xref: /openbmc/linux/drivers/net/ethernet/3com/3c59x.c (revision 6c870213d6f3a25981c10728f46294a3bed1703f)
1 /* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */
2 /*
3 	Written 1996-1999 by Donald Becker.
4 
5 	This software may be used and distributed according to the terms
6 	of the GNU General Public License, incorporated herein by reference.
7 
8 	This driver is for the 3Com "Vortex" and "Boomerang" series ethercards.
9 	Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597
10 	and the EtherLink XL 3c900 and 3c905 cards.
11 
12 	Problem reports and questions should be directed to
13 	vortex@scyld.com
14 
15 	The author may be reached as becker@scyld.com, or C/O
16 	Scyld Computing Corporation
17 	410 Severn Ave., Suite 210
18 	Annapolis MD 21403
19 
20 */
21 
22 /*
23  * FIXME: This driver _could_ support MTU changing, but doesn't.  See Don's hamachi.c implementation
24  * as well as other drivers
25  *
26  * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k
27  * due to dead code elimination.  There will be some performance benefits from this due to
28  * elimination of all the tests and reduced cache footprint.
29  */
30 
31 
32 #define DRV_NAME	"3c59x"
33 
34 
35 
36 /* A few values that may be tweaked. */
37 /* Keep the ring sizes a power of two for efficiency. */
38 #define TX_RING_SIZE	16
39 #define RX_RING_SIZE	32
40 #define PKT_BUF_SZ		1536			/* Size of each temporary Rx buffer.*/
41 
42 /* "Knobs" that adjust features and parameters. */
43 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
44    Setting to > 1512 effectively disables this feature. */
45 #ifndef __arm__
46 static int rx_copybreak = 200;
47 #else
48 /* ARM systems perform better by disregarding the bus-master
49    transfer capability of these cards. -- rmk */
50 static int rx_copybreak = 1513;
51 #endif
52 /* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
53 static const int mtu = 1500;
54 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
55 static int max_interrupt_work = 32;
56 /* Tx timeout interval (millisecs) */
57 static int watchdog = 5000;
58 
59 /* Allow aggregation of Tx interrupts.  Saves CPU load at the cost
60  * of possible Tx stalls if the system is blocking interrupts
61  * somewhere else.  Undefine this to disable.
62  */
63 #define tx_interrupt_mitigation 1
64 
65 /* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */
66 #define vortex_debug debug
67 #ifdef VORTEX_DEBUG
68 static int vortex_debug = VORTEX_DEBUG;
69 #else
70 static int vortex_debug = 1;
71 #endif
72 
73 #include <linux/module.h>
74 #include <linux/kernel.h>
75 #include <linux/string.h>
76 #include <linux/timer.h>
77 #include <linux/errno.h>
78 #include <linux/in.h>
79 #include <linux/ioport.h>
80 #include <linux/interrupt.h>
81 #include <linux/pci.h>
82 #include <linux/mii.h>
83 #include <linux/init.h>
84 #include <linux/netdevice.h>
85 #include <linux/etherdevice.h>
86 #include <linux/skbuff.h>
87 #include <linux/ethtool.h>
88 #include <linux/highmem.h>
89 #include <linux/eisa.h>
90 #include <linux/bitops.h>
91 #include <linux/jiffies.h>
92 #include <linux/gfp.h>
93 #include <asm/irq.h>			/* For nr_irqs only. */
94 #include <asm/io.h>
95 #include <asm/uaccess.h>
96 
97 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package.
98    This is only in the support-all-kernels source code. */
99 
100 #define RUN_AT(x) (jiffies + (x))
101 
102 #include <linux/delay.h>
103 
104 
105 static const char version[] =
106 	DRV_NAME ": Donald Becker and others.\n";
107 
108 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
109 MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver ");
110 MODULE_LICENSE("GPL");
111 
112 
113 /* Operational parameter that usually are not changed. */
114 
115 /* The Vortex size is twice that of the original EtherLinkIII series: the
116    runtime register window, window 1, is now always mapped in.
117    The Boomerang size is twice as large as the Vortex -- it has additional
118    bus master control registers. */
119 #define VORTEX_TOTAL_SIZE 0x20
120 #define BOOMERANG_TOTAL_SIZE 0x40
121 
122 /* Set iff a MII transceiver on any interface requires mdio preamble.
123    This only set with the original DP83840 on older 3c905 boards, so the extra
124    code size of a per-interface flag is not worthwhile. */
125 static char mii_preamble_required;
126 
127 #define PFX DRV_NAME ": "
128 
129 
130 
131 /*
132 				Theory of Operation
133 
134 I. Board Compatibility
135 
136 This device driver is designed for the 3Com FastEtherLink and FastEtherLink
137 XL, 3Com's PCI to 10/100baseT adapters.  It also works with the 10Mbs
138 versions of the FastEtherLink cards.  The supported product IDs are
139   3c590, 3c592, 3c595, 3c597, 3c900, 3c905
140 
141 The related ISA 3c515 is supported with a separate driver, 3c515.c, included
142 with the kernel source or available from
143     cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html
144 
145 II. Board-specific settings
146 
147 PCI bus devices are configured by the system at boot time, so no jumpers
148 need to be set on the board.  The system BIOS should be set to assign the
149 PCI INTA signal to an otherwise unused system IRQ line.
150 
151 The EEPROM settings for media type and forced-full-duplex are observed.
152 The EEPROM media type should be left at the default "autoselect" unless using
153 10base2 or AUI connections which cannot be reliably detected.
154 
155 III. Driver operation
156 
157 The 3c59x series use an interface that's very similar to the previous 3c5x9
158 series.  The primary interface is two programmed-I/O FIFOs, with an
159 alternate single-contiguous-region bus-master transfer (see next).
160 
161 The 3c900 "Boomerang" series uses a full-bus-master interface with separate
162 lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
163 DEC Tulip and Intel Speedo3.  The first chip version retains a compatible
164 programmed-I/O interface that has been removed in 'B' and subsequent board
165 revisions.
166 
167 One extension that is advertised in a very large font is that the adapters
168 are capable of being bus masters.  On the Vortex chip this capability was
169 only for a single contiguous region making it far less useful than the full
170 bus master capability.  There is a significant performance impact of taking
171 an extra interrupt or polling for the completion of each transfer, as well
172 as difficulty sharing the single transfer engine between the transmit and
173 receive threads.  Using DMA transfers is a win only with large blocks or
174 with the flawed versions of the Intel Orion motherboard PCI controller.
175 
176 The Boomerang chip's full-bus-master interface is useful, and has the
177 currently-unused advantages over other similar chips that queued transmit
178 packets may be reordered and receive buffer groups are associated with a
179 single frame.
180 
181 With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme.
182 Rather than a fixed intermediate receive buffer, this scheme allocates
183 full-sized skbuffs as receive buffers.  The value RX_COPYBREAK is used as
184 the copying breakpoint: it is chosen to trade-off the memory wasted by
185 passing the full-sized skbuff to the queue layer for all frames vs. the
186 copying cost of copying a frame to a correctly-sized skbuff.
187 
188 IIIC. Synchronization
189 The driver runs as two independent, single-threaded flows of control.  One
190 is the send-packet routine, which enforces single-threaded use by the
191 dev->tbusy flag.  The other thread is the interrupt handler, which is single
192 threaded by the hardware and other software.
193 
194 IV. Notes
195 
196 Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development
197 3c590, 3c595, and 3c900 boards.
198 The name "Vortex" is the internal 3Com project name for the PCI ASIC, and
199 the EISA version is called "Demon".  According to Terry these names come
200 from rides at the local amusement park.
201 
202 The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes!
203 This driver only supports ethernet packets because of the skbuff allocation
204 limit of 4K.
205 */
206 
207 /* This table drives the PCI probe routines.  It's mostly boilerplate in all
208    of the drivers, and will likely be provided by some future kernel.
209 */
210 enum pci_flags_bit {
211 	PCI_USES_MASTER=4,
212 };
213 
214 enum {	IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8,
215 	EEPROM_8BIT=0x10,	/* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */
216 	HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100,
217 	INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800,
218 	EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000,
219 	EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, };
220 
221 enum vortex_chips {
222 	CH_3C590 = 0,
223 	CH_3C592,
224 	CH_3C597,
225 	CH_3C595_1,
226 	CH_3C595_2,
227 
228 	CH_3C595_3,
229 	CH_3C900_1,
230 	CH_3C900_2,
231 	CH_3C900_3,
232 	CH_3C900_4,
233 
234 	CH_3C900_5,
235 	CH_3C900B_FL,
236 	CH_3C905_1,
237 	CH_3C905_2,
238 	CH_3C905B_TX,
239 	CH_3C905B_1,
240 
241 	CH_3C905B_2,
242 	CH_3C905B_FX,
243 	CH_3C905C,
244 	CH_3C9202,
245 	CH_3C980,
246 	CH_3C9805,
247 
248 	CH_3CSOHO100_TX,
249 	CH_3C555,
250 	CH_3C556,
251 	CH_3C556B,
252 	CH_3C575,
253 
254 	CH_3C575_1,
255 	CH_3CCFE575,
256 	CH_3CCFE575CT,
257 	CH_3CCFE656,
258 	CH_3CCFEM656,
259 
260 	CH_3CCFEM656_1,
261 	CH_3C450,
262 	CH_3C920,
263 	CH_3C982A,
264 	CH_3C982B,
265 
266 	CH_905BT4,
267 	CH_920B_EMB_WNM,
268 };
269 
270 
271 /* note: this array directly indexed by above enums, and MUST
272  * be kept in sync with both the enums above, and the PCI device
273  * table below
274  */
275 static struct vortex_chip_info {
276 	const char *name;
277 	int flags;
278 	int drv_flags;
279 	int io_size;
280 } vortex_info_tbl[] = {
281 	{"3c590 Vortex 10Mbps",
282 	 PCI_USES_MASTER, IS_VORTEX, 32, },
283 	{"3c592 EISA 10Mbps Demon/Vortex",					/* AKPM: from Don's 3c59x_cb.c 0.49H */
284 	 PCI_USES_MASTER, IS_VORTEX, 32, },
285 	{"3c597 EISA Fast Demon/Vortex",					/* AKPM: from Don's 3c59x_cb.c 0.49H */
286 	 PCI_USES_MASTER, IS_VORTEX, 32, },
287 	{"3c595 Vortex 100baseTx",
288 	 PCI_USES_MASTER, IS_VORTEX, 32, },
289 	{"3c595 Vortex 100baseT4",
290 	 PCI_USES_MASTER, IS_VORTEX, 32, },
291 
292 	{"3c595 Vortex 100base-MII",
293 	 PCI_USES_MASTER, IS_VORTEX, 32, },
294 	{"3c900 Boomerang 10baseT",
295 	 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
296 	{"3c900 Boomerang 10Mbps Combo",
297 	 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
298 	{"3c900 Cyclone 10Mbps TPO",						/* AKPM: from Don's 0.99M */
299 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
300 	{"3c900 Cyclone 10Mbps Combo",
301 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
302 
303 	{"3c900 Cyclone 10Mbps TPC",						/* AKPM: from Don's 0.99M */
304 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
305 	{"3c900B-FL Cyclone 10base-FL",
306 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
307 	{"3c905 Boomerang 100baseTx",
308 	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
309 	{"3c905 Boomerang 100baseT4",
310 	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
311 	{"3C905B-TX Fast Etherlink XL PCI",
312 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
313 	{"3c905B Cyclone 100baseTx",
314 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
315 
316 	{"3c905B Cyclone 10/100/BNC",
317 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
318 	{"3c905B-FX Cyclone 100baseFx",
319 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
320 	{"3c905C Tornado",
321 	PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
322 	{"3c920B-EMB-WNM (ATI Radeon 9100 IGP)",
323 	 PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, },
324 	{"3c980 Cyclone",
325 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
326 
327 	{"3c980C Python-T",
328 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
329 	{"3cSOHO100-TX Hurricane",
330 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
331 	{"3c555 Laptop Hurricane",
332 	 PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, },
333 	{"3c556 Laptop Tornado",
334 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR|
335 									HAS_HWCKSM, 128, },
336 	{"3c556B Laptop Hurricane",
337 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR|
338 	                                WNO_XCVR_PWR|HAS_HWCKSM, 128, },
339 
340 	{"3c575 [Megahertz] 10/100 LAN 	CardBus",
341 	PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
342 	{"3c575 Boomerang CardBus",
343 	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
344 	{"3CCFE575BT Cyclone CardBus",
345 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|
346 									INVERT_LED_PWR|HAS_HWCKSM, 128, },
347 	{"3CCFE575CT Tornado CardBus",
348 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
349 									MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
350 	{"3CCFE656 Cyclone CardBus",
351 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
352 									INVERT_LED_PWR|HAS_HWCKSM, 128, },
353 
354 	{"3CCFEM656B Cyclone+Winmodem CardBus",
355 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
356 									INVERT_LED_PWR|HAS_HWCKSM, 128, },
357 	{"3CXFEM656C Tornado+Winmodem CardBus",			/* From pcmcia-cs-3.1.5 */
358 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
359 									MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
360 	{"3c450 HomePNA Tornado",						/* AKPM: from Don's 0.99Q */
361 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
362 	{"3c920 Tornado",
363 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
364 	{"3c982 Hydra Dual Port A",
365 	 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
366 
367 	{"3c982 Hydra Dual Port B",
368 	 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
369 	{"3c905B-T4",
370 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
371 	{"3c920B-EMB-WNM Tornado",
372 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
373 
374 	{NULL,}, /* NULL terminated list. */
375 };
376 
377 
378 static DEFINE_PCI_DEVICE_TABLE(vortex_pci_tbl) = {
379 	{ 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 },
380 	{ 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 },
381 	{ 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 },
382 	{ 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 },
383 	{ 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 },
384 
385 	{ 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 },
386 	{ 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 },
387 	{ 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 },
388 	{ 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 },
389 	{ 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 },
390 
391 	{ 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 },
392 	{ 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL },
393 	{ 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 },
394 	{ 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 },
395 	{ 0x10B7, 0x9054, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_TX },
396 	{ 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 },
397 
398 	{ 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 },
399 	{ 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX },
400 	{ 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C },
401 	{ 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 },
402 	{ 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 },
403 	{ 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 },
404 
405 	{ 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX },
406 	{ 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 },
407 	{ 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 },
408 	{ 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B },
409 	{ 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 },
410 
411 	{ 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 },
412 	{ 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 },
413 	{ 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT },
414 	{ 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 },
415 	{ 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 },
416 
417 	{ 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 },
418 	{ 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 },
419 	{ 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 },
420 	{ 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A },
421 	{ 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B },
422 
423 	{ 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 },
424 	{ 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM },
425 
426 	{0,}						/* 0 terminated list. */
427 };
428 MODULE_DEVICE_TABLE(pci, vortex_pci_tbl);
429 
430 
431 /* Operational definitions.
432    These are not used by other compilation units and thus are not
433    exported in a ".h" file.
434 
435    First the windows.  There are eight register windows, with the command
436    and status registers available in each.
437    */
438 #define EL3_CMD 0x0e
439 #define EL3_STATUS 0x0e
440 
441 /* The top five bits written to EL3_CMD are a command, the lower
442    11 bits are the parameter, if applicable.
443    Note that 11 parameters bits was fine for ethernet, but the new chip
444    can handle FDDI length frames (~4500 octets) and now parameters count
445    32-bit 'Dwords' rather than octets. */
446 
447 enum vortex_cmd {
448 	TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11,
449 	RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11,
450 	UpStall = 6<<11, UpUnstall = (6<<11)+1,
451 	DownStall = (6<<11)+2, DownUnstall = (6<<11)+3,
452 	RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11,
453 	FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11,
454 	SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11,
455 	SetTxThreshold = 18<<11, SetTxStart = 19<<11,
456 	StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11,
457 	StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,};
458 
459 /* The SetRxFilter command accepts the following classes: */
460 enum RxFilter {
461 	RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 };
462 
463 /* Bits in the general status register. */
464 enum vortex_status {
465 	IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004,
466 	TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
467 	IntReq = 0x0040, StatsFull = 0x0080,
468 	DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10,
469 	DMAInProgress = 1<<11,			/* DMA controller is still busy.*/
470 	CmdInProgress = 1<<12,			/* EL3_CMD is still busy.*/
471 };
472 
473 /* Register window 1 offsets, the window used in normal operation.
474    On the Vortex this window is always mapped at offsets 0x10-0x1f. */
475 enum Window1 {
476 	TX_FIFO = 0x10,  RX_FIFO = 0x10,  RxErrors = 0x14,
477 	RxStatus = 0x18,  Timer=0x1A, TxStatus = 0x1B,
478 	TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
479 };
480 enum Window0 {
481 	Wn0EepromCmd = 10,		/* Window 0: EEPROM command register. */
482 	Wn0EepromData = 12,		/* Window 0: EEPROM results register. */
483 	IntrStatus=0x0E,		/* Valid in all windows. */
484 };
485 enum Win0_EEPROM_bits {
486 	EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
487 	EEPROM_EWENB = 0x30,		/* Enable erasing/writing for 10 msec. */
488 	EEPROM_EWDIS = 0x00,		/* Disable EWENB before 10 msec timeout. */
489 };
490 /* EEPROM locations. */
491 enum eeprom_offset {
492 	PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3,
493 	EtherLink3ID=7, IFXcvrIO=8, IRQLine=9,
494 	NodeAddr01=10, NodeAddr23=11, NodeAddr45=12,
495 	DriverTune=13, Checksum=15};
496 
497 enum Window2 {			/* Window 2. */
498 	Wn2_ResetOptions=12,
499 };
500 enum Window3 {			/* Window 3: MAC/config bits. */
501 	Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8,
502 };
503 
504 #define BFEXT(value, offset, bitcount)  \
505     ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1))
506 
507 #define BFINS(lhs, rhs, offset, bitcount)					\
508 	(((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) |	\
509 	(((rhs) & ((1 << (bitcount)) - 1)) << (offset)))
510 
511 #define RAM_SIZE(v)		BFEXT(v, 0, 3)
512 #define RAM_WIDTH(v)	BFEXT(v, 3, 1)
513 #define RAM_SPEED(v)	BFEXT(v, 4, 2)
514 #define ROM_SIZE(v)		BFEXT(v, 6, 2)
515 #define RAM_SPLIT(v)	BFEXT(v, 16, 2)
516 #define XCVR(v)			BFEXT(v, 20, 4)
517 #define AUTOSELECT(v)	BFEXT(v, 24, 1)
518 
519 enum Window4 {		/* Window 4: Xcvr/media bits. */
520 	Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10,
521 };
522 enum Win4_Media_bits {
523 	Media_SQE = 0x0008,		/* Enable SQE error counting for AUI. */
524 	Media_10TP = 0x00C0,	/* Enable link beat and jabber for 10baseT. */
525 	Media_Lnk = 0x0080,		/* Enable just link beat for 100TX/100FX. */
526 	Media_LnkBeat = 0x0800,
527 };
528 enum Window7 {					/* Window 7: Bus Master control. */
529 	Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6,
530 	Wn7_MasterStatus = 12,
531 };
532 /* Boomerang bus master control registers. */
533 enum MasterCtrl {
534 	PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c,
535 	TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38,
536 };
537 
538 /* The Rx and Tx descriptor lists.
539    Caution Alpha hackers: these types are 32 bits!  Note also the 8 byte
540    alignment contraint on tx_ring[] and rx_ring[]. */
541 #define LAST_FRAG 	0x80000000			/* Last Addr/Len pair in descriptor. */
542 #define DN_COMPLETE	0x00010000			/* This packet has been downloaded */
543 struct boom_rx_desc {
544 	__le32 next;					/* Last entry points to 0.   */
545 	__le32 status;
546 	__le32 addr;					/* Up to 63 addr/len pairs possible. */
547 	__le32 length;					/* Set LAST_FRAG to indicate last pair. */
548 };
549 /* Values for the Rx status entry. */
550 enum rx_desc_status {
551 	RxDComplete=0x00008000, RxDError=0x4000,
552 	/* See boomerang_rx() for actual error bits */
553 	IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27,
554 	IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31,
555 };
556 
557 #ifdef MAX_SKB_FRAGS
558 #define DO_ZEROCOPY 1
559 #else
560 #define DO_ZEROCOPY 0
561 #endif
562 
563 struct boom_tx_desc {
564 	__le32 next;					/* Last entry points to 0.   */
565 	__le32 status;					/* bits 0:12 length, others see below.  */
566 #if DO_ZEROCOPY
567 	struct {
568 		__le32 addr;
569 		__le32 length;
570 	} frag[1+MAX_SKB_FRAGS];
571 #else
572 		__le32 addr;
573 		__le32 length;
574 #endif
575 };
576 
577 /* Values for the Tx status entry. */
578 enum tx_desc_status {
579 	CRCDisable=0x2000, TxDComplete=0x8000,
580 	AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000,
581 	TxIntrUploaded=0x80000000,		/* IRQ when in FIFO, but maybe not sent. */
582 };
583 
584 /* Chip features we care about in vp->capabilities, read from the EEPROM. */
585 enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 };
586 
587 struct vortex_extra_stats {
588 	unsigned long tx_deferred;
589 	unsigned long tx_max_collisions;
590 	unsigned long tx_multiple_collisions;
591 	unsigned long tx_single_collisions;
592 	unsigned long rx_bad_ssd;
593 };
594 
595 struct vortex_private {
596 	/* The Rx and Tx rings should be quad-word-aligned. */
597 	struct boom_rx_desc* rx_ring;
598 	struct boom_tx_desc* tx_ring;
599 	dma_addr_t rx_ring_dma;
600 	dma_addr_t tx_ring_dma;
601 	/* The addresses of transmit- and receive-in-place skbuffs. */
602 	struct sk_buff* rx_skbuff[RX_RING_SIZE];
603 	struct sk_buff* tx_skbuff[TX_RING_SIZE];
604 	unsigned int cur_rx, cur_tx;		/* The next free ring entry */
605 	unsigned int dirty_rx, dirty_tx;	/* The ring entries to be free()ed. */
606 	struct vortex_extra_stats xstats;	/* NIC-specific extra stats */
607 	struct sk_buff *tx_skb;				/* Packet being eaten by bus master ctrl.  */
608 	dma_addr_t tx_skb_dma;				/* Allocated DMA address for bus master ctrl DMA.   */
609 
610 	/* PCI configuration space information. */
611 	struct device *gendev;
612 	void __iomem *ioaddr;			/* IO address space */
613 	void __iomem *cb_fn_base;		/* CardBus function status addr space. */
614 
615 	/* Some values here only for performance evaluation and path-coverage */
616 	int rx_nocopy, rx_copy, queued_packet, rx_csumhits;
617 	int card_idx;
618 
619 	/* The remainder are related to chip state, mostly media selection. */
620 	struct timer_list timer;			/* Media selection timer. */
621 	struct timer_list rx_oom_timer;		/* Rx skb allocation retry timer */
622 	int options;						/* User-settable misc. driver options. */
623 	unsigned int media_override:4, 		/* Passed-in media type. */
624 		default_media:4,				/* Read from the EEPROM/Wn3_Config. */
625 		full_duplex:1, autoselect:1,
626 		bus_master:1,					/* Vortex can only do a fragment bus-m. */
627 		full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang  */
628 		flow_ctrl:1,					/* Use 802.3x flow control (PAUSE only) */
629 		partner_flow_ctrl:1,			/* Partner supports flow control */
630 		has_nway:1,
631 		enable_wol:1,					/* Wake-on-LAN is enabled */
632 		pm_state_valid:1,				/* pci_dev->saved_config_space has sane contents */
633 		open:1,
634 		medialock:1,
635 		large_frames:1,			/* accept large frames */
636 		handling_irq:1;			/* private in_irq indicator */
637 	/* {get|set}_wol operations are already serialized by rtnl.
638 	 * no additional locking is required for the enable_wol and acpi_set_WOL()
639 	 */
640 	int drv_flags;
641 	u16 status_enable;
642 	u16 intr_enable;
643 	u16 available_media;				/* From Wn3_Options. */
644 	u16 capabilities, info1, info2;		/* Various, from EEPROM. */
645 	u16 advertising;					/* NWay media advertisement */
646 	unsigned char phys[2];				/* MII device addresses. */
647 	u16 deferred;						/* Resend these interrupts when we
648 										 * bale from the ISR */
649 	u16 io_size;						/* Size of PCI region (for release_region) */
650 
651 	/* Serialises access to hardware other than MII and variables below.
652 	 * The lock hierarchy is rtnl_lock > {lock, mii_lock} > window_lock. */
653 	spinlock_t lock;
654 
655 	spinlock_t mii_lock;		/* Serialises access to MII */
656 	struct mii_if_info mii;		/* MII lib hooks/info */
657 	spinlock_t window_lock;		/* Serialises access to windowed regs */
658 	int window;			/* Register window */
659 };
660 
661 static void window_set(struct vortex_private *vp, int window)
662 {
663 	if (window != vp->window) {
664 		iowrite16(SelectWindow + window, vp->ioaddr + EL3_CMD);
665 		vp->window = window;
666 	}
667 }
668 
669 #define DEFINE_WINDOW_IO(size)						\
670 static u ## size							\
671 window_read ## size(struct vortex_private *vp, int window, int addr)	\
672 {									\
673 	unsigned long flags;						\
674 	u ## size ret;							\
675 	spin_lock_irqsave(&vp->window_lock, flags);			\
676 	window_set(vp, window);						\
677 	ret = ioread ## size(vp->ioaddr + addr);			\
678 	spin_unlock_irqrestore(&vp->window_lock, flags);		\
679 	return ret;							\
680 }									\
681 static void								\
682 window_write ## size(struct vortex_private *vp, u ## size value,	\
683 		     int window, int addr)				\
684 {									\
685 	unsigned long flags;						\
686 	spin_lock_irqsave(&vp->window_lock, flags);			\
687 	window_set(vp, window);						\
688 	iowrite ## size(value, vp->ioaddr + addr);			\
689 	spin_unlock_irqrestore(&vp->window_lock, flags);		\
690 }
691 DEFINE_WINDOW_IO(8)
692 DEFINE_WINDOW_IO(16)
693 DEFINE_WINDOW_IO(32)
694 
695 #ifdef CONFIG_PCI
696 #define DEVICE_PCI(dev) ((dev_is_pci(dev)) ? to_pci_dev((dev)) : NULL)
697 #else
698 #define DEVICE_PCI(dev) NULL
699 #endif
700 
701 #define VORTEX_PCI(vp)							\
702 	((struct pci_dev *) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL))
703 
704 #ifdef CONFIG_EISA
705 #define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL)
706 #else
707 #define DEVICE_EISA(dev) NULL
708 #endif
709 
710 #define VORTEX_EISA(vp)							\
711 	((struct eisa_device *) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL))
712 
713 /* The action to take with a media selection timer tick.
714    Note that we deviate from the 3Com order by checking 10base2 before AUI.
715  */
716 enum xcvr_types {
717 	XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
718 	XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10,
719 };
720 
721 static const struct media_table {
722 	char *name;
723 	unsigned int media_bits:16,		/* Bits to set in Wn4_Media register. */
724 		mask:8,						/* The transceiver-present bit in Wn3_Config.*/
725 		next:8;						/* The media type to try next. */
726 	int wait;						/* Time before we check media status. */
727 } media_tbl[] = {
728   {	"10baseT",   Media_10TP,0x08, XCVR_10base2, (14*HZ)/10},
729   { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10},
730   { "undefined", 0,			0x80, XCVR_10baseT, 10000},
731   { "10base2",   0,			0x10, XCVR_AUI,		(1*HZ)/10},
732   { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10},
733   { "100baseFX", Media_Lnk, 0x04, XCVR_MII,		(14*HZ)/10},
734   { "MII",		 0,			0x41, XCVR_10baseT, 3*HZ },
735   { "undefined", 0,			0x01, XCVR_10baseT, 10000},
736   { "Autonegotiate", 0,		0x41, XCVR_10baseT, 3*HZ},
737   { "MII-External",	 0,		0x41, XCVR_10baseT, 3*HZ },
738   { "Default",	 0,			0xFF, XCVR_10baseT, 10000},
739 };
740 
741 static struct {
742 	const char str[ETH_GSTRING_LEN];
743 } ethtool_stats_keys[] = {
744 	{ "tx_deferred" },
745 	{ "tx_max_collisions" },
746 	{ "tx_multiple_collisions" },
747 	{ "tx_single_collisions" },
748 	{ "rx_bad_ssd" },
749 };
750 
751 /* number of ETHTOOL_GSTATS u64's */
752 #define VORTEX_NUM_STATS    5
753 
754 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
755 				   int chip_idx, int card_idx);
756 static int vortex_up(struct net_device *dev);
757 static void vortex_down(struct net_device *dev, int final);
758 static int vortex_open(struct net_device *dev);
759 static void mdio_sync(struct vortex_private *vp, int bits);
760 static int mdio_read(struct net_device *dev, int phy_id, int location);
761 static void mdio_write(struct net_device *vp, int phy_id, int location, int value);
762 static void vortex_timer(unsigned long arg);
763 static void rx_oom_timer(unsigned long arg);
764 static netdev_tx_t vortex_start_xmit(struct sk_buff *skb,
765 				     struct net_device *dev);
766 static netdev_tx_t boomerang_start_xmit(struct sk_buff *skb,
767 					struct net_device *dev);
768 static int vortex_rx(struct net_device *dev);
769 static int boomerang_rx(struct net_device *dev);
770 static irqreturn_t vortex_interrupt(int irq, void *dev_id);
771 static irqreturn_t boomerang_interrupt(int irq, void *dev_id);
772 static int vortex_close(struct net_device *dev);
773 static void dump_tx_ring(struct net_device *dev);
774 static void update_stats(void __iomem *ioaddr, struct net_device *dev);
775 static struct net_device_stats *vortex_get_stats(struct net_device *dev);
776 static void set_rx_mode(struct net_device *dev);
777 #ifdef CONFIG_PCI
778 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
779 #endif
780 static void vortex_tx_timeout(struct net_device *dev);
781 static void acpi_set_WOL(struct net_device *dev);
782 static const struct ethtool_ops vortex_ethtool_ops;
783 static void set_8021q_mode(struct net_device *dev, int enable);
784 
785 /* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
786 /* Option count limit only -- unlimited interfaces are supported. */
787 #define MAX_UNITS 8
788 static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 };
789 static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
790 static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
791 static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
792 static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
793 static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
794 static int global_options = -1;
795 static int global_full_duplex = -1;
796 static int global_enable_wol = -1;
797 static int global_use_mmio = -1;
798 
799 /* Variables to work-around the Compaq PCI BIOS32 problem. */
800 static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900;
801 static struct net_device *compaq_net_device;
802 
803 static int vortex_cards_found;
804 
805 module_param(debug, int, 0);
806 module_param(global_options, int, 0);
807 module_param_array(options, int, NULL, 0);
808 module_param(global_full_duplex, int, 0);
809 module_param_array(full_duplex, int, NULL, 0);
810 module_param_array(hw_checksums, int, NULL, 0);
811 module_param_array(flow_ctrl, int, NULL, 0);
812 module_param(global_enable_wol, int, 0);
813 module_param_array(enable_wol, int, NULL, 0);
814 module_param(rx_copybreak, int, 0);
815 module_param(max_interrupt_work, int, 0);
816 module_param(compaq_ioaddr, int, 0);
817 module_param(compaq_irq, int, 0);
818 module_param(compaq_device_id, int, 0);
819 module_param(watchdog, int, 0);
820 module_param(global_use_mmio, int, 0);
821 module_param_array(use_mmio, int, NULL, 0);
822 MODULE_PARM_DESC(debug, "3c59x debug level (0-6)");
823 MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex");
824 MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset");
825 MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)");
826 MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset");
827 MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)");
828 MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)");
829 MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)");
830 MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset");
831 MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames");
832 MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt");
833 MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)");
834 MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)");
835 MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)");
836 MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds");
837 MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset");
838 MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)");
839 
840 #ifdef CONFIG_NET_POLL_CONTROLLER
841 static void poll_vortex(struct net_device *dev)
842 {
843 	struct vortex_private *vp = netdev_priv(dev);
844 	unsigned long flags;
845 	local_irq_save(flags);
846 	(vp->full_bus_master_rx ? boomerang_interrupt:vortex_interrupt)(dev->irq,dev);
847 	local_irq_restore(flags);
848 }
849 #endif
850 
851 #ifdef CONFIG_PM
852 
853 static int vortex_suspend(struct device *dev)
854 {
855 	struct pci_dev *pdev = to_pci_dev(dev);
856 	struct net_device *ndev = pci_get_drvdata(pdev);
857 
858 	if (!ndev || !netif_running(ndev))
859 		return 0;
860 
861 	netif_device_detach(ndev);
862 	vortex_down(ndev, 1);
863 
864 	return 0;
865 }
866 
867 static int vortex_resume(struct device *dev)
868 {
869 	struct pci_dev *pdev = to_pci_dev(dev);
870 	struct net_device *ndev = pci_get_drvdata(pdev);
871 	int err;
872 
873 	if (!ndev || !netif_running(ndev))
874 		return 0;
875 
876 	err = vortex_up(ndev);
877 	if (err)
878 		return err;
879 
880 	netif_device_attach(ndev);
881 
882 	return 0;
883 }
884 
885 static const struct dev_pm_ops vortex_pm_ops = {
886 	.suspend = vortex_suspend,
887 	.resume = vortex_resume,
888 	.freeze = vortex_suspend,
889 	.thaw = vortex_resume,
890 	.poweroff = vortex_suspend,
891 	.restore = vortex_resume,
892 };
893 
894 #define VORTEX_PM_OPS (&vortex_pm_ops)
895 
896 #else /* !CONFIG_PM */
897 
898 #define VORTEX_PM_OPS NULL
899 
900 #endif /* !CONFIG_PM */
901 
902 #ifdef CONFIG_EISA
903 static struct eisa_device_id vortex_eisa_ids[] = {
904 	{ "TCM5920", CH_3C592 },
905 	{ "TCM5970", CH_3C597 },
906 	{ "" }
907 };
908 MODULE_DEVICE_TABLE(eisa, vortex_eisa_ids);
909 
910 static int __init vortex_eisa_probe(struct device *device)
911 {
912 	void __iomem *ioaddr;
913 	struct eisa_device *edev;
914 
915 	edev = to_eisa_device(device);
916 
917 	if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME))
918 		return -EBUSY;
919 
920 	ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE);
921 
922 	if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12,
923 					  edev->id.driver_data, vortex_cards_found)) {
924 		release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
925 		return -ENODEV;
926 	}
927 
928 	vortex_cards_found++;
929 
930 	return 0;
931 }
932 
933 static int vortex_eisa_remove(struct device *device)
934 {
935 	struct eisa_device *edev;
936 	struct net_device *dev;
937 	struct vortex_private *vp;
938 	void __iomem *ioaddr;
939 
940 	edev = to_eisa_device(device);
941 	dev = eisa_get_drvdata(edev);
942 
943 	if (!dev) {
944 		pr_err("vortex_eisa_remove called for Compaq device!\n");
945 		BUG();
946 	}
947 
948 	vp = netdev_priv(dev);
949 	ioaddr = vp->ioaddr;
950 
951 	unregister_netdev(dev);
952 	iowrite16(TotalReset|0x14, ioaddr + EL3_CMD);
953 	release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
954 
955 	free_netdev(dev);
956 	return 0;
957 }
958 
959 static struct eisa_driver vortex_eisa_driver = {
960 	.id_table = vortex_eisa_ids,
961 	.driver   = {
962 		.name    = "3c59x",
963 		.probe   = vortex_eisa_probe,
964 		.remove  = vortex_eisa_remove
965 	}
966 };
967 
968 #endif /* CONFIG_EISA */
969 
970 /* returns count found (>= 0), or negative on error */
971 static int __init vortex_eisa_init(void)
972 {
973 	int eisa_found = 0;
974 	int orig_cards_found = vortex_cards_found;
975 
976 #ifdef CONFIG_EISA
977 	int err;
978 
979 	err = eisa_driver_register (&vortex_eisa_driver);
980 	if (!err) {
981 		/*
982 		 * Because of the way EISA bus is probed, we cannot assume
983 		 * any device have been found when we exit from
984 		 * eisa_driver_register (the bus root driver may not be
985 		 * initialized yet). So we blindly assume something was
986 		 * found, and let the sysfs magic happened...
987 		 */
988 		eisa_found = 1;
989 	}
990 #endif
991 
992 	/* Special code to work-around the Compaq PCI BIOS32 problem. */
993 	if (compaq_ioaddr) {
994 		vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE),
995 			      compaq_irq, compaq_device_id, vortex_cards_found++);
996 	}
997 
998 	return vortex_cards_found - orig_cards_found + eisa_found;
999 }
1000 
1001 /* returns count (>= 0), or negative on error */
1002 static int vortex_init_one(struct pci_dev *pdev,
1003 			   const struct pci_device_id *ent)
1004 {
1005 	int rc, unit, pci_bar;
1006 	struct vortex_chip_info *vci;
1007 	void __iomem *ioaddr;
1008 
1009 	/* wake up and enable device */
1010 	rc = pci_enable_device(pdev);
1011 	if (rc < 0)
1012 		goto out;
1013 
1014 	rc = pci_request_regions(pdev, DRV_NAME);
1015 	if (rc < 0)
1016 		goto out_disable;
1017 
1018 	unit = vortex_cards_found;
1019 
1020 	if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) {
1021 		/* Determine the default if the user didn't override us */
1022 		vci = &vortex_info_tbl[ent->driver_data];
1023 		pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0;
1024 	} else if (unit < MAX_UNITS && use_mmio[unit] >= 0)
1025 		pci_bar = use_mmio[unit] ? 1 : 0;
1026 	else
1027 		pci_bar = global_use_mmio ? 1 : 0;
1028 
1029 	ioaddr = pci_iomap(pdev, pci_bar, 0);
1030 	if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */
1031 		ioaddr = pci_iomap(pdev, 0, 0);
1032 	if (!ioaddr) {
1033 		rc = -ENOMEM;
1034 		goto out_release;
1035 	}
1036 
1037 	rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq,
1038 			   ent->driver_data, unit);
1039 	if (rc < 0)
1040 		goto out_iounmap;
1041 
1042 	vortex_cards_found++;
1043 	goto out;
1044 
1045 out_iounmap:
1046 	pci_iounmap(pdev, ioaddr);
1047 out_release:
1048 	pci_release_regions(pdev);
1049 out_disable:
1050 	pci_disable_device(pdev);
1051 out:
1052 	return rc;
1053 }
1054 
1055 static const struct net_device_ops boomrang_netdev_ops = {
1056 	.ndo_open		= vortex_open,
1057 	.ndo_stop		= vortex_close,
1058 	.ndo_start_xmit		= boomerang_start_xmit,
1059 	.ndo_tx_timeout		= vortex_tx_timeout,
1060 	.ndo_get_stats		= vortex_get_stats,
1061 #ifdef CONFIG_PCI
1062 	.ndo_do_ioctl 		= vortex_ioctl,
1063 #endif
1064 	.ndo_set_rx_mode	= set_rx_mode,
1065 	.ndo_change_mtu		= eth_change_mtu,
1066 	.ndo_set_mac_address 	= eth_mac_addr,
1067 	.ndo_validate_addr	= eth_validate_addr,
1068 #ifdef CONFIG_NET_POLL_CONTROLLER
1069 	.ndo_poll_controller	= poll_vortex,
1070 #endif
1071 };
1072 
1073 static const struct net_device_ops vortex_netdev_ops = {
1074 	.ndo_open		= vortex_open,
1075 	.ndo_stop		= vortex_close,
1076 	.ndo_start_xmit		= vortex_start_xmit,
1077 	.ndo_tx_timeout		= vortex_tx_timeout,
1078 	.ndo_get_stats		= vortex_get_stats,
1079 #ifdef CONFIG_PCI
1080 	.ndo_do_ioctl 		= vortex_ioctl,
1081 #endif
1082 	.ndo_set_rx_mode	= set_rx_mode,
1083 	.ndo_change_mtu		= eth_change_mtu,
1084 	.ndo_set_mac_address 	= eth_mac_addr,
1085 	.ndo_validate_addr	= eth_validate_addr,
1086 #ifdef CONFIG_NET_POLL_CONTROLLER
1087 	.ndo_poll_controller	= poll_vortex,
1088 #endif
1089 };
1090 
1091 /*
1092  * Start up the PCI/EISA device which is described by *gendev.
1093  * Return 0 on success.
1094  *
1095  * NOTE: pdev can be NULL, for the case of a Compaq device
1096  */
1097 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
1098 			 int chip_idx, int card_idx)
1099 {
1100 	struct vortex_private *vp;
1101 	int option;
1102 	unsigned int eeprom[0x40], checksum = 0;		/* EEPROM contents */
1103 	int i, step;
1104 	struct net_device *dev;
1105 	static int printed_version;
1106 	int retval, print_info;
1107 	struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx];
1108 	const char *print_name = "3c59x";
1109 	struct pci_dev *pdev = NULL;
1110 	struct eisa_device *edev = NULL;
1111 
1112 	if (!printed_version) {
1113 		pr_info("%s", version);
1114 		printed_version = 1;
1115 	}
1116 
1117 	if (gendev) {
1118 		if ((pdev = DEVICE_PCI(gendev))) {
1119 			print_name = pci_name(pdev);
1120 		}
1121 
1122 		if ((edev = DEVICE_EISA(gendev))) {
1123 			print_name = dev_name(&edev->dev);
1124 		}
1125 	}
1126 
1127 	dev = alloc_etherdev(sizeof(*vp));
1128 	retval = -ENOMEM;
1129 	if (!dev)
1130 		goto out;
1131 
1132 	SET_NETDEV_DEV(dev, gendev);
1133 	vp = netdev_priv(dev);
1134 
1135 	option = global_options;
1136 
1137 	/* The lower four bits are the media type. */
1138 	if (dev->mem_start) {
1139 		/*
1140 		 * The 'options' param is passed in as the third arg to the
1141 		 * LILO 'ether=' argument for non-modular use
1142 		 */
1143 		option = dev->mem_start;
1144 	}
1145 	else if (card_idx < MAX_UNITS) {
1146 		if (options[card_idx] >= 0)
1147 			option = options[card_idx];
1148 	}
1149 
1150 	if (option > 0) {
1151 		if (option & 0x8000)
1152 			vortex_debug = 7;
1153 		if (option & 0x4000)
1154 			vortex_debug = 2;
1155 		if (option & 0x0400)
1156 			vp->enable_wol = 1;
1157 	}
1158 
1159 	print_info = (vortex_debug > 1);
1160 	if (print_info)
1161 		pr_info("See Documentation/networking/vortex.txt\n");
1162 
1163 	pr_info("%s: 3Com %s %s at %p.\n",
1164 	       print_name,
1165 	       pdev ? "PCI" : "EISA",
1166 	       vci->name,
1167 	       ioaddr);
1168 
1169 	dev->base_addr = (unsigned long)ioaddr;
1170 	dev->irq = irq;
1171 	dev->mtu = mtu;
1172 	vp->ioaddr = ioaddr;
1173 	vp->large_frames = mtu > 1500;
1174 	vp->drv_flags = vci->drv_flags;
1175 	vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0;
1176 	vp->io_size = vci->io_size;
1177 	vp->card_idx = card_idx;
1178 	vp->window = -1;
1179 
1180 	/* module list only for Compaq device */
1181 	if (gendev == NULL) {
1182 		compaq_net_device = dev;
1183 	}
1184 
1185 	/* PCI-only startup logic */
1186 	if (pdev) {
1187 		/* enable bus-mastering if necessary */
1188 		if (vci->flags & PCI_USES_MASTER)
1189 			pci_set_master(pdev);
1190 
1191 		if (vci->drv_flags & IS_VORTEX) {
1192 			u8 pci_latency;
1193 			u8 new_latency = 248;
1194 
1195 			/* Check the PCI latency value.  On the 3c590 series the latency timer
1196 			   must be set to the maximum value to avoid data corruption that occurs
1197 			   when the timer expires during a transfer.  This bug exists the Vortex
1198 			   chip only. */
1199 			pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
1200 			if (pci_latency < new_latency) {
1201 				pr_info("%s: Overriding PCI latency timer (CFLT) setting of %d, new value is %d.\n",
1202 					print_name, pci_latency, new_latency);
1203 				pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency);
1204 			}
1205 		}
1206 	}
1207 
1208 	spin_lock_init(&vp->lock);
1209 	spin_lock_init(&vp->mii_lock);
1210 	spin_lock_init(&vp->window_lock);
1211 	vp->gendev = gendev;
1212 	vp->mii.dev = dev;
1213 	vp->mii.mdio_read = mdio_read;
1214 	vp->mii.mdio_write = mdio_write;
1215 	vp->mii.phy_id_mask = 0x1f;
1216 	vp->mii.reg_num_mask = 0x1f;
1217 
1218 	/* Makes sure rings are at least 16 byte aligned. */
1219 	vp->rx_ring = pci_alloc_consistent(pdev, sizeof(struct boom_rx_desc) * RX_RING_SIZE
1220 					   + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1221 					   &vp->rx_ring_dma);
1222 	retval = -ENOMEM;
1223 	if (!vp->rx_ring)
1224 		goto free_device;
1225 
1226 	vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE);
1227 	vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE;
1228 
1229 	/* if we are a PCI driver, we store info in pdev->driver_data
1230 	 * instead of a module list */
1231 	if (pdev)
1232 		pci_set_drvdata(pdev, dev);
1233 	if (edev)
1234 		eisa_set_drvdata(edev, dev);
1235 
1236 	vp->media_override = 7;
1237 	if (option >= 0) {
1238 		vp->media_override = ((option & 7) == 2)  ?  0  :  option & 15;
1239 		if (vp->media_override != 7)
1240 			vp->medialock = 1;
1241 		vp->full_duplex = (option & 0x200) ? 1 : 0;
1242 		vp->bus_master = (option & 16) ? 1 : 0;
1243 	}
1244 
1245 	if (global_full_duplex > 0)
1246 		vp->full_duplex = 1;
1247 	if (global_enable_wol > 0)
1248 		vp->enable_wol = 1;
1249 
1250 	if (card_idx < MAX_UNITS) {
1251 		if (full_duplex[card_idx] > 0)
1252 			vp->full_duplex = 1;
1253 		if (flow_ctrl[card_idx] > 0)
1254 			vp->flow_ctrl = 1;
1255 		if (enable_wol[card_idx] > 0)
1256 			vp->enable_wol = 1;
1257 	}
1258 
1259 	vp->mii.force_media = vp->full_duplex;
1260 	vp->options = option;
1261 	/* Read the station address from the EEPROM. */
1262 	{
1263 		int base;
1264 
1265 		if (vci->drv_flags & EEPROM_8BIT)
1266 			base = 0x230;
1267 		else if (vci->drv_flags & EEPROM_OFFSET)
1268 			base = EEPROM_Read + 0x30;
1269 		else
1270 			base = EEPROM_Read;
1271 
1272 		for (i = 0; i < 0x40; i++) {
1273 			int timer;
1274 			window_write16(vp, base + i, 0, Wn0EepromCmd);
1275 			/* Pause for at least 162 us. for the read to take place. */
1276 			for (timer = 10; timer >= 0; timer--) {
1277 				udelay(162);
1278 				if ((window_read16(vp, 0, Wn0EepromCmd) &
1279 				     0x8000) == 0)
1280 					break;
1281 			}
1282 			eeprom[i] = window_read16(vp, 0, Wn0EepromData);
1283 		}
1284 	}
1285 	for (i = 0; i < 0x18; i++)
1286 		checksum ^= eeprom[i];
1287 	checksum = (checksum ^ (checksum >> 8)) & 0xff;
1288 	if (checksum != 0x00) {		/* Grrr, needless incompatible change 3Com. */
1289 		while (i < 0x21)
1290 			checksum ^= eeprom[i++];
1291 		checksum = (checksum ^ (checksum >> 8)) & 0xff;
1292 	}
1293 	if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO))
1294 		pr_cont(" ***INVALID CHECKSUM %4.4x*** ", checksum);
1295 	for (i = 0; i < 3; i++)
1296 		((__be16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]);
1297 	if (print_info)
1298 		pr_cont(" %pM", dev->dev_addr);
1299 	/* Unfortunately an all zero eeprom passes the checksum and this
1300 	   gets found in the wild in failure cases. Crypto is hard 8) */
1301 	if (!is_valid_ether_addr(dev->dev_addr)) {
1302 		retval = -EINVAL;
1303 		pr_err("*** EEPROM MAC address is invalid.\n");
1304 		goto free_ring;	/* With every pack */
1305 	}
1306 	for (i = 0; i < 6; i++)
1307 		window_write8(vp, dev->dev_addr[i], 2, i);
1308 
1309 	if (print_info)
1310 		pr_cont(", IRQ %d\n", dev->irq);
1311 	/* Tell them about an invalid IRQ. */
1312 	if (dev->irq <= 0 || dev->irq >= nr_irqs)
1313 		pr_warning(" *** Warning: IRQ %d is unlikely to work! ***\n",
1314 			   dev->irq);
1315 
1316 	step = (window_read8(vp, 4, Wn4_NetDiag) & 0x1e) >> 1;
1317 	if (print_info) {
1318 		pr_info("  product code %02x%02x rev %02x.%d date %02d-%02d-%02d\n",
1319 			eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14],
1320 			step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9);
1321 	}
1322 
1323 
1324 	if (pdev && vci->drv_flags & HAS_CB_FNS) {
1325 		unsigned short n;
1326 
1327 		vp->cb_fn_base = pci_iomap(pdev, 2, 0);
1328 		if (!vp->cb_fn_base) {
1329 			retval = -ENOMEM;
1330 			goto free_ring;
1331 		}
1332 
1333 		if (print_info) {
1334 			pr_info("%s: CardBus functions mapped %16.16llx->%p\n",
1335 				print_name,
1336 				(unsigned long long)pci_resource_start(pdev, 2),
1337 				vp->cb_fn_base);
1338 		}
1339 
1340 		n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1341 		if (vp->drv_flags & INVERT_LED_PWR)
1342 			n |= 0x10;
1343 		if (vp->drv_flags & INVERT_MII_PWR)
1344 			n |= 0x4000;
1345 		window_write16(vp, n, 2, Wn2_ResetOptions);
1346 		if (vp->drv_flags & WNO_XCVR_PWR) {
1347 			window_write16(vp, 0x0800, 0, 0);
1348 		}
1349 	}
1350 
1351 	/* Extract our information from the EEPROM data. */
1352 	vp->info1 = eeprom[13];
1353 	vp->info2 = eeprom[15];
1354 	vp->capabilities = eeprom[16];
1355 
1356 	if (vp->info1 & 0x8000) {
1357 		vp->full_duplex = 1;
1358 		if (print_info)
1359 			pr_info("Full duplex capable\n");
1360 	}
1361 
1362 	{
1363 		static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"};
1364 		unsigned int config;
1365 		vp->available_media = window_read16(vp, 3, Wn3_Options);
1366 		if ((vp->available_media & 0xff) == 0)		/* Broken 3c916 */
1367 			vp->available_media = 0x40;
1368 		config = window_read32(vp, 3, Wn3_Config);
1369 		if (print_info) {
1370 			pr_debug("  Internal config register is %4.4x, transceivers %#x.\n",
1371 				config, window_read16(vp, 3, Wn3_Options));
1372 			pr_info("  %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
1373 				   8 << RAM_SIZE(config),
1374 				   RAM_WIDTH(config) ? "word" : "byte",
1375 				   ram_split[RAM_SPLIT(config)],
1376 				   AUTOSELECT(config) ? "autoselect/" : "",
1377 				   XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" :
1378 				   media_tbl[XCVR(config)].name);
1379 		}
1380 		vp->default_media = XCVR(config);
1381 		if (vp->default_media == XCVR_NWAY)
1382 			vp->has_nway = 1;
1383 		vp->autoselect = AUTOSELECT(config);
1384 	}
1385 
1386 	if (vp->media_override != 7) {
1387 		pr_info("%s:  Media override to transceiver type %d (%s).\n",
1388 				print_name, vp->media_override,
1389 				media_tbl[vp->media_override].name);
1390 		dev->if_port = vp->media_override;
1391 	} else
1392 		dev->if_port = vp->default_media;
1393 
1394 	if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) ||
1395 		dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1396 		int phy, phy_idx = 0;
1397 		mii_preamble_required++;
1398 		if (vp->drv_flags & EXTRA_PREAMBLE)
1399 			mii_preamble_required++;
1400 		mdio_sync(vp, 32);
1401 		mdio_read(dev, 24, MII_BMSR);
1402 		for (phy = 0; phy < 32 && phy_idx < 1; phy++) {
1403 			int mii_status, phyx;
1404 
1405 			/*
1406 			 * For the 3c905CX we look at index 24 first, because it bogusly
1407 			 * reports an external PHY at all indices
1408 			 */
1409 			if (phy == 0)
1410 				phyx = 24;
1411 			else if (phy <= 24)
1412 				phyx = phy - 1;
1413 			else
1414 				phyx = phy;
1415 			mii_status = mdio_read(dev, phyx, MII_BMSR);
1416 			if (mii_status  &&  mii_status != 0xffff) {
1417 				vp->phys[phy_idx++] = phyx;
1418 				if (print_info) {
1419 					pr_info("  MII transceiver found at address %d, status %4x.\n",
1420 						phyx, mii_status);
1421 				}
1422 				if ((mii_status & 0x0040) == 0)
1423 					mii_preamble_required++;
1424 			}
1425 		}
1426 		mii_preamble_required--;
1427 		if (phy_idx == 0) {
1428 			pr_warning("  ***WARNING*** No MII transceivers found!\n");
1429 			vp->phys[0] = 24;
1430 		} else {
1431 			vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE);
1432 			if (vp->full_duplex) {
1433 				/* Only advertise the FD media types. */
1434 				vp->advertising &= ~0x02A0;
1435 				mdio_write(dev, vp->phys[0], 4, vp->advertising);
1436 			}
1437 		}
1438 		vp->mii.phy_id = vp->phys[0];
1439 	}
1440 
1441 	if (vp->capabilities & CapBusMaster) {
1442 		vp->full_bus_master_tx = 1;
1443 		if (print_info) {
1444 			pr_info("  Enabling bus-master transmits and %s receives.\n",
1445 			(vp->info2 & 1) ? "early" : "whole-frame" );
1446 		}
1447 		vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2;
1448 		vp->bus_master = 0;		/* AKPM: vortex only */
1449 	}
1450 
1451 	/* The 3c59x-specific entries in the device structure. */
1452 	if (vp->full_bus_master_tx) {
1453 		dev->netdev_ops = &boomrang_netdev_ops;
1454 		/* Actually, it still should work with iommu. */
1455 		if (card_idx < MAX_UNITS &&
1456 		    ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) ||
1457 				hw_checksums[card_idx] == 1)) {
1458 			dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1459 		}
1460 	} else
1461 		dev->netdev_ops =  &vortex_netdev_ops;
1462 
1463 	if (print_info) {
1464 		pr_info("%s: scatter/gather %sabled. h/w checksums %sabled\n",
1465 				print_name,
1466 				(dev->features & NETIF_F_SG) ? "en":"dis",
1467 				(dev->features & NETIF_F_IP_CSUM) ? "en":"dis");
1468 	}
1469 
1470 	dev->ethtool_ops = &vortex_ethtool_ops;
1471 	dev->watchdog_timeo = (watchdog * HZ) / 1000;
1472 
1473 	if (pdev) {
1474 		vp->pm_state_valid = 1;
1475 		pci_save_state(pdev);
1476  		acpi_set_WOL(dev);
1477 	}
1478 	retval = register_netdev(dev);
1479 	if (retval == 0)
1480 		return 0;
1481 
1482 free_ring:
1483 	pci_free_consistent(pdev,
1484 						sizeof(struct boom_rx_desc) * RX_RING_SIZE
1485 							+ sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1486 						vp->rx_ring,
1487 						vp->rx_ring_dma);
1488 free_device:
1489 	free_netdev(dev);
1490 	pr_err(PFX "vortex_probe1 fails.  Returns %d\n", retval);
1491 out:
1492 	return retval;
1493 }
1494 
1495 static void
1496 issue_and_wait(struct net_device *dev, int cmd)
1497 {
1498 	struct vortex_private *vp = netdev_priv(dev);
1499 	void __iomem *ioaddr = vp->ioaddr;
1500 	int i;
1501 
1502 	iowrite16(cmd, ioaddr + EL3_CMD);
1503 	for (i = 0; i < 2000; i++) {
1504 		if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
1505 			return;
1506 	}
1507 
1508 	/* OK, that didn't work.  Do it the slow way.  One second */
1509 	for (i = 0; i < 100000; i++) {
1510 		if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) {
1511 			if (vortex_debug > 1)
1512 				pr_info("%s: command 0x%04x took %d usecs\n",
1513 					   dev->name, cmd, i * 10);
1514 			return;
1515 		}
1516 		udelay(10);
1517 	}
1518 	pr_err("%s: command 0x%04x did not complete! Status=0x%x\n",
1519 			   dev->name, cmd, ioread16(ioaddr + EL3_STATUS));
1520 }
1521 
1522 static void
1523 vortex_set_duplex(struct net_device *dev)
1524 {
1525 	struct vortex_private *vp = netdev_priv(dev);
1526 
1527 	pr_info("%s:  setting %s-duplex.\n",
1528 		dev->name, (vp->full_duplex) ? "full" : "half");
1529 
1530 	/* Set the full-duplex bit. */
1531 	window_write16(vp,
1532 		       ((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) |
1533 		       (vp->large_frames ? 0x40 : 0) |
1534 		       ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ?
1535 			0x100 : 0),
1536 		       3, Wn3_MAC_Ctrl);
1537 }
1538 
1539 static void vortex_check_media(struct net_device *dev, unsigned int init)
1540 {
1541 	struct vortex_private *vp = netdev_priv(dev);
1542 	unsigned int ok_to_print = 0;
1543 
1544 	if (vortex_debug > 3)
1545 		ok_to_print = 1;
1546 
1547 	if (mii_check_media(&vp->mii, ok_to_print, init)) {
1548 		vp->full_duplex = vp->mii.full_duplex;
1549 		vortex_set_duplex(dev);
1550 	} else if (init) {
1551 		vortex_set_duplex(dev);
1552 	}
1553 }
1554 
1555 static int
1556 vortex_up(struct net_device *dev)
1557 {
1558 	struct vortex_private *vp = netdev_priv(dev);
1559 	void __iomem *ioaddr = vp->ioaddr;
1560 	unsigned int config;
1561 	int i, mii_reg1, mii_reg5, err = 0;
1562 
1563 	if (VORTEX_PCI(vp)) {
1564 		pci_set_power_state(VORTEX_PCI(vp), PCI_D0);	/* Go active */
1565 		if (vp->pm_state_valid)
1566 			pci_restore_state(VORTEX_PCI(vp));
1567 		err = pci_enable_device(VORTEX_PCI(vp));
1568 		if (err) {
1569 			pr_warning("%s: Could not enable device\n",
1570 				dev->name);
1571 			goto err_out;
1572 		}
1573 	}
1574 
1575 	/* Before initializing select the active media port. */
1576 	config = window_read32(vp, 3, Wn3_Config);
1577 
1578 	if (vp->media_override != 7) {
1579 		pr_info("%s: Media override to transceiver %d (%s).\n",
1580 			   dev->name, vp->media_override,
1581 			   media_tbl[vp->media_override].name);
1582 		dev->if_port = vp->media_override;
1583 	} else if (vp->autoselect) {
1584 		if (vp->has_nway) {
1585 			if (vortex_debug > 1)
1586 				pr_info("%s: using NWAY device table, not %d\n",
1587 								dev->name, dev->if_port);
1588 			dev->if_port = XCVR_NWAY;
1589 		} else {
1590 			/* Find first available media type, starting with 100baseTx. */
1591 			dev->if_port = XCVR_100baseTx;
1592 			while (! (vp->available_media & media_tbl[dev->if_port].mask))
1593 				dev->if_port = media_tbl[dev->if_port].next;
1594 			if (vortex_debug > 1)
1595 				pr_info("%s: first available media type: %s\n",
1596 					dev->name, media_tbl[dev->if_port].name);
1597 		}
1598 	} else {
1599 		dev->if_port = vp->default_media;
1600 		if (vortex_debug > 1)
1601 			pr_info("%s: using default media %s\n",
1602 				dev->name, media_tbl[dev->if_port].name);
1603 	}
1604 
1605 	init_timer(&vp->timer);
1606 	vp->timer.expires = RUN_AT(media_tbl[dev->if_port].wait);
1607 	vp->timer.data = (unsigned long)dev;
1608 	vp->timer.function = vortex_timer;		/* timer handler */
1609 	add_timer(&vp->timer);
1610 
1611 	init_timer(&vp->rx_oom_timer);
1612 	vp->rx_oom_timer.data = (unsigned long)dev;
1613 	vp->rx_oom_timer.function = rx_oom_timer;
1614 
1615 	if (vortex_debug > 1)
1616 		pr_debug("%s: Initial media type %s.\n",
1617 			   dev->name, media_tbl[dev->if_port].name);
1618 
1619 	vp->full_duplex = vp->mii.force_media;
1620 	config = BFINS(config, dev->if_port, 20, 4);
1621 	if (vortex_debug > 6)
1622 		pr_debug("vortex_up(): writing 0x%x to InternalConfig\n", config);
1623 	window_write32(vp, config, 3, Wn3_Config);
1624 
1625 	if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1626 		mii_reg1 = mdio_read(dev, vp->phys[0], MII_BMSR);
1627 		mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA);
1628 		vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0);
1629 		vp->mii.full_duplex = vp->full_duplex;
1630 
1631 		vortex_check_media(dev, 1);
1632 	}
1633 	else
1634 		vortex_set_duplex(dev);
1635 
1636 	issue_and_wait(dev, TxReset);
1637 	/*
1638 	 * Don't reset the PHY - that upsets autonegotiation during DHCP operations.
1639 	 */
1640 	issue_and_wait(dev, RxReset|0x04);
1641 
1642 
1643 	iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
1644 
1645 	if (vortex_debug > 1) {
1646 		pr_debug("%s: vortex_up() irq %d media status %4.4x.\n",
1647 			   dev->name, dev->irq, window_read16(vp, 4, Wn4_Media));
1648 	}
1649 
1650 	/* Set the station address and mask in window 2 each time opened. */
1651 	for (i = 0; i < 6; i++)
1652 		window_write8(vp, dev->dev_addr[i], 2, i);
1653 	for (; i < 12; i+=2)
1654 		window_write16(vp, 0, 2, i);
1655 
1656 	if (vp->cb_fn_base) {
1657 		unsigned short n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1658 		if (vp->drv_flags & INVERT_LED_PWR)
1659 			n |= 0x10;
1660 		if (vp->drv_flags & INVERT_MII_PWR)
1661 			n |= 0x4000;
1662 		window_write16(vp, n, 2, Wn2_ResetOptions);
1663 	}
1664 
1665 	if (dev->if_port == XCVR_10base2)
1666 		/* Start the thinnet transceiver. We should really wait 50ms...*/
1667 		iowrite16(StartCoax, ioaddr + EL3_CMD);
1668 	if (dev->if_port != XCVR_NWAY) {
1669 		window_write16(vp,
1670 			       (window_read16(vp, 4, Wn4_Media) &
1671 				~(Media_10TP|Media_SQE)) |
1672 			       media_tbl[dev->if_port].media_bits,
1673 			       4, Wn4_Media);
1674 	}
1675 
1676 	/* Switch to the stats window, and clear all stats by reading. */
1677 	iowrite16(StatsDisable, ioaddr + EL3_CMD);
1678 	for (i = 0; i < 10; i++)
1679 		window_read8(vp, 6, i);
1680 	window_read16(vp, 6, 10);
1681 	window_read16(vp, 6, 12);
1682 	/* New: On the Vortex we must also clear the BadSSD counter. */
1683 	window_read8(vp, 4, 12);
1684 	/* ..and on the Boomerang we enable the extra statistics bits. */
1685 	window_write16(vp, 0x0040, 4, Wn4_NetDiag);
1686 
1687 	if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1688 		vp->cur_rx = vp->dirty_rx = 0;
1689 		/* Initialize the RxEarly register as recommended. */
1690 		iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD);
1691 		iowrite32(0x0020, ioaddr + PktStatus);
1692 		iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr);
1693 	}
1694 	if (vp->full_bus_master_tx) { 		/* Boomerang bus master Tx. */
1695 		vp->cur_tx = vp->dirty_tx = 0;
1696 		if (vp->drv_flags & IS_BOOMERANG)
1697 			iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */
1698 		/* Clear the Rx, Tx rings. */
1699 		for (i = 0; i < RX_RING_SIZE; i++)	/* AKPM: this is done in vortex_open, too */
1700 			vp->rx_ring[i].status = 0;
1701 		for (i = 0; i < TX_RING_SIZE; i++)
1702 			vp->tx_skbuff[i] = NULL;
1703 		iowrite32(0, ioaddr + DownListPtr);
1704 	}
1705 	/* Set receiver mode: presumably accept b-case and phys addr only. */
1706 	set_rx_mode(dev);
1707 	/* enable 802.1q tagged frames */
1708 	set_8021q_mode(dev, 1);
1709 	iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
1710 
1711 	iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
1712 	iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
1713 	/* Allow status bits to be seen. */
1714 	vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete|
1715 		(vp->full_bus_master_tx ? DownComplete : TxAvailable) |
1716 		(vp->full_bus_master_rx ? UpComplete : RxComplete) |
1717 		(vp->bus_master ? DMADone : 0);
1718 	vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable |
1719 		(vp->full_bus_master_rx ? 0 : RxComplete) |
1720 		StatsFull | HostError | TxComplete | IntReq
1721 		| (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete;
1722 	iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1723 	/* Ack all pending events, and set active indicator mask. */
1724 	iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
1725 		 ioaddr + EL3_CMD);
1726 	iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1727 	if (vp->cb_fn_base)			/* The PCMCIA people are idiots.  */
1728 		iowrite32(0x8000, vp->cb_fn_base + 4);
1729 	netif_start_queue (dev);
1730 err_out:
1731 	return err;
1732 }
1733 
1734 static int
1735 vortex_open(struct net_device *dev)
1736 {
1737 	struct vortex_private *vp = netdev_priv(dev);
1738 	int i;
1739 	int retval;
1740 
1741 	/* Use the now-standard shared IRQ implementation. */
1742 	if ((retval = request_irq(dev->irq, vp->full_bus_master_rx ?
1743 				boomerang_interrupt : vortex_interrupt, IRQF_SHARED, dev->name, dev))) {
1744 		pr_err("%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1745 		goto err;
1746 	}
1747 
1748 	if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1749 		if (vortex_debug > 2)
1750 			pr_debug("%s:  Filling in the Rx ring.\n", dev->name);
1751 		for (i = 0; i < RX_RING_SIZE; i++) {
1752 			struct sk_buff *skb;
1753 			vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1));
1754 			vp->rx_ring[i].status = 0;	/* Clear complete bit. */
1755 			vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG);
1756 
1757 			skb = __netdev_alloc_skb(dev, PKT_BUF_SZ + NET_IP_ALIGN,
1758 						 GFP_KERNEL);
1759 			vp->rx_skbuff[i] = skb;
1760 			if (skb == NULL)
1761 				break;			/* Bad news!  */
1762 
1763 			skb_reserve(skb, NET_IP_ALIGN);	/* Align IP on 16 byte boundaries */
1764 			vp->rx_ring[i].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
1765 		}
1766 		if (i != RX_RING_SIZE) {
1767 			int j;
1768 			pr_emerg("%s: no memory for rx ring\n", dev->name);
1769 			for (j = 0; j < i; j++) {
1770 				if (vp->rx_skbuff[j]) {
1771 					dev_kfree_skb(vp->rx_skbuff[j]);
1772 					vp->rx_skbuff[j] = NULL;
1773 				}
1774 			}
1775 			retval = -ENOMEM;
1776 			goto err_free_irq;
1777 		}
1778 		/* Wrap the ring. */
1779 		vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma);
1780 	}
1781 
1782 	retval = vortex_up(dev);
1783 	if (!retval)
1784 		goto out;
1785 
1786 err_free_irq:
1787 	free_irq(dev->irq, dev);
1788 err:
1789 	if (vortex_debug > 1)
1790 		pr_err("%s: vortex_open() fails: returning %d\n", dev->name, retval);
1791 out:
1792 	return retval;
1793 }
1794 
1795 static void
1796 vortex_timer(unsigned long data)
1797 {
1798 	struct net_device *dev = (struct net_device *)data;
1799 	struct vortex_private *vp = netdev_priv(dev);
1800 	void __iomem *ioaddr = vp->ioaddr;
1801 	int next_tick = 60*HZ;
1802 	int ok = 0;
1803 	int media_status;
1804 
1805 	if (vortex_debug > 2) {
1806 		pr_debug("%s: Media selection timer tick happened, %s.\n",
1807 			   dev->name, media_tbl[dev->if_port].name);
1808 		pr_debug("dev->watchdog_timeo=%d\n", dev->watchdog_timeo);
1809 	}
1810 
1811 	media_status = window_read16(vp, 4, Wn4_Media);
1812 	switch (dev->if_port) {
1813 	case XCVR_10baseT:  case XCVR_100baseTx:  case XCVR_100baseFx:
1814 		if (media_status & Media_LnkBeat) {
1815 			netif_carrier_on(dev);
1816 			ok = 1;
1817 			if (vortex_debug > 1)
1818 				pr_debug("%s: Media %s has link beat, %x.\n",
1819 					   dev->name, media_tbl[dev->if_port].name, media_status);
1820 		} else {
1821 			netif_carrier_off(dev);
1822 			if (vortex_debug > 1) {
1823 				pr_debug("%s: Media %s has no link beat, %x.\n",
1824 					   dev->name, media_tbl[dev->if_port].name, media_status);
1825 			}
1826 		}
1827 		break;
1828 	case XCVR_MII: case XCVR_NWAY:
1829 		{
1830 			ok = 1;
1831 			vortex_check_media(dev, 0);
1832 		}
1833 		break;
1834 	  default:					/* Other media types handled by Tx timeouts. */
1835 		if (vortex_debug > 1)
1836 		  pr_debug("%s: Media %s has no indication, %x.\n",
1837 				 dev->name, media_tbl[dev->if_port].name, media_status);
1838 		ok = 1;
1839 	}
1840 
1841 	if (dev->flags & IFF_SLAVE || !netif_carrier_ok(dev))
1842 		next_tick = 5*HZ;
1843 
1844 	if (vp->medialock)
1845 		goto leave_media_alone;
1846 
1847 	if (!ok) {
1848 		unsigned int config;
1849 
1850 		spin_lock_irq(&vp->lock);
1851 
1852 		do {
1853 			dev->if_port = media_tbl[dev->if_port].next;
1854 		} while ( ! (vp->available_media & media_tbl[dev->if_port].mask));
1855 		if (dev->if_port == XCVR_Default) { /* Go back to default. */
1856 		  dev->if_port = vp->default_media;
1857 		  if (vortex_debug > 1)
1858 			pr_debug("%s: Media selection failing, using default %s port.\n",
1859 				   dev->name, media_tbl[dev->if_port].name);
1860 		} else {
1861 			if (vortex_debug > 1)
1862 				pr_debug("%s: Media selection failed, now trying %s port.\n",
1863 					   dev->name, media_tbl[dev->if_port].name);
1864 			next_tick = media_tbl[dev->if_port].wait;
1865 		}
1866 		window_write16(vp,
1867 			       (media_status & ~(Media_10TP|Media_SQE)) |
1868 			       media_tbl[dev->if_port].media_bits,
1869 			       4, Wn4_Media);
1870 
1871 		config = window_read32(vp, 3, Wn3_Config);
1872 		config = BFINS(config, dev->if_port, 20, 4);
1873 		window_write32(vp, config, 3, Wn3_Config);
1874 
1875 		iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax,
1876 			 ioaddr + EL3_CMD);
1877 		if (vortex_debug > 1)
1878 			pr_debug("wrote 0x%08x to Wn3_Config\n", config);
1879 		/* AKPM: FIXME: Should reset Rx & Tx here.  P60 of 3c90xc.pdf */
1880 
1881 		spin_unlock_irq(&vp->lock);
1882 	}
1883 
1884 leave_media_alone:
1885 	if (vortex_debug > 2)
1886 	  pr_debug("%s: Media selection timer finished, %s.\n",
1887 			 dev->name, media_tbl[dev->if_port].name);
1888 
1889 	mod_timer(&vp->timer, RUN_AT(next_tick));
1890 	if (vp->deferred)
1891 		iowrite16(FakeIntr, ioaddr + EL3_CMD);
1892 }
1893 
1894 static void vortex_tx_timeout(struct net_device *dev)
1895 {
1896 	struct vortex_private *vp = netdev_priv(dev);
1897 	void __iomem *ioaddr = vp->ioaddr;
1898 
1899 	pr_err("%s: transmit timed out, tx_status %2.2x status %4.4x.\n",
1900 		   dev->name, ioread8(ioaddr + TxStatus),
1901 		   ioread16(ioaddr + EL3_STATUS));
1902 	pr_err("  diagnostics: net %04x media %04x dma %08x fifo %04x\n",
1903 			window_read16(vp, 4, Wn4_NetDiag),
1904 			window_read16(vp, 4, Wn4_Media),
1905 			ioread32(ioaddr + PktStatus),
1906 			window_read16(vp, 4, Wn4_FIFODiag));
1907 	/* Slight code bloat to be user friendly. */
1908 	if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88)
1909 		pr_err("%s: Transmitter encountered 16 collisions --"
1910 			   " network cable problem?\n", dev->name);
1911 	if (ioread16(ioaddr + EL3_STATUS) & IntLatch) {
1912 		pr_err("%s: Interrupt posted but not delivered --"
1913 			   " IRQ blocked by another device?\n", dev->name);
1914 		/* Bad idea here.. but we might as well handle a few events. */
1915 		{
1916 			/*
1917 			 * Block interrupts because vortex_interrupt does a bare spin_lock()
1918 			 */
1919 			unsigned long flags;
1920 			local_irq_save(flags);
1921 			if (vp->full_bus_master_tx)
1922 				boomerang_interrupt(dev->irq, dev);
1923 			else
1924 				vortex_interrupt(dev->irq, dev);
1925 			local_irq_restore(flags);
1926 		}
1927 	}
1928 
1929 	if (vortex_debug > 0)
1930 		dump_tx_ring(dev);
1931 
1932 	issue_and_wait(dev, TxReset);
1933 
1934 	dev->stats.tx_errors++;
1935 	if (vp->full_bus_master_tx) {
1936 		pr_debug("%s: Resetting the Tx ring pointer.\n", dev->name);
1937 		if (vp->cur_tx - vp->dirty_tx > 0  &&  ioread32(ioaddr + DownListPtr) == 0)
1938 			iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc),
1939 				 ioaddr + DownListPtr);
1940 		if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE)
1941 			netif_wake_queue (dev);
1942 		if (vp->drv_flags & IS_BOOMERANG)
1943 			iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold);
1944 		iowrite16(DownUnstall, ioaddr + EL3_CMD);
1945 	} else {
1946 		dev->stats.tx_dropped++;
1947 		netif_wake_queue(dev);
1948 	}
1949 
1950 	/* Issue Tx Enable */
1951 	iowrite16(TxEnable, ioaddr + EL3_CMD);
1952 	dev->trans_start = jiffies; /* prevent tx timeout */
1953 }
1954 
1955 /*
1956  * Handle uncommon interrupt sources.  This is a separate routine to minimize
1957  * the cache impact.
1958  */
1959 static void
1960 vortex_error(struct net_device *dev, int status)
1961 {
1962 	struct vortex_private *vp = netdev_priv(dev);
1963 	void __iomem *ioaddr = vp->ioaddr;
1964 	int do_tx_reset = 0, reset_mask = 0;
1965 	unsigned char tx_status = 0;
1966 
1967 	if (vortex_debug > 2) {
1968 		pr_err("%s: vortex_error(), status=0x%x\n", dev->name, status);
1969 	}
1970 
1971 	if (status & TxComplete) {			/* Really "TxError" for us. */
1972 		tx_status = ioread8(ioaddr + TxStatus);
1973 		/* Presumably a tx-timeout. We must merely re-enable. */
1974 		if (vortex_debug > 2 ||
1975 		    (tx_status != 0x88 && vortex_debug > 0)) {
1976 			pr_err("%s: Transmit error, Tx status register %2.2x.\n",
1977 				   dev->name, tx_status);
1978 			if (tx_status == 0x82) {
1979 				pr_err("Probably a duplex mismatch.  See "
1980 						"Documentation/networking/vortex.txt\n");
1981 			}
1982 			dump_tx_ring(dev);
1983 		}
1984 		if (tx_status & 0x14)  dev->stats.tx_fifo_errors++;
1985 		if (tx_status & 0x38)  dev->stats.tx_aborted_errors++;
1986 		if (tx_status & 0x08)  vp->xstats.tx_max_collisions++;
1987 		iowrite8(0, ioaddr + TxStatus);
1988 		if (tx_status & 0x30) {			/* txJabber or txUnderrun */
1989 			do_tx_reset = 1;
1990 		} else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET))  {	/* maxCollisions */
1991 			do_tx_reset = 1;
1992 			reset_mask = 0x0108;		/* Reset interface logic, but not download logic */
1993 		} else {				/* Merely re-enable the transmitter. */
1994 			iowrite16(TxEnable, ioaddr + EL3_CMD);
1995 		}
1996 	}
1997 
1998 	if (status & RxEarly)				/* Rx early is unused. */
1999 		iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD);
2000 
2001 	if (status & StatsFull) {			/* Empty statistics. */
2002 		static int DoneDidThat;
2003 		if (vortex_debug > 4)
2004 			pr_debug("%s: Updating stats.\n", dev->name);
2005 		update_stats(ioaddr, dev);
2006 		/* HACK: Disable statistics as an interrupt source. */
2007 		/* This occurs when we have the wrong media type! */
2008 		if (DoneDidThat == 0  &&
2009 			ioread16(ioaddr + EL3_STATUS) & StatsFull) {
2010 			pr_warning("%s: Updating statistics failed, disabling "
2011 				   "stats as an interrupt source.\n", dev->name);
2012 			iowrite16(SetIntrEnb |
2013 				  (window_read16(vp, 5, 10) & ~StatsFull),
2014 				  ioaddr + EL3_CMD);
2015 			vp->intr_enable &= ~StatsFull;
2016 			DoneDidThat++;
2017 		}
2018 	}
2019 	if (status & IntReq) {		/* Restore all interrupt sources.  */
2020 		iowrite16(vp->status_enable, ioaddr + EL3_CMD);
2021 		iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
2022 	}
2023 	if (status & HostError) {
2024 		u16 fifo_diag;
2025 		fifo_diag = window_read16(vp, 4, Wn4_FIFODiag);
2026 		pr_err("%s: Host error, FIFO diagnostic register %4.4x.\n",
2027 			   dev->name, fifo_diag);
2028 		/* Adapter failure requires Tx/Rx reset and reinit. */
2029 		if (vp->full_bus_master_tx) {
2030 			int bus_status = ioread32(ioaddr + PktStatus);
2031 			/* 0x80000000 PCI master abort. */
2032 			/* 0x40000000 PCI target abort. */
2033 			if (vortex_debug)
2034 				pr_err("%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status);
2035 
2036 			/* In this case, blow the card away */
2037 			/* Must not enter D3 or we can't legally issue the reset! */
2038 			vortex_down(dev, 0);
2039 			issue_and_wait(dev, TotalReset | 0xff);
2040 			vortex_up(dev);		/* AKPM: bug.  vortex_up() assumes that the rx ring is full. It may not be. */
2041 		} else if (fifo_diag & 0x0400)
2042 			do_tx_reset = 1;
2043 		if (fifo_diag & 0x3000) {
2044 			/* Reset Rx fifo and upload logic */
2045 			issue_and_wait(dev, RxReset|0x07);
2046 			/* Set the Rx filter to the current state. */
2047 			set_rx_mode(dev);
2048 			/* enable 802.1q VLAN tagged frames */
2049 			set_8021q_mode(dev, 1);
2050 			iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
2051 			iowrite16(AckIntr | HostError, ioaddr + EL3_CMD);
2052 		}
2053 	}
2054 
2055 	if (do_tx_reset) {
2056 		issue_and_wait(dev, TxReset|reset_mask);
2057 		iowrite16(TxEnable, ioaddr + EL3_CMD);
2058 		if (!vp->full_bus_master_tx)
2059 			netif_wake_queue(dev);
2060 	}
2061 }
2062 
2063 static netdev_tx_t
2064 vortex_start_xmit(struct sk_buff *skb, struct net_device *dev)
2065 {
2066 	struct vortex_private *vp = netdev_priv(dev);
2067 	void __iomem *ioaddr = vp->ioaddr;
2068 
2069 	/* Put out the doubleword header... */
2070 	iowrite32(skb->len, ioaddr + TX_FIFO);
2071 	if (vp->bus_master) {
2072 		/* Set the bus-master controller to transfer the packet. */
2073 		int len = (skb->len + 3) & ~3;
2074 		vp->tx_skb_dma = pci_map_single(VORTEX_PCI(vp), skb->data, len,
2075 						PCI_DMA_TODEVICE);
2076 		spin_lock_irq(&vp->window_lock);
2077 		window_set(vp, 7);
2078 		iowrite32(vp->tx_skb_dma, ioaddr + Wn7_MasterAddr);
2079 		iowrite16(len, ioaddr + Wn7_MasterLen);
2080 		spin_unlock_irq(&vp->window_lock);
2081 		vp->tx_skb = skb;
2082 		skb_tx_timestamp(skb);
2083 		iowrite16(StartDMADown, ioaddr + EL3_CMD);
2084 		/* netif_wake_queue() will be called at the DMADone interrupt. */
2085 	} else {
2086 		/* ... and the packet rounded to a doubleword. */
2087 		skb_tx_timestamp(skb);
2088 		iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
2089 		dev_consume_skb_any (skb);
2090 		if (ioread16(ioaddr + TxFree) > 1536) {
2091 			netif_start_queue (dev);	/* AKPM: redundant? */
2092 		} else {
2093 			/* Interrupt us when the FIFO has room for max-sized packet. */
2094 			netif_stop_queue(dev);
2095 			iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2096 		}
2097 	}
2098 
2099 
2100 	/* Clear the Tx status stack. */
2101 	{
2102 		int tx_status;
2103 		int i = 32;
2104 
2105 		while (--i > 0	&&	(tx_status = ioread8(ioaddr + TxStatus)) > 0) {
2106 			if (tx_status & 0x3C) {		/* A Tx-disabling error occurred.  */
2107 				if (vortex_debug > 2)
2108 				  pr_debug("%s: Tx error, status %2.2x.\n",
2109 						 dev->name, tx_status);
2110 				if (tx_status & 0x04) dev->stats.tx_fifo_errors++;
2111 				if (tx_status & 0x38) dev->stats.tx_aborted_errors++;
2112 				if (tx_status & 0x30) {
2113 					issue_and_wait(dev, TxReset);
2114 				}
2115 				iowrite16(TxEnable, ioaddr + EL3_CMD);
2116 			}
2117 			iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */
2118 		}
2119 	}
2120 	return NETDEV_TX_OK;
2121 }
2122 
2123 static netdev_tx_t
2124 boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev)
2125 {
2126 	struct vortex_private *vp = netdev_priv(dev);
2127 	void __iomem *ioaddr = vp->ioaddr;
2128 	/* Calculate the next Tx descriptor entry. */
2129 	int entry = vp->cur_tx % TX_RING_SIZE;
2130 	struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE];
2131 	unsigned long flags;
2132 
2133 	if (vortex_debug > 6) {
2134 		pr_debug("boomerang_start_xmit()\n");
2135 		pr_debug("%s: Trying to send a packet, Tx index %d.\n",
2136 			   dev->name, vp->cur_tx);
2137 	}
2138 
2139 	/*
2140 	 * We can't allow a recursion from our interrupt handler back into the
2141 	 * tx routine, as they take the same spin lock, and that causes
2142 	 * deadlock.  Just return NETDEV_TX_BUSY and let the stack try again in
2143 	 * a bit
2144 	 */
2145 	if (vp->handling_irq)
2146 		return NETDEV_TX_BUSY;
2147 
2148 	if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) {
2149 		if (vortex_debug > 0)
2150 			pr_warning("%s: BUG! Tx Ring full, refusing to send buffer.\n",
2151 				   dev->name);
2152 		netif_stop_queue(dev);
2153 		return NETDEV_TX_BUSY;
2154 	}
2155 
2156 	vp->tx_skbuff[entry] = skb;
2157 
2158 	vp->tx_ring[entry].next = 0;
2159 #if DO_ZEROCOPY
2160 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2161 			vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2162 	else
2163 			vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum);
2164 
2165 	if (!skb_shinfo(skb)->nr_frags) {
2166 		vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2167 										skb->len, PCI_DMA_TODEVICE));
2168 		vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG);
2169 	} else {
2170 		int i;
2171 
2172 		vp->tx_ring[entry].frag[0].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data,
2173 										skb_headlen(skb), PCI_DMA_TODEVICE));
2174 		vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb_headlen(skb));
2175 
2176 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2177 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2178 
2179 			vp->tx_ring[entry].frag[i+1].addr =
2180 					cpu_to_le32(pci_map_single(
2181 						VORTEX_PCI(vp),
2182 						(void *)skb_frag_address(frag),
2183 						skb_frag_size(frag), PCI_DMA_TODEVICE));
2184 
2185 			if (i == skb_shinfo(skb)->nr_frags-1)
2186 					vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag)|LAST_FRAG);
2187 			else
2188 					vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag));
2189 		}
2190 	}
2191 #else
2192 	vp->tx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, skb->len, PCI_DMA_TODEVICE));
2193 	vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG);
2194 	vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2195 #endif
2196 
2197 	spin_lock_irqsave(&vp->lock, flags);
2198 	/* Wait for the stall to complete. */
2199 	issue_and_wait(dev, DownStall);
2200 	prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc));
2201 	if (ioread32(ioaddr + DownListPtr) == 0) {
2202 		iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr);
2203 		vp->queued_packet++;
2204 	}
2205 
2206 	vp->cur_tx++;
2207 	if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) {
2208 		netif_stop_queue (dev);
2209 	} else {					/* Clear previous interrupt enable. */
2210 #if defined(tx_interrupt_mitigation)
2211 		/* Dubious. If in boomeang_interrupt "faster" cyclone ifdef
2212 		 * were selected, this would corrupt DN_COMPLETE. No?
2213 		 */
2214 		prev_entry->status &= cpu_to_le32(~TxIntrUploaded);
2215 #endif
2216 	}
2217 	skb_tx_timestamp(skb);
2218 	iowrite16(DownUnstall, ioaddr + EL3_CMD);
2219 	spin_unlock_irqrestore(&vp->lock, flags);
2220 	return NETDEV_TX_OK;
2221 }
2222 
2223 /* The interrupt handler does all of the Rx thread work and cleans up
2224    after the Tx thread. */
2225 
2226 /*
2227  * This is the ISR for the vortex series chips.
2228  * full_bus_master_tx == 0 && full_bus_master_rx == 0
2229  */
2230 
2231 static irqreturn_t
2232 vortex_interrupt(int irq, void *dev_id)
2233 {
2234 	struct net_device *dev = dev_id;
2235 	struct vortex_private *vp = netdev_priv(dev);
2236 	void __iomem *ioaddr;
2237 	int status;
2238 	int work_done = max_interrupt_work;
2239 	int handled = 0;
2240 
2241 	ioaddr = vp->ioaddr;
2242 	spin_lock(&vp->lock);
2243 
2244 	status = ioread16(ioaddr + EL3_STATUS);
2245 
2246 	if (vortex_debug > 6)
2247 		pr_debug("vortex_interrupt(). status=0x%4x\n", status);
2248 
2249 	if ((status & IntLatch) == 0)
2250 		goto handler_exit;		/* No interrupt: shared IRQs cause this */
2251 	handled = 1;
2252 
2253 	if (status & IntReq) {
2254 		status |= vp->deferred;
2255 		vp->deferred = 0;
2256 	}
2257 
2258 	if (status == 0xffff)		/* h/w no longer present (hotplug)? */
2259 		goto handler_exit;
2260 
2261 	if (vortex_debug > 4)
2262 		pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2263 			   dev->name, status, ioread8(ioaddr + Timer));
2264 
2265 	spin_lock(&vp->window_lock);
2266 	window_set(vp, 7);
2267 
2268 	do {
2269 		if (vortex_debug > 5)
2270 				pr_debug("%s: In interrupt loop, status %4.4x.\n",
2271 					   dev->name, status);
2272 		if (status & RxComplete)
2273 			vortex_rx(dev);
2274 
2275 		if (status & TxAvailable) {
2276 			if (vortex_debug > 5)
2277 				pr_debug("	TX room bit was handled.\n");
2278 			/* There's room in the FIFO for a full-sized packet. */
2279 			iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD);
2280 			netif_wake_queue (dev);
2281 		}
2282 
2283 		if (status & DMADone) {
2284 			if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) {
2285 				iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
2286 				pci_unmap_single(VORTEX_PCI(vp), vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, PCI_DMA_TODEVICE);
2287 				dev_kfree_skb_irq(vp->tx_skb); /* Release the transferred buffer */
2288 				if (ioread16(ioaddr + TxFree) > 1536) {
2289 					/*
2290 					 * AKPM: FIXME: I don't think we need this.  If the queue was stopped due to
2291 					 * insufficient FIFO room, the TxAvailable test will succeed and call
2292 					 * netif_wake_queue()
2293 					 */
2294 					netif_wake_queue(dev);
2295 				} else { /* Interrupt when FIFO has room for max-sized packet. */
2296 					iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2297 					netif_stop_queue(dev);
2298 				}
2299 			}
2300 		}
2301 		/* Check for all uncommon interrupts at once. */
2302 		if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) {
2303 			if (status == 0xffff)
2304 				break;
2305 			if (status & RxEarly)
2306 				vortex_rx(dev);
2307 			spin_unlock(&vp->window_lock);
2308 			vortex_error(dev, status);
2309 			spin_lock(&vp->window_lock);
2310 			window_set(vp, 7);
2311 		}
2312 
2313 		if (--work_done < 0) {
2314 			pr_warning("%s: Too much work in interrupt, status %4.4x.\n",
2315 				dev->name, status);
2316 			/* Disable all pending interrupts. */
2317 			do {
2318 				vp->deferred |= status;
2319 				iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2320 					 ioaddr + EL3_CMD);
2321 				iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2322 			} while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2323 			/* The timer will reenable interrupts. */
2324 			mod_timer(&vp->timer, jiffies + 1*HZ);
2325 			break;
2326 		}
2327 		/* Acknowledge the IRQ. */
2328 		iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2329 	} while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
2330 
2331 	spin_unlock(&vp->window_lock);
2332 
2333 	if (vortex_debug > 4)
2334 		pr_debug("%s: exiting interrupt, status %4.4x.\n",
2335 			   dev->name, status);
2336 handler_exit:
2337 	spin_unlock(&vp->lock);
2338 	return IRQ_RETVAL(handled);
2339 }
2340 
2341 /*
2342  * This is the ISR for the boomerang series chips.
2343  * full_bus_master_tx == 1 && full_bus_master_rx == 1
2344  */
2345 
2346 static irqreturn_t
2347 boomerang_interrupt(int irq, void *dev_id)
2348 {
2349 	struct net_device *dev = dev_id;
2350 	struct vortex_private *vp = netdev_priv(dev);
2351 	void __iomem *ioaddr;
2352 	int status;
2353 	int work_done = max_interrupt_work;
2354 
2355 	ioaddr = vp->ioaddr;
2356 
2357 
2358 	/*
2359 	 * It seems dopey to put the spinlock this early, but we could race against vortex_tx_timeout
2360 	 * and boomerang_start_xmit
2361 	 */
2362 	spin_lock(&vp->lock);
2363 	vp->handling_irq = 1;
2364 
2365 	status = ioread16(ioaddr + EL3_STATUS);
2366 
2367 	if (vortex_debug > 6)
2368 		pr_debug("boomerang_interrupt. status=0x%4x\n", status);
2369 
2370 	if ((status & IntLatch) == 0)
2371 		goto handler_exit;		/* No interrupt: shared IRQs can cause this */
2372 
2373 	if (status == 0xffff) {		/* h/w no longer present (hotplug)? */
2374 		if (vortex_debug > 1)
2375 			pr_debug("boomerang_interrupt(1): status = 0xffff\n");
2376 		goto handler_exit;
2377 	}
2378 
2379 	if (status & IntReq) {
2380 		status |= vp->deferred;
2381 		vp->deferred = 0;
2382 	}
2383 
2384 	if (vortex_debug > 4)
2385 		pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2386 			   dev->name, status, ioread8(ioaddr + Timer));
2387 	do {
2388 		if (vortex_debug > 5)
2389 				pr_debug("%s: In interrupt loop, status %4.4x.\n",
2390 					   dev->name, status);
2391 		if (status & UpComplete) {
2392 			iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD);
2393 			if (vortex_debug > 5)
2394 				pr_debug("boomerang_interrupt->boomerang_rx\n");
2395 			boomerang_rx(dev);
2396 		}
2397 
2398 		if (status & DownComplete) {
2399 			unsigned int dirty_tx = vp->dirty_tx;
2400 
2401 			iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD);
2402 			while (vp->cur_tx - dirty_tx > 0) {
2403 				int entry = dirty_tx % TX_RING_SIZE;
2404 #if 1	/* AKPM: the latter is faster, but cyclone-only */
2405 				if (ioread32(ioaddr + DownListPtr) ==
2406 					vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc))
2407 					break;			/* It still hasn't been processed. */
2408 #else
2409 				if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0)
2410 					break;			/* It still hasn't been processed. */
2411 #endif
2412 
2413 				if (vp->tx_skbuff[entry]) {
2414 					struct sk_buff *skb = vp->tx_skbuff[entry];
2415 #if DO_ZEROCOPY
2416 					int i;
2417 					for (i=0; i<=skb_shinfo(skb)->nr_frags; i++)
2418 							pci_unmap_single(VORTEX_PCI(vp),
2419 											 le32_to_cpu(vp->tx_ring[entry].frag[i].addr),
2420 											 le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF,
2421 											 PCI_DMA_TODEVICE);
2422 #else
2423 					pci_unmap_single(VORTEX_PCI(vp),
2424 						le32_to_cpu(vp->tx_ring[entry].addr), skb->len, PCI_DMA_TODEVICE);
2425 #endif
2426 					dev_kfree_skb_irq(skb);
2427 					vp->tx_skbuff[entry] = NULL;
2428 				} else {
2429 					pr_debug("boomerang_interrupt: no skb!\n");
2430 				}
2431 				/* dev->stats.tx_packets++;  Counted below. */
2432 				dirty_tx++;
2433 			}
2434 			vp->dirty_tx = dirty_tx;
2435 			if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) {
2436 				if (vortex_debug > 6)
2437 					pr_debug("boomerang_interrupt: wake queue\n");
2438 				netif_wake_queue (dev);
2439 			}
2440 		}
2441 
2442 		/* Check for all uncommon interrupts at once. */
2443 		if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq))
2444 			vortex_error(dev, status);
2445 
2446 		if (--work_done < 0) {
2447 			pr_warning("%s: Too much work in interrupt, status %4.4x.\n",
2448 				dev->name, status);
2449 			/* Disable all pending interrupts. */
2450 			do {
2451 				vp->deferred |= status;
2452 				iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2453 					 ioaddr + EL3_CMD);
2454 				iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2455 			} while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2456 			/* The timer will reenable interrupts. */
2457 			mod_timer(&vp->timer, jiffies + 1*HZ);
2458 			break;
2459 		}
2460 		/* Acknowledge the IRQ. */
2461 		iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2462 		if (vp->cb_fn_base)			/* The PCMCIA people are idiots.  */
2463 			iowrite32(0x8000, vp->cb_fn_base + 4);
2464 
2465 	} while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch);
2466 
2467 	if (vortex_debug > 4)
2468 		pr_debug("%s: exiting interrupt, status %4.4x.\n",
2469 			   dev->name, status);
2470 handler_exit:
2471 	vp->handling_irq = 0;
2472 	spin_unlock(&vp->lock);
2473 	return IRQ_HANDLED;
2474 }
2475 
2476 static int vortex_rx(struct net_device *dev)
2477 {
2478 	struct vortex_private *vp = netdev_priv(dev);
2479 	void __iomem *ioaddr = vp->ioaddr;
2480 	int i;
2481 	short rx_status;
2482 
2483 	if (vortex_debug > 5)
2484 		pr_debug("vortex_rx(): status %4.4x, rx_status %4.4x.\n",
2485 			   ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus));
2486 	while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) {
2487 		if (rx_status & 0x4000) { /* Error, update stats. */
2488 			unsigned char rx_error = ioread8(ioaddr + RxErrors);
2489 			if (vortex_debug > 2)
2490 				pr_debug(" Rx error: status %2.2x.\n", rx_error);
2491 			dev->stats.rx_errors++;
2492 			if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2493 			if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2494 			if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2495 			if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2496 			if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2497 		} else {
2498 			/* The packet length: up to 4.5K!. */
2499 			int pkt_len = rx_status & 0x1fff;
2500 			struct sk_buff *skb;
2501 
2502 			skb = netdev_alloc_skb(dev, pkt_len + 5);
2503 			if (vortex_debug > 4)
2504 				pr_debug("Receiving packet size %d status %4.4x.\n",
2505 					   pkt_len, rx_status);
2506 			if (skb != NULL) {
2507 				skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
2508 				/* 'skb_put()' points to the start of sk_buff data area. */
2509 				if (vp->bus_master &&
2510 					! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) {
2511 					dma_addr_t dma = pci_map_single(VORTEX_PCI(vp), skb_put(skb, pkt_len),
2512 									   pkt_len, PCI_DMA_FROMDEVICE);
2513 					iowrite32(dma, ioaddr + Wn7_MasterAddr);
2514 					iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
2515 					iowrite16(StartDMAUp, ioaddr + EL3_CMD);
2516 					while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)
2517 						;
2518 					pci_unmap_single(VORTEX_PCI(vp), dma, pkt_len, PCI_DMA_FROMDEVICE);
2519 				} else {
2520 					ioread32_rep(ioaddr + RX_FIFO,
2521 					             skb_put(skb, pkt_len),
2522 						     (pkt_len + 3) >> 2);
2523 				}
2524 				iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
2525 				skb->protocol = eth_type_trans(skb, dev);
2526 				netif_rx(skb);
2527 				dev->stats.rx_packets++;
2528 				/* Wait a limited time to go to next packet. */
2529 				for (i = 200; i >= 0; i--)
2530 					if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
2531 						break;
2532 				continue;
2533 			} else if (vortex_debug > 0)
2534 				pr_notice("%s: No memory to allocate a sk_buff of size %d.\n",
2535 					dev->name, pkt_len);
2536 			dev->stats.rx_dropped++;
2537 		}
2538 		issue_and_wait(dev, RxDiscard);
2539 	}
2540 
2541 	return 0;
2542 }
2543 
2544 static int
2545 boomerang_rx(struct net_device *dev)
2546 {
2547 	struct vortex_private *vp = netdev_priv(dev);
2548 	int entry = vp->cur_rx % RX_RING_SIZE;
2549 	void __iomem *ioaddr = vp->ioaddr;
2550 	int rx_status;
2551 	int rx_work_limit = vp->dirty_rx + RX_RING_SIZE - vp->cur_rx;
2552 
2553 	if (vortex_debug > 5)
2554 		pr_debug("boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS));
2555 
2556 	while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){
2557 		if (--rx_work_limit < 0)
2558 			break;
2559 		if (rx_status & RxDError) { /* Error, update stats. */
2560 			unsigned char rx_error = rx_status >> 16;
2561 			if (vortex_debug > 2)
2562 				pr_debug(" Rx error: status %2.2x.\n", rx_error);
2563 			dev->stats.rx_errors++;
2564 			if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2565 			if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2566 			if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2567 			if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2568 			if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2569 		} else {
2570 			/* The packet length: up to 4.5K!. */
2571 			int pkt_len = rx_status & 0x1fff;
2572 			struct sk_buff *skb;
2573 			dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr);
2574 
2575 			if (vortex_debug > 4)
2576 				pr_debug("Receiving packet size %d status %4.4x.\n",
2577 					   pkt_len, rx_status);
2578 
2579 			/* Check if the packet is long enough to just accept without
2580 			   copying to a properly sized skbuff. */
2581 			if (pkt_len < rx_copybreak &&
2582 			    (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
2583 				skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
2584 				pci_dma_sync_single_for_cpu(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2585 				/* 'skb_put()' points to the start of sk_buff data area. */
2586 				memcpy(skb_put(skb, pkt_len),
2587 					   vp->rx_skbuff[entry]->data,
2588 					   pkt_len);
2589 				pci_dma_sync_single_for_device(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2590 				vp->rx_copy++;
2591 			} else {
2592 				/* Pass up the skbuff already on the Rx ring. */
2593 				skb = vp->rx_skbuff[entry];
2594 				vp->rx_skbuff[entry] = NULL;
2595 				skb_put(skb, pkt_len);
2596 				pci_unmap_single(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2597 				vp->rx_nocopy++;
2598 			}
2599 			skb->protocol = eth_type_trans(skb, dev);
2600 			{					/* Use hardware checksum info. */
2601 				int csum_bits = rx_status & 0xee000000;
2602 				if (csum_bits &&
2603 					(csum_bits == (IPChksumValid | TCPChksumValid) ||
2604 					 csum_bits == (IPChksumValid | UDPChksumValid))) {
2605 					skb->ip_summed = CHECKSUM_UNNECESSARY;
2606 					vp->rx_csumhits++;
2607 				}
2608 			}
2609 			netif_rx(skb);
2610 			dev->stats.rx_packets++;
2611 		}
2612 		entry = (++vp->cur_rx) % RX_RING_SIZE;
2613 	}
2614 	/* Refill the Rx ring buffers. */
2615 	for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) {
2616 		struct sk_buff *skb;
2617 		entry = vp->dirty_rx % RX_RING_SIZE;
2618 		if (vp->rx_skbuff[entry] == NULL) {
2619 			skb = netdev_alloc_skb_ip_align(dev, PKT_BUF_SZ);
2620 			if (skb == NULL) {
2621 				static unsigned long last_jif;
2622 				if (time_after(jiffies, last_jif + 10 * HZ)) {
2623 					pr_warning("%s: memory shortage\n", dev->name);
2624 					last_jif = jiffies;
2625 				}
2626 				if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)
2627 					mod_timer(&vp->rx_oom_timer, RUN_AT(HZ * 1));
2628 				break;			/* Bad news!  */
2629 			}
2630 
2631 			vp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
2632 			vp->rx_skbuff[entry] = skb;
2633 		}
2634 		vp->rx_ring[entry].status = 0;	/* Clear complete bit. */
2635 		iowrite16(UpUnstall, ioaddr + EL3_CMD);
2636 	}
2637 	return 0;
2638 }
2639 
2640 /*
2641  * If we've hit a total OOM refilling the Rx ring we poll once a second
2642  * for some memory.  Otherwise there is no way to restart the rx process.
2643  */
2644 static void
2645 rx_oom_timer(unsigned long arg)
2646 {
2647 	struct net_device *dev = (struct net_device *)arg;
2648 	struct vortex_private *vp = netdev_priv(dev);
2649 
2650 	spin_lock_irq(&vp->lock);
2651 	if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)	/* This test is redundant, but makes me feel good */
2652 		boomerang_rx(dev);
2653 	if (vortex_debug > 1) {
2654 		pr_debug("%s: rx_oom_timer %s\n", dev->name,
2655 			((vp->cur_rx - vp->dirty_rx) != RX_RING_SIZE) ? "succeeded" : "retrying");
2656 	}
2657 	spin_unlock_irq(&vp->lock);
2658 }
2659 
2660 static void
2661 vortex_down(struct net_device *dev, int final_down)
2662 {
2663 	struct vortex_private *vp = netdev_priv(dev);
2664 	void __iomem *ioaddr = vp->ioaddr;
2665 
2666 	netif_stop_queue (dev);
2667 
2668 	del_timer_sync(&vp->rx_oom_timer);
2669 	del_timer_sync(&vp->timer);
2670 
2671 	/* Turn off statistics ASAP.  We update dev->stats below. */
2672 	iowrite16(StatsDisable, ioaddr + EL3_CMD);
2673 
2674 	/* Disable the receiver and transmitter. */
2675 	iowrite16(RxDisable, ioaddr + EL3_CMD);
2676 	iowrite16(TxDisable, ioaddr + EL3_CMD);
2677 
2678 	/* Disable receiving 802.1q tagged frames */
2679 	set_8021q_mode(dev, 0);
2680 
2681 	if (dev->if_port == XCVR_10base2)
2682 		/* Turn off thinnet power.  Green! */
2683 		iowrite16(StopCoax, ioaddr + EL3_CMD);
2684 
2685 	iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
2686 
2687 	update_stats(ioaddr, dev);
2688 	if (vp->full_bus_master_rx)
2689 		iowrite32(0, ioaddr + UpListPtr);
2690 	if (vp->full_bus_master_tx)
2691 		iowrite32(0, ioaddr + DownListPtr);
2692 
2693 	if (final_down && VORTEX_PCI(vp)) {
2694 		vp->pm_state_valid = 1;
2695 		pci_save_state(VORTEX_PCI(vp));
2696 		acpi_set_WOL(dev);
2697 	}
2698 }
2699 
2700 static int
2701 vortex_close(struct net_device *dev)
2702 {
2703 	struct vortex_private *vp = netdev_priv(dev);
2704 	void __iomem *ioaddr = vp->ioaddr;
2705 	int i;
2706 
2707 	if (netif_device_present(dev))
2708 		vortex_down(dev, 1);
2709 
2710 	if (vortex_debug > 1) {
2711 		pr_debug("%s: vortex_close() status %4.4x, Tx status %2.2x.\n",
2712 			   dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus));
2713 		pr_debug("%s: vortex close stats: rx_nocopy %d rx_copy %d"
2714 			   " tx_queued %d Rx pre-checksummed %d.\n",
2715 			   dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits);
2716 	}
2717 
2718 #if DO_ZEROCOPY
2719 	if (vp->rx_csumhits &&
2720 	    (vp->drv_flags & HAS_HWCKSM) == 0 &&
2721 	    (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) {
2722 		pr_warning("%s supports hardware checksums, and we're not using them!\n", dev->name);
2723 	}
2724 #endif
2725 
2726 	free_irq(dev->irq, dev);
2727 
2728 	if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
2729 		for (i = 0; i < RX_RING_SIZE; i++)
2730 			if (vp->rx_skbuff[i]) {
2731 				pci_unmap_single(	VORTEX_PCI(vp), le32_to_cpu(vp->rx_ring[i].addr),
2732 									PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2733 				dev_kfree_skb(vp->rx_skbuff[i]);
2734 				vp->rx_skbuff[i] = NULL;
2735 			}
2736 	}
2737 	if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
2738 		for (i = 0; i < TX_RING_SIZE; i++) {
2739 			if (vp->tx_skbuff[i]) {
2740 				struct sk_buff *skb = vp->tx_skbuff[i];
2741 #if DO_ZEROCOPY
2742 				int k;
2743 
2744 				for (k=0; k<=skb_shinfo(skb)->nr_frags; k++)
2745 						pci_unmap_single(VORTEX_PCI(vp),
2746 										 le32_to_cpu(vp->tx_ring[i].frag[k].addr),
2747 										 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF,
2748 										 PCI_DMA_TODEVICE);
2749 #else
2750 				pci_unmap_single(VORTEX_PCI(vp), le32_to_cpu(vp->tx_ring[i].addr), skb->len, PCI_DMA_TODEVICE);
2751 #endif
2752 				dev_kfree_skb(skb);
2753 				vp->tx_skbuff[i] = NULL;
2754 			}
2755 		}
2756 	}
2757 
2758 	return 0;
2759 }
2760 
2761 static void
2762 dump_tx_ring(struct net_device *dev)
2763 {
2764 	if (vortex_debug > 0) {
2765 	struct vortex_private *vp = netdev_priv(dev);
2766 		void __iomem *ioaddr = vp->ioaddr;
2767 
2768 		if (vp->full_bus_master_tx) {
2769 			int i;
2770 			int stalled = ioread32(ioaddr + PktStatus) & 0x04;	/* Possible racy. But it's only debug stuff */
2771 
2772 			pr_err("  Flags; bus-master %d, dirty %d(%d) current %d(%d)\n",
2773 					vp->full_bus_master_tx,
2774 					vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE,
2775 					vp->cur_tx, vp->cur_tx % TX_RING_SIZE);
2776 			pr_err("  Transmit list %8.8x vs. %p.\n",
2777 				   ioread32(ioaddr + DownListPtr),
2778 				   &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]);
2779 			issue_and_wait(dev, DownStall);
2780 			for (i = 0; i < TX_RING_SIZE; i++) {
2781 				unsigned int length;
2782 
2783 #if DO_ZEROCOPY
2784 				length = le32_to_cpu(vp->tx_ring[i].frag[0].length);
2785 #else
2786 				length = le32_to_cpu(vp->tx_ring[i].length);
2787 #endif
2788 				pr_err("  %d: @%p  length %8.8x status %8.8x\n",
2789 					   i, &vp->tx_ring[i], length,
2790 					   le32_to_cpu(vp->tx_ring[i].status));
2791 			}
2792 			if (!stalled)
2793 				iowrite16(DownUnstall, ioaddr + EL3_CMD);
2794 		}
2795 	}
2796 }
2797 
2798 static struct net_device_stats *vortex_get_stats(struct net_device *dev)
2799 {
2800 	struct vortex_private *vp = netdev_priv(dev);
2801 	void __iomem *ioaddr = vp->ioaddr;
2802 	unsigned long flags;
2803 
2804 	if (netif_device_present(dev)) {	/* AKPM: Used to be netif_running */
2805 		spin_lock_irqsave (&vp->lock, flags);
2806 		update_stats(ioaddr, dev);
2807 		spin_unlock_irqrestore (&vp->lock, flags);
2808 	}
2809 	return &dev->stats;
2810 }
2811 
2812 /*  Update statistics.
2813 	Unlike with the EL3 we need not worry about interrupts changing
2814 	the window setting from underneath us, but we must still guard
2815 	against a race condition with a StatsUpdate interrupt updating the
2816 	table.  This is done by checking that the ASM (!) code generated uses
2817 	atomic updates with '+='.
2818 	*/
2819 static void update_stats(void __iomem *ioaddr, struct net_device *dev)
2820 {
2821 	struct vortex_private *vp = netdev_priv(dev);
2822 
2823 	/* Unlike the 3c5x9 we need not turn off stats updates while reading. */
2824 	/* Switch to the stats window, and read everything. */
2825 	dev->stats.tx_carrier_errors		+= window_read8(vp, 6, 0);
2826 	dev->stats.tx_heartbeat_errors		+= window_read8(vp, 6, 1);
2827 	dev->stats.tx_window_errors		+= window_read8(vp, 6, 4);
2828 	dev->stats.rx_fifo_errors		+= window_read8(vp, 6, 5);
2829 	dev->stats.tx_packets			+= window_read8(vp, 6, 6);
2830 	dev->stats.tx_packets			+= (window_read8(vp, 6, 9) &
2831 						    0x30) << 4;
2832 	/* Rx packets	*/			window_read8(vp, 6, 7);   /* Must read to clear */
2833 	/* Don't bother with register 9, an extension of registers 6&7.
2834 	   If we do use the 6&7 values the atomic update assumption above
2835 	   is invalid. */
2836 	dev->stats.rx_bytes 			+= window_read16(vp, 6, 10);
2837 	dev->stats.tx_bytes 			+= window_read16(vp, 6, 12);
2838 	/* Extra stats for get_ethtool_stats() */
2839 	vp->xstats.tx_multiple_collisions	+= window_read8(vp, 6, 2);
2840 	vp->xstats.tx_single_collisions         += window_read8(vp, 6, 3);
2841 	vp->xstats.tx_deferred			+= window_read8(vp, 6, 8);
2842 	vp->xstats.rx_bad_ssd			+= window_read8(vp, 4, 12);
2843 
2844 	dev->stats.collisions = vp->xstats.tx_multiple_collisions
2845 		+ vp->xstats.tx_single_collisions
2846 		+ vp->xstats.tx_max_collisions;
2847 
2848 	{
2849 		u8 up = window_read8(vp, 4, 13);
2850 		dev->stats.rx_bytes += (up & 0x0f) << 16;
2851 		dev->stats.tx_bytes += (up & 0xf0) << 12;
2852 	}
2853 }
2854 
2855 static int vortex_nway_reset(struct net_device *dev)
2856 {
2857 	struct vortex_private *vp = netdev_priv(dev);
2858 
2859 	return mii_nway_restart(&vp->mii);
2860 }
2861 
2862 static int vortex_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2863 {
2864 	struct vortex_private *vp = netdev_priv(dev);
2865 
2866 	return mii_ethtool_gset(&vp->mii, cmd);
2867 }
2868 
2869 static int vortex_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2870 {
2871 	struct vortex_private *vp = netdev_priv(dev);
2872 
2873 	return mii_ethtool_sset(&vp->mii, cmd);
2874 }
2875 
2876 static u32 vortex_get_msglevel(struct net_device *dev)
2877 {
2878 	return vortex_debug;
2879 }
2880 
2881 static void vortex_set_msglevel(struct net_device *dev, u32 dbg)
2882 {
2883 	vortex_debug = dbg;
2884 }
2885 
2886 static int vortex_get_sset_count(struct net_device *dev, int sset)
2887 {
2888 	switch (sset) {
2889 	case ETH_SS_STATS:
2890 		return VORTEX_NUM_STATS;
2891 	default:
2892 		return -EOPNOTSUPP;
2893 	}
2894 }
2895 
2896 static void vortex_get_ethtool_stats(struct net_device *dev,
2897 	struct ethtool_stats *stats, u64 *data)
2898 {
2899 	struct vortex_private *vp = netdev_priv(dev);
2900 	void __iomem *ioaddr = vp->ioaddr;
2901 	unsigned long flags;
2902 
2903 	spin_lock_irqsave(&vp->lock, flags);
2904 	update_stats(ioaddr, dev);
2905 	spin_unlock_irqrestore(&vp->lock, flags);
2906 
2907 	data[0] = vp->xstats.tx_deferred;
2908 	data[1] = vp->xstats.tx_max_collisions;
2909 	data[2] = vp->xstats.tx_multiple_collisions;
2910 	data[3] = vp->xstats.tx_single_collisions;
2911 	data[4] = vp->xstats.rx_bad_ssd;
2912 }
2913 
2914 
2915 static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2916 {
2917 	switch (stringset) {
2918 	case ETH_SS_STATS:
2919 		memcpy(data, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
2920 		break;
2921 	default:
2922 		WARN_ON(1);
2923 		break;
2924 	}
2925 }
2926 
2927 static void vortex_get_drvinfo(struct net_device *dev,
2928 					struct ethtool_drvinfo *info)
2929 {
2930 	struct vortex_private *vp = netdev_priv(dev);
2931 
2932 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2933 	if (VORTEX_PCI(vp)) {
2934 		strlcpy(info->bus_info, pci_name(VORTEX_PCI(vp)),
2935 			sizeof(info->bus_info));
2936 	} else {
2937 		if (VORTEX_EISA(vp))
2938 			strlcpy(info->bus_info, dev_name(vp->gendev),
2939 				sizeof(info->bus_info));
2940 		else
2941 			snprintf(info->bus_info, sizeof(info->bus_info),
2942 				"EISA 0x%lx %d", dev->base_addr, dev->irq);
2943 	}
2944 }
2945 
2946 static void vortex_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2947 {
2948 	struct vortex_private *vp = netdev_priv(dev);
2949 
2950 	if (!VORTEX_PCI(vp))
2951 		return;
2952 
2953 	wol->supported = WAKE_MAGIC;
2954 
2955 	wol->wolopts = 0;
2956 	if (vp->enable_wol)
2957 		wol->wolopts |= WAKE_MAGIC;
2958 }
2959 
2960 static int vortex_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2961 {
2962 	struct vortex_private *vp = netdev_priv(dev);
2963 
2964 	if (!VORTEX_PCI(vp))
2965 		return -EOPNOTSUPP;
2966 
2967 	if (wol->wolopts & ~WAKE_MAGIC)
2968 		return -EINVAL;
2969 
2970 	if (wol->wolopts & WAKE_MAGIC)
2971 		vp->enable_wol = 1;
2972 	else
2973 		vp->enable_wol = 0;
2974 	acpi_set_WOL(dev);
2975 
2976 	return 0;
2977 }
2978 
2979 static const struct ethtool_ops vortex_ethtool_ops = {
2980 	.get_drvinfo		= vortex_get_drvinfo,
2981 	.get_strings            = vortex_get_strings,
2982 	.get_msglevel           = vortex_get_msglevel,
2983 	.set_msglevel           = vortex_set_msglevel,
2984 	.get_ethtool_stats      = vortex_get_ethtool_stats,
2985 	.get_sset_count		= vortex_get_sset_count,
2986 	.get_settings           = vortex_get_settings,
2987 	.set_settings           = vortex_set_settings,
2988 	.get_link               = ethtool_op_get_link,
2989 	.nway_reset             = vortex_nway_reset,
2990 	.get_wol                = vortex_get_wol,
2991 	.set_wol                = vortex_set_wol,
2992 	.get_ts_info		= ethtool_op_get_ts_info,
2993 };
2994 
2995 #ifdef CONFIG_PCI
2996 /*
2997  *	Must power the device up to do MDIO operations
2998  */
2999 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3000 {
3001 	int err;
3002 	struct vortex_private *vp = netdev_priv(dev);
3003 	pci_power_t state = 0;
3004 
3005 	if(VORTEX_PCI(vp))
3006 		state = VORTEX_PCI(vp)->current_state;
3007 
3008 	/* The kernel core really should have pci_get_power_state() */
3009 
3010 	if(state != 0)
3011 		pci_set_power_state(VORTEX_PCI(vp), PCI_D0);
3012 	err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL);
3013 	if(state != 0)
3014 		pci_set_power_state(VORTEX_PCI(vp), state);
3015 
3016 	return err;
3017 }
3018 #endif
3019 
3020 
3021 /* Pre-Cyclone chips have no documented multicast filter, so the only
3022    multicast setting is to receive all multicast frames.  At least
3023    the chip has a very clean way to set the mode, unlike many others. */
3024 static void set_rx_mode(struct net_device *dev)
3025 {
3026 	struct vortex_private *vp = netdev_priv(dev);
3027 	void __iomem *ioaddr = vp->ioaddr;
3028 	int new_mode;
3029 
3030 	if (dev->flags & IFF_PROMISC) {
3031 		if (vortex_debug > 3)
3032 			pr_notice("%s: Setting promiscuous mode.\n", dev->name);
3033 		new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm;
3034 	} else	if (!netdev_mc_empty(dev) || dev->flags & IFF_ALLMULTI) {
3035 		new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast;
3036 	} else
3037 		new_mode = SetRxFilter | RxStation | RxBroadcast;
3038 
3039 	iowrite16(new_mode, ioaddr + EL3_CMD);
3040 }
3041 
3042 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
3043 /* Setup the card so that it can receive frames with an 802.1q VLAN tag.
3044    Note that this must be done after each RxReset due to some backwards
3045    compatibility logic in the Cyclone and Tornado ASICs */
3046 
3047 /* The Ethernet Type used for 802.1q tagged frames */
3048 #define VLAN_ETHER_TYPE 0x8100
3049 
3050 static void set_8021q_mode(struct net_device *dev, int enable)
3051 {
3052 	struct vortex_private *vp = netdev_priv(dev);
3053 	int mac_ctrl;
3054 
3055 	if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) {
3056 		/* cyclone and tornado chipsets can recognize 802.1q
3057 		 * tagged frames and treat them correctly */
3058 
3059 		int max_pkt_size = dev->mtu+14;	/* MTU+Ethernet header */
3060 		if (enable)
3061 			max_pkt_size += 4;	/* 802.1Q VLAN tag */
3062 
3063 		window_write16(vp, max_pkt_size, 3, Wn3_MaxPktSize);
3064 
3065 		/* set VlanEtherType to let the hardware checksumming
3066 		   treat tagged frames correctly */
3067 		window_write16(vp, VLAN_ETHER_TYPE, 7, Wn7_VlanEtherType);
3068 	} else {
3069 		/* on older cards we have to enable large frames */
3070 
3071 		vp->large_frames = dev->mtu > 1500 || enable;
3072 
3073 		mac_ctrl = window_read16(vp, 3, Wn3_MAC_Ctrl);
3074 		if (vp->large_frames)
3075 			mac_ctrl |= 0x40;
3076 		else
3077 			mac_ctrl &= ~0x40;
3078 		window_write16(vp, mac_ctrl, 3, Wn3_MAC_Ctrl);
3079 	}
3080 }
3081 #else
3082 
3083 static void set_8021q_mode(struct net_device *dev, int enable)
3084 {
3085 }
3086 
3087 
3088 #endif
3089 
3090 /* MII transceiver control section.
3091    Read and write the MII registers using software-generated serial
3092    MDIO protocol.  See the MII specifications or DP83840A data sheet
3093    for details. */
3094 
3095 /* The maximum data clock rate is 2.5 Mhz.  The minimum timing is usually
3096    met by back-to-back PCI I/O cycles, but we insert a delay to avoid
3097    "overclocking" issues. */
3098 static void mdio_delay(struct vortex_private *vp)
3099 {
3100 	window_read32(vp, 4, Wn4_PhysicalMgmt);
3101 }
3102 
3103 #define MDIO_SHIFT_CLK	0x01
3104 #define MDIO_DIR_WRITE	0x04
3105 #define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE)
3106 #define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE)
3107 #define MDIO_DATA_READ	0x02
3108 #define MDIO_ENB_IN		0x00
3109 
3110 /* Generate the preamble required for initial synchronization and
3111    a few older transceivers. */
3112 static void mdio_sync(struct vortex_private *vp, int bits)
3113 {
3114 	/* Establish sync by sending at least 32 logic ones. */
3115 	while (-- bits >= 0) {
3116 		window_write16(vp, MDIO_DATA_WRITE1, 4, Wn4_PhysicalMgmt);
3117 		mdio_delay(vp);
3118 		window_write16(vp, MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK,
3119 			       4, Wn4_PhysicalMgmt);
3120 		mdio_delay(vp);
3121 	}
3122 }
3123 
3124 static int mdio_read(struct net_device *dev, int phy_id, int location)
3125 {
3126 	int i;
3127 	struct vortex_private *vp = netdev_priv(dev);
3128 	int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
3129 	unsigned int retval = 0;
3130 
3131 	spin_lock_bh(&vp->mii_lock);
3132 
3133 	if (mii_preamble_required)
3134 		mdio_sync(vp, 32);
3135 
3136 	/* Shift the read command bits out. */
3137 	for (i = 14; i >= 0; i--) {
3138 		int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3139 		window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3140 		mdio_delay(vp);
3141 		window_write16(vp, dataval | MDIO_SHIFT_CLK,
3142 			       4, Wn4_PhysicalMgmt);
3143 		mdio_delay(vp);
3144 	}
3145 	/* Read the two transition, 16 data, and wire-idle bits. */
3146 	for (i = 19; i > 0; i--) {
3147 		window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3148 		mdio_delay(vp);
3149 		retval = (retval << 1) |
3150 			((window_read16(vp, 4, Wn4_PhysicalMgmt) &
3151 			  MDIO_DATA_READ) ? 1 : 0);
3152 		window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3153 			       4, Wn4_PhysicalMgmt);
3154 		mdio_delay(vp);
3155 	}
3156 
3157 	spin_unlock_bh(&vp->mii_lock);
3158 
3159 	return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff;
3160 }
3161 
3162 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
3163 {
3164 	struct vortex_private *vp = netdev_priv(dev);
3165 	int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value;
3166 	int i;
3167 
3168 	spin_lock_bh(&vp->mii_lock);
3169 
3170 	if (mii_preamble_required)
3171 		mdio_sync(vp, 32);
3172 
3173 	/* Shift the command bits out. */
3174 	for (i = 31; i >= 0; i--) {
3175 		int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3176 		window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3177 		mdio_delay(vp);
3178 		window_write16(vp, dataval | MDIO_SHIFT_CLK,
3179 			       4, Wn4_PhysicalMgmt);
3180 		mdio_delay(vp);
3181 	}
3182 	/* Leave the interface idle. */
3183 	for (i = 1; i >= 0; i--) {
3184 		window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3185 		mdio_delay(vp);
3186 		window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3187 			       4, Wn4_PhysicalMgmt);
3188 		mdio_delay(vp);
3189 	}
3190 
3191 	spin_unlock_bh(&vp->mii_lock);
3192 }
3193 
3194 /* ACPI: Advanced Configuration and Power Interface. */
3195 /* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */
3196 static void acpi_set_WOL(struct net_device *dev)
3197 {
3198 	struct vortex_private *vp = netdev_priv(dev);
3199 	void __iomem *ioaddr = vp->ioaddr;
3200 
3201 	device_set_wakeup_enable(vp->gendev, vp->enable_wol);
3202 
3203 	if (vp->enable_wol) {
3204 		/* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */
3205 		window_write16(vp, 2, 7, 0x0c);
3206 		/* The RxFilter must accept the WOL frames. */
3207 		iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD);
3208 		iowrite16(RxEnable, ioaddr + EL3_CMD);
3209 
3210 		if (pci_enable_wake(VORTEX_PCI(vp), PCI_D3hot, 1)) {
3211 			pr_info("%s: WOL not supported.\n", pci_name(VORTEX_PCI(vp)));
3212 
3213 			vp->enable_wol = 0;
3214 			return;
3215 		}
3216 
3217 		if (VORTEX_PCI(vp)->current_state < PCI_D3hot)
3218 			return;
3219 
3220 		/* Change the power state to D3; RxEnable doesn't take effect. */
3221 		pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot);
3222 	}
3223 }
3224 
3225 
3226 static void vortex_remove_one(struct pci_dev *pdev)
3227 {
3228 	struct net_device *dev = pci_get_drvdata(pdev);
3229 	struct vortex_private *vp;
3230 
3231 	if (!dev) {
3232 		pr_err("vortex_remove_one called for Compaq device!\n");
3233 		BUG();
3234 	}
3235 
3236 	vp = netdev_priv(dev);
3237 
3238 	if (vp->cb_fn_base)
3239 		pci_iounmap(pdev, vp->cb_fn_base);
3240 
3241 	unregister_netdev(dev);
3242 
3243 	pci_set_power_state(pdev, PCI_D0);	/* Go active */
3244 	if (vp->pm_state_valid)
3245 		pci_restore_state(pdev);
3246 	pci_disable_device(pdev);
3247 
3248 	/* Should really use issue_and_wait() here */
3249 	iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14),
3250 	     vp->ioaddr + EL3_CMD);
3251 
3252 	pci_iounmap(pdev, vp->ioaddr);
3253 
3254 	pci_free_consistent(pdev,
3255 						sizeof(struct boom_rx_desc) * RX_RING_SIZE
3256 							+ sizeof(struct boom_tx_desc) * TX_RING_SIZE,
3257 						vp->rx_ring,
3258 						vp->rx_ring_dma);
3259 
3260 	pci_release_regions(pdev);
3261 
3262 	free_netdev(dev);
3263 }
3264 
3265 
3266 static struct pci_driver vortex_driver = {
3267 	.name		= "3c59x",
3268 	.probe		= vortex_init_one,
3269 	.remove		= vortex_remove_one,
3270 	.id_table	= vortex_pci_tbl,
3271 	.driver.pm	= VORTEX_PM_OPS,
3272 };
3273 
3274 
3275 static int vortex_have_pci;
3276 static int vortex_have_eisa;
3277 
3278 
3279 static int __init vortex_init(void)
3280 {
3281 	int pci_rc, eisa_rc;
3282 
3283 	pci_rc = pci_register_driver(&vortex_driver);
3284 	eisa_rc = vortex_eisa_init();
3285 
3286 	if (pci_rc == 0)
3287 		vortex_have_pci = 1;
3288 	if (eisa_rc > 0)
3289 		vortex_have_eisa = 1;
3290 
3291 	return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV;
3292 }
3293 
3294 
3295 static void __exit vortex_eisa_cleanup(void)
3296 {
3297 	void __iomem *ioaddr;
3298 
3299 #ifdef CONFIG_EISA
3300 	/* Take care of the EISA devices */
3301 	eisa_driver_unregister(&vortex_eisa_driver);
3302 #endif
3303 
3304 	if (compaq_net_device) {
3305 		ioaddr = ioport_map(compaq_net_device->base_addr,
3306 		                    VORTEX_TOTAL_SIZE);
3307 
3308 		unregister_netdev(compaq_net_device);
3309 		iowrite16(TotalReset, ioaddr + EL3_CMD);
3310 		release_region(compaq_net_device->base_addr,
3311 		               VORTEX_TOTAL_SIZE);
3312 
3313 		free_netdev(compaq_net_device);
3314 	}
3315 }
3316 
3317 
3318 static void __exit vortex_cleanup(void)
3319 {
3320 	if (vortex_have_pci)
3321 		pci_unregister_driver(&vortex_driver);
3322 	if (vortex_have_eisa)
3323 		vortex_eisa_cleanup();
3324 }
3325 
3326 
3327 module_init(vortex_init);
3328 module_exit(vortex_cleanup);
3329