1 /* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */ 2 /* 3 Written 1996-1999 by Donald Becker. 4 5 This software may be used and distributed according to the terms 6 of the GNU General Public License, incorporated herein by reference. 7 8 This driver is for the 3Com "Vortex" and "Boomerang" series ethercards. 9 Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597 10 and the EtherLink XL 3c900 and 3c905 cards. 11 12 Problem reports and questions should be directed to 13 vortex@scyld.com 14 15 The author may be reached as becker@scyld.com, or C/O 16 Scyld Computing Corporation 17 410 Severn Ave., Suite 210 18 Annapolis MD 21403 19 20 */ 21 22 /* 23 * FIXME: This driver _could_ support MTU changing, but doesn't. See Don's hamachi.c implementation 24 * as well as other drivers 25 * 26 * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k 27 * due to dead code elimination. There will be some performance benefits from this due to 28 * elimination of all the tests and reduced cache footprint. 29 */ 30 31 32 #define DRV_NAME "3c59x" 33 34 35 36 /* A few values that may be tweaked. */ 37 /* Keep the ring sizes a power of two for efficiency. */ 38 #define TX_RING_SIZE 16 39 #define RX_RING_SIZE 32 40 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/ 41 42 /* "Knobs" that adjust features and parameters. */ 43 /* Set the copy breakpoint for the copy-only-tiny-frames scheme. 44 Setting to > 1512 effectively disables this feature. */ 45 #ifndef __arm__ 46 static int rx_copybreak = 200; 47 #else 48 /* ARM systems perform better by disregarding the bus-master 49 transfer capability of these cards. -- rmk */ 50 static int rx_copybreak = 1513; 51 #endif 52 /* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */ 53 static const int mtu = 1500; 54 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */ 55 static int max_interrupt_work = 32; 56 /* Tx timeout interval (millisecs) */ 57 static int watchdog = 5000; 58 59 /* Allow aggregation of Tx interrupts. Saves CPU load at the cost 60 * of possible Tx stalls if the system is blocking interrupts 61 * somewhere else. Undefine this to disable. 62 */ 63 #define tx_interrupt_mitigation 1 64 65 /* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */ 66 #define vortex_debug debug 67 #ifdef VORTEX_DEBUG 68 static int vortex_debug = VORTEX_DEBUG; 69 #else 70 static int vortex_debug = 1; 71 #endif 72 73 #include <linux/module.h> 74 #include <linux/kernel.h> 75 #include <linux/string.h> 76 #include <linux/timer.h> 77 #include <linux/errno.h> 78 #include <linux/in.h> 79 #include <linux/ioport.h> 80 #include <linux/interrupt.h> 81 #include <linux/pci.h> 82 #include <linux/mii.h> 83 #include <linux/init.h> 84 #include <linux/netdevice.h> 85 #include <linux/etherdevice.h> 86 #include <linux/skbuff.h> 87 #include <linux/ethtool.h> 88 #include <linux/highmem.h> 89 #include <linux/eisa.h> 90 #include <linux/bitops.h> 91 #include <linux/jiffies.h> 92 #include <linux/gfp.h> 93 #include <asm/irq.h> /* For nr_irqs only. */ 94 #include <asm/io.h> 95 #include <asm/uaccess.h> 96 97 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package. 98 This is only in the support-all-kernels source code. */ 99 100 #define RUN_AT(x) (jiffies + (x)) 101 102 #include <linux/delay.h> 103 104 105 static const char version[] = 106 DRV_NAME ": Donald Becker and others.\n"; 107 108 MODULE_AUTHOR("Donald Becker <becker@scyld.com>"); 109 MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver "); 110 MODULE_LICENSE("GPL"); 111 112 113 /* Operational parameter that usually are not changed. */ 114 115 /* The Vortex size is twice that of the original EtherLinkIII series: the 116 runtime register window, window 1, is now always mapped in. 117 The Boomerang size is twice as large as the Vortex -- it has additional 118 bus master control registers. */ 119 #define VORTEX_TOTAL_SIZE 0x20 120 #define BOOMERANG_TOTAL_SIZE 0x40 121 122 /* Set iff a MII transceiver on any interface requires mdio preamble. 123 This only set with the original DP83840 on older 3c905 boards, so the extra 124 code size of a per-interface flag is not worthwhile. */ 125 static char mii_preamble_required; 126 127 #define PFX DRV_NAME ": " 128 129 130 131 /* 132 Theory of Operation 133 134 I. Board Compatibility 135 136 This device driver is designed for the 3Com FastEtherLink and FastEtherLink 137 XL, 3Com's PCI to 10/100baseT adapters. It also works with the 10Mbs 138 versions of the FastEtherLink cards. The supported product IDs are 139 3c590, 3c592, 3c595, 3c597, 3c900, 3c905 140 141 The related ISA 3c515 is supported with a separate driver, 3c515.c, included 142 with the kernel source or available from 143 cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html 144 145 II. Board-specific settings 146 147 PCI bus devices are configured by the system at boot time, so no jumpers 148 need to be set on the board. The system BIOS should be set to assign the 149 PCI INTA signal to an otherwise unused system IRQ line. 150 151 The EEPROM settings for media type and forced-full-duplex are observed. 152 The EEPROM media type should be left at the default "autoselect" unless using 153 10base2 or AUI connections which cannot be reliably detected. 154 155 III. Driver operation 156 157 The 3c59x series use an interface that's very similar to the previous 3c5x9 158 series. The primary interface is two programmed-I/O FIFOs, with an 159 alternate single-contiguous-region bus-master transfer (see next). 160 161 The 3c900 "Boomerang" series uses a full-bus-master interface with separate 162 lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet, 163 DEC Tulip and Intel Speedo3. The first chip version retains a compatible 164 programmed-I/O interface that has been removed in 'B' and subsequent board 165 revisions. 166 167 One extension that is advertised in a very large font is that the adapters 168 are capable of being bus masters. On the Vortex chip this capability was 169 only for a single contiguous region making it far less useful than the full 170 bus master capability. There is a significant performance impact of taking 171 an extra interrupt or polling for the completion of each transfer, as well 172 as difficulty sharing the single transfer engine between the transmit and 173 receive threads. Using DMA transfers is a win only with large blocks or 174 with the flawed versions of the Intel Orion motherboard PCI controller. 175 176 The Boomerang chip's full-bus-master interface is useful, and has the 177 currently-unused advantages over other similar chips that queued transmit 178 packets may be reordered and receive buffer groups are associated with a 179 single frame. 180 181 With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme. 182 Rather than a fixed intermediate receive buffer, this scheme allocates 183 full-sized skbuffs as receive buffers. The value RX_COPYBREAK is used as 184 the copying breakpoint: it is chosen to trade-off the memory wasted by 185 passing the full-sized skbuff to the queue layer for all frames vs. the 186 copying cost of copying a frame to a correctly-sized skbuff. 187 188 IIIC. Synchronization 189 The driver runs as two independent, single-threaded flows of control. One 190 is the send-packet routine, which enforces single-threaded use by the 191 dev->tbusy flag. The other thread is the interrupt handler, which is single 192 threaded by the hardware and other software. 193 194 IV. Notes 195 196 Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development 197 3c590, 3c595, and 3c900 boards. 198 The name "Vortex" is the internal 3Com project name for the PCI ASIC, and 199 the EISA version is called "Demon". According to Terry these names come 200 from rides at the local amusement park. 201 202 The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes! 203 This driver only supports ethernet packets because of the skbuff allocation 204 limit of 4K. 205 */ 206 207 /* This table drives the PCI probe routines. It's mostly boilerplate in all 208 of the drivers, and will likely be provided by some future kernel. 209 */ 210 enum pci_flags_bit { 211 PCI_USES_MASTER=4, 212 }; 213 214 enum { IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8, 215 EEPROM_8BIT=0x10, /* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */ 216 HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100, 217 INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800, 218 EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000, 219 EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, }; 220 221 enum vortex_chips { 222 CH_3C590 = 0, 223 CH_3C592, 224 CH_3C597, 225 CH_3C595_1, 226 CH_3C595_2, 227 228 CH_3C595_3, 229 CH_3C900_1, 230 CH_3C900_2, 231 CH_3C900_3, 232 CH_3C900_4, 233 234 CH_3C900_5, 235 CH_3C900B_FL, 236 CH_3C905_1, 237 CH_3C905_2, 238 CH_3C905B_TX, 239 CH_3C905B_1, 240 241 CH_3C905B_2, 242 CH_3C905B_FX, 243 CH_3C905C, 244 CH_3C9202, 245 CH_3C980, 246 CH_3C9805, 247 248 CH_3CSOHO100_TX, 249 CH_3C555, 250 CH_3C556, 251 CH_3C556B, 252 CH_3C575, 253 254 CH_3C575_1, 255 CH_3CCFE575, 256 CH_3CCFE575CT, 257 CH_3CCFE656, 258 CH_3CCFEM656, 259 260 CH_3CCFEM656_1, 261 CH_3C450, 262 CH_3C920, 263 CH_3C982A, 264 CH_3C982B, 265 266 CH_905BT4, 267 CH_920B_EMB_WNM, 268 }; 269 270 271 /* note: this array directly indexed by above enums, and MUST 272 * be kept in sync with both the enums above, and the PCI device 273 * table below 274 */ 275 static struct vortex_chip_info { 276 const char *name; 277 int flags; 278 int drv_flags; 279 int io_size; 280 } vortex_info_tbl[] = { 281 {"3c590 Vortex 10Mbps", 282 PCI_USES_MASTER, IS_VORTEX, 32, }, 283 {"3c592 EISA 10Mbps Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */ 284 PCI_USES_MASTER, IS_VORTEX, 32, }, 285 {"3c597 EISA Fast Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */ 286 PCI_USES_MASTER, IS_VORTEX, 32, }, 287 {"3c595 Vortex 100baseTx", 288 PCI_USES_MASTER, IS_VORTEX, 32, }, 289 {"3c595 Vortex 100baseT4", 290 PCI_USES_MASTER, IS_VORTEX, 32, }, 291 292 {"3c595 Vortex 100base-MII", 293 PCI_USES_MASTER, IS_VORTEX, 32, }, 294 {"3c900 Boomerang 10baseT", 295 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, }, 296 {"3c900 Boomerang 10Mbps Combo", 297 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, }, 298 {"3c900 Cyclone 10Mbps TPO", /* AKPM: from Don's 0.99M */ 299 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, }, 300 {"3c900 Cyclone 10Mbps Combo", 301 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, }, 302 303 {"3c900 Cyclone 10Mbps TPC", /* AKPM: from Don's 0.99M */ 304 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, }, 305 {"3c900B-FL Cyclone 10base-FL", 306 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, }, 307 {"3c905 Boomerang 100baseTx", 308 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, }, 309 {"3c905 Boomerang 100baseT4", 310 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, }, 311 {"3C905B-TX Fast Etherlink XL PCI", 312 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, }, 313 {"3c905B Cyclone 100baseTx", 314 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, }, 315 316 {"3c905B Cyclone 10/100/BNC", 317 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, }, 318 {"3c905B-FX Cyclone 100baseFx", 319 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, }, 320 {"3c905C Tornado", 321 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, }, 322 {"3c920B-EMB-WNM (ATI Radeon 9100 IGP)", 323 PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, }, 324 {"3c980 Cyclone", 325 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM|EXTRA_PREAMBLE, 128, }, 326 327 {"3c980C Python-T", 328 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, }, 329 {"3cSOHO100-TX Hurricane", 330 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, }, 331 {"3c555 Laptop Hurricane", 332 PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, }, 333 {"3c556 Laptop Tornado", 334 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR| 335 HAS_HWCKSM, 128, }, 336 {"3c556B Laptop Hurricane", 337 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR| 338 WNO_XCVR_PWR|HAS_HWCKSM, 128, }, 339 340 {"3c575 [Megahertz] 10/100 LAN CardBus", 341 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, }, 342 {"3c575 Boomerang CardBus", 343 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, }, 344 {"3CCFE575BT Cyclone CardBus", 345 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT| 346 INVERT_LED_PWR|HAS_HWCKSM, 128, }, 347 {"3CCFE575CT Tornado CardBus", 348 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR| 349 MAX_COLLISION_RESET|HAS_HWCKSM, 128, }, 350 {"3CCFE656 Cyclone CardBus", 351 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR| 352 INVERT_LED_PWR|HAS_HWCKSM, 128, }, 353 354 {"3CCFEM656B Cyclone+Winmodem CardBus", 355 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR| 356 INVERT_LED_PWR|HAS_HWCKSM, 128, }, 357 {"3CXFEM656C Tornado+Winmodem CardBus", /* From pcmcia-cs-3.1.5 */ 358 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR| 359 MAX_COLLISION_RESET|HAS_HWCKSM, 128, }, 360 {"3c450 HomePNA Tornado", /* AKPM: from Don's 0.99Q */ 361 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, }, 362 {"3c920 Tornado", 363 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, }, 364 {"3c982 Hydra Dual Port A", 365 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, }, 366 367 {"3c982 Hydra Dual Port B", 368 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, }, 369 {"3c905B-T4", 370 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, }, 371 {"3c920B-EMB-WNM Tornado", 372 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, }, 373 374 {NULL,}, /* NULL terminated list. */ 375 }; 376 377 378 static const struct pci_device_id vortex_pci_tbl[] = { 379 { 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 }, 380 { 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 }, 381 { 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 }, 382 { 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 }, 383 { 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 }, 384 385 { 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 }, 386 { 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 }, 387 { 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 }, 388 { 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 }, 389 { 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 }, 390 391 { 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 }, 392 { 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL }, 393 { 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 }, 394 { 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 }, 395 { 0x10B7, 0x9054, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_TX }, 396 { 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 }, 397 398 { 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 }, 399 { 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX }, 400 { 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C }, 401 { 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 }, 402 { 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 }, 403 { 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 }, 404 405 { 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX }, 406 { 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 }, 407 { 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 }, 408 { 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B }, 409 { 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 }, 410 411 { 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 }, 412 { 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 }, 413 { 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT }, 414 { 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 }, 415 { 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 }, 416 417 { 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 }, 418 { 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 }, 419 { 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 }, 420 { 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A }, 421 { 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B }, 422 423 { 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 }, 424 { 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM }, 425 426 {0,} /* 0 terminated list. */ 427 }; 428 MODULE_DEVICE_TABLE(pci, vortex_pci_tbl); 429 430 431 /* Operational definitions. 432 These are not used by other compilation units and thus are not 433 exported in a ".h" file. 434 435 First the windows. There are eight register windows, with the command 436 and status registers available in each. 437 */ 438 #define EL3_CMD 0x0e 439 #define EL3_STATUS 0x0e 440 441 /* The top five bits written to EL3_CMD are a command, the lower 442 11 bits are the parameter, if applicable. 443 Note that 11 parameters bits was fine for ethernet, but the new chip 444 can handle FDDI length frames (~4500 octets) and now parameters count 445 32-bit 'Dwords' rather than octets. */ 446 447 enum vortex_cmd { 448 TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11, 449 RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11, 450 UpStall = 6<<11, UpUnstall = (6<<11)+1, 451 DownStall = (6<<11)+2, DownUnstall = (6<<11)+3, 452 RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11, 453 FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11, 454 SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11, 455 SetTxThreshold = 18<<11, SetTxStart = 19<<11, 456 StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11, 457 StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,}; 458 459 /* The SetRxFilter command accepts the following classes: */ 460 enum RxFilter { 461 RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 }; 462 463 /* Bits in the general status register. */ 464 enum vortex_status { 465 IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004, 466 TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020, 467 IntReq = 0x0040, StatsFull = 0x0080, 468 DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10, 469 DMAInProgress = 1<<11, /* DMA controller is still busy.*/ 470 CmdInProgress = 1<<12, /* EL3_CMD is still busy.*/ 471 }; 472 473 /* Register window 1 offsets, the window used in normal operation. 474 On the Vortex this window is always mapped at offsets 0x10-0x1f. */ 475 enum Window1 { 476 TX_FIFO = 0x10, RX_FIFO = 0x10, RxErrors = 0x14, 477 RxStatus = 0x18, Timer=0x1A, TxStatus = 0x1B, 478 TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */ 479 }; 480 enum Window0 { 481 Wn0EepromCmd = 10, /* Window 0: EEPROM command register. */ 482 Wn0EepromData = 12, /* Window 0: EEPROM results register. */ 483 IntrStatus=0x0E, /* Valid in all windows. */ 484 }; 485 enum Win0_EEPROM_bits { 486 EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0, 487 EEPROM_EWENB = 0x30, /* Enable erasing/writing for 10 msec. */ 488 EEPROM_EWDIS = 0x00, /* Disable EWENB before 10 msec timeout. */ 489 }; 490 /* EEPROM locations. */ 491 enum eeprom_offset { 492 PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3, 493 EtherLink3ID=7, IFXcvrIO=8, IRQLine=9, 494 NodeAddr01=10, NodeAddr23=11, NodeAddr45=12, 495 DriverTune=13, Checksum=15}; 496 497 enum Window2 { /* Window 2. */ 498 Wn2_ResetOptions=12, 499 }; 500 enum Window3 { /* Window 3: MAC/config bits. */ 501 Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8, 502 }; 503 504 #define BFEXT(value, offset, bitcount) \ 505 ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1)) 506 507 #define BFINS(lhs, rhs, offset, bitcount) \ 508 (((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) | \ 509 (((rhs) & ((1 << (bitcount)) - 1)) << (offset))) 510 511 #define RAM_SIZE(v) BFEXT(v, 0, 3) 512 #define RAM_WIDTH(v) BFEXT(v, 3, 1) 513 #define RAM_SPEED(v) BFEXT(v, 4, 2) 514 #define ROM_SIZE(v) BFEXT(v, 6, 2) 515 #define RAM_SPLIT(v) BFEXT(v, 16, 2) 516 #define XCVR(v) BFEXT(v, 20, 4) 517 #define AUTOSELECT(v) BFEXT(v, 24, 1) 518 519 enum Window4 { /* Window 4: Xcvr/media bits. */ 520 Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10, 521 }; 522 enum Win4_Media_bits { 523 Media_SQE = 0x0008, /* Enable SQE error counting for AUI. */ 524 Media_10TP = 0x00C0, /* Enable link beat and jabber for 10baseT. */ 525 Media_Lnk = 0x0080, /* Enable just link beat for 100TX/100FX. */ 526 Media_LnkBeat = 0x0800, 527 }; 528 enum Window7 { /* Window 7: Bus Master control. */ 529 Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6, 530 Wn7_MasterStatus = 12, 531 }; 532 /* Boomerang bus master control registers. */ 533 enum MasterCtrl { 534 PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c, 535 TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38, 536 }; 537 538 /* The Rx and Tx descriptor lists. 539 Caution Alpha hackers: these types are 32 bits! Note also the 8 byte 540 alignment contraint on tx_ring[] and rx_ring[]. */ 541 #define LAST_FRAG 0x80000000 /* Last Addr/Len pair in descriptor. */ 542 #define DN_COMPLETE 0x00010000 /* This packet has been downloaded */ 543 struct boom_rx_desc { 544 __le32 next; /* Last entry points to 0. */ 545 __le32 status; 546 __le32 addr; /* Up to 63 addr/len pairs possible. */ 547 __le32 length; /* Set LAST_FRAG to indicate last pair. */ 548 }; 549 /* Values for the Rx status entry. */ 550 enum rx_desc_status { 551 RxDComplete=0x00008000, RxDError=0x4000, 552 /* See boomerang_rx() for actual error bits */ 553 IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27, 554 IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31, 555 }; 556 557 #ifdef MAX_SKB_FRAGS 558 #define DO_ZEROCOPY 1 559 #else 560 #define DO_ZEROCOPY 0 561 #endif 562 563 struct boom_tx_desc { 564 __le32 next; /* Last entry points to 0. */ 565 __le32 status; /* bits 0:12 length, others see below. */ 566 #if DO_ZEROCOPY 567 struct { 568 __le32 addr; 569 __le32 length; 570 } frag[1+MAX_SKB_FRAGS]; 571 #else 572 __le32 addr; 573 __le32 length; 574 #endif 575 }; 576 577 /* Values for the Tx status entry. */ 578 enum tx_desc_status { 579 CRCDisable=0x2000, TxDComplete=0x8000, 580 AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000, 581 TxIntrUploaded=0x80000000, /* IRQ when in FIFO, but maybe not sent. */ 582 }; 583 584 /* Chip features we care about in vp->capabilities, read from the EEPROM. */ 585 enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 }; 586 587 struct vortex_extra_stats { 588 unsigned long tx_deferred; 589 unsigned long tx_max_collisions; 590 unsigned long tx_multiple_collisions; 591 unsigned long tx_single_collisions; 592 unsigned long rx_bad_ssd; 593 }; 594 595 struct vortex_private { 596 /* The Rx and Tx rings should be quad-word-aligned. */ 597 struct boom_rx_desc* rx_ring; 598 struct boom_tx_desc* tx_ring; 599 dma_addr_t rx_ring_dma; 600 dma_addr_t tx_ring_dma; 601 /* The addresses of transmit- and receive-in-place skbuffs. */ 602 struct sk_buff* rx_skbuff[RX_RING_SIZE]; 603 struct sk_buff* tx_skbuff[TX_RING_SIZE]; 604 unsigned int cur_rx, cur_tx; /* The next free ring entry */ 605 unsigned int dirty_rx, dirty_tx; /* The ring entries to be free()ed. */ 606 struct vortex_extra_stats xstats; /* NIC-specific extra stats */ 607 struct sk_buff *tx_skb; /* Packet being eaten by bus master ctrl. */ 608 dma_addr_t tx_skb_dma; /* Allocated DMA address for bus master ctrl DMA. */ 609 610 /* PCI configuration space information. */ 611 struct device *gendev; 612 void __iomem *ioaddr; /* IO address space */ 613 void __iomem *cb_fn_base; /* CardBus function status addr space. */ 614 615 /* Some values here only for performance evaluation and path-coverage */ 616 int rx_nocopy, rx_copy, queued_packet, rx_csumhits; 617 int card_idx; 618 619 /* The remainder are related to chip state, mostly media selection. */ 620 struct timer_list timer; /* Media selection timer. */ 621 struct timer_list rx_oom_timer; /* Rx skb allocation retry timer */ 622 int options; /* User-settable misc. driver options. */ 623 unsigned int media_override:4, /* Passed-in media type. */ 624 default_media:4, /* Read from the EEPROM/Wn3_Config. */ 625 full_duplex:1, autoselect:1, 626 bus_master:1, /* Vortex can only do a fragment bus-m. */ 627 full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang */ 628 flow_ctrl:1, /* Use 802.3x flow control (PAUSE only) */ 629 partner_flow_ctrl:1, /* Partner supports flow control */ 630 has_nway:1, 631 enable_wol:1, /* Wake-on-LAN is enabled */ 632 pm_state_valid:1, /* pci_dev->saved_config_space has sane contents */ 633 open:1, 634 medialock:1, 635 large_frames:1, /* accept large frames */ 636 handling_irq:1; /* private in_irq indicator */ 637 /* {get|set}_wol operations are already serialized by rtnl. 638 * no additional locking is required for the enable_wol and acpi_set_WOL() 639 */ 640 int drv_flags; 641 u16 status_enable; 642 u16 intr_enable; 643 u16 available_media; /* From Wn3_Options. */ 644 u16 capabilities, info1, info2; /* Various, from EEPROM. */ 645 u16 advertising; /* NWay media advertisement */ 646 unsigned char phys[2]; /* MII device addresses. */ 647 u16 deferred; /* Resend these interrupts when we 648 * bale from the ISR */ 649 u16 io_size; /* Size of PCI region (for release_region) */ 650 651 /* Serialises access to hardware other than MII and variables below. 652 * The lock hierarchy is rtnl_lock > {lock, mii_lock} > window_lock. */ 653 spinlock_t lock; 654 655 spinlock_t mii_lock; /* Serialises access to MII */ 656 struct mii_if_info mii; /* MII lib hooks/info */ 657 spinlock_t window_lock; /* Serialises access to windowed regs */ 658 int window; /* Register window */ 659 }; 660 661 static void window_set(struct vortex_private *vp, int window) 662 { 663 if (window != vp->window) { 664 iowrite16(SelectWindow + window, vp->ioaddr + EL3_CMD); 665 vp->window = window; 666 } 667 } 668 669 #define DEFINE_WINDOW_IO(size) \ 670 static u ## size \ 671 window_read ## size(struct vortex_private *vp, int window, int addr) \ 672 { \ 673 unsigned long flags; \ 674 u ## size ret; \ 675 spin_lock_irqsave(&vp->window_lock, flags); \ 676 window_set(vp, window); \ 677 ret = ioread ## size(vp->ioaddr + addr); \ 678 spin_unlock_irqrestore(&vp->window_lock, flags); \ 679 return ret; \ 680 } \ 681 static void \ 682 window_write ## size(struct vortex_private *vp, u ## size value, \ 683 int window, int addr) \ 684 { \ 685 unsigned long flags; \ 686 spin_lock_irqsave(&vp->window_lock, flags); \ 687 window_set(vp, window); \ 688 iowrite ## size(value, vp->ioaddr + addr); \ 689 spin_unlock_irqrestore(&vp->window_lock, flags); \ 690 } 691 DEFINE_WINDOW_IO(8) 692 DEFINE_WINDOW_IO(16) 693 DEFINE_WINDOW_IO(32) 694 695 #ifdef CONFIG_PCI 696 #define DEVICE_PCI(dev) ((dev_is_pci(dev)) ? to_pci_dev((dev)) : NULL) 697 #else 698 #define DEVICE_PCI(dev) NULL 699 #endif 700 701 #define VORTEX_PCI(vp) \ 702 ((struct pci_dev *) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL)) 703 704 #ifdef CONFIG_EISA 705 #define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL) 706 #else 707 #define DEVICE_EISA(dev) NULL 708 #endif 709 710 #define VORTEX_EISA(vp) \ 711 ((struct eisa_device *) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL)) 712 713 /* The action to take with a media selection timer tick. 714 Note that we deviate from the 3Com order by checking 10base2 before AUI. 715 */ 716 enum xcvr_types { 717 XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx, 718 XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10, 719 }; 720 721 static const struct media_table { 722 char *name; 723 unsigned int media_bits:16, /* Bits to set in Wn4_Media register. */ 724 mask:8, /* The transceiver-present bit in Wn3_Config.*/ 725 next:8; /* The media type to try next. */ 726 int wait; /* Time before we check media status. */ 727 } media_tbl[] = { 728 { "10baseT", Media_10TP,0x08, XCVR_10base2, (14*HZ)/10}, 729 { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10}, 730 { "undefined", 0, 0x80, XCVR_10baseT, 10000}, 731 { "10base2", 0, 0x10, XCVR_AUI, (1*HZ)/10}, 732 { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10}, 733 { "100baseFX", Media_Lnk, 0x04, XCVR_MII, (14*HZ)/10}, 734 { "MII", 0, 0x41, XCVR_10baseT, 3*HZ }, 735 { "undefined", 0, 0x01, XCVR_10baseT, 10000}, 736 { "Autonegotiate", 0, 0x41, XCVR_10baseT, 3*HZ}, 737 { "MII-External", 0, 0x41, XCVR_10baseT, 3*HZ }, 738 { "Default", 0, 0xFF, XCVR_10baseT, 10000}, 739 }; 740 741 static struct { 742 const char str[ETH_GSTRING_LEN]; 743 } ethtool_stats_keys[] = { 744 { "tx_deferred" }, 745 { "tx_max_collisions" }, 746 { "tx_multiple_collisions" }, 747 { "tx_single_collisions" }, 748 { "rx_bad_ssd" }, 749 }; 750 751 /* number of ETHTOOL_GSTATS u64's */ 752 #define VORTEX_NUM_STATS 5 753 754 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq, 755 int chip_idx, int card_idx); 756 static int vortex_up(struct net_device *dev); 757 static void vortex_down(struct net_device *dev, int final); 758 static int vortex_open(struct net_device *dev); 759 static void mdio_sync(struct vortex_private *vp, int bits); 760 static int mdio_read(struct net_device *dev, int phy_id, int location); 761 static void mdio_write(struct net_device *vp, int phy_id, int location, int value); 762 static void vortex_timer(unsigned long arg); 763 static void rx_oom_timer(unsigned long arg); 764 static netdev_tx_t vortex_start_xmit(struct sk_buff *skb, 765 struct net_device *dev); 766 static netdev_tx_t boomerang_start_xmit(struct sk_buff *skb, 767 struct net_device *dev); 768 static int vortex_rx(struct net_device *dev); 769 static int boomerang_rx(struct net_device *dev); 770 static irqreturn_t vortex_interrupt(int irq, void *dev_id); 771 static irqreturn_t boomerang_interrupt(int irq, void *dev_id); 772 static int vortex_close(struct net_device *dev); 773 static void dump_tx_ring(struct net_device *dev); 774 static void update_stats(void __iomem *ioaddr, struct net_device *dev); 775 static struct net_device_stats *vortex_get_stats(struct net_device *dev); 776 static void set_rx_mode(struct net_device *dev); 777 #ifdef CONFIG_PCI 778 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); 779 #endif 780 static void vortex_tx_timeout(struct net_device *dev); 781 static void acpi_set_WOL(struct net_device *dev); 782 static const struct ethtool_ops vortex_ethtool_ops; 783 static void set_8021q_mode(struct net_device *dev, int enable); 784 785 /* This driver uses 'options' to pass the media type, full-duplex flag, etc. */ 786 /* Option count limit only -- unlimited interfaces are supported. */ 787 #define MAX_UNITS 8 788 static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 }; 789 static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 }; 790 static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 }; 791 static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 }; 792 static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 }; 793 static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 }; 794 static int global_options = -1; 795 static int global_full_duplex = -1; 796 static int global_enable_wol = -1; 797 static int global_use_mmio = -1; 798 799 /* Variables to work-around the Compaq PCI BIOS32 problem. */ 800 static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900; 801 static struct net_device *compaq_net_device; 802 803 static int vortex_cards_found; 804 805 module_param(debug, int, 0); 806 module_param(global_options, int, 0); 807 module_param_array(options, int, NULL, 0); 808 module_param(global_full_duplex, int, 0); 809 module_param_array(full_duplex, int, NULL, 0); 810 module_param_array(hw_checksums, int, NULL, 0); 811 module_param_array(flow_ctrl, int, NULL, 0); 812 module_param(global_enable_wol, int, 0); 813 module_param_array(enable_wol, int, NULL, 0); 814 module_param(rx_copybreak, int, 0); 815 module_param(max_interrupt_work, int, 0); 816 module_param(compaq_ioaddr, int, 0); 817 module_param(compaq_irq, int, 0); 818 module_param(compaq_device_id, int, 0); 819 module_param(watchdog, int, 0); 820 module_param(global_use_mmio, int, 0); 821 module_param_array(use_mmio, int, NULL, 0); 822 MODULE_PARM_DESC(debug, "3c59x debug level (0-6)"); 823 MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex"); 824 MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset"); 825 MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)"); 826 MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset"); 827 MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)"); 828 MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)"); 829 MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)"); 830 MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset"); 831 MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames"); 832 MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt"); 833 MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)"); 834 MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)"); 835 MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)"); 836 MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds"); 837 MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset"); 838 MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)"); 839 840 #ifdef CONFIG_NET_POLL_CONTROLLER 841 static void poll_vortex(struct net_device *dev) 842 { 843 struct vortex_private *vp = netdev_priv(dev); 844 unsigned long flags; 845 local_irq_save(flags); 846 (vp->full_bus_master_rx ? boomerang_interrupt:vortex_interrupt)(dev->irq,dev); 847 local_irq_restore(flags); 848 } 849 #endif 850 851 #ifdef CONFIG_PM 852 853 static int vortex_suspend(struct device *dev) 854 { 855 struct pci_dev *pdev = to_pci_dev(dev); 856 struct net_device *ndev = pci_get_drvdata(pdev); 857 858 if (!ndev || !netif_running(ndev)) 859 return 0; 860 861 netif_device_detach(ndev); 862 vortex_down(ndev, 1); 863 864 return 0; 865 } 866 867 static int vortex_resume(struct device *dev) 868 { 869 struct pci_dev *pdev = to_pci_dev(dev); 870 struct net_device *ndev = pci_get_drvdata(pdev); 871 int err; 872 873 if (!ndev || !netif_running(ndev)) 874 return 0; 875 876 err = vortex_up(ndev); 877 if (err) 878 return err; 879 880 netif_device_attach(ndev); 881 882 return 0; 883 } 884 885 static const struct dev_pm_ops vortex_pm_ops = { 886 .suspend = vortex_suspend, 887 .resume = vortex_resume, 888 .freeze = vortex_suspend, 889 .thaw = vortex_resume, 890 .poweroff = vortex_suspend, 891 .restore = vortex_resume, 892 }; 893 894 #define VORTEX_PM_OPS (&vortex_pm_ops) 895 896 #else /* !CONFIG_PM */ 897 898 #define VORTEX_PM_OPS NULL 899 900 #endif /* !CONFIG_PM */ 901 902 #ifdef CONFIG_EISA 903 static struct eisa_device_id vortex_eisa_ids[] = { 904 { "TCM5920", CH_3C592 }, 905 { "TCM5970", CH_3C597 }, 906 { "" } 907 }; 908 MODULE_DEVICE_TABLE(eisa, vortex_eisa_ids); 909 910 static int vortex_eisa_probe(struct device *device) 911 { 912 void __iomem *ioaddr; 913 struct eisa_device *edev; 914 915 edev = to_eisa_device(device); 916 917 if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME)) 918 return -EBUSY; 919 920 ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE); 921 922 if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12, 923 edev->id.driver_data, vortex_cards_found)) { 924 release_region(edev->base_addr, VORTEX_TOTAL_SIZE); 925 return -ENODEV; 926 } 927 928 vortex_cards_found++; 929 930 return 0; 931 } 932 933 static int vortex_eisa_remove(struct device *device) 934 { 935 struct eisa_device *edev; 936 struct net_device *dev; 937 struct vortex_private *vp; 938 void __iomem *ioaddr; 939 940 edev = to_eisa_device(device); 941 dev = eisa_get_drvdata(edev); 942 943 if (!dev) { 944 pr_err("vortex_eisa_remove called for Compaq device!\n"); 945 BUG(); 946 } 947 948 vp = netdev_priv(dev); 949 ioaddr = vp->ioaddr; 950 951 unregister_netdev(dev); 952 iowrite16(TotalReset|0x14, ioaddr + EL3_CMD); 953 release_region(edev->base_addr, VORTEX_TOTAL_SIZE); 954 955 free_netdev(dev); 956 return 0; 957 } 958 959 static struct eisa_driver vortex_eisa_driver = { 960 .id_table = vortex_eisa_ids, 961 .driver = { 962 .name = "3c59x", 963 .probe = vortex_eisa_probe, 964 .remove = vortex_eisa_remove 965 } 966 }; 967 968 #endif /* CONFIG_EISA */ 969 970 /* returns count found (>= 0), or negative on error */ 971 static int __init vortex_eisa_init(void) 972 { 973 int eisa_found = 0; 974 int orig_cards_found = vortex_cards_found; 975 976 #ifdef CONFIG_EISA 977 int err; 978 979 err = eisa_driver_register (&vortex_eisa_driver); 980 if (!err) { 981 /* 982 * Because of the way EISA bus is probed, we cannot assume 983 * any device have been found when we exit from 984 * eisa_driver_register (the bus root driver may not be 985 * initialized yet). So we blindly assume something was 986 * found, and let the sysfs magic happened... 987 */ 988 eisa_found = 1; 989 } 990 #endif 991 992 /* Special code to work-around the Compaq PCI BIOS32 problem. */ 993 if (compaq_ioaddr) { 994 vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE), 995 compaq_irq, compaq_device_id, vortex_cards_found++); 996 } 997 998 return vortex_cards_found - orig_cards_found + eisa_found; 999 } 1000 1001 /* returns count (>= 0), or negative on error */ 1002 static int vortex_init_one(struct pci_dev *pdev, 1003 const struct pci_device_id *ent) 1004 { 1005 int rc, unit, pci_bar; 1006 struct vortex_chip_info *vci; 1007 void __iomem *ioaddr; 1008 1009 /* wake up and enable device */ 1010 rc = pci_enable_device(pdev); 1011 if (rc < 0) 1012 goto out; 1013 1014 rc = pci_request_regions(pdev, DRV_NAME); 1015 if (rc < 0) 1016 goto out_disable; 1017 1018 unit = vortex_cards_found; 1019 1020 if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) { 1021 /* Determine the default if the user didn't override us */ 1022 vci = &vortex_info_tbl[ent->driver_data]; 1023 pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0; 1024 } else if (unit < MAX_UNITS && use_mmio[unit] >= 0) 1025 pci_bar = use_mmio[unit] ? 1 : 0; 1026 else 1027 pci_bar = global_use_mmio ? 1 : 0; 1028 1029 ioaddr = pci_iomap(pdev, pci_bar, 0); 1030 if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */ 1031 ioaddr = pci_iomap(pdev, 0, 0); 1032 if (!ioaddr) { 1033 rc = -ENOMEM; 1034 goto out_release; 1035 } 1036 1037 rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq, 1038 ent->driver_data, unit); 1039 if (rc < 0) 1040 goto out_iounmap; 1041 1042 vortex_cards_found++; 1043 goto out; 1044 1045 out_iounmap: 1046 pci_iounmap(pdev, ioaddr); 1047 out_release: 1048 pci_release_regions(pdev); 1049 out_disable: 1050 pci_disable_device(pdev); 1051 out: 1052 return rc; 1053 } 1054 1055 static const struct net_device_ops boomrang_netdev_ops = { 1056 .ndo_open = vortex_open, 1057 .ndo_stop = vortex_close, 1058 .ndo_start_xmit = boomerang_start_xmit, 1059 .ndo_tx_timeout = vortex_tx_timeout, 1060 .ndo_get_stats = vortex_get_stats, 1061 #ifdef CONFIG_PCI 1062 .ndo_do_ioctl = vortex_ioctl, 1063 #endif 1064 .ndo_set_rx_mode = set_rx_mode, 1065 .ndo_change_mtu = eth_change_mtu, 1066 .ndo_set_mac_address = eth_mac_addr, 1067 .ndo_validate_addr = eth_validate_addr, 1068 #ifdef CONFIG_NET_POLL_CONTROLLER 1069 .ndo_poll_controller = poll_vortex, 1070 #endif 1071 }; 1072 1073 static const struct net_device_ops vortex_netdev_ops = { 1074 .ndo_open = vortex_open, 1075 .ndo_stop = vortex_close, 1076 .ndo_start_xmit = vortex_start_xmit, 1077 .ndo_tx_timeout = vortex_tx_timeout, 1078 .ndo_get_stats = vortex_get_stats, 1079 #ifdef CONFIG_PCI 1080 .ndo_do_ioctl = vortex_ioctl, 1081 #endif 1082 .ndo_set_rx_mode = set_rx_mode, 1083 .ndo_change_mtu = eth_change_mtu, 1084 .ndo_set_mac_address = eth_mac_addr, 1085 .ndo_validate_addr = eth_validate_addr, 1086 #ifdef CONFIG_NET_POLL_CONTROLLER 1087 .ndo_poll_controller = poll_vortex, 1088 #endif 1089 }; 1090 1091 /* 1092 * Start up the PCI/EISA device which is described by *gendev. 1093 * Return 0 on success. 1094 * 1095 * NOTE: pdev can be NULL, for the case of a Compaq device 1096 */ 1097 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq, 1098 int chip_idx, int card_idx) 1099 { 1100 struct vortex_private *vp; 1101 int option; 1102 unsigned int eeprom[0x40], checksum = 0; /* EEPROM contents */ 1103 int i, step; 1104 struct net_device *dev; 1105 static int printed_version; 1106 int retval, print_info; 1107 struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx]; 1108 const char *print_name = "3c59x"; 1109 struct pci_dev *pdev = NULL; 1110 struct eisa_device *edev = NULL; 1111 1112 if (!printed_version) { 1113 pr_info("%s", version); 1114 printed_version = 1; 1115 } 1116 1117 if (gendev) { 1118 if ((pdev = DEVICE_PCI(gendev))) { 1119 print_name = pci_name(pdev); 1120 } 1121 1122 if ((edev = DEVICE_EISA(gendev))) { 1123 print_name = dev_name(&edev->dev); 1124 } 1125 } 1126 1127 dev = alloc_etherdev(sizeof(*vp)); 1128 retval = -ENOMEM; 1129 if (!dev) 1130 goto out; 1131 1132 SET_NETDEV_DEV(dev, gendev); 1133 vp = netdev_priv(dev); 1134 1135 option = global_options; 1136 1137 /* The lower four bits are the media type. */ 1138 if (dev->mem_start) { 1139 /* 1140 * The 'options' param is passed in as the third arg to the 1141 * LILO 'ether=' argument for non-modular use 1142 */ 1143 option = dev->mem_start; 1144 } 1145 else if (card_idx < MAX_UNITS) { 1146 if (options[card_idx] >= 0) 1147 option = options[card_idx]; 1148 } 1149 1150 if (option > 0) { 1151 if (option & 0x8000) 1152 vortex_debug = 7; 1153 if (option & 0x4000) 1154 vortex_debug = 2; 1155 if (option & 0x0400) 1156 vp->enable_wol = 1; 1157 } 1158 1159 print_info = (vortex_debug > 1); 1160 if (print_info) 1161 pr_info("See Documentation/networking/vortex.txt\n"); 1162 1163 pr_info("%s: 3Com %s %s at %p.\n", 1164 print_name, 1165 pdev ? "PCI" : "EISA", 1166 vci->name, 1167 ioaddr); 1168 1169 dev->base_addr = (unsigned long)ioaddr; 1170 dev->irq = irq; 1171 dev->mtu = mtu; 1172 vp->ioaddr = ioaddr; 1173 vp->large_frames = mtu > 1500; 1174 vp->drv_flags = vci->drv_flags; 1175 vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0; 1176 vp->io_size = vci->io_size; 1177 vp->card_idx = card_idx; 1178 vp->window = -1; 1179 1180 /* module list only for Compaq device */ 1181 if (gendev == NULL) { 1182 compaq_net_device = dev; 1183 } 1184 1185 /* PCI-only startup logic */ 1186 if (pdev) { 1187 /* enable bus-mastering if necessary */ 1188 if (vci->flags & PCI_USES_MASTER) 1189 pci_set_master(pdev); 1190 1191 if (vci->drv_flags & IS_VORTEX) { 1192 u8 pci_latency; 1193 u8 new_latency = 248; 1194 1195 /* Check the PCI latency value. On the 3c590 series the latency timer 1196 must be set to the maximum value to avoid data corruption that occurs 1197 when the timer expires during a transfer. This bug exists the Vortex 1198 chip only. */ 1199 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency); 1200 if (pci_latency < new_latency) { 1201 pr_info("%s: Overriding PCI latency timer (CFLT) setting of %d, new value is %d.\n", 1202 print_name, pci_latency, new_latency); 1203 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency); 1204 } 1205 } 1206 } 1207 1208 spin_lock_init(&vp->lock); 1209 spin_lock_init(&vp->mii_lock); 1210 spin_lock_init(&vp->window_lock); 1211 vp->gendev = gendev; 1212 vp->mii.dev = dev; 1213 vp->mii.mdio_read = mdio_read; 1214 vp->mii.mdio_write = mdio_write; 1215 vp->mii.phy_id_mask = 0x1f; 1216 vp->mii.reg_num_mask = 0x1f; 1217 1218 /* Makes sure rings are at least 16 byte aligned. */ 1219 vp->rx_ring = pci_alloc_consistent(pdev, sizeof(struct boom_rx_desc) * RX_RING_SIZE 1220 + sizeof(struct boom_tx_desc) * TX_RING_SIZE, 1221 &vp->rx_ring_dma); 1222 retval = -ENOMEM; 1223 if (!vp->rx_ring) 1224 goto free_device; 1225 1226 vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE); 1227 vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE; 1228 1229 /* if we are a PCI driver, we store info in pdev->driver_data 1230 * instead of a module list */ 1231 if (pdev) 1232 pci_set_drvdata(pdev, dev); 1233 if (edev) 1234 eisa_set_drvdata(edev, dev); 1235 1236 vp->media_override = 7; 1237 if (option >= 0) { 1238 vp->media_override = ((option & 7) == 2) ? 0 : option & 15; 1239 if (vp->media_override != 7) 1240 vp->medialock = 1; 1241 vp->full_duplex = (option & 0x200) ? 1 : 0; 1242 vp->bus_master = (option & 16) ? 1 : 0; 1243 } 1244 1245 if (global_full_duplex > 0) 1246 vp->full_duplex = 1; 1247 if (global_enable_wol > 0) 1248 vp->enable_wol = 1; 1249 1250 if (card_idx < MAX_UNITS) { 1251 if (full_duplex[card_idx] > 0) 1252 vp->full_duplex = 1; 1253 if (flow_ctrl[card_idx] > 0) 1254 vp->flow_ctrl = 1; 1255 if (enable_wol[card_idx] > 0) 1256 vp->enable_wol = 1; 1257 } 1258 1259 vp->mii.force_media = vp->full_duplex; 1260 vp->options = option; 1261 /* Read the station address from the EEPROM. */ 1262 { 1263 int base; 1264 1265 if (vci->drv_flags & EEPROM_8BIT) 1266 base = 0x230; 1267 else if (vci->drv_flags & EEPROM_OFFSET) 1268 base = EEPROM_Read + 0x30; 1269 else 1270 base = EEPROM_Read; 1271 1272 for (i = 0; i < 0x40; i++) { 1273 int timer; 1274 window_write16(vp, base + i, 0, Wn0EepromCmd); 1275 /* Pause for at least 162 us. for the read to take place. */ 1276 for (timer = 10; timer >= 0; timer--) { 1277 udelay(162); 1278 if ((window_read16(vp, 0, Wn0EepromCmd) & 1279 0x8000) == 0) 1280 break; 1281 } 1282 eeprom[i] = window_read16(vp, 0, Wn0EepromData); 1283 } 1284 } 1285 for (i = 0; i < 0x18; i++) 1286 checksum ^= eeprom[i]; 1287 checksum = (checksum ^ (checksum >> 8)) & 0xff; 1288 if (checksum != 0x00) { /* Grrr, needless incompatible change 3Com. */ 1289 while (i < 0x21) 1290 checksum ^= eeprom[i++]; 1291 checksum = (checksum ^ (checksum >> 8)) & 0xff; 1292 } 1293 if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO)) 1294 pr_cont(" ***INVALID CHECKSUM %4.4x*** ", checksum); 1295 for (i = 0; i < 3; i++) 1296 ((__be16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]); 1297 if (print_info) 1298 pr_cont(" %pM", dev->dev_addr); 1299 /* Unfortunately an all zero eeprom passes the checksum and this 1300 gets found in the wild in failure cases. Crypto is hard 8) */ 1301 if (!is_valid_ether_addr(dev->dev_addr)) { 1302 retval = -EINVAL; 1303 pr_err("*** EEPROM MAC address is invalid.\n"); 1304 goto free_ring; /* With every pack */ 1305 } 1306 for (i = 0; i < 6; i++) 1307 window_write8(vp, dev->dev_addr[i], 2, i); 1308 1309 if (print_info) 1310 pr_cont(", IRQ %d\n", dev->irq); 1311 /* Tell them about an invalid IRQ. */ 1312 if (dev->irq <= 0 || dev->irq >= nr_irqs) 1313 pr_warn(" *** Warning: IRQ %d is unlikely to work! ***\n", 1314 dev->irq); 1315 1316 step = (window_read8(vp, 4, Wn4_NetDiag) & 0x1e) >> 1; 1317 if (print_info) { 1318 pr_info(" product code %02x%02x rev %02x.%d date %02d-%02d-%02d\n", 1319 eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14], 1320 step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9); 1321 } 1322 1323 1324 if (pdev && vci->drv_flags & HAS_CB_FNS) { 1325 unsigned short n; 1326 1327 vp->cb_fn_base = pci_iomap(pdev, 2, 0); 1328 if (!vp->cb_fn_base) { 1329 retval = -ENOMEM; 1330 goto free_ring; 1331 } 1332 1333 if (print_info) { 1334 pr_info("%s: CardBus functions mapped %16.16llx->%p\n", 1335 print_name, 1336 (unsigned long long)pci_resource_start(pdev, 2), 1337 vp->cb_fn_base); 1338 } 1339 1340 n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010; 1341 if (vp->drv_flags & INVERT_LED_PWR) 1342 n |= 0x10; 1343 if (vp->drv_flags & INVERT_MII_PWR) 1344 n |= 0x4000; 1345 window_write16(vp, n, 2, Wn2_ResetOptions); 1346 if (vp->drv_flags & WNO_XCVR_PWR) { 1347 window_write16(vp, 0x0800, 0, 0); 1348 } 1349 } 1350 1351 /* Extract our information from the EEPROM data. */ 1352 vp->info1 = eeprom[13]; 1353 vp->info2 = eeprom[15]; 1354 vp->capabilities = eeprom[16]; 1355 1356 if (vp->info1 & 0x8000) { 1357 vp->full_duplex = 1; 1358 if (print_info) 1359 pr_info("Full duplex capable\n"); 1360 } 1361 1362 { 1363 static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"}; 1364 unsigned int config; 1365 vp->available_media = window_read16(vp, 3, Wn3_Options); 1366 if ((vp->available_media & 0xff) == 0) /* Broken 3c916 */ 1367 vp->available_media = 0x40; 1368 config = window_read32(vp, 3, Wn3_Config); 1369 if (print_info) { 1370 pr_debug(" Internal config register is %4.4x, transceivers %#x.\n", 1371 config, window_read16(vp, 3, Wn3_Options)); 1372 pr_info(" %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n", 1373 8 << RAM_SIZE(config), 1374 RAM_WIDTH(config) ? "word" : "byte", 1375 ram_split[RAM_SPLIT(config)], 1376 AUTOSELECT(config) ? "autoselect/" : "", 1377 XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" : 1378 media_tbl[XCVR(config)].name); 1379 } 1380 vp->default_media = XCVR(config); 1381 if (vp->default_media == XCVR_NWAY) 1382 vp->has_nway = 1; 1383 vp->autoselect = AUTOSELECT(config); 1384 } 1385 1386 if (vp->media_override != 7) { 1387 pr_info("%s: Media override to transceiver type %d (%s).\n", 1388 print_name, vp->media_override, 1389 media_tbl[vp->media_override].name); 1390 dev->if_port = vp->media_override; 1391 } else 1392 dev->if_port = vp->default_media; 1393 1394 if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) || 1395 dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) { 1396 int phy, phy_idx = 0; 1397 mii_preamble_required++; 1398 if (vp->drv_flags & EXTRA_PREAMBLE) 1399 mii_preamble_required++; 1400 mdio_sync(vp, 32); 1401 mdio_read(dev, 24, MII_BMSR); 1402 for (phy = 0; phy < 32 && phy_idx < 1; phy++) { 1403 int mii_status, phyx; 1404 1405 /* 1406 * For the 3c905CX we look at index 24 first, because it bogusly 1407 * reports an external PHY at all indices 1408 */ 1409 if (phy == 0) 1410 phyx = 24; 1411 else if (phy <= 24) 1412 phyx = phy - 1; 1413 else 1414 phyx = phy; 1415 mii_status = mdio_read(dev, phyx, MII_BMSR); 1416 if (mii_status && mii_status != 0xffff) { 1417 vp->phys[phy_idx++] = phyx; 1418 if (print_info) { 1419 pr_info(" MII transceiver found at address %d, status %4x.\n", 1420 phyx, mii_status); 1421 } 1422 if ((mii_status & 0x0040) == 0) 1423 mii_preamble_required++; 1424 } 1425 } 1426 mii_preamble_required--; 1427 if (phy_idx == 0) { 1428 pr_warn(" ***WARNING*** No MII transceivers found!\n"); 1429 vp->phys[0] = 24; 1430 } else { 1431 vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE); 1432 if (vp->full_duplex) { 1433 /* Only advertise the FD media types. */ 1434 vp->advertising &= ~0x02A0; 1435 mdio_write(dev, vp->phys[0], 4, vp->advertising); 1436 } 1437 } 1438 vp->mii.phy_id = vp->phys[0]; 1439 } 1440 1441 if (vp->capabilities & CapBusMaster) { 1442 vp->full_bus_master_tx = 1; 1443 if (print_info) { 1444 pr_info(" Enabling bus-master transmits and %s receives.\n", 1445 (vp->info2 & 1) ? "early" : "whole-frame" ); 1446 } 1447 vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2; 1448 vp->bus_master = 0; /* AKPM: vortex only */ 1449 } 1450 1451 /* The 3c59x-specific entries in the device structure. */ 1452 if (vp->full_bus_master_tx) { 1453 dev->netdev_ops = &boomrang_netdev_ops; 1454 /* Actually, it still should work with iommu. */ 1455 if (card_idx < MAX_UNITS && 1456 ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) || 1457 hw_checksums[card_idx] == 1)) { 1458 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG; 1459 } 1460 } else 1461 dev->netdev_ops = &vortex_netdev_ops; 1462 1463 if (print_info) { 1464 pr_info("%s: scatter/gather %sabled. h/w checksums %sabled\n", 1465 print_name, 1466 (dev->features & NETIF_F_SG) ? "en":"dis", 1467 (dev->features & NETIF_F_IP_CSUM) ? "en":"dis"); 1468 } 1469 1470 dev->ethtool_ops = &vortex_ethtool_ops; 1471 dev->watchdog_timeo = (watchdog * HZ) / 1000; 1472 1473 if (pdev) { 1474 vp->pm_state_valid = 1; 1475 pci_save_state(pdev); 1476 acpi_set_WOL(dev); 1477 } 1478 retval = register_netdev(dev); 1479 if (retval == 0) 1480 return 0; 1481 1482 free_ring: 1483 pci_free_consistent(pdev, 1484 sizeof(struct boom_rx_desc) * RX_RING_SIZE 1485 + sizeof(struct boom_tx_desc) * TX_RING_SIZE, 1486 vp->rx_ring, 1487 vp->rx_ring_dma); 1488 free_device: 1489 free_netdev(dev); 1490 pr_err(PFX "vortex_probe1 fails. Returns %d\n", retval); 1491 out: 1492 return retval; 1493 } 1494 1495 static void 1496 issue_and_wait(struct net_device *dev, int cmd) 1497 { 1498 struct vortex_private *vp = netdev_priv(dev); 1499 void __iomem *ioaddr = vp->ioaddr; 1500 int i; 1501 1502 iowrite16(cmd, ioaddr + EL3_CMD); 1503 for (i = 0; i < 2000; i++) { 1504 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) 1505 return; 1506 } 1507 1508 /* OK, that didn't work. Do it the slow way. One second */ 1509 for (i = 0; i < 100000; i++) { 1510 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) { 1511 if (vortex_debug > 1) 1512 pr_info("%s: command 0x%04x took %d usecs\n", 1513 dev->name, cmd, i * 10); 1514 return; 1515 } 1516 udelay(10); 1517 } 1518 pr_err("%s: command 0x%04x did not complete! Status=0x%x\n", 1519 dev->name, cmd, ioread16(ioaddr + EL3_STATUS)); 1520 } 1521 1522 static void 1523 vortex_set_duplex(struct net_device *dev) 1524 { 1525 struct vortex_private *vp = netdev_priv(dev); 1526 1527 pr_info("%s: setting %s-duplex.\n", 1528 dev->name, (vp->full_duplex) ? "full" : "half"); 1529 1530 /* Set the full-duplex bit. */ 1531 window_write16(vp, 1532 ((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) | 1533 (vp->large_frames ? 0x40 : 0) | 1534 ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ? 1535 0x100 : 0), 1536 3, Wn3_MAC_Ctrl); 1537 } 1538 1539 static void vortex_check_media(struct net_device *dev, unsigned int init) 1540 { 1541 struct vortex_private *vp = netdev_priv(dev); 1542 unsigned int ok_to_print = 0; 1543 1544 if (vortex_debug > 3) 1545 ok_to_print = 1; 1546 1547 if (mii_check_media(&vp->mii, ok_to_print, init)) { 1548 vp->full_duplex = vp->mii.full_duplex; 1549 vortex_set_duplex(dev); 1550 } else if (init) { 1551 vortex_set_duplex(dev); 1552 } 1553 } 1554 1555 static int 1556 vortex_up(struct net_device *dev) 1557 { 1558 struct vortex_private *vp = netdev_priv(dev); 1559 void __iomem *ioaddr = vp->ioaddr; 1560 unsigned int config; 1561 int i, mii_reg1, mii_reg5, err = 0; 1562 1563 if (VORTEX_PCI(vp)) { 1564 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); /* Go active */ 1565 if (vp->pm_state_valid) 1566 pci_restore_state(VORTEX_PCI(vp)); 1567 err = pci_enable_device(VORTEX_PCI(vp)); 1568 if (err) { 1569 pr_warn("%s: Could not enable device\n", dev->name); 1570 goto err_out; 1571 } 1572 } 1573 1574 /* Before initializing select the active media port. */ 1575 config = window_read32(vp, 3, Wn3_Config); 1576 1577 if (vp->media_override != 7) { 1578 pr_info("%s: Media override to transceiver %d (%s).\n", 1579 dev->name, vp->media_override, 1580 media_tbl[vp->media_override].name); 1581 dev->if_port = vp->media_override; 1582 } else if (vp->autoselect) { 1583 if (vp->has_nway) { 1584 if (vortex_debug > 1) 1585 pr_info("%s: using NWAY device table, not %d\n", 1586 dev->name, dev->if_port); 1587 dev->if_port = XCVR_NWAY; 1588 } else { 1589 /* Find first available media type, starting with 100baseTx. */ 1590 dev->if_port = XCVR_100baseTx; 1591 while (! (vp->available_media & media_tbl[dev->if_port].mask)) 1592 dev->if_port = media_tbl[dev->if_port].next; 1593 if (vortex_debug > 1) 1594 pr_info("%s: first available media type: %s\n", 1595 dev->name, media_tbl[dev->if_port].name); 1596 } 1597 } else { 1598 dev->if_port = vp->default_media; 1599 if (vortex_debug > 1) 1600 pr_info("%s: using default media %s\n", 1601 dev->name, media_tbl[dev->if_port].name); 1602 } 1603 1604 setup_timer(&vp->timer, vortex_timer, (unsigned long)dev); 1605 mod_timer(&vp->timer, RUN_AT(media_tbl[dev->if_port].wait)); 1606 setup_timer(&vp->rx_oom_timer, rx_oom_timer, (unsigned long)dev); 1607 1608 if (vortex_debug > 1) 1609 pr_debug("%s: Initial media type %s.\n", 1610 dev->name, media_tbl[dev->if_port].name); 1611 1612 vp->full_duplex = vp->mii.force_media; 1613 config = BFINS(config, dev->if_port, 20, 4); 1614 if (vortex_debug > 6) 1615 pr_debug("vortex_up(): writing 0x%x to InternalConfig\n", config); 1616 window_write32(vp, config, 3, Wn3_Config); 1617 1618 if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) { 1619 mii_reg1 = mdio_read(dev, vp->phys[0], MII_BMSR); 1620 mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA); 1621 vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0); 1622 vp->mii.full_duplex = vp->full_duplex; 1623 1624 vortex_check_media(dev, 1); 1625 } 1626 else 1627 vortex_set_duplex(dev); 1628 1629 issue_and_wait(dev, TxReset); 1630 /* 1631 * Don't reset the PHY - that upsets autonegotiation during DHCP operations. 1632 */ 1633 issue_and_wait(dev, RxReset|0x04); 1634 1635 1636 iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD); 1637 1638 if (vortex_debug > 1) { 1639 pr_debug("%s: vortex_up() irq %d media status %4.4x.\n", 1640 dev->name, dev->irq, window_read16(vp, 4, Wn4_Media)); 1641 } 1642 1643 /* Set the station address and mask in window 2 each time opened. */ 1644 for (i = 0; i < 6; i++) 1645 window_write8(vp, dev->dev_addr[i], 2, i); 1646 for (; i < 12; i+=2) 1647 window_write16(vp, 0, 2, i); 1648 1649 if (vp->cb_fn_base) { 1650 unsigned short n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010; 1651 if (vp->drv_flags & INVERT_LED_PWR) 1652 n |= 0x10; 1653 if (vp->drv_flags & INVERT_MII_PWR) 1654 n |= 0x4000; 1655 window_write16(vp, n, 2, Wn2_ResetOptions); 1656 } 1657 1658 if (dev->if_port == XCVR_10base2) 1659 /* Start the thinnet transceiver. We should really wait 50ms...*/ 1660 iowrite16(StartCoax, ioaddr + EL3_CMD); 1661 if (dev->if_port != XCVR_NWAY) { 1662 window_write16(vp, 1663 (window_read16(vp, 4, Wn4_Media) & 1664 ~(Media_10TP|Media_SQE)) | 1665 media_tbl[dev->if_port].media_bits, 1666 4, Wn4_Media); 1667 } 1668 1669 /* Switch to the stats window, and clear all stats by reading. */ 1670 iowrite16(StatsDisable, ioaddr + EL3_CMD); 1671 for (i = 0; i < 10; i++) 1672 window_read8(vp, 6, i); 1673 window_read16(vp, 6, 10); 1674 window_read16(vp, 6, 12); 1675 /* New: On the Vortex we must also clear the BadSSD counter. */ 1676 window_read8(vp, 4, 12); 1677 /* ..and on the Boomerang we enable the extra statistics bits. */ 1678 window_write16(vp, 0x0040, 4, Wn4_NetDiag); 1679 1680 if (vp->full_bus_master_rx) { /* Boomerang bus master. */ 1681 vp->cur_rx = vp->dirty_rx = 0; 1682 /* Initialize the RxEarly register as recommended. */ 1683 iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD); 1684 iowrite32(0x0020, ioaddr + PktStatus); 1685 iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr); 1686 } 1687 if (vp->full_bus_master_tx) { /* Boomerang bus master Tx. */ 1688 vp->cur_tx = vp->dirty_tx = 0; 1689 if (vp->drv_flags & IS_BOOMERANG) 1690 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */ 1691 /* Clear the Rx, Tx rings. */ 1692 for (i = 0; i < RX_RING_SIZE; i++) /* AKPM: this is done in vortex_open, too */ 1693 vp->rx_ring[i].status = 0; 1694 for (i = 0; i < TX_RING_SIZE; i++) 1695 vp->tx_skbuff[i] = NULL; 1696 iowrite32(0, ioaddr + DownListPtr); 1697 } 1698 /* Set receiver mode: presumably accept b-case and phys addr only. */ 1699 set_rx_mode(dev); 1700 /* enable 802.1q tagged frames */ 1701 set_8021q_mode(dev, 1); 1702 iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */ 1703 1704 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */ 1705 iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */ 1706 /* Allow status bits to be seen. */ 1707 vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete| 1708 (vp->full_bus_master_tx ? DownComplete : TxAvailable) | 1709 (vp->full_bus_master_rx ? UpComplete : RxComplete) | 1710 (vp->bus_master ? DMADone : 0); 1711 vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable | 1712 (vp->full_bus_master_rx ? 0 : RxComplete) | 1713 StatsFull | HostError | TxComplete | IntReq 1714 | (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete; 1715 iowrite16(vp->status_enable, ioaddr + EL3_CMD); 1716 /* Ack all pending events, and set active indicator mask. */ 1717 iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq, 1718 ioaddr + EL3_CMD); 1719 iowrite16(vp->intr_enable, ioaddr + EL3_CMD); 1720 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */ 1721 iowrite32(0x8000, vp->cb_fn_base + 4); 1722 netif_start_queue (dev); 1723 netdev_reset_queue(dev); 1724 err_out: 1725 return err; 1726 } 1727 1728 static int 1729 vortex_open(struct net_device *dev) 1730 { 1731 struct vortex_private *vp = netdev_priv(dev); 1732 int i; 1733 int retval; 1734 1735 /* Use the now-standard shared IRQ implementation. */ 1736 if ((retval = request_irq(dev->irq, vp->full_bus_master_rx ? 1737 boomerang_interrupt : vortex_interrupt, IRQF_SHARED, dev->name, dev))) { 1738 pr_err("%s: Could not reserve IRQ %d\n", dev->name, dev->irq); 1739 goto err; 1740 } 1741 1742 if (vp->full_bus_master_rx) { /* Boomerang bus master. */ 1743 if (vortex_debug > 2) 1744 pr_debug("%s: Filling in the Rx ring.\n", dev->name); 1745 for (i = 0; i < RX_RING_SIZE; i++) { 1746 struct sk_buff *skb; 1747 vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1)); 1748 vp->rx_ring[i].status = 0; /* Clear complete bit. */ 1749 vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG); 1750 1751 skb = __netdev_alloc_skb(dev, PKT_BUF_SZ + NET_IP_ALIGN, 1752 GFP_KERNEL); 1753 vp->rx_skbuff[i] = skb; 1754 if (skb == NULL) 1755 break; /* Bad news! */ 1756 1757 skb_reserve(skb, NET_IP_ALIGN); /* Align IP on 16 byte boundaries */ 1758 vp->rx_ring[i].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE)); 1759 } 1760 if (i != RX_RING_SIZE) { 1761 pr_emerg("%s: no memory for rx ring\n", dev->name); 1762 retval = -ENOMEM; 1763 goto err_free_skb; 1764 } 1765 /* Wrap the ring. */ 1766 vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma); 1767 } 1768 1769 retval = vortex_up(dev); 1770 if (!retval) 1771 goto out; 1772 1773 err_free_skb: 1774 for (i = 0; i < RX_RING_SIZE; i++) { 1775 if (vp->rx_skbuff[i]) { 1776 dev_kfree_skb(vp->rx_skbuff[i]); 1777 vp->rx_skbuff[i] = NULL; 1778 } 1779 } 1780 free_irq(dev->irq, dev); 1781 err: 1782 if (vortex_debug > 1) 1783 pr_err("%s: vortex_open() fails: returning %d\n", dev->name, retval); 1784 out: 1785 return retval; 1786 } 1787 1788 static void 1789 vortex_timer(unsigned long data) 1790 { 1791 struct net_device *dev = (struct net_device *)data; 1792 struct vortex_private *vp = netdev_priv(dev); 1793 void __iomem *ioaddr = vp->ioaddr; 1794 int next_tick = 60*HZ; 1795 int ok = 0; 1796 int media_status; 1797 1798 if (vortex_debug > 2) { 1799 pr_debug("%s: Media selection timer tick happened, %s.\n", 1800 dev->name, media_tbl[dev->if_port].name); 1801 pr_debug("dev->watchdog_timeo=%d\n", dev->watchdog_timeo); 1802 } 1803 1804 media_status = window_read16(vp, 4, Wn4_Media); 1805 switch (dev->if_port) { 1806 case XCVR_10baseT: case XCVR_100baseTx: case XCVR_100baseFx: 1807 if (media_status & Media_LnkBeat) { 1808 netif_carrier_on(dev); 1809 ok = 1; 1810 if (vortex_debug > 1) 1811 pr_debug("%s: Media %s has link beat, %x.\n", 1812 dev->name, media_tbl[dev->if_port].name, media_status); 1813 } else { 1814 netif_carrier_off(dev); 1815 if (vortex_debug > 1) { 1816 pr_debug("%s: Media %s has no link beat, %x.\n", 1817 dev->name, media_tbl[dev->if_port].name, media_status); 1818 } 1819 } 1820 break; 1821 case XCVR_MII: case XCVR_NWAY: 1822 { 1823 ok = 1; 1824 vortex_check_media(dev, 0); 1825 } 1826 break; 1827 default: /* Other media types handled by Tx timeouts. */ 1828 if (vortex_debug > 1) 1829 pr_debug("%s: Media %s has no indication, %x.\n", 1830 dev->name, media_tbl[dev->if_port].name, media_status); 1831 ok = 1; 1832 } 1833 1834 if (dev->flags & IFF_SLAVE || !netif_carrier_ok(dev)) 1835 next_tick = 5*HZ; 1836 1837 if (vp->medialock) 1838 goto leave_media_alone; 1839 1840 if (!ok) { 1841 unsigned int config; 1842 1843 spin_lock_irq(&vp->lock); 1844 1845 do { 1846 dev->if_port = media_tbl[dev->if_port].next; 1847 } while ( ! (vp->available_media & media_tbl[dev->if_port].mask)); 1848 if (dev->if_port == XCVR_Default) { /* Go back to default. */ 1849 dev->if_port = vp->default_media; 1850 if (vortex_debug > 1) 1851 pr_debug("%s: Media selection failing, using default %s port.\n", 1852 dev->name, media_tbl[dev->if_port].name); 1853 } else { 1854 if (vortex_debug > 1) 1855 pr_debug("%s: Media selection failed, now trying %s port.\n", 1856 dev->name, media_tbl[dev->if_port].name); 1857 next_tick = media_tbl[dev->if_port].wait; 1858 } 1859 window_write16(vp, 1860 (media_status & ~(Media_10TP|Media_SQE)) | 1861 media_tbl[dev->if_port].media_bits, 1862 4, Wn4_Media); 1863 1864 config = window_read32(vp, 3, Wn3_Config); 1865 config = BFINS(config, dev->if_port, 20, 4); 1866 window_write32(vp, config, 3, Wn3_Config); 1867 1868 iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax, 1869 ioaddr + EL3_CMD); 1870 if (vortex_debug > 1) 1871 pr_debug("wrote 0x%08x to Wn3_Config\n", config); 1872 /* AKPM: FIXME: Should reset Rx & Tx here. P60 of 3c90xc.pdf */ 1873 1874 spin_unlock_irq(&vp->lock); 1875 } 1876 1877 leave_media_alone: 1878 if (vortex_debug > 2) 1879 pr_debug("%s: Media selection timer finished, %s.\n", 1880 dev->name, media_tbl[dev->if_port].name); 1881 1882 mod_timer(&vp->timer, RUN_AT(next_tick)); 1883 if (vp->deferred) 1884 iowrite16(FakeIntr, ioaddr + EL3_CMD); 1885 } 1886 1887 static void vortex_tx_timeout(struct net_device *dev) 1888 { 1889 struct vortex_private *vp = netdev_priv(dev); 1890 void __iomem *ioaddr = vp->ioaddr; 1891 1892 pr_err("%s: transmit timed out, tx_status %2.2x status %4.4x.\n", 1893 dev->name, ioread8(ioaddr + TxStatus), 1894 ioread16(ioaddr + EL3_STATUS)); 1895 pr_err(" diagnostics: net %04x media %04x dma %08x fifo %04x\n", 1896 window_read16(vp, 4, Wn4_NetDiag), 1897 window_read16(vp, 4, Wn4_Media), 1898 ioread32(ioaddr + PktStatus), 1899 window_read16(vp, 4, Wn4_FIFODiag)); 1900 /* Slight code bloat to be user friendly. */ 1901 if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88) 1902 pr_err("%s: Transmitter encountered 16 collisions --" 1903 " network cable problem?\n", dev->name); 1904 if (ioread16(ioaddr + EL3_STATUS) & IntLatch) { 1905 pr_err("%s: Interrupt posted but not delivered --" 1906 " IRQ blocked by another device?\n", dev->name); 1907 /* Bad idea here.. but we might as well handle a few events. */ 1908 { 1909 /* 1910 * Block interrupts because vortex_interrupt does a bare spin_lock() 1911 */ 1912 unsigned long flags; 1913 local_irq_save(flags); 1914 if (vp->full_bus_master_tx) 1915 boomerang_interrupt(dev->irq, dev); 1916 else 1917 vortex_interrupt(dev->irq, dev); 1918 local_irq_restore(flags); 1919 } 1920 } 1921 1922 if (vortex_debug > 0) 1923 dump_tx_ring(dev); 1924 1925 issue_and_wait(dev, TxReset); 1926 1927 dev->stats.tx_errors++; 1928 if (vp->full_bus_master_tx) { 1929 pr_debug("%s: Resetting the Tx ring pointer.\n", dev->name); 1930 if (vp->cur_tx - vp->dirty_tx > 0 && ioread32(ioaddr + DownListPtr) == 0) 1931 iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc), 1932 ioaddr + DownListPtr); 1933 if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE) { 1934 netif_wake_queue (dev); 1935 netdev_reset_queue (dev); 1936 } 1937 if (vp->drv_flags & IS_BOOMERANG) 1938 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); 1939 iowrite16(DownUnstall, ioaddr + EL3_CMD); 1940 } else { 1941 dev->stats.tx_dropped++; 1942 netif_wake_queue(dev); 1943 netdev_reset_queue(dev); 1944 } 1945 /* Issue Tx Enable */ 1946 iowrite16(TxEnable, ioaddr + EL3_CMD); 1947 netif_trans_update(dev); /* prevent tx timeout */ 1948 } 1949 1950 /* 1951 * Handle uncommon interrupt sources. This is a separate routine to minimize 1952 * the cache impact. 1953 */ 1954 static void 1955 vortex_error(struct net_device *dev, int status) 1956 { 1957 struct vortex_private *vp = netdev_priv(dev); 1958 void __iomem *ioaddr = vp->ioaddr; 1959 int do_tx_reset = 0, reset_mask = 0; 1960 unsigned char tx_status = 0; 1961 1962 if (vortex_debug > 2) { 1963 pr_err("%s: vortex_error(), status=0x%x\n", dev->name, status); 1964 } 1965 1966 if (status & TxComplete) { /* Really "TxError" for us. */ 1967 tx_status = ioread8(ioaddr + TxStatus); 1968 /* Presumably a tx-timeout. We must merely re-enable. */ 1969 if (vortex_debug > 2 || 1970 (tx_status != 0x88 && vortex_debug > 0)) { 1971 pr_err("%s: Transmit error, Tx status register %2.2x.\n", 1972 dev->name, tx_status); 1973 if (tx_status == 0x82) { 1974 pr_err("Probably a duplex mismatch. See " 1975 "Documentation/networking/vortex.txt\n"); 1976 } 1977 dump_tx_ring(dev); 1978 } 1979 if (tx_status & 0x14) dev->stats.tx_fifo_errors++; 1980 if (tx_status & 0x38) dev->stats.tx_aborted_errors++; 1981 if (tx_status & 0x08) vp->xstats.tx_max_collisions++; 1982 iowrite8(0, ioaddr + TxStatus); 1983 if (tx_status & 0x30) { /* txJabber or txUnderrun */ 1984 do_tx_reset = 1; 1985 } else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET)) { /* maxCollisions */ 1986 do_tx_reset = 1; 1987 reset_mask = 0x0108; /* Reset interface logic, but not download logic */ 1988 } else { /* Merely re-enable the transmitter. */ 1989 iowrite16(TxEnable, ioaddr + EL3_CMD); 1990 } 1991 } 1992 1993 if (status & RxEarly) /* Rx early is unused. */ 1994 iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD); 1995 1996 if (status & StatsFull) { /* Empty statistics. */ 1997 static int DoneDidThat; 1998 if (vortex_debug > 4) 1999 pr_debug("%s: Updating stats.\n", dev->name); 2000 update_stats(ioaddr, dev); 2001 /* HACK: Disable statistics as an interrupt source. */ 2002 /* This occurs when we have the wrong media type! */ 2003 if (DoneDidThat == 0 && 2004 ioread16(ioaddr + EL3_STATUS) & StatsFull) { 2005 pr_warn("%s: Updating statistics failed, disabling stats as an interrupt source\n", 2006 dev->name); 2007 iowrite16(SetIntrEnb | 2008 (window_read16(vp, 5, 10) & ~StatsFull), 2009 ioaddr + EL3_CMD); 2010 vp->intr_enable &= ~StatsFull; 2011 DoneDidThat++; 2012 } 2013 } 2014 if (status & IntReq) { /* Restore all interrupt sources. */ 2015 iowrite16(vp->status_enable, ioaddr + EL3_CMD); 2016 iowrite16(vp->intr_enable, ioaddr + EL3_CMD); 2017 } 2018 if (status & HostError) { 2019 u16 fifo_diag; 2020 fifo_diag = window_read16(vp, 4, Wn4_FIFODiag); 2021 pr_err("%s: Host error, FIFO diagnostic register %4.4x.\n", 2022 dev->name, fifo_diag); 2023 /* Adapter failure requires Tx/Rx reset and reinit. */ 2024 if (vp->full_bus_master_tx) { 2025 int bus_status = ioread32(ioaddr + PktStatus); 2026 /* 0x80000000 PCI master abort. */ 2027 /* 0x40000000 PCI target abort. */ 2028 if (vortex_debug) 2029 pr_err("%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status); 2030 2031 /* In this case, blow the card away */ 2032 /* Must not enter D3 or we can't legally issue the reset! */ 2033 vortex_down(dev, 0); 2034 issue_and_wait(dev, TotalReset | 0xff); 2035 vortex_up(dev); /* AKPM: bug. vortex_up() assumes that the rx ring is full. It may not be. */ 2036 } else if (fifo_diag & 0x0400) 2037 do_tx_reset = 1; 2038 if (fifo_diag & 0x3000) { 2039 /* Reset Rx fifo and upload logic */ 2040 issue_and_wait(dev, RxReset|0x07); 2041 /* Set the Rx filter to the current state. */ 2042 set_rx_mode(dev); 2043 /* enable 802.1q VLAN tagged frames */ 2044 set_8021q_mode(dev, 1); 2045 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */ 2046 iowrite16(AckIntr | HostError, ioaddr + EL3_CMD); 2047 } 2048 } 2049 2050 if (do_tx_reset) { 2051 issue_and_wait(dev, TxReset|reset_mask); 2052 iowrite16(TxEnable, ioaddr + EL3_CMD); 2053 if (!vp->full_bus_master_tx) 2054 netif_wake_queue(dev); 2055 } 2056 } 2057 2058 static netdev_tx_t 2059 vortex_start_xmit(struct sk_buff *skb, struct net_device *dev) 2060 { 2061 struct vortex_private *vp = netdev_priv(dev); 2062 void __iomem *ioaddr = vp->ioaddr; 2063 int skblen = skb->len; 2064 2065 /* Put out the doubleword header... */ 2066 iowrite32(skb->len, ioaddr + TX_FIFO); 2067 if (vp->bus_master) { 2068 /* Set the bus-master controller to transfer the packet. */ 2069 int len = (skb->len + 3) & ~3; 2070 vp->tx_skb_dma = pci_map_single(VORTEX_PCI(vp), skb->data, len, 2071 PCI_DMA_TODEVICE); 2072 spin_lock_irq(&vp->window_lock); 2073 window_set(vp, 7); 2074 iowrite32(vp->tx_skb_dma, ioaddr + Wn7_MasterAddr); 2075 iowrite16(len, ioaddr + Wn7_MasterLen); 2076 spin_unlock_irq(&vp->window_lock); 2077 vp->tx_skb = skb; 2078 skb_tx_timestamp(skb); 2079 iowrite16(StartDMADown, ioaddr + EL3_CMD); 2080 /* netif_wake_queue() will be called at the DMADone interrupt. */ 2081 } else { 2082 /* ... and the packet rounded to a doubleword. */ 2083 skb_tx_timestamp(skb); 2084 iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2); 2085 dev_consume_skb_any (skb); 2086 if (ioread16(ioaddr + TxFree) > 1536) { 2087 netif_start_queue (dev); /* AKPM: redundant? */ 2088 } else { 2089 /* Interrupt us when the FIFO has room for max-sized packet. */ 2090 netif_stop_queue(dev); 2091 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD); 2092 } 2093 } 2094 2095 netdev_sent_queue(dev, skblen); 2096 2097 /* Clear the Tx status stack. */ 2098 { 2099 int tx_status; 2100 int i = 32; 2101 2102 while (--i > 0 && (tx_status = ioread8(ioaddr + TxStatus)) > 0) { 2103 if (tx_status & 0x3C) { /* A Tx-disabling error occurred. */ 2104 if (vortex_debug > 2) 2105 pr_debug("%s: Tx error, status %2.2x.\n", 2106 dev->name, tx_status); 2107 if (tx_status & 0x04) dev->stats.tx_fifo_errors++; 2108 if (tx_status & 0x38) dev->stats.tx_aborted_errors++; 2109 if (tx_status & 0x30) { 2110 issue_and_wait(dev, TxReset); 2111 } 2112 iowrite16(TxEnable, ioaddr + EL3_CMD); 2113 } 2114 iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */ 2115 } 2116 } 2117 return NETDEV_TX_OK; 2118 } 2119 2120 static netdev_tx_t 2121 boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev) 2122 { 2123 struct vortex_private *vp = netdev_priv(dev); 2124 void __iomem *ioaddr = vp->ioaddr; 2125 /* Calculate the next Tx descriptor entry. */ 2126 int entry = vp->cur_tx % TX_RING_SIZE; 2127 int skblen = skb->len; 2128 struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE]; 2129 unsigned long flags; 2130 dma_addr_t dma_addr; 2131 2132 if (vortex_debug > 6) { 2133 pr_debug("boomerang_start_xmit()\n"); 2134 pr_debug("%s: Trying to send a packet, Tx index %d.\n", 2135 dev->name, vp->cur_tx); 2136 } 2137 2138 /* 2139 * We can't allow a recursion from our interrupt handler back into the 2140 * tx routine, as they take the same spin lock, and that causes 2141 * deadlock. Just return NETDEV_TX_BUSY and let the stack try again in 2142 * a bit 2143 */ 2144 if (vp->handling_irq) 2145 return NETDEV_TX_BUSY; 2146 2147 if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) { 2148 if (vortex_debug > 0) 2149 pr_warn("%s: BUG! Tx Ring full, refusing to send buffer\n", 2150 dev->name); 2151 netif_stop_queue(dev); 2152 return NETDEV_TX_BUSY; 2153 } 2154 2155 vp->tx_skbuff[entry] = skb; 2156 2157 vp->tx_ring[entry].next = 0; 2158 #if DO_ZEROCOPY 2159 if (skb->ip_summed != CHECKSUM_PARTIAL) 2160 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded); 2161 else 2162 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum); 2163 2164 if (!skb_shinfo(skb)->nr_frags) { 2165 dma_addr = pci_map_single(VORTEX_PCI(vp), skb->data, skb->len, 2166 PCI_DMA_TODEVICE); 2167 if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr)) 2168 goto out_dma_err; 2169 2170 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(dma_addr); 2171 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG); 2172 } else { 2173 int i; 2174 2175 dma_addr = pci_map_single(VORTEX_PCI(vp), skb->data, 2176 skb_headlen(skb), PCI_DMA_TODEVICE); 2177 if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr)) 2178 goto out_dma_err; 2179 2180 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(dma_addr); 2181 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb_headlen(skb)); 2182 2183 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2184 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2185 2186 dma_addr = skb_frag_dma_map(&VORTEX_PCI(vp)->dev, frag, 2187 0, 2188 frag->size, 2189 DMA_TO_DEVICE); 2190 if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr)) { 2191 for(i = i-1; i >= 0; i--) 2192 dma_unmap_page(&VORTEX_PCI(vp)->dev, 2193 le32_to_cpu(vp->tx_ring[entry].frag[i+1].addr), 2194 le32_to_cpu(vp->tx_ring[entry].frag[i+1].length), 2195 DMA_TO_DEVICE); 2196 2197 pci_unmap_single(VORTEX_PCI(vp), 2198 le32_to_cpu(vp->tx_ring[entry].frag[0].addr), 2199 le32_to_cpu(vp->tx_ring[entry].frag[0].length), 2200 PCI_DMA_TODEVICE); 2201 2202 goto out_dma_err; 2203 } 2204 2205 vp->tx_ring[entry].frag[i+1].addr = 2206 cpu_to_le32(dma_addr); 2207 2208 if (i == skb_shinfo(skb)->nr_frags-1) 2209 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag)|LAST_FRAG); 2210 else 2211 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag)); 2212 } 2213 } 2214 #else 2215 dma_addr = pci_map_single(VORTEX_PCI(vp), skb->data, skb->len, PCI_DMA_TODEVICE); 2216 if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr)) 2217 goto out_dma_err; 2218 vp->tx_ring[entry].addr = cpu_to_le32(dma_addr); 2219 vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG); 2220 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded); 2221 #endif 2222 2223 spin_lock_irqsave(&vp->lock, flags); 2224 /* Wait for the stall to complete. */ 2225 issue_and_wait(dev, DownStall); 2226 prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc)); 2227 if (ioread32(ioaddr + DownListPtr) == 0) { 2228 iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr); 2229 vp->queued_packet++; 2230 } 2231 2232 vp->cur_tx++; 2233 netdev_sent_queue(dev, skblen); 2234 2235 if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) { 2236 netif_stop_queue (dev); 2237 } else { /* Clear previous interrupt enable. */ 2238 #if defined(tx_interrupt_mitigation) 2239 /* Dubious. If in boomeang_interrupt "faster" cyclone ifdef 2240 * were selected, this would corrupt DN_COMPLETE. No? 2241 */ 2242 prev_entry->status &= cpu_to_le32(~TxIntrUploaded); 2243 #endif 2244 } 2245 skb_tx_timestamp(skb); 2246 iowrite16(DownUnstall, ioaddr + EL3_CMD); 2247 spin_unlock_irqrestore(&vp->lock, flags); 2248 out: 2249 return NETDEV_TX_OK; 2250 out_dma_err: 2251 dev_err(&VORTEX_PCI(vp)->dev, "Error mapping dma buffer\n"); 2252 goto out; 2253 } 2254 2255 /* The interrupt handler does all of the Rx thread work and cleans up 2256 after the Tx thread. */ 2257 2258 /* 2259 * This is the ISR for the vortex series chips. 2260 * full_bus_master_tx == 0 && full_bus_master_rx == 0 2261 */ 2262 2263 static irqreturn_t 2264 vortex_interrupt(int irq, void *dev_id) 2265 { 2266 struct net_device *dev = dev_id; 2267 struct vortex_private *vp = netdev_priv(dev); 2268 void __iomem *ioaddr; 2269 int status; 2270 int work_done = max_interrupt_work; 2271 int handled = 0; 2272 unsigned int bytes_compl = 0, pkts_compl = 0; 2273 2274 ioaddr = vp->ioaddr; 2275 spin_lock(&vp->lock); 2276 2277 status = ioread16(ioaddr + EL3_STATUS); 2278 2279 if (vortex_debug > 6) 2280 pr_debug("vortex_interrupt(). status=0x%4x\n", status); 2281 2282 if ((status & IntLatch) == 0) 2283 goto handler_exit; /* No interrupt: shared IRQs cause this */ 2284 handled = 1; 2285 2286 if (status & IntReq) { 2287 status |= vp->deferred; 2288 vp->deferred = 0; 2289 } 2290 2291 if (status == 0xffff) /* h/w no longer present (hotplug)? */ 2292 goto handler_exit; 2293 2294 if (vortex_debug > 4) 2295 pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n", 2296 dev->name, status, ioread8(ioaddr + Timer)); 2297 2298 spin_lock(&vp->window_lock); 2299 window_set(vp, 7); 2300 2301 do { 2302 if (vortex_debug > 5) 2303 pr_debug("%s: In interrupt loop, status %4.4x.\n", 2304 dev->name, status); 2305 if (status & RxComplete) 2306 vortex_rx(dev); 2307 2308 if (status & TxAvailable) { 2309 if (vortex_debug > 5) 2310 pr_debug(" TX room bit was handled.\n"); 2311 /* There's room in the FIFO for a full-sized packet. */ 2312 iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD); 2313 netif_wake_queue (dev); 2314 } 2315 2316 if (status & DMADone) { 2317 if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) { 2318 iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */ 2319 pci_unmap_single(VORTEX_PCI(vp), vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, PCI_DMA_TODEVICE); 2320 pkts_compl++; 2321 bytes_compl += vp->tx_skb->len; 2322 dev_kfree_skb_irq(vp->tx_skb); /* Release the transferred buffer */ 2323 if (ioread16(ioaddr + TxFree) > 1536) { 2324 /* 2325 * AKPM: FIXME: I don't think we need this. If the queue was stopped due to 2326 * insufficient FIFO room, the TxAvailable test will succeed and call 2327 * netif_wake_queue() 2328 */ 2329 netif_wake_queue(dev); 2330 } else { /* Interrupt when FIFO has room for max-sized packet. */ 2331 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD); 2332 netif_stop_queue(dev); 2333 } 2334 } 2335 } 2336 /* Check for all uncommon interrupts at once. */ 2337 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) { 2338 if (status == 0xffff) 2339 break; 2340 if (status & RxEarly) 2341 vortex_rx(dev); 2342 spin_unlock(&vp->window_lock); 2343 vortex_error(dev, status); 2344 spin_lock(&vp->window_lock); 2345 window_set(vp, 7); 2346 } 2347 2348 if (--work_done < 0) { 2349 pr_warn("%s: Too much work in interrupt, status %4.4x\n", 2350 dev->name, status); 2351 /* Disable all pending interrupts. */ 2352 do { 2353 vp->deferred |= status; 2354 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable), 2355 ioaddr + EL3_CMD); 2356 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD); 2357 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch); 2358 /* The timer will reenable interrupts. */ 2359 mod_timer(&vp->timer, jiffies + 1*HZ); 2360 break; 2361 } 2362 /* Acknowledge the IRQ. */ 2363 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD); 2364 } while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete)); 2365 2366 netdev_completed_queue(dev, pkts_compl, bytes_compl); 2367 spin_unlock(&vp->window_lock); 2368 2369 if (vortex_debug > 4) 2370 pr_debug("%s: exiting interrupt, status %4.4x.\n", 2371 dev->name, status); 2372 handler_exit: 2373 spin_unlock(&vp->lock); 2374 return IRQ_RETVAL(handled); 2375 } 2376 2377 /* 2378 * This is the ISR for the boomerang series chips. 2379 * full_bus_master_tx == 1 && full_bus_master_rx == 1 2380 */ 2381 2382 static irqreturn_t 2383 boomerang_interrupt(int irq, void *dev_id) 2384 { 2385 struct net_device *dev = dev_id; 2386 struct vortex_private *vp = netdev_priv(dev); 2387 void __iomem *ioaddr; 2388 int status; 2389 int work_done = max_interrupt_work; 2390 int handled = 0; 2391 unsigned int bytes_compl = 0, pkts_compl = 0; 2392 2393 ioaddr = vp->ioaddr; 2394 2395 2396 /* 2397 * It seems dopey to put the spinlock this early, but we could race against vortex_tx_timeout 2398 * and boomerang_start_xmit 2399 */ 2400 spin_lock(&vp->lock); 2401 vp->handling_irq = 1; 2402 2403 status = ioread16(ioaddr + EL3_STATUS); 2404 2405 if (vortex_debug > 6) 2406 pr_debug("boomerang_interrupt. status=0x%4x\n", status); 2407 2408 if ((status & IntLatch) == 0) 2409 goto handler_exit; /* No interrupt: shared IRQs can cause this */ 2410 handled = 1; 2411 2412 if (status == 0xffff) { /* h/w no longer present (hotplug)? */ 2413 if (vortex_debug > 1) 2414 pr_debug("boomerang_interrupt(1): status = 0xffff\n"); 2415 goto handler_exit; 2416 } 2417 2418 if (status & IntReq) { 2419 status |= vp->deferred; 2420 vp->deferred = 0; 2421 } 2422 2423 if (vortex_debug > 4) 2424 pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n", 2425 dev->name, status, ioread8(ioaddr + Timer)); 2426 do { 2427 if (vortex_debug > 5) 2428 pr_debug("%s: In interrupt loop, status %4.4x.\n", 2429 dev->name, status); 2430 if (status & UpComplete) { 2431 iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD); 2432 if (vortex_debug > 5) 2433 pr_debug("boomerang_interrupt->boomerang_rx\n"); 2434 boomerang_rx(dev); 2435 } 2436 2437 if (status & DownComplete) { 2438 unsigned int dirty_tx = vp->dirty_tx; 2439 2440 iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD); 2441 while (vp->cur_tx - dirty_tx > 0) { 2442 int entry = dirty_tx % TX_RING_SIZE; 2443 #if 1 /* AKPM: the latter is faster, but cyclone-only */ 2444 if (ioread32(ioaddr + DownListPtr) == 2445 vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc)) 2446 break; /* It still hasn't been processed. */ 2447 #else 2448 if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0) 2449 break; /* It still hasn't been processed. */ 2450 #endif 2451 2452 if (vp->tx_skbuff[entry]) { 2453 struct sk_buff *skb = vp->tx_skbuff[entry]; 2454 #if DO_ZEROCOPY 2455 int i; 2456 pci_unmap_single(VORTEX_PCI(vp), 2457 le32_to_cpu(vp->tx_ring[entry].frag[0].addr), 2458 le32_to_cpu(vp->tx_ring[entry].frag[0].length)&0xFFF, 2459 PCI_DMA_TODEVICE); 2460 2461 for (i=1; i<=skb_shinfo(skb)->nr_frags; i++) 2462 pci_unmap_page(VORTEX_PCI(vp), 2463 le32_to_cpu(vp->tx_ring[entry].frag[i].addr), 2464 le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF, 2465 PCI_DMA_TODEVICE); 2466 #else 2467 pci_unmap_single(VORTEX_PCI(vp), 2468 le32_to_cpu(vp->tx_ring[entry].addr), skb->len, PCI_DMA_TODEVICE); 2469 #endif 2470 pkts_compl++; 2471 bytes_compl += skb->len; 2472 dev_kfree_skb_irq(skb); 2473 vp->tx_skbuff[entry] = NULL; 2474 } else { 2475 pr_debug("boomerang_interrupt: no skb!\n"); 2476 } 2477 /* dev->stats.tx_packets++; Counted below. */ 2478 dirty_tx++; 2479 } 2480 vp->dirty_tx = dirty_tx; 2481 if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) { 2482 if (vortex_debug > 6) 2483 pr_debug("boomerang_interrupt: wake queue\n"); 2484 netif_wake_queue (dev); 2485 } 2486 } 2487 2488 /* Check for all uncommon interrupts at once. */ 2489 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) 2490 vortex_error(dev, status); 2491 2492 if (--work_done < 0) { 2493 pr_warn("%s: Too much work in interrupt, status %4.4x\n", 2494 dev->name, status); 2495 /* Disable all pending interrupts. */ 2496 do { 2497 vp->deferred |= status; 2498 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable), 2499 ioaddr + EL3_CMD); 2500 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD); 2501 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch); 2502 /* The timer will reenable interrupts. */ 2503 mod_timer(&vp->timer, jiffies + 1*HZ); 2504 break; 2505 } 2506 /* Acknowledge the IRQ. */ 2507 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD); 2508 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */ 2509 iowrite32(0x8000, vp->cb_fn_base + 4); 2510 2511 } while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch); 2512 netdev_completed_queue(dev, pkts_compl, bytes_compl); 2513 2514 if (vortex_debug > 4) 2515 pr_debug("%s: exiting interrupt, status %4.4x.\n", 2516 dev->name, status); 2517 handler_exit: 2518 vp->handling_irq = 0; 2519 spin_unlock(&vp->lock); 2520 return IRQ_RETVAL(handled); 2521 } 2522 2523 static int vortex_rx(struct net_device *dev) 2524 { 2525 struct vortex_private *vp = netdev_priv(dev); 2526 void __iomem *ioaddr = vp->ioaddr; 2527 int i; 2528 short rx_status; 2529 2530 if (vortex_debug > 5) 2531 pr_debug("vortex_rx(): status %4.4x, rx_status %4.4x.\n", 2532 ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus)); 2533 while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) { 2534 if (rx_status & 0x4000) { /* Error, update stats. */ 2535 unsigned char rx_error = ioread8(ioaddr + RxErrors); 2536 if (vortex_debug > 2) 2537 pr_debug(" Rx error: status %2.2x.\n", rx_error); 2538 dev->stats.rx_errors++; 2539 if (rx_error & 0x01) dev->stats.rx_over_errors++; 2540 if (rx_error & 0x02) dev->stats.rx_length_errors++; 2541 if (rx_error & 0x04) dev->stats.rx_frame_errors++; 2542 if (rx_error & 0x08) dev->stats.rx_crc_errors++; 2543 if (rx_error & 0x10) dev->stats.rx_length_errors++; 2544 } else { 2545 /* The packet length: up to 4.5K!. */ 2546 int pkt_len = rx_status & 0x1fff; 2547 struct sk_buff *skb; 2548 2549 skb = netdev_alloc_skb(dev, pkt_len + 5); 2550 if (vortex_debug > 4) 2551 pr_debug("Receiving packet size %d status %4.4x.\n", 2552 pkt_len, rx_status); 2553 if (skb != NULL) { 2554 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */ 2555 /* 'skb_put()' points to the start of sk_buff data area. */ 2556 if (vp->bus_master && 2557 ! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) { 2558 dma_addr_t dma = pci_map_single(VORTEX_PCI(vp), skb_put(skb, pkt_len), 2559 pkt_len, PCI_DMA_FROMDEVICE); 2560 iowrite32(dma, ioaddr + Wn7_MasterAddr); 2561 iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen); 2562 iowrite16(StartDMAUp, ioaddr + EL3_CMD); 2563 while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000) 2564 ; 2565 pci_unmap_single(VORTEX_PCI(vp), dma, pkt_len, PCI_DMA_FROMDEVICE); 2566 } else { 2567 ioread32_rep(ioaddr + RX_FIFO, 2568 skb_put(skb, pkt_len), 2569 (pkt_len + 3) >> 2); 2570 } 2571 iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */ 2572 skb->protocol = eth_type_trans(skb, dev); 2573 netif_rx(skb); 2574 dev->stats.rx_packets++; 2575 /* Wait a limited time to go to next packet. */ 2576 for (i = 200; i >= 0; i--) 2577 if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) 2578 break; 2579 continue; 2580 } else if (vortex_debug > 0) 2581 pr_notice("%s: No memory to allocate a sk_buff of size %d.\n", 2582 dev->name, pkt_len); 2583 dev->stats.rx_dropped++; 2584 } 2585 issue_and_wait(dev, RxDiscard); 2586 } 2587 2588 return 0; 2589 } 2590 2591 static int 2592 boomerang_rx(struct net_device *dev) 2593 { 2594 struct vortex_private *vp = netdev_priv(dev); 2595 int entry = vp->cur_rx % RX_RING_SIZE; 2596 void __iomem *ioaddr = vp->ioaddr; 2597 int rx_status; 2598 int rx_work_limit = vp->dirty_rx + RX_RING_SIZE - vp->cur_rx; 2599 2600 if (vortex_debug > 5) 2601 pr_debug("boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS)); 2602 2603 while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){ 2604 if (--rx_work_limit < 0) 2605 break; 2606 if (rx_status & RxDError) { /* Error, update stats. */ 2607 unsigned char rx_error = rx_status >> 16; 2608 if (vortex_debug > 2) 2609 pr_debug(" Rx error: status %2.2x.\n", rx_error); 2610 dev->stats.rx_errors++; 2611 if (rx_error & 0x01) dev->stats.rx_over_errors++; 2612 if (rx_error & 0x02) dev->stats.rx_length_errors++; 2613 if (rx_error & 0x04) dev->stats.rx_frame_errors++; 2614 if (rx_error & 0x08) dev->stats.rx_crc_errors++; 2615 if (rx_error & 0x10) dev->stats.rx_length_errors++; 2616 } else { 2617 /* The packet length: up to 4.5K!. */ 2618 int pkt_len = rx_status & 0x1fff; 2619 struct sk_buff *skb; 2620 dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr); 2621 2622 if (vortex_debug > 4) 2623 pr_debug("Receiving packet size %d status %4.4x.\n", 2624 pkt_len, rx_status); 2625 2626 /* Check if the packet is long enough to just accept without 2627 copying to a properly sized skbuff. */ 2628 if (pkt_len < rx_copybreak && 2629 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) { 2630 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */ 2631 pci_dma_sync_single_for_cpu(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE); 2632 /* 'skb_put()' points to the start of sk_buff data area. */ 2633 memcpy(skb_put(skb, pkt_len), 2634 vp->rx_skbuff[entry]->data, 2635 pkt_len); 2636 pci_dma_sync_single_for_device(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE); 2637 vp->rx_copy++; 2638 } else { 2639 /* Pass up the skbuff already on the Rx ring. */ 2640 skb = vp->rx_skbuff[entry]; 2641 vp->rx_skbuff[entry] = NULL; 2642 skb_put(skb, pkt_len); 2643 pci_unmap_single(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE); 2644 vp->rx_nocopy++; 2645 } 2646 skb->protocol = eth_type_trans(skb, dev); 2647 { /* Use hardware checksum info. */ 2648 int csum_bits = rx_status & 0xee000000; 2649 if (csum_bits && 2650 (csum_bits == (IPChksumValid | TCPChksumValid) || 2651 csum_bits == (IPChksumValid | UDPChksumValid))) { 2652 skb->ip_summed = CHECKSUM_UNNECESSARY; 2653 vp->rx_csumhits++; 2654 } 2655 } 2656 netif_rx(skb); 2657 dev->stats.rx_packets++; 2658 } 2659 entry = (++vp->cur_rx) % RX_RING_SIZE; 2660 } 2661 /* Refill the Rx ring buffers. */ 2662 for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) { 2663 struct sk_buff *skb; 2664 entry = vp->dirty_rx % RX_RING_SIZE; 2665 if (vp->rx_skbuff[entry] == NULL) { 2666 skb = netdev_alloc_skb_ip_align(dev, PKT_BUF_SZ); 2667 if (skb == NULL) { 2668 static unsigned long last_jif; 2669 if (time_after(jiffies, last_jif + 10 * HZ)) { 2670 pr_warn("%s: memory shortage\n", 2671 dev->name); 2672 last_jif = jiffies; 2673 } 2674 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE) 2675 mod_timer(&vp->rx_oom_timer, RUN_AT(HZ * 1)); 2676 break; /* Bad news! */ 2677 } 2678 2679 vp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE)); 2680 vp->rx_skbuff[entry] = skb; 2681 } 2682 vp->rx_ring[entry].status = 0; /* Clear complete bit. */ 2683 iowrite16(UpUnstall, ioaddr + EL3_CMD); 2684 } 2685 return 0; 2686 } 2687 2688 /* 2689 * If we've hit a total OOM refilling the Rx ring we poll once a second 2690 * for some memory. Otherwise there is no way to restart the rx process. 2691 */ 2692 static void 2693 rx_oom_timer(unsigned long arg) 2694 { 2695 struct net_device *dev = (struct net_device *)arg; 2696 struct vortex_private *vp = netdev_priv(dev); 2697 2698 spin_lock_irq(&vp->lock); 2699 if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE) /* This test is redundant, but makes me feel good */ 2700 boomerang_rx(dev); 2701 if (vortex_debug > 1) { 2702 pr_debug("%s: rx_oom_timer %s\n", dev->name, 2703 ((vp->cur_rx - vp->dirty_rx) != RX_RING_SIZE) ? "succeeded" : "retrying"); 2704 } 2705 spin_unlock_irq(&vp->lock); 2706 } 2707 2708 static void 2709 vortex_down(struct net_device *dev, int final_down) 2710 { 2711 struct vortex_private *vp = netdev_priv(dev); 2712 void __iomem *ioaddr = vp->ioaddr; 2713 2714 netdev_reset_queue(dev); 2715 netif_stop_queue(dev); 2716 2717 del_timer_sync(&vp->rx_oom_timer); 2718 del_timer_sync(&vp->timer); 2719 2720 /* Turn off statistics ASAP. We update dev->stats below. */ 2721 iowrite16(StatsDisable, ioaddr + EL3_CMD); 2722 2723 /* Disable the receiver and transmitter. */ 2724 iowrite16(RxDisable, ioaddr + EL3_CMD); 2725 iowrite16(TxDisable, ioaddr + EL3_CMD); 2726 2727 /* Disable receiving 802.1q tagged frames */ 2728 set_8021q_mode(dev, 0); 2729 2730 if (dev->if_port == XCVR_10base2) 2731 /* Turn off thinnet power. Green! */ 2732 iowrite16(StopCoax, ioaddr + EL3_CMD); 2733 2734 iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD); 2735 2736 update_stats(ioaddr, dev); 2737 if (vp->full_bus_master_rx) 2738 iowrite32(0, ioaddr + UpListPtr); 2739 if (vp->full_bus_master_tx) 2740 iowrite32(0, ioaddr + DownListPtr); 2741 2742 if (final_down && VORTEX_PCI(vp)) { 2743 vp->pm_state_valid = 1; 2744 pci_save_state(VORTEX_PCI(vp)); 2745 acpi_set_WOL(dev); 2746 } 2747 } 2748 2749 static int 2750 vortex_close(struct net_device *dev) 2751 { 2752 struct vortex_private *vp = netdev_priv(dev); 2753 void __iomem *ioaddr = vp->ioaddr; 2754 int i; 2755 2756 if (netif_device_present(dev)) 2757 vortex_down(dev, 1); 2758 2759 if (vortex_debug > 1) { 2760 pr_debug("%s: vortex_close() status %4.4x, Tx status %2.2x.\n", 2761 dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus)); 2762 pr_debug("%s: vortex close stats: rx_nocopy %d rx_copy %d" 2763 " tx_queued %d Rx pre-checksummed %d.\n", 2764 dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits); 2765 } 2766 2767 #if DO_ZEROCOPY 2768 if (vp->rx_csumhits && 2769 (vp->drv_flags & HAS_HWCKSM) == 0 && 2770 (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) { 2771 pr_warn("%s supports hardware checksums, and we're not using them!\n", 2772 dev->name); 2773 } 2774 #endif 2775 2776 free_irq(dev->irq, dev); 2777 2778 if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */ 2779 for (i = 0; i < RX_RING_SIZE; i++) 2780 if (vp->rx_skbuff[i]) { 2781 pci_unmap_single( VORTEX_PCI(vp), le32_to_cpu(vp->rx_ring[i].addr), 2782 PKT_BUF_SZ, PCI_DMA_FROMDEVICE); 2783 dev_kfree_skb(vp->rx_skbuff[i]); 2784 vp->rx_skbuff[i] = NULL; 2785 } 2786 } 2787 if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */ 2788 for (i = 0; i < TX_RING_SIZE; i++) { 2789 if (vp->tx_skbuff[i]) { 2790 struct sk_buff *skb = vp->tx_skbuff[i]; 2791 #if DO_ZEROCOPY 2792 int k; 2793 2794 for (k=0; k<=skb_shinfo(skb)->nr_frags; k++) 2795 pci_unmap_single(VORTEX_PCI(vp), 2796 le32_to_cpu(vp->tx_ring[i].frag[k].addr), 2797 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF, 2798 PCI_DMA_TODEVICE); 2799 #else 2800 pci_unmap_single(VORTEX_PCI(vp), le32_to_cpu(vp->tx_ring[i].addr), skb->len, PCI_DMA_TODEVICE); 2801 #endif 2802 dev_kfree_skb(skb); 2803 vp->tx_skbuff[i] = NULL; 2804 } 2805 } 2806 } 2807 2808 return 0; 2809 } 2810 2811 static void 2812 dump_tx_ring(struct net_device *dev) 2813 { 2814 if (vortex_debug > 0) { 2815 struct vortex_private *vp = netdev_priv(dev); 2816 void __iomem *ioaddr = vp->ioaddr; 2817 2818 if (vp->full_bus_master_tx) { 2819 int i; 2820 int stalled = ioread32(ioaddr + PktStatus) & 0x04; /* Possible racy. But it's only debug stuff */ 2821 2822 pr_err(" Flags; bus-master %d, dirty %d(%d) current %d(%d)\n", 2823 vp->full_bus_master_tx, 2824 vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE, 2825 vp->cur_tx, vp->cur_tx % TX_RING_SIZE); 2826 pr_err(" Transmit list %8.8x vs. %p.\n", 2827 ioread32(ioaddr + DownListPtr), 2828 &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]); 2829 issue_and_wait(dev, DownStall); 2830 for (i = 0; i < TX_RING_SIZE; i++) { 2831 unsigned int length; 2832 2833 #if DO_ZEROCOPY 2834 length = le32_to_cpu(vp->tx_ring[i].frag[0].length); 2835 #else 2836 length = le32_to_cpu(vp->tx_ring[i].length); 2837 #endif 2838 pr_err(" %d: @%p length %8.8x status %8.8x\n", 2839 i, &vp->tx_ring[i], length, 2840 le32_to_cpu(vp->tx_ring[i].status)); 2841 } 2842 if (!stalled) 2843 iowrite16(DownUnstall, ioaddr + EL3_CMD); 2844 } 2845 } 2846 } 2847 2848 static struct net_device_stats *vortex_get_stats(struct net_device *dev) 2849 { 2850 struct vortex_private *vp = netdev_priv(dev); 2851 void __iomem *ioaddr = vp->ioaddr; 2852 unsigned long flags; 2853 2854 if (netif_device_present(dev)) { /* AKPM: Used to be netif_running */ 2855 spin_lock_irqsave (&vp->lock, flags); 2856 update_stats(ioaddr, dev); 2857 spin_unlock_irqrestore (&vp->lock, flags); 2858 } 2859 return &dev->stats; 2860 } 2861 2862 /* Update statistics. 2863 Unlike with the EL3 we need not worry about interrupts changing 2864 the window setting from underneath us, but we must still guard 2865 against a race condition with a StatsUpdate interrupt updating the 2866 table. This is done by checking that the ASM (!) code generated uses 2867 atomic updates with '+='. 2868 */ 2869 static void update_stats(void __iomem *ioaddr, struct net_device *dev) 2870 { 2871 struct vortex_private *vp = netdev_priv(dev); 2872 2873 /* Unlike the 3c5x9 we need not turn off stats updates while reading. */ 2874 /* Switch to the stats window, and read everything. */ 2875 dev->stats.tx_carrier_errors += window_read8(vp, 6, 0); 2876 dev->stats.tx_heartbeat_errors += window_read8(vp, 6, 1); 2877 dev->stats.tx_window_errors += window_read8(vp, 6, 4); 2878 dev->stats.rx_fifo_errors += window_read8(vp, 6, 5); 2879 dev->stats.tx_packets += window_read8(vp, 6, 6); 2880 dev->stats.tx_packets += (window_read8(vp, 6, 9) & 2881 0x30) << 4; 2882 /* Rx packets */ window_read8(vp, 6, 7); /* Must read to clear */ 2883 /* Don't bother with register 9, an extension of registers 6&7. 2884 If we do use the 6&7 values the atomic update assumption above 2885 is invalid. */ 2886 dev->stats.rx_bytes += window_read16(vp, 6, 10); 2887 dev->stats.tx_bytes += window_read16(vp, 6, 12); 2888 /* Extra stats for get_ethtool_stats() */ 2889 vp->xstats.tx_multiple_collisions += window_read8(vp, 6, 2); 2890 vp->xstats.tx_single_collisions += window_read8(vp, 6, 3); 2891 vp->xstats.tx_deferred += window_read8(vp, 6, 8); 2892 vp->xstats.rx_bad_ssd += window_read8(vp, 4, 12); 2893 2894 dev->stats.collisions = vp->xstats.tx_multiple_collisions 2895 + vp->xstats.tx_single_collisions 2896 + vp->xstats.tx_max_collisions; 2897 2898 { 2899 u8 up = window_read8(vp, 4, 13); 2900 dev->stats.rx_bytes += (up & 0x0f) << 16; 2901 dev->stats.tx_bytes += (up & 0xf0) << 12; 2902 } 2903 } 2904 2905 static int vortex_nway_reset(struct net_device *dev) 2906 { 2907 struct vortex_private *vp = netdev_priv(dev); 2908 2909 return mii_nway_restart(&vp->mii); 2910 } 2911 2912 static int vortex_get_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2913 { 2914 struct vortex_private *vp = netdev_priv(dev); 2915 2916 return mii_ethtool_gset(&vp->mii, cmd); 2917 } 2918 2919 static int vortex_set_settings(struct net_device *dev, struct ethtool_cmd *cmd) 2920 { 2921 struct vortex_private *vp = netdev_priv(dev); 2922 2923 return mii_ethtool_sset(&vp->mii, cmd); 2924 } 2925 2926 static u32 vortex_get_msglevel(struct net_device *dev) 2927 { 2928 return vortex_debug; 2929 } 2930 2931 static void vortex_set_msglevel(struct net_device *dev, u32 dbg) 2932 { 2933 vortex_debug = dbg; 2934 } 2935 2936 static int vortex_get_sset_count(struct net_device *dev, int sset) 2937 { 2938 switch (sset) { 2939 case ETH_SS_STATS: 2940 return VORTEX_NUM_STATS; 2941 default: 2942 return -EOPNOTSUPP; 2943 } 2944 } 2945 2946 static void vortex_get_ethtool_stats(struct net_device *dev, 2947 struct ethtool_stats *stats, u64 *data) 2948 { 2949 struct vortex_private *vp = netdev_priv(dev); 2950 void __iomem *ioaddr = vp->ioaddr; 2951 unsigned long flags; 2952 2953 spin_lock_irqsave(&vp->lock, flags); 2954 update_stats(ioaddr, dev); 2955 spin_unlock_irqrestore(&vp->lock, flags); 2956 2957 data[0] = vp->xstats.tx_deferred; 2958 data[1] = vp->xstats.tx_max_collisions; 2959 data[2] = vp->xstats.tx_multiple_collisions; 2960 data[3] = vp->xstats.tx_single_collisions; 2961 data[4] = vp->xstats.rx_bad_ssd; 2962 } 2963 2964 2965 static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data) 2966 { 2967 switch (stringset) { 2968 case ETH_SS_STATS: 2969 memcpy(data, ðtool_stats_keys, sizeof(ethtool_stats_keys)); 2970 break; 2971 default: 2972 WARN_ON(1); 2973 break; 2974 } 2975 } 2976 2977 static void vortex_get_drvinfo(struct net_device *dev, 2978 struct ethtool_drvinfo *info) 2979 { 2980 struct vortex_private *vp = netdev_priv(dev); 2981 2982 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 2983 if (VORTEX_PCI(vp)) { 2984 strlcpy(info->bus_info, pci_name(VORTEX_PCI(vp)), 2985 sizeof(info->bus_info)); 2986 } else { 2987 if (VORTEX_EISA(vp)) 2988 strlcpy(info->bus_info, dev_name(vp->gendev), 2989 sizeof(info->bus_info)); 2990 else 2991 snprintf(info->bus_info, sizeof(info->bus_info), 2992 "EISA 0x%lx %d", dev->base_addr, dev->irq); 2993 } 2994 } 2995 2996 static void vortex_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2997 { 2998 struct vortex_private *vp = netdev_priv(dev); 2999 3000 if (!VORTEX_PCI(vp)) 3001 return; 3002 3003 wol->supported = WAKE_MAGIC; 3004 3005 wol->wolopts = 0; 3006 if (vp->enable_wol) 3007 wol->wolopts |= WAKE_MAGIC; 3008 } 3009 3010 static int vortex_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 3011 { 3012 struct vortex_private *vp = netdev_priv(dev); 3013 3014 if (!VORTEX_PCI(vp)) 3015 return -EOPNOTSUPP; 3016 3017 if (wol->wolopts & ~WAKE_MAGIC) 3018 return -EINVAL; 3019 3020 if (wol->wolopts & WAKE_MAGIC) 3021 vp->enable_wol = 1; 3022 else 3023 vp->enable_wol = 0; 3024 acpi_set_WOL(dev); 3025 3026 return 0; 3027 } 3028 3029 static const struct ethtool_ops vortex_ethtool_ops = { 3030 .get_drvinfo = vortex_get_drvinfo, 3031 .get_strings = vortex_get_strings, 3032 .get_msglevel = vortex_get_msglevel, 3033 .set_msglevel = vortex_set_msglevel, 3034 .get_ethtool_stats = vortex_get_ethtool_stats, 3035 .get_sset_count = vortex_get_sset_count, 3036 .get_settings = vortex_get_settings, 3037 .set_settings = vortex_set_settings, 3038 .get_link = ethtool_op_get_link, 3039 .nway_reset = vortex_nway_reset, 3040 .get_wol = vortex_get_wol, 3041 .set_wol = vortex_set_wol, 3042 .get_ts_info = ethtool_op_get_ts_info, 3043 }; 3044 3045 #ifdef CONFIG_PCI 3046 /* 3047 * Must power the device up to do MDIO operations 3048 */ 3049 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 3050 { 3051 int err; 3052 struct vortex_private *vp = netdev_priv(dev); 3053 pci_power_t state = 0; 3054 3055 if(VORTEX_PCI(vp)) 3056 state = VORTEX_PCI(vp)->current_state; 3057 3058 /* The kernel core really should have pci_get_power_state() */ 3059 3060 if(state != 0) 3061 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); 3062 err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL); 3063 if(state != 0) 3064 pci_set_power_state(VORTEX_PCI(vp), state); 3065 3066 return err; 3067 } 3068 #endif 3069 3070 3071 /* Pre-Cyclone chips have no documented multicast filter, so the only 3072 multicast setting is to receive all multicast frames. At least 3073 the chip has a very clean way to set the mode, unlike many others. */ 3074 static void set_rx_mode(struct net_device *dev) 3075 { 3076 struct vortex_private *vp = netdev_priv(dev); 3077 void __iomem *ioaddr = vp->ioaddr; 3078 int new_mode; 3079 3080 if (dev->flags & IFF_PROMISC) { 3081 if (vortex_debug > 3) 3082 pr_notice("%s: Setting promiscuous mode.\n", dev->name); 3083 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm; 3084 } else if (!netdev_mc_empty(dev) || dev->flags & IFF_ALLMULTI) { 3085 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast; 3086 } else 3087 new_mode = SetRxFilter | RxStation | RxBroadcast; 3088 3089 iowrite16(new_mode, ioaddr + EL3_CMD); 3090 } 3091 3092 #if IS_ENABLED(CONFIG_VLAN_8021Q) 3093 /* Setup the card so that it can receive frames with an 802.1q VLAN tag. 3094 Note that this must be done after each RxReset due to some backwards 3095 compatibility logic in the Cyclone and Tornado ASICs */ 3096 3097 /* The Ethernet Type used for 802.1q tagged frames */ 3098 #define VLAN_ETHER_TYPE 0x8100 3099 3100 static void set_8021q_mode(struct net_device *dev, int enable) 3101 { 3102 struct vortex_private *vp = netdev_priv(dev); 3103 int mac_ctrl; 3104 3105 if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) { 3106 /* cyclone and tornado chipsets can recognize 802.1q 3107 * tagged frames and treat them correctly */ 3108 3109 int max_pkt_size = dev->mtu+14; /* MTU+Ethernet header */ 3110 if (enable) 3111 max_pkt_size += 4; /* 802.1Q VLAN tag */ 3112 3113 window_write16(vp, max_pkt_size, 3, Wn3_MaxPktSize); 3114 3115 /* set VlanEtherType to let the hardware checksumming 3116 treat tagged frames correctly */ 3117 window_write16(vp, VLAN_ETHER_TYPE, 7, Wn7_VlanEtherType); 3118 } else { 3119 /* on older cards we have to enable large frames */ 3120 3121 vp->large_frames = dev->mtu > 1500 || enable; 3122 3123 mac_ctrl = window_read16(vp, 3, Wn3_MAC_Ctrl); 3124 if (vp->large_frames) 3125 mac_ctrl |= 0x40; 3126 else 3127 mac_ctrl &= ~0x40; 3128 window_write16(vp, mac_ctrl, 3, Wn3_MAC_Ctrl); 3129 } 3130 } 3131 #else 3132 3133 static void set_8021q_mode(struct net_device *dev, int enable) 3134 { 3135 } 3136 3137 3138 #endif 3139 3140 /* MII transceiver control section. 3141 Read and write the MII registers using software-generated serial 3142 MDIO protocol. See the MII specifications or DP83840A data sheet 3143 for details. */ 3144 3145 /* The maximum data clock rate is 2.5 Mhz. The minimum timing is usually 3146 met by back-to-back PCI I/O cycles, but we insert a delay to avoid 3147 "overclocking" issues. */ 3148 static void mdio_delay(struct vortex_private *vp) 3149 { 3150 window_read32(vp, 4, Wn4_PhysicalMgmt); 3151 } 3152 3153 #define MDIO_SHIFT_CLK 0x01 3154 #define MDIO_DIR_WRITE 0x04 3155 #define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE) 3156 #define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE) 3157 #define MDIO_DATA_READ 0x02 3158 #define MDIO_ENB_IN 0x00 3159 3160 /* Generate the preamble required for initial synchronization and 3161 a few older transceivers. */ 3162 static void mdio_sync(struct vortex_private *vp, int bits) 3163 { 3164 /* Establish sync by sending at least 32 logic ones. */ 3165 while (-- bits >= 0) { 3166 window_write16(vp, MDIO_DATA_WRITE1, 4, Wn4_PhysicalMgmt); 3167 mdio_delay(vp); 3168 window_write16(vp, MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK, 3169 4, Wn4_PhysicalMgmt); 3170 mdio_delay(vp); 3171 } 3172 } 3173 3174 static int mdio_read(struct net_device *dev, int phy_id, int location) 3175 { 3176 int i; 3177 struct vortex_private *vp = netdev_priv(dev); 3178 int read_cmd = (0xf6 << 10) | (phy_id << 5) | location; 3179 unsigned int retval = 0; 3180 3181 spin_lock_bh(&vp->mii_lock); 3182 3183 if (mii_preamble_required) 3184 mdio_sync(vp, 32); 3185 3186 /* Shift the read command bits out. */ 3187 for (i = 14; i >= 0; i--) { 3188 int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0; 3189 window_write16(vp, dataval, 4, Wn4_PhysicalMgmt); 3190 mdio_delay(vp); 3191 window_write16(vp, dataval | MDIO_SHIFT_CLK, 3192 4, Wn4_PhysicalMgmt); 3193 mdio_delay(vp); 3194 } 3195 /* Read the two transition, 16 data, and wire-idle bits. */ 3196 for (i = 19; i > 0; i--) { 3197 window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt); 3198 mdio_delay(vp); 3199 retval = (retval << 1) | 3200 ((window_read16(vp, 4, Wn4_PhysicalMgmt) & 3201 MDIO_DATA_READ) ? 1 : 0); 3202 window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK, 3203 4, Wn4_PhysicalMgmt); 3204 mdio_delay(vp); 3205 } 3206 3207 spin_unlock_bh(&vp->mii_lock); 3208 3209 return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff; 3210 } 3211 3212 static void mdio_write(struct net_device *dev, int phy_id, int location, int value) 3213 { 3214 struct vortex_private *vp = netdev_priv(dev); 3215 int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value; 3216 int i; 3217 3218 spin_lock_bh(&vp->mii_lock); 3219 3220 if (mii_preamble_required) 3221 mdio_sync(vp, 32); 3222 3223 /* Shift the command bits out. */ 3224 for (i = 31; i >= 0; i--) { 3225 int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0; 3226 window_write16(vp, dataval, 4, Wn4_PhysicalMgmt); 3227 mdio_delay(vp); 3228 window_write16(vp, dataval | MDIO_SHIFT_CLK, 3229 4, Wn4_PhysicalMgmt); 3230 mdio_delay(vp); 3231 } 3232 /* Leave the interface idle. */ 3233 for (i = 1; i >= 0; i--) { 3234 window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt); 3235 mdio_delay(vp); 3236 window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK, 3237 4, Wn4_PhysicalMgmt); 3238 mdio_delay(vp); 3239 } 3240 3241 spin_unlock_bh(&vp->mii_lock); 3242 } 3243 3244 /* ACPI: Advanced Configuration and Power Interface. */ 3245 /* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */ 3246 static void acpi_set_WOL(struct net_device *dev) 3247 { 3248 struct vortex_private *vp = netdev_priv(dev); 3249 void __iomem *ioaddr = vp->ioaddr; 3250 3251 device_set_wakeup_enable(vp->gendev, vp->enable_wol); 3252 3253 if (vp->enable_wol) { 3254 /* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */ 3255 window_write16(vp, 2, 7, 0x0c); 3256 /* The RxFilter must accept the WOL frames. */ 3257 iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD); 3258 iowrite16(RxEnable, ioaddr + EL3_CMD); 3259 3260 if (pci_enable_wake(VORTEX_PCI(vp), PCI_D3hot, 1)) { 3261 pr_info("%s: WOL not supported.\n", pci_name(VORTEX_PCI(vp))); 3262 3263 vp->enable_wol = 0; 3264 return; 3265 } 3266 3267 if (VORTEX_PCI(vp)->current_state < PCI_D3hot) 3268 return; 3269 3270 /* Change the power state to D3; RxEnable doesn't take effect. */ 3271 pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot); 3272 } 3273 } 3274 3275 3276 static void vortex_remove_one(struct pci_dev *pdev) 3277 { 3278 struct net_device *dev = pci_get_drvdata(pdev); 3279 struct vortex_private *vp; 3280 3281 if (!dev) { 3282 pr_err("vortex_remove_one called for Compaq device!\n"); 3283 BUG(); 3284 } 3285 3286 vp = netdev_priv(dev); 3287 3288 if (vp->cb_fn_base) 3289 pci_iounmap(pdev, vp->cb_fn_base); 3290 3291 unregister_netdev(dev); 3292 3293 pci_set_power_state(pdev, PCI_D0); /* Go active */ 3294 if (vp->pm_state_valid) 3295 pci_restore_state(pdev); 3296 pci_disable_device(pdev); 3297 3298 /* Should really use issue_and_wait() here */ 3299 iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14), 3300 vp->ioaddr + EL3_CMD); 3301 3302 pci_iounmap(pdev, vp->ioaddr); 3303 3304 pci_free_consistent(pdev, 3305 sizeof(struct boom_rx_desc) * RX_RING_SIZE 3306 + sizeof(struct boom_tx_desc) * TX_RING_SIZE, 3307 vp->rx_ring, 3308 vp->rx_ring_dma); 3309 3310 pci_release_regions(pdev); 3311 3312 free_netdev(dev); 3313 } 3314 3315 3316 static struct pci_driver vortex_driver = { 3317 .name = "3c59x", 3318 .probe = vortex_init_one, 3319 .remove = vortex_remove_one, 3320 .id_table = vortex_pci_tbl, 3321 .driver.pm = VORTEX_PM_OPS, 3322 }; 3323 3324 3325 static int vortex_have_pci; 3326 static int vortex_have_eisa; 3327 3328 3329 static int __init vortex_init(void) 3330 { 3331 int pci_rc, eisa_rc; 3332 3333 pci_rc = pci_register_driver(&vortex_driver); 3334 eisa_rc = vortex_eisa_init(); 3335 3336 if (pci_rc == 0) 3337 vortex_have_pci = 1; 3338 if (eisa_rc > 0) 3339 vortex_have_eisa = 1; 3340 3341 return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV; 3342 } 3343 3344 3345 static void __exit vortex_eisa_cleanup(void) 3346 { 3347 void __iomem *ioaddr; 3348 3349 #ifdef CONFIG_EISA 3350 /* Take care of the EISA devices */ 3351 eisa_driver_unregister(&vortex_eisa_driver); 3352 #endif 3353 3354 if (compaq_net_device) { 3355 ioaddr = ioport_map(compaq_net_device->base_addr, 3356 VORTEX_TOTAL_SIZE); 3357 3358 unregister_netdev(compaq_net_device); 3359 iowrite16(TotalReset, ioaddr + EL3_CMD); 3360 release_region(compaq_net_device->base_addr, 3361 VORTEX_TOTAL_SIZE); 3362 3363 free_netdev(compaq_net_device); 3364 } 3365 } 3366 3367 3368 static void __exit vortex_cleanup(void) 3369 { 3370 if (vortex_have_pci) 3371 pci_unregister_driver(&vortex_driver); 3372 if (vortex_have_eisa) 3373 vortex_eisa_cleanup(); 3374 } 3375 3376 3377 module_init(vortex_init); 3378 module_exit(vortex_cleanup); 3379