	{ 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 },
387 	{ 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 },
388 	{ 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 },
389 	{ 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 },
390 
391 	{ 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 },
392 	{ 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL },
393 	{ 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 },
394 	{ 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 },
395 	{ 0x10B7, 0x9054, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_TX },
396 	{ 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 },
397 
398 	{ 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 },
399 	{ 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX },
400 	{ 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C },
401 	{ 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 },
402 	{ 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 },
403 	{ 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 },
404 
405 	{ 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX },
406 	{ 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 },
407 	{ 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 },
408 	{ 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B },
409 	{ 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 },
410 
411 	{ 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 },
412 	{ 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 },
413 	{ 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT },
414 	{ 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 },
415 	{ 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 },
416 
417 	{ 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 },
418 	{ 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 },
419 	{ 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 },
420 	{ 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A },
421 	{ 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B },
422 
423 	{ 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 },
424 	{ 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM },
425 
426 	{0,}						/* 0 terminated list. */
427 };
428 MODULE_DEVICE_TABLE(pci, vortex_pci_tbl);
429 
430 
431 /* Operational definitions.
432    These are not used by other compilation units and thus are not
433    exported in a ".h" file.
434 
435    First the windows.  There are eight register windows, with the command
436    and status registers available in each.
437    */
438 #define EL3_CMD 0x0e
439 #define EL3_STATUS 0x0e
440 
441 /* The top five bits written to EL3_CMD are a command, the lower
442    11 bits are the parameter, if applicable.
443    Note that 11 parameters bits was fine for ethernet, but the new chip
444    can handle FDDI length frames (~4500 octets) and now parameters count
445    32-bit 'Dwords' rather than octets. */
446 
447 enum vortex_cmd {
448 	TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11,
449 	RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11,
450 	UpStall = 6<<11, UpUnstall = (6<<11)+1,
451 	DownStall = (6<<11)+2, DownUnstall = (6<<11)+3,
452 	RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11,
453 	FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11,
454 	SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11,
455 	SetTxThreshold = 18<<11, SetTxStart = 19<<11,
456 	StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11,
457 	StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,};
458 
459 /* The SetRxFilter command accepts the following classes: */
460 enum RxFilter {
461 	RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 };
462 
463 /* Bits in the general status register. */
464 enum vortex_status {
465 	IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004,
466 	TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
467 	IntReq = 0x0040, StatsFull = 0x0080,
468 	DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10,
469 	DMAInProgress = 1<<11,			/* DMA controller is still busy.*/
470 	CmdInProgress = 1<<12,			/* EL3_CMD is still busy.*/
471 };
472 
473 /* Register window 1 offsets, the window used in normal operation.
474    On the Vortex this window is always mapped at offsets 0x10-0x1f. */
475 enum Window1 {
476 	TX_FIFO = 0x10,  RX_FIFO = 0x10,  RxErrors = 0x14,
477 	RxStatus = 0x18,  Timer=0x1A, TxStatus = 0x1B,
478 	TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
479 };
480 enum Window0 {
481 	Wn0EepromCmd = 10,		/* Window 0: EEPROM command register. */
482 	Wn0EepromData = 12,		/* Window 0: EEPROM results register. */
483 	IntrStatus=0x0E,		/* Valid in all windows. */
484 };
485 enum Win0_EEPROM_bits {
486 	EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
487 	EEPROM_EWENB = 0x30,		/* Enable erasing/writing for 10 msec. */
488 	EEPROM_EWDIS = 0x00,		/* Disable EWENB before 10 msec timeout. */
489 };
490 /* EEPROM locations. */
491 enum eeprom_offset {
492 	PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3,
493 	EtherLink3ID=7, IFXcvrIO=8, IRQLine=9,
494 	NodeAddr01=10, NodeAddr23=11, NodeAddr45=12,
495 	DriverTune=13, Checksum=15};
496 
497 enum Window2 {			/* Window 2. */
498 	Wn2_ResetOptions=12,
499 };
500 enum Window3 {			/* Window 3: MAC/config bits. */
501 	Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8,
502 };
503 
504 #define BFEXT(value, offset, bitcount)  \
505     ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1))
506 
507 #define BFINS(lhs, rhs, offset, bitcount)					\
508 	(((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) |	\
509 	(((rhs) & ((1 << (bitcount)) - 1)) << (offset)))
510 
511 #define RAM_SIZE(v)		BFEXT(v, 0, 3)
512 #define RAM_WIDTH(v)	BFEXT(v, 3, 1)
513 #define RAM_SPEED(v)	BFEXT(v, 4, 2)
514 #define ROM_SIZE(v)		BFEXT(v, 6, 2)
515 #define RAM_SPLIT(v)	BFEXT(v, 16, 2)
516 #define XCVR(v)			BFEXT(v, 20, 4)
517 #define AUTOSELECT(v)	BFEXT(v, 24, 1)
518 
519 enum Window4 {		/* Window 4: Xcvr/media bits. */
520 	Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10,
521 };
522 enum Win4_Media_bits {
523 	Media_SQE = 0x0008,		/* Enable SQE error counting for AUI. */
524 	Media_10TP = 0x00C0,	/* Enable link beat and jabber for 10baseT. */
525 	Media_Lnk = 0x0080,		/* Enable just link beat for 100TX/100FX. */
526 	Media_LnkBeat = 0x0800,
527 };
528 enum Window7 {					/* Window 7: Bus Master control. */
529 	Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6,
530 	Wn7_MasterStatus = 12,
531 };
532 /* Boomerang bus master control registers. */
533 enum MasterCtrl {
534 	PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c,
535 	TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38,
536 };
537 
538 /* The Rx and Tx descriptor lists.
539    Caution Alpha hackers: these types are 32 bits!  Note also the 8 byte
540    alignment contraint on tx_ring[] and rx_ring[]. */
541 #define LAST_FRAG 	0x80000000			/* Last Addr/Len pair in descriptor. */
542 #define DN_COMPLETE	0x00010000			/* This packet has been downloaded */
543 struct boom_rx_desc {
544 	__le32 next;					/* Last entry points to 0.   */
545 	__le32 status;
546 	__le32 addr;					/* Up to 63 addr/len pairs possible. */
547 	__le32 length;					/* Set LAST_FRAG to indicate last pair. */
548 };
549 /* Values for the Rx status entry. */
550 enum rx_desc_status {
551 	RxDComplete=0x00008000, RxDError=0x4000,
552 	/* See boomerang_rx() for actual error bits */
553 	IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27,
554 	IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31,
555 };
556 
557 #ifdef MAX_SKB_FRAGS
558 #define DO_ZEROCOPY 1
559 #else
560 #define DO_ZEROCOPY 0
561 #endif
562 
563 struct boom_tx_desc {
564 	__le32 next;					/* Last entry points to 0.   */
565 	__le32 status;					/* bits 0:12 length, others see below.  */
566 #if DO_ZEROCOPY
567 	struct {
568 		__le32 addr;
569 		__le32 length;
570 	} frag[1+MAX_SKB_FRAGS];
571 #else
572 		__le32 addr;
573 		__le32 length;
574 #endif
575 };
576 
577 /* Values for the Tx status entry. */
578 enum tx_desc_status {
579 	CRCDisable=0x2000, TxDComplete=0x8000,
580 	AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000,
581 	TxIntrUploaded=0x80000000,		/* IRQ when in FIFO, but maybe not sent. */
582 };
583 
584 /* Chip features we care about in vp->capabilities, read from the EEPROM. */
585 enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 };
586 
587 struct vortex_extra_stats {
588 	unsigned long tx_deferred;
589 	unsigned long tx_max_collisions;
590 	unsigned long tx_multiple_collisions;
591 	unsigned long tx_single_collisions;
592 	unsigned long rx_bad_ssd;
593 };
594 
595 struct vortex_private {
596 	/* The Rx and Tx rings should be quad-word-aligned. */
597 	struct boom_rx_desc* rx_ring;
598 	struct boom_tx_desc* tx_ring;
599 	dma_addr_t rx_ring_dma;
600 	dma_addr_t tx_ring_dma;
601 	/* The addresses of transmit- and receive-in-place skbuffs. */
602 	struct sk_buff* rx_skbuff[RX_RING_SIZE];
603 	struct sk_buff* tx_skbuff[TX_RING_SIZE];
604 	unsigned int cur_rx, cur_tx;		/* The next free ring entry */
605 	unsigned int dirty_rx, dirty_tx;	/* The ring entries to be free()ed. */
606 	struct vortex_extra_stats xstats;	/* NIC-specific extra stats */
607 	struct sk_buff *tx_skb;				/* Packet being eaten by bus master ctrl.  */
608 	dma_addr_t tx_skb_dma;				/* Allocated DMA address for bus master ctrl DMA.   */
609 
610 	/* PCI configuration space information. */
611 	struct device *gendev;
612 	void __iomem *ioaddr;			/* IO address space */
613 	void __iomem *cb_fn_base;		/* CardBus function status addr space. */
614 
615 	/* Some values here only for performance evaluation and path-coverage */
616 	int rx_nocopy, rx_copy, queued_packet, rx_csumhits;
617 	int card_idx;
618 
619 	/* The remainder are related to chip state, mostly media selection. */
620 	struct timer_list timer;			/* Media selection timer. */
621 	struct timer_list rx_oom_timer;		/* Rx skb allocation retry timer */
622 	int options;						/* User-settable misc. driver options. */
623 	unsigned int media_override:4, 		/* Passed-in media type. */
624 		default_media:4,				/* Read from the EEPROM/Wn3_Config. */
625 		full_duplex:1, autoselect:1,
626 		bus_master:1,					/* Vortex can only do a fragment bus-m. */
627 		full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang  */
628 		flow_ctrl:1,					/* Use 802.3x flow control (PAUSE only) */
629 		partner_flow_ctrl:1,			/* Partner supports flow control */
630 		has_nway:1,
631 		enable_wol:1,					/* Wake-on-LAN is enabled */
632 		pm_state_valid:1,				/* pci_dev->saved_config_space has sane contents */
633 		open:1,
634 		medialock:1,
635 		large_frames:1,			/* accept large frames */
636 		handling_irq:1;			/* private in_irq indicator */
637 	/* {get|set}_wol operations are already serialized by rtnl.
638 	 * no additional locking is required for the enable_wol and acpi_set_WOL()
639 	 */
640 	int drv_flags;
641 	u16 status_enable;
642 	u16 intr_enable;
643 	u16 available_media;				/* From Wn3_Options. */
644 	u16 capabilities, info1, info2;		/* Various, from EEPROM. */
645 	u16 advertising;					/* NWay media advertisement */
646 	unsigned char phys[2];				/* MII device addresses. */
647 	u16 deferred;						/* Resend these interrupts when we
648 										 * bale from the ISR */
649 	u16 io_size;						/* Size of PCI region (for release_region) */
650 
651 	/* Serialises access to hardware other than MII and variables below.
652 	 * The lock hierarchy is rtnl_lock > {lock, mii_lock} > window_lock. */
653 	spinlock_t lock;
654 
655 	spinlock_t mii_lock;		/* Serialises access to MII */
656 	struct mii_if_info mii;		/* MII lib hooks/info */
657 	spinlock_t window_lock;		/* Serialises access to windowed regs */
658 	int window;			/* Register window */
659 };
660 
661 static void window_set(struct vortex_private *vp, int window)
662 {
663 	if (window != vp->window) {
664 		iowrite16(SelectWindow + window, vp->ioaddr + EL3_CMD);
665 		vp->window = window;
666 	}
667 }
668 
669 #define DEFINE_WINDOW_IO(size)						\
670 static u ## size							\
671 window_read ## size(struct vortex_private *vp, int window, int addr)	\
672 {									\
673 	unsigned long flags;						\
674 	u ## size ret;							\
675 	spin_lock_irqsave(&vp->window_lock, flags);			\
676 	window_set(vp, window);						\
677 	ret = ioread ## size(vp->ioaddr + addr);			\
678 	spin_unlock_irqrestore(&vp->window_lock, flags);		\
679 	return ret;							\
680 }									\
681 static void								\
682 window_write ## size(struct vortex_private *vp, u ## size value,	\
683 		     int window, int addr)				\
684 {									\
685 	unsigned long flags;						\
686 	spin_lock_irqsave(&vp->window_lock, flags);			\
687 	window_set(vp, window);						\
688 	iowrite ## size(value, vp->ioaddr + addr);			\
689 	spin_unlock_irqrestore(&vp->window_lock, flags);		\
690 }
691 DEFINE_WINDOW_IO(8)
692 DEFINE_WINDOW_IO(16)
693 DEFINE_WINDOW_IO(32)
694 
695 #ifdef CONFIG_PCI
696 #define DEVICE_PCI(dev) ((dev_is_pci(dev)) ? to_pci_dev((dev)) : NULL)
697 #else
698 #define DEVICE_PCI(dev) NULL
699 #endif
700 
701 #define VORTEX_PCI(vp)							\
702 	((struct pci_dev *) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL))
703 
704 #ifdef CONFIG_EISA
705 #define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL)
706 #else
707 #define DEVICE_EISA(dev) NULL
708 #endif
709 
710 #define VORTEX_EISA(vp)							\
711 	((struct eisa_device *) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL))
712 
713 /* The action to take with a media selection timer tick.
714    Note that we deviate from the 3Com order by checking 10base2 before AUI.
715  */
716 enum xcvr_types {
717 	XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
718 	XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10,
719 };
720 
721 static const struct media_table {
722 	char *name;
723 	unsigned int media_bits:16,		/* Bits to set in Wn4_Media register. */
724 		mask:8,						/* The transceiver-present bit in Wn3_Config.*/
725 		next:8;						/* The media type to try next. */
726 	int wait;						/* Time before we check media status. */
727 } media_tbl[] = {
728   {	"10baseT",   Media_10TP,0x08, XCVR_10base2, (14*HZ)/10},
729   { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10},
730   { "undefined", 0,			0x80, XCVR_10baseT, 10000},
731   { "10base2",   0,			0x10, XCVR_AUI,		(1*HZ)/10},
732   { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10},
733   { "100baseFX", Media_Lnk, 0x04, XCVR_MII,		(14*HZ)/10},
734   { "MII",		 0,			0x41, XCVR_10baseT, 3*HZ },
735   { "undefined", 0,			0x01, XCVR_10baseT, 10000},
736   { "Autonegotiate", 0,		0x41, XCVR_10baseT, 3*HZ},
737   { "MII-External",	 0,		0x41, XCVR_10baseT, 3*HZ },
738   { "Default",	 0,			0xFF, XCVR_10baseT, 10000},
739 };
740 
741 static struct {
742 	const char str[ETH_GSTRING_LEN];
743 } ethtool_stats_keys[] = {
744 	{ "tx_deferred" },
745 	{ "tx_max_collisions" },
746 	{ "tx_multiple_collisions" },
747 	{ "tx_single_collisions" },
748 	{ "rx_bad_ssd" },
749 };
750 
751 /* number of ETHTOOL_GSTATS u64's */
752 #define VORTEX_NUM_STATS    5
753 
754 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
755 				   int chip_idx, int card_idx);
756 static int vortex_up(struct net_device *dev);
757 static void vortex_down(struct net_device *dev, int final);
758 static int vortex_open(struct net_device *dev);
759 static void mdio_sync(struct vortex_private *vp, int bits);
760 static int mdio_read(struct net_device *dev, int phy_id, int location);
761 static void mdio_write(struct net_device *vp, int phy_id, int location, int value);
762 static void vortex_timer(unsigned long arg);
763 static void rx_oom_timer(unsigned long arg);
764 static netdev_tx_t vortex_start_xmit(struct sk_buff *skb,
765 				     struct net_device *dev);
766 static netdev_tx_t boomerang_start_xmit(struct sk_buff *skb,
767 					struct net_device *dev);
768 static int vortex_rx(struct net_device *dev);
769 static int boomerang_rx(struct net_device *dev);
770 static irqreturn_t vortex_interrupt(int irq, void *dev_id);
771 static irqreturn_t boomerang_interrupt(int irq, void *dev_id);
772 static int vortex_close(struct net_device *dev);
773 static void dump_tx_ring(struct net_device *dev);
774 static void update_stats(void __iomem *ioaddr, struct net_device *dev);
775 static struct net_device_stats *vortex_get_stats(struct net_device *dev);
776 static void set_rx_mode(struct net_device *dev);
777 #ifdef CONFIG_PCI
778 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
779 #endif
780 static void vortex_tx_timeout(struct net_device *dev);
781 static void acpi_set_WOL(struct net_device *dev);
782 static const struct ethtool_ops vortex_ethtool_ops;
783 static void set_8021q_mode(struct net_device *dev, int enable);
784 
785 /* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
786 /* Option count limit only -- unlimited interfaces are supported. */
787 #define MAX_UNITS 8
788 static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 };
789 static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
790 static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
791 static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
792 static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
793 static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
794 static int global_options = -1;
795 static int global_full_duplex = -1;
796 static int global_enable_wol = -1;
797 static int global_use_mmio = -1;
798 
799 /* Variables to work-around the Compaq PCI BIOS32 problem. */
800 static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900;
801 static struct net_device *compaq_net_device;
802 
803 static int vortex_cards_found;
804 
805 module_param(debug, int, 0);
806 module_param(global_options, int, 0);
807 module_param_array(options, int, NULL, 0);
808 module_param(global_full_duplex, int, 0);
809 module_param_array(full_duplex, int, NULL, 0);
810 module_param_array(hw_checksums, int, NULL, 0);
811 module_param_array(flow_ctrl, int, NULL, 0);
812 module_param(global_enable_wol, int, 0);
813 module_param_array(enable_wol, int, NULL, 0);
814 module_param(rx_copybreak, int, 0);
815 module_param(max_interrupt_work, int, 0);
816 module_param(compaq_ioaddr, int, 0);
817 module_param(compaq_irq, int, 0);
818 module_param(compaq_device_id, int, 0);
819 module_param(watchdog, int, 0);
820 module_param(global_use_mmio, int, 0);
821 module_param_array(use_mmio, int, NULL, 0);
822 MODULE_PARM_DESC(debug, "3c59x debug level (0-6)");
823 MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex");
824 MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset");
825 MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)");
826 MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset");
827 MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)");
828 MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)");
829 MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)");
830 MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset");
831 MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames");
832 MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt");
833 MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)");
834 MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)");
835 MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)");
836 MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds");
837 MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset");
838 MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)");
839 
840 #ifdef CONFIG_NET_POLL_CONTROLLER
841 static void poll_vortex(struct net_device *dev)
842 {
843 	struct vortex_private *vp = netdev_priv(dev);
844 	unsigned long flags;
845 	local_irq_save(flags);
846 	(vp->full_bus_master_rx ? boomerang_interrupt:vortex_interrupt)(dev->irq,dev);
847 	local_irq_restore(flags);
848 }
849 #endif
850 
851 #ifdef CONFIG_PM
852 
853 static int vortex_suspend(struct device *dev)
854 {
855 	struct pci_dev *pdev = to_pci_dev(dev);
856 	struct net_device *ndev = pci_get_drvdata(pdev);
857 
858 	if (!ndev || !netif_running(ndev))
859 		return 0;
860 
861 	netif_device_detach(ndev);
862 	vortex_down(ndev, 1);
863 
864 	return 0;
865 }
866 
867 static int vortex_resume(struct device *dev)
868 {
869 	struct pci_dev *pdev = to_pci_dev(dev);
870 	struct net_device *ndev = pci_get_drvdata(pdev);
871 	int err;
872 
873 	if (!ndev || !netif_running(ndev))
874 		return 0;
875 
876 	err = vortex_up(ndev);
877 	if (err)
878 		return err;
879 
880 	netif_device_attach(ndev);
881 
882 	return 0;
883 }
884 
885 static const struct dev_pm_ops vortex_pm_ops = {
886 	.suspend = vortex_suspend,
887 	.resume = vortex_resume,
888 	.freeze = vortex_suspend,
889 	.thaw = vortex_resume,
890 	.poweroff = vortex_suspend,
891 	.restore = vortex_resume,
892 };
893 
894 #define VORTEX_PM_OPS (&vortex_pm_ops)
895 
896 #else /* !CONFIG_PM */
897 
898 #define VORTEX_PM_OPS NULL
899 
900 #endif /* !CONFIG_PM */
901 
902 #ifdef CONFIG_EISA
903 static struct eisa_device_id vortex_eisa_ids[] = {
904 	{ "TCM5920", CH_3C592 },
905 	{ "TCM5970", CH_3C597 },
906 	{ "" }
907 };
908 MODULE_DEVICE_TABLE(eisa, vortex_eisa_ids);
909 
910 static int vortex_eisa_probe(struct device *device)
911 {
912 	void __iomem *ioaddr;
913 	struct eisa_device *edev;
914 
915 	edev = to_eisa_device(device);
916 
917 	if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME))
918 		return -EBUSY;
919 
920 	ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE);
921 
922 	if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12,
923 					  edev->id.driver_data, vortex_cards_found)) {
924 		release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
925 		return -ENODEV;
926 	}
927 
928 	vortex_cards_found++;
929 
930 	return 0;
931 }
932 
933 static int vortex_eisa_remove(struct device *device)
934 {
935 	struct eisa_device *edev;
936 	struct net_device *dev;
937 	struct vortex_private *vp;
938 	void __iomem *ioaddr;
939 
940 	edev = to_eisa_device(device);
941 	dev = eisa_get_drvdata(edev);
942 
943 	if (!dev) {
944 		pr_err("vortex_eisa_remove called for Compaq device!\n");
945 		BUG();
946 	}
947 
948 	vp = netdev_priv(dev);
949 	ioaddr = vp->ioaddr;
950 
951 	unregister_netdev(dev);
952 	iowrite16(TotalReset|0x14, ioaddr + EL3_CMD);
953 	release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
954 
955 	free_netdev(dev);
956 	return 0;
957 }
958 
959 static struct eisa_driver vortex_eisa_driver = {
960 	.id_table = vortex_eisa_ids,
961 	.driver   = {
962 		.name    = "3c59x",
963 		.probe   = vortex_eisa_probe,
964 		.remove  = vortex_eisa_remove
965 	}
966 };
967 
968 #endif /* CONFIG_EISA */
969 
970 /* returns count found (>= 0), or negative on error */
971 static int __init vortex_eisa_init(void)
972 {
973 	int eisa_found = 0;
974 	int orig_cards_found = vortex_cards_found;
975 
976 #ifdef CONFIG_EISA
977 	int err;
978 
979 	err = eisa_driver_register (&vortex_eisa_driver);
980 	if (!err) {
981 		/*
982 		 * Because of the way EISA bus is probed, we cannot assume
983 		 * any device have been found when we exit from
984 		 * eisa_driver_register (the bus root driver may not be
985 		 * initialized yet). So we blindly assume something was
986 		 * found, and let the sysfs magic happened...
987 		 */
988 		eisa_found = 1;
989 	}
990 #endif
991 
992 	/* Special code to work-around the Compaq PCI BIOS32 problem. */
993 	if (compaq_ioaddr) {
994 		vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE),
995 			      compaq_irq, compaq_device_id, vortex_cards_found++);
996 	}
997 
998 	return vortex_cards_found - orig_cards_found + eisa_found;
999 }
1000 
1001 /* returns count (>= 0), or negative on error */
1002 static int vortex_init_one(struct pci_dev *pdev,
1003 			   const struct pci_device_id *ent)
1004 {
1005 	int rc, unit, pci_bar;
1006 	struct vortex_chip_info *vci;
1007 	void __iomem *ioaddr;
1008 
1009 	/* wake up and enable device */
1010 	rc = pci_enable_device(pdev);
1011 	if (rc < 0)
1012 		goto out;
1013 
1014 	rc = pci_request_regions(pdev, DRV_NAME);
1015 	if (rc < 0)
1016 		goto out_disable;
1017 
1018 	unit = vortex_cards_found;
1019 
1020 	if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) {
1021 		/* Determine the default if the user didn't override us */
1022 		vci = &vortex_info_tbl[ent->driver_data];
1023 		pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0;
1024 	} else if (unit < MAX_UNITS && use_mmio[unit] >= 0)
1025 		pci_bar = use_mmio[unit] ? 1 : 0;
1026 	else
1027 		pci_bar = global_use_mmio ? 1 : 0;
1028 
1029 	ioaddr = pci_iomap(pdev, pci_bar, 0);
1030 	if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */
1031 		ioaddr = pci_iomap(pdev, 0, 0);
1032 	if (!ioaddr) {
1033 		rc = -ENOMEM;
1034 		goto out_release;
1035 	}
1036 
1037 	rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq,
1038 			   ent->driver_data, unit);
1039 	if (rc < 0)
1040 		goto out_iounmap;
1041 
1042 	vortex_cards_found++;
1043 	goto out;
1044 
1045 out_iounmap:
1046 	pci_iounmap(pdev, ioaddr);
1047 out_release:
1048 	pci_release_regions(pdev);
1049 out_disable:
1050 	pci_disable_device(pdev);
1051 out:
1052 	return rc;
1053 }
1054 
1055 static const struct net_device_ops boomrang_netdev_ops = {
1056 	.ndo_open		= vortex_open,
1057 	.ndo_stop		= vortex_close,
1058 	.ndo_start_xmit		= boomerang_start_xmit,
1059 	.ndo_tx_timeout		= vortex_tx_timeout,
1060 	.ndo_get_stats		= vortex_get_stats,
1061 #ifdef CONFIG_PCI
1062 	.ndo_do_ioctl 		= vortex_ioctl,
1063 #endif
1064 	.ndo_set_rx_mode	= set_rx_mode,
1065 	.ndo_change_mtu		= eth_change_mtu,
1066 	.ndo_set_mac_address 	= eth_mac_addr,
1067 	.ndo_validate_addr	= eth_validate_addr,
1068 #ifdef CONFIG_NET_POLL_CONTROLLER
1069 	.ndo_poll_controller	= poll_vortex,
1070 #endif
1071 };
1072 
1073 static const struct net_device_ops vortex_netdev_ops = {
1074 	.ndo_open		= vortex_open,
1075 	.ndo_stop		= vortex_close,
1076 	.ndo_start_xmit		= vortex_start_xmit,
1077 	.ndo_tx_timeout		= vortex_tx_timeout,
1078 	.ndo_get_stats		= vortex_get_stats,
1079 #ifdef CONFIG_PCI
1080 	.ndo_do_ioctl 		= vortex_ioctl,
1081 #endif
1082 	.ndo_set_rx_mode	= set_rx_mode,
1083 	.ndo_change_mtu		= eth_change_mtu,
1084 	.ndo_set_mac_address 	= eth_mac_addr,
1085 	.ndo_validate_addr	= eth_validate_addr,
1086 #ifdef CONFIG_NET_POLL_CONTROLLER
1087 	.ndo_poll_controller	= poll_vortex,
1088 #endif
1089 };
1090 
1091 /*
1092  * Start up the PCI/EISA device which is described by *gendev.
1093  * Return 0 on success.
1094  *
1095  * NOTE: pdev can be NULL, for the case of a Compaq device
1096  */
1097 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
1098 			 int chip_idx, int card_idx)
1099 {
1100 	struct vortex_private *vp;
1101 	int option;
1102 	unsigned int eeprom[0x40], checksum = 0;		/* EEPROM contents */
1103 	int i, step;
1104 	struct net_device *dev;
1105 	static int printed_version;
1106 	int retval, print_info;
1107 	struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx];
1108 	const char *print_name = "3c59x";
1109 	struct pci_dev *pdev = NULL;
1110 	struct eisa_device *edev = NULL;
1111 
1112 	if (!printed_version) {
1113 		pr_info("%s", version);
1114 		printed_version = 1;
1115 	}
1116 
1117 	if (gendev) {
1118 		if ((pdev = DEVICE_PCI(gendev))) {
1119 			print_name = pci_name(pdev);
1120 		}
1121 
1122 		if ((edev = DEVICE_EISA(gendev))) {
1123 			print_name = dev_name(&edev->dev);
1124 		}
1125 	}
1126 
1127 	dev = alloc_etherdev(sizeof(*vp));
1128 	retval = -ENOMEM;
1129 	if (!dev)
1130 		goto out;
1131 
1132 	SET_NETDEV_DEV(dev, gendev);
1133 	vp = netdev_priv(dev);
1134 
1135 	option = global_options;
1136 
1137 	/* The lower four bits are the media type. */
1138 	if (dev->mem_start) {
1139 		/*
1140 		 * The 'options' param is passed in as the third arg to the
1141 		 * LILO 'ether=' argument for non-modular use
1142 		 */
1143 		option = dev->mem_start;
1144 	}
1145 	else if (card_idx < MAX_UNITS) {
1146 		if (options[card_idx] >= 0)
1147 			option = options[card_idx];
1148 	}
1149 
1150 	if (option > 0) {
1151 		if (option & 0x8000)
1152 			vortex_debug = 7;
1153 		if (option & 0x4000)
1154 			vortex_debug = 2;
1155 		if (option & 0x0400)
1156 			vp->enable_wol = 1;
1157 	}
1158 
1159 	print_info = (vortex_debug > 1);
1160 	if (print_info)
1161 		pr_info("See Documentation/networking/vortex.txt\n");
1162 
1163 	pr_info("%s: 3Com %s %s at %p.\n",
1164 	       print_name,
1165 	       pdev ? "PCI" : "EISA",
1166 	       vci->name,
1167 	       ioaddr);
1168 
1169 	dev->base_addr = (unsigned long)ioaddr;
1170 	dev->irq = irq;
1171 	dev->mtu = mtu;
1172 	vp->ioaddr = ioaddr;
1173 	vp->large_frames = mtu > 1500;
1174 	vp->drv_flags = vci->drv_flags;
1175 	vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0;
1176 	vp->io_size = vci->io_size;
1177 	vp->card_idx = card_idx;
1178 	vp->window = -1;
1179 
1180 	/* module list only for Compaq device */
1181 	if (gendev == NULL) {
1182 		compaq_net_device = dev;
1183 	}
1184 
1185 	/* PCI-only startup logic */
1186 	if (pdev) {
1187 		/* enable bus-mastering if necessary */
1188 		if (vci->flags & PCI_USES_MASTER)
1189 			pci_set_master(pdev);
1190 
1191 		if (vci->drv_flags & IS_VORTEX) {
1192 			u8 pci_latency;
1193 			u8 new_latency = 248;
1194 
1195 			/* Check the PCI latency value.  On the 3c590 series the latency timer
1196 			   must be set to the maximum value to avoid data corruption that occurs
1197 			   when the timer expires during a transfer.  This bug exists the Vortex
1198 			   chip only. */
1199 			pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
1200 			if (pci_latency < new_latency) {
1201 				pr_info("%s: Overriding PCI latency timer (CFLT) setting of %d, new value is %d.\n",
1202 					print_name, pci_latency, new_latency);
1203 				pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency);
1204 			}
1205 		}
1206 	}
1207 
1208 	spin_lock_init(&vp->lock);
1209 	spin_lock_init(&vp->mii_lock);
1210 	spin_lock_init(&vp->window_lock);
1211 	vp->gendev = gendev;
1212 	vp->mii.dev = dev;
1213 	vp->mii.mdio_read = mdio_read;
1214 	vp->mii.mdio_write = mdio_write;
1215 	vp->mii.phy_id_mask = 0x1f;
1216 	vp->mii.reg_num_mask = 0x1f;
1217 
1218 	/* Makes sure rings are at least 16 byte aligned. */
1219 	vp->rx_ring = pci_alloc_consistent(pdev, sizeof(struct boom_rx_desc) * RX_RING_SIZE
1220 					   + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1221 					   &vp->rx_ring_dma);
1222 	retval = -ENOMEM;
1223 	if (!vp->rx_ring)
1224 		goto free_device;
1225 
1226 	vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE);
1227 	vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE;
1228 
1229 	/* if we are a PCI driver, we store info in pdev->driver_data
1230 	 * instead of a module list */
1231 	if (pdev)
1232 		pci_set_drvdata(pdev, dev);
1233 	if (edev)
1234 		eisa_set_drvdata(edev, dev);
1235 
1236 	vp->media_override = 7;
1237 	if (option >= 0) {
1238 		vp->media_override = ((option & 7) == 2)  ?  0  :  option & 15;
1239 		if (vp->media_override != 7)
1240 			vp->medialock = 1;
1241 		vp->full_duplex = (option & 0x200) ? 1 : 0;
1242 		vp->bus_master = (option & 16) ? 1 : 0;
1243 	}
1244 
1245 	if (global_full_duplex > 0)
1246 		vp->full_duplex = 1;
1247 	if (global_enable_wol > 0)
1248 		vp->enable_wol = 1;
1249 
1250 	if (card_idx < MAX_UNITS) {
1251 		if (full_duplex[card_idx] > 0)
1252 			vp->full_duplex = 1;
1253 		if (flow_ctrl[card_idx] > 0)
1254 			vp->flow_ctrl = 1;
1255 		if (enable_wol[card_idx] > 0)
1256 			vp->enable_wol = 1;
1257 	}
1258 
1259 	vp->mii.force_media = vp->full_duplex;
1260 	vp->options = option;
1261 	/* Read the station address from the EEPROM. */
1262 	{
1263 		int base;
1264 
1265 		if (vci->drv_flags & EEPROM_8BIT)
1266 			base = 0x230;
1267 		else if (vci->drv_flags & EEPROM_OFFSET)
1268 			base = EEPROM_Read + 0x30;
1269 		else
1270 			base = EEPROM_Read;
1271 
1272 		for (i = 0; i < 0x40; i++) {
1273 			int timer;
1274 			window_write16(vp, base + i, 0, Wn0EepromCmd);
1275 			/* Pause for at least 162 us. for the read to take place. */
1276 			for (timer = 10; timer >= 0; timer--) {
1277 				udelay(162);
1278 				if ((window_read16(vp, 0, Wn0EepromCmd) &
1279 				     0x8000) == 0)
1280 					break;
1281 			}
1282 			eeprom[i] = window_read16(vp, 0, Wn0EepromData);
1283 		}
1284 	}
1285 	for (i = 0; i < 0x18; i++)
1286 		checksum ^= eeprom[i];
1287 	checksum = (checksum ^ (checksum >> 8)) & 0xff;
1288 	if (checksum != 0x00) {		/* Grrr, needless incompatible change 3Com. */
1289 		while (i < 0x21)
1290 			checksum ^= eeprom[i++];
1291 		checksum = (checksum ^ (checksum >> 8)) & 0xff;
1292 	}
1293 	if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO))
1294 		pr_cont(" ***INVALID CHECKSUM %4.4x*** ", checksum);
1295 	for (i = 0; i < 3; i++)
1296 		((__be16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]);
1297 	if (print_info)
1298 		pr_cont(" %pM", dev->dev_addr);
1299 	/* Unfortunately an all zero eeprom passes the checksum and this
1300 	   gets found in the wild in failure cases. Crypto is hard 8) */
1301 	if (!is_valid_ether_addr(dev->dev_addr)) {
1302 		retval = -EINVAL;
1303 		pr_err("*** EEPROM MAC address is invalid.\n");
1304 		goto free_ring;	/* With every pack */
1305 	}
1306 	for (i = 0; i < 6; i++)
1307 		window_write8(vp, dev->dev_addr[i], 2, i);
1308 
1309 	if (print_info)
1310 		pr_cont(", IRQ %d\n", dev->irq);
1311 	/* Tell them about an invalid IRQ. */
1312 	if (dev->irq <= 0 || dev->irq >= nr_irqs)
1313 		pr_warn(" *** Warning: IRQ %d is unlikely to work! ***\n",
1314 			dev->irq);
1315 
1316 	step = (window_read8(vp, 4, Wn4_NetDiag) & 0x1e) >> 1;
1317 	if (print_info) {
1318 		pr_info("  product code %02x%02x rev %02x.%d date %02d-%02d-%02d\n",
1319 			eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14],
1320 			step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9);
1321 	}
1322 
1323 
1324 	if (pdev && vci->drv_flags & HAS_CB_FNS) {
1325 		unsigned short n;
1326 
1327 		vp->cb_fn_base = pci_iomap(pdev, 2, 0);
1328 		if (!vp->cb_fn_base) {
1329 			retval = -ENOMEM;
1330 			goto free_ring;
1331 		}
1332 
1333 		if (print_info) {
1334 			pr_info("%s: CardBus functions mapped %16.16llx->%p\n",
1335 				print_name,
1336 				(unsigned long long)pci_resource_start(pdev, 2),
1337 				vp->cb_fn_base);
1338 		}
1339 
1340 		n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1341 		if (vp->drv_flags & INVERT_LED_PWR)
1342 			n |= 0x10;
1343 		if (vp->drv_flags & INVERT_MII_PWR)
1344 			n |= 0x4000;
1345 		window_write16(vp, n, 2, Wn2_ResetOptions);
1346 		if (vp->drv_flags & WNO_XCVR_PWR) {
1347 			window_write16(vp, 0x0800, 0, 0);
1348 		}
1349 	}
1350 
1351 	/* Extract our information from the EEPROM data. */
1352 	vp->info1 = eeprom[13];
1353 	vp->info2 = eeprom[15];
1354 	vp->capabilities = eeprom[16];
1355 
1356 	if (vp->info1 & 0x8000) {
1357 		vp->full_duplex = 1;
1358 		if (print_info)
1359 			pr_info("Full duplex capable\n");
1360 	}
1361 
1362 	{
1363 		static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"};
1364 		unsigned int config;
1365 		vp->available_media = window_read16(vp, 3, Wn3_Options);
1366 		if ((vp->available_media & 0xff) == 0)		/* Broken 3c916 */
1367 			vp->available_media = 0x40;
1368 		config = window_read32(vp, 3, Wn3_Config);
1369 		if (print_info) {
1370 			pr_debug("  Internal config register is %4.4x, transceivers %#x.\n",
1371 				config, window_read16(vp, 3, Wn3_Options));
1372 			pr_info("  %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
1373 				   8 << RAM_SIZE(config),
1374 				   RAM_WIDTH(config) ? "word" : "byte",
1375 				   ram_split[RAM_SPLIT(config)],
1376 				   AUTOSELECT(config) ? "autoselect/" : "",
1377 				   XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" :
1378 				   media_tbl[XCVR(config)].name);
1379 		}
1380 		vp->default_media = XCVR(config);
1381 		if (vp->default_media == XCVR_NWAY)
1382 			vp->has_nway = 1;
1383 		vp->autoselect = AUTOSELECT(config);
1384 	}
1385 
1386 	if (vp->media_override != 7) {
1387 		pr_info("%s:  Media override to transceiver type %d (%s).\n",
1388 				print_name, vp->media_override,
1389 				media_tbl[vp->media_override].name);
1390 		dev->if_port = vp->media_override;
1391 	} else
1392 		dev->if_port = vp->default_media;
1393 
1394 	if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) ||
1395 		dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1396 		int phy, phy_idx = 0;
1397 		mii_preamble_required++;
1398 		if (vp->drv_flags & EXTRA_PREAMBLE)
1399 			mii_preamble_required++;
1400 		mdio_sync(vp, 32);
1401 		mdio_read(dev, 24, MII_BMSR);
1402 		for (phy = 0; phy < 32 && phy_idx < 1; phy++) {
1403 			int mii_status, phyx;
1404 
1405 			/*
1406 			 * For the 3c905CX we look at index 24 first, because it bogusly
1407 			 * reports an external PHY at all indices
1408 			 */
1409 			if (phy == 0)
1410 				phyx = 24;
1411 			else if (phy <= 24)
1412 				phyx = phy - 1;
1413 			else
1414 				phyx = phy;
1415 			mii_status = mdio_read(dev, phyx, MII_BMSR);
1416 			if (mii_status  &&  mii_status != 0xffff) {
1417 				vp->phys[phy_idx++] = phyx;
1418 				if (print_info) {
1419 					pr_info("  MII transceiver found at address %d, status %4x.\n",
1420 						phyx, mii_status);
1421 				}
1422 				if ((mii_status & 0x0040) == 0)
1423 					mii_preamble_required++;
1424 			}
1425 		}
1426 		mii_preamble_required--;
1427 		if (phy_idx == 0) {
1428 			pr_warn("  ***WARNING*** No MII transceivers found!\n");
1429 			vp->phys[0] = 24;
1430 		} else {
1431 			vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE);
1432 			if (vp->full_duplex) {
1433 				/* Only advertise the FD media types. */
1434 				vp->advertising &= ~0x02A0;
1435 				mdio_write(dev, vp->phys[0], 4, vp->advertising);
1436 			}
1437 		}
1438 		vp->mii.phy_id = vp->phys[0];
1439 	}
1440 
1441 	if (vp->capabilities & CapBusMaster) {
1442 		vp->full_bus_master_tx = 1;
1443 		if (print_info) {
1444 			pr_info("  Enabling bus-master transmits and %s receives.\n",
1445 			(vp->info2 & 1) ? "early" : "whole-frame" );
1446 		}
1447 		vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2;
1448 		vp->bus_master = 0;		/* AKPM: vortex only */
1449 	}
1450 
1451 	/* The 3c59x-specific entries in the device structure. */
1452 	if (vp->full_bus_master_tx) {
1453 		dev->netdev_ops = &boomrang_netdev_ops;
1454 		/* Actually, it still should work with iommu. */
1455 		if (card_idx < MAX_UNITS &&
1456 		    ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) ||
1457 				hw_checksums[card_idx] == 1)) {
1458 			dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1459 		}
1460 	} else
1461 		dev->netdev_ops =  &vortex_netdev_ops;
1462 
1463 	if (print_info) {
1464 		pr_info("%s: scatter/gather %sabled. h/w checksums %sabled\n",
1465 				print_name,
1466 				(dev->features & NETIF_F_SG) ? "en":"dis",
1467 				(dev->features & NETIF_F_IP_CSUM) ? "en":"dis");
1468 	}
1469 
1470 	dev->ethtool_ops = &vortex_ethtool_ops;
1471 	dev->watchdog_timeo = (watchdog * HZ) / 1000;
1472 
1473 	if (pdev) {
1474 		vp->pm_state_valid = 1;
1475 		pci_save_state(pdev);
1476  		acpi_set_WOL(dev);
1477 	}
1478 	retval = register_netdev(dev);
1479 	if (retval == 0)
1480 		return 0;
1481 
1482 free_ring:
1483 	pci_free_consistent(pdev,
1484 						sizeof(struct boom_rx_desc) * RX_RING_SIZE
1485 							+ sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1486 						vp->rx_ring,
1487 						vp->rx_ring_dma);
1488 free_device:
1489 	free_netdev(dev);
1490 	pr_err(PFX "vortex_probe1 fails.  Returns %d\n", retval);
1491 out:
1492 	return retval;
1493 }
1494 
1495 static void
1496 issue_and_wait(struct net_device *dev, int cmd)
1497 {
1498 	struct vortex_private *vp = netdev_priv(dev);
1499 	void __iomem *ioaddr = vp->ioaddr;
1500 	int i;
1501 
1502 	iowrite16(cmd, ioaddr + EL3_CMD);
1503 	for (i = 0; i < 2000; i++) {
1504 		if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
1505 			return;
1506 	}
1507 
1508 	/* OK, that didn't work.  Do it the slow way.  One second */
1509 	for (i = 0; i < 100000; i++) {
1510 		if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) {
1511 			if (vortex_debug > 1)
1512 				pr_info("%s: command 0x%04x took %d usecs\n",
1513 					   dev->name, cmd, i * 10);
1514 			return;
1515 		}
1516 		udelay(10);
1517 	}
1518 	pr_err("%s: command 0x%04x did not complete! Status=0x%x\n",
1519 			   dev->name, cmd, ioread16(ioaddr + EL3_STATUS));
1520 }
1521 
1522 static void
1523 vortex_set_duplex(struct net_device *dev)
1524 {
1525 	struct vortex_private *vp = netdev_priv(dev);
1526 
1527 	pr_info("%s:  setting %s-duplex.\n",
1528 		dev->name, (vp->full_duplex) ? "full" : "half");
1529 
1530 	/* Set the full-duplex bit. */
1531 	window_write16(vp,
1532 		       ((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) |
1533 		       (vp->large_frames ? 0x40 : 0) |
1534 		       ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ?
1535 			0x100 : 0),
1536 		       3, Wn3_MAC_Ctrl);
1537 }
1538 
1539 static void vortex_check_media(struct net_device *dev, unsigned int init)
1540 {
1541 	struct vortex_private *vp = netdev_priv(dev);
1542 	unsigned int ok_to_print = 0;
1543 
1544 	if (vortex_debug > 3)
1545 		ok_to_print = 1;
1546 
1547 	if (mii_check_media(&vp->mii, ok_to_print, init)) {
1548 		vp->full_duplex = vp->mii.full_duplex;
1549 		vortex_set_duplex(dev);
1550 	} else if (init) {
1551 		vortex_set_duplex(dev);
1552 	}
1553 }
1554 
1555 static int
1556 vortex_up(struct net_device *dev)
1557 {
1558 	struct vortex_private *vp = netdev_priv(dev);
1559 	void __iomem *ioaddr = vp->ioaddr;
1560 	unsigned int config;
1561 	int i, mii_reg1, mii_reg5, err = 0;
1562 
1563 	if (VORTEX_PCI(vp)) {
1564 		pci_set_power_state(VORTEX_PCI(vp), PCI_D0);	/* Go active */
1565 		if (vp->pm_state_valid)
1566 			pci_restore_state(VORTEX_PCI(vp));
1567 		err = pci_enable_device(VORTEX_PCI(vp));
1568 		if (err) {
1569 			pr_warn("%s: Could not enable device\n", dev->name);
1570 			goto err_out;
1571 		}
1572 	}
1573 
1574 	/* Before initializing select the active media port. */
1575 	config = window_read32(vp, 3, Wn3_Config);
1576 
1577 	if (vp->media_override != 7) {
1578 		pr_info("%s: Media override to transceiver %d (%s).\n",
1579 			   dev->name, vp->media_override,
1580 			   media_tbl[vp->media_override].name);
1581 		dev->if_port = vp->media_override;
1582 	} else if (vp->autoselect) {
1583 		if (vp->has_nway) {
1584 			if (vortex_debug > 1)
1585 				pr_info("%s: using NWAY device table, not %d\n",
1586 								dev->name, dev->if_port);
1587 			dev->if_port = XCVR_NWAY;
1588 		} else {
1589 			/* Find first available media type, starting with 100baseTx. */
1590 			dev->if_port = XCVR_100baseTx;
1591 			while (! (vp->available_media & media_tbl[dev->if_port].mask))
1592 				dev->if_port = media_tbl[dev->if_port].next;
1593 			if (vortex_debug > 1)
1594 				pr_info("%s: first available media type: %s\n",
1595 					dev->name, media_tbl[dev->if_port].name);
1596 		}
1597 	} else {
1598 		dev->if_port = vp->default_media;
1599 		if (vortex_debug > 1)
1600 			pr_info("%s: using default media %s\n",
1601 				dev->name, media_tbl[dev->if_port].name);
1602 	}
1603 
1604 	setup_timer(&vp->timer, vortex_timer, (unsigned long)dev);
1605 	mod_timer(&vp->timer, RUN_AT(media_tbl[dev->if_port].wait));
1606 	setup_timer(&vp->rx_oom_timer, rx_oom_timer, (unsigned long)dev);
1607 
1608 	if (vortex_debug > 1)
1609 		pr_debug("%s: Initial media type %s.\n",
1610 			   dev->name, media_tbl[dev->if_port].name);
1611 
1612 	vp->full_duplex = vp->mii.force_media;
1613 	config = BFINS(config, dev->if_port, 20, 4);
1614 	if (vortex_debug > 6)
1615 		pr_debug("vortex_up(): writing 0x%x to InternalConfig\n", config);
1616 	window_write32(vp, config, 3, Wn3_Config);
1617 
1618 	if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1619 		mii_reg1 = mdio_read(dev, vp->phys[0], MII_BMSR);
1620 		mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA);
1621 		vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0);
1622 		vp->mii.full_duplex = vp->full_duplex;
1623 
1624 		vortex_check_media(dev, 1);
1625 	}
1626 	else
1627 		vortex_set_duplex(dev);
1628 
1629 	issue_and_wait(dev, TxReset);
1630 	/*
1631 	 * Don't reset the PHY - that upsets autonegotiation during DHCP operations.
1632 	 */
1633 	issue_and_wait(dev, RxReset|0x04);
1634 
1635 
1636 	iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
1637 
1638 	if (vortex_debug > 1) {
1639 		pr_debug("%s: vortex_up() irq %d media status %4.4x.\n",
1640 			   dev->name, dev->irq, window_read16(vp, 4, Wn4_Media));
1641 	}
1642 
1643 	/* Set the station address and mask in window 2 each time opened. */
1644 	for (i = 0; i < 6; i++)
1645 		window_write8(vp, dev->dev_addr[i], 2, i);
1646 	for (; i < 12; i+=2)
1647 		window_write16(vp, 0, 2, i);
1648 
1649 	if (vp->cb_fn_base) {
1650 		unsigned short n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1651 		if (vp->drv_flags & INVERT_LED_PWR)
1652 			n |= 0x10;
1653 		if (vp->drv_flags & INVERT_MII_PWR)
1654 			n |= 0x4000;
1655 		window_write16(vp, n, 2, Wn2_ResetOptions);
1656 	}
1657 
1658 	if (dev->if_port == XCVR_10base2)
1659 		/* Start the thinnet transceiver. We should really wait 50ms...*/
1660 		iowrite16(StartCoax, ioaddr + EL3_CMD);
1661 	if (dev->if_port != XCVR_NWAY) {
1662 		window_write16(vp,
1663 			       (window_read16(vp, 4, Wn4_Media) &
1664 				~(Media_10TP|Media_SQE)) |
1665 			       media_tbl[dev->if_port].media_bits,
1666 			       4, Wn4_Media);
1667 	}
1668 
1669 	/* Switch to the stats window, and clear all stats by reading. */
1670 	iowrite16(StatsDisable, ioaddr + EL3_CMD);
1671 	for (i = 0; i < 10; i++)
1672 		window_read8(vp, 6, i);
1673 	window_read16(vp, 6, 10);
1674 	window_read16(vp, 6, 12);
1675 	/* New: On the Vortex we must also clear the BadSSD counter. */
1676 	window_read8(vp, 4, 12);
1677 	/* ..and on the Boomerang we enable the extra statistics bits. */
1678 	window_write16(vp, 0x0040, 4, Wn4_NetDiag);
1679 
1680 	if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1681 		vp->cur_rx = vp->dirty_rx = 0;
1682 		/* Initialize the RxEarly register as recommended. */
1683 		iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD);
1684 		iowrite32(0x0020, ioaddr + PktStatus);
1685 		iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr);
1686 	}
1687 	if (vp->full_bus_master_tx) { 		/* Boomerang bus master Tx. */
1688 		vp->cur_tx = vp->dirty_tx = 0;
1689 		if (vp->drv_flags & IS_BOOMERANG)
1690 			iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */
1691 		/* Clear the Rx, Tx rings. */
1692 		for (i = 0; i < RX_RING_SIZE; i++)	/* AKPM: this is done in vortex_open, too */
1693 			vp->rx_ring[i].status = 0;
1694 		for (i = 0; i < TX_RING_SIZE; i++)
1695 			vp->tx_skbuff[i] = NULL;
1696 		iowrite32(0, ioaddr + DownListPtr);
1697 	}
1698 	/* Set receiver mode: presumably accept b-case and phys addr only. */
1699 	set_rx_mode(dev);
1700 	/* enable 802.1q tagged frames */
1701 	set_8021q_mode(dev, 1);
1702 	iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
1703 
1704 	iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
1705 	iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
1706 	/* Allow status bits to be seen. */
1707 	vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete|
1708 		(vp->full_bus_master_tx ? DownComplete : TxAvailable) |
1709 		(vp->full_bus_master_rx ? UpComplete : RxComplete) |
1710 		(vp->bus_master ? DMADone : 0);
1711 	vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable |
1712 		(vp->full_bus_master_rx ? 0 : RxComplete) |
1713 		StatsFull | HostError | TxComplete | IntReq
1714 		| (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete;
1715 	iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1716 	/* Ack all pending events, and set active indicator mask. */
1717 	iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
1718 		 ioaddr + EL3_CMD);
1719 	iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1720 	if (vp->cb_fn_base)			/* The PCMCIA people are idiots.  */
1721 		iowrite32(0x8000, vp->cb_fn_base + 4);
1722 	netif_start_queue (dev);
1723 	netdev_reset_queue(dev);
1724 err_out:
1725 	return err;
1726 }
1727 
1728 static int
1729 vortex_open(struct net_device *dev)
1730 {
1731 	struct vortex_private *vp = netdev_priv(dev);
1732 	int i;
1733 	int retval;
1734 
1735 	/* Use the now-standard shared IRQ implementation. */
1736 	if ((retval = request_irq(dev->irq, vp->full_bus_master_rx ?
1737 				boomerang_interrupt : vortex_interrupt, IRQF_SHARED, dev->name, dev))) {
1738 		pr_err("%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1739 		goto err;
1740 	}
1741 
1742 	if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1743 		if (vortex_debug > 2)
1744 			pr_debug("%s:  Filling in the Rx ring.\n", dev->name);
1745 		for (i = 0; i < RX_RING_SIZE; i++) {
1746 			struct sk_buff *skb;
1747 			vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1));
1748 			vp->rx_ring[i].status = 0;	/* Clear complete bit. */
1749 			vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG);
1750 
1751 			skb = __netdev_alloc_skb(dev, PKT_BUF_SZ + NET_IP_ALIGN,
1752 						 GFP_KERNEL);
1753 			vp->rx_skbuff[i] = skb;
1754 			if (skb == NULL)
1755 				break;			/* Bad news!  */
1756 
1757 			skb_reserve(skb, NET_IP_ALIGN);	/* Align IP on 16 byte boundaries */
1758 			vp->rx_ring[i].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
1759 		}
1760 		if (i != RX_RING_SIZE) {
1761 			pr_emerg("%s: no memory for rx ring\n", dev->name);
1762 			retval = -ENOMEM;
1763 			goto err_free_skb;
1764 		}
1765 		/* Wrap the ring. */
1766 		vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma);
1767 	}
1768 
1769 	retval = vortex_up(dev);
1770 	if (!retval)
1771 		goto out;
1772 
1773 err_free_skb:
1774 	for (i = 0; i < RX_RING_SIZE; i++) {
1775 		if (vp->rx_skbuff[i]) {
1776 			dev_kfree_skb(vp->rx_skbuff[i]);
1777 			vp->rx_skbuff[i] = NULL;
1778 		}
1779 	}
1780 	free_irq(dev->irq, dev);
1781 err:
1782 	if (vortex_debug > 1)
1783 		pr_err("%s: vortex_open() fails: returning %d\n", dev->name, retval);
1784 out:
1785 	return retval;
1786 }
1787 
1788 static void
1789 vortex_timer(unsigned long data)
1790 {
1791 	struct net_device *dev = (struct net_device *)data;
1792 	struct vortex_private *vp = netdev_priv(dev);
1793 	void __iomem *ioaddr = vp->ioaddr;
1794 	int next_tick = 60*HZ;
1795 	int ok = 0;
1796 	int media_status;
1797 
1798 	if (vortex_debug > 2) {
1799 		pr_debug("%s: Media selection timer tick happened, %s.\n",
1800 			   dev->name, media_tbl[dev->if_port].name);
1801 		pr_debug("dev->watchdog_timeo=%d\n", dev->watchdog_timeo);
1802 	}
1803 
1804 	media_status = window_read16(vp, 4, Wn4_Media);
1805 	switch (dev->if_port) {
1806 	case XCVR_10baseT:  case XCVR_100baseTx:  case XCVR_100baseFx:
1807 		if (media_status & Media_LnkBeat) {
1808 			netif_carrier_on(dev);
1809 			ok = 1;
1810 			if (vortex_debug > 1)
1811 				pr_debug("%s: Media %s has link beat, %x.\n",
1812 					   dev->name, media_tbl[dev->if_port].name, media_status);
1813 		} else {
1814 			netif_carrier_off(dev);
1815 			if (vortex_debug > 1) {
1816 				pr_debug("%s: Media %s has no link beat, %x.\n",
1817 					   dev->name, media_tbl[dev->if_port].name, media_status);
1818 			}
1819 		}
1820 		break;
1821 	case XCVR_MII: case XCVR_NWAY:
1822 		{
1823 			ok = 1;
1824 			vortex_check_media(dev, 0);
1825 		}
1826 		break;
1827 	  default:					/* Other media types handled by Tx timeouts. */
1828 		if (vortex_debug > 1)
1829 		  pr_debug("%s: Media %s has no indication, %x.\n",
1830 				 dev->name, media_tbl[dev->if_port].name, media_status);
1831 		ok = 1;
1832 	}
1833 
1834 	if (dev->flags & IFF_SLAVE || !netif_carrier_ok(dev))
1835 		next_tick = 5*HZ;
1836 
1837 	if (vp->medialock)
1838 		goto leave_media_alone;
1839 
1840 	if (!ok) {
1841 		unsigned int config;
1842 
1843 		spin_lock_irq(&vp->lock);
1844 
1845 		do {
1846 			dev->if_port = media_tbl[dev->if_port].next;
1847 		} while ( ! (vp->available_media & media_tbl[dev->if_port].mask));
1848 		if (dev->if_port == XCVR_Default) { /* Go back to default. */
1849 		  dev->if_port = vp->default_media;
1850 		  if (vortex_debug > 1)
1851 			pr_debug("%s: Media selection failing, using default %s port.\n",
1852 				   dev->name, media_tbl[dev->if_port].name);
1853 		} else {
1854 			if (vortex_debug > 1)
1855 				pr_debug("%s: Media selection failed, now trying %s port.\n",
1856 					   dev->name, media_tbl[dev->if_port].name);
1857 			next_tick = media_tbl[dev->if_port].wait;
1858 		}
1859 		window_write16(vp,
1860 			       (media_status & ~(Media_10TP|Media_SQE)) |
1861 			       media_tbl[dev->if_port].media_bits,
1862 			       4, Wn4_Media);
1863 
1864 		config = window_read32(vp, 3, Wn3_Config);
1865 		config = BFINS(config, dev->if_port, 20, 4);
1866 		window_write32(vp, config, 3, Wn3_Config);
1867 
1868 		iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax,
1869 			 ioaddr + EL3_CMD);
1870 		if (vortex_debug > 1)
1871 			pr_debug("wrote 0x%08x to Wn3_Config\n", config);
1872 		/* AKPM: FIXME: Should reset Rx & Tx here.  P60 of 3c90xc.pdf */
1873 
1874 		spin_unlock_irq(&vp->lock);
1875 	}
1876 
1877 leave_media_alone:
1878 	if (vortex_debug > 2)
1879 	  pr_debug("%s: Media selection timer finished, %s.\n",
1880 			 dev->name, media_tbl[dev->if_port].name);
1881 
1882 	mod_timer(&vp->timer, RUN_AT(next_tick));
1883 	if (vp->deferred)
1884 		iowrite16(FakeIntr, ioaddr + EL3_CMD);
1885 }
1886 
1887 static void vortex_tx_timeout(struct net_device *dev)
1888 {
1889 	struct vortex_private *vp = netdev_priv(dev);
1890 	void __iomem *ioaddr = vp->ioaddr;
1891 
1892 	pr_err("%s: transmit timed out, tx_status %2.2x status %4.4x.\n",
1893 		   dev->name, ioread8(ioaddr + TxStatus),
1894 		   ioread16(ioaddr + EL3_STATUS));
1895 	pr_err("  diagnostics: net %04x media %04x dma %08x fifo %04x\n",
1896 			window_read16(vp, 4, Wn4_NetDiag),
1897 			window_read16(vp, 4, Wn4_Media),
1898 			ioread32(ioaddr + PktStatus),
1899 			window_read16(vp, 4, Wn4_FIFODiag));
1900 	/* Slight code bloat to be user friendly. */
1901 	if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88)
1902 		pr_err("%s: Transmitter encountered 16 collisions --"
1903 			   " network cable problem?\n", dev->name);
1904 	if (ioread16(ioaddr + EL3_STATUS) & IntLatch) {
1905 		pr_err("%s: Interrupt posted but not delivered --"
1906 			   " IRQ blocked by another device?\n", dev->name);
1907 		/* Bad idea here.. but we might as well handle a few events. */
1908 		{
1909 			/*
1910 			 * Block interrupts because vortex_interrupt does a bare spin_lock()
1911 			 */
1912 			unsigned long flags;
1913 			local_irq_save(flags);
1914 			if (vp->full_bus_master_tx)
1915 				boomerang_interrupt(dev->irq, dev);
1916 			else
1917 				vortex_interrupt(dev->irq, dev);
1918 			local_irq_restore(flags);
1919 		}
1920 	}
1921 
1922 	if (vortex_debug > 0)
1923 		dump_tx_ring(dev);
1924 
1925 	issue_and_wait(dev, TxReset);
1926 
1927 	dev->stats.tx_errors++;
1928 	if (vp->full_bus_master_tx) {
1929 		pr_debug("%s: Resetting the Tx ring pointer.\n", dev->name);
1930 		if (vp->cur_tx - vp->dirty_tx > 0  &&  ioread32(ioaddr + DownListPtr) == 0)
1931 			iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc),
1932 				 ioaddr + DownListPtr);
1933 		if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE) {
1934 			netif_wake_queue (dev);
1935 			netdev_reset_queue (dev);
1936 		}
1937 		if (vp->drv_flags & IS_BOOMERANG)
1938 			iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold);
1939 		iowrite16(DownUnstall, ioaddr + EL3_CMD);
1940 	} else {
1941 		dev->stats.tx_dropped++;
1942 		netif_wake_queue(dev);
1943 		netdev_reset_queue(dev);
1944 	}
1945 	/* Issue Tx Enable */
1946 	iowrite16(TxEnable, ioaddr + EL3_CMD);
1947 	netif_trans_update(dev); /* prevent tx timeout */
1948 }
1949 
1950 /*
1951  * Handle uncommon interrupt sources.  This is a separate routine to minimize
1952  * the cache impact.
1953  */
1954 static void
1955 vortex_error(struct net_device *dev, int status)
1956 {
1957 	struct vortex_private *vp = netdev_priv(dev);
1958 	void __iomem *ioaddr = vp->ioaddr;
1959 	int do_tx_reset = 0, reset_mask = 0;
1960 	unsigned char tx_status = 0;
1961 
1962 	if (vortex_debug > 2) {
1963 		pr_err("%s: vortex_error(), status=0x%x\n", dev->name, status);
1964 	}
1965 
1966 	if (status & TxComplete) {			/* Really "TxError" for us. */
1967 		tx_status = ioread8(ioaddr + TxStatus);
1968 		/* Presumably a tx-timeout. We must merely re-enable. */
1969 		if (vortex_debug > 2 ||
1970 		    (tx_status != 0x88 && vortex_debug > 0)) {
1971 			pr_err("%s: Transmit error, Tx status register %2.2x.\n",
1972 				   dev->name, tx_status);
1973 			if (tx_status == 0x82) {
1974 				pr_err("Probably a duplex mismatch.  See "
1975 						"Documentation/networking/vortex.txt\n");
1976 			}
1977 			dump_tx_ring(dev);
1978 		}
1979 		if (tx_status & 0x14)  dev->stats.tx_fifo_errors++;
1980 		if (tx_status & 0x38)  dev->stats.tx_aborted_errors++;
1981 		if (tx_status & 0x08)  vp->xstats.tx_max_collisions++;
1982 		iowrite8(0, ioaddr + TxStatus);
1983 		if (tx_status & 0x30) {			/* txJabber or txUnderrun */
1984 			do_tx_reset = 1;
1985 		} else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET))  {	/* maxCollisions */
1986 			do_tx_reset = 1;
1987 			reset_mask = 0x0108;		/* Reset interface logic, but not download logic */
1988 		} else {				/* Merely re-enable the transmitter. */
1989 			iowrite16(TxEnable, ioaddr + EL3_CMD);
1990 		}
1991 	}
1992 
1993 	if (status & RxEarly)				/* Rx early is unused. */
1994 		iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD);
1995 
1996 	if (status & StatsFull) {			/* Empty statistics. */
1997 		static int DoneDidThat;
1998 		if (vortex_debug > 4)
1999 			pr_debug("%s: Updating stats.\n", dev->name);
2000 		update_stats(ioaddr, dev);
2001 		/* HACK: Disable statistics as an interrupt source. */
2002 		/* This occurs when we have the wrong media type! */
2003 		if (DoneDidThat == 0  &&
2004 			ioread16(ioaddr + EL3_STATUS) & StatsFull) {
2005 			pr_warn("%s: Updating statistics failed, disabling stats as an interrupt source\n",
2006 				dev->name);
2007 			iowrite16(SetIntrEnb |
2008 				  (window_read16(vp, 5, 10) & ~StatsFull),
2009 				  ioaddr + EL3_CMD);
2010 			vp->intr_enable &= ~StatsFull;
2011 			DoneDidThat++;
2012 		}
2013 	}
2014 	if (status & IntReq) {		/* Restore all interrupt sources.  */
2015 		iowrite16(vp->status_enable, ioaddr + EL3_CMD);
2016 		iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
2017 	}
2018 	if (status & HostError) {
2019 		u16 fifo_diag;
2020 		fifo_diag = window_read16(vp, 4, Wn4_FIFODiag);
2021 		pr_err("%s: Host error, FIFO diagnostic register %4.4x.\n",
2022 			   dev->name, fifo_diag);
2023 		/* Adapter failure requires Tx/Rx reset and reinit. */
2024 		if (vp->full_bus_master_tx) {
2025 			int bus_status = ioread32(ioaddr + PktStatus);
2026 			/* 0x80000000 PCI master abort. */
2027 			/* 0x40000000 PCI target abort. */
2028 			if (vortex_debug)
2029 				pr_err("%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status);
2030 
2031 			/* In this case, blow the card away */
2032 			/* Must not enter D3 or we can't legally issue the reset! */
2033 			vortex_down(dev, 0);
2034 			issue_and_wait(dev, TotalReset | 0xff);
2035 			vortex_up(dev);		/* AKPM: bug.  vortex_up() assumes that the rx ring is full. It may not be. */
2036 		} else if (fifo_diag & 0x0400)
2037 			do_tx_reset = 1;
2038 		if (fifo_diag & 0x3000) {
2039 			/* Reset Rx fifo and upload logic */
2040 			issue_and_wait(dev, RxReset|0x07);
2041 			/* Set the Rx filter to the current state. */
2042 			set_rx_mode(dev);
2043 			/* enable 802.1q VLAN tagged frames */
2044 			set_8021q_mode(dev, 1);
2045 			iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
2046 			iowrite16(AckIntr | HostError, ioaddr + EL3_CMD);
2047 		}
2048 	}
2049 
2050 	if (do_tx_reset) {
2051 		issue_and_wait(dev, TxReset|reset_mask);
2052 		iowrite16(TxEnable, ioaddr + EL3_CMD);
2053 		if (!vp->full_bus_master_tx)
2054 			netif_wake_queue(dev);
2055 	}
2056 }
2057 
2058 static netdev_tx_t
2059 vortex_start_xmit(struct sk_buff *skb, struct net_device *dev)
2060 {
2061 	struct vortex_private *vp = netdev_priv(dev);
2062 	void __iomem *ioaddr = vp->ioaddr;
2063 	int skblen = skb->len;
2064 
2065 	/* Put out the doubleword header... */
2066 	iowrite32(skb->len, ioaddr + TX_FIFO);
2067 	if (vp->bus_master) {
2068 		/* Set the bus-master controller to transfer the packet. */
2069 		int len = (skb->len + 3) & ~3;
2070 		vp->tx_skb_dma = pci_map_single(VORTEX_PCI(vp), skb->data, len,
2071 						PCI_DMA_TODEVICE);
2072 		spin_lock_irq(&vp->window_lock);
2073 		window_set(vp, 7);
2074 		iowrite32(vp->tx_skb_dma, ioaddr + Wn7_MasterAddr);
2075 		iowrite16(len, ioaddr + Wn7_MasterLen);
2076 		spin_unlock_irq(&vp->window_lock);
2077 		vp->tx_skb = skb;
2078 		skb_tx_timestamp(skb);
2079 		iowrite16(StartDMADown, ioaddr + EL3_CMD);
2080 		/* netif_wake_queue() will be called at the DMADone interrupt. */
2081 	} else {
2082 		/* ... and the packet rounded to a doubleword. */
2083 		skb_tx_timestamp(skb);
2084 		iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
2085 		dev_consume_skb_any (skb);
2086 		if (ioread16(ioaddr + TxFree) > 1536) {
2087 			netif_start_queue (dev);	/* AKPM: redundant? */
2088 		} else {
2089 			/* Interrupt us when the FIFO has room for max-sized packet. */
2090 			netif_stop_queue(dev);
2091 			iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2092 		}
2093 	}
2094 
2095 	netdev_sent_queue(dev, skblen);
2096 
2097 	/* Clear the Tx status stack. */
2098 	{
2099 		int tx_status;
2100 		int i = 32;
2101 
2102 		while (--i > 0	&&	(tx_status = ioread8(ioaddr + TxStatus)) > 0) {
2103 			if (tx_status & 0x3C) {		/* A Tx-disabling error occurred.  */
2104 				if (vortex_debug > 2)
2105 				  pr_debug("%s: Tx error, status %2.2x.\n",
2106 						 dev->name, tx_status);
2107 				if (tx_status & 0x04) dev->stats.tx_fifo_errors++;
2108 				if (tx_status & 0x38) dev->stats.tx_aborted_errors++;
2109 				if (tx_status & 0x30) {
2110 					issue_and_wait(dev, TxReset);
2111 				}
2112 				iowrite16(TxEnable, ioaddr + EL3_CMD);
2113 			}
2114 			iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */
2115 		}
2116 	}
2117 	return NETDEV_TX_OK;
2118 }
2119 
2120 static netdev_tx_t
2121 boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev)
2122 {
2123 	struct vortex_private *vp = netdev_priv(dev);
2124 	void __iomem *ioaddr = vp->ioaddr;
2125 	/* Calculate the next Tx descriptor entry. */
2126 	int entry = vp->cur_tx % TX_RING_SIZE;
2127 	int skblen = skb->len;
2128 	struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE];
2129 	unsigned long flags;
2130 	dma_addr_t dma_addr;
2131 
2132 	if (vortex_debug > 6) {
2133 		pr_debug("boomerang_start_xmit()\n");
2134 		pr_debug("%s: Trying to send a packet, Tx index %d.\n",
2135 			   dev->name, vp->cur_tx);
2136 	}
2137 
2138 	/*
2139 	 * We can't allow a recursion from our interrupt handler back into the
2140 	 * tx routine, as they take the same spin lock, and that causes
2141 	 * deadlock.  Just return NETDEV_TX_BUSY and let the stack try again in
2142 	 * a bit
2143 	 */
2144 	if (vp->handling_irq)
2145 		return NETDEV_TX_BUSY;
2146 
2147 	if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) {
2148 		if (vortex_debug > 0)
2149 			pr_warn("%s: BUG! Tx Ring full, refusing to send buffer\n",
2150 				dev->name);
2151 		netif_stop_queue(dev);
2152 		return NETDEV_TX_BUSY;
2153 	}
2154 
2155 	vp->tx_skbuff[entry] = skb;
2156 
2157 	vp->tx_ring[entry].next = 0;
2158 #if DO_ZEROCOPY
2159 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2160 			vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2161 	else
2162 			vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum);
2163 
2164 	if (!skb_shinfo(skb)->nr_frags) {
2165 		dma_addr = pci_map_single(VORTEX_PCI(vp), skb->data, skb->len,
2166 					  PCI_DMA_TODEVICE);
2167 		if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr))
2168 			goto out_dma_err;
2169 
2170 		vp->tx_ring[entry].frag[0].addr = cpu_to_le32(dma_addr);
2171 		vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG);
2172 	} else {
2173 		int i;
2174 
2175 		dma_addr = pci_map_single(VORTEX_PCI(vp), skb->data,
2176 					  skb_headlen(skb), PCI_DMA_TODEVICE);
2177 		if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr))
2178 			goto out_dma_err;
2179 
2180 		vp->tx_ring[entry].frag[0].addr = cpu_to_le32(dma_addr);
2181 		vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb_headlen(skb));
2182 
2183 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2184 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2185 
2186 			dma_addr = skb_frag_dma_map(&VORTEX_PCI(vp)->dev, frag,
2187 						    0,
2188 						    frag->size,
2189 						    DMA_TO_DEVICE);
2190 			if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr)) {
2191 				for(i = i-1; i >= 0; i--)
2192 					dma_unmap_page(&VORTEX_PCI(vp)->dev,
2193 						       le32_to_cpu(vp->tx_ring[entry].frag[i+1].addr),
2194 						       le32_to_cpu(vp->tx_ring[entry].frag[i+1].length),
2195 						       DMA_TO_DEVICE);
2196 
2197 				pci_unmap_single(VORTEX_PCI(vp),
2198 						 le32_to_cpu(vp->tx_ring[entry].frag[0].addr),
2199 						 le32_to_cpu(vp->tx_ring[entry].frag[0].length),
2200 						 PCI_DMA_TODEVICE);
2201 
2202 				goto out_dma_err;
2203 			}
2204 
2205 			vp->tx_ring[entry].frag[i+1].addr =
2206 						cpu_to_le32(dma_addr);
2207 
2208 			if (i == skb_shinfo(skb)->nr_frags-1)
2209 					vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag)|LAST_FRAG);
2210 			else
2211 					vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag));
2212 		}
2213 	}
2214 #else
2215 	dma_addr = pci_map_single(VORTEX_PCI(vp), skb->data, skb->len, PCI_DMA_TODEVICE);
2216 	if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr))
2217 		goto out_dma_err;
2218 	vp->tx_ring[entry].addr = cpu_to_le32(dma_addr);
2219 	vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG);
2220 	vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2221 #endif
2222 
2223 	spin_lock_irqsave(&vp->lock, flags);
2224 	/* Wait for the stall to complete. */
2225 	issue_and_wait(dev, DownStall);
2226 	prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc));
2227 	if (ioread32(ioaddr + DownListPtr) == 0) {
2228 		iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr);
2229 		vp->queued_packet++;
2230 	}
2231 
2232 	vp->cur_tx++;
2233 	netdev_sent_queue(dev, skblen);
2234 
2235 	if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) {
2236 		netif_stop_queue (dev);
2237 	} else {					/* Clear previous interrupt enable. */
2238 #if defined(tx_interrupt_mitigation)
2239 		/* Dubious. If in boomeang_interrupt "faster" cyclone ifdef
2240 		 * were selected, this would corrupt DN_COMPLETE. No?
2241 		 */
2242 		prev_entry->status &= cpu_to_le32(~TxIntrUploaded);
2243 #endif
2244 	}
2245 	skb_tx_timestamp(skb);
2246 	iowrite16(DownUnstall, ioaddr + EL3_CMD);
2247 	spin_unlock_irqrestore(&vp->lock, flags);
2248 out:
2249 	return NETDEV_TX_OK;
2250 out_dma_err:
2251 	dev_err(&VORTEX_PCI(vp)->dev, "Error mapping dma buffer\n");
2252 	goto out;
2253 }
2254 
2255 /* The interrupt handler does all of the Rx thread work and cleans up
2256    after the Tx thread. */
2257 
2258 /*
2259  * This is the ISR for the vortex series chips.
2260  * full_bus_master_tx == 0 && full_bus_master_rx == 0
2261  */
2262 
2263 static irqreturn_t
2264 vortex_interrupt(int irq, void *dev_id)
2265 {
2266 	struct net_device *dev = dev_id;
2267 	struct vortex_private *vp = netdev_priv(dev);
2268 	void __iomem *ioaddr;
2269 	int status;
2270 	int work_done = max_interrupt_work;
2271 	int handled = 0;
2272 	unsigned int bytes_compl = 0, pkts_compl = 0;
2273 
2274 	ioaddr = vp->ioaddr;
2275 	spin_lock(&vp->lock);
2276 
2277 	status = ioread16(ioaddr + EL3_STATUS);
2278 
2279 	if (vortex_debug > 6)
2280 		pr_debug("vortex_interrupt(). status=0x%4x\n", status);
2281 
2282 	if ((status & IntLatch) == 0)
2283 		goto handler_exit;		/* No interrupt: shared IRQs cause this */
2284 	handled = 1;
2285 
2286 	if (status & IntReq) {
2287 		status |= vp->deferred;
2288 		vp->deferred = 0;
2289 	}
2290 
2291 	if (status == 0xffff)		/* h/w no longer present (hotplug)? */
2292 		goto handler_exit;
2293 
2294 	if (vortex_debug > 4)
2295 		pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2296 			   dev->name, status, ioread8(ioaddr + Timer));
2297 
2298 	spin_lock(&vp->window_lock);
2299 	window_set(vp, 7);
2300 
2301 	do {
2302 		if (vortex_debug > 5)
2303 				pr_debug("%s: In interrupt loop, status %4.4x.\n",
2304 					   dev->name, status);
2305 		if (status & RxComplete)
2306 			vortex_rx(dev);
2307 
2308 		if (status & TxAvailable) {
2309 			if (vortex_debug > 5)
2310 				pr_debug("	TX room bit was handled.\n");
2311 			/* There's room in the FIFO for a full-sized packet. */
2312 			iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD);
2313 			netif_wake_queue (dev);
2314 		}
2315 
2316 		if (status & DMADone) {
2317 			if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) {
2318 				iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
2319 				pci_unmap_single(VORTEX_PCI(vp), vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, PCI_DMA_TODEVICE);
2320 				pkts_compl++;
2321 				bytes_compl += vp->tx_skb->len;
2322 				dev_kfree_skb_irq(vp->tx_skb); /* Release the transferred buffer */
2323 				if (ioread16(ioaddr + TxFree) > 1536) {
2324 					/*
2325 					 * AKPM: FIXME: I don't think we need this.  If the queue was stopped due to
2326 					 * insufficient FIFO room, the TxAvailable test will succeed and call
2327 					 * netif_wake_queue()
2328 					 */
2329 					netif_wake_queue(dev);
2330 				} else { /* Interrupt when FIFO has room for max-sized packet. */
2331 					iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2332 					netif_stop_queue(dev);
2333 				}
2334 			}
2335 		}
2336 		/* Check for all uncommon interrupts at once. */
2337 		if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) {
2338 			if (status == 0xffff)
2339 				break;
2340 			if (status & RxEarly)
2341 				vortex_rx(dev);
2342 			spin_unlock(&vp->window_lock);
2343 			vortex_error(dev, status);
2344 			spin_lock(&vp->window_lock);
2345 			window_set(vp, 7);
2346 		}
2347 
2348 		if (--work_done < 0) {
2349 			pr_warn("%s: Too much work in interrupt, status %4.4x\n",
2350 				dev->name, status);
2351 			/* Disable all pending interrupts. */
2352 			do {
2353 				vp->deferred |= status;
2354 				iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2355 					 ioaddr + EL3_CMD);
2356 				iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2357 			} while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2358 			/* The timer will reenable interrupts. */
2359 			mod_timer(&vp->timer, jiffies + 1*HZ);
2360 			break;
2361 		}
2362 		/* Acknowledge the IRQ. */
2363 		iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2364 	} while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
2365 
2366 	netdev_completed_queue(dev, pkts_compl, bytes_compl);
2367 	spin_unlock(&vp->window_lock);
2368 
2369 	if (vortex_debug > 4)
2370 		pr_debug("%s: exiting interrupt, status %4.4x.\n",
2371 			   dev->name, status);
2372 handler_exit:
2373 	spin_unlock(&vp->lock);
2374 	return IRQ_RETVAL(handled);
2375 }
2376 
2377 /*
2378  * This is the ISR for the boomerang series chips.
2379  * full_bus_master_tx == 1 && full_bus_master_rx == 1
2380  */
2381 
2382 static irqreturn_t
2383 boomerang_interrupt(int irq, void *dev_id)
2384 {
2385 	struct net_device *dev = dev_id;
2386 	struct vortex_private *vp = netdev_priv(dev);
2387 	void __iomem *ioaddr;
2388 	int status;
2389 	int work_done = max_interrupt_work;
2390 	int handled = 0;
2391 	unsigned int bytes_compl = 0, pkts_compl = 0;
2392 
2393 	ioaddr = vp->ioaddr;
2394 
2395 
2396 	/*
2397 	 * It seems dopey to put the spinlock this early, but we could race against vortex_tx_timeout
2398 	 * and boomerang_start_xmit
2399 	 */
2400 	spin_lock(&vp->lock);
2401 	vp->handling_irq = 1;
2402 
2403 	status = ioread16(ioaddr + EL3_STATUS);
2404 
2405 	if (vortex_debug > 6)
2406 		pr_debug("boomerang_interrupt. status=0x%4x\n", status);
2407 
2408 	if ((status & IntLatch) == 0)
2409 		goto handler_exit;		/* No interrupt: shared IRQs can cause this */
2410 	handled = 1;
2411 
2412 	if (status == 0xffff) {		/* h/w no longer present (hotplug)? */
2413 		if (vortex_debug > 1)
2414 			pr_debug("boomerang_interrupt(1): status = 0xffff\n");
2415 		goto handler_exit;
2416 	}
2417 
2418 	if (status & IntReq) {
2419 		status |= vp->deferred;
2420 		vp->deferred = 0;
2421 	}
2422 
2423 	if (vortex_debug > 4)
2424 		pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2425 			   dev->name, status, ioread8(ioaddr + Timer));
2426 	do {
2427 		if (vortex_debug > 5)
2428 				pr_debug("%s: In interrupt loop, status %4.4x.\n",
2429 					   dev->name, status);
2430 		if (status & UpComplete) {
2431 			iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD);
2432 			if (vortex_debug > 5)
2433 				pr_debug("boomerang_interrupt->boomerang_rx\n");
2434 			boomerang_rx(dev);
2435 		}
2436 
2437 		if (status & DownComplete) {
2438 			unsigned int dirty_tx = vp->dirty_tx;
2439 
2440 			iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD);
2441 			while (vp->cur_tx - dirty_tx > 0) {
2442 				int entry = dirty_tx % TX_RING_SIZE;
2443 #if 1	/* AKPM: the latter is faster, but cyclone-only */
2444 				if (ioread32(ioaddr + DownListPtr) ==
2445 					vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc))
2446 					break;			/* It still hasn't been processed. */
2447 #else
2448 				if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0)
2449 					break;			/* It still hasn't been processed. */
2450 #endif
2451 
2452 				if (vp->tx_skbuff[entry]) {
2453 					struct sk_buff *skb = vp->tx_skbuff[entry];
2454 #if DO_ZEROCOPY
2455 					int i;
2456 					pci_unmap_single(VORTEX_PCI(vp),
2457 							le32_to_cpu(vp->tx_ring[entry].frag[0].addr),
2458 							le32_to_cpu(vp->tx_ring[entry].frag[0].length)&0xFFF,
2459 							PCI_DMA_TODEVICE);
2460 
2461 					for (i=1; i<=skb_shinfo(skb)->nr_frags; i++)
2462 							pci_unmap_page(VORTEX_PCI(vp),
2463 											 le32_to_cpu(vp->tx_ring[entry].frag[i].addr),
2464 											 le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF,
2465 											 PCI_DMA_TODEVICE);
2466 #else
2467 					pci_unmap_single(VORTEX_PCI(vp),
2468 						le32_to_cpu(vp->tx_ring[entry].addr), skb->len, PCI_DMA_TODEVICE);
2469 #endif
2470 					pkts_compl++;
2471 					bytes_compl += skb->len;
2472 					dev_kfree_skb_irq(skb);
2473 					vp->tx_skbuff[entry] = NULL;
2474 				} else {
2475 					pr_debug("boomerang_interrupt: no skb!\n");
2476 				}
2477 				/* dev->stats.tx_packets++;  Counted below. */
2478 				dirty_tx++;
2479 			}
2480 			vp->dirty_tx = dirty_tx;
2481 			if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) {
2482 				if (vortex_debug > 6)
2483 					pr_debug("boomerang_interrupt: wake queue\n");
2484 				netif_wake_queue (dev);
2485 			}
2486 		}
2487 
2488 		/* Check for all uncommon interrupts at once. */
2489 		if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq))
2490 			vortex_error(dev, status);
2491 
2492 		if (--work_done < 0) {
2493 			pr_warn("%s: Too much work in interrupt, status %4.4x\n",
2494 				dev->name, status);
2495 			/* Disable all pending interrupts. */
2496 			do {
2497 				vp->deferred |= status;
2498 				iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2499 					 ioaddr + EL3_CMD);
2500 				iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2501 			} while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2502 			/* The timer will reenable interrupts. */
2503 			mod_timer(&vp->timer, jiffies + 1*HZ);
2504 			break;
2505 		}
2506 		/* Acknowledge the IRQ. */
2507 		iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2508 		if (vp->cb_fn_base)			/* The PCMCIA people are idiots.  */
2509 			iowrite32(0x8000, vp->cb_fn_base + 4);
2510 
2511 	} while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch);
2512 	netdev_completed_queue(dev, pkts_compl, bytes_compl);
2513 
2514 	if (vortex_debug > 4)
2515 		pr_debug("%s: exiting interrupt, status %4.4x.\n",
2516 			   dev->name, status);
2517 handler_exit:
2518 	vp->handling_irq = 0;
2519 	spin_unlock(&vp->lock);
2520 	return IRQ_RETVAL(handled);
2521 }
2522 
2523 static int vortex_rx(struct net_device *dev)
2524 {
2525 	struct vortex_private *vp = netdev_priv(dev);
2526 	void __iomem *ioaddr = vp->ioaddr;
2527 	int i;
2528 	short rx_status;
2529 
2530 	if (vortex_debug > 5)
2531 		pr_debug("vortex_rx(): status %4.4x, rx_status %4.4x.\n",
2532 			   ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus));
2533 	while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) {
2534 		if (rx_status & 0x4000) { /* Error, update stats. */
2535 			unsigned char rx_error = ioread8(ioaddr + RxErrors);
2536 			if (vortex_debug > 2)
2537 				pr_debug(" Rx error: status %2.2x.\n", rx_error);
2538 			dev->stats.rx_errors++;
2539 			if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2540 			if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2541 			if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2542 			if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2543 			if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2544 		} else {
2545 			/* The packet length: up to 4.5K!. */
2546 			int pkt_len = rx_status & 0x1fff;
2547 			struct sk_buff *skb;
2548 
2549 			skb = netdev_alloc_skb(dev, pkt_len + 5);
2550 			if (vortex_debug > 4)
2551 				pr_debug("Receiving packet size %d status %4.4x.\n",
2552 					   pkt_len, rx_status);
2553 			if (skb != NULL) {
2554 				skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
2555 				/* 'skb_put()' points to the start of sk_buff data area. */
2556 				if (vp->bus_master &&
2557 					! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) {
2558 					dma_addr_t dma = pci_map_single(VORTEX_PCI(vp), skb_put(skb, pkt_len),
2559 									   pkt_len, PCI_DMA_FROMDEVICE);
2560 					iowrite32(dma, ioaddr + Wn7_MasterAddr);
2561 					iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
2562 					iowrite16(StartDMAUp, ioaddr + EL3_CMD);
2563 					while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)
2564 						;
2565 					pci_unmap_single(VORTEX_PCI(vp), dma, pkt_len, PCI_DMA_FROMDEVICE);
2566 				} else {
2567 					ioread32_rep(ioaddr + RX_FIFO,
2568 					             skb_put(skb, pkt_len),
2569 						     (pkt_len + 3) >> 2);
2570 				}
2571 				iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
2572 				skb->protocol = eth_type_trans(skb, dev);
2573 				netif_rx(skb);
2574 				dev->stats.rx_packets++;
2575 				/* Wait a limited time to go to next packet. */
2576 				for (i = 200; i >= 0; i--)
2577 					if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
2578 						break;
2579 				continue;
2580 			} else if (vortex_debug > 0)
2581 				pr_notice("%s: No memory to allocate a sk_buff of size %d.\n",
2582 					dev->name, pkt_len);
2583 			dev->stats.rx_dropped++;
2584 		}
2585 		issue_and_wait(dev, RxDiscard);
2586 	}
2587 
2588 	return 0;
2589 }
2590 
2591 static int
2592 boomerang_rx(struct net_device *dev)
2593 {
2594 	struct vortex_private *vp = netdev_priv(dev);
2595 	int entry = vp->cur_rx % RX_RING_SIZE;
2596 	void __iomem *ioaddr = vp->ioaddr;
2597 	int rx_status;
2598 	int rx_work_limit = vp->dirty_rx + RX_RING_SIZE - vp->cur_rx;
2599 
2600 	if (vortex_debug > 5)
2601 		pr_debug("boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS));
2602 
2603 	while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){
2604 		if (--rx_work_limit < 0)
2605 			break;
2606 		if (rx_status & RxDError) { /* Error, update stats. */
2607 			unsigned char rx_error = rx_status >> 16;
2608 			if (vortex_debug > 2)
2609 				pr_debug(" Rx error: status %2.2x.\n", rx_error);
2610 			dev->stats.rx_errors++;
2611 			if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2612 			if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2613 			if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2614 			if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2615 			if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2616 		} else {
2617 			/* The packet length: up to 4.5K!. */
2618 			int pkt_len = rx_status & 0x1fff;
2619 			struct sk_buff *skb;
2620 			dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr);
2621 
2622 			if (vortex_debug > 4)
2623 				pr_debug("Receiving packet size %d status %4.4x.\n",
2624 					   pkt_len, rx_status);
2625 
2626 			/* Check if the packet is long enough to just accept without
2627 			   copying to a properly sized skbuff. */
2628 			if (pkt_len < rx_copybreak &&
2629 			    (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
2630 				skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
2631 				pci_dma_sync_single_for_cpu(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2632 				/* 'skb_put()' points to the start of sk_buff data area. */
2633 				memcpy(skb_put(skb, pkt_len),
2634 					   vp->rx_skbuff[entry]->data,
2635 					   pkt_len);
2636 				pci_dma_sync_single_for_device(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2637 				vp->rx_copy++;
2638 			} else {
2639 				/* Pass up the skbuff already on the Rx ring. */
2640 				skb = vp->rx_skbuff[entry];
2641 				vp->rx_skbuff[entry] = NULL;
2642 				skb_put(skb, pkt_len);
2643 				pci_unmap_single(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2644 				vp->rx_nocopy++;
2645 			}
2646 			skb->protocol = eth_type_trans(skb, dev);
2647 			{					/* Use hardware checksum info. */
2648 				int csum_bits = rx_status & 0xee000000;
2649 				if (csum_bits &&
2650 					(csum_bits == (IPChksumValid | TCPChksumValid) ||
2651 					 csum_bits == (IPChksumValid | UDPChksumValid))) {
2652 					skb->ip_summed = CHECKSUM_UNNECESSARY;
2653 					vp->rx_csumhits++;
2654 				}
2655 			}
2656 			netif_rx(skb);
2657 			dev->stats.rx_packets++;
2658 		}
2659 		entry = (++vp->cur_rx) % RX_RING_SIZE;
2660 	}
2661 	/* Refill the Rx ring buffers. */
2662 	for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) {
2663 		struct sk_buff *skb;
2664 		entry = vp->dirty_rx % RX_RING_SIZE;
2665 		if (vp->rx_skbuff[entry] == NULL) {
2666 			skb = netdev_alloc_skb_ip_align(dev, PKT_BUF_SZ);
2667 			if (skb == NULL) {
2668 				static unsigned long last_jif;
2669 				if (time_after(jiffies, last_jif + 10 * HZ)) {
2670 					pr_warn("%s: memory shortage\n",
2671 						dev->name);
2672 					last_jif = jiffies;
2673 				}
2674 				if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)
2675 					mod_timer(&vp->rx_oom_timer, RUN_AT(HZ * 1));
2676 				break;			/* Bad news!  */
2677 			}
2678 
2679 			vp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
2680 			vp->rx_skbuff[entry] = skb;
2681 		}
2682 		vp->rx_ring[entry].status = 0;	/* Clear complete bit. */
2683 		iowrite16(UpUnstall, ioaddr + EL3_CMD);
2684 	}
2685 	return 0;
2686 }
2687 
2688 /*
2689  * If we've hit a total OOM refilling the Rx ring we poll once a second
2690  * for some memory.  Otherwise there is no way to restart the rx process.
2691  */
2692 static void
2693 rx_oom_timer(unsigned long arg)
2694 {
2695 	struct net_device *dev = (struct net_device *)arg;
2696 	struct vortex_private *vp = netdev_priv(dev);
2697 
2698 	spin_lock_irq(&vp->lock);
2699 	if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)	/* This test is redundant, but makes me feel good */
2700 		boomerang_rx(dev);
2701 	if (vortex_debug > 1) {
2702 		pr_debug("%s: rx_oom_timer %s\n", dev->name,
2703 			((vp->cur_rx - vp->dirty_rx) != RX_RING_SIZE) ? "succeeded" : "retrying");
2704 	}
2705 	spin_unlock_irq(&vp->lock);
2706 }
2707 
2708 static void
2709 vortex_down(struct net_device *dev, int final_down)
2710 {
2711 	struct vortex_private *vp = netdev_priv(dev);
2712 	void __iomem *ioaddr = vp->ioaddr;
2713 
2714 	netdev_reset_queue(dev);
2715 	netif_stop_queue(dev);
2716 
2717 	del_timer_sync(&vp->rx_oom_timer);
2718 	del_timer_sync(&vp->timer);
2719 
2720 	/* Turn off statistics ASAP.  We update dev->stats below. */
2721 	iowrite16(StatsDisable, ioaddr + EL3_CMD);
2722 
2723 	/* Disable the receiver and transmitter. */
2724 	iowrite16(RxDisable, ioaddr + EL3_CMD);
2725 	iowrite16(TxDisable, ioaddr + EL3_CMD);
2726 
2727 	/* Disable receiving 802.1q tagged frames */
2728 	set_8021q_mode(dev, 0);
2729 
2730 	if (dev->if_port == XCVR_10base2)
2731 		/* Turn off thinnet power.  Green! */
2732 		iowrite16(StopCoax, ioaddr + EL3_CMD);
2733 
2734 	iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
2735 
2736 	update_stats(ioaddr, dev);
2737 	if (vp->full_bus_master_rx)
2738 		iowrite32(0, ioaddr + UpListPtr);
2739 	if (vp->full_bus_master_tx)
2740 		iowrite32(0, ioaddr + DownListPtr);
2741 
2742 	if (final_down && VORTEX_PCI(vp)) {
2743 		vp->pm_state_valid = 1;
2744 		pci_save_state(VORTEX_PCI(vp));
2745 		acpi_set_WOL(dev);
2746 	}
2747 }
2748 
2749 static int
2750 vortex_close(struct net_device *dev)
2751 {
2752 	struct vortex_private *vp = netdev_priv(dev);
2753 	void __iomem *ioaddr = vp->ioaddr;
2754 	int i;
2755 
2756 	if (netif_device_present(dev))
2757 		vortex_down(dev, 1);
2758 
2759 	if (vortex_debug > 1) {
2760 		pr_debug("%s: vortex_close() status %4.4x, Tx status %2.2x.\n",
2761 			   dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus));
2762 		pr_debug("%s: vortex close stats: rx_nocopy %d rx_copy %d"
2763 			   " tx_queued %d Rx pre-checksummed %d.\n",
2764 			   dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits);
2765 	}
2766 
2767 #if DO_ZEROCOPY
2768 	if (vp->rx_csumhits &&
2769 	    (vp->drv_flags & HAS_HWCKSM) == 0 &&
2770 	    (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) {
2771 		pr_warn("%s supports hardware checksums, and we're not using them!\n",
2772 			dev->name);
2773 	}
2774 #endif
2775 
2776 	free_irq(dev->irq, dev);
2777 
2778 	if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
2779 		for (i = 0; i < RX_RING_SIZE; i++)
2780 			if (vp->rx_skbuff[i]) {
2781 				pci_unmap_single(	VORTEX_PCI(vp), le32_to_cpu(vp->rx_ring[i].addr),
2782 									PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2783 				dev_kfree_skb(vp->rx_skbuff[i]);
2784 				vp->rx_skbuff[i] = NULL;
2785 			}
2786 	}
2787 	if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
2788 		for (i = 0; i < TX_RING_SIZE; i++) {
2789 			if (vp->tx_skbuff[i]) {
2790 				struct sk_buff *skb = vp->tx_skbuff[i];
2791 #if DO_ZEROCOPY
2792 				int k;
2793 
2794 				for (k=0; k<=skb_shinfo(skb)->nr_frags; k++)
2795 						pci_unmap_single(VORTEX_PCI(vp),
2796 										 le32_to_cpu(vp->tx_ring[i].frag[k].addr),
2797 										 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF,
2798 										 PCI_DMA_TODEVICE);
2799 #else
2800 				pci_unmap_single(VORTEX_PCI(vp), le32_to_cpu(vp->tx_ring[i].addr), skb->len, PCI_DMA_TODEVICE);
2801 #endif
2802 				dev_kfree_skb(skb);
2803 				vp->tx_skbuff[i] = NULL;
2804 			}
2805 		}
2806 	}
2807 
2808 	return 0;
2809 }
2810 
2811 static void
2812 dump_tx_ring(struct net_device *dev)
2813 {
2814 	if (vortex_debug > 0) {
2815 	struct vortex_private *vp = netdev_priv(dev);
2816 		void __iomem *ioaddr = vp->ioaddr;
2817 
2818 		if (vp->full_bus_master_tx) {
2819 			int i;
2820 			int stalled = ioread32(ioaddr + PktStatus) & 0x04;	/* Possible racy. But it's only debug stuff */
2821 
2822 			pr_err("  Flags; bus-master %d, dirty %d(%d) current %d(%d)\n",
2823 					vp->full_bus_master_tx,
2824 					vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE,
2825 					vp->cur_tx, vp->cur_tx % TX_RING_SIZE);
2826 			pr_err("  Transmit list %8.8x vs. %p.\n",
2827 				   ioread32(ioaddr + DownListPtr),
2828 				   &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]);
2829 			issue_and_wait(dev, DownStall);
2830 			for (i = 0; i < TX_RING_SIZE; i++) {
2831 				unsigned int length;
2832 
2833 #if DO_ZEROCOPY
2834 				length = le32_to_cpu(vp->tx_ring[i].frag[0].length);
2835 #else
2836 				length = le32_to_cpu(vp->tx_ring[i].length);
2837 #endif
2838 				pr_err("  %d: @%p  length %8.8x status %8.8x\n",
2839 					   i, &vp->tx_ring[i], length,
2840 					   le32_to_cpu(vp->tx_ring[i].status));
2841 			}
2842 			if (!stalled)
2843 				iowrite16(DownUnstall, ioaddr + EL3_CMD);
2844 		}
2845 	}
2846 }
2847 
2848 static struct net_device_stats *vortex_get_stats(struct net_device *dev)
2849 {
2850 	struct vortex_private *vp = netdev_priv(dev);
2851 	void __iomem *ioaddr = vp->ioaddr;
2852 	unsigned long flags;
2853 
2854 	if (netif_device_present(dev)) {	/* AKPM: Used to be netif_running */
2855 		spin_lock_irqsave (&vp->lock, flags);
2856 		update_stats(ioaddr, dev);
2857 		spin_unlock_irqrestore (&vp->lock, flags);
2858 	}
2859 	return &dev->stats;
2860 }
2861 
2862 /*  Update statistics.
2863 	Unlike with the EL3 we need not worry about interrupts changing
2864 	the window setting from underneath us, but we must still guard
2865 	against a race condition with a StatsUpdate interrupt updating the
2866 	table.  This is done by checking that the ASM (!) code generated uses
2867 	atomic updates with '+='.
2868 	*/
2869 static void update_stats(void __iomem *ioaddr, struct net_device *dev)
2870 {
2871 	struct vortex_private *vp = netdev_priv(dev);
2872 
2873 	/* Unlike the 3c5x9 we need not turn off stats updates while reading. */
2874 	/* Switch to the stats window, and read everything. */
2875 	dev->stats.tx_carrier_errors		+= window_read8(vp, 6, 0);
2876 	dev->stats.tx_heartbeat_errors		+= window_read8(vp, 6, 1);
2877 	dev->stats.tx_window_errors		+= window_read8(vp, 6, 4);
2878 	dev->stats.rx_fifo_errors		+= window_read8(vp, 6, 5);
2879 	dev->stats.tx_packets			+= window_read8(vp, 6, 6);
2880 	dev->stats.tx_packets			+= (window_read8(vp, 6, 9) &
2881 						    0x30) << 4;
2882 	/* Rx packets	*/			window_read8(vp, 6, 7);   /* Must read to clear */
2883 	/* Don't bother with register 9, an extension of registers 6&7.
2884 	   If we do use the 6&7 values the atomic update assumption above
2885 	   is invalid. */
2886 	dev->stats.rx_bytes 			+= window_read16(vp, 6, 10);
2887 	dev->stats.tx_bytes 			+= window_read16(vp, 6, 12);
2888 	/* Extra stats for get_ethtool_stats() */
2889 	vp->xstats.tx_multiple_collisions	+= window_read8(vp, 6, 2);
2890 	vp->xstats.tx_single_collisions         += window_read8(vp, 6, 3);
2891 	vp->xstats.tx_deferred			+= window_read8(vp, 6, 8);
2892 	vp->xstats.rx_bad_ssd			+= window_read8(vp, 4, 12);
2893 
2894 	dev->stats.collisions = vp->xstats.tx_multiple_collisions
2895 		+ vp->xstats.tx_single_collisions
2896 		+ vp->xstats.tx_max_collisions;
2897 
2898 	{
2899 		u8 up = window_read8(vp, 4, 13);
2900 		dev->stats.rx_bytes += (up & 0x0f) << 16;
2901 		dev->stats.tx_bytes += (up & 0xf0) << 12;
2902 	}
2903 }
2904 
2905 static int vortex_nway_reset(struct net_device *dev)
2906 {
2907 	struct vortex_private *vp = netdev_priv(dev);
2908 
2909 	return mii_nway_restart(&vp->mii);
2910 }
2911 
2912 static int vortex_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2913 {
2914 	struct vortex_private *vp = netdev_priv(dev);
2915 
2916 	return mii_ethtool_gset(&vp->mii, cmd);
2917 }
2918 
2919 static int vortex_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2920 {
2921 	struct vortex_private *vp = netdev_priv(dev);
2922 
2923 	return mii_ethtool_sset(&vp->mii, cmd);
2924 }
2925 
2926 static u32 vortex_get_msglevel(struct net_device *dev)
2927 {
2928 	return vortex_debug;
2929 }
2930 
2931 static void vortex_set_msglevel(struct net_device *dev, u32 dbg)
2932 {
2933 	vortex_debug = dbg;
2934 }
2935 
2936 static int vortex_get_sset_count(struct net_device *dev, int sset)
2937 {
2938 	switch (sset) {
2939 	case ETH_SS_STATS:
2940 		return VORTEX_NUM_STATS;
2941 	default:
2942 		return -EOPNOTSUPP;
2943 	}
2944 }
2945 
2946 static void vortex_get_ethtool_stats(struct net_device *dev,
2947 	struct ethtool_stats *stats, u64 *data)
2948 {
2949 	struct vortex_private *vp = netdev_priv(dev);
2950 	void __iomem *ioaddr = vp->ioaddr;
2951 	unsigned long flags;
2952 
2953 	spin_lock_irqsave(&vp->lock, flags);
2954 	update_stats(ioaddr, dev);
2955 	spin_unlock_irqrestore(&vp->lock, flags);
2956 
2957 	data[0] = vp->xstats.tx_deferred;
2958 	data[1] = vp->xstats.tx_max_collisions;
2959 	data[2] = vp->xstats.tx_multiple_collisions;
2960 	data[3] = vp->xstats.tx_single_collisions;
2961 	data[4] = vp->xstats.rx_bad_ssd;
2962 }
2963 
2964 
2965 static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2966 {
2967 	switch (stringset) {
2968 	case ETH_SS_STATS:
2969 		memcpy(data, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
2970 		break;
2971 	default:
2972 		WARN_ON(1);
2973 		break;
2974 	}
2975 }
2976 
2977 static void vortex_get_drvinfo(struct net_device *dev,
2978 					struct ethtool_drvinfo *info)
2979 {
2980 	struct vortex_private *vp = netdev_priv(dev);
2981 
2982 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2983 	if (VORTEX_PCI(vp)) {
2984 		strlcpy(info->bus_info, pci_name(VORTEX_PCI(vp)),
2985 			sizeof(info->bus_info));
2986 	} else {
2987 		if (VORTEX_EISA(vp))
2988 			strlcpy(info->bus_info, dev_name(vp->gendev),
2989 				sizeof(info->bus_info));
2990 		else
2991 			snprintf(info->bus_info, sizeof(info->bus_info),
2992 				"EISA 0x%lx %d", dev->base_addr, dev->irq);
2993 	}
2994 }
2995 
2996 static void vortex_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2997 {
2998 	struct vortex_private *vp = netdev_priv(dev);
2999 
3000 	if (!VORTEX_PCI(vp))
3001 		return;
3002 
3003 	wol->supported = WAKE_MAGIC;
3004 
3005 	wol->wolopts = 0;
3006 	if (vp->enable_wol)
3007 		wol->wolopts |= WAKE_MAGIC;
3008 }
3009 
3010 static int vortex_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3011 {
3012 	struct vortex_private *vp = netdev_priv(dev);
3013 
3014 	if (!VORTEX_PCI(vp))
3015 		return -EOPNOTSUPP;
3016 
3017 	if (wol->wolopts & ~WAKE_MAGIC)
3018 		return -EINVAL;
3019 
3020 	if (wol->wolopts & WAKE_MAGIC)
3021 		vp->enable_wol = 1;
3022 	else
3023 		vp->enable_wol = 0;
3024 	acpi_set_WOL(dev);
3025 
3026 	return 0;
3027 }
3028 
3029 static const struct ethtool_ops vortex_ethtool_ops = {
3030 	.get_drvinfo		= vortex_get_drvinfo,
3031 	.get_strings            = vortex_get_strings,
3032 	.get_msglevel           = vortex_get_msglevel,
3033 	.set_msglevel           = vortex_set_msglevel,
3034 	.get_ethtool_stats      = vortex_get_ethtool_stats,
3035 	.get_sset_count		= vortex_get_sset_count,
3036 	.get_settings           = vortex_get_settings,
3037 	.set_settings           = vortex_set_settings,
3038 	.get_link               = ethtool_op_get_link,
3039 	.nway_reset             = vortex_nway_reset,
3040 	.get_wol                = vortex_get_wol,
3041 	.set_wol                = vortex_set_wol,
3042 	.get_ts_info		= ethtool_op_get_ts_info,
3043 };
3044 
3045 #ifdef CONFIG_PCI
3046 /*
3047  *	Must power the device up to do MDIO operations
3048  */
3049 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3050 {
3051 	int err;
3052 	struct vortex_private *vp = netdev_priv(dev);
3053 	pci_power_t state = 0;
3054 
3055 	if(VORTEX_PCI(vp))
3056 		state = VORTEX_PCI(vp)->current_state;
3057 
3058 	/* The kernel core really should have pci_get_power_state() */
3059 
3060 	if(state != 0)
3061 		pci_set_power_state(VORTEX_PCI(vp), PCI_D0);
3062 	err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL);
3063 	if(state != 0)
3064 		pci_set_power_state(VORTEX_PCI(vp), state);
3065 
3066 	return err;
3067 }
3068 #endif
3069 
3070 
3071 /* Pre-Cyclone chips have no documented multicast filter, so the only
3072    multicast setting is to receive all multicast frames.  At least
3073    the chip has a very clean way to set the mode, unlike many others. */
3074 static void set_rx_mode(struct net_device *dev)
3075 {
3076 	struct vortex_private *vp = netdev_priv(dev);
3077 	void __iomem *ioaddr = vp->ioaddr;
3078 	int new_mode;
3079 
3080 	if (dev->flags & IFF_PROMISC) {
3081 		if (vortex_debug > 3)
3082 			pr_notice("%s: Setting promiscuous mode.\n", dev->name);
3083 		new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm;
3084 	} else	if (!netdev_mc_empty(dev) || dev->flags & IFF_ALLMULTI) {
3085 		new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast;
3086 	} else
3087 		new_mode = SetRxFilter | RxStation | RxBroadcast;
3088 
3089 	iowrite16(new_mode, ioaddr + EL3_CMD);
3090 }
3091 
3092 #if IS_ENABLED(CONFIG_VLAN_8021Q)
3093 /* Setup the card so that it can receive frames with an 802.1q VLAN tag.
3094    Note that this must be done after each RxReset due to some backwards
3095    compatibility logic in the Cyclone and Tornado ASICs */
3096 
3097 /* The Ethernet Type used for 802.1q tagged frames */
3098 #define VLAN_ETHER_TYPE 0x8100
3099 
3100 static void set_8021q_mode(struct net_device *dev, int enable)
3101 {
3102 	struct vortex_private *vp = netdev_priv(dev);
3103 	int mac_ctrl;
3104 
3105 	if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) {
3106 		/* cyclone and tornado chipsets can recognize 802.1q
3107 		 * tagged frames and treat them correctly */
3108 
3109 		int max_pkt_size = dev->mtu+14;	/* MTU+Ethernet header */
3110 		if (enable)
3111 			max_pkt_size += 4;	/* 802.1Q VLAN tag */
3112 
3113 		window_write16(vp, max_pkt_size, 3, Wn3_MaxPktSize);
3114 
3115 		/* set VlanEtherType to let the hardware checksumming
3116 		   treat tagged frames correctly */
3117 		window_write16(vp, VLAN_ETHER_TYPE, 7, Wn7_VlanEtherType);
3118 	} else {
3119 		/* on older cards we have to enable large frames */
3120 
3121 		vp->large_frames = dev->mtu > 1500 || enable;
3122 
3123 		mac_ctrl = window_read16(vp, 3, Wn3_MAC_Ctrl);
3124 		if (vp->large_frames)
3125 			mac_ctrl |= 0x40;
3126 		else
3127 			mac_ctrl &= ~0x40;
3128 		window_write16(vp, mac_ctrl, 3, Wn3_MAC_Ctrl);
3129 	}
3130 }
3131 #else
3132 
3133 static void set_8021q_mode(struct net_device *dev, int enable)
3134 {
3135 }
3136 
3137 
3138 #endif
3139 
3140 /* MII transceiver control section.
3141    Read and write the MII registers using software-generated serial
3142    MDIO protocol.  See the MII specifications or DP83840A data sheet
3143    for details. */
3144 
3145 /* The maximum data clock rate is 2.5 Mhz.  The minimum timing is usually
3146    met by back-to-back PCI I/O cycles, but we insert a delay to avoid
3147    "overclocking" issues. */
3148 static void mdio_delay(struct vortex_private *vp)
3149 {
3150 	window_read32(vp, 4, Wn4_PhysicalMgmt);
3151 }
3152 
3153 #define MDIO_SHIFT_CLK	0x01
3154 #define MDIO_DIR_WRITE	0x04
3155 #define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE)
3156 #define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE)
3157 #define MDIO_DATA_READ	0x02
3158 #define MDIO_ENB_IN		0x00
3159 
3160 /* Generate the preamble required for initial synchronization and
3161    a few older transceivers. */
3162 static void mdio_sync(struct vortex_private *vp, int bits)
3163 {
3164 	/* Establish sync by sending at least 32 logic ones. */
3165 	while (-- bits >= 0) {
3166 		window_write16(vp, MDIO_DATA_WRITE1, 4, Wn4_PhysicalMgmt);
3167 		mdio_delay(vp);
3168 		window_write16(vp, MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK,
3169 			       4, Wn4_PhysicalMgmt);
3170 		mdio_delay(vp);
3171 	}
3172 }
3173 
3174 static int mdio_read(struct net_device *dev, int phy_id, int location)
3175 {
3176 	int i;
3177 	struct vortex_private *vp = netdev_priv(dev);
3178 	int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
3179 	unsigned int retval = 0;
3180 
3181 	spin_lock_bh(&vp->mii_lock);
3182 
3183 	if (mii_preamble_required)
3184 		mdio_sync(vp, 32);
3185 
3186 	/* Shift the read command bits out. */
3187 	for (i = 14; i >= 0; i--) {
3188 		int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3189 		window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3190 		mdio_delay(vp);
3191 		window_write16(vp, dataval | MDIO_SHIFT_CLK,
3192 			       4, Wn4_PhysicalMgmt);
3193 		mdio_delay(vp);
3194 	}
3195 	/* Read the two transition, 16 data, and wire-idle bits. */
3196 	for (i = 19; i > 0; i--) {
3197 		window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3198 		mdio_delay(vp);
3199 		retval = (retval << 1) |
3200 			((window_read16(vp, 4, Wn4_PhysicalMgmt) &
3201 			  MDIO_DATA_READ) ? 1 : 0);
3202 		window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3203 			       4, Wn4_PhysicalMgmt);
3204 		mdio_delay(vp);
3205 	}
3206 
3207 	spin_unlock_bh(&vp->mii_lock);
3208 
3209 	return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff;
3210 }
3211 
3212 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
3213 {
3214 	struct vortex_private *vp = netdev_priv(dev);
3215 	int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value;
3216 	int i;
3217 
3218 	spin_lock_bh(&vp->mii_lock);
3219 
3220 	if (mii_preamble_required)
3221 		mdio_sync(vp, 32);
3222 
3223 	/* Shift the command bits out. */
3224 	for (i = 31; i >= 0; i--) {
3225 		int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3226 		window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3227 		mdio_delay(vp);
3228 		window_write16(vp, dataval | MDIO_SHIFT_CLK,
3229 			       4, Wn4_PhysicalMgmt);
3230 		mdio_delay(vp);
3231 	}
3232 	/* Leave the interface idle. */
3233 	for (i = 1; i >= 0; i--) {
3234 		window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3235 		mdio_delay(vp);
3236 		window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3237 			       4, Wn4_PhysicalMgmt);
3238 		mdio_delay(vp);
3239 	}
3240 
3241 	spin_unlock_bh(&vp->mii_lock);
3242 }
3243 
3244 /* ACPI: Advanced Configuration and Power Interface. */
3245 /* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */
3246 static void acpi_set_WOL(struct net_device *dev)
3247 {
3248 	struct vortex_private *vp = netdev_priv(dev);
3249 	void __iomem *ioaddr = vp->ioaddr;
3250 
3251 	device_set_wakeup_enable(vp->gendev, vp->enable_wol);
3252 
3253 	if (vp->enable_wol) {
3254 		/* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */
3255 		window_write16(vp, 2, 7, 0x0c);
3256 		/* The RxFilter must accept the WOL frames. */
3257 		iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD);
3258 		iowrite16(RxEnable, ioaddr + EL3_CMD);
3259 
3260 		if (pci_enable_wake(VORTEX_PCI(vp), PCI_D3hot, 1)) {
3261 			pr_info("%s: WOL not supported.\n", pci_name(VORTEX_PCI(vp)));
3262 
3263 			vp->enable_wol = 0;
3264 			return;
3265 		}
3266 
3267 		if (VORTEX_PCI(vp)->current_state < PCI_D3hot)
3268 			return;
3269 
3270 		/* Change the power state to D3; RxEnable doesn't take effect. */
3271 		pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot);
3272 	}
3273 }
3274 
3275 
3276 static void vortex_remove_one(struct pci_dev *pdev)
3277 {
3278 	struct net_device *dev = pci_get_drvdata(pdev);
3279 	struct vortex_private *vp;
3280 
3281 	if (!dev) {
3282 		pr_err("vortex_remove_one called for Compaq device!\n");
3283 		BUG();
3284 	}
3285 
3286 	vp = netdev_priv(dev);
3287 
3288 	if (vp->cb_fn_base)
3289 		pci_iounmap(pdev, vp->cb_fn_base);
3290 
3291 	unregister_netdev(dev);
3292 
3293 	pci_set_power_state(pdev, PCI_D0);	/* Go active */
3294 	if (vp->pm_state_valid)
3295 		pci_restore_state(pdev);
3296 	pci_disable_device(pdev);
3297 
3298 	/* Should really use issue_and_wait() here */
3299 	iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14),
3300 	     vp->ioaddr + EL3_CMD);
3301 
3302 	pci_iounmap(pdev, vp->ioaddr);
3303 
3304 	pci_free_consistent(pdev,
3305 						sizeof(struct boom_rx_desc) * RX_RING_SIZE
3306 							+ sizeof(struct boom_tx_desc) * TX_RING_SIZE,
3307 						vp->rx_ring,
3308 						vp->rx_ring_dma);
3309 
3310 	pci_release_regions(pdev);
3311 
3312 	free_netdev(dev);
3313 }
3314 
3315 
3316 static struct pci_driver vortex_driver = {
3317 	.name		= "3c59x",
3318 	.probe		= vortex_init_one,
3319 	.remove		= vortex_remove_one,
3320 	.id_table	= vortex_pci_tbl,
3321 	.driver.pm	= VORTEX_PM_OPS,
3322 };
3323 
3324 
3325 static int vortex_have_pci;
3326 static int vortex_have_eisa;
3327 
3328 
3329 static int __init vortex_init(void)
3330 {
3331 	int pci_rc, eisa_rc;
3332 
3333 	pci_rc = pci_register_driver(&vortex_driver);
3334 	eisa_rc = vortex_eisa_init();
3335 
3336 	if (pci_rc == 0)
3337 		vortex_have_pci = 1;
3338 	if (eisa_rc > 0)
3339 		vortex_have_eisa = 1;
3340 
3341 	return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV;
3342 }
3343 
3344 
3345 static void __exit vortex_eisa_cleanup(void)
3346 {
3347 	void __iomem *ioaddr;
3348 
3349 #ifdef CONFIG_EISA
3350 	/* Take care of the EISA devices */
3351 	eisa_driver_unregister(&vortex_eisa_driver);
3352 #endif
3353 
3354 	if (compaq_net_device) {
3355 		ioaddr = ioport_map(compaq_net_device->base_addr,
3356 		                    VORTEX_TOTAL_SIZE);
3357 
3358 		unregister_netdev(compaq_net_device);
3359 		iowrite16(TotalReset, ioaddr + EL3_CMD);
3360 		release_region(compaq_net_device->base_addr,
3361 		               VORTEX_TOTAL_SIZE);
3362 
3363 		free_netdev(compaq_net_device);
3364 	}
3365 }
3366 
3367 
3368 static void __exit vortex_cleanup(void)
3369 {
3370 	if (vortex_have_pci)
3371 		pci_unregister_driver(&vortex_driver);
3372 	if (vortex_have_eisa)
3373 		vortex_eisa_cleanup();
3374 }
3375 
3376 
3377 module_init(vortex_init);
3378 module_exit(vortex_cleanup);
3379