1 /* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */ 2 /* 3 Written 1996-1999 by Donald Becker. 4 5 This software may be used and distributed according to the terms 6 of the GNU General Public License, incorporated herein by reference. 7 8 This driver is for the 3Com "Vortex" and "Boomerang" series ethercards. 9 Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597 10 and the EtherLink XL 3c900 and 3c905 cards. 11 12 Problem reports and questions should be directed to 13 vortex@scyld.com 14 15 The author may be reached as becker@scyld.com, or C/O 16 Scyld Computing Corporation 17 410 Severn Ave., Suite 210 18 Annapolis MD 21403 19 20 */ 21 22 /* 23 * FIXME: This driver _could_ support MTU changing, but doesn't. See Don's hamachi.c implementation 24 * as well as other drivers 25 * 26 * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k 27 * due to dead code elimination. There will be some performance benefits from this due to 28 * elimination of all the tests and reduced cache footprint. 29 */ 30 31 32 #define DRV_NAME "3c59x" 33 34 35 36 /* A few values that may be tweaked. */ 37 /* Keep the ring sizes a power of two for efficiency. */ 38 #define TX_RING_SIZE 16 39 #define RX_RING_SIZE 32 40 #define PKT_BUF_SZ 1536 /* Size of each temporary Rx buffer.*/ 41 42 /* "Knobs" that adjust features and parameters. */ 43 /* Set the copy breakpoint for the copy-only-tiny-frames scheme. 44 Setting to > 1512 effectively disables this feature. */ 45 #ifndef __arm__ 46 static int rx_copybreak = 200; 47 #else 48 /* ARM systems perform better by disregarding the bus-master 49 transfer capability of these cards. -- rmk */ 50 static int rx_copybreak = 1513; 51 #endif 52 /* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */ 53 static const int mtu = 1500; 54 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */ 55 static int max_interrupt_work = 32; 56 /* Tx timeout interval (millisecs) */ 57 static int watchdog = 5000; 58 59 /* Allow aggregation of Tx interrupts. Saves CPU load at the cost 60 * of possible Tx stalls if the system is blocking interrupts 61 * somewhere else. Undefine this to disable. 62 */ 63 #define tx_interrupt_mitigation 1 64 65 /* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */ 66 #define vortex_debug debug 67 #ifdef VORTEX_DEBUG 68 static int vortex_debug = VORTEX_DEBUG; 69 #else 70 static int vortex_debug = 1; 71 #endif 72 73 #include <linux/module.h> 74 #include <linux/kernel.h> 75 #include <linux/string.h> 76 #include <linux/timer.h> 77 #include <linux/errno.h> 78 #include <linux/in.h> 79 #include <linux/ioport.h> 80 #include <linux/interrupt.h> 81 #include <linux/pci.h> 82 #include <linux/mii.h> 83 #include <linux/init.h> 84 #include <linux/netdevice.h> 85 #include <linux/etherdevice.h> 86 #include <linux/skbuff.h> 87 #include <linux/ethtool.h> 88 #include <linux/highmem.h> 89 #include <linux/eisa.h> 90 #include <linux/bitops.h> 91 #include <linux/jiffies.h> 92 #include <linux/gfp.h> 93 #include <asm/irq.h> /* For nr_irqs only. */ 94 #include <asm/io.h> 95 #include <linux/uaccess.h> 96 97 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package. 98 This is only in the support-all-kernels source code. */ 99 100 #define RUN_AT(x) (jiffies + (x)) 101 102 #include <linux/delay.h> 103 104 105 static const char version[] = 106 DRV_NAME ": Donald Becker and others.\n"; 107 108 MODULE_AUTHOR("Donald Becker <becker@scyld.com>"); 109 MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver "); 110 MODULE_LICENSE("GPL"); 111 112 113 /* Operational parameter that usually are not changed. */ 114 115 /* The Vortex size is twice that of the original EtherLinkIII series: the 116 runtime register window, window 1, is now always mapped in. 117 The Boomerang size is twice as large as the Vortex -- it has additional 118 bus master control registers. */ 119 #define VORTEX_TOTAL_SIZE 0x20 120 #define BOOMERANG_TOTAL_SIZE 0x40 121 122 /* Set iff a MII transceiver on any interface requires mdio preamble. 123 This only set with the original DP83840 on older 3c905 boards, so the extra 124 code size of a per-interface flag is not worthwhile. */ 125 static char mii_preamble_required; 126 127 #define PFX DRV_NAME ": " 128 129 130 131 /* 132 Theory of Operation 133 134 I. Board Compatibility 135 136 This device driver is designed for the 3Com FastEtherLink and FastEtherLink 137 XL, 3Com's PCI to 10/100baseT adapters. It also works with the 10Mbs 138 versions of the FastEtherLink cards. The supported product IDs are 139 3c590, 3c592, 3c595, 3c597, 3c900, 3c905 140 141 The related ISA 3c515 is supported with a separate driver, 3c515.c, included 142 with the kernel source or available from 143 cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html 144 145 II. Board-specific settings 146 147 PCI bus devices are configured by the system at boot time, so no jumpers 148 need to be set on the board. The system BIOS should be set to assign the 149 PCI INTA signal to an otherwise unused system IRQ line. 150 151 The EEPROM settings for media type and forced-full-duplex are observed. 152 The EEPROM media type should be left at the default "autoselect" unless using 153 10base2 or AUI connections which cannot be reliably detected. 154 155 III. Driver operation 156 157 The 3c59x series use an interface that's very similar to the previous 3c5x9 158 series. The primary interface is two programmed-I/O FIFOs, with an 159 alternate single-contiguous-region bus-master transfer (see next). 160 161 The 3c900 "Boomerang" series uses a full-bus-master interface with separate 162 lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet, 163 DEC Tulip and Intel Speedo3. The first chip version retains a compatible 164 programmed-I/O interface that has been removed in 'B' and subsequent board 165 revisions. 166 167 One extension that is advertised in a very large font is that the adapters 168 are capable of being bus masters. On the Vortex chip this capability was 169 only for a single contiguous region making it far less useful than the full 170 bus master capability. There is a significant performance impact of taking 171 an extra interrupt or polling for the completion of each transfer, as well 172 as difficulty sharing the single transfer engine between the transmit and 173 receive threads. Using DMA transfers is a win only with large blocks or 174 with the flawed versions of the Intel Orion motherboard PCI controller. 175 176 The Boomerang chip's full-bus-master interface is useful, and has the 177 currently-unused advantages over other similar chips that queued transmit 178 packets may be reordered and receive buffer groups are associated with a 179 single frame. 180 181 With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme. 182 Rather than a fixed intermediate receive buffer, this scheme allocates 183 full-sized skbuffs as receive buffers. The value RX_COPYBREAK is used as 184 the copying breakpoint: it is chosen to trade-off the memory wasted by 185 passing the full-sized skbuff to the queue layer for all frames vs. the 186 copying cost of copying a frame to a correctly-sized skbuff. 187 188 IIIC. Synchronization 189 The driver runs as two independent, single-threaded flows of control. One 190 is the send-packet routine, which enforces single-threaded use by the 191 dev->tbusy flag. The other thread is the interrupt handler, which is single 192 threaded by the hardware and other software. 193 194 IV. Notes 195 196 Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development 197 3c590, 3c595, and 3c900 boards. 198 The name "Vortex" is the internal 3Com project name for the PCI ASIC, and 199 the EISA version is called "Demon". According to Terry these names come 200 from rides at the local amusement park. 201 202 The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes! 203 This driver only supports ethernet packets because of the skbuff allocation 204 limit of 4K. 205 */ 206 207 /* This table drives the PCI probe routines. It's mostly boilerplate in all 208 of the drivers, and will likely be provided by some future kernel. 209 */ 210 enum pci_flags_bit { 211 PCI_USES_MASTER=4, 212 }; 213 214 enum { IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8, 215 EEPROM_8BIT=0x10, /* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */ 216 HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100, 217 INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800, 218 EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000, 219 EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, }; 220 221 enum vortex_chips { 222 CH_3C590 = 0, 223 CH_3C592, 224 CH_3C597, 225 CH_3C595_1, 226 CH_3C595_2, 227 228 CH_3C595_3, 229 CH_3C900_1, 230 CH_3C900_2, 231 CH_3C900_3, 232 CH_3C900_4, 233 234 CH_3C900_5, 235 CH_3C900B_FL, 236 CH_3C905_1, 237 CH_3C905_2, 238 CH_3C905B_TX, 239 CH_3C905B_1, 240 241 CH_3C905B_2, 242 CH_3C905B_FX, 243 CH_3C905C, 244 CH_3C9202, 245 CH_3C980, 246 CH_3C9805, 247 248 CH_3CSOHO100_TX, 249 CH_3C555, 250 CH_3C556, 251 CH_3C556B, 252 CH_3C575, 253 254 CH_3C575_1, 255 CH_3CCFE575, 256 CH_3CCFE575CT, 257 CH_3CCFE656, 258 CH_3CCFEM656, 259 260 CH_3CCFEM656_1, 261 CH_3C450, 262 CH_3C920, 263 CH_3C982A, 264 CH_3C982B, 265 266 CH_905BT4, 267 CH_920B_EMB_WNM, 268 }; 269 270 271 /* note: this array directly indexed by above enums, and MUST 272 * be kept in sync with both the enums above, and the PCI device 273 * table below 274 */ 275 static struct vortex_chip_info { 276 const char *name; 277 int flags; 278 int drv_flags; 279 int io_size; 280 } vortex_info_tbl[] = { 281 {"3c590 Vortex 10Mbps", 282 PCI_USES_MASTER, IS_VORTEX, 32, }, 283 {"3c592 EISA 10Mbps Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */ 284 PCI_USES_MASTER, IS_VORTEX, 32, }, 285 {"3c597 EISA Fast Demon/Vortex", /* AKPM: from Don's 3c59x_cb.c 0.49H */ 286 PCI_USES_MASTER, IS_VORTEX, 32, }, 287 {"3c595 Vortex 100baseTx", 288 PCI_USES_MASTER, IS_VORTEX, 32, }, 289 {"3c595 Vortex 100baseT4", 290 PCI_USES_MASTER, IS_VORTEX, 32, }, 291 292 {"3c595 Vortex 100base-MII", 293 PCI_USES_MASTER, IS_VORTEX, 32, }, 294 {"3c900 Boomerang 10baseT", 295 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, }, 296 {"3c900 Boomerang 10Mbps Combo", 297 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, }, 298 {"3c900 Cyclone 10Mbps TPO", /* AKPM: from Don's 0.99M */ 299 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, }, 300 {"3c900 Cyclone 10Mbps Combo", 301 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, }, 302 303 {"3c900 Cyclone 10Mbps TPC", /* AKPM: from Don's 0.99M */ 304 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, }, 305 {"3c900B-FL Cyclone 10base-FL", 306 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, }, 307 {"3c905 Boomerang 100baseTx", 308 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, }, 309 {"3c905 Boomerang 100baseT4", 310 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, }, 311 {"3C905B-TX Fast Etherlink XL PCI", 312 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, }, 313 {"3c905B Cyclone 100baseTx", 314 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, }, 315 316 {"3c905B Cyclone 10/100/BNC", 317 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, }, 318 {"3c905B-FX Cyclone 100baseFx", 319 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, }, 320 {"3c905C Tornado", 321 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, }, 322 {"3c920B-EMB-WNM (ATI Radeon 9100 IGP)", 323 PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, }, 324 {"3c980 Cyclone", 325 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM|EXTRA_PREAMBLE, 128, }, 326 327 {"3c980C Python-T", 328 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, }, 329 {"3cSOHO100-TX Hurricane", 330 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, }, 331 {"3c555 Laptop Hurricane", 332 PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, }, 333 {"3c556 Laptop Tornado", 334 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR| 335 HAS_HWCKSM, 128, }, 336 {"3c556B Laptop Hurricane", 337 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR| 338 WNO_XCVR_PWR|HAS_HWCKSM, 128, }, 339 340 {"3c575 [Megahertz] 10/100 LAN CardBus", 341 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, }, 342 {"3c575 Boomerang CardBus", 343 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, }, 344 {"3CCFE575BT Cyclone CardBus", 345 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT| 346 INVERT_LED_PWR|HAS_HWCKSM, 128, }, 347 {"3CCFE575CT Tornado CardBus", 348 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR| 349 MAX_COLLISION_RESET|HAS_HWCKSM, 128, }, 350 {"3CCFE656 Cyclone CardBus", 351 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR| 352 INVERT_LED_PWR|HAS_HWCKSM, 128, }, 353 354 {"3CCFEM656B Cyclone+Winmodem CardBus", 355 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR| 356 INVERT_LED_PWR|HAS_HWCKSM, 128, }, 357 {"3CXFEM656C Tornado+Winmodem CardBus", /* From pcmcia-cs-3.1.5 */ 358 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR| 359 MAX_COLLISION_RESET|HAS_HWCKSM, 128, }, 360 {"3c450 HomePNA Tornado", /* AKPM: from Don's 0.99Q */ 361 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, }, 362 {"3c920 Tornado", 363 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, }, 364 {"3c982 Hydra Dual Port A", 365 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, }, 366 367 {"3c982 Hydra Dual Port B", 368 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, }, 369 {"3c905B-T4", 370 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, }, 371 {"3c920B-EMB-WNM Tornado", 372 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, }, 373 374 {NULL,}, /* NULL terminated list. */ 375 }; 376 377 378 static const struct pci_device_id vortex_pci_tbl[] = { 379 { 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 }, 380 { 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 }, 381 { 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 }, 382 { 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 }, 383 { 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 }, 384 385 { 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 }, 386 { 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 }, 387 { 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 }, 388 { 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 }, 389 { 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 }, 390 391 { 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 }, 392 { 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL }, 393 { 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 }, 394 { 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 }, 395 { 0x10B7, 0x9054, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_TX }, 396 { 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 }, 397 398 { 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 }, 399 { 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX }, 400 { 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C }, 401 { 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 }, 402 { 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 }, 403 { 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 }, 404 405 { 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX }, 406 { 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 }, 407 { 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 }, 408 { 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B }, 409 { 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 }, 410 411 { 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 }, 412 { 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 }, 413 { 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT }, 414 { 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 }, 415 { 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 }, 416 417 { 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 }, 418 { 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 }, 419 { 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 }, 420 { 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A }, 421 { 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B }, 422 423 { 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 }, 424 { 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM }, 425 426 {0,} /* 0 terminated list. */ 427 }; 428 MODULE_DEVICE_TABLE(pci, vortex_pci_tbl); 429 430 431 /* Operational definitions. 432 These are not used by other compilation units and thus are not 433 exported in a ".h" file. 434 435 First the windows. There are eight register windows, with the command 436 and status registers available in each. 437 */ 438 #define EL3_CMD 0x0e 439 #define EL3_STATUS 0x0e 440 441 /* The top five bits written to EL3_CMD are a command, the lower 442 11 bits are the parameter, if applicable. 443 Note that 11 parameters bits was fine for ethernet, but the new chip 444 can handle FDDI length frames (~4500 octets) and now parameters count 445 32-bit 'Dwords' rather than octets. */ 446 447 enum vortex_cmd { 448 TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11, 449 RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11, 450 UpStall = 6<<11, UpUnstall = (6<<11)+1, 451 DownStall = (6<<11)+2, DownUnstall = (6<<11)+3, 452 RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11, 453 FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11, 454 SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11, 455 SetTxThreshold = 18<<11, SetTxStart = 19<<11, 456 StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11, 457 StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,}; 458 459 /* The SetRxFilter command accepts the following classes: */ 460 enum RxFilter { 461 RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 }; 462 463 /* Bits in the general status register. */ 464 enum vortex_status { 465 IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004, 466 TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020, 467 IntReq = 0x0040, StatsFull = 0x0080, 468 DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10, 469 DMAInProgress = 1<<11, /* DMA controller is still busy.*/ 470 CmdInProgress = 1<<12, /* EL3_CMD is still busy.*/ 471 }; 472 473 /* Register window 1 offsets, the window used in normal operation. 474 On the Vortex this window is always mapped at offsets 0x10-0x1f. */ 475 enum Window1 { 476 TX_FIFO = 0x10, RX_FIFO = 0x10, RxErrors = 0x14, 477 RxStatus = 0x18, Timer=0x1A, TxStatus = 0x1B, 478 TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */ 479 }; 480 enum Window0 { 481 Wn0EepromCmd = 10, /* Window 0: EEPROM command register. */ 482 Wn0EepromData = 12, /* Window 0: EEPROM results register. */ 483 IntrStatus=0x0E, /* Valid in all windows. */ 484 }; 485 enum Win0_EEPROM_bits { 486 EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0, 487 EEPROM_EWENB = 0x30, /* Enable erasing/writing for 10 msec. */ 488 EEPROM_EWDIS = 0x00, /* Disable EWENB before 10 msec timeout. */ 489 }; 490 /* EEPROM locations. */ 491 enum eeprom_offset { 492 PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3, 493 EtherLink3ID=7, IFXcvrIO=8, IRQLine=9, 494 NodeAddr01=10, NodeAddr23=11, NodeAddr45=12, 495 DriverTune=13, Checksum=15}; 496 497 enum Window2 { /* Window 2. */ 498 Wn2_ResetOptions=12, 499 }; 500 enum Window3 { /* Window 3: MAC/config bits. */ 501 Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8, 502 }; 503 504 #define BFEXT(value, offset, bitcount) \ 505 ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1)) 506 507 #define BFINS(lhs, rhs, offset, bitcount) \ 508 (((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) | \ 509 (((rhs) & ((1 << (bitcount)) - 1)) << (offset))) 510 511 #define RAM_SIZE(v) BFEXT(v, 0, 3) 512 #define RAM_WIDTH(v) BFEXT(v, 3, 1) 513 #define RAM_SPEED(v) BFEXT(v, 4, 2) 514 #define ROM_SIZE(v) BFEXT(v, 6, 2) 515 #define RAM_SPLIT(v) BFEXT(v, 16, 2) 516 #define XCVR(v) BFEXT(v, 20, 4) 517 #define AUTOSELECT(v) BFEXT(v, 24, 1) 518 519 enum Window4 { /* Window 4: Xcvr/media bits. */ 520 Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10, 521 }; 522 enum Win4_Media_bits { 523 Media_SQE = 0x0008, /* Enable SQE error counting for AUI. */ 524 Media_10TP = 0x00C0, /* Enable link beat and jabber for 10baseT. */ 525 Media_Lnk = 0x0080, /* Enable just link beat for 100TX/100FX. */ 526 Media_LnkBeat = 0x0800, 527 }; 528 enum Window7 { /* Window 7: Bus Master control. */ 529 Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6, 530 Wn7_MasterStatus = 12, 531 }; 532 /* Boomerang bus master control registers. */ 533 enum MasterCtrl { 534 PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c, 535 TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38, 536 }; 537 538 /* The Rx and Tx descriptor lists. 539 Caution Alpha hackers: these types are 32 bits! Note also the 8 byte 540 alignment contraint on tx_ring[] and rx_ring[]. */ 541 #define LAST_FRAG 0x80000000 /* Last Addr/Len pair in descriptor. */ 542 #define DN_COMPLETE 0x00010000 /* This packet has been downloaded */ 543 struct boom_rx_desc { 544 __le32 next; /* Last entry points to 0. */ 545 __le32 status; 546 __le32 addr; /* Up to 63 addr/len pairs possible. */ 547 __le32 length; /* Set LAST_FRAG to indicate last pair. */ 548 }; 549 /* Values for the Rx status entry. */ 550 enum rx_desc_status { 551 RxDComplete=0x00008000, RxDError=0x4000, 552 /* See boomerang_rx() for actual error bits */ 553 IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27, 554 IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31, 555 }; 556 557 #ifdef MAX_SKB_FRAGS 558 #define DO_ZEROCOPY 1 559 #else 560 #define DO_ZEROCOPY 0 561 #endif 562 563 struct boom_tx_desc { 564 __le32 next; /* Last entry points to 0. */ 565 __le32 status; /* bits 0:12 length, others see below. */ 566 #if DO_ZEROCOPY 567 struct { 568 __le32 addr; 569 __le32 length; 570 } frag[1+MAX_SKB_FRAGS]; 571 #else 572 __le32 addr; 573 __le32 length; 574 #endif 575 }; 576 577 /* Values for the Tx status entry. */ 578 enum tx_desc_status { 579 CRCDisable=0x2000, TxDComplete=0x8000, 580 AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000, 581 TxIntrUploaded=0x80000000, /* IRQ when in FIFO, but maybe not sent. */ 582 }; 583 584 /* Chip features we care about in vp->capabilities, read from the EEPROM. */ 585 enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 }; 586 587 struct vortex_extra_stats { 588 unsigned long tx_deferred; 589 unsigned long tx_max_collisions; 590 unsigned long tx_multiple_collisions; 591 unsigned long tx_single_collisions; 592 unsigned long rx_bad_ssd; 593 }; 594 595 struct vortex_private { 596 /* The Rx and Tx rings should be quad-word-aligned. */ 597 struct boom_rx_desc* rx_ring; 598 struct boom_tx_desc* tx_ring; 599 dma_addr_t rx_ring_dma; 600 dma_addr_t tx_ring_dma; 601 /* The addresses of transmit- and receive-in-place skbuffs. */ 602 struct sk_buff* rx_skbuff[RX_RING_SIZE]; 603 struct sk_buff* tx_skbuff[TX_RING_SIZE]; 604 unsigned int cur_rx, cur_tx; /* The next free ring entry */ 605 unsigned int dirty_tx; /* The ring entries to be free()ed. */ 606 struct vortex_extra_stats xstats; /* NIC-specific extra stats */ 607 struct sk_buff *tx_skb; /* Packet being eaten by bus master ctrl. */ 608 dma_addr_t tx_skb_dma; /* Allocated DMA address for bus master ctrl DMA. */ 609 610 /* PCI configuration space information. */ 611 struct device *gendev; 612 void __iomem *ioaddr; /* IO address space */ 613 void __iomem *cb_fn_base; /* CardBus function status addr space. */ 614 615 /* Some values here only for performance evaluation and path-coverage */ 616 int rx_nocopy, rx_copy, queued_packet, rx_csumhits; 617 int card_idx; 618 619 /* The remainder are related to chip state, mostly media selection. */ 620 struct timer_list timer; /* Media selection timer. */ 621 int options; /* User-settable misc. driver options. */ 622 unsigned int media_override:4, /* Passed-in media type. */ 623 default_media:4, /* Read from the EEPROM/Wn3_Config. */ 624 full_duplex:1, autoselect:1, 625 bus_master:1, /* Vortex can only do a fragment bus-m. */ 626 full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang */ 627 flow_ctrl:1, /* Use 802.3x flow control (PAUSE only) */ 628 partner_flow_ctrl:1, /* Partner supports flow control */ 629 has_nway:1, 630 enable_wol:1, /* Wake-on-LAN is enabled */ 631 pm_state_valid:1, /* pci_dev->saved_config_space has sane contents */ 632 open:1, 633 medialock:1, 634 large_frames:1, /* accept large frames */ 635 handling_irq:1; /* private in_irq indicator */ 636 /* {get|set}_wol operations are already serialized by rtnl. 637 * no additional locking is required for the enable_wol and acpi_set_WOL() 638 */ 639 int drv_flags; 640 u16 status_enable; 641 u16 intr_enable; 642 u16 available_media; /* From Wn3_Options. */ 643 u16 capabilities, info1, info2; /* Various, from EEPROM. */ 644 u16 advertising; /* NWay media advertisement */ 645 unsigned char phys[2]; /* MII device addresses. */ 646 u16 deferred; /* Resend these interrupts when we 647 * bale from the ISR */ 648 u16 io_size; /* Size of PCI region (for release_region) */ 649 650 /* Serialises access to hardware other than MII and variables below. 651 * The lock hierarchy is rtnl_lock > {lock, mii_lock} > window_lock. */ 652 spinlock_t lock; 653 654 spinlock_t mii_lock; /* Serialises access to MII */ 655 struct mii_if_info mii; /* MII lib hooks/info */ 656 spinlock_t window_lock; /* Serialises access to windowed regs */ 657 int window; /* Register window */ 658 }; 659 660 static void window_set(struct vortex_private *vp, int window) 661 { 662 if (window != vp->window) { 663 iowrite16(SelectWindow + window, vp->ioaddr + EL3_CMD); 664 vp->window = window; 665 } 666 } 667 668 #define DEFINE_WINDOW_IO(size) \ 669 static u ## size \ 670 window_read ## size(struct vortex_private *vp, int window, int addr) \ 671 { \ 672 unsigned long flags; \ 673 u ## size ret; \ 674 spin_lock_irqsave(&vp->window_lock, flags); \ 675 window_set(vp, window); \ 676 ret = ioread ## size(vp->ioaddr + addr); \ 677 spin_unlock_irqrestore(&vp->window_lock, flags); \ 678 return ret; \ 679 } \ 680 static void \ 681 window_write ## size(struct vortex_private *vp, u ## size value, \ 682 int window, int addr) \ 683 { \ 684 unsigned long flags; \ 685 spin_lock_irqsave(&vp->window_lock, flags); \ 686 window_set(vp, window); \ 687 iowrite ## size(value, vp->ioaddr + addr); \ 688 spin_unlock_irqrestore(&vp->window_lock, flags); \ 689 } 690 DEFINE_WINDOW_IO(8) 691 DEFINE_WINDOW_IO(16) 692 DEFINE_WINDOW_IO(32) 693 694 #ifdef CONFIG_PCI 695 #define DEVICE_PCI(dev) ((dev_is_pci(dev)) ? to_pci_dev((dev)) : NULL) 696 #else 697 #define DEVICE_PCI(dev) NULL 698 #endif 699 700 #define VORTEX_PCI(vp) \ 701 ((struct pci_dev *) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL)) 702 703 #ifdef CONFIG_EISA 704 #define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL) 705 #else 706 #define DEVICE_EISA(dev) NULL 707 #endif 708 709 #define VORTEX_EISA(vp) \ 710 ((struct eisa_device *) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL)) 711 712 /* The action to take with a media selection timer tick. 713 Note that we deviate from the 3Com order by checking 10base2 before AUI. 714 */ 715 enum xcvr_types { 716 XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx, 717 XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10, 718 }; 719 720 static const struct media_table { 721 char *name; 722 unsigned int media_bits:16, /* Bits to set in Wn4_Media register. */ 723 mask:8, /* The transceiver-present bit in Wn3_Config.*/ 724 next:8; /* The media type to try next. */ 725 int wait; /* Time before we check media status. */ 726 } media_tbl[] = { 727 { "10baseT", Media_10TP,0x08, XCVR_10base2, (14*HZ)/10}, 728 { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10}, 729 { "undefined", 0, 0x80, XCVR_10baseT, 10000}, 730 { "10base2", 0, 0x10, XCVR_AUI, (1*HZ)/10}, 731 { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10}, 732 { "100baseFX", Media_Lnk, 0x04, XCVR_MII, (14*HZ)/10}, 733 { "MII", 0, 0x41, XCVR_10baseT, 3*HZ }, 734 { "undefined", 0, 0x01, XCVR_10baseT, 10000}, 735 { "Autonegotiate", 0, 0x41, XCVR_10baseT, 3*HZ}, 736 { "MII-External", 0, 0x41, XCVR_10baseT, 3*HZ }, 737 { "Default", 0, 0xFF, XCVR_10baseT, 10000}, 738 }; 739 740 static struct { 741 const char str[ETH_GSTRING_LEN]; 742 } ethtool_stats_keys[] = { 743 { "tx_deferred" }, 744 { "tx_max_collisions" }, 745 { "tx_multiple_collisions" }, 746 { "tx_single_collisions" }, 747 { "rx_bad_ssd" }, 748 }; 749 750 /* number of ETHTOOL_GSTATS u64's */ 751 #define VORTEX_NUM_STATS 5 752 753 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq, 754 int chip_idx, int card_idx); 755 static int vortex_up(struct net_device *dev); 756 static void vortex_down(struct net_device *dev, int final); 757 static int vortex_open(struct net_device *dev); 758 static void mdio_sync(struct vortex_private *vp, int bits); 759 static int mdio_read(struct net_device *dev, int phy_id, int location); 760 static void mdio_write(struct net_device *vp, int phy_id, int location, int value); 761 static void vortex_timer(struct timer_list *t); 762 static netdev_tx_t vortex_start_xmit(struct sk_buff *skb, 763 struct net_device *dev); 764 static netdev_tx_t boomerang_start_xmit(struct sk_buff *skb, 765 struct net_device *dev); 766 static int vortex_rx(struct net_device *dev); 767 static int boomerang_rx(struct net_device *dev); 768 static irqreturn_t vortex_interrupt(int irq, void *dev_id); 769 static irqreturn_t boomerang_interrupt(int irq, void *dev_id); 770 static int vortex_close(struct net_device *dev); 771 static void dump_tx_ring(struct net_device *dev); 772 static void update_stats(void __iomem *ioaddr, struct net_device *dev); 773 static struct net_device_stats *vortex_get_stats(struct net_device *dev); 774 static void set_rx_mode(struct net_device *dev); 775 #ifdef CONFIG_PCI 776 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd); 777 #endif 778 static void vortex_tx_timeout(struct net_device *dev); 779 static void acpi_set_WOL(struct net_device *dev); 780 static const struct ethtool_ops vortex_ethtool_ops; 781 static void set_8021q_mode(struct net_device *dev, int enable); 782 783 /* This driver uses 'options' to pass the media type, full-duplex flag, etc. */ 784 /* Option count limit only -- unlimited interfaces are supported. */ 785 #define MAX_UNITS 8 786 static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 }; 787 static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 }; 788 static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 }; 789 static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 }; 790 static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 }; 791 static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 }; 792 static int global_options = -1; 793 static int global_full_duplex = -1; 794 static int global_enable_wol = -1; 795 static int global_use_mmio = -1; 796 797 /* Variables to work-around the Compaq PCI BIOS32 problem. */ 798 static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900; 799 static struct net_device *compaq_net_device; 800 801 static int vortex_cards_found; 802 803 module_param(debug, int, 0); 804 module_param(global_options, int, 0); 805 module_param_array(options, int, NULL, 0); 806 module_param(global_full_duplex, int, 0); 807 module_param_array(full_duplex, int, NULL, 0); 808 module_param_array(hw_checksums, int, NULL, 0); 809 module_param_array(flow_ctrl, int, NULL, 0); 810 module_param(global_enable_wol, int, 0); 811 module_param_array(enable_wol, int, NULL, 0); 812 module_param(rx_copybreak, int, 0); 813 module_param(max_interrupt_work, int, 0); 814 module_param_hw(compaq_ioaddr, int, ioport, 0); 815 module_param_hw(compaq_irq, int, irq, 0); 816 module_param(compaq_device_id, int, 0); 817 module_param(watchdog, int, 0); 818 module_param(global_use_mmio, int, 0); 819 module_param_array(use_mmio, int, NULL, 0); 820 MODULE_PARM_DESC(debug, "3c59x debug level (0-6)"); 821 MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex"); 822 MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset"); 823 MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)"); 824 MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset"); 825 MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)"); 826 MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)"); 827 MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)"); 828 MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset"); 829 MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames"); 830 MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt"); 831 MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)"); 832 MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)"); 833 MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)"); 834 MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds"); 835 MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset"); 836 MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)"); 837 838 #ifdef CONFIG_NET_POLL_CONTROLLER 839 static void poll_vortex(struct net_device *dev) 840 { 841 struct vortex_private *vp = netdev_priv(dev); 842 unsigned long flags; 843 local_irq_save(flags); 844 (vp->full_bus_master_rx ? boomerang_interrupt:vortex_interrupt)(dev->irq,dev); 845 local_irq_restore(flags); 846 } 847 #endif 848 849 #ifdef CONFIG_PM 850 851 static int vortex_suspend(struct device *dev) 852 { 853 struct pci_dev *pdev = to_pci_dev(dev); 854 struct net_device *ndev = pci_get_drvdata(pdev); 855 856 if (!ndev || !netif_running(ndev)) 857 return 0; 858 859 netif_device_detach(ndev); 860 vortex_down(ndev, 1); 861 862 return 0; 863 } 864 865 static int vortex_resume(struct device *dev) 866 { 867 struct pci_dev *pdev = to_pci_dev(dev); 868 struct net_device *ndev = pci_get_drvdata(pdev); 869 int err; 870 871 if (!ndev || !netif_running(ndev)) 872 return 0; 873 874 err = vortex_up(ndev); 875 if (err) 876 return err; 877 878 netif_device_attach(ndev); 879 880 return 0; 881 } 882 883 static const struct dev_pm_ops vortex_pm_ops = { 884 .suspend = vortex_suspend, 885 .resume = vortex_resume, 886 .freeze = vortex_suspend, 887 .thaw = vortex_resume, 888 .poweroff = vortex_suspend, 889 .restore = vortex_resume, 890 }; 891 892 #define VORTEX_PM_OPS (&vortex_pm_ops) 893 894 #else /* !CONFIG_PM */ 895 896 #define VORTEX_PM_OPS NULL 897 898 #endif /* !CONFIG_PM */ 899 900 #ifdef CONFIG_EISA 901 static const struct eisa_device_id vortex_eisa_ids[] = { 902 { "TCM5920", CH_3C592 }, 903 { "TCM5970", CH_3C597 }, 904 { "" } 905 }; 906 MODULE_DEVICE_TABLE(eisa, vortex_eisa_ids); 907 908 static int vortex_eisa_probe(struct device *device) 909 { 910 void __iomem *ioaddr; 911 struct eisa_device *edev; 912 913 edev = to_eisa_device(device); 914 915 if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME)) 916 return -EBUSY; 917 918 ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE); 919 920 if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12, 921 edev->id.driver_data, vortex_cards_found)) { 922 release_region(edev->base_addr, VORTEX_TOTAL_SIZE); 923 return -ENODEV; 924 } 925 926 vortex_cards_found++; 927 928 return 0; 929 } 930 931 static int vortex_eisa_remove(struct device *device) 932 { 933 struct eisa_device *edev; 934 struct net_device *dev; 935 struct vortex_private *vp; 936 void __iomem *ioaddr; 937 938 edev = to_eisa_device(device); 939 dev = eisa_get_drvdata(edev); 940 941 if (!dev) { 942 pr_err("vortex_eisa_remove called for Compaq device!\n"); 943 BUG(); 944 } 945 946 vp = netdev_priv(dev); 947 ioaddr = vp->ioaddr; 948 949 unregister_netdev(dev); 950 iowrite16(TotalReset|0x14, ioaddr + EL3_CMD); 951 release_region(edev->base_addr, VORTEX_TOTAL_SIZE); 952 953 free_netdev(dev); 954 return 0; 955 } 956 957 static struct eisa_driver vortex_eisa_driver = { 958 .id_table = vortex_eisa_ids, 959 .driver = { 960 .name = "3c59x", 961 .probe = vortex_eisa_probe, 962 .remove = vortex_eisa_remove 963 } 964 }; 965 966 #endif /* CONFIG_EISA */ 967 968 /* returns count found (>= 0), or negative on error */ 969 static int __init vortex_eisa_init(void) 970 { 971 int eisa_found = 0; 972 int orig_cards_found = vortex_cards_found; 973 974 #ifdef CONFIG_EISA 975 int err; 976 977 err = eisa_driver_register (&vortex_eisa_driver); 978 if (!err) { 979 /* 980 * Because of the way EISA bus is probed, we cannot assume 981 * any device have been found when we exit from 982 * eisa_driver_register (the bus root driver may not be 983 * initialized yet). So we blindly assume something was 984 * found, and let the sysfs magic happened... 985 */ 986 eisa_found = 1; 987 } 988 #endif 989 990 /* Special code to work-around the Compaq PCI BIOS32 problem. */ 991 if (compaq_ioaddr) { 992 vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE), 993 compaq_irq, compaq_device_id, vortex_cards_found++); 994 } 995 996 return vortex_cards_found - orig_cards_found + eisa_found; 997 } 998 999 /* returns count (>= 0), or negative on error */ 1000 static int vortex_init_one(struct pci_dev *pdev, 1001 const struct pci_device_id *ent) 1002 { 1003 int rc, unit, pci_bar; 1004 struct vortex_chip_info *vci; 1005 void __iomem *ioaddr; 1006 1007 /* wake up and enable device */ 1008 rc = pci_enable_device(pdev); 1009 if (rc < 0) 1010 goto out; 1011 1012 rc = pci_request_regions(pdev, DRV_NAME); 1013 if (rc < 0) 1014 goto out_disable; 1015 1016 unit = vortex_cards_found; 1017 1018 if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) { 1019 /* Determine the default if the user didn't override us */ 1020 vci = &vortex_info_tbl[ent->driver_data]; 1021 pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0; 1022 } else if (unit < MAX_UNITS && use_mmio[unit] >= 0) 1023 pci_bar = use_mmio[unit] ? 1 : 0; 1024 else 1025 pci_bar = global_use_mmio ? 1 : 0; 1026 1027 ioaddr = pci_iomap(pdev, pci_bar, 0); 1028 if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */ 1029 ioaddr = pci_iomap(pdev, 0, 0); 1030 if (!ioaddr) { 1031 rc = -ENOMEM; 1032 goto out_release; 1033 } 1034 1035 rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq, 1036 ent->driver_data, unit); 1037 if (rc < 0) 1038 goto out_iounmap; 1039 1040 vortex_cards_found++; 1041 goto out; 1042 1043 out_iounmap: 1044 pci_iounmap(pdev, ioaddr); 1045 out_release: 1046 pci_release_regions(pdev); 1047 out_disable: 1048 pci_disable_device(pdev); 1049 out: 1050 return rc; 1051 } 1052 1053 static const struct net_device_ops boomrang_netdev_ops = { 1054 .ndo_open = vortex_open, 1055 .ndo_stop = vortex_close, 1056 .ndo_start_xmit = boomerang_start_xmit, 1057 .ndo_tx_timeout = vortex_tx_timeout, 1058 .ndo_get_stats = vortex_get_stats, 1059 #ifdef CONFIG_PCI 1060 .ndo_do_ioctl = vortex_ioctl, 1061 #endif 1062 .ndo_set_rx_mode = set_rx_mode, 1063 .ndo_set_mac_address = eth_mac_addr, 1064 .ndo_validate_addr = eth_validate_addr, 1065 #ifdef CONFIG_NET_POLL_CONTROLLER 1066 .ndo_poll_controller = poll_vortex, 1067 #endif 1068 }; 1069 1070 static const struct net_device_ops vortex_netdev_ops = { 1071 .ndo_open = vortex_open, 1072 .ndo_stop = vortex_close, 1073 .ndo_start_xmit = vortex_start_xmit, 1074 .ndo_tx_timeout = vortex_tx_timeout, 1075 .ndo_get_stats = vortex_get_stats, 1076 #ifdef CONFIG_PCI 1077 .ndo_do_ioctl = vortex_ioctl, 1078 #endif 1079 .ndo_set_rx_mode = set_rx_mode, 1080 .ndo_set_mac_address = eth_mac_addr, 1081 .ndo_validate_addr = eth_validate_addr, 1082 #ifdef CONFIG_NET_POLL_CONTROLLER 1083 .ndo_poll_controller = poll_vortex, 1084 #endif 1085 }; 1086 1087 /* 1088 * Start up the PCI/EISA device which is described by *gendev. 1089 * Return 0 on success. 1090 * 1091 * NOTE: pdev can be NULL, for the case of a Compaq device 1092 */ 1093 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq, 1094 int chip_idx, int card_idx) 1095 { 1096 struct vortex_private *vp; 1097 int option; 1098 unsigned int eeprom[0x40], checksum = 0; /* EEPROM contents */ 1099 int i, step; 1100 struct net_device *dev; 1101 static int printed_version; 1102 int retval, print_info; 1103 struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx]; 1104 const char *print_name = "3c59x"; 1105 struct pci_dev *pdev = NULL; 1106 struct eisa_device *edev = NULL; 1107 1108 if (!printed_version) { 1109 pr_info("%s", version); 1110 printed_version = 1; 1111 } 1112 1113 if (gendev) { 1114 if ((pdev = DEVICE_PCI(gendev))) { 1115 print_name = pci_name(pdev); 1116 } 1117 1118 if ((edev = DEVICE_EISA(gendev))) { 1119 print_name = dev_name(&edev->dev); 1120 } 1121 } 1122 1123 dev = alloc_etherdev(sizeof(*vp)); 1124 retval = -ENOMEM; 1125 if (!dev) 1126 goto out; 1127 1128 SET_NETDEV_DEV(dev, gendev); 1129 vp = netdev_priv(dev); 1130 1131 option = global_options; 1132 1133 /* The lower four bits are the media type. */ 1134 if (dev->mem_start) { 1135 /* 1136 * The 'options' param is passed in as the third arg to the 1137 * LILO 'ether=' argument for non-modular use 1138 */ 1139 option = dev->mem_start; 1140 } 1141 else if (card_idx < MAX_UNITS) { 1142 if (options[card_idx] >= 0) 1143 option = options[card_idx]; 1144 } 1145 1146 if (option > 0) { 1147 if (option & 0x8000) 1148 vortex_debug = 7; 1149 if (option & 0x4000) 1150 vortex_debug = 2; 1151 if (option & 0x0400) 1152 vp->enable_wol = 1; 1153 } 1154 1155 print_info = (vortex_debug > 1); 1156 if (print_info) 1157 pr_info("See Documentation/networking/vortex.txt\n"); 1158 1159 pr_info("%s: 3Com %s %s at %p.\n", 1160 print_name, 1161 pdev ? "PCI" : "EISA", 1162 vci->name, 1163 ioaddr); 1164 1165 dev->base_addr = (unsigned long)ioaddr; 1166 dev->irq = irq; 1167 dev->mtu = mtu; 1168 vp->ioaddr = ioaddr; 1169 vp->large_frames = mtu > 1500; 1170 vp->drv_flags = vci->drv_flags; 1171 vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0; 1172 vp->io_size = vci->io_size; 1173 vp->card_idx = card_idx; 1174 vp->window = -1; 1175 1176 /* module list only for Compaq device */ 1177 if (gendev == NULL) { 1178 compaq_net_device = dev; 1179 } 1180 1181 /* PCI-only startup logic */ 1182 if (pdev) { 1183 /* enable bus-mastering if necessary */ 1184 if (vci->flags & PCI_USES_MASTER) 1185 pci_set_master(pdev); 1186 1187 if (vci->drv_flags & IS_VORTEX) { 1188 u8 pci_latency; 1189 u8 new_latency = 248; 1190 1191 /* Check the PCI latency value. On the 3c590 series the latency timer 1192 must be set to the maximum value to avoid data corruption that occurs 1193 when the timer expires during a transfer. This bug exists the Vortex 1194 chip only. */ 1195 pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency); 1196 if (pci_latency < new_latency) { 1197 pr_info("%s: Overriding PCI latency timer (CFLT) setting of %d, new value is %d.\n", 1198 print_name, pci_latency, new_latency); 1199 pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency); 1200 } 1201 } 1202 } 1203 1204 spin_lock_init(&vp->lock); 1205 spin_lock_init(&vp->mii_lock); 1206 spin_lock_init(&vp->window_lock); 1207 vp->gendev = gendev; 1208 vp->mii.dev = dev; 1209 vp->mii.mdio_read = mdio_read; 1210 vp->mii.mdio_write = mdio_write; 1211 vp->mii.phy_id_mask = 0x1f; 1212 vp->mii.reg_num_mask = 0x1f; 1213 1214 /* Makes sure rings are at least 16 byte aligned. */ 1215 vp->rx_ring = pci_alloc_consistent(pdev, sizeof(struct boom_rx_desc) * RX_RING_SIZE 1216 + sizeof(struct boom_tx_desc) * TX_RING_SIZE, 1217 &vp->rx_ring_dma); 1218 retval = -ENOMEM; 1219 if (!vp->rx_ring) 1220 goto free_device; 1221 1222 vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE); 1223 vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE; 1224 1225 /* if we are a PCI driver, we store info in pdev->driver_data 1226 * instead of a module list */ 1227 if (pdev) 1228 pci_set_drvdata(pdev, dev); 1229 if (edev) 1230 eisa_set_drvdata(edev, dev); 1231 1232 vp->media_override = 7; 1233 if (option >= 0) { 1234 vp->media_override = ((option & 7) == 2) ? 0 : option & 15; 1235 if (vp->media_override != 7) 1236 vp->medialock = 1; 1237 vp->full_duplex = (option & 0x200) ? 1 : 0; 1238 vp->bus_master = (option & 16) ? 1 : 0; 1239 } 1240 1241 if (global_full_duplex > 0) 1242 vp->full_duplex = 1; 1243 if (global_enable_wol > 0) 1244 vp->enable_wol = 1; 1245 1246 if (card_idx < MAX_UNITS) { 1247 if (full_duplex[card_idx] > 0) 1248 vp->full_duplex = 1; 1249 if (flow_ctrl[card_idx] > 0) 1250 vp->flow_ctrl = 1; 1251 if (enable_wol[card_idx] > 0) 1252 vp->enable_wol = 1; 1253 } 1254 1255 vp->mii.force_media = vp->full_duplex; 1256 vp->options = option; 1257 /* Read the station address from the EEPROM. */ 1258 { 1259 int base; 1260 1261 if (vci->drv_flags & EEPROM_8BIT) 1262 base = 0x230; 1263 else if (vci->drv_flags & EEPROM_OFFSET) 1264 base = EEPROM_Read + 0x30; 1265 else 1266 base = EEPROM_Read; 1267 1268 for (i = 0; i < 0x40; i++) { 1269 int timer; 1270 window_write16(vp, base + i, 0, Wn0EepromCmd); 1271 /* Pause for at least 162 us. for the read to take place. */ 1272 for (timer = 10; timer >= 0; timer--) { 1273 udelay(162); 1274 if ((window_read16(vp, 0, Wn0EepromCmd) & 1275 0x8000) == 0) 1276 break; 1277 } 1278 eeprom[i] = window_read16(vp, 0, Wn0EepromData); 1279 } 1280 } 1281 for (i = 0; i < 0x18; i++) 1282 checksum ^= eeprom[i]; 1283 checksum = (checksum ^ (checksum >> 8)) & 0xff; 1284 if (checksum != 0x00) { /* Grrr, needless incompatible change 3Com. */ 1285 while (i < 0x21) 1286 checksum ^= eeprom[i++]; 1287 checksum = (checksum ^ (checksum >> 8)) & 0xff; 1288 } 1289 if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO)) 1290 pr_cont(" ***INVALID CHECKSUM %4.4x*** ", checksum); 1291 for (i = 0; i < 3; i++) 1292 ((__be16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]); 1293 if (print_info) 1294 pr_cont(" %pM", dev->dev_addr); 1295 /* Unfortunately an all zero eeprom passes the checksum and this 1296 gets found in the wild in failure cases. Crypto is hard 8) */ 1297 if (!is_valid_ether_addr(dev->dev_addr)) { 1298 retval = -EINVAL; 1299 pr_err("*** EEPROM MAC address is invalid.\n"); 1300 goto free_ring; /* With every pack */ 1301 } 1302 for (i = 0; i < 6; i++) 1303 window_write8(vp, dev->dev_addr[i], 2, i); 1304 1305 if (print_info) 1306 pr_cont(", IRQ %d\n", dev->irq); 1307 /* Tell them about an invalid IRQ. */ 1308 if (dev->irq <= 0 || dev->irq >= nr_irqs) 1309 pr_warn(" *** Warning: IRQ %d is unlikely to work! ***\n", 1310 dev->irq); 1311 1312 step = (window_read8(vp, 4, Wn4_NetDiag) & 0x1e) >> 1; 1313 if (print_info) { 1314 pr_info(" product code %02x%02x rev %02x.%d date %02d-%02d-%02d\n", 1315 eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14], 1316 step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9); 1317 } 1318 1319 1320 if (pdev && vci->drv_flags & HAS_CB_FNS) { 1321 unsigned short n; 1322 1323 vp->cb_fn_base = pci_iomap(pdev, 2, 0); 1324 if (!vp->cb_fn_base) { 1325 retval = -ENOMEM; 1326 goto free_ring; 1327 } 1328 1329 if (print_info) { 1330 pr_info("%s: CardBus functions mapped %16.16llx->%p\n", 1331 print_name, 1332 (unsigned long long)pci_resource_start(pdev, 2), 1333 vp->cb_fn_base); 1334 } 1335 1336 n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010; 1337 if (vp->drv_flags & INVERT_LED_PWR) 1338 n |= 0x10; 1339 if (vp->drv_flags & INVERT_MII_PWR) 1340 n |= 0x4000; 1341 window_write16(vp, n, 2, Wn2_ResetOptions); 1342 if (vp->drv_flags & WNO_XCVR_PWR) { 1343 window_write16(vp, 0x0800, 0, 0); 1344 } 1345 } 1346 1347 /* Extract our information from the EEPROM data. */ 1348 vp->info1 = eeprom[13]; 1349 vp->info2 = eeprom[15]; 1350 vp->capabilities = eeprom[16]; 1351 1352 if (vp->info1 & 0x8000) { 1353 vp->full_duplex = 1; 1354 if (print_info) 1355 pr_info("Full duplex capable\n"); 1356 } 1357 1358 { 1359 static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"}; 1360 unsigned int config; 1361 vp->available_media = window_read16(vp, 3, Wn3_Options); 1362 if ((vp->available_media & 0xff) == 0) /* Broken 3c916 */ 1363 vp->available_media = 0x40; 1364 config = window_read32(vp, 3, Wn3_Config); 1365 if (print_info) { 1366 pr_debug(" Internal config register is %4.4x, transceivers %#x.\n", 1367 config, window_read16(vp, 3, Wn3_Options)); 1368 pr_info(" %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n", 1369 8 << RAM_SIZE(config), 1370 RAM_WIDTH(config) ? "word" : "byte", 1371 ram_split[RAM_SPLIT(config)], 1372 AUTOSELECT(config) ? "autoselect/" : "", 1373 XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" : 1374 media_tbl[XCVR(config)].name); 1375 } 1376 vp->default_media = XCVR(config); 1377 if (vp->default_media == XCVR_NWAY) 1378 vp->has_nway = 1; 1379 vp->autoselect = AUTOSELECT(config); 1380 } 1381 1382 if (vp->media_override != 7) { 1383 pr_info("%s: Media override to transceiver type %d (%s).\n", 1384 print_name, vp->media_override, 1385 media_tbl[vp->media_override].name); 1386 dev->if_port = vp->media_override; 1387 } else 1388 dev->if_port = vp->default_media; 1389 1390 if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) || 1391 dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) { 1392 int phy, phy_idx = 0; 1393 mii_preamble_required++; 1394 if (vp->drv_flags & EXTRA_PREAMBLE) 1395 mii_preamble_required++; 1396 mdio_sync(vp, 32); 1397 mdio_read(dev, 24, MII_BMSR); 1398 for (phy = 0; phy < 32 && phy_idx < 1; phy++) { 1399 int mii_status, phyx; 1400 1401 /* 1402 * For the 3c905CX we look at index 24 first, because it bogusly 1403 * reports an external PHY at all indices 1404 */ 1405 if (phy == 0) 1406 phyx = 24; 1407 else if (phy <= 24) 1408 phyx = phy - 1; 1409 else 1410 phyx = phy; 1411 mii_status = mdio_read(dev, phyx, MII_BMSR); 1412 if (mii_status && mii_status != 0xffff) { 1413 vp->phys[phy_idx++] = phyx; 1414 if (print_info) { 1415 pr_info(" MII transceiver found at address %d, status %4x.\n", 1416 phyx, mii_status); 1417 } 1418 if ((mii_status & 0x0040) == 0) 1419 mii_preamble_required++; 1420 } 1421 } 1422 mii_preamble_required--; 1423 if (phy_idx == 0) { 1424 pr_warn(" ***WARNING*** No MII transceivers found!\n"); 1425 vp->phys[0] = 24; 1426 } else { 1427 vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE); 1428 if (vp->full_duplex) { 1429 /* Only advertise the FD media types. */ 1430 vp->advertising &= ~0x02A0; 1431 mdio_write(dev, vp->phys[0], 4, vp->advertising); 1432 } 1433 } 1434 vp->mii.phy_id = vp->phys[0]; 1435 } 1436 1437 if (vp->capabilities & CapBusMaster) { 1438 vp->full_bus_master_tx = 1; 1439 if (print_info) { 1440 pr_info(" Enabling bus-master transmits and %s receives.\n", 1441 (vp->info2 & 1) ? "early" : "whole-frame" ); 1442 } 1443 vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2; 1444 vp->bus_master = 0; /* AKPM: vortex only */ 1445 } 1446 1447 /* The 3c59x-specific entries in the device structure. */ 1448 if (vp->full_bus_master_tx) { 1449 dev->netdev_ops = &boomrang_netdev_ops; 1450 /* Actually, it still should work with iommu. */ 1451 if (card_idx < MAX_UNITS && 1452 ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) || 1453 hw_checksums[card_idx] == 1)) { 1454 dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG; 1455 } 1456 } else 1457 dev->netdev_ops = &vortex_netdev_ops; 1458 1459 if (print_info) { 1460 pr_info("%s: scatter/gather %sabled. h/w checksums %sabled\n", 1461 print_name, 1462 (dev->features & NETIF_F_SG) ? "en":"dis", 1463 (dev->features & NETIF_F_IP_CSUM) ? "en":"dis"); 1464 } 1465 1466 dev->ethtool_ops = &vortex_ethtool_ops; 1467 dev->watchdog_timeo = (watchdog * HZ) / 1000; 1468 1469 if (pdev) { 1470 vp->pm_state_valid = 1; 1471 pci_save_state(pdev); 1472 acpi_set_WOL(dev); 1473 } 1474 retval = register_netdev(dev); 1475 if (retval == 0) 1476 return 0; 1477 1478 free_ring: 1479 pci_free_consistent(pdev, 1480 sizeof(struct boom_rx_desc) * RX_RING_SIZE 1481 + sizeof(struct boom_tx_desc) * TX_RING_SIZE, 1482 vp->rx_ring, 1483 vp->rx_ring_dma); 1484 free_device: 1485 free_netdev(dev); 1486 pr_err(PFX "vortex_probe1 fails. Returns %d\n", retval); 1487 out: 1488 return retval; 1489 } 1490 1491 static void 1492 issue_and_wait(struct net_device *dev, int cmd) 1493 { 1494 struct vortex_private *vp = netdev_priv(dev); 1495 void __iomem *ioaddr = vp->ioaddr; 1496 int i; 1497 1498 iowrite16(cmd, ioaddr + EL3_CMD); 1499 for (i = 0; i < 2000; i++) { 1500 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) 1501 return; 1502 } 1503 1504 /* OK, that didn't work. Do it the slow way. One second */ 1505 for (i = 0; i < 100000; i++) { 1506 if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) { 1507 if (vortex_debug > 1) 1508 pr_info("%s: command 0x%04x took %d usecs\n", 1509 dev->name, cmd, i * 10); 1510 return; 1511 } 1512 udelay(10); 1513 } 1514 pr_err("%s: command 0x%04x did not complete! Status=0x%x\n", 1515 dev->name, cmd, ioread16(ioaddr + EL3_STATUS)); 1516 } 1517 1518 static void 1519 vortex_set_duplex(struct net_device *dev) 1520 { 1521 struct vortex_private *vp = netdev_priv(dev); 1522 1523 pr_info("%s: setting %s-duplex.\n", 1524 dev->name, (vp->full_duplex) ? "full" : "half"); 1525 1526 /* Set the full-duplex bit. */ 1527 window_write16(vp, 1528 ((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) | 1529 (vp->large_frames ? 0x40 : 0) | 1530 ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ? 1531 0x100 : 0), 1532 3, Wn3_MAC_Ctrl); 1533 } 1534 1535 static void vortex_check_media(struct net_device *dev, unsigned int init) 1536 { 1537 struct vortex_private *vp = netdev_priv(dev); 1538 unsigned int ok_to_print = 0; 1539 1540 if (vortex_debug > 3) 1541 ok_to_print = 1; 1542 1543 if (mii_check_media(&vp->mii, ok_to_print, init)) { 1544 vp->full_duplex = vp->mii.full_duplex; 1545 vortex_set_duplex(dev); 1546 } else if (init) { 1547 vortex_set_duplex(dev); 1548 } 1549 } 1550 1551 static int 1552 vortex_up(struct net_device *dev) 1553 { 1554 struct vortex_private *vp = netdev_priv(dev); 1555 void __iomem *ioaddr = vp->ioaddr; 1556 unsigned int config; 1557 int i, mii_reg1, mii_reg5, err = 0; 1558 1559 if (VORTEX_PCI(vp)) { 1560 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); /* Go active */ 1561 if (vp->pm_state_valid) 1562 pci_restore_state(VORTEX_PCI(vp)); 1563 err = pci_enable_device(VORTEX_PCI(vp)); 1564 if (err) { 1565 pr_warn("%s: Could not enable device\n", dev->name); 1566 goto err_out; 1567 } 1568 } 1569 1570 /* Before initializing select the active media port. */ 1571 config = window_read32(vp, 3, Wn3_Config); 1572 1573 if (vp->media_override != 7) { 1574 pr_info("%s: Media override to transceiver %d (%s).\n", 1575 dev->name, vp->media_override, 1576 media_tbl[vp->media_override].name); 1577 dev->if_port = vp->media_override; 1578 } else if (vp->autoselect) { 1579 if (vp->has_nway) { 1580 if (vortex_debug > 1) 1581 pr_info("%s: using NWAY device table, not %d\n", 1582 dev->name, dev->if_port); 1583 dev->if_port = XCVR_NWAY; 1584 } else { 1585 /* Find first available media type, starting with 100baseTx. */ 1586 dev->if_port = XCVR_100baseTx; 1587 while (! (vp->available_media & media_tbl[dev->if_port].mask)) 1588 dev->if_port = media_tbl[dev->if_port].next; 1589 if (vortex_debug > 1) 1590 pr_info("%s: first available media type: %s\n", 1591 dev->name, media_tbl[dev->if_port].name); 1592 } 1593 } else { 1594 dev->if_port = vp->default_media; 1595 if (vortex_debug > 1) 1596 pr_info("%s: using default media %s\n", 1597 dev->name, media_tbl[dev->if_port].name); 1598 } 1599 1600 timer_setup(&vp->timer, vortex_timer, 0); 1601 mod_timer(&vp->timer, RUN_AT(media_tbl[dev->if_port].wait)); 1602 1603 if (vortex_debug > 1) 1604 pr_debug("%s: Initial media type %s.\n", 1605 dev->name, media_tbl[dev->if_port].name); 1606 1607 vp->full_duplex = vp->mii.force_media; 1608 config = BFINS(config, dev->if_port, 20, 4); 1609 if (vortex_debug > 6) 1610 pr_debug("vortex_up(): writing 0x%x to InternalConfig\n", config); 1611 window_write32(vp, config, 3, Wn3_Config); 1612 1613 if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) { 1614 mii_reg1 = mdio_read(dev, vp->phys[0], MII_BMSR); 1615 mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA); 1616 vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0); 1617 vp->mii.full_duplex = vp->full_duplex; 1618 1619 vortex_check_media(dev, 1); 1620 } 1621 else 1622 vortex_set_duplex(dev); 1623 1624 issue_and_wait(dev, TxReset); 1625 /* 1626 * Don't reset the PHY - that upsets autonegotiation during DHCP operations. 1627 */ 1628 issue_and_wait(dev, RxReset|0x04); 1629 1630 1631 iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD); 1632 1633 if (vortex_debug > 1) { 1634 pr_debug("%s: vortex_up() irq %d media status %4.4x.\n", 1635 dev->name, dev->irq, window_read16(vp, 4, Wn4_Media)); 1636 } 1637 1638 /* Set the station address and mask in window 2 each time opened. */ 1639 for (i = 0; i < 6; i++) 1640 window_write8(vp, dev->dev_addr[i], 2, i); 1641 for (; i < 12; i+=2) 1642 window_write16(vp, 0, 2, i); 1643 1644 if (vp->cb_fn_base) { 1645 unsigned short n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010; 1646 if (vp->drv_flags & INVERT_LED_PWR) 1647 n |= 0x10; 1648 if (vp->drv_flags & INVERT_MII_PWR) 1649 n |= 0x4000; 1650 window_write16(vp, n, 2, Wn2_ResetOptions); 1651 } 1652 1653 if (dev->if_port == XCVR_10base2) 1654 /* Start the thinnet transceiver. We should really wait 50ms...*/ 1655 iowrite16(StartCoax, ioaddr + EL3_CMD); 1656 if (dev->if_port != XCVR_NWAY) { 1657 window_write16(vp, 1658 (window_read16(vp, 4, Wn4_Media) & 1659 ~(Media_10TP|Media_SQE)) | 1660 media_tbl[dev->if_port].media_bits, 1661 4, Wn4_Media); 1662 } 1663 1664 /* Switch to the stats window, and clear all stats by reading. */ 1665 iowrite16(StatsDisable, ioaddr + EL3_CMD); 1666 for (i = 0; i < 10; i++) 1667 window_read8(vp, 6, i); 1668 window_read16(vp, 6, 10); 1669 window_read16(vp, 6, 12); 1670 /* New: On the Vortex we must also clear the BadSSD counter. */ 1671 window_read8(vp, 4, 12); 1672 /* ..and on the Boomerang we enable the extra statistics bits. */ 1673 window_write16(vp, 0x0040, 4, Wn4_NetDiag); 1674 1675 if (vp->full_bus_master_rx) { /* Boomerang bus master. */ 1676 vp->cur_rx = 0; 1677 /* Initialize the RxEarly register as recommended. */ 1678 iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD); 1679 iowrite32(0x0020, ioaddr + PktStatus); 1680 iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr); 1681 } 1682 if (vp->full_bus_master_tx) { /* Boomerang bus master Tx. */ 1683 vp->cur_tx = vp->dirty_tx = 0; 1684 if (vp->drv_flags & IS_BOOMERANG) 1685 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */ 1686 /* Clear the Rx, Tx rings. */ 1687 for (i = 0; i < RX_RING_SIZE; i++) /* AKPM: this is done in vortex_open, too */ 1688 vp->rx_ring[i].status = 0; 1689 for (i = 0; i < TX_RING_SIZE; i++) 1690 vp->tx_skbuff[i] = NULL; 1691 iowrite32(0, ioaddr + DownListPtr); 1692 } 1693 /* Set receiver mode: presumably accept b-case and phys addr only. */ 1694 set_rx_mode(dev); 1695 /* enable 802.1q tagged frames */ 1696 set_8021q_mode(dev, 1); 1697 iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */ 1698 1699 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */ 1700 iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */ 1701 /* Allow status bits to be seen. */ 1702 vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete| 1703 (vp->full_bus_master_tx ? DownComplete : TxAvailable) | 1704 (vp->full_bus_master_rx ? UpComplete : RxComplete) | 1705 (vp->bus_master ? DMADone : 0); 1706 vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable | 1707 (vp->full_bus_master_rx ? 0 : RxComplete) | 1708 StatsFull | HostError | TxComplete | IntReq 1709 | (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete; 1710 iowrite16(vp->status_enable, ioaddr + EL3_CMD); 1711 /* Ack all pending events, and set active indicator mask. */ 1712 iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq, 1713 ioaddr + EL3_CMD); 1714 iowrite16(vp->intr_enable, ioaddr + EL3_CMD); 1715 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */ 1716 iowrite32(0x8000, vp->cb_fn_base + 4); 1717 netif_start_queue (dev); 1718 netdev_reset_queue(dev); 1719 err_out: 1720 return err; 1721 } 1722 1723 static int 1724 vortex_open(struct net_device *dev) 1725 { 1726 struct vortex_private *vp = netdev_priv(dev); 1727 int i; 1728 int retval; 1729 dma_addr_t dma; 1730 1731 /* Use the now-standard shared IRQ implementation. */ 1732 if ((retval = request_irq(dev->irq, vp->full_bus_master_rx ? 1733 boomerang_interrupt : vortex_interrupt, IRQF_SHARED, dev->name, dev))) { 1734 pr_err("%s: Could not reserve IRQ %d\n", dev->name, dev->irq); 1735 goto err; 1736 } 1737 1738 if (vp->full_bus_master_rx) { /* Boomerang bus master. */ 1739 if (vortex_debug > 2) 1740 pr_debug("%s: Filling in the Rx ring.\n", dev->name); 1741 for (i = 0; i < RX_RING_SIZE; i++) { 1742 struct sk_buff *skb; 1743 vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1)); 1744 vp->rx_ring[i].status = 0; /* Clear complete bit. */ 1745 vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG); 1746 1747 skb = __netdev_alloc_skb(dev, PKT_BUF_SZ + NET_IP_ALIGN, 1748 GFP_KERNEL); 1749 vp->rx_skbuff[i] = skb; 1750 if (skb == NULL) 1751 break; /* Bad news! */ 1752 1753 skb_reserve(skb, NET_IP_ALIGN); /* Align IP on 16 byte boundaries */ 1754 dma = pci_map_single(VORTEX_PCI(vp), skb->data, 1755 PKT_BUF_SZ, PCI_DMA_FROMDEVICE); 1756 if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma)) 1757 break; 1758 vp->rx_ring[i].addr = cpu_to_le32(dma); 1759 } 1760 if (i != RX_RING_SIZE) { 1761 pr_emerg("%s: no memory for rx ring\n", dev->name); 1762 retval = -ENOMEM; 1763 goto err_free_skb; 1764 } 1765 /* Wrap the ring. */ 1766 vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma); 1767 } 1768 1769 retval = vortex_up(dev); 1770 if (!retval) 1771 goto out; 1772 1773 err_free_skb: 1774 for (i = 0; i < RX_RING_SIZE; i++) { 1775 if (vp->rx_skbuff[i]) { 1776 dev_kfree_skb(vp->rx_skbuff[i]); 1777 vp->rx_skbuff[i] = NULL; 1778 } 1779 } 1780 free_irq(dev->irq, dev); 1781 err: 1782 if (vortex_debug > 1) 1783 pr_err("%s: vortex_open() fails: returning %d\n", dev->name, retval); 1784 out: 1785 return retval; 1786 } 1787 1788 static void 1789 vortex_timer(struct timer_list *t) 1790 { 1791 struct vortex_private *vp = from_timer(vp, t, timer); 1792 struct net_device *dev = vp->mii.dev; 1793 void __iomem *ioaddr = vp->ioaddr; 1794 int next_tick = 60*HZ; 1795 int ok = 0; 1796 int media_status; 1797 1798 if (vortex_debug > 2) { 1799 pr_debug("%s: Media selection timer tick happened, %s.\n", 1800 dev->name, media_tbl[dev->if_port].name); 1801 pr_debug("dev->watchdog_timeo=%d\n", dev->watchdog_timeo); 1802 } 1803 1804 media_status = window_read16(vp, 4, Wn4_Media); 1805 switch (dev->if_port) { 1806 case XCVR_10baseT: case XCVR_100baseTx: case XCVR_100baseFx: 1807 if (media_status & Media_LnkBeat) { 1808 netif_carrier_on(dev); 1809 ok = 1; 1810 if (vortex_debug > 1) 1811 pr_debug("%s: Media %s has link beat, %x.\n", 1812 dev->name, media_tbl[dev->if_port].name, media_status); 1813 } else { 1814 netif_carrier_off(dev); 1815 if (vortex_debug > 1) { 1816 pr_debug("%s: Media %s has no link beat, %x.\n", 1817 dev->name, media_tbl[dev->if_port].name, media_status); 1818 } 1819 } 1820 break; 1821 case XCVR_MII: case XCVR_NWAY: 1822 { 1823 ok = 1; 1824 vortex_check_media(dev, 0); 1825 } 1826 break; 1827 default: /* Other media types handled by Tx timeouts. */ 1828 if (vortex_debug > 1) 1829 pr_debug("%s: Media %s has no indication, %x.\n", 1830 dev->name, media_tbl[dev->if_port].name, media_status); 1831 ok = 1; 1832 } 1833 1834 if (dev->flags & IFF_SLAVE || !netif_carrier_ok(dev)) 1835 next_tick = 5*HZ; 1836 1837 if (vp->medialock) 1838 goto leave_media_alone; 1839 1840 if (!ok) { 1841 unsigned int config; 1842 1843 spin_lock_irq(&vp->lock); 1844 1845 do { 1846 dev->if_port = media_tbl[dev->if_port].next; 1847 } while ( ! (vp->available_media & media_tbl[dev->if_port].mask)); 1848 if (dev->if_port == XCVR_Default) { /* Go back to default. */ 1849 dev->if_port = vp->default_media; 1850 if (vortex_debug > 1) 1851 pr_debug("%s: Media selection failing, using default %s port.\n", 1852 dev->name, media_tbl[dev->if_port].name); 1853 } else { 1854 if (vortex_debug > 1) 1855 pr_debug("%s: Media selection failed, now trying %s port.\n", 1856 dev->name, media_tbl[dev->if_port].name); 1857 next_tick = media_tbl[dev->if_port].wait; 1858 } 1859 window_write16(vp, 1860 (media_status & ~(Media_10TP|Media_SQE)) | 1861 media_tbl[dev->if_port].media_bits, 1862 4, Wn4_Media); 1863 1864 config = window_read32(vp, 3, Wn3_Config); 1865 config = BFINS(config, dev->if_port, 20, 4); 1866 window_write32(vp, config, 3, Wn3_Config); 1867 1868 iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax, 1869 ioaddr + EL3_CMD); 1870 if (vortex_debug > 1) 1871 pr_debug("wrote 0x%08x to Wn3_Config\n", config); 1872 /* AKPM: FIXME: Should reset Rx & Tx here. P60 of 3c90xc.pdf */ 1873 1874 spin_unlock_irq(&vp->lock); 1875 } 1876 1877 leave_media_alone: 1878 if (vortex_debug > 2) 1879 pr_debug("%s: Media selection timer finished, %s.\n", 1880 dev->name, media_tbl[dev->if_port].name); 1881 1882 mod_timer(&vp->timer, RUN_AT(next_tick)); 1883 if (vp->deferred) 1884 iowrite16(FakeIntr, ioaddr + EL3_CMD); 1885 } 1886 1887 static void vortex_tx_timeout(struct net_device *dev) 1888 { 1889 struct vortex_private *vp = netdev_priv(dev); 1890 void __iomem *ioaddr = vp->ioaddr; 1891 1892 pr_err("%s: transmit timed out, tx_status %2.2x status %4.4x.\n", 1893 dev->name, ioread8(ioaddr + TxStatus), 1894 ioread16(ioaddr + EL3_STATUS)); 1895 pr_err(" diagnostics: net %04x media %04x dma %08x fifo %04x\n", 1896 window_read16(vp, 4, Wn4_NetDiag), 1897 window_read16(vp, 4, Wn4_Media), 1898 ioread32(ioaddr + PktStatus), 1899 window_read16(vp, 4, Wn4_FIFODiag)); 1900 /* Slight code bloat to be user friendly. */ 1901 if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88) 1902 pr_err("%s: Transmitter encountered 16 collisions --" 1903 " network cable problem?\n", dev->name); 1904 if (ioread16(ioaddr + EL3_STATUS) & IntLatch) { 1905 pr_err("%s: Interrupt posted but not delivered --" 1906 " IRQ blocked by another device?\n", dev->name); 1907 /* Bad idea here.. but we might as well handle a few events. */ 1908 { 1909 /* 1910 * Block interrupts because vortex_interrupt does a bare spin_lock() 1911 */ 1912 unsigned long flags; 1913 local_irq_save(flags); 1914 if (vp->full_bus_master_tx) 1915 boomerang_interrupt(dev->irq, dev); 1916 else 1917 vortex_interrupt(dev->irq, dev); 1918 local_irq_restore(flags); 1919 } 1920 } 1921 1922 if (vortex_debug > 0) 1923 dump_tx_ring(dev); 1924 1925 issue_and_wait(dev, TxReset); 1926 1927 dev->stats.tx_errors++; 1928 if (vp->full_bus_master_tx) { 1929 pr_debug("%s: Resetting the Tx ring pointer.\n", dev->name); 1930 if (vp->cur_tx - vp->dirty_tx > 0 && ioread32(ioaddr + DownListPtr) == 0) 1931 iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc), 1932 ioaddr + DownListPtr); 1933 if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE) { 1934 netif_wake_queue (dev); 1935 netdev_reset_queue (dev); 1936 } 1937 if (vp->drv_flags & IS_BOOMERANG) 1938 iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); 1939 iowrite16(DownUnstall, ioaddr + EL3_CMD); 1940 } else { 1941 dev->stats.tx_dropped++; 1942 netif_wake_queue(dev); 1943 netdev_reset_queue(dev); 1944 } 1945 /* Issue Tx Enable */ 1946 iowrite16(TxEnable, ioaddr + EL3_CMD); 1947 netif_trans_update(dev); /* prevent tx timeout */ 1948 } 1949 1950 /* 1951 * Handle uncommon interrupt sources. This is a separate routine to minimize 1952 * the cache impact. 1953 */ 1954 static void 1955 vortex_error(struct net_device *dev, int status) 1956 { 1957 struct vortex_private *vp = netdev_priv(dev); 1958 void __iomem *ioaddr = vp->ioaddr; 1959 int do_tx_reset = 0, reset_mask = 0; 1960 unsigned char tx_status = 0; 1961 1962 if (vortex_debug > 2) { 1963 pr_err("%s: vortex_error(), status=0x%x\n", dev->name, status); 1964 } 1965 1966 if (status & TxComplete) { /* Really "TxError" for us. */ 1967 tx_status = ioread8(ioaddr + TxStatus); 1968 /* Presumably a tx-timeout. We must merely re-enable. */ 1969 if (vortex_debug > 2 || 1970 (tx_status != 0x88 && vortex_debug > 0)) { 1971 pr_err("%s: Transmit error, Tx status register %2.2x.\n", 1972 dev->name, tx_status); 1973 if (tx_status == 0x82) { 1974 pr_err("Probably a duplex mismatch. See " 1975 "Documentation/networking/vortex.txt\n"); 1976 } 1977 dump_tx_ring(dev); 1978 } 1979 if (tx_status & 0x14) dev->stats.tx_fifo_errors++; 1980 if (tx_status & 0x38) dev->stats.tx_aborted_errors++; 1981 if (tx_status & 0x08) vp->xstats.tx_max_collisions++; 1982 iowrite8(0, ioaddr + TxStatus); 1983 if (tx_status & 0x30) { /* txJabber or txUnderrun */ 1984 do_tx_reset = 1; 1985 } else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET)) { /* maxCollisions */ 1986 do_tx_reset = 1; 1987 reset_mask = 0x0108; /* Reset interface logic, but not download logic */ 1988 } else { /* Merely re-enable the transmitter. */ 1989 iowrite16(TxEnable, ioaddr + EL3_CMD); 1990 } 1991 } 1992 1993 if (status & RxEarly) /* Rx early is unused. */ 1994 iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD); 1995 1996 if (status & StatsFull) { /* Empty statistics. */ 1997 static int DoneDidThat; 1998 if (vortex_debug > 4) 1999 pr_debug("%s: Updating stats.\n", dev->name); 2000 update_stats(ioaddr, dev); 2001 /* HACK: Disable statistics as an interrupt source. */ 2002 /* This occurs when we have the wrong media type! */ 2003 if (DoneDidThat == 0 && 2004 ioread16(ioaddr + EL3_STATUS) & StatsFull) { 2005 pr_warn("%s: Updating statistics failed, disabling stats as an interrupt source\n", 2006 dev->name); 2007 iowrite16(SetIntrEnb | 2008 (window_read16(vp, 5, 10) & ~StatsFull), 2009 ioaddr + EL3_CMD); 2010 vp->intr_enable &= ~StatsFull; 2011 DoneDidThat++; 2012 } 2013 } 2014 if (status & IntReq) { /* Restore all interrupt sources. */ 2015 iowrite16(vp->status_enable, ioaddr + EL3_CMD); 2016 iowrite16(vp->intr_enable, ioaddr + EL3_CMD); 2017 } 2018 if (status & HostError) { 2019 u16 fifo_diag; 2020 fifo_diag = window_read16(vp, 4, Wn4_FIFODiag); 2021 pr_err("%s: Host error, FIFO diagnostic register %4.4x.\n", 2022 dev->name, fifo_diag); 2023 /* Adapter failure requires Tx/Rx reset and reinit. */ 2024 if (vp->full_bus_master_tx) { 2025 int bus_status = ioread32(ioaddr + PktStatus); 2026 /* 0x80000000 PCI master abort. */ 2027 /* 0x40000000 PCI target abort. */ 2028 if (vortex_debug) 2029 pr_err("%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status); 2030 2031 /* In this case, blow the card away */ 2032 /* Must not enter D3 or we can't legally issue the reset! */ 2033 vortex_down(dev, 0); 2034 issue_and_wait(dev, TotalReset | 0xff); 2035 vortex_up(dev); /* AKPM: bug. vortex_up() assumes that the rx ring is full. It may not be. */ 2036 } else if (fifo_diag & 0x0400) 2037 do_tx_reset = 1; 2038 if (fifo_diag & 0x3000) { 2039 /* Reset Rx fifo and upload logic */ 2040 issue_and_wait(dev, RxReset|0x07); 2041 /* Set the Rx filter to the current state. */ 2042 set_rx_mode(dev); 2043 /* enable 802.1q VLAN tagged frames */ 2044 set_8021q_mode(dev, 1); 2045 iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */ 2046 iowrite16(AckIntr | HostError, ioaddr + EL3_CMD); 2047 } 2048 } 2049 2050 if (do_tx_reset) { 2051 issue_and_wait(dev, TxReset|reset_mask); 2052 iowrite16(TxEnable, ioaddr + EL3_CMD); 2053 if (!vp->full_bus_master_tx) 2054 netif_wake_queue(dev); 2055 } 2056 } 2057 2058 static netdev_tx_t 2059 vortex_start_xmit(struct sk_buff *skb, struct net_device *dev) 2060 { 2061 struct vortex_private *vp = netdev_priv(dev); 2062 void __iomem *ioaddr = vp->ioaddr; 2063 int skblen = skb->len; 2064 2065 /* Put out the doubleword header... */ 2066 iowrite32(skb->len, ioaddr + TX_FIFO); 2067 if (vp->bus_master) { 2068 /* Set the bus-master controller to transfer the packet. */ 2069 int len = (skb->len + 3) & ~3; 2070 vp->tx_skb_dma = pci_map_single(VORTEX_PCI(vp), skb->data, len, 2071 PCI_DMA_TODEVICE); 2072 if (dma_mapping_error(&VORTEX_PCI(vp)->dev, vp->tx_skb_dma)) { 2073 dev_kfree_skb_any(skb); 2074 dev->stats.tx_dropped++; 2075 return NETDEV_TX_OK; 2076 } 2077 2078 spin_lock_irq(&vp->window_lock); 2079 window_set(vp, 7); 2080 iowrite32(vp->tx_skb_dma, ioaddr + Wn7_MasterAddr); 2081 iowrite16(len, ioaddr + Wn7_MasterLen); 2082 spin_unlock_irq(&vp->window_lock); 2083 vp->tx_skb = skb; 2084 skb_tx_timestamp(skb); 2085 iowrite16(StartDMADown, ioaddr + EL3_CMD); 2086 /* netif_wake_queue() will be called at the DMADone interrupt. */ 2087 } else { 2088 /* ... and the packet rounded to a doubleword. */ 2089 skb_tx_timestamp(skb); 2090 iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2); 2091 dev_consume_skb_any (skb); 2092 if (ioread16(ioaddr + TxFree) > 1536) { 2093 netif_start_queue (dev); /* AKPM: redundant? */ 2094 } else { 2095 /* Interrupt us when the FIFO has room for max-sized packet. */ 2096 netif_stop_queue(dev); 2097 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD); 2098 } 2099 } 2100 2101 netdev_sent_queue(dev, skblen); 2102 2103 /* Clear the Tx status stack. */ 2104 { 2105 int tx_status; 2106 int i = 32; 2107 2108 while (--i > 0 && (tx_status = ioread8(ioaddr + TxStatus)) > 0) { 2109 if (tx_status & 0x3C) { /* A Tx-disabling error occurred. */ 2110 if (vortex_debug > 2) 2111 pr_debug("%s: Tx error, status %2.2x.\n", 2112 dev->name, tx_status); 2113 if (tx_status & 0x04) dev->stats.tx_fifo_errors++; 2114 if (tx_status & 0x38) dev->stats.tx_aborted_errors++; 2115 if (tx_status & 0x30) { 2116 issue_and_wait(dev, TxReset); 2117 } 2118 iowrite16(TxEnable, ioaddr + EL3_CMD); 2119 } 2120 iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */ 2121 } 2122 } 2123 return NETDEV_TX_OK; 2124 } 2125 2126 static netdev_tx_t 2127 boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev) 2128 { 2129 struct vortex_private *vp = netdev_priv(dev); 2130 void __iomem *ioaddr = vp->ioaddr; 2131 /* Calculate the next Tx descriptor entry. */ 2132 int entry = vp->cur_tx % TX_RING_SIZE; 2133 int skblen = skb->len; 2134 struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE]; 2135 unsigned long flags; 2136 dma_addr_t dma_addr; 2137 2138 if (vortex_debug > 6) { 2139 pr_debug("boomerang_start_xmit()\n"); 2140 pr_debug("%s: Trying to send a packet, Tx index %d.\n", 2141 dev->name, vp->cur_tx); 2142 } 2143 2144 /* 2145 * We can't allow a recursion from our interrupt handler back into the 2146 * tx routine, as they take the same spin lock, and that causes 2147 * deadlock. Just return NETDEV_TX_BUSY and let the stack try again in 2148 * a bit 2149 */ 2150 if (vp->handling_irq) 2151 return NETDEV_TX_BUSY; 2152 2153 if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) { 2154 if (vortex_debug > 0) 2155 pr_warn("%s: BUG! Tx Ring full, refusing to send buffer\n", 2156 dev->name); 2157 netif_stop_queue(dev); 2158 return NETDEV_TX_BUSY; 2159 } 2160 2161 vp->tx_skbuff[entry] = skb; 2162 2163 vp->tx_ring[entry].next = 0; 2164 #if DO_ZEROCOPY 2165 if (skb->ip_summed != CHECKSUM_PARTIAL) 2166 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded); 2167 else 2168 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum); 2169 2170 if (!skb_shinfo(skb)->nr_frags) { 2171 dma_addr = pci_map_single(VORTEX_PCI(vp), skb->data, skb->len, 2172 PCI_DMA_TODEVICE); 2173 if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr)) 2174 goto out_dma_err; 2175 2176 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(dma_addr); 2177 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG); 2178 } else { 2179 int i; 2180 2181 dma_addr = pci_map_single(VORTEX_PCI(vp), skb->data, 2182 skb_headlen(skb), PCI_DMA_TODEVICE); 2183 if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr)) 2184 goto out_dma_err; 2185 2186 vp->tx_ring[entry].frag[0].addr = cpu_to_le32(dma_addr); 2187 vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb_headlen(skb)); 2188 2189 for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) { 2190 skb_frag_t *frag = &skb_shinfo(skb)->frags[i]; 2191 2192 dma_addr = skb_frag_dma_map(&VORTEX_PCI(vp)->dev, frag, 2193 0, 2194 frag->size, 2195 DMA_TO_DEVICE); 2196 if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr)) { 2197 for(i = i-1; i >= 0; i--) 2198 dma_unmap_page(&VORTEX_PCI(vp)->dev, 2199 le32_to_cpu(vp->tx_ring[entry].frag[i+1].addr), 2200 le32_to_cpu(vp->tx_ring[entry].frag[i+1].length), 2201 DMA_TO_DEVICE); 2202 2203 pci_unmap_single(VORTEX_PCI(vp), 2204 le32_to_cpu(vp->tx_ring[entry].frag[0].addr), 2205 le32_to_cpu(vp->tx_ring[entry].frag[0].length), 2206 PCI_DMA_TODEVICE); 2207 2208 goto out_dma_err; 2209 } 2210 2211 vp->tx_ring[entry].frag[i+1].addr = 2212 cpu_to_le32(dma_addr); 2213 2214 if (i == skb_shinfo(skb)->nr_frags-1) 2215 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag)|LAST_FRAG); 2216 else 2217 vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag)); 2218 } 2219 } 2220 #else 2221 dma_addr = pci_map_single(VORTEX_PCI(vp), skb->data, skb->len, PCI_DMA_TODEVICE); 2222 if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr)) 2223 goto out_dma_err; 2224 vp->tx_ring[entry].addr = cpu_to_le32(dma_addr); 2225 vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG); 2226 vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded); 2227 #endif 2228 2229 spin_lock_irqsave(&vp->lock, flags); 2230 /* Wait for the stall to complete. */ 2231 issue_and_wait(dev, DownStall); 2232 prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc)); 2233 if (ioread32(ioaddr + DownListPtr) == 0) { 2234 iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr); 2235 vp->queued_packet++; 2236 } 2237 2238 vp->cur_tx++; 2239 netdev_sent_queue(dev, skblen); 2240 2241 if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) { 2242 netif_stop_queue (dev); 2243 } else { /* Clear previous interrupt enable. */ 2244 #if defined(tx_interrupt_mitigation) 2245 /* Dubious. If in boomeang_interrupt "faster" cyclone ifdef 2246 * were selected, this would corrupt DN_COMPLETE. No? 2247 */ 2248 prev_entry->status &= cpu_to_le32(~TxIntrUploaded); 2249 #endif 2250 } 2251 skb_tx_timestamp(skb); 2252 iowrite16(DownUnstall, ioaddr + EL3_CMD); 2253 spin_unlock_irqrestore(&vp->lock, flags); 2254 out: 2255 return NETDEV_TX_OK; 2256 out_dma_err: 2257 dev_err(&VORTEX_PCI(vp)->dev, "Error mapping dma buffer\n"); 2258 goto out; 2259 } 2260 2261 /* The interrupt handler does all of the Rx thread work and cleans up 2262 after the Tx thread. */ 2263 2264 /* 2265 * This is the ISR for the vortex series chips. 2266 * full_bus_master_tx == 0 && full_bus_master_rx == 0 2267 */ 2268 2269 static irqreturn_t 2270 vortex_interrupt(int irq, void *dev_id) 2271 { 2272 struct net_device *dev = dev_id; 2273 struct vortex_private *vp = netdev_priv(dev); 2274 void __iomem *ioaddr; 2275 int status; 2276 int work_done = max_interrupt_work; 2277 int handled = 0; 2278 unsigned int bytes_compl = 0, pkts_compl = 0; 2279 2280 ioaddr = vp->ioaddr; 2281 spin_lock(&vp->lock); 2282 2283 status = ioread16(ioaddr + EL3_STATUS); 2284 2285 if (vortex_debug > 6) 2286 pr_debug("vortex_interrupt(). status=0x%4x\n", status); 2287 2288 if ((status & IntLatch) == 0) 2289 goto handler_exit; /* No interrupt: shared IRQs cause this */ 2290 handled = 1; 2291 2292 if (status & IntReq) { 2293 status |= vp->deferred; 2294 vp->deferred = 0; 2295 } 2296 2297 if (status == 0xffff) /* h/w no longer present (hotplug)? */ 2298 goto handler_exit; 2299 2300 if (vortex_debug > 4) 2301 pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n", 2302 dev->name, status, ioread8(ioaddr + Timer)); 2303 2304 spin_lock(&vp->window_lock); 2305 window_set(vp, 7); 2306 2307 do { 2308 if (vortex_debug > 5) 2309 pr_debug("%s: In interrupt loop, status %4.4x.\n", 2310 dev->name, status); 2311 if (status & RxComplete) 2312 vortex_rx(dev); 2313 2314 if (status & TxAvailable) { 2315 if (vortex_debug > 5) 2316 pr_debug(" TX room bit was handled.\n"); 2317 /* There's room in the FIFO for a full-sized packet. */ 2318 iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD); 2319 netif_wake_queue (dev); 2320 } 2321 2322 if (status & DMADone) { 2323 if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) { 2324 iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */ 2325 pci_unmap_single(VORTEX_PCI(vp), vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, PCI_DMA_TODEVICE); 2326 pkts_compl++; 2327 bytes_compl += vp->tx_skb->len; 2328 dev_kfree_skb_irq(vp->tx_skb); /* Release the transferred buffer */ 2329 if (ioread16(ioaddr + TxFree) > 1536) { 2330 /* 2331 * AKPM: FIXME: I don't think we need this. If the queue was stopped due to 2332 * insufficient FIFO room, the TxAvailable test will succeed and call 2333 * netif_wake_queue() 2334 */ 2335 netif_wake_queue(dev); 2336 } else { /* Interrupt when FIFO has room for max-sized packet. */ 2337 iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD); 2338 netif_stop_queue(dev); 2339 } 2340 } 2341 } 2342 /* Check for all uncommon interrupts at once. */ 2343 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) { 2344 if (status == 0xffff) 2345 break; 2346 if (status & RxEarly) 2347 vortex_rx(dev); 2348 spin_unlock(&vp->window_lock); 2349 vortex_error(dev, status); 2350 spin_lock(&vp->window_lock); 2351 window_set(vp, 7); 2352 } 2353 2354 if (--work_done < 0) { 2355 pr_warn("%s: Too much work in interrupt, status %4.4x\n", 2356 dev->name, status); 2357 /* Disable all pending interrupts. */ 2358 do { 2359 vp->deferred |= status; 2360 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable), 2361 ioaddr + EL3_CMD); 2362 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD); 2363 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch); 2364 /* The timer will reenable interrupts. */ 2365 mod_timer(&vp->timer, jiffies + 1*HZ); 2366 break; 2367 } 2368 /* Acknowledge the IRQ. */ 2369 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD); 2370 } while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete)); 2371 2372 netdev_completed_queue(dev, pkts_compl, bytes_compl); 2373 spin_unlock(&vp->window_lock); 2374 2375 if (vortex_debug > 4) 2376 pr_debug("%s: exiting interrupt, status %4.4x.\n", 2377 dev->name, status); 2378 handler_exit: 2379 spin_unlock(&vp->lock); 2380 return IRQ_RETVAL(handled); 2381 } 2382 2383 /* 2384 * This is the ISR for the boomerang series chips. 2385 * full_bus_master_tx == 1 && full_bus_master_rx == 1 2386 */ 2387 2388 static irqreturn_t 2389 boomerang_interrupt(int irq, void *dev_id) 2390 { 2391 struct net_device *dev = dev_id; 2392 struct vortex_private *vp = netdev_priv(dev); 2393 void __iomem *ioaddr; 2394 int status; 2395 int work_done = max_interrupt_work; 2396 int handled = 0; 2397 unsigned int bytes_compl = 0, pkts_compl = 0; 2398 2399 ioaddr = vp->ioaddr; 2400 2401 2402 /* 2403 * It seems dopey to put the spinlock this early, but we could race against vortex_tx_timeout 2404 * and boomerang_start_xmit 2405 */ 2406 spin_lock(&vp->lock); 2407 vp->handling_irq = 1; 2408 2409 status = ioread16(ioaddr + EL3_STATUS); 2410 2411 if (vortex_debug > 6) 2412 pr_debug("boomerang_interrupt. status=0x%4x\n", status); 2413 2414 if ((status & IntLatch) == 0) 2415 goto handler_exit; /* No interrupt: shared IRQs can cause this */ 2416 handled = 1; 2417 2418 if (status == 0xffff) { /* h/w no longer present (hotplug)? */ 2419 if (vortex_debug > 1) 2420 pr_debug("boomerang_interrupt(1): status = 0xffff\n"); 2421 goto handler_exit; 2422 } 2423 2424 if (status & IntReq) { 2425 status |= vp->deferred; 2426 vp->deferred = 0; 2427 } 2428 2429 if (vortex_debug > 4) 2430 pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n", 2431 dev->name, status, ioread8(ioaddr + Timer)); 2432 do { 2433 if (vortex_debug > 5) 2434 pr_debug("%s: In interrupt loop, status %4.4x.\n", 2435 dev->name, status); 2436 if (status & UpComplete) { 2437 iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD); 2438 if (vortex_debug > 5) 2439 pr_debug("boomerang_interrupt->boomerang_rx\n"); 2440 boomerang_rx(dev); 2441 } 2442 2443 if (status & DownComplete) { 2444 unsigned int dirty_tx = vp->dirty_tx; 2445 2446 iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD); 2447 while (vp->cur_tx - dirty_tx > 0) { 2448 int entry = dirty_tx % TX_RING_SIZE; 2449 #if 1 /* AKPM: the latter is faster, but cyclone-only */ 2450 if (ioread32(ioaddr + DownListPtr) == 2451 vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc)) 2452 break; /* It still hasn't been processed. */ 2453 #else 2454 if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0) 2455 break; /* It still hasn't been processed. */ 2456 #endif 2457 2458 if (vp->tx_skbuff[entry]) { 2459 struct sk_buff *skb = vp->tx_skbuff[entry]; 2460 #if DO_ZEROCOPY 2461 int i; 2462 pci_unmap_single(VORTEX_PCI(vp), 2463 le32_to_cpu(vp->tx_ring[entry].frag[0].addr), 2464 le32_to_cpu(vp->tx_ring[entry].frag[0].length)&0xFFF, 2465 PCI_DMA_TODEVICE); 2466 2467 for (i=1; i<=skb_shinfo(skb)->nr_frags; i++) 2468 pci_unmap_page(VORTEX_PCI(vp), 2469 le32_to_cpu(vp->tx_ring[entry].frag[i].addr), 2470 le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF, 2471 PCI_DMA_TODEVICE); 2472 #else 2473 pci_unmap_single(VORTEX_PCI(vp), 2474 le32_to_cpu(vp->tx_ring[entry].addr), skb->len, PCI_DMA_TODEVICE); 2475 #endif 2476 pkts_compl++; 2477 bytes_compl += skb->len; 2478 dev_kfree_skb_irq(skb); 2479 vp->tx_skbuff[entry] = NULL; 2480 } else { 2481 pr_debug("boomerang_interrupt: no skb!\n"); 2482 } 2483 /* dev->stats.tx_packets++; Counted below. */ 2484 dirty_tx++; 2485 } 2486 vp->dirty_tx = dirty_tx; 2487 if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) { 2488 if (vortex_debug > 6) 2489 pr_debug("boomerang_interrupt: wake queue\n"); 2490 netif_wake_queue (dev); 2491 } 2492 } 2493 2494 /* Check for all uncommon interrupts at once. */ 2495 if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) 2496 vortex_error(dev, status); 2497 2498 if (--work_done < 0) { 2499 pr_warn("%s: Too much work in interrupt, status %4.4x\n", 2500 dev->name, status); 2501 /* Disable all pending interrupts. */ 2502 do { 2503 vp->deferred |= status; 2504 iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable), 2505 ioaddr + EL3_CMD); 2506 iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD); 2507 } while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch); 2508 /* The timer will reenable interrupts. */ 2509 mod_timer(&vp->timer, jiffies + 1*HZ); 2510 break; 2511 } 2512 /* Acknowledge the IRQ. */ 2513 iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD); 2514 if (vp->cb_fn_base) /* The PCMCIA people are idiots. */ 2515 iowrite32(0x8000, vp->cb_fn_base + 4); 2516 2517 } while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch); 2518 netdev_completed_queue(dev, pkts_compl, bytes_compl); 2519 2520 if (vortex_debug > 4) 2521 pr_debug("%s: exiting interrupt, status %4.4x.\n", 2522 dev->name, status); 2523 handler_exit: 2524 vp->handling_irq = 0; 2525 spin_unlock(&vp->lock); 2526 return IRQ_RETVAL(handled); 2527 } 2528 2529 static int vortex_rx(struct net_device *dev) 2530 { 2531 struct vortex_private *vp = netdev_priv(dev); 2532 void __iomem *ioaddr = vp->ioaddr; 2533 int i; 2534 short rx_status; 2535 2536 if (vortex_debug > 5) 2537 pr_debug("vortex_rx(): status %4.4x, rx_status %4.4x.\n", 2538 ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus)); 2539 while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) { 2540 if (rx_status & 0x4000) { /* Error, update stats. */ 2541 unsigned char rx_error = ioread8(ioaddr + RxErrors); 2542 if (vortex_debug > 2) 2543 pr_debug(" Rx error: status %2.2x.\n", rx_error); 2544 dev->stats.rx_errors++; 2545 if (rx_error & 0x01) dev->stats.rx_over_errors++; 2546 if (rx_error & 0x02) dev->stats.rx_length_errors++; 2547 if (rx_error & 0x04) dev->stats.rx_frame_errors++; 2548 if (rx_error & 0x08) dev->stats.rx_crc_errors++; 2549 if (rx_error & 0x10) dev->stats.rx_length_errors++; 2550 } else { 2551 /* The packet length: up to 4.5K!. */ 2552 int pkt_len = rx_status & 0x1fff; 2553 struct sk_buff *skb; 2554 2555 skb = netdev_alloc_skb(dev, pkt_len + 5); 2556 if (vortex_debug > 4) 2557 pr_debug("Receiving packet size %d status %4.4x.\n", 2558 pkt_len, rx_status); 2559 if (skb != NULL) { 2560 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */ 2561 /* 'skb_put()' points to the start of sk_buff data area. */ 2562 if (vp->bus_master && 2563 ! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) { 2564 dma_addr_t dma = pci_map_single(VORTEX_PCI(vp), skb_put(skb, pkt_len), 2565 pkt_len, PCI_DMA_FROMDEVICE); 2566 iowrite32(dma, ioaddr + Wn7_MasterAddr); 2567 iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen); 2568 iowrite16(StartDMAUp, ioaddr + EL3_CMD); 2569 while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000) 2570 ; 2571 pci_unmap_single(VORTEX_PCI(vp), dma, pkt_len, PCI_DMA_FROMDEVICE); 2572 } else { 2573 ioread32_rep(ioaddr + RX_FIFO, 2574 skb_put(skb, pkt_len), 2575 (pkt_len + 3) >> 2); 2576 } 2577 iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */ 2578 skb->protocol = eth_type_trans(skb, dev); 2579 netif_rx(skb); 2580 dev->stats.rx_packets++; 2581 /* Wait a limited time to go to next packet. */ 2582 for (i = 200; i >= 0; i--) 2583 if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) 2584 break; 2585 continue; 2586 } else if (vortex_debug > 0) 2587 pr_notice("%s: No memory to allocate a sk_buff of size %d.\n", 2588 dev->name, pkt_len); 2589 dev->stats.rx_dropped++; 2590 } 2591 issue_and_wait(dev, RxDiscard); 2592 } 2593 2594 return 0; 2595 } 2596 2597 static int 2598 boomerang_rx(struct net_device *dev) 2599 { 2600 struct vortex_private *vp = netdev_priv(dev); 2601 int entry = vp->cur_rx % RX_RING_SIZE; 2602 void __iomem *ioaddr = vp->ioaddr; 2603 int rx_status; 2604 int rx_work_limit = RX_RING_SIZE; 2605 2606 if (vortex_debug > 5) 2607 pr_debug("boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS)); 2608 2609 while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){ 2610 if (--rx_work_limit < 0) 2611 break; 2612 if (rx_status & RxDError) { /* Error, update stats. */ 2613 unsigned char rx_error = rx_status >> 16; 2614 if (vortex_debug > 2) 2615 pr_debug(" Rx error: status %2.2x.\n", rx_error); 2616 dev->stats.rx_errors++; 2617 if (rx_error & 0x01) dev->stats.rx_over_errors++; 2618 if (rx_error & 0x02) dev->stats.rx_length_errors++; 2619 if (rx_error & 0x04) dev->stats.rx_frame_errors++; 2620 if (rx_error & 0x08) dev->stats.rx_crc_errors++; 2621 if (rx_error & 0x10) dev->stats.rx_length_errors++; 2622 } else { 2623 /* The packet length: up to 4.5K!. */ 2624 int pkt_len = rx_status & 0x1fff; 2625 struct sk_buff *skb, *newskb; 2626 dma_addr_t newdma; 2627 dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr); 2628 2629 if (vortex_debug > 4) 2630 pr_debug("Receiving packet size %d status %4.4x.\n", 2631 pkt_len, rx_status); 2632 2633 /* Check if the packet is long enough to just accept without 2634 copying to a properly sized skbuff. */ 2635 if (pkt_len < rx_copybreak && 2636 (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) { 2637 skb_reserve(skb, 2); /* Align IP on 16 byte boundaries */ 2638 pci_dma_sync_single_for_cpu(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE); 2639 /* 'skb_put()' points to the start of sk_buff data area. */ 2640 skb_put_data(skb, vp->rx_skbuff[entry]->data, 2641 pkt_len); 2642 pci_dma_sync_single_for_device(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE); 2643 vp->rx_copy++; 2644 } else { 2645 /* Pre-allocate the replacement skb. If it or its 2646 * mapping fails then recycle the buffer thats already 2647 * in place 2648 */ 2649 newskb = netdev_alloc_skb_ip_align(dev, PKT_BUF_SZ); 2650 if (!newskb) { 2651 dev->stats.rx_dropped++; 2652 goto clear_complete; 2653 } 2654 newdma = pci_map_single(VORTEX_PCI(vp), newskb->data, 2655 PKT_BUF_SZ, PCI_DMA_FROMDEVICE); 2656 if (dma_mapping_error(&VORTEX_PCI(vp)->dev, newdma)) { 2657 dev->stats.rx_dropped++; 2658 consume_skb(newskb); 2659 goto clear_complete; 2660 } 2661 2662 /* Pass up the skbuff already on the Rx ring. */ 2663 skb = vp->rx_skbuff[entry]; 2664 vp->rx_skbuff[entry] = newskb; 2665 vp->rx_ring[entry].addr = cpu_to_le32(newdma); 2666 skb_put(skb, pkt_len); 2667 pci_unmap_single(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE); 2668 vp->rx_nocopy++; 2669 } 2670 skb->protocol = eth_type_trans(skb, dev); 2671 { /* Use hardware checksum info. */ 2672 int csum_bits = rx_status & 0xee000000; 2673 if (csum_bits && 2674 (csum_bits == (IPChksumValid | TCPChksumValid) || 2675 csum_bits == (IPChksumValid | UDPChksumValid))) { 2676 skb->ip_summed = CHECKSUM_UNNECESSARY; 2677 vp->rx_csumhits++; 2678 } 2679 } 2680 netif_rx(skb); 2681 dev->stats.rx_packets++; 2682 } 2683 2684 clear_complete: 2685 vp->rx_ring[entry].status = 0; /* Clear complete bit. */ 2686 iowrite16(UpUnstall, ioaddr + EL3_CMD); 2687 entry = (++vp->cur_rx) % RX_RING_SIZE; 2688 } 2689 return 0; 2690 } 2691 2692 static void 2693 vortex_down(struct net_device *dev, int final_down) 2694 { 2695 struct vortex_private *vp = netdev_priv(dev); 2696 void __iomem *ioaddr = vp->ioaddr; 2697 2698 netdev_reset_queue(dev); 2699 netif_stop_queue(dev); 2700 2701 del_timer_sync(&vp->timer); 2702 2703 /* Turn off statistics ASAP. We update dev->stats below. */ 2704 iowrite16(StatsDisable, ioaddr + EL3_CMD); 2705 2706 /* Disable the receiver and transmitter. */ 2707 iowrite16(RxDisable, ioaddr + EL3_CMD); 2708 iowrite16(TxDisable, ioaddr + EL3_CMD); 2709 2710 /* Disable receiving 802.1q tagged frames */ 2711 set_8021q_mode(dev, 0); 2712 2713 if (dev->if_port == XCVR_10base2) 2714 /* Turn off thinnet power. Green! */ 2715 iowrite16(StopCoax, ioaddr + EL3_CMD); 2716 2717 iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD); 2718 2719 update_stats(ioaddr, dev); 2720 if (vp->full_bus_master_rx) 2721 iowrite32(0, ioaddr + UpListPtr); 2722 if (vp->full_bus_master_tx) 2723 iowrite32(0, ioaddr + DownListPtr); 2724 2725 if (final_down && VORTEX_PCI(vp)) { 2726 vp->pm_state_valid = 1; 2727 pci_save_state(VORTEX_PCI(vp)); 2728 acpi_set_WOL(dev); 2729 } 2730 } 2731 2732 static int 2733 vortex_close(struct net_device *dev) 2734 { 2735 struct vortex_private *vp = netdev_priv(dev); 2736 void __iomem *ioaddr = vp->ioaddr; 2737 int i; 2738 2739 if (netif_device_present(dev)) 2740 vortex_down(dev, 1); 2741 2742 if (vortex_debug > 1) { 2743 pr_debug("%s: vortex_close() status %4.4x, Tx status %2.2x.\n", 2744 dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus)); 2745 pr_debug("%s: vortex close stats: rx_nocopy %d rx_copy %d" 2746 " tx_queued %d Rx pre-checksummed %d.\n", 2747 dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits); 2748 } 2749 2750 #if DO_ZEROCOPY 2751 if (vp->rx_csumhits && 2752 (vp->drv_flags & HAS_HWCKSM) == 0 && 2753 (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) { 2754 pr_warn("%s supports hardware checksums, and we're not using them!\n", 2755 dev->name); 2756 } 2757 #endif 2758 2759 free_irq(dev->irq, dev); 2760 2761 if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */ 2762 for (i = 0; i < RX_RING_SIZE; i++) 2763 if (vp->rx_skbuff[i]) { 2764 pci_unmap_single( VORTEX_PCI(vp), le32_to_cpu(vp->rx_ring[i].addr), 2765 PKT_BUF_SZ, PCI_DMA_FROMDEVICE); 2766 dev_kfree_skb(vp->rx_skbuff[i]); 2767 vp->rx_skbuff[i] = NULL; 2768 } 2769 } 2770 if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */ 2771 for (i = 0; i < TX_RING_SIZE; i++) { 2772 if (vp->tx_skbuff[i]) { 2773 struct sk_buff *skb = vp->tx_skbuff[i]; 2774 #if DO_ZEROCOPY 2775 int k; 2776 2777 for (k=0; k<=skb_shinfo(skb)->nr_frags; k++) 2778 pci_unmap_single(VORTEX_PCI(vp), 2779 le32_to_cpu(vp->tx_ring[i].frag[k].addr), 2780 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF, 2781 PCI_DMA_TODEVICE); 2782 #else 2783 pci_unmap_single(VORTEX_PCI(vp), le32_to_cpu(vp->tx_ring[i].addr), skb->len, PCI_DMA_TODEVICE); 2784 #endif 2785 dev_kfree_skb(skb); 2786 vp->tx_skbuff[i] = NULL; 2787 } 2788 } 2789 } 2790 2791 return 0; 2792 } 2793 2794 static void 2795 dump_tx_ring(struct net_device *dev) 2796 { 2797 if (vortex_debug > 0) { 2798 struct vortex_private *vp = netdev_priv(dev); 2799 void __iomem *ioaddr = vp->ioaddr; 2800 2801 if (vp->full_bus_master_tx) { 2802 int i; 2803 int stalled = ioread32(ioaddr + PktStatus) & 0x04; /* Possible racy. But it's only debug stuff */ 2804 2805 pr_err(" Flags; bus-master %d, dirty %d(%d) current %d(%d)\n", 2806 vp->full_bus_master_tx, 2807 vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE, 2808 vp->cur_tx, vp->cur_tx % TX_RING_SIZE); 2809 pr_err(" Transmit list %8.8x vs. %p.\n", 2810 ioread32(ioaddr + DownListPtr), 2811 &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]); 2812 issue_and_wait(dev, DownStall); 2813 for (i = 0; i < TX_RING_SIZE; i++) { 2814 unsigned int length; 2815 2816 #if DO_ZEROCOPY 2817 length = le32_to_cpu(vp->tx_ring[i].frag[0].length); 2818 #else 2819 length = le32_to_cpu(vp->tx_ring[i].length); 2820 #endif 2821 pr_err(" %d: @%p length %8.8x status %8.8x\n", 2822 i, &vp->tx_ring[i], length, 2823 le32_to_cpu(vp->tx_ring[i].status)); 2824 } 2825 if (!stalled) 2826 iowrite16(DownUnstall, ioaddr + EL3_CMD); 2827 } 2828 } 2829 } 2830 2831 static struct net_device_stats *vortex_get_stats(struct net_device *dev) 2832 { 2833 struct vortex_private *vp = netdev_priv(dev); 2834 void __iomem *ioaddr = vp->ioaddr; 2835 unsigned long flags; 2836 2837 if (netif_device_present(dev)) { /* AKPM: Used to be netif_running */ 2838 spin_lock_irqsave (&vp->lock, flags); 2839 update_stats(ioaddr, dev); 2840 spin_unlock_irqrestore (&vp->lock, flags); 2841 } 2842 return &dev->stats; 2843 } 2844 2845 /* Update statistics. 2846 Unlike with the EL3 we need not worry about interrupts changing 2847 the window setting from underneath us, but we must still guard 2848 against a race condition with a StatsUpdate interrupt updating the 2849 table. This is done by checking that the ASM (!) code generated uses 2850 atomic updates with '+='. 2851 */ 2852 static void update_stats(void __iomem *ioaddr, struct net_device *dev) 2853 { 2854 struct vortex_private *vp = netdev_priv(dev); 2855 2856 /* Unlike the 3c5x9 we need not turn off stats updates while reading. */ 2857 /* Switch to the stats window, and read everything. */ 2858 dev->stats.tx_carrier_errors += window_read8(vp, 6, 0); 2859 dev->stats.tx_heartbeat_errors += window_read8(vp, 6, 1); 2860 dev->stats.tx_window_errors += window_read8(vp, 6, 4); 2861 dev->stats.rx_fifo_errors += window_read8(vp, 6, 5); 2862 dev->stats.tx_packets += window_read8(vp, 6, 6); 2863 dev->stats.tx_packets += (window_read8(vp, 6, 9) & 2864 0x30) << 4; 2865 /* Rx packets */ window_read8(vp, 6, 7); /* Must read to clear */ 2866 /* Don't bother with register 9, an extension of registers 6&7. 2867 If we do use the 6&7 values the atomic update assumption above 2868 is invalid. */ 2869 dev->stats.rx_bytes += window_read16(vp, 6, 10); 2870 dev->stats.tx_bytes += window_read16(vp, 6, 12); 2871 /* Extra stats for get_ethtool_stats() */ 2872 vp->xstats.tx_multiple_collisions += window_read8(vp, 6, 2); 2873 vp->xstats.tx_single_collisions += window_read8(vp, 6, 3); 2874 vp->xstats.tx_deferred += window_read8(vp, 6, 8); 2875 vp->xstats.rx_bad_ssd += window_read8(vp, 4, 12); 2876 2877 dev->stats.collisions = vp->xstats.tx_multiple_collisions 2878 + vp->xstats.tx_single_collisions 2879 + vp->xstats.tx_max_collisions; 2880 2881 { 2882 u8 up = window_read8(vp, 4, 13); 2883 dev->stats.rx_bytes += (up & 0x0f) << 16; 2884 dev->stats.tx_bytes += (up & 0xf0) << 12; 2885 } 2886 } 2887 2888 static int vortex_nway_reset(struct net_device *dev) 2889 { 2890 struct vortex_private *vp = netdev_priv(dev); 2891 2892 return mii_nway_restart(&vp->mii); 2893 } 2894 2895 static int vortex_get_link_ksettings(struct net_device *dev, 2896 struct ethtool_link_ksettings *cmd) 2897 { 2898 struct vortex_private *vp = netdev_priv(dev); 2899 2900 mii_ethtool_get_link_ksettings(&vp->mii, cmd); 2901 2902 return 0; 2903 } 2904 2905 static int vortex_set_link_ksettings(struct net_device *dev, 2906 const struct ethtool_link_ksettings *cmd) 2907 { 2908 struct vortex_private *vp = netdev_priv(dev); 2909 2910 return mii_ethtool_set_link_ksettings(&vp->mii, cmd); 2911 } 2912 2913 static u32 vortex_get_msglevel(struct net_device *dev) 2914 { 2915 return vortex_debug; 2916 } 2917 2918 static void vortex_set_msglevel(struct net_device *dev, u32 dbg) 2919 { 2920 vortex_debug = dbg; 2921 } 2922 2923 static int vortex_get_sset_count(struct net_device *dev, int sset) 2924 { 2925 switch (sset) { 2926 case ETH_SS_STATS: 2927 return VORTEX_NUM_STATS; 2928 default: 2929 return -EOPNOTSUPP; 2930 } 2931 } 2932 2933 static void vortex_get_ethtool_stats(struct net_device *dev, 2934 struct ethtool_stats *stats, u64 *data) 2935 { 2936 struct vortex_private *vp = netdev_priv(dev); 2937 void __iomem *ioaddr = vp->ioaddr; 2938 unsigned long flags; 2939 2940 spin_lock_irqsave(&vp->lock, flags); 2941 update_stats(ioaddr, dev); 2942 spin_unlock_irqrestore(&vp->lock, flags); 2943 2944 data[0] = vp->xstats.tx_deferred; 2945 data[1] = vp->xstats.tx_max_collisions; 2946 data[2] = vp->xstats.tx_multiple_collisions; 2947 data[3] = vp->xstats.tx_single_collisions; 2948 data[4] = vp->xstats.rx_bad_ssd; 2949 } 2950 2951 2952 static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data) 2953 { 2954 switch (stringset) { 2955 case ETH_SS_STATS: 2956 memcpy(data, ðtool_stats_keys, sizeof(ethtool_stats_keys)); 2957 break; 2958 default: 2959 WARN_ON(1); 2960 break; 2961 } 2962 } 2963 2964 static void vortex_get_drvinfo(struct net_device *dev, 2965 struct ethtool_drvinfo *info) 2966 { 2967 struct vortex_private *vp = netdev_priv(dev); 2968 2969 strlcpy(info->driver, DRV_NAME, sizeof(info->driver)); 2970 if (VORTEX_PCI(vp)) { 2971 strlcpy(info->bus_info, pci_name(VORTEX_PCI(vp)), 2972 sizeof(info->bus_info)); 2973 } else { 2974 if (VORTEX_EISA(vp)) 2975 strlcpy(info->bus_info, dev_name(vp->gendev), 2976 sizeof(info->bus_info)); 2977 else 2978 snprintf(info->bus_info, sizeof(info->bus_info), 2979 "EISA 0x%lx %d", dev->base_addr, dev->irq); 2980 } 2981 } 2982 2983 static void vortex_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2984 { 2985 struct vortex_private *vp = netdev_priv(dev); 2986 2987 if (!VORTEX_PCI(vp)) 2988 return; 2989 2990 wol->supported = WAKE_MAGIC; 2991 2992 wol->wolopts = 0; 2993 if (vp->enable_wol) 2994 wol->wolopts |= WAKE_MAGIC; 2995 } 2996 2997 static int vortex_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol) 2998 { 2999 struct vortex_private *vp = netdev_priv(dev); 3000 3001 if (!VORTEX_PCI(vp)) 3002 return -EOPNOTSUPP; 3003 3004 if (wol->wolopts & ~WAKE_MAGIC) 3005 return -EINVAL; 3006 3007 if (wol->wolopts & WAKE_MAGIC) 3008 vp->enable_wol = 1; 3009 else 3010 vp->enable_wol = 0; 3011 acpi_set_WOL(dev); 3012 3013 return 0; 3014 } 3015 3016 static const struct ethtool_ops vortex_ethtool_ops = { 3017 .get_drvinfo = vortex_get_drvinfo, 3018 .get_strings = vortex_get_strings, 3019 .get_msglevel = vortex_get_msglevel, 3020 .set_msglevel = vortex_set_msglevel, 3021 .get_ethtool_stats = vortex_get_ethtool_stats, 3022 .get_sset_count = vortex_get_sset_count, 3023 .get_link = ethtool_op_get_link, 3024 .nway_reset = vortex_nway_reset, 3025 .get_wol = vortex_get_wol, 3026 .set_wol = vortex_set_wol, 3027 .get_ts_info = ethtool_op_get_ts_info, 3028 .get_link_ksettings = vortex_get_link_ksettings, 3029 .set_link_ksettings = vortex_set_link_ksettings, 3030 }; 3031 3032 #ifdef CONFIG_PCI 3033 /* 3034 * Must power the device up to do MDIO operations 3035 */ 3036 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd) 3037 { 3038 int err; 3039 struct vortex_private *vp = netdev_priv(dev); 3040 pci_power_t state = 0; 3041 3042 if(VORTEX_PCI(vp)) 3043 state = VORTEX_PCI(vp)->current_state; 3044 3045 /* The kernel core really should have pci_get_power_state() */ 3046 3047 if(state != 0) 3048 pci_set_power_state(VORTEX_PCI(vp), PCI_D0); 3049 err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL); 3050 if(state != 0) 3051 pci_set_power_state(VORTEX_PCI(vp), state); 3052 3053 return err; 3054 } 3055 #endif 3056 3057 3058 /* Pre-Cyclone chips have no documented multicast filter, so the only 3059 multicast setting is to receive all multicast frames. At least 3060 the chip has a very clean way to set the mode, unlike many others. */ 3061 static void set_rx_mode(struct net_device *dev) 3062 { 3063 struct vortex_private *vp = netdev_priv(dev); 3064 void __iomem *ioaddr = vp->ioaddr; 3065 int new_mode; 3066 3067 if (dev->flags & IFF_PROMISC) { 3068 if (vortex_debug > 3) 3069 pr_notice("%s: Setting promiscuous mode.\n", dev->name); 3070 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm; 3071 } else if (!netdev_mc_empty(dev) || dev->flags & IFF_ALLMULTI) { 3072 new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast; 3073 } else 3074 new_mode = SetRxFilter | RxStation | RxBroadcast; 3075 3076 iowrite16(new_mode, ioaddr + EL3_CMD); 3077 } 3078 3079 #if IS_ENABLED(CONFIG_VLAN_8021Q) 3080 /* Setup the card so that it can receive frames with an 802.1q VLAN tag. 3081 Note that this must be done after each RxReset due to some backwards 3082 compatibility logic in the Cyclone and Tornado ASICs */ 3083 3084 /* The Ethernet Type used for 802.1q tagged frames */ 3085 #define VLAN_ETHER_TYPE 0x8100 3086 3087 static void set_8021q_mode(struct net_device *dev, int enable) 3088 { 3089 struct vortex_private *vp = netdev_priv(dev); 3090 int mac_ctrl; 3091 3092 if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) { 3093 /* cyclone and tornado chipsets can recognize 802.1q 3094 * tagged frames and treat them correctly */ 3095 3096 int max_pkt_size = dev->mtu+14; /* MTU+Ethernet header */ 3097 if (enable) 3098 max_pkt_size += 4; /* 802.1Q VLAN tag */ 3099 3100 window_write16(vp, max_pkt_size, 3, Wn3_MaxPktSize); 3101 3102 /* set VlanEtherType to let the hardware checksumming 3103 treat tagged frames correctly */ 3104 window_write16(vp, VLAN_ETHER_TYPE, 7, Wn7_VlanEtherType); 3105 } else { 3106 /* on older cards we have to enable large frames */ 3107 3108 vp->large_frames = dev->mtu > 1500 || enable; 3109 3110 mac_ctrl = window_read16(vp, 3, Wn3_MAC_Ctrl); 3111 if (vp->large_frames) 3112 mac_ctrl |= 0x40; 3113 else 3114 mac_ctrl &= ~0x40; 3115 window_write16(vp, mac_ctrl, 3, Wn3_MAC_Ctrl); 3116 } 3117 } 3118 #else 3119 3120 static void set_8021q_mode(struct net_device *dev, int enable) 3121 { 3122 } 3123 3124 3125 #endif 3126 3127 /* MII transceiver control section. 3128 Read and write the MII registers using software-generated serial 3129 MDIO protocol. See the MII specifications or DP83840A data sheet 3130 for details. */ 3131 3132 /* The maximum data clock rate is 2.5 Mhz. The minimum timing is usually 3133 met by back-to-back PCI I/O cycles, but we insert a delay to avoid 3134 "overclocking" issues. */ 3135 static void mdio_delay(struct vortex_private *vp) 3136 { 3137 window_read32(vp, 4, Wn4_PhysicalMgmt); 3138 } 3139 3140 #define MDIO_SHIFT_CLK 0x01 3141 #define MDIO_DIR_WRITE 0x04 3142 #define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE) 3143 #define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE) 3144 #define MDIO_DATA_READ 0x02 3145 #define MDIO_ENB_IN 0x00 3146 3147 /* Generate the preamble required for initial synchronization and 3148 a few older transceivers. */ 3149 static void mdio_sync(struct vortex_private *vp, int bits) 3150 { 3151 /* Establish sync by sending at least 32 logic ones. */ 3152 while (-- bits >= 0) { 3153 window_write16(vp, MDIO_DATA_WRITE1, 4, Wn4_PhysicalMgmt); 3154 mdio_delay(vp); 3155 window_write16(vp, MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK, 3156 4, Wn4_PhysicalMgmt); 3157 mdio_delay(vp); 3158 } 3159 } 3160 3161 static int mdio_read(struct net_device *dev, int phy_id, int location) 3162 { 3163 int i; 3164 struct vortex_private *vp = netdev_priv(dev); 3165 int read_cmd = (0xf6 << 10) | (phy_id << 5) | location; 3166 unsigned int retval = 0; 3167 3168 spin_lock_bh(&vp->mii_lock); 3169 3170 if (mii_preamble_required) 3171 mdio_sync(vp, 32); 3172 3173 /* Shift the read command bits out. */ 3174 for (i = 14; i >= 0; i--) { 3175 int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0; 3176 window_write16(vp, dataval, 4, Wn4_PhysicalMgmt); 3177 mdio_delay(vp); 3178 window_write16(vp, dataval | MDIO_SHIFT_CLK, 3179 4, Wn4_PhysicalMgmt); 3180 mdio_delay(vp); 3181 } 3182 /* Read the two transition, 16 data, and wire-idle bits. */ 3183 for (i = 19; i > 0; i--) { 3184 window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt); 3185 mdio_delay(vp); 3186 retval = (retval << 1) | 3187 ((window_read16(vp, 4, Wn4_PhysicalMgmt) & 3188 MDIO_DATA_READ) ? 1 : 0); 3189 window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK, 3190 4, Wn4_PhysicalMgmt); 3191 mdio_delay(vp); 3192 } 3193 3194 spin_unlock_bh(&vp->mii_lock); 3195 3196 return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff; 3197 } 3198 3199 static void mdio_write(struct net_device *dev, int phy_id, int location, int value) 3200 { 3201 struct vortex_private *vp = netdev_priv(dev); 3202 int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value; 3203 int i; 3204 3205 spin_lock_bh(&vp->mii_lock); 3206 3207 if (mii_preamble_required) 3208 mdio_sync(vp, 32); 3209 3210 /* Shift the command bits out. */ 3211 for (i = 31; i >= 0; i--) { 3212 int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0; 3213 window_write16(vp, dataval, 4, Wn4_PhysicalMgmt); 3214 mdio_delay(vp); 3215 window_write16(vp, dataval | MDIO_SHIFT_CLK, 3216 4, Wn4_PhysicalMgmt); 3217 mdio_delay(vp); 3218 } 3219 /* Leave the interface idle. */ 3220 for (i = 1; i >= 0; i--) { 3221 window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt); 3222 mdio_delay(vp); 3223 window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK, 3224 4, Wn4_PhysicalMgmt); 3225 mdio_delay(vp); 3226 } 3227 3228 spin_unlock_bh(&vp->mii_lock); 3229 } 3230 3231 /* ACPI: Advanced Configuration and Power Interface. */ 3232 /* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */ 3233 static void acpi_set_WOL(struct net_device *dev) 3234 { 3235 struct vortex_private *vp = netdev_priv(dev); 3236 void __iomem *ioaddr = vp->ioaddr; 3237 3238 device_set_wakeup_enable(vp->gendev, vp->enable_wol); 3239 3240 if (vp->enable_wol) { 3241 /* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */ 3242 window_write16(vp, 2, 7, 0x0c); 3243 /* The RxFilter must accept the WOL frames. */ 3244 iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD); 3245 iowrite16(RxEnable, ioaddr + EL3_CMD); 3246 3247 if (pci_enable_wake(VORTEX_PCI(vp), PCI_D3hot, 1)) { 3248 pr_info("%s: WOL not supported.\n", pci_name(VORTEX_PCI(vp))); 3249 3250 vp->enable_wol = 0; 3251 return; 3252 } 3253 3254 if (VORTEX_PCI(vp)->current_state < PCI_D3hot) 3255 return; 3256 3257 /* Change the power state to D3; RxEnable doesn't take effect. */ 3258 pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot); 3259 } 3260 } 3261 3262 3263 static void vortex_remove_one(struct pci_dev *pdev) 3264 { 3265 struct net_device *dev = pci_get_drvdata(pdev); 3266 struct vortex_private *vp; 3267 3268 if (!dev) { 3269 pr_err("vortex_remove_one called for Compaq device!\n"); 3270 BUG(); 3271 } 3272 3273 vp = netdev_priv(dev); 3274 3275 if (vp->cb_fn_base) 3276 pci_iounmap(pdev, vp->cb_fn_base); 3277 3278 unregister_netdev(dev); 3279 3280 pci_set_power_state(pdev, PCI_D0); /* Go active */ 3281 if (vp->pm_state_valid) 3282 pci_restore_state(pdev); 3283 pci_disable_device(pdev); 3284 3285 /* Should really use issue_and_wait() here */ 3286 iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14), 3287 vp->ioaddr + EL3_CMD); 3288 3289 pci_iounmap(pdev, vp->ioaddr); 3290 3291 pci_free_consistent(pdev, 3292 sizeof(struct boom_rx_desc) * RX_RING_SIZE 3293 + sizeof(struct boom_tx_desc) * TX_RING_SIZE, 3294 vp->rx_ring, 3295 vp->rx_ring_dma); 3296 3297 pci_release_regions(pdev); 3298 3299 free_netdev(dev); 3300 } 3301 3302 3303 static struct pci_driver vortex_driver = { 3304 .name = "3c59x", 3305 .probe = vortex_init_one, 3306 .remove = vortex_remove_one, 3307 .id_table = vortex_pci_tbl, 3308 .driver.pm = VORTEX_PM_OPS, 3309 }; 3310 3311 3312 static int vortex_have_pci; 3313 static int vortex_have_eisa; 3314 3315 3316 static int __init vortex_init(void) 3317 { 3318 int pci_rc, eisa_rc; 3319 3320 pci_rc = pci_register_driver(&vortex_driver); 3321 eisa_rc = vortex_eisa_init(); 3322 3323 if (pci_rc == 0) 3324 vortex_have_pci = 1; 3325 if (eisa_rc > 0) 3326 vortex_have_eisa = 1; 3327 3328 return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV; 3329 } 3330 3331 3332 static void __exit vortex_eisa_cleanup(void) 3333 { 3334 void __iomem *ioaddr; 3335 3336 #ifdef CONFIG_EISA 3337 /* Take care of the EISA devices */ 3338 eisa_driver_unregister(&vortex_eisa_driver); 3339 #endif 3340 3341 if (compaq_net_device) { 3342 ioaddr = ioport_map(compaq_net_device->base_addr, 3343 VORTEX_TOTAL_SIZE); 3344 3345 unregister_netdev(compaq_net_device); 3346 iowrite16(TotalReset, ioaddr + EL3_CMD); 3347 release_region(compaq_net_device->base_addr, 3348 VORTEX_TOTAL_SIZE); 3349 3350 free_netdev(compaq_net_device); 3351 } 3352 } 3353 3354 3355 static void __exit vortex_cleanup(void) 3356 { 3357 if (vortex_have_pci) 3358 pci_unregister_driver(&vortex_driver); 3359 if (vortex_have_eisa) 3360 vortex_eisa_cleanup(); 3361 } 3362 3363 3364 module_init(vortex_init); 3365 module_exit(vortex_cleanup); 3366