xref: /openbmc/linux/drivers/net/ethernet/3com/3c59x.c (revision 5fa1f7680f2728d62561db6d4a9282c4d21f2324)
1 /* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */
2 /*
3 	Written 1996-1999 by Donald Becker.
4 
5 	This software may be used and distributed according to the terms
6 	of the GNU General Public License, incorporated herein by reference.
7 
8 	This driver is for the 3Com "Vortex" and "Boomerang" series ethercards.
9 	Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597
10 	and the EtherLink XL 3c900 and 3c905 cards.
11 
12 	Problem reports and questions should be directed to
13 	vortex@scyld.com
14 
15 	The author may be reached as becker@scyld.com, or C/O
16 	Scyld Computing Corporation
17 	410 Severn Ave., Suite 210
18 	Annapolis MD 21403
19 
20 */
21 
22 /*
23  * FIXME: This driver _could_ support MTU changing, but doesn't.  See Don's hamachi.c implementation
24  * as well as other drivers
25  *
26  * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k
27  * due to dead code elimination.  There will be some performance benefits from this due to
28  * elimination of all the tests and reduced cache footprint.
29  */
30 
31 
32 #define DRV_NAME	"3c59x"
33 
34 
35 
36 /* A few values that may be tweaked. */
37 /* Keep the ring sizes a power of two for efficiency. */
38 #define TX_RING_SIZE	16
39 #define RX_RING_SIZE	32
40 #define PKT_BUF_SZ		1536			/* Size of each temporary Rx buffer.*/
41 
42 /* "Knobs" that adjust features and parameters. */
43 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
44    Setting to > 1512 effectively disables this feature. */
45 #ifndef __arm__
46 static int rx_copybreak = 200;
47 #else
48 /* ARM systems perform better by disregarding the bus-master
49    transfer capability of these cards. -- rmk */
50 static int rx_copybreak = 1513;
51 #endif
52 /* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
53 static const int mtu = 1500;
54 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
55 static int max_interrupt_work = 32;
56 /* Tx timeout interval (millisecs) */
57 static int watchdog = 5000;
58 
59 /* Allow aggregation of Tx interrupts.  Saves CPU load at the cost
60  * of possible Tx stalls if the system is blocking interrupts
61  * somewhere else.  Undefine this to disable.
62  */
63 #define tx_interrupt_mitigation 1
64 
65 /* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */
66 #define vortex_debug debug
67 #ifdef VORTEX_DEBUG
68 static int vortex_debug = VORTEX_DEBUG;
69 #else
70 static int vortex_debug = 1;
71 #endif
72 
73 #include <linux/module.h>
74 #include <linux/kernel.h>
75 #include <linux/string.h>
76 #include <linux/timer.h>
77 #include <linux/errno.h>
78 #include <linux/in.h>
79 #include <linux/ioport.h>
80 #include <linux/interrupt.h>
81 #include <linux/pci.h>
82 #include <linux/mii.h>
83 #include <linux/init.h>
84 #include <linux/netdevice.h>
85 #include <linux/etherdevice.h>
86 #include <linux/skbuff.h>
87 #include <linux/ethtool.h>
88 #include <linux/highmem.h>
89 #include <linux/eisa.h>
90 #include <linux/bitops.h>
91 #include <linux/jiffies.h>
92 #include <linux/gfp.h>
93 #include <asm/irq.h>			/* For nr_irqs only. */
94 #include <asm/io.h>
95 #include <linux/uaccess.h>
96 
97 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package.
98    This is only in the support-all-kernels source code. */
99 
100 #define RUN_AT(x) (jiffies + (x))
101 
102 #include <linux/delay.h>
103 
104 
105 static const char version[] =
106 	DRV_NAME ": Donald Becker and others.\n";
107 
108 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
109 MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver ");
110 MODULE_LICENSE("GPL");
111 
112 
113 /* Operational parameter that usually are not changed. */
114 
115 /* The Vortex size is twice that of the original EtherLinkIII series: the
116    runtime register window, window 1, is now always mapped in.
117    The Boomerang size is twice as large as the Vortex -- it has additional
118    bus master control registers. */
119 #define VORTEX_TOTAL_SIZE 0x20
120 #define BOOMERANG_TOTAL_SIZE 0x40
121 
122 /* Set iff a MII transceiver on any interface requires mdio preamble.
123    This only set with the original DP83840 on older 3c905 boards, so the extra
124    code size of a per-interface flag is not worthwhile. */
125 static char mii_preamble_required;
126 
127 #define PFX DRV_NAME ": "
128 
129 
130 
131 /*
132 				Theory of Operation
133 
134 I. Board Compatibility
135 
136 This device driver is designed for the 3Com FastEtherLink and FastEtherLink
137 XL, 3Com's PCI to 10/100baseT adapters.  It also works with the 10Mbs
138 versions of the FastEtherLink cards.  The supported product IDs are
139   3c590, 3c592, 3c595, 3c597, 3c900, 3c905
140 
141 The related ISA 3c515 is supported with a separate driver, 3c515.c, included
142 with the kernel source or available from
143     cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html
144 
145 II. Board-specific settings
146 
147 PCI bus devices are configured by the system at boot time, so no jumpers
148 need to be set on the board.  The system BIOS should be set to assign the
149 PCI INTA signal to an otherwise unused system IRQ line.
150 
151 The EEPROM settings for media type and forced-full-duplex are observed.
152 The EEPROM media type should be left at the default "autoselect" unless using
153 10base2 or AUI connections which cannot be reliably detected.
154 
155 III. Driver operation
156 
157 The 3c59x series use an interface that's very similar to the previous 3c5x9
158 series.  The primary interface is two programmed-I/O FIFOs, with an
159 alternate single-contiguous-region bus-master transfer (see next).
160 
161 The 3c900 "Boomerang" series uses a full-bus-master interface with separate
162 lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
163 DEC Tulip and Intel Speedo3.  The first chip version retains a compatible
164 programmed-I/O interface that has been removed in 'B' and subsequent board
165 revisions.
166 
167 One extension that is advertised in a very large font is that the adapters
168 are capable of being bus masters.  On the Vortex chip this capability was
169 only for a single contiguous region making it far less useful than the full
170 bus master capability.  There is a significant performance impact of taking
171 an extra interrupt or polling for the completion of each transfer, as well
172 as difficulty sharing the single transfer engine between the transmit and
173 receive threads.  Using DMA transfers is a win only with large blocks or
174 with the flawed versions of the Intel Orion motherboard PCI controller.
175 
176 The Boomerang chip's full-bus-master interface is useful, and has the
177 currently-unused advantages over other similar chips that queued transmit
178 packets may be reordered and receive buffer groups are associated with a
179 single frame.
180 
181 With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme.
182 Rather than a fixed intermediate receive buffer, this scheme allocates
183 full-sized skbuffs as receive buffers.  The value RX_COPYBREAK is used as
184 the copying breakpoint: it is chosen to trade-off the memory wasted by
185 passing the full-sized skbuff to the queue layer for all frames vs. the
186 copying cost of copying a frame to a correctly-sized skbuff.
187 
188 IIIC. Synchronization
189 The driver runs as two independent, single-threaded flows of control.  One
190 is the send-packet routine, which enforces single-threaded use by the
191 dev->tbusy flag.  The other thread is the interrupt handler, which is single
192 threaded by the hardware and other software.
193 
194 IV. Notes
195 
196 Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development
197 3c590, 3c595, and 3c900 boards.
198 The name "Vortex" is the internal 3Com project name for the PCI ASIC, and
199 the EISA version is called "Demon".  According to Terry these names come
200 from rides at the local amusement park.
201 
202 The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes!
203 This driver only supports ethernet packets because of the skbuff allocation
204 limit of 4K.
205 */
206 
207 /* This table drives the PCI probe routines.  It's mostly boilerplate in all
208    of the drivers, and will likely be provided by some future kernel.
209 */
210 enum pci_flags_bit {
211 	PCI_USES_MASTER=4,
212 };
213 
214 enum {	IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8,
215 	EEPROM_8BIT=0x10,	/* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */
216 	HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100,
217 	INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800,
218 	EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000,
219 	EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, };
220 
221 enum vortex_chips {
222 	CH_3C590 = 0,
223 	CH_3C592,
224 	CH_3C597,
225 	CH_3C595_1,
226 	CH_3C595_2,
227 
228 	CH_3C595_3,
229 	CH_3C900_1,
230 	CH_3C900_2,
231 	CH_3C900_3,
232 	CH_3C900_4,
233 
234 	CH_3C900_5,
235 	CH_3C900B_FL,
236 	CH_3C905_1,
237 	CH_3C905_2,
238 	CH_3C905B_TX,
239 	CH_3C905B_1,
240 
241 	CH_3C905B_2,
242 	CH_3C905B_FX,
243 	CH_3C905C,
244 	CH_3C9202,
245 	CH_3C980,
246 	CH_3C9805,
247 
248 	CH_3CSOHO100_TX,
249 	CH_3C555,
250 	CH_3C556,
251 	CH_3C556B,
252 	CH_3C575,
253 
254 	CH_3C575_1,
255 	CH_3CCFE575,
256 	CH_3CCFE575CT,
257 	CH_3CCFE656,
258 	CH_3CCFEM656,
259 
260 	CH_3CCFEM656_1,
261 	CH_3C450,
262 	CH_3C920,
263 	CH_3C982A,
264 	CH_3C982B,
265 
266 	CH_905BT4,
267 	CH_920B_EMB_WNM,
268 };
269 
270 
271 /* note: this array directly indexed by above enums, and MUST
272  * be kept in sync with both the enums above, and the PCI device
273  * table below
274  */
275 static struct vortex_chip_info {
276 	const char *name;
277 	int flags;
278 	int drv_flags;
279 	int io_size;
280 } vortex_info_tbl[] = {
281 	{"3c590 Vortex 10Mbps",
282 	 PCI_USES_MASTER, IS_VORTEX, 32, },
283 	{"3c592 EISA 10Mbps Demon/Vortex",					/* AKPM: from Don's 3c59x_cb.c 0.49H */
284 	 PCI_USES_MASTER, IS_VORTEX, 32, },
285 	{"3c597 EISA Fast Demon/Vortex",					/* AKPM: from Don's 3c59x_cb.c 0.49H */
286 	 PCI_USES_MASTER, IS_VORTEX, 32, },
287 	{"3c595 Vortex 100baseTx",
288 	 PCI_USES_MASTER, IS_VORTEX, 32, },
289 	{"3c595 Vortex 100baseT4",
290 	 PCI_USES_MASTER, IS_VORTEX, 32, },
291 
292 	{"3c595 Vortex 100base-MII",
293 	 PCI_USES_MASTER, IS_VORTEX, 32, },
294 	{"3c900 Boomerang 10baseT",
295 	 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
296 	{"3c900 Boomerang 10Mbps Combo",
297 	 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
298 	{"3c900 Cyclone 10Mbps TPO",						/* AKPM: from Don's 0.99M */
299 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
300 	{"3c900 Cyclone 10Mbps Combo",
301 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
302 
303 	{"3c900 Cyclone 10Mbps TPC",						/* AKPM: from Don's 0.99M */
304 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
305 	{"3c900B-FL Cyclone 10base-FL",
306 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
307 	{"3c905 Boomerang 100baseTx",
308 	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
309 	{"3c905 Boomerang 100baseT4",
310 	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
311 	{"3C905B-TX Fast Etherlink XL PCI",
312 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
313 	{"3c905B Cyclone 100baseTx",
314 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
315 
316 	{"3c905B Cyclone 10/100/BNC",
317 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
318 	{"3c905B-FX Cyclone 100baseFx",
319 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
320 	{"3c905C Tornado",
321 	PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
322 	{"3c920B-EMB-WNM (ATI Radeon 9100 IGP)",
323 	 PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, },
324 	{"3c980 Cyclone",
325 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
326 
327 	{"3c980C Python-T",
328 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
329 	{"3cSOHO100-TX Hurricane",
330 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
331 	{"3c555 Laptop Hurricane",
332 	 PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, },
333 	{"3c556 Laptop Tornado",
334 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR|
335 									HAS_HWCKSM, 128, },
336 	{"3c556B Laptop Hurricane",
337 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR|
338 	                                WNO_XCVR_PWR|HAS_HWCKSM, 128, },
339 
340 	{"3c575 [Megahertz] 10/100 LAN 	CardBus",
341 	PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
342 	{"3c575 Boomerang CardBus",
343 	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
344 	{"3CCFE575BT Cyclone CardBus",
345 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|
346 									INVERT_LED_PWR|HAS_HWCKSM, 128, },
347 	{"3CCFE575CT Tornado CardBus",
348 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
349 									MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
350 	{"3CCFE656 Cyclone CardBus",
351 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
352 									INVERT_LED_PWR|HAS_HWCKSM, 128, },
353 
354 	{"3CCFEM656B Cyclone+Winmodem CardBus",
355 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
356 									INVERT_LED_PWR|HAS_HWCKSM, 128, },
357 	{"3CXFEM656C Tornado+Winmodem CardBus",			/* From pcmcia-cs-3.1.5 */
358 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
359 									MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
360 	{"3c450 HomePNA Tornado",						/* AKPM: from Don's 0.99Q */
361 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
362 	{"3c920 Tornado",
363 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
364 	{"3c982 Hydra Dual Port A",
365 	 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
366 
367 	{"3c982 Hydra Dual Port B",
368 	 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
369 	{"3c905B-T4",
370 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
371 	{"3c920B-EMB-WNM Tornado",
372 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
373 
374 	{NULL,}, /* NULL terminated list. */
375 };
376 
377 
378 static const struct pci_device_id vortex_pci_tbl[] = {
379 	{ 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 },
380 	{ 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 },
381 	{ 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 },
382 	{ 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 },
383 	{ 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 },
384 
385 	{ 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 },
386 	{ 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 },
387 	{ 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 },
388 	{ 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 },
389 	{ 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 },
390 
391 	{ 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 },
392 	{ 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL },
393 	{ 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 },
394 	{ 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 },
395 	{ 0x10B7, 0x9054, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_TX },
396 	{ 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 },
397 
398 	{ 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 },
399 	{ 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX },
400 	{ 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C },
401 	{ 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 },
402 	{ 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 },
403 	{ 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 },
404 
405 	{ 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX },
406 	{ 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 },
407 	{ 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 },
408 	{ 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B },
409 	{ 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 },
410 
411 	{ 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 },
412 	{ 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 },
413 	{ 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT },
414 	{ 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 },
415 	{ 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 },
416 
417 	{ 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 },
418 	{ 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 },
419 	{ 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 },
420 	{ 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A },
421 	{ 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B },
422 
423 	{ 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 },
424 	{ 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM },
425 
426 	{0,}						/* 0 terminated list. */
427 };
428 MODULE_DEVICE_TABLE(pci, vortex_pci_tbl);
429 
430 
431 /* Operational definitions.
432    These are not used by other compilation units and thus are not
433    exported in a ".h" file.
434 
435    First the windows.  There are eight register windows, with the command
436    and status registers available in each.
437    */
438 #define EL3_CMD 0x0e
439 #define EL3_STATUS 0x0e
440 
441 /* The top five bits written to EL3_CMD are a command, the lower
442    11 bits are the parameter, if applicable.
443    Note that 11 parameters bits was fine for ethernet, but the new chip
444    can handle FDDI length frames (~4500 octets) and now parameters count
445    32-bit 'Dwords' rather than octets. */
446 
447 enum vortex_cmd {
448 	TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11,
449 	RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11,
450 	UpStall = 6<<11, UpUnstall = (6<<11)+1,
451 	DownStall = (6<<11)+2, DownUnstall = (6<<11)+3,
452 	RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11,
453 	FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11,
454 	SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11,
455 	SetTxThreshold = 18<<11, SetTxStart = 19<<11,
456 	StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11,
457 	StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,};
458 
459 /* The SetRxFilter command accepts the following classes: */
460 enum RxFilter {
461 	RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 };
462 
463 /* Bits in the general status register. */
464 enum vortex_status {
465 	IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004,
466 	TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
467 	IntReq = 0x0040, StatsFull = 0x0080,
468 	DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10,
469 	DMAInProgress = 1<<11,			/* DMA controller is still busy.*/
470 	CmdInProgress = 1<<12,			/* EL3_CMD is still busy.*/
471 };
472 
473 /* Register window 1 offsets, the window used in normal operation.
474    On the Vortex this window is always mapped at offsets 0x10-0x1f. */
475 enum Window1 {
476 	TX_FIFO = 0x10,  RX_FIFO = 0x10,  RxErrors = 0x14,
477 	RxStatus = 0x18,  Timer=0x1A, TxStatus = 0x1B,
478 	TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
479 };
480 enum Window0 {
481 	Wn0EepromCmd = 10,		/* Window 0: EEPROM command register. */
482 	Wn0EepromData = 12,		/* Window 0: EEPROM results register. */
483 	IntrStatus=0x0E,		/* Valid in all windows. */
484 };
485 enum Win0_EEPROM_bits {
486 	EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
487 	EEPROM_EWENB = 0x30,		/* Enable erasing/writing for 10 msec. */
488 	EEPROM_EWDIS = 0x00,		/* Disable EWENB before 10 msec timeout. */
489 };
490 /* EEPROM locations. */
491 enum eeprom_offset {
492 	PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3,
493 	EtherLink3ID=7, IFXcvrIO=8, IRQLine=9,
494 	NodeAddr01=10, NodeAddr23=11, NodeAddr45=12,
495 	DriverTune=13, Checksum=15};
496 
497 enum Window2 {			/* Window 2. */
498 	Wn2_ResetOptions=12,
499 };
500 enum Window3 {			/* Window 3: MAC/config bits. */
501 	Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8,
502 };
503 
504 #define BFEXT(value, offset, bitcount)  \
505     ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1))
506 
507 #define BFINS(lhs, rhs, offset, bitcount)					\
508 	(((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) |	\
509 	(((rhs) & ((1 << (bitcount)) - 1)) << (offset)))
510 
511 #define RAM_SIZE(v)		BFEXT(v, 0, 3)
512 #define RAM_WIDTH(v)	BFEXT(v, 3, 1)
513 #define RAM_SPEED(v)	BFEXT(v, 4, 2)
514 #define ROM_SIZE(v)		BFEXT(v, 6, 2)
515 #define RAM_SPLIT(v)	BFEXT(v, 16, 2)
516 #define XCVR(v)			BFEXT(v, 20, 4)
517 #define AUTOSELECT(v)	BFEXT(v, 24, 1)
518 
519 enum Window4 {		/* Window 4: Xcvr/media bits. */
520 	Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10,
521 };
522 enum Win4_Media_bits {
523 	Media_SQE = 0x0008,		/* Enable SQE error counting for AUI. */
524 	Media_10TP = 0x00C0,	/* Enable link beat and jabber for 10baseT. */
525 	Media_Lnk = 0x0080,		/* Enable just link beat for 100TX/100FX. */
526 	Media_LnkBeat = 0x0800,
527 };
528 enum Window7 {					/* Window 7: Bus Master control. */
529 	Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6,
530 	Wn7_MasterStatus = 12,
531 };
532 /* Boomerang bus master control registers. */
533 enum MasterCtrl {
534 	PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c,
535 	TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38,
536 };
537 
538 /* The Rx and Tx descriptor lists.
539    Caution Alpha hackers: these types are 32 bits!  Note also the 8 byte
540    alignment contraint on tx_ring[] and rx_ring[]. */
541 #define LAST_FRAG 	0x80000000			/* Last Addr/Len pair in descriptor. */
542 #define DN_COMPLETE	0x00010000			/* This packet has been downloaded */
543 struct boom_rx_desc {
544 	__le32 next;					/* Last entry points to 0.   */
545 	__le32 status;
546 	__le32 addr;					/* Up to 63 addr/len pairs possible. */
547 	__le32 length;					/* Set LAST_FRAG to indicate last pair. */
548 };
549 /* Values for the Rx status entry. */
550 enum rx_desc_status {
551 	RxDComplete=0x00008000, RxDError=0x4000,
552 	/* See boomerang_rx() for actual error bits */
553 	IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27,
554 	IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31,
555 };
556 
557 #ifdef MAX_SKB_FRAGS
558 #define DO_ZEROCOPY 1
559 #else
560 #define DO_ZEROCOPY 0
561 #endif
562 
563 struct boom_tx_desc {
564 	__le32 next;					/* Last entry points to 0.   */
565 	__le32 status;					/* bits 0:12 length, others see below.  */
566 #if DO_ZEROCOPY
567 	struct {
568 		__le32 addr;
569 		__le32 length;
570 	} frag[1+MAX_SKB_FRAGS];
571 #else
572 		__le32 addr;
573 		__le32 length;
574 #endif
575 };
576 
577 /* Values for the Tx status entry. */
578 enum tx_desc_status {
579 	CRCDisable=0x2000, TxDComplete=0x8000,
580 	AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000,
581 	TxIntrUploaded=0x80000000,		/* IRQ when in FIFO, but maybe not sent. */
582 };
583 
584 /* Chip features we care about in vp->capabilities, read from the EEPROM. */
585 enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 };
586 
587 struct vortex_extra_stats {
588 	unsigned long tx_deferred;
589 	unsigned long tx_max_collisions;
590 	unsigned long tx_multiple_collisions;
591 	unsigned long tx_single_collisions;
592 	unsigned long rx_bad_ssd;
593 };
594 
595 struct vortex_private {
596 	/* The Rx and Tx rings should be quad-word-aligned. */
597 	struct boom_rx_desc* rx_ring;
598 	struct boom_tx_desc* tx_ring;
599 	dma_addr_t rx_ring_dma;
600 	dma_addr_t tx_ring_dma;
601 	/* The addresses of transmit- and receive-in-place skbuffs. */
602 	struct sk_buff* rx_skbuff[RX_RING_SIZE];
603 	struct sk_buff* tx_skbuff[TX_RING_SIZE];
604 	unsigned int cur_rx, cur_tx;		/* The next free ring entry */
605 	unsigned int dirty_tx;	/* The ring entries to be free()ed. */
606 	struct vortex_extra_stats xstats;	/* NIC-specific extra stats */
607 	struct sk_buff *tx_skb;				/* Packet being eaten by bus master ctrl.  */
608 	dma_addr_t tx_skb_dma;				/* Allocated DMA address for bus master ctrl DMA.   */
609 
610 	/* PCI configuration space information. */
611 	struct device *gendev;
612 	void __iomem *ioaddr;			/* IO address space */
613 	void __iomem *cb_fn_base;		/* CardBus function status addr space. */
614 
615 	/* Some values here only for performance evaluation and path-coverage */
616 	int rx_nocopy, rx_copy, queued_packet, rx_csumhits;
617 	int card_idx;
618 
619 	/* The remainder are related to chip state, mostly media selection. */
620 	struct timer_list timer;			/* Media selection timer. */
621 	int options;						/* User-settable misc. driver options. */
622 	unsigned int media_override:4, 		/* Passed-in media type. */
623 		default_media:4,				/* Read from the EEPROM/Wn3_Config. */
624 		full_duplex:1, autoselect:1,
625 		bus_master:1,					/* Vortex can only do a fragment bus-m. */
626 		full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang  */
627 		flow_ctrl:1,					/* Use 802.3x flow control (PAUSE only) */
628 		partner_flow_ctrl:1,			/* Partner supports flow control */
629 		has_nway:1,
630 		enable_wol:1,					/* Wake-on-LAN is enabled */
631 		pm_state_valid:1,				/* pci_dev->saved_config_space has sane contents */
632 		open:1,
633 		medialock:1,
634 		large_frames:1,			/* accept large frames */
635 		handling_irq:1;			/* private in_irq indicator */
636 	/* {get|set}_wol operations are already serialized by rtnl.
637 	 * no additional locking is required for the enable_wol and acpi_set_WOL()
638 	 */
639 	int drv_flags;
640 	u16 status_enable;
641 	u16 intr_enable;
642 	u16 available_media;				/* From Wn3_Options. */
643 	u16 capabilities, info1, info2;		/* Various, from EEPROM. */
644 	u16 advertising;					/* NWay media advertisement */
645 	unsigned char phys[2];				/* MII device addresses. */
646 	u16 deferred;						/* Resend these interrupts when we
647 										 * bale from the ISR */
648 	u16 io_size;						/* Size of PCI region (for release_region) */
649 
650 	/* Serialises access to hardware other than MII and variables below.
651 	 * The lock hierarchy is rtnl_lock > {lock, mii_lock} > window_lock. */
652 	spinlock_t lock;
653 
654 	spinlock_t mii_lock;		/* Serialises access to MII */
655 	struct mii_if_info mii;		/* MII lib hooks/info */
656 	spinlock_t window_lock;		/* Serialises access to windowed regs */
657 	int window;			/* Register window */
658 };
659 
660 static void window_set(struct vortex_private *vp, int window)
661 {
662 	if (window != vp->window) {
663 		iowrite16(SelectWindow + window, vp->ioaddr + EL3_CMD);
664 		vp->window = window;
665 	}
666 }
667 
668 #define DEFINE_WINDOW_IO(size)						\
669 static u ## size							\
670 window_read ## size(struct vortex_private *vp, int window, int addr)	\
671 {									\
672 	unsigned long flags;						\
673 	u ## size ret;							\
674 	spin_lock_irqsave(&vp->window_lock, flags);			\
675 	window_set(vp, window);						\
676 	ret = ioread ## size(vp->ioaddr + addr);			\
677 	spin_unlock_irqrestore(&vp->window_lock, flags);		\
678 	return ret;							\
679 }									\
680 static void								\
681 window_write ## size(struct vortex_private *vp, u ## size value,	\
682 		     int window, int addr)				\
683 {									\
684 	unsigned long flags;						\
685 	spin_lock_irqsave(&vp->window_lock, flags);			\
686 	window_set(vp, window);						\
687 	iowrite ## size(value, vp->ioaddr + addr);			\
688 	spin_unlock_irqrestore(&vp->window_lock, flags);		\
689 }
690 DEFINE_WINDOW_IO(8)
691 DEFINE_WINDOW_IO(16)
692 DEFINE_WINDOW_IO(32)
693 
694 #ifdef CONFIG_PCI
695 #define DEVICE_PCI(dev) ((dev_is_pci(dev)) ? to_pci_dev((dev)) : NULL)
696 #else
697 #define DEVICE_PCI(dev) NULL
698 #endif
699 
700 #define VORTEX_PCI(vp)							\
701 	((struct pci_dev *) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL))
702 
703 #ifdef CONFIG_EISA
704 #define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL)
705 #else
706 #define DEVICE_EISA(dev) NULL
707 #endif
708 
709 #define VORTEX_EISA(vp)							\
710 	((struct eisa_device *) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL))
711 
712 /* The action to take with a media selection timer tick.
713    Note that we deviate from the 3Com order by checking 10base2 before AUI.
714  */
715 enum xcvr_types {
716 	XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
717 	XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10,
718 };
719 
720 static const struct media_table {
721 	char *name;
722 	unsigned int media_bits:16,		/* Bits to set in Wn4_Media register. */
723 		mask:8,						/* The transceiver-present bit in Wn3_Config.*/
724 		next:8;						/* The media type to try next. */
725 	int wait;						/* Time before we check media status. */
726 } media_tbl[] = {
727   {	"10baseT",   Media_10TP,0x08, XCVR_10base2, (14*HZ)/10},
728   { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10},
729   { "undefined", 0,			0x80, XCVR_10baseT, 10000},
730   { "10base2",   0,			0x10, XCVR_AUI,		(1*HZ)/10},
731   { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10},
732   { "100baseFX", Media_Lnk, 0x04, XCVR_MII,		(14*HZ)/10},
733   { "MII",		 0,			0x41, XCVR_10baseT, 3*HZ },
734   { "undefined", 0,			0x01, XCVR_10baseT, 10000},
735   { "Autonegotiate", 0,		0x41, XCVR_10baseT, 3*HZ},
736   { "MII-External",	 0,		0x41, XCVR_10baseT, 3*HZ },
737   { "Default",	 0,			0xFF, XCVR_10baseT, 10000},
738 };
739 
740 static struct {
741 	const char str[ETH_GSTRING_LEN];
742 } ethtool_stats_keys[] = {
743 	{ "tx_deferred" },
744 	{ "tx_max_collisions" },
745 	{ "tx_multiple_collisions" },
746 	{ "tx_single_collisions" },
747 	{ "rx_bad_ssd" },
748 };
749 
750 /* number of ETHTOOL_GSTATS u64's */
751 #define VORTEX_NUM_STATS    5
752 
753 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
754 				   int chip_idx, int card_idx);
755 static int vortex_up(struct net_device *dev);
756 static void vortex_down(struct net_device *dev, int final);
757 static int vortex_open(struct net_device *dev);
758 static void mdio_sync(struct vortex_private *vp, int bits);
759 static int mdio_read(struct net_device *dev, int phy_id, int location);
760 static void mdio_write(struct net_device *vp, int phy_id, int location, int value);
761 static void vortex_timer(struct timer_list *t);
762 static netdev_tx_t vortex_start_xmit(struct sk_buff *skb,
763 				     struct net_device *dev);
764 static netdev_tx_t boomerang_start_xmit(struct sk_buff *skb,
765 					struct net_device *dev);
766 static int vortex_rx(struct net_device *dev);
767 static int boomerang_rx(struct net_device *dev);
768 static irqreturn_t vortex_boomerang_interrupt(int irq, void *dev_id);
769 static irqreturn_t _vortex_interrupt(int irq, struct net_device *dev);
770 static irqreturn_t _boomerang_interrupt(int irq, struct net_device *dev);
771 static int vortex_close(struct net_device *dev);
772 static void dump_tx_ring(struct net_device *dev);
773 static void update_stats(void __iomem *ioaddr, struct net_device *dev);
774 static struct net_device_stats *vortex_get_stats(struct net_device *dev);
775 static void set_rx_mode(struct net_device *dev);
776 #ifdef CONFIG_PCI
777 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
778 #endif
779 static void vortex_tx_timeout(struct net_device *dev, unsigned int txqueue);
780 static void acpi_set_WOL(struct net_device *dev);
781 static const struct ethtool_ops vortex_ethtool_ops;
782 static void set_8021q_mode(struct net_device *dev, int enable);
783 
784 /* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
785 /* Option count limit only -- unlimited interfaces are supported. */
786 #define MAX_UNITS 8
787 static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 };
788 static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
789 static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
790 static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
791 static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
792 static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
793 static int global_options = -1;
794 static int global_full_duplex = -1;
795 static int global_enable_wol = -1;
796 static int global_use_mmio = -1;
797 
798 /* Variables to work-around the Compaq PCI BIOS32 problem. */
799 static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900;
800 static struct net_device *compaq_net_device;
801 
802 static int vortex_cards_found;
803 
804 module_param(debug, int, 0);
805 module_param(global_options, int, 0);
806 module_param_array(options, int, NULL, 0);
807 module_param(global_full_duplex, int, 0);
808 module_param_array(full_duplex, int, NULL, 0);
809 module_param_array(hw_checksums, int, NULL, 0);
810 module_param_array(flow_ctrl, int, NULL, 0);
811 module_param(global_enable_wol, int, 0);
812 module_param_array(enable_wol, int, NULL, 0);
813 module_param(rx_copybreak, int, 0);
814 module_param(max_interrupt_work, int, 0);
815 module_param_hw(compaq_ioaddr, int, ioport, 0);
816 module_param_hw(compaq_irq, int, irq, 0);
817 module_param(compaq_device_id, int, 0);
818 module_param(watchdog, int, 0);
819 module_param(global_use_mmio, int, 0);
820 module_param_array(use_mmio, int, NULL, 0);
821 MODULE_PARM_DESC(debug, "3c59x debug level (0-6)");
822 MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex");
823 MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset");
824 MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)");
825 MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset");
826 MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)");
827 MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)");
828 MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)");
829 MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset");
830 MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames");
831 MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt");
832 MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)");
833 MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)");
834 MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)");
835 MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds");
836 MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset");
837 MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)");
838 
839 #ifdef CONFIG_NET_POLL_CONTROLLER
840 static void poll_vortex(struct net_device *dev)
841 {
842 	vortex_boomerang_interrupt(dev->irq, dev);
843 }
844 #endif
845 
846 #ifdef CONFIG_PM
847 
848 static int vortex_suspend(struct device *dev)
849 {
850 	struct net_device *ndev = dev_get_drvdata(dev);
851 
852 	if (!ndev || !netif_running(ndev))
853 		return 0;
854 
855 	netif_device_detach(ndev);
856 	vortex_down(ndev, 1);
857 
858 	return 0;
859 }
860 
861 static int vortex_resume(struct device *dev)
862 {
863 	struct net_device *ndev = dev_get_drvdata(dev);
864 	int err;
865 
866 	if (!ndev || !netif_running(ndev))
867 		return 0;
868 
869 	err = vortex_up(ndev);
870 	if (err)
871 		return err;
872 
873 	netif_device_attach(ndev);
874 
875 	return 0;
876 }
877 
878 static const struct dev_pm_ops vortex_pm_ops = {
879 	.suspend = vortex_suspend,
880 	.resume = vortex_resume,
881 	.freeze = vortex_suspend,
882 	.thaw = vortex_resume,
883 	.poweroff = vortex_suspend,
884 	.restore = vortex_resume,
885 };
886 
887 #define VORTEX_PM_OPS (&vortex_pm_ops)
888 
889 #else /* !CONFIG_PM */
890 
891 #define VORTEX_PM_OPS NULL
892 
893 #endif /* !CONFIG_PM */
894 
895 #ifdef CONFIG_EISA
896 static const struct eisa_device_id vortex_eisa_ids[] = {
897 	{ "TCM5920", CH_3C592 },
898 	{ "TCM5970", CH_3C597 },
899 	{ "" }
900 };
901 MODULE_DEVICE_TABLE(eisa, vortex_eisa_ids);
902 
903 static int vortex_eisa_probe(struct device *device)
904 {
905 	void __iomem *ioaddr;
906 	struct eisa_device *edev;
907 
908 	edev = to_eisa_device(device);
909 
910 	if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME))
911 		return -EBUSY;
912 
913 	ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE);
914 
915 	if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12,
916 					  edev->id.driver_data, vortex_cards_found)) {
917 		release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
918 		return -ENODEV;
919 	}
920 
921 	vortex_cards_found++;
922 
923 	return 0;
924 }
925 
926 static int vortex_eisa_remove(struct device *device)
927 {
928 	struct eisa_device *edev;
929 	struct net_device *dev;
930 	struct vortex_private *vp;
931 	void __iomem *ioaddr;
932 
933 	edev = to_eisa_device(device);
934 	dev = eisa_get_drvdata(edev);
935 
936 	if (!dev) {
937 		pr_err("vortex_eisa_remove called for Compaq device!\n");
938 		BUG();
939 	}
940 
941 	vp = netdev_priv(dev);
942 	ioaddr = vp->ioaddr;
943 
944 	unregister_netdev(dev);
945 	iowrite16(TotalReset|0x14, ioaddr + EL3_CMD);
946 	release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
947 
948 	free_netdev(dev);
949 	return 0;
950 }
951 
952 static struct eisa_driver vortex_eisa_driver = {
953 	.id_table = vortex_eisa_ids,
954 	.driver   = {
955 		.name    = "3c59x",
956 		.probe   = vortex_eisa_probe,
957 		.remove  = vortex_eisa_remove
958 	}
959 };
960 
961 #endif /* CONFIG_EISA */
962 
963 /* returns count found (>= 0), or negative on error */
964 static int __init vortex_eisa_init(void)
965 {
966 	int eisa_found = 0;
967 	int orig_cards_found = vortex_cards_found;
968 
969 #ifdef CONFIG_EISA
970 	int err;
971 
972 	err = eisa_driver_register (&vortex_eisa_driver);
973 	if (!err) {
974 		/*
975 		 * Because of the way EISA bus is probed, we cannot assume
976 		 * any device have been found when we exit from
977 		 * eisa_driver_register (the bus root driver may not be
978 		 * initialized yet). So we blindly assume something was
979 		 * found, and let the sysfs magic happened...
980 		 */
981 		eisa_found = 1;
982 	}
983 #endif
984 
985 	/* Special code to work-around the Compaq PCI BIOS32 problem. */
986 	if (compaq_ioaddr) {
987 		vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE),
988 			      compaq_irq, compaq_device_id, vortex_cards_found++);
989 	}
990 
991 	return vortex_cards_found - orig_cards_found + eisa_found;
992 }
993 
994 /* returns count (>= 0), or negative on error */
995 static int vortex_init_one(struct pci_dev *pdev,
996 			   const struct pci_device_id *ent)
997 {
998 	int rc, unit, pci_bar;
999 	struct vortex_chip_info *vci;
1000 	void __iomem *ioaddr;
1001 
1002 	/* wake up and enable device */
1003 	rc = pci_enable_device(pdev);
1004 	if (rc < 0)
1005 		goto out;
1006 
1007 	rc = pci_request_regions(pdev, DRV_NAME);
1008 	if (rc < 0)
1009 		goto out_disable;
1010 
1011 	unit = vortex_cards_found;
1012 
1013 	if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) {
1014 		/* Determine the default if the user didn't override us */
1015 		vci = &vortex_info_tbl[ent->driver_data];
1016 		pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0;
1017 	} else if (unit < MAX_UNITS && use_mmio[unit] >= 0)
1018 		pci_bar = use_mmio[unit] ? 1 : 0;
1019 	else
1020 		pci_bar = global_use_mmio ? 1 : 0;
1021 
1022 	ioaddr = pci_iomap(pdev, pci_bar, 0);
1023 	if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */
1024 		ioaddr = pci_iomap(pdev, 0, 0);
1025 	if (!ioaddr) {
1026 		rc = -ENOMEM;
1027 		goto out_release;
1028 	}
1029 
1030 	rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq,
1031 			   ent->driver_data, unit);
1032 	if (rc < 0)
1033 		goto out_iounmap;
1034 
1035 	vortex_cards_found++;
1036 	goto out;
1037 
1038 out_iounmap:
1039 	pci_iounmap(pdev, ioaddr);
1040 out_release:
1041 	pci_release_regions(pdev);
1042 out_disable:
1043 	pci_disable_device(pdev);
1044 out:
1045 	return rc;
1046 }
1047 
1048 static const struct net_device_ops boomrang_netdev_ops = {
1049 	.ndo_open		= vortex_open,
1050 	.ndo_stop		= vortex_close,
1051 	.ndo_start_xmit		= boomerang_start_xmit,
1052 	.ndo_tx_timeout		= vortex_tx_timeout,
1053 	.ndo_get_stats		= vortex_get_stats,
1054 #ifdef CONFIG_PCI
1055 	.ndo_do_ioctl 		= vortex_ioctl,
1056 #endif
1057 	.ndo_set_rx_mode	= set_rx_mode,
1058 	.ndo_set_mac_address 	= eth_mac_addr,
1059 	.ndo_validate_addr	= eth_validate_addr,
1060 #ifdef CONFIG_NET_POLL_CONTROLLER
1061 	.ndo_poll_controller	= poll_vortex,
1062 #endif
1063 };
1064 
1065 static const struct net_device_ops vortex_netdev_ops = {
1066 	.ndo_open		= vortex_open,
1067 	.ndo_stop		= vortex_close,
1068 	.ndo_start_xmit		= vortex_start_xmit,
1069 	.ndo_tx_timeout		= vortex_tx_timeout,
1070 	.ndo_get_stats		= vortex_get_stats,
1071 #ifdef CONFIG_PCI
1072 	.ndo_do_ioctl 		= vortex_ioctl,
1073 #endif
1074 	.ndo_set_rx_mode	= set_rx_mode,
1075 	.ndo_set_mac_address 	= eth_mac_addr,
1076 	.ndo_validate_addr	= eth_validate_addr,
1077 #ifdef CONFIG_NET_POLL_CONTROLLER
1078 	.ndo_poll_controller	= poll_vortex,
1079 #endif
1080 };
1081 
1082 /*
1083  * Start up the PCI/EISA device which is described by *gendev.
1084  * Return 0 on success.
1085  *
1086  * NOTE: pdev can be NULL, for the case of a Compaq device
1087  */
1088 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
1089 			 int chip_idx, int card_idx)
1090 {
1091 	struct vortex_private *vp;
1092 	int option;
1093 	unsigned int eeprom[0x40], checksum = 0;		/* EEPROM contents */
1094 	int i, step;
1095 	struct net_device *dev;
1096 	static int printed_version;
1097 	int retval, print_info;
1098 	struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx];
1099 	const char *print_name = "3c59x";
1100 	struct pci_dev *pdev = NULL;
1101 	struct eisa_device *edev = NULL;
1102 
1103 	if (!printed_version) {
1104 		pr_info("%s", version);
1105 		printed_version = 1;
1106 	}
1107 
1108 	if (gendev) {
1109 		if ((pdev = DEVICE_PCI(gendev))) {
1110 			print_name = pci_name(pdev);
1111 		}
1112 
1113 		if ((edev = DEVICE_EISA(gendev))) {
1114 			print_name = dev_name(&edev->dev);
1115 		}
1116 	}
1117 
1118 	dev = alloc_etherdev(sizeof(*vp));
1119 	retval = -ENOMEM;
1120 	if (!dev)
1121 		goto out;
1122 
1123 	SET_NETDEV_DEV(dev, gendev);
1124 	vp = netdev_priv(dev);
1125 
1126 	option = global_options;
1127 
1128 	/* The lower four bits are the media type. */
1129 	if (dev->mem_start) {
1130 		/*
1131 		 * The 'options' param is passed in as the third arg to the
1132 		 * LILO 'ether=' argument for non-modular use
1133 		 */
1134 		option = dev->mem_start;
1135 	}
1136 	else if (card_idx < MAX_UNITS) {
1137 		if (options[card_idx] >= 0)
1138 			option = options[card_idx];
1139 	}
1140 
1141 	if (option > 0) {
1142 		if (option & 0x8000)
1143 			vortex_debug = 7;
1144 		if (option & 0x4000)
1145 			vortex_debug = 2;
1146 		if (option & 0x0400)
1147 			vp->enable_wol = 1;
1148 	}
1149 
1150 	print_info = (vortex_debug > 1);
1151 	if (print_info)
1152 		pr_info("See Documentation/networking/device_drivers/ethernet/3com/vortex.rst\n");
1153 
1154 	pr_info("%s: 3Com %s %s at %p.\n",
1155 	       print_name,
1156 	       pdev ? "PCI" : "EISA",
1157 	       vci->name,
1158 	       ioaddr);
1159 
1160 	dev->base_addr = (unsigned long)ioaddr;
1161 	dev->irq = irq;
1162 	dev->mtu = mtu;
1163 	vp->ioaddr = ioaddr;
1164 	vp->large_frames = mtu > 1500;
1165 	vp->drv_flags = vci->drv_flags;
1166 	vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0;
1167 	vp->io_size = vci->io_size;
1168 	vp->card_idx = card_idx;
1169 	vp->window = -1;
1170 
1171 	/* module list only for Compaq device */
1172 	if (gendev == NULL) {
1173 		compaq_net_device = dev;
1174 	}
1175 
1176 	/* PCI-only startup logic */
1177 	if (pdev) {
1178 		/* enable bus-mastering if necessary */
1179 		if (vci->flags & PCI_USES_MASTER)
1180 			pci_set_master(pdev);
1181 
1182 		if (vci->drv_flags & IS_VORTEX) {
1183 			u8 pci_latency;
1184 			u8 new_latency = 248;
1185 
1186 			/* Check the PCI latency value.  On the 3c590 series the latency timer
1187 			   must be set to the maximum value to avoid data corruption that occurs
1188 			   when the timer expires during a transfer.  This bug exists the Vortex
1189 			   chip only. */
1190 			pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
1191 			if (pci_latency < new_latency) {
1192 				pr_info("%s: Overriding PCI latency timer (CFLT) setting of %d, new value is %d.\n",
1193 					print_name, pci_latency, new_latency);
1194 				pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency);
1195 			}
1196 		}
1197 	}
1198 
1199 	spin_lock_init(&vp->lock);
1200 	spin_lock_init(&vp->mii_lock);
1201 	spin_lock_init(&vp->window_lock);
1202 	vp->gendev = gendev;
1203 	vp->mii.dev = dev;
1204 	vp->mii.mdio_read = mdio_read;
1205 	vp->mii.mdio_write = mdio_write;
1206 	vp->mii.phy_id_mask = 0x1f;
1207 	vp->mii.reg_num_mask = 0x1f;
1208 
1209 	/* Makes sure rings are at least 16 byte aligned. */
1210 	vp->rx_ring = dma_alloc_coherent(gendev, sizeof(struct boom_rx_desc) * RX_RING_SIZE
1211 					   + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1212 					   &vp->rx_ring_dma, GFP_KERNEL);
1213 	retval = -ENOMEM;
1214 	if (!vp->rx_ring)
1215 		goto free_device;
1216 
1217 	vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE);
1218 	vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE;
1219 
1220 	/* if we are a PCI driver, we store info in pdev->driver_data
1221 	 * instead of a module list */
1222 	if (pdev)
1223 		pci_set_drvdata(pdev, dev);
1224 	if (edev)
1225 		eisa_set_drvdata(edev, dev);
1226 
1227 	vp->media_override = 7;
1228 	if (option >= 0) {
1229 		vp->media_override = ((option & 7) == 2)  ?  0  :  option & 15;
1230 		if (vp->media_override != 7)
1231 			vp->medialock = 1;
1232 		vp->full_duplex = (option & 0x200) ? 1 : 0;
1233 		vp->bus_master = (option & 16) ? 1 : 0;
1234 	}
1235 
1236 	if (global_full_duplex > 0)
1237 		vp->full_duplex = 1;
1238 	if (global_enable_wol > 0)
1239 		vp->enable_wol = 1;
1240 
1241 	if (card_idx < MAX_UNITS) {
1242 		if (full_duplex[card_idx] > 0)
1243 			vp->full_duplex = 1;
1244 		if (flow_ctrl[card_idx] > 0)
1245 			vp->flow_ctrl = 1;
1246 		if (enable_wol[card_idx] > 0)
1247 			vp->enable_wol = 1;
1248 	}
1249 
1250 	vp->mii.force_media = vp->full_duplex;
1251 	vp->options = option;
1252 	/* Read the station address from the EEPROM. */
1253 	{
1254 		int base;
1255 
1256 		if (vci->drv_flags & EEPROM_8BIT)
1257 			base = 0x230;
1258 		else if (vci->drv_flags & EEPROM_OFFSET)
1259 			base = EEPROM_Read + 0x30;
1260 		else
1261 			base = EEPROM_Read;
1262 
1263 		for (i = 0; i < 0x40; i++) {
1264 			int timer;
1265 			window_write16(vp, base + i, 0, Wn0EepromCmd);
1266 			/* Pause for at least 162 us. for the read to take place. */
1267 			for (timer = 10; timer >= 0; timer--) {
1268 				udelay(162);
1269 				if ((window_read16(vp, 0, Wn0EepromCmd) &
1270 				     0x8000) == 0)
1271 					break;
1272 			}
1273 			eeprom[i] = window_read16(vp, 0, Wn0EepromData);
1274 		}
1275 	}
1276 	for (i = 0; i < 0x18; i++)
1277 		checksum ^= eeprom[i];
1278 	checksum = (checksum ^ (checksum >> 8)) & 0xff;
1279 	if (checksum != 0x00) {		/* Grrr, needless incompatible change 3Com. */
1280 		while (i < 0x21)
1281 			checksum ^= eeprom[i++];
1282 		checksum = (checksum ^ (checksum >> 8)) & 0xff;
1283 	}
1284 	if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO))
1285 		pr_cont(" ***INVALID CHECKSUM %4.4x*** ", checksum);
1286 	for (i = 0; i < 3; i++)
1287 		((__be16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]);
1288 	if (print_info)
1289 		pr_cont(" %pM", dev->dev_addr);
1290 	/* Unfortunately an all zero eeprom passes the checksum and this
1291 	   gets found in the wild in failure cases. Crypto is hard 8) */
1292 	if (!is_valid_ether_addr(dev->dev_addr)) {
1293 		retval = -EINVAL;
1294 		pr_err("*** EEPROM MAC address is invalid.\n");
1295 		goto free_ring;	/* With every pack */
1296 	}
1297 	for (i = 0; i < 6; i++)
1298 		window_write8(vp, dev->dev_addr[i], 2, i);
1299 
1300 	if (print_info)
1301 		pr_cont(", IRQ %d\n", dev->irq);
1302 	/* Tell them about an invalid IRQ. */
1303 	if (dev->irq <= 0 || dev->irq >= nr_irqs)
1304 		pr_warn(" *** Warning: IRQ %d is unlikely to work! ***\n",
1305 			dev->irq);
1306 
1307 	step = (window_read8(vp, 4, Wn4_NetDiag) & 0x1e) >> 1;
1308 	if (print_info) {
1309 		pr_info("  product code %02x%02x rev %02x.%d date %02d-%02d-%02d\n",
1310 			eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14],
1311 			step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9);
1312 	}
1313 
1314 
1315 	if (pdev && vci->drv_flags & HAS_CB_FNS) {
1316 		unsigned short n;
1317 
1318 		vp->cb_fn_base = pci_iomap(pdev, 2, 0);
1319 		if (!vp->cb_fn_base) {
1320 			retval = -ENOMEM;
1321 			goto free_ring;
1322 		}
1323 
1324 		if (print_info) {
1325 			pr_info("%s: CardBus functions mapped %16.16llx->%p\n",
1326 				print_name,
1327 				(unsigned long long)pci_resource_start(pdev, 2),
1328 				vp->cb_fn_base);
1329 		}
1330 
1331 		n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1332 		if (vp->drv_flags & INVERT_LED_PWR)
1333 			n |= 0x10;
1334 		if (vp->drv_flags & INVERT_MII_PWR)
1335 			n |= 0x4000;
1336 		window_write16(vp, n, 2, Wn2_ResetOptions);
1337 		if (vp->drv_flags & WNO_XCVR_PWR) {
1338 			window_write16(vp, 0x0800, 0, 0);
1339 		}
1340 	}
1341 
1342 	/* Extract our information from the EEPROM data. */
1343 	vp->info1 = eeprom[13];
1344 	vp->info2 = eeprom[15];
1345 	vp->capabilities = eeprom[16];
1346 
1347 	if (vp->info1 & 0x8000) {
1348 		vp->full_duplex = 1;
1349 		if (print_info)
1350 			pr_info("Full duplex capable\n");
1351 	}
1352 
1353 	{
1354 		static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"};
1355 		unsigned int config;
1356 		vp->available_media = window_read16(vp, 3, Wn3_Options);
1357 		if ((vp->available_media & 0xff) == 0)		/* Broken 3c916 */
1358 			vp->available_media = 0x40;
1359 		config = window_read32(vp, 3, Wn3_Config);
1360 		if (print_info) {
1361 			pr_debug("  Internal config register is %4.4x, transceivers %#x.\n",
1362 				config, window_read16(vp, 3, Wn3_Options));
1363 			pr_info("  %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
1364 				   8 << RAM_SIZE(config),
1365 				   RAM_WIDTH(config) ? "word" : "byte",
1366 				   ram_split[RAM_SPLIT(config)],
1367 				   AUTOSELECT(config) ? "autoselect/" : "",
1368 				   XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" :
1369 				   media_tbl[XCVR(config)].name);
1370 		}
1371 		vp->default_media = XCVR(config);
1372 		if (vp->default_media == XCVR_NWAY)
1373 			vp->has_nway = 1;
1374 		vp->autoselect = AUTOSELECT(config);
1375 	}
1376 
1377 	if (vp->media_override != 7) {
1378 		pr_info("%s:  Media override to transceiver type %d (%s).\n",
1379 				print_name, vp->media_override,
1380 				media_tbl[vp->media_override].name);
1381 		dev->if_port = vp->media_override;
1382 	} else
1383 		dev->if_port = vp->default_media;
1384 
1385 	if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) ||
1386 		dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1387 		int phy, phy_idx = 0;
1388 		mii_preamble_required++;
1389 		if (vp->drv_flags & EXTRA_PREAMBLE)
1390 			mii_preamble_required++;
1391 		mdio_sync(vp, 32);
1392 		mdio_read(dev, 24, MII_BMSR);
1393 		for (phy = 0; phy < 32 && phy_idx < 1; phy++) {
1394 			int mii_status, phyx;
1395 
1396 			/*
1397 			 * For the 3c905CX we look at index 24 first, because it bogusly
1398 			 * reports an external PHY at all indices
1399 			 */
1400 			if (phy == 0)
1401 				phyx = 24;
1402 			else if (phy <= 24)
1403 				phyx = phy - 1;
1404 			else
1405 				phyx = phy;
1406 			mii_status = mdio_read(dev, phyx, MII_BMSR);
1407 			if (mii_status  &&  mii_status != 0xffff) {
1408 				vp->phys[phy_idx++] = phyx;
1409 				if (print_info) {
1410 					pr_info("  MII transceiver found at address %d, status %4x.\n",
1411 						phyx, mii_status);
1412 				}
1413 				if ((mii_status & 0x0040) == 0)
1414 					mii_preamble_required++;
1415 			}
1416 		}
1417 		mii_preamble_required--;
1418 		if (phy_idx == 0) {
1419 			pr_warn("  ***WARNING*** No MII transceivers found!\n");
1420 			vp->phys[0] = 24;
1421 		} else {
1422 			vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE);
1423 			if (vp->full_duplex) {
1424 				/* Only advertise the FD media types. */
1425 				vp->advertising &= ~0x02A0;
1426 				mdio_write(dev, vp->phys[0], 4, vp->advertising);
1427 			}
1428 		}
1429 		vp->mii.phy_id = vp->phys[0];
1430 	}
1431 
1432 	if (vp->capabilities & CapBusMaster) {
1433 		vp->full_bus_master_tx = 1;
1434 		if (print_info) {
1435 			pr_info("  Enabling bus-master transmits and %s receives.\n",
1436 			(vp->info2 & 1) ? "early" : "whole-frame" );
1437 		}
1438 		vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2;
1439 		vp->bus_master = 0;		/* AKPM: vortex only */
1440 	}
1441 
1442 	/* The 3c59x-specific entries in the device structure. */
1443 	if (vp->full_bus_master_tx) {
1444 		dev->netdev_ops = &boomrang_netdev_ops;
1445 		/* Actually, it still should work with iommu. */
1446 		if (card_idx < MAX_UNITS &&
1447 		    ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) ||
1448 				hw_checksums[card_idx] == 1)) {
1449 			dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1450 		}
1451 	} else
1452 		dev->netdev_ops =  &vortex_netdev_ops;
1453 
1454 	if (print_info) {
1455 		pr_info("%s: scatter/gather %sabled. h/w checksums %sabled\n",
1456 				print_name,
1457 				(dev->features & NETIF_F_SG) ? "en":"dis",
1458 				(dev->features & NETIF_F_IP_CSUM) ? "en":"dis");
1459 	}
1460 
1461 	dev->ethtool_ops = &vortex_ethtool_ops;
1462 	dev->watchdog_timeo = (watchdog * HZ) / 1000;
1463 
1464 	if (pdev) {
1465 		vp->pm_state_valid = 1;
1466 		pci_save_state(pdev);
1467  		acpi_set_WOL(dev);
1468 	}
1469 	retval = register_netdev(dev);
1470 	if (retval == 0)
1471 		return 0;
1472 
1473 free_ring:
1474 	dma_free_coherent(&pdev->dev,
1475 		sizeof(struct boom_rx_desc) * RX_RING_SIZE +
1476 		sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1477 		vp->rx_ring, vp->rx_ring_dma);
1478 free_device:
1479 	free_netdev(dev);
1480 	pr_err(PFX "vortex_probe1 fails.  Returns %d\n", retval);
1481 out:
1482 	return retval;
1483 }
1484 
1485 static void
1486 issue_and_wait(struct net_device *dev, int cmd)
1487 {
1488 	struct vortex_private *vp = netdev_priv(dev);
1489 	void __iomem *ioaddr = vp->ioaddr;
1490 	int i;
1491 
1492 	iowrite16(cmd, ioaddr + EL3_CMD);
1493 	for (i = 0; i < 2000; i++) {
1494 		if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
1495 			return;
1496 	}
1497 
1498 	/* OK, that didn't work.  Do it the slow way.  One second */
1499 	for (i = 0; i < 100000; i++) {
1500 		if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) {
1501 			if (vortex_debug > 1)
1502 				pr_info("%s: command 0x%04x took %d usecs\n",
1503 					   dev->name, cmd, i * 10);
1504 			return;
1505 		}
1506 		udelay(10);
1507 	}
1508 	pr_err("%s: command 0x%04x did not complete! Status=0x%x\n",
1509 			   dev->name, cmd, ioread16(ioaddr + EL3_STATUS));
1510 }
1511 
1512 static void
1513 vortex_set_duplex(struct net_device *dev)
1514 {
1515 	struct vortex_private *vp = netdev_priv(dev);
1516 
1517 	pr_info("%s:  setting %s-duplex.\n",
1518 		dev->name, (vp->full_duplex) ? "full" : "half");
1519 
1520 	/* Set the full-duplex bit. */
1521 	window_write16(vp,
1522 		       ((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) |
1523 		       (vp->large_frames ? 0x40 : 0) |
1524 		       ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ?
1525 			0x100 : 0),
1526 		       3, Wn3_MAC_Ctrl);
1527 }
1528 
1529 static void vortex_check_media(struct net_device *dev, unsigned int init)
1530 {
1531 	struct vortex_private *vp = netdev_priv(dev);
1532 	unsigned int ok_to_print = 0;
1533 
1534 	if (vortex_debug > 3)
1535 		ok_to_print = 1;
1536 
1537 	if (mii_check_media(&vp->mii, ok_to_print, init)) {
1538 		vp->full_duplex = vp->mii.full_duplex;
1539 		vortex_set_duplex(dev);
1540 	} else if (init) {
1541 		vortex_set_duplex(dev);
1542 	}
1543 }
1544 
1545 static int
1546 vortex_up(struct net_device *dev)
1547 {
1548 	struct vortex_private *vp = netdev_priv(dev);
1549 	void __iomem *ioaddr = vp->ioaddr;
1550 	unsigned int config;
1551 	int i, mii_reg5, err = 0;
1552 
1553 	if (VORTEX_PCI(vp)) {
1554 		pci_set_power_state(VORTEX_PCI(vp), PCI_D0);	/* Go active */
1555 		if (vp->pm_state_valid)
1556 			pci_restore_state(VORTEX_PCI(vp));
1557 		err = pci_enable_device(VORTEX_PCI(vp));
1558 		if (err) {
1559 			pr_warn("%s: Could not enable device\n", dev->name);
1560 			goto err_out;
1561 		}
1562 	}
1563 
1564 	/* Before initializing select the active media port. */
1565 	config = window_read32(vp, 3, Wn3_Config);
1566 
1567 	if (vp->media_override != 7) {
1568 		pr_info("%s: Media override to transceiver %d (%s).\n",
1569 			   dev->name, vp->media_override,
1570 			   media_tbl[vp->media_override].name);
1571 		dev->if_port = vp->media_override;
1572 	} else if (vp->autoselect) {
1573 		if (vp->has_nway) {
1574 			if (vortex_debug > 1)
1575 				pr_info("%s: using NWAY device table, not %d\n",
1576 								dev->name, dev->if_port);
1577 			dev->if_port = XCVR_NWAY;
1578 		} else {
1579 			/* Find first available media type, starting with 100baseTx. */
1580 			dev->if_port = XCVR_100baseTx;
1581 			while (! (vp->available_media & media_tbl[dev->if_port].mask))
1582 				dev->if_port = media_tbl[dev->if_port].next;
1583 			if (vortex_debug > 1)
1584 				pr_info("%s: first available media type: %s\n",
1585 					dev->name, media_tbl[dev->if_port].name);
1586 		}
1587 	} else {
1588 		dev->if_port = vp->default_media;
1589 		if (vortex_debug > 1)
1590 			pr_info("%s: using default media %s\n",
1591 				dev->name, media_tbl[dev->if_port].name);
1592 	}
1593 
1594 	timer_setup(&vp->timer, vortex_timer, 0);
1595 	mod_timer(&vp->timer, RUN_AT(media_tbl[dev->if_port].wait));
1596 
1597 	if (vortex_debug > 1)
1598 		pr_debug("%s: Initial media type %s.\n",
1599 			   dev->name, media_tbl[dev->if_port].name);
1600 
1601 	vp->full_duplex = vp->mii.force_media;
1602 	config = BFINS(config, dev->if_port, 20, 4);
1603 	if (vortex_debug > 6)
1604 		pr_debug("vortex_up(): writing 0x%x to InternalConfig\n", config);
1605 	window_write32(vp, config, 3, Wn3_Config);
1606 
1607 	if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1608 		mdio_read(dev, vp->phys[0], MII_BMSR);
1609 		mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA);
1610 		vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0);
1611 		vp->mii.full_duplex = vp->full_duplex;
1612 
1613 		vortex_check_media(dev, 1);
1614 	}
1615 	else
1616 		vortex_set_duplex(dev);
1617 
1618 	issue_and_wait(dev, TxReset);
1619 	/*
1620 	 * Don't reset the PHY - that upsets autonegotiation during DHCP operations.
1621 	 */
1622 	issue_and_wait(dev, RxReset|0x04);
1623 
1624 
1625 	iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
1626 
1627 	if (vortex_debug > 1) {
1628 		pr_debug("%s: vortex_up() irq %d media status %4.4x.\n",
1629 			   dev->name, dev->irq, window_read16(vp, 4, Wn4_Media));
1630 	}
1631 
1632 	/* Set the station address and mask in window 2 each time opened. */
1633 	for (i = 0; i < 6; i++)
1634 		window_write8(vp, dev->dev_addr[i], 2, i);
1635 	for (; i < 12; i+=2)
1636 		window_write16(vp, 0, 2, i);
1637 
1638 	if (vp->cb_fn_base) {
1639 		unsigned short n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1640 		if (vp->drv_flags & INVERT_LED_PWR)
1641 			n |= 0x10;
1642 		if (vp->drv_flags & INVERT_MII_PWR)
1643 			n |= 0x4000;
1644 		window_write16(vp, n, 2, Wn2_ResetOptions);
1645 	}
1646 
1647 	if (dev->if_port == XCVR_10base2)
1648 		/* Start the thinnet transceiver. We should really wait 50ms...*/
1649 		iowrite16(StartCoax, ioaddr + EL3_CMD);
1650 	if (dev->if_port != XCVR_NWAY) {
1651 		window_write16(vp,
1652 			       (window_read16(vp, 4, Wn4_Media) &
1653 				~(Media_10TP|Media_SQE)) |
1654 			       media_tbl[dev->if_port].media_bits,
1655 			       4, Wn4_Media);
1656 	}
1657 
1658 	/* Switch to the stats window, and clear all stats by reading. */
1659 	iowrite16(StatsDisable, ioaddr + EL3_CMD);
1660 	for (i = 0; i < 10; i++)
1661 		window_read8(vp, 6, i);
1662 	window_read16(vp, 6, 10);
1663 	window_read16(vp, 6, 12);
1664 	/* New: On the Vortex we must also clear the BadSSD counter. */
1665 	window_read8(vp, 4, 12);
1666 	/* ..and on the Boomerang we enable the extra statistics bits. */
1667 	window_write16(vp, 0x0040, 4, Wn4_NetDiag);
1668 
1669 	if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1670 		vp->cur_rx = 0;
1671 		/* Initialize the RxEarly register as recommended. */
1672 		iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD);
1673 		iowrite32(0x0020, ioaddr + PktStatus);
1674 		iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr);
1675 	}
1676 	if (vp->full_bus_master_tx) { 		/* Boomerang bus master Tx. */
1677 		vp->cur_tx = vp->dirty_tx = 0;
1678 		if (vp->drv_flags & IS_BOOMERANG)
1679 			iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */
1680 		/* Clear the Rx, Tx rings. */
1681 		for (i = 0; i < RX_RING_SIZE; i++)	/* AKPM: this is done in vortex_open, too */
1682 			vp->rx_ring[i].status = 0;
1683 		for (i = 0; i < TX_RING_SIZE; i++)
1684 			vp->tx_skbuff[i] = NULL;
1685 		iowrite32(0, ioaddr + DownListPtr);
1686 	}
1687 	/* Set receiver mode: presumably accept b-case and phys addr only. */
1688 	set_rx_mode(dev);
1689 	/* enable 802.1q tagged frames */
1690 	set_8021q_mode(dev, 1);
1691 	iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
1692 
1693 	iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
1694 	iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
1695 	/* Allow status bits to be seen. */
1696 	vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete|
1697 		(vp->full_bus_master_tx ? DownComplete : TxAvailable) |
1698 		(vp->full_bus_master_rx ? UpComplete : RxComplete) |
1699 		(vp->bus_master ? DMADone : 0);
1700 	vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable |
1701 		(vp->full_bus_master_rx ? 0 : RxComplete) |
1702 		StatsFull | HostError | TxComplete | IntReq
1703 		| (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete;
1704 	iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1705 	/* Ack all pending events, and set active indicator mask. */
1706 	iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
1707 		 ioaddr + EL3_CMD);
1708 	iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1709 	if (vp->cb_fn_base)			/* The PCMCIA people are idiots.  */
1710 		iowrite32(0x8000, vp->cb_fn_base + 4);
1711 	netif_start_queue (dev);
1712 	netdev_reset_queue(dev);
1713 err_out:
1714 	return err;
1715 }
1716 
1717 static int
1718 vortex_open(struct net_device *dev)
1719 {
1720 	struct vortex_private *vp = netdev_priv(dev);
1721 	int i;
1722 	int retval;
1723 	dma_addr_t dma;
1724 
1725 	/* Use the now-standard shared IRQ implementation. */
1726 	if ((retval = request_irq(dev->irq, vortex_boomerang_interrupt, IRQF_SHARED, dev->name, dev))) {
1727 		pr_err("%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1728 		goto err;
1729 	}
1730 
1731 	if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1732 		if (vortex_debug > 2)
1733 			pr_debug("%s:  Filling in the Rx ring.\n", dev->name);
1734 		for (i = 0; i < RX_RING_SIZE; i++) {
1735 			struct sk_buff *skb;
1736 			vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1));
1737 			vp->rx_ring[i].status = 0;	/* Clear complete bit. */
1738 			vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG);
1739 
1740 			skb = __netdev_alloc_skb(dev, PKT_BUF_SZ + NET_IP_ALIGN,
1741 						 GFP_KERNEL);
1742 			vp->rx_skbuff[i] = skb;
1743 			if (skb == NULL)
1744 				break;			/* Bad news!  */
1745 
1746 			skb_reserve(skb, NET_IP_ALIGN);	/* Align IP on 16 byte boundaries */
1747 			dma = dma_map_single(vp->gendev, skb->data,
1748 					     PKT_BUF_SZ, DMA_FROM_DEVICE);
1749 			if (dma_mapping_error(vp->gendev, dma))
1750 				break;
1751 			vp->rx_ring[i].addr = cpu_to_le32(dma);
1752 		}
1753 		if (i != RX_RING_SIZE) {
1754 			pr_emerg("%s: no memory for rx ring\n", dev->name);
1755 			retval = -ENOMEM;
1756 			goto err_free_skb;
1757 		}
1758 		/* Wrap the ring. */
1759 		vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma);
1760 	}
1761 
1762 	retval = vortex_up(dev);
1763 	if (!retval)
1764 		goto out;
1765 
1766 err_free_skb:
1767 	for (i = 0; i < RX_RING_SIZE; i++) {
1768 		if (vp->rx_skbuff[i]) {
1769 			dev_kfree_skb(vp->rx_skbuff[i]);
1770 			vp->rx_skbuff[i] = NULL;
1771 		}
1772 	}
1773 	free_irq(dev->irq, dev);
1774 err:
1775 	if (vortex_debug > 1)
1776 		pr_err("%s: vortex_open() fails: returning %d\n", dev->name, retval);
1777 out:
1778 	return retval;
1779 }
1780 
1781 static void
1782 vortex_timer(struct timer_list *t)
1783 {
1784 	struct vortex_private *vp = from_timer(vp, t, timer);
1785 	struct net_device *dev = vp->mii.dev;
1786 	void __iomem *ioaddr = vp->ioaddr;
1787 	int next_tick = 60*HZ;
1788 	int ok = 0;
1789 	int media_status;
1790 
1791 	if (vortex_debug > 2) {
1792 		pr_debug("%s: Media selection timer tick happened, %s.\n",
1793 			   dev->name, media_tbl[dev->if_port].name);
1794 		pr_debug("dev->watchdog_timeo=%d\n", dev->watchdog_timeo);
1795 	}
1796 
1797 	media_status = window_read16(vp, 4, Wn4_Media);
1798 	switch (dev->if_port) {
1799 	case XCVR_10baseT:  case XCVR_100baseTx:  case XCVR_100baseFx:
1800 		if (media_status & Media_LnkBeat) {
1801 			netif_carrier_on(dev);
1802 			ok = 1;
1803 			if (vortex_debug > 1)
1804 				pr_debug("%s: Media %s has link beat, %x.\n",
1805 					   dev->name, media_tbl[dev->if_port].name, media_status);
1806 		} else {
1807 			netif_carrier_off(dev);
1808 			if (vortex_debug > 1) {
1809 				pr_debug("%s: Media %s has no link beat, %x.\n",
1810 					   dev->name, media_tbl[dev->if_port].name, media_status);
1811 			}
1812 		}
1813 		break;
1814 	case XCVR_MII: case XCVR_NWAY:
1815 		{
1816 			ok = 1;
1817 			vortex_check_media(dev, 0);
1818 		}
1819 		break;
1820 	  default:					/* Other media types handled by Tx timeouts. */
1821 		if (vortex_debug > 1)
1822 		  pr_debug("%s: Media %s has no indication, %x.\n",
1823 				 dev->name, media_tbl[dev->if_port].name, media_status);
1824 		ok = 1;
1825 	}
1826 
1827 	if (dev->flags & IFF_SLAVE || !netif_carrier_ok(dev))
1828 		next_tick = 5*HZ;
1829 
1830 	if (vp->medialock)
1831 		goto leave_media_alone;
1832 
1833 	if (!ok) {
1834 		unsigned int config;
1835 
1836 		spin_lock_irq(&vp->lock);
1837 
1838 		do {
1839 			dev->if_port = media_tbl[dev->if_port].next;
1840 		} while ( ! (vp->available_media & media_tbl[dev->if_port].mask));
1841 		if (dev->if_port == XCVR_Default) { /* Go back to default. */
1842 		  dev->if_port = vp->default_media;
1843 		  if (vortex_debug > 1)
1844 			pr_debug("%s: Media selection failing, using default %s port.\n",
1845 				   dev->name, media_tbl[dev->if_port].name);
1846 		} else {
1847 			if (vortex_debug > 1)
1848 				pr_debug("%s: Media selection failed, now trying %s port.\n",
1849 					   dev->name, media_tbl[dev->if_port].name);
1850 			next_tick = media_tbl[dev->if_port].wait;
1851 		}
1852 		window_write16(vp,
1853 			       (media_status & ~(Media_10TP|Media_SQE)) |
1854 			       media_tbl[dev->if_port].media_bits,
1855 			       4, Wn4_Media);
1856 
1857 		config = window_read32(vp, 3, Wn3_Config);
1858 		config = BFINS(config, dev->if_port, 20, 4);
1859 		window_write32(vp, config, 3, Wn3_Config);
1860 
1861 		iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax,
1862 			 ioaddr + EL3_CMD);
1863 		if (vortex_debug > 1)
1864 			pr_debug("wrote 0x%08x to Wn3_Config\n", config);
1865 		/* AKPM: FIXME: Should reset Rx & Tx here.  P60 of 3c90xc.pdf */
1866 
1867 		spin_unlock_irq(&vp->lock);
1868 	}
1869 
1870 leave_media_alone:
1871 	if (vortex_debug > 2)
1872 	  pr_debug("%s: Media selection timer finished, %s.\n",
1873 			 dev->name, media_tbl[dev->if_port].name);
1874 
1875 	mod_timer(&vp->timer, RUN_AT(next_tick));
1876 	if (vp->deferred)
1877 		iowrite16(FakeIntr, ioaddr + EL3_CMD);
1878 }
1879 
1880 static void vortex_tx_timeout(struct net_device *dev, unsigned int txqueue)
1881 {
1882 	struct vortex_private *vp = netdev_priv(dev);
1883 	void __iomem *ioaddr = vp->ioaddr;
1884 
1885 	pr_err("%s: transmit timed out, tx_status %2.2x status %4.4x.\n",
1886 		   dev->name, ioread8(ioaddr + TxStatus),
1887 		   ioread16(ioaddr + EL3_STATUS));
1888 	pr_err("  diagnostics: net %04x media %04x dma %08x fifo %04x\n",
1889 			window_read16(vp, 4, Wn4_NetDiag),
1890 			window_read16(vp, 4, Wn4_Media),
1891 			ioread32(ioaddr + PktStatus),
1892 			window_read16(vp, 4, Wn4_FIFODiag));
1893 	/* Slight code bloat to be user friendly. */
1894 	if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88)
1895 		pr_err("%s: Transmitter encountered 16 collisions --"
1896 			   " network cable problem?\n", dev->name);
1897 	if (ioread16(ioaddr + EL3_STATUS) & IntLatch) {
1898 		pr_err("%s: Interrupt posted but not delivered --"
1899 			   " IRQ blocked by another device?\n", dev->name);
1900 		/* Bad idea here.. but we might as well handle a few events. */
1901 		vortex_boomerang_interrupt(dev->irq, dev);
1902 	}
1903 
1904 	if (vortex_debug > 0)
1905 		dump_tx_ring(dev);
1906 
1907 	issue_and_wait(dev, TxReset);
1908 
1909 	dev->stats.tx_errors++;
1910 	if (vp->full_bus_master_tx) {
1911 		pr_debug("%s: Resetting the Tx ring pointer.\n", dev->name);
1912 		if (vp->cur_tx - vp->dirty_tx > 0  &&  ioread32(ioaddr + DownListPtr) == 0)
1913 			iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc),
1914 				 ioaddr + DownListPtr);
1915 		if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE) {
1916 			netif_wake_queue (dev);
1917 			netdev_reset_queue (dev);
1918 		}
1919 		if (vp->drv_flags & IS_BOOMERANG)
1920 			iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold);
1921 		iowrite16(DownUnstall, ioaddr + EL3_CMD);
1922 	} else {
1923 		dev->stats.tx_dropped++;
1924 		netif_wake_queue(dev);
1925 		netdev_reset_queue(dev);
1926 	}
1927 	/* Issue Tx Enable */
1928 	iowrite16(TxEnable, ioaddr + EL3_CMD);
1929 	netif_trans_update(dev); /* prevent tx timeout */
1930 }
1931 
1932 /*
1933  * Handle uncommon interrupt sources.  This is a separate routine to minimize
1934  * the cache impact.
1935  */
1936 static void
1937 vortex_error(struct net_device *dev, int status)
1938 {
1939 	struct vortex_private *vp = netdev_priv(dev);
1940 	void __iomem *ioaddr = vp->ioaddr;
1941 	int do_tx_reset = 0, reset_mask = 0;
1942 	unsigned char tx_status = 0;
1943 
1944 	if (vortex_debug > 2) {
1945 		pr_err("%s: vortex_error(), status=0x%x\n", dev->name, status);
1946 	}
1947 
1948 	if (status & TxComplete) {			/* Really "TxError" for us. */
1949 		tx_status = ioread8(ioaddr + TxStatus);
1950 		/* Presumably a tx-timeout. We must merely re-enable. */
1951 		if (vortex_debug > 2 ||
1952 		    (tx_status != 0x88 && vortex_debug > 0)) {
1953 			pr_err("%s: Transmit error, Tx status register %2.2x.\n",
1954 				   dev->name, tx_status);
1955 			if (tx_status == 0x82) {
1956 				pr_err("Probably a duplex mismatch.  See "
1957 						"Documentation/networking/device_drivers/ethernet/3com/vortex.rst\n");
1958 			}
1959 			dump_tx_ring(dev);
1960 		}
1961 		if (tx_status & 0x14)  dev->stats.tx_fifo_errors++;
1962 		if (tx_status & 0x38)  dev->stats.tx_aborted_errors++;
1963 		if (tx_status & 0x08)  vp->xstats.tx_max_collisions++;
1964 		iowrite8(0, ioaddr + TxStatus);
1965 		if (tx_status & 0x30) {			/* txJabber or txUnderrun */
1966 			do_tx_reset = 1;
1967 		} else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET))  {	/* maxCollisions */
1968 			do_tx_reset = 1;
1969 			reset_mask = 0x0108;		/* Reset interface logic, but not download logic */
1970 		} else {				/* Merely re-enable the transmitter. */
1971 			iowrite16(TxEnable, ioaddr + EL3_CMD);
1972 		}
1973 	}
1974 
1975 	if (status & RxEarly)				/* Rx early is unused. */
1976 		iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD);
1977 
1978 	if (status & StatsFull) {			/* Empty statistics. */
1979 		static int DoneDidThat;
1980 		if (vortex_debug > 4)
1981 			pr_debug("%s: Updating stats.\n", dev->name);
1982 		update_stats(ioaddr, dev);
1983 		/* HACK: Disable statistics as an interrupt source. */
1984 		/* This occurs when we have the wrong media type! */
1985 		if (DoneDidThat == 0  &&
1986 			ioread16(ioaddr + EL3_STATUS) & StatsFull) {
1987 			pr_warn("%s: Updating statistics failed, disabling stats as an interrupt source\n",
1988 				dev->name);
1989 			iowrite16(SetIntrEnb |
1990 				  (window_read16(vp, 5, 10) & ~StatsFull),
1991 				  ioaddr + EL3_CMD);
1992 			vp->intr_enable &= ~StatsFull;
1993 			DoneDidThat++;
1994 		}
1995 	}
1996 	if (status & IntReq) {		/* Restore all interrupt sources.  */
1997 		iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1998 		iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1999 	}
2000 	if (status & HostError) {
2001 		u16 fifo_diag;
2002 		fifo_diag = window_read16(vp, 4, Wn4_FIFODiag);
2003 		pr_err("%s: Host error, FIFO diagnostic register %4.4x.\n",
2004 			   dev->name, fifo_diag);
2005 		/* Adapter failure requires Tx/Rx reset and reinit. */
2006 		if (vp->full_bus_master_tx) {
2007 			int bus_status = ioread32(ioaddr + PktStatus);
2008 			/* 0x80000000 PCI master abort. */
2009 			/* 0x40000000 PCI target abort. */
2010 			if (vortex_debug)
2011 				pr_err("%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status);
2012 
2013 			/* In this case, blow the card away */
2014 			/* Must not enter D3 or we can't legally issue the reset! */
2015 			vortex_down(dev, 0);
2016 			issue_and_wait(dev, TotalReset | 0xff);
2017 			vortex_up(dev);		/* AKPM: bug.  vortex_up() assumes that the rx ring is full. It may not be. */
2018 		} else if (fifo_diag & 0x0400)
2019 			do_tx_reset = 1;
2020 		if (fifo_diag & 0x3000) {
2021 			/* Reset Rx fifo and upload logic */
2022 			issue_and_wait(dev, RxReset|0x07);
2023 			/* Set the Rx filter to the current state. */
2024 			set_rx_mode(dev);
2025 			/* enable 802.1q VLAN tagged frames */
2026 			set_8021q_mode(dev, 1);
2027 			iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
2028 			iowrite16(AckIntr | HostError, ioaddr + EL3_CMD);
2029 		}
2030 	}
2031 
2032 	if (do_tx_reset) {
2033 		issue_and_wait(dev, TxReset|reset_mask);
2034 		iowrite16(TxEnable, ioaddr + EL3_CMD);
2035 		if (!vp->full_bus_master_tx)
2036 			netif_wake_queue(dev);
2037 	}
2038 }
2039 
2040 static netdev_tx_t
2041 vortex_start_xmit(struct sk_buff *skb, struct net_device *dev)
2042 {
2043 	struct vortex_private *vp = netdev_priv(dev);
2044 	void __iomem *ioaddr = vp->ioaddr;
2045 	int skblen = skb->len;
2046 
2047 	/* Put out the doubleword header... */
2048 	iowrite32(skb->len, ioaddr + TX_FIFO);
2049 	if (vp->bus_master) {
2050 		/* Set the bus-master controller to transfer the packet. */
2051 		int len = (skb->len + 3) & ~3;
2052 		vp->tx_skb_dma = dma_map_single(vp->gendev, skb->data, len,
2053 						DMA_TO_DEVICE);
2054 		if (dma_mapping_error(vp->gendev, vp->tx_skb_dma)) {
2055 			dev_kfree_skb_any(skb);
2056 			dev->stats.tx_dropped++;
2057 			return NETDEV_TX_OK;
2058 		}
2059 
2060 		spin_lock_irq(&vp->window_lock);
2061 		window_set(vp, 7);
2062 		iowrite32(vp->tx_skb_dma, ioaddr + Wn7_MasterAddr);
2063 		iowrite16(len, ioaddr + Wn7_MasterLen);
2064 		spin_unlock_irq(&vp->window_lock);
2065 		vp->tx_skb = skb;
2066 		skb_tx_timestamp(skb);
2067 		iowrite16(StartDMADown, ioaddr + EL3_CMD);
2068 		/* netif_wake_queue() will be called at the DMADone interrupt. */
2069 	} else {
2070 		/* ... and the packet rounded to a doubleword. */
2071 		skb_tx_timestamp(skb);
2072 		iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
2073 		dev_consume_skb_any (skb);
2074 		if (ioread16(ioaddr + TxFree) > 1536) {
2075 			netif_start_queue (dev);	/* AKPM: redundant? */
2076 		} else {
2077 			/* Interrupt us when the FIFO has room for max-sized packet. */
2078 			netif_stop_queue(dev);
2079 			iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2080 		}
2081 	}
2082 
2083 	netdev_sent_queue(dev, skblen);
2084 
2085 	/* Clear the Tx status stack. */
2086 	{
2087 		int tx_status;
2088 		int i = 32;
2089 
2090 		while (--i > 0	&&	(tx_status = ioread8(ioaddr + TxStatus)) > 0) {
2091 			if (tx_status & 0x3C) {		/* A Tx-disabling error occurred.  */
2092 				if (vortex_debug > 2)
2093 				  pr_debug("%s: Tx error, status %2.2x.\n",
2094 						 dev->name, tx_status);
2095 				if (tx_status & 0x04) dev->stats.tx_fifo_errors++;
2096 				if (tx_status & 0x38) dev->stats.tx_aborted_errors++;
2097 				if (tx_status & 0x30) {
2098 					issue_and_wait(dev, TxReset);
2099 				}
2100 				iowrite16(TxEnable, ioaddr + EL3_CMD);
2101 			}
2102 			iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */
2103 		}
2104 	}
2105 	return NETDEV_TX_OK;
2106 }
2107 
2108 static netdev_tx_t
2109 boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev)
2110 {
2111 	struct vortex_private *vp = netdev_priv(dev);
2112 	void __iomem *ioaddr = vp->ioaddr;
2113 	/* Calculate the next Tx descriptor entry. */
2114 	int entry = vp->cur_tx % TX_RING_SIZE;
2115 	int skblen = skb->len;
2116 	struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE];
2117 	unsigned long flags;
2118 	dma_addr_t dma_addr;
2119 
2120 	if (vortex_debug > 6) {
2121 		pr_debug("boomerang_start_xmit()\n");
2122 		pr_debug("%s: Trying to send a packet, Tx index %d.\n",
2123 			   dev->name, vp->cur_tx);
2124 	}
2125 
2126 	/*
2127 	 * We can't allow a recursion from our interrupt handler back into the
2128 	 * tx routine, as they take the same spin lock, and that causes
2129 	 * deadlock.  Just return NETDEV_TX_BUSY and let the stack try again in
2130 	 * a bit
2131 	 */
2132 	if (vp->handling_irq)
2133 		return NETDEV_TX_BUSY;
2134 
2135 	if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) {
2136 		if (vortex_debug > 0)
2137 			pr_warn("%s: BUG! Tx Ring full, refusing to send buffer\n",
2138 				dev->name);
2139 		netif_stop_queue(dev);
2140 		return NETDEV_TX_BUSY;
2141 	}
2142 
2143 	vp->tx_skbuff[entry] = skb;
2144 
2145 	vp->tx_ring[entry].next = 0;
2146 #if DO_ZEROCOPY
2147 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2148 			vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2149 	else
2150 			vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum);
2151 
2152 	if (!skb_shinfo(skb)->nr_frags) {
2153 		dma_addr = dma_map_single(vp->gendev, skb->data, skb->len,
2154 					  DMA_TO_DEVICE);
2155 		if (dma_mapping_error(vp->gendev, dma_addr))
2156 			goto out_dma_err;
2157 
2158 		vp->tx_ring[entry].frag[0].addr = cpu_to_le32(dma_addr);
2159 		vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG);
2160 	} else {
2161 		int i;
2162 
2163 		dma_addr = dma_map_single(vp->gendev, skb->data,
2164 					  skb_headlen(skb), DMA_TO_DEVICE);
2165 		if (dma_mapping_error(vp->gendev, dma_addr))
2166 			goto out_dma_err;
2167 
2168 		vp->tx_ring[entry].frag[0].addr = cpu_to_le32(dma_addr);
2169 		vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb_headlen(skb));
2170 
2171 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2172 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2173 
2174 			dma_addr = skb_frag_dma_map(vp->gendev, frag,
2175 						    0,
2176 						    skb_frag_size(frag),
2177 						    DMA_TO_DEVICE);
2178 			if (dma_mapping_error(vp->gendev, dma_addr)) {
2179 				for(i = i-1; i >= 0; i--)
2180 					dma_unmap_page(vp->gendev,
2181 						       le32_to_cpu(vp->tx_ring[entry].frag[i+1].addr),
2182 						       le32_to_cpu(vp->tx_ring[entry].frag[i+1].length),
2183 						       DMA_TO_DEVICE);
2184 
2185 				dma_unmap_single(vp->gendev,
2186 						 le32_to_cpu(vp->tx_ring[entry].frag[0].addr),
2187 						 le32_to_cpu(vp->tx_ring[entry].frag[0].length),
2188 						 DMA_TO_DEVICE);
2189 
2190 				goto out_dma_err;
2191 			}
2192 
2193 			vp->tx_ring[entry].frag[i+1].addr =
2194 						cpu_to_le32(dma_addr);
2195 
2196 			if (i == skb_shinfo(skb)->nr_frags-1)
2197 					vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag)|LAST_FRAG);
2198 			else
2199 					vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag));
2200 		}
2201 	}
2202 #else
2203 	dma_addr = dma_map_single(vp->gendev, skb->data, skb->len, DMA_TO_DEVICE);
2204 	if (dma_mapping_error(vp->gendev, dma_addr))
2205 		goto out_dma_err;
2206 	vp->tx_ring[entry].addr = cpu_to_le32(dma_addr);
2207 	vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG);
2208 	vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2209 #endif
2210 
2211 	spin_lock_irqsave(&vp->lock, flags);
2212 	/* Wait for the stall to complete. */
2213 	issue_and_wait(dev, DownStall);
2214 	prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc));
2215 	if (ioread32(ioaddr + DownListPtr) == 0) {
2216 		iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr);
2217 		vp->queued_packet++;
2218 	}
2219 
2220 	vp->cur_tx++;
2221 	netdev_sent_queue(dev, skblen);
2222 
2223 	if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) {
2224 		netif_stop_queue (dev);
2225 	} else {					/* Clear previous interrupt enable. */
2226 #if defined(tx_interrupt_mitigation)
2227 		/* Dubious. If in boomeang_interrupt "faster" cyclone ifdef
2228 		 * were selected, this would corrupt DN_COMPLETE. No?
2229 		 */
2230 		prev_entry->status &= cpu_to_le32(~TxIntrUploaded);
2231 #endif
2232 	}
2233 	skb_tx_timestamp(skb);
2234 	iowrite16(DownUnstall, ioaddr + EL3_CMD);
2235 	spin_unlock_irqrestore(&vp->lock, flags);
2236 out:
2237 	return NETDEV_TX_OK;
2238 out_dma_err:
2239 	dev_err(vp->gendev, "Error mapping dma buffer\n");
2240 	goto out;
2241 }
2242 
2243 /* The interrupt handler does all of the Rx thread work and cleans up
2244    after the Tx thread. */
2245 
2246 /*
2247  * This is the ISR for the vortex series chips.
2248  * full_bus_master_tx == 0 && full_bus_master_rx == 0
2249  */
2250 
2251 static irqreturn_t
2252 _vortex_interrupt(int irq, struct net_device *dev)
2253 {
2254 	struct vortex_private *vp = netdev_priv(dev);
2255 	void __iomem *ioaddr;
2256 	int status;
2257 	int work_done = max_interrupt_work;
2258 	int handled = 0;
2259 	unsigned int bytes_compl = 0, pkts_compl = 0;
2260 
2261 	ioaddr = vp->ioaddr;
2262 
2263 	status = ioread16(ioaddr + EL3_STATUS);
2264 
2265 	if (vortex_debug > 6)
2266 		pr_debug("vortex_interrupt(). status=0x%4x\n", status);
2267 
2268 	if ((status & IntLatch) == 0)
2269 		goto handler_exit;		/* No interrupt: shared IRQs cause this */
2270 	handled = 1;
2271 
2272 	if (status & IntReq) {
2273 		status |= vp->deferred;
2274 		vp->deferred = 0;
2275 	}
2276 
2277 	if (status == 0xffff)		/* h/w no longer present (hotplug)? */
2278 		goto handler_exit;
2279 
2280 	if (vortex_debug > 4)
2281 		pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2282 			   dev->name, status, ioread8(ioaddr + Timer));
2283 
2284 	spin_lock(&vp->window_lock);
2285 	window_set(vp, 7);
2286 
2287 	do {
2288 		if (vortex_debug > 5)
2289 				pr_debug("%s: In interrupt loop, status %4.4x.\n",
2290 					   dev->name, status);
2291 		if (status & RxComplete)
2292 			vortex_rx(dev);
2293 
2294 		if (status & TxAvailable) {
2295 			if (vortex_debug > 5)
2296 				pr_debug("	TX room bit was handled.\n");
2297 			/* There's room in the FIFO for a full-sized packet. */
2298 			iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD);
2299 			netif_wake_queue (dev);
2300 		}
2301 
2302 		if (status & DMADone) {
2303 			if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) {
2304 				iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
2305 				dma_unmap_single(vp->gendev, vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, DMA_TO_DEVICE);
2306 				pkts_compl++;
2307 				bytes_compl += vp->tx_skb->len;
2308 				dev_consume_skb_irq(vp->tx_skb); /* Release the transferred buffer */
2309 				if (ioread16(ioaddr + TxFree) > 1536) {
2310 					/*
2311 					 * AKPM: FIXME: I don't think we need this.  If the queue was stopped due to
2312 					 * insufficient FIFO room, the TxAvailable test will succeed and call
2313 					 * netif_wake_queue()
2314 					 */
2315 					netif_wake_queue(dev);
2316 				} else { /* Interrupt when FIFO has room for max-sized packet. */
2317 					iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2318 					netif_stop_queue(dev);
2319 				}
2320 			}
2321 		}
2322 		/* Check for all uncommon interrupts at once. */
2323 		if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) {
2324 			if (status == 0xffff)
2325 				break;
2326 			if (status & RxEarly)
2327 				vortex_rx(dev);
2328 			spin_unlock(&vp->window_lock);
2329 			vortex_error(dev, status);
2330 			spin_lock(&vp->window_lock);
2331 			window_set(vp, 7);
2332 		}
2333 
2334 		if (--work_done < 0) {
2335 			pr_warn("%s: Too much work in interrupt, status %4.4x\n",
2336 				dev->name, status);
2337 			/* Disable all pending interrupts. */
2338 			do {
2339 				vp->deferred |= status;
2340 				iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2341 					 ioaddr + EL3_CMD);
2342 				iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2343 			} while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2344 			/* The timer will reenable interrupts. */
2345 			mod_timer(&vp->timer, jiffies + 1*HZ);
2346 			break;
2347 		}
2348 		/* Acknowledge the IRQ. */
2349 		iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2350 	} while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
2351 
2352 	netdev_completed_queue(dev, pkts_compl, bytes_compl);
2353 	spin_unlock(&vp->window_lock);
2354 
2355 	if (vortex_debug > 4)
2356 		pr_debug("%s: exiting interrupt, status %4.4x.\n",
2357 			   dev->name, status);
2358 handler_exit:
2359 	return IRQ_RETVAL(handled);
2360 }
2361 
2362 /*
2363  * This is the ISR for the boomerang series chips.
2364  * full_bus_master_tx == 1 && full_bus_master_rx == 1
2365  */
2366 
2367 static irqreturn_t
2368 _boomerang_interrupt(int irq, struct net_device *dev)
2369 {
2370 	struct vortex_private *vp = netdev_priv(dev);
2371 	void __iomem *ioaddr;
2372 	int status;
2373 	int work_done = max_interrupt_work;
2374 	int handled = 0;
2375 	unsigned int bytes_compl = 0, pkts_compl = 0;
2376 
2377 	ioaddr = vp->ioaddr;
2378 
2379 	vp->handling_irq = 1;
2380 
2381 	status = ioread16(ioaddr + EL3_STATUS);
2382 
2383 	if (vortex_debug > 6)
2384 		pr_debug("boomerang_interrupt. status=0x%4x\n", status);
2385 
2386 	if ((status & IntLatch) == 0)
2387 		goto handler_exit;		/* No interrupt: shared IRQs can cause this */
2388 	handled = 1;
2389 
2390 	if (status == 0xffff) {		/* h/w no longer present (hotplug)? */
2391 		if (vortex_debug > 1)
2392 			pr_debug("boomerang_interrupt(1): status = 0xffff\n");
2393 		goto handler_exit;
2394 	}
2395 
2396 	if (status & IntReq) {
2397 		status |= vp->deferred;
2398 		vp->deferred = 0;
2399 	}
2400 
2401 	if (vortex_debug > 4)
2402 		pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2403 			   dev->name, status, ioread8(ioaddr + Timer));
2404 	do {
2405 		if (vortex_debug > 5)
2406 				pr_debug("%s: In interrupt loop, status %4.4x.\n",
2407 					   dev->name, status);
2408 		if (status & UpComplete) {
2409 			iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD);
2410 			if (vortex_debug > 5)
2411 				pr_debug("boomerang_interrupt->boomerang_rx\n");
2412 			boomerang_rx(dev);
2413 		}
2414 
2415 		if (status & DownComplete) {
2416 			unsigned int dirty_tx = vp->dirty_tx;
2417 
2418 			iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD);
2419 			while (vp->cur_tx - dirty_tx > 0) {
2420 				int entry = dirty_tx % TX_RING_SIZE;
2421 #if 1	/* AKPM: the latter is faster, but cyclone-only */
2422 				if (ioread32(ioaddr + DownListPtr) ==
2423 					vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc))
2424 					break;			/* It still hasn't been processed. */
2425 #else
2426 				if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0)
2427 					break;			/* It still hasn't been processed. */
2428 #endif
2429 
2430 				if (vp->tx_skbuff[entry]) {
2431 					struct sk_buff *skb = vp->tx_skbuff[entry];
2432 #if DO_ZEROCOPY
2433 					int i;
2434 					dma_unmap_single(vp->gendev,
2435 							le32_to_cpu(vp->tx_ring[entry].frag[0].addr),
2436 							le32_to_cpu(vp->tx_ring[entry].frag[0].length)&0xFFF,
2437 							DMA_TO_DEVICE);
2438 
2439 					for (i=1; i<=skb_shinfo(skb)->nr_frags; i++)
2440 							dma_unmap_page(vp->gendev,
2441 											 le32_to_cpu(vp->tx_ring[entry].frag[i].addr),
2442 											 le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF,
2443 											 DMA_TO_DEVICE);
2444 #else
2445 					dma_unmap_single(vp->gendev,
2446 						le32_to_cpu(vp->tx_ring[entry].addr), skb->len, DMA_TO_DEVICE);
2447 #endif
2448 					pkts_compl++;
2449 					bytes_compl += skb->len;
2450 					dev_consume_skb_irq(skb);
2451 					vp->tx_skbuff[entry] = NULL;
2452 				} else {
2453 					pr_debug("boomerang_interrupt: no skb!\n");
2454 				}
2455 				/* dev->stats.tx_packets++;  Counted below. */
2456 				dirty_tx++;
2457 			}
2458 			vp->dirty_tx = dirty_tx;
2459 			if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) {
2460 				if (vortex_debug > 6)
2461 					pr_debug("boomerang_interrupt: wake queue\n");
2462 				netif_wake_queue (dev);
2463 			}
2464 		}
2465 
2466 		/* Check for all uncommon interrupts at once. */
2467 		if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq))
2468 			vortex_error(dev, status);
2469 
2470 		if (--work_done < 0) {
2471 			pr_warn("%s: Too much work in interrupt, status %4.4x\n",
2472 				dev->name, status);
2473 			/* Disable all pending interrupts. */
2474 			do {
2475 				vp->deferred |= status;
2476 				iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2477 					 ioaddr + EL3_CMD);
2478 				iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2479 			} while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2480 			/* The timer will reenable interrupts. */
2481 			mod_timer(&vp->timer, jiffies + 1*HZ);
2482 			break;
2483 		}
2484 		/* Acknowledge the IRQ. */
2485 		iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2486 		if (vp->cb_fn_base)			/* The PCMCIA people are idiots.  */
2487 			iowrite32(0x8000, vp->cb_fn_base + 4);
2488 
2489 	} while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch);
2490 	netdev_completed_queue(dev, pkts_compl, bytes_compl);
2491 
2492 	if (vortex_debug > 4)
2493 		pr_debug("%s: exiting interrupt, status %4.4x.\n",
2494 			   dev->name, status);
2495 handler_exit:
2496 	vp->handling_irq = 0;
2497 	return IRQ_RETVAL(handled);
2498 }
2499 
2500 static irqreturn_t
2501 vortex_boomerang_interrupt(int irq, void *dev_id)
2502 {
2503 	struct net_device *dev = dev_id;
2504 	struct vortex_private *vp = netdev_priv(dev);
2505 	unsigned long flags;
2506 	irqreturn_t ret;
2507 
2508 	spin_lock_irqsave(&vp->lock, flags);
2509 
2510 	if (vp->full_bus_master_rx)
2511 		ret = _boomerang_interrupt(dev->irq, dev);
2512 	else
2513 		ret = _vortex_interrupt(dev->irq, dev);
2514 
2515 	spin_unlock_irqrestore(&vp->lock, flags);
2516 
2517 	return ret;
2518 }
2519 
2520 static int vortex_rx(struct net_device *dev)
2521 {
2522 	struct vortex_private *vp = netdev_priv(dev);
2523 	void __iomem *ioaddr = vp->ioaddr;
2524 	int i;
2525 	short rx_status;
2526 
2527 	if (vortex_debug > 5)
2528 		pr_debug("vortex_rx(): status %4.4x, rx_status %4.4x.\n",
2529 			   ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus));
2530 	while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) {
2531 		if (rx_status & 0x4000) { /* Error, update stats. */
2532 			unsigned char rx_error = ioread8(ioaddr + RxErrors);
2533 			if (vortex_debug > 2)
2534 				pr_debug(" Rx error: status %2.2x.\n", rx_error);
2535 			dev->stats.rx_errors++;
2536 			if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2537 			if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2538 			if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2539 			if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2540 			if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2541 		} else {
2542 			/* The packet length: up to 4.5K!. */
2543 			int pkt_len = rx_status & 0x1fff;
2544 			struct sk_buff *skb;
2545 
2546 			skb = netdev_alloc_skb(dev, pkt_len + 5);
2547 			if (vortex_debug > 4)
2548 				pr_debug("Receiving packet size %d status %4.4x.\n",
2549 					   pkt_len, rx_status);
2550 			if (skb != NULL) {
2551 				skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
2552 				/* 'skb_put()' points to the start of sk_buff data area. */
2553 				if (vp->bus_master &&
2554 					! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) {
2555 					dma_addr_t dma = dma_map_single(vp->gendev, skb_put(skb, pkt_len),
2556 									   pkt_len, DMA_FROM_DEVICE);
2557 					iowrite32(dma, ioaddr + Wn7_MasterAddr);
2558 					iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
2559 					iowrite16(StartDMAUp, ioaddr + EL3_CMD);
2560 					while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)
2561 						;
2562 					dma_unmap_single(vp->gendev, dma, pkt_len, DMA_FROM_DEVICE);
2563 				} else {
2564 					ioread32_rep(ioaddr + RX_FIFO,
2565 					             skb_put(skb, pkt_len),
2566 						     (pkt_len + 3) >> 2);
2567 				}
2568 				iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
2569 				skb->protocol = eth_type_trans(skb, dev);
2570 				netif_rx(skb);
2571 				dev->stats.rx_packets++;
2572 				/* Wait a limited time to go to next packet. */
2573 				for (i = 200; i >= 0; i--)
2574 					if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
2575 						break;
2576 				continue;
2577 			} else if (vortex_debug > 0)
2578 				pr_notice("%s: No memory to allocate a sk_buff of size %d.\n",
2579 					dev->name, pkt_len);
2580 			dev->stats.rx_dropped++;
2581 		}
2582 		issue_and_wait(dev, RxDiscard);
2583 	}
2584 
2585 	return 0;
2586 }
2587 
2588 static int
2589 boomerang_rx(struct net_device *dev)
2590 {
2591 	struct vortex_private *vp = netdev_priv(dev);
2592 	int entry = vp->cur_rx % RX_RING_SIZE;
2593 	void __iomem *ioaddr = vp->ioaddr;
2594 	int rx_status;
2595 	int rx_work_limit = RX_RING_SIZE;
2596 
2597 	if (vortex_debug > 5)
2598 		pr_debug("boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS));
2599 
2600 	while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){
2601 		if (--rx_work_limit < 0)
2602 			break;
2603 		if (rx_status & RxDError) { /* Error, update stats. */
2604 			unsigned char rx_error = rx_status >> 16;
2605 			if (vortex_debug > 2)
2606 				pr_debug(" Rx error: status %2.2x.\n", rx_error);
2607 			dev->stats.rx_errors++;
2608 			if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2609 			if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2610 			if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2611 			if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2612 			if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2613 		} else {
2614 			/* The packet length: up to 4.5K!. */
2615 			int pkt_len = rx_status & 0x1fff;
2616 			struct sk_buff *skb, *newskb;
2617 			dma_addr_t newdma;
2618 			dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr);
2619 
2620 			if (vortex_debug > 4)
2621 				pr_debug("Receiving packet size %d status %4.4x.\n",
2622 					   pkt_len, rx_status);
2623 
2624 			/* Check if the packet is long enough to just accept without
2625 			   copying to a properly sized skbuff. */
2626 			if (pkt_len < rx_copybreak &&
2627 			    (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
2628 				skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
2629 				dma_sync_single_for_cpu(vp->gendev, dma, PKT_BUF_SZ, DMA_FROM_DEVICE);
2630 				/* 'skb_put()' points to the start of sk_buff data area. */
2631 				skb_put_data(skb, vp->rx_skbuff[entry]->data,
2632 					     pkt_len);
2633 				dma_sync_single_for_device(vp->gendev, dma, PKT_BUF_SZ, DMA_FROM_DEVICE);
2634 				vp->rx_copy++;
2635 			} else {
2636 				/* Pre-allocate the replacement skb.  If it or its
2637 				 * mapping fails then recycle the buffer thats already
2638 				 * in place
2639 				 */
2640 				newskb = netdev_alloc_skb_ip_align(dev, PKT_BUF_SZ);
2641 				if (!newskb) {
2642 					dev->stats.rx_dropped++;
2643 					goto clear_complete;
2644 				}
2645 				newdma = dma_map_single(vp->gendev, newskb->data,
2646 							PKT_BUF_SZ, DMA_FROM_DEVICE);
2647 				if (dma_mapping_error(vp->gendev, newdma)) {
2648 					dev->stats.rx_dropped++;
2649 					consume_skb(newskb);
2650 					goto clear_complete;
2651 				}
2652 
2653 				/* Pass up the skbuff already on the Rx ring. */
2654 				skb = vp->rx_skbuff[entry];
2655 				vp->rx_skbuff[entry] = newskb;
2656 				vp->rx_ring[entry].addr = cpu_to_le32(newdma);
2657 				skb_put(skb, pkt_len);
2658 				dma_unmap_single(vp->gendev, dma, PKT_BUF_SZ, DMA_FROM_DEVICE);
2659 				vp->rx_nocopy++;
2660 			}
2661 			skb->protocol = eth_type_trans(skb, dev);
2662 			{					/* Use hardware checksum info. */
2663 				int csum_bits = rx_status & 0xee000000;
2664 				if (csum_bits &&
2665 					(csum_bits == (IPChksumValid | TCPChksumValid) ||
2666 					 csum_bits == (IPChksumValid | UDPChksumValid))) {
2667 					skb->ip_summed = CHECKSUM_UNNECESSARY;
2668 					vp->rx_csumhits++;
2669 				}
2670 			}
2671 			netif_rx(skb);
2672 			dev->stats.rx_packets++;
2673 		}
2674 
2675 clear_complete:
2676 		vp->rx_ring[entry].status = 0;	/* Clear complete bit. */
2677 		iowrite16(UpUnstall, ioaddr + EL3_CMD);
2678 		entry = (++vp->cur_rx) % RX_RING_SIZE;
2679 	}
2680 	return 0;
2681 }
2682 
2683 static void
2684 vortex_down(struct net_device *dev, int final_down)
2685 {
2686 	struct vortex_private *vp = netdev_priv(dev);
2687 	void __iomem *ioaddr = vp->ioaddr;
2688 
2689 	netdev_reset_queue(dev);
2690 	netif_stop_queue(dev);
2691 
2692 	del_timer_sync(&vp->timer);
2693 
2694 	/* Turn off statistics ASAP.  We update dev->stats below. */
2695 	iowrite16(StatsDisable, ioaddr + EL3_CMD);
2696 
2697 	/* Disable the receiver and transmitter. */
2698 	iowrite16(RxDisable, ioaddr + EL3_CMD);
2699 	iowrite16(TxDisable, ioaddr + EL3_CMD);
2700 
2701 	/* Disable receiving 802.1q tagged frames */
2702 	set_8021q_mode(dev, 0);
2703 
2704 	if (dev->if_port == XCVR_10base2)
2705 		/* Turn off thinnet power.  Green! */
2706 		iowrite16(StopCoax, ioaddr + EL3_CMD);
2707 
2708 	iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
2709 
2710 	update_stats(ioaddr, dev);
2711 	if (vp->full_bus_master_rx)
2712 		iowrite32(0, ioaddr + UpListPtr);
2713 	if (vp->full_bus_master_tx)
2714 		iowrite32(0, ioaddr + DownListPtr);
2715 
2716 	if (final_down && VORTEX_PCI(vp)) {
2717 		vp->pm_state_valid = 1;
2718 		pci_save_state(VORTEX_PCI(vp));
2719 		acpi_set_WOL(dev);
2720 	}
2721 }
2722 
2723 static int
2724 vortex_close(struct net_device *dev)
2725 {
2726 	struct vortex_private *vp = netdev_priv(dev);
2727 	void __iomem *ioaddr = vp->ioaddr;
2728 	int i;
2729 
2730 	if (netif_device_present(dev))
2731 		vortex_down(dev, 1);
2732 
2733 	if (vortex_debug > 1) {
2734 		pr_debug("%s: vortex_close() status %4.4x, Tx status %2.2x.\n",
2735 			   dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus));
2736 		pr_debug("%s: vortex close stats: rx_nocopy %d rx_copy %d"
2737 			   " tx_queued %d Rx pre-checksummed %d.\n",
2738 			   dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits);
2739 	}
2740 
2741 #if DO_ZEROCOPY
2742 	if (vp->rx_csumhits &&
2743 	    (vp->drv_flags & HAS_HWCKSM) == 0 &&
2744 	    (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) {
2745 		pr_warn("%s supports hardware checksums, and we're not using them!\n",
2746 			dev->name);
2747 	}
2748 #endif
2749 
2750 	free_irq(dev->irq, dev);
2751 
2752 	if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
2753 		for (i = 0; i < RX_RING_SIZE; i++)
2754 			if (vp->rx_skbuff[i]) {
2755 				dma_unmap_single(vp->gendev, le32_to_cpu(vp->rx_ring[i].addr),
2756 									PKT_BUF_SZ, DMA_FROM_DEVICE);
2757 				dev_kfree_skb(vp->rx_skbuff[i]);
2758 				vp->rx_skbuff[i] = NULL;
2759 			}
2760 	}
2761 	if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
2762 		for (i = 0; i < TX_RING_SIZE; i++) {
2763 			if (vp->tx_skbuff[i]) {
2764 				struct sk_buff *skb = vp->tx_skbuff[i];
2765 #if DO_ZEROCOPY
2766 				int k;
2767 
2768 				for (k=0; k<=skb_shinfo(skb)->nr_frags; k++)
2769 						dma_unmap_single(vp->gendev,
2770 										 le32_to_cpu(vp->tx_ring[i].frag[k].addr),
2771 										 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF,
2772 										 DMA_TO_DEVICE);
2773 #else
2774 				dma_unmap_single(vp->gendev, le32_to_cpu(vp->tx_ring[i].addr), skb->len, DMA_TO_DEVICE);
2775 #endif
2776 				dev_kfree_skb(skb);
2777 				vp->tx_skbuff[i] = NULL;
2778 			}
2779 		}
2780 	}
2781 
2782 	return 0;
2783 }
2784 
2785 static void
2786 dump_tx_ring(struct net_device *dev)
2787 {
2788 	if (vortex_debug > 0) {
2789 	struct vortex_private *vp = netdev_priv(dev);
2790 		void __iomem *ioaddr = vp->ioaddr;
2791 
2792 		if (vp->full_bus_master_tx) {
2793 			int i;
2794 			int stalled = ioread32(ioaddr + PktStatus) & 0x04;	/* Possible racy. But it's only debug stuff */
2795 
2796 			pr_err("  Flags; bus-master %d, dirty %d(%d) current %d(%d)\n",
2797 					vp->full_bus_master_tx,
2798 					vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE,
2799 					vp->cur_tx, vp->cur_tx % TX_RING_SIZE);
2800 			pr_err("  Transmit list %8.8x vs. %p.\n",
2801 				   ioread32(ioaddr + DownListPtr),
2802 				   &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]);
2803 			issue_and_wait(dev, DownStall);
2804 			for (i = 0; i < TX_RING_SIZE; i++) {
2805 				unsigned int length;
2806 
2807 #if DO_ZEROCOPY
2808 				length = le32_to_cpu(vp->tx_ring[i].frag[0].length);
2809 #else
2810 				length = le32_to_cpu(vp->tx_ring[i].length);
2811 #endif
2812 				pr_err("  %d: @%p  length %8.8x status %8.8x\n",
2813 					   i, &vp->tx_ring[i], length,
2814 					   le32_to_cpu(vp->tx_ring[i].status));
2815 			}
2816 			if (!stalled)
2817 				iowrite16(DownUnstall, ioaddr + EL3_CMD);
2818 		}
2819 	}
2820 }
2821 
2822 static struct net_device_stats *vortex_get_stats(struct net_device *dev)
2823 {
2824 	struct vortex_private *vp = netdev_priv(dev);
2825 	void __iomem *ioaddr = vp->ioaddr;
2826 	unsigned long flags;
2827 
2828 	if (netif_device_present(dev)) {	/* AKPM: Used to be netif_running */
2829 		spin_lock_irqsave (&vp->lock, flags);
2830 		update_stats(ioaddr, dev);
2831 		spin_unlock_irqrestore (&vp->lock, flags);
2832 	}
2833 	return &dev->stats;
2834 }
2835 
2836 /*  Update statistics.
2837 	Unlike with the EL3 we need not worry about interrupts changing
2838 	the window setting from underneath us, but we must still guard
2839 	against a race condition with a StatsUpdate interrupt updating the
2840 	table.  This is done by checking that the ASM (!) code generated uses
2841 	atomic updates with '+='.
2842 	*/
2843 static void update_stats(void __iomem *ioaddr, struct net_device *dev)
2844 {
2845 	struct vortex_private *vp = netdev_priv(dev);
2846 
2847 	/* Unlike the 3c5x9 we need not turn off stats updates while reading. */
2848 	/* Switch to the stats window, and read everything. */
2849 	dev->stats.tx_carrier_errors		+= window_read8(vp, 6, 0);
2850 	dev->stats.tx_heartbeat_errors		+= window_read8(vp, 6, 1);
2851 	dev->stats.tx_window_errors		+= window_read8(vp, 6, 4);
2852 	dev->stats.rx_fifo_errors		+= window_read8(vp, 6, 5);
2853 	dev->stats.tx_packets			+= window_read8(vp, 6, 6);
2854 	dev->stats.tx_packets			+= (window_read8(vp, 6, 9) &
2855 						    0x30) << 4;
2856 	/* Rx packets	*/			window_read8(vp, 6, 7);   /* Must read to clear */
2857 	/* Don't bother with register 9, an extension of registers 6&7.
2858 	   If we do use the 6&7 values the atomic update assumption above
2859 	   is invalid. */
2860 	dev->stats.rx_bytes 			+= window_read16(vp, 6, 10);
2861 	dev->stats.tx_bytes 			+= window_read16(vp, 6, 12);
2862 	/* Extra stats for get_ethtool_stats() */
2863 	vp->xstats.tx_multiple_collisions	+= window_read8(vp, 6, 2);
2864 	vp->xstats.tx_single_collisions         += window_read8(vp, 6, 3);
2865 	vp->xstats.tx_deferred			+= window_read8(vp, 6, 8);
2866 	vp->xstats.rx_bad_ssd			+= window_read8(vp, 4, 12);
2867 
2868 	dev->stats.collisions = vp->xstats.tx_multiple_collisions
2869 		+ vp->xstats.tx_single_collisions
2870 		+ vp->xstats.tx_max_collisions;
2871 
2872 	{
2873 		u8 up = window_read8(vp, 4, 13);
2874 		dev->stats.rx_bytes += (up & 0x0f) << 16;
2875 		dev->stats.tx_bytes += (up & 0xf0) << 12;
2876 	}
2877 }
2878 
2879 static int vortex_nway_reset(struct net_device *dev)
2880 {
2881 	struct vortex_private *vp = netdev_priv(dev);
2882 
2883 	return mii_nway_restart(&vp->mii);
2884 }
2885 
2886 static int vortex_get_link_ksettings(struct net_device *dev,
2887 				     struct ethtool_link_ksettings *cmd)
2888 {
2889 	struct vortex_private *vp = netdev_priv(dev);
2890 
2891 	mii_ethtool_get_link_ksettings(&vp->mii, cmd);
2892 
2893 	return 0;
2894 }
2895 
2896 static int vortex_set_link_ksettings(struct net_device *dev,
2897 				     const struct ethtool_link_ksettings *cmd)
2898 {
2899 	struct vortex_private *vp = netdev_priv(dev);
2900 
2901 	return mii_ethtool_set_link_ksettings(&vp->mii, cmd);
2902 }
2903 
2904 static u32 vortex_get_msglevel(struct net_device *dev)
2905 {
2906 	return vortex_debug;
2907 }
2908 
2909 static void vortex_set_msglevel(struct net_device *dev, u32 dbg)
2910 {
2911 	vortex_debug = dbg;
2912 }
2913 
2914 static int vortex_get_sset_count(struct net_device *dev, int sset)
2915 {
2916 	switch (sset) {
2917 	case ETH_SS_STATS:
2918 		return VORTEX_NUM_STATS;
2919 	default:
2920 		return -EOPNOTSUPP;
2921 	}
2922 }
2923 
2924 static void vortex_get_ethtool_stats(struct net_device *dev,
2925 	struct ethtool_stats *stats, u64 *data)
2926 {
2927 	struct vortex_private *vp = netdev_priv(dev);
2928 	void __iomem *ioaddr = vp->ioaddr;
2929 	unsigned long flags;
2930 
2931 	spin_lock_irqsave(&vp->lock, flags);
2932 	update_stats(ioaddr, dev);
2933 	spin_unlock_irqrestore(&vp->lock, flags);
2934 
2935 	data[0] = vp->xstats.tx_deferred;
2936 	data[1] = vp->xstats.tx_max_collisions;
2937 	data[2] = vp->xstats.tx_multiple_collisions;
2938 	data[3] = vp->xstats.tx_single_collisions;
2939 	data[4] = vp->xstats.rx_bad_ssd;
2940 }
2941 
2942 
2943 static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2944 {
2945 	switch (stringset) {
2946 	case ETH_SS_STATS:
2947 		memcpy(data, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
2948 		break;
2949 	default:
2950 		WARN_ON(1);
2951 		break;
2952 	}
2953 }
2954 
2955 static void vortex_get_drvinfo(struct net_device *dev,
2956 					struct ethtool_drvinfo *info)
2957 {
2958 	struct vortex_private *vp = netdev_priv(dev);
2959 
2960 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2961 	if (VORTEX_PCI(vp)) {
2962 		strlcpy(info->bus_info, pci_name(VORTEX_PCI(vp)),
2963 			sizeof(info->bus_info));
2964 	} else {
2965 		if (VORTEX_EISA(vp))
2966 			strlcpy(info->bus_info, dev_name(vp->gendev),
2967 				sizeof(info->bus_info));
2968 		else
2969 			snprintf(info->bus_info, sizeof(info->bus_info),
2970 				"EISA 0x%lx %d", dev->base_addr, dev->irq);
2971 	}
2972 }
2973 
2974 static void vortex_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2975 {
2976 	struct vortex_private *vp = netdev_priv(dev);
2977 
2978 	if (!VORTEX_PCI(vp))
2979 		return;
2980 
2981 	wol->supported = WAKE_MAGIC;
2982 
2983 	wol->wolopts = 0;
2984 	if (vp->enable_wol)
2985 		wol->wolopts |= WAKE_MAGIC;
2986 }
2987 
2988 static int vortex_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2989 {
2990 	struct vortex_private *vp = netdev_priv(dev);
2991 
2992 	if (!VORTEX_PCI(vp))
2993 		return -EOPNOTSUPP;
2994 
2995 	if (wol->wolopts & ~WAKE_MAGIC)
2996 		return -EINVAL;
2997 
2998 	if (wol->wolopts & WAKE_MAGIC)
2999 		vp->enable_wol = 1;
3000 	else
3001 		vp->enable_wol = 0;
3002 	acpi_set_WOL(dev);
3003 
3004 	return 0;
3005 }
3006 
3007 static const struct ethtool_ops vortex_ethtool_ops = {
3008 	.get_drvinfo		= vortex_get_drvinfo,
3009 	.get_strings            = vortex_get_strings,
3010 	.get_msglevel           = vortex_get_msglevel,
3011 	.set_msglevel           = vortex_set_msglevel,
3012 	.get_ethtool_stats      = vortex_get_ethtool_stats,
3013 	.get_sset_count		= vortex_get_sset_count,
3014 	.get_link               = ethtool_op_get_link,
3015 	.nway_reset             = vortex_nway_reset,
3016 	.get_wol                = vortex_get_wol,
3017 	.set_wol                = vortex_set_wol,
3018 	.get_ts_info		= ethtool_op_get_ts_info,
3019 	.get_link_ksettings     = vortex_get_link_ksettings,
3020 	.set_link_ksettings     = vortex_set_link_ksettings,
3021 };
3022 
3023 #ifdef CONFIG_PCI
3024 /*
3025  *	Must power the device up to do MDIO operations
3026  */
3027 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3028 {
3029 	int err;
3030 	struct vortex_private *vp = netdev_priv(dev);
3031 	pci_power_t state = 0;
3032 
3033 	if(VORTEX_PCI(vp))
3034 		state = VORTEX_PCI(vp)->current_state;
3035 
3036 	/* The kernel core really should have pci_get_power_state() */
3037 
3038 	if(state != 0)
3039 		pci_set_power_state(VORTEX_PCI(vp), PCI_D0);
3040 	err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL);
3041 	if(state != 0)
3042 		pci_set_power_state(VORTEX_PCI(vp), state);
3043 
3044 	return err;
3045 }
3046 #endif
3047 
3048 
3049 /* Pre-Cyclone chips have no documented multicast filter, so the only
3050    multicast setting is to receive all multicast frames.  At least
3051    the chip has a very clean way to set the mode, unlike many others. */
3052 static void set_rx_mode(struct net_device *dev)
3053 {
3054 	struct vortex_private *vp = netdev_priv(dev);
3055 	void __iomem *ioaddr = vp->ioaddr;
3056 	int new_mode;
3057 
3058 	if (dev->flags & IFF_PROMISC) {
3059 		if (vortex_debug > 3)
3060 			pr_notice("%s: Setting promiscuous mode.\n", dev->name);
3061 		new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm;
3062 	} else	if (!netdev_mc_empty(dev) || dev->flags & IFF_ALLMULTI) {
3063 		new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast;
3064 	} else
3065 		new_mode = SetRxFilter | RxStation | RxBroadcast;
3066 
3067 	iowrite16(new_mode, ioaddr + EL3_CMD);
3068 }
3069 
3070 #if IS_ENABLED(CONFIG_VLAN_8021Q)
3071 /* Setup the card so that it can receive frames with an 802.1q VLAN tag.
3072    Note that this must be done after each RxReset due to some backwards
3073    compatibility logic in the Cyclone and Tornado ASICs */
3074 
3075 /* The Ethernet Type used for 802.1q tagged frames */
3076 #define VLAN_ETHER_TYPE 0x8100
3077 
3078 static void set_8021q_mode(struct net_device *dev, int enable)
3079 {
3080 	struct vortex_private *vp = netdev_priv(dev);
3081 	int mac_ctrl;
3082 
3083 	if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) {
3084 		/* cyclone and tornado chipsets can recognize 802.1q
3085 		 * tagged frames and treat them correctly */
3086 
3087 		int max_pkt_size = dev->mtu+14;	/* MTU+Ethernet header */
3088 		if (enable)
3089 			max_pkt_size += 4;	/* 802.1Q VLAN tag */
3090 
3091 		window_write16(vp, max_pkt_size, 3, Wn3_MaxPktSize);
3092 
3093 		/* set VlanEtherType to let the hardware checksumming
3094 		   treat tagged frames correctly */
3095 		window_write16(vp, VLAN_ETHER_TYPE, 7, Wn7_VlanEtherType);
3096 	} else {
3097 		/* on older cards we have to enable large frames */
3098 
3099 		vp->large_frames = dev->mtu > 1500 || enable;
3100 
3101 		mac_ctrl = window_read16(vp, 3, Wn3_MAC_Ctrl);
3102 		if (vp->large_frames)
3103 			mac_ctrl |= 0x40;
3104 		else
3105 			mac_ctrl &= ~0x40;
3106 		window_write16(vp, mac_ctrl, 3, Wn3_MAC_Ctrl);
3107 	}
3108 }
3109 #else
3110 
3111 static void set_8021q_mode(struct net_device *dev, int enable)
3112 {
3113 }
3114 
3115 
3116 #endif
3117 
3118 /* MII transceiver control section.
3119    Read and write the MII registers using software-generated serial
3120    MDIO protocol.  See the MII specifications or DP83840A data sheet
3121    for details. */
3122 
3123 /* The maximum data clock rate is 2.5 Mhz.  The minimum timing is usually
3124    met by back-to-back PCI I/O cycles, but we insert a delay to avoid
3125    "overclocking" issues. */
3126 static void mdio_delay(struct vortex_private *vp)
3127 {
3128 	window_read32(vp, 4, Wn4_PhysicalMgmt);
3129 }
3130 
3131 #define MDIO_SHIFT_CLK	0x01
3132 #define MDIO_DIR_WRITE	0x04
3133 #define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE)
3134 #define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE)
3135 #define MDIO_DATA_READ	0x02
3136 #define MDIO_ENB_IN		0x00
3137 
3138 /* Generate the preamble required for initial synchronization and
3139    a few older transceivers. */
3140 static void mdio_sync(struct vortex_private *vp, int bits)
3141 {
3142 	/* Establish sync by sending at least 32 logic ones. */
3143 	while (-- bits >= 0) {
3144 		window_write16(vp, MDIO_DATA_WRITE1, 4, Wn4_PhysicalMgmt);
3145 		mdio_delay(vp);
3146 		window_write16(vp, MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK,
3147 			       4, Wn4_PhysicalMgmt);
3148 		mdio_delay(vp);
3149 	}
3150 }
3151 
3152 static int mdio_read(struct net_device *dev, int phy_id, int location)
3153 {
3154 	int i;
3155 	struct vortex_private *vp = netdev_priv(dev);
3156 	int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
3157 	unsigned int retval = 0;
3158 
3159 	spin_lock_bh(&vp->mii_lock);
3160 
3161 	if (mii_preamble_required)
3162 		mdio_sync(vp, 32);
3163 
3164 	/* Shift the read command bits out. */
3165 	for (i = 14; i >= 0; i--) {
3166 		int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3167 		window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3168 		mdio_delay(vp);
3169 		window_write16(vp, dataval | MDIO_SHIFT_CLK,
3170 			       4, Wn4_PhysicalMgmt);
3171 		mdio_delay(vp);
3172 	}
3173 	/* Read the two transition, 16 data, and wire-idle bits. */
3174 	for (i = 19; i > 0; i--) {
3175 		window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3176 		mdio_delay(vp);
3177 		retval = (retval << 1) |
3178 			((window_read16(vp, 4, Wn4_PhysicalMgmt) &
3179 			  MDIO_DATA_READ) ? 1 : 0);
3180 		window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3181 			       4, Wn4_PhysicalMgmt);
3182 		mdio_delay(vp);
3183 	}
3184 
3185 	spin_unlock_bh(&vp->mii_lock);
3186 
3187 	return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff;
3188 }
3189 
3190 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
3191 {
3192 	struct vortex_private *vp = netdev_priv(dev);
3193 	int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value;
3194 	int i;
3195 
3196 	spin_lock_bh(&vp->mii_lock);
3197 
3198 	if (mii_preamble_required)
3199 		mdio_sync(vp, 32);
3200 
3201 	/* Shift the command bits out. */
3202 	for (i = 31; i >= 0; i--) {
3203 		int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3204 		window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3205 		mdio_delay(vp);
3206 		window_write16(vp, dataval | MDIO_SHIFT_CLK,
3207 			       4, Wn4_PhysicalMgmt);
3208 		mdio_delay(vp);
3209 	}
3210 	/* Leave the interface idle. */
3211 	for (i = 1; i >= 0; i--) {
3212 		window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3213 		mdio_delay(vp);
3214 		window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3215 			       4, Wn4_PhysicalMgmt);
3216 		mdio_delay(vp);
3217 	}
3218 
3219 	spin_unlock_bh(&vp->mii_lock);
3220 }
3221 
3222 /* ACPI: Advanced Configuration and Power Interface. */
3223 /* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */
3224 static void acpi_set_WOL(struct net_device *dev)
3225 {
3226 	struct vortex_private *vp = netdev_priv(dev);
3227 	void __iomem *ioaddr = vp->ioaddr;
3228 
3229 	device_set_wakeup_enable(vp->gendev, vp->enable_wol);
3230 
3231 	if (vp->enable_wol) {
3232 		/* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */
3233 		window_write16(vp, 2, 7, 0x0c);
3234 		/* The RxFilter must accept the WOL frames. */
3235 		iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD);
3236 		iowrite16(RxEnable, ioaddr + EL3_CMD);
3237 
3238 		if (pci_enable_wake(VORTEX_PCI(vp), PCI_D3hot, 1)) {
3239 			pr_info("%s: WOL not supported.\n", pci_name(VORTEX_PCI(vp)));
3240 
3241 			vp->enable_wol = 0;
3242 			return;
3243 		}
3244 
3245 		if (VORTEX_PCI(vp)->current_state < PCI_D3hot)
3246 			return;
3247 
3248 		/* Change the power state to D3; RxEnable doesn't take effect. */
3249 		pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot);
3250 	}
3251 }
3252 
3253 
3254 static void vortex_remove_one(struct pci_dev *pdev)
3255 {
3256 	struct net_device *dev = pci_get_drvdata(pdev);
3257 	struct vortex_private *vp;
3258 
3259 	if (!dev) {
3260 		pr_err("vortex_remove_one called for Compaq device!\n");
3261 		BUG();
3262 	}
3263 
3264 	vp = netdev_priv(dev);
3265 
3266 	if (vp->cb_fn_base)
3267 		pci_iounmap(pdev, vp->cb_fn_base);
3268 
3269 	unregister_netdev(dev);
3270 
3271 	pci_set_power_state(pdev, PCI_D0);	/* Go active */
3272 	if (vp->pm_state_valid)
3273 		pci_restore_state(pdev);
3274 	pci_disable_device(pdev);
3275 
3276 	/* Should really use issue_and_wait() here */
3277 	iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14),
3278 	     vp->ioaddr + EL3_CMD);
3279 
3280 	pci_iounmap(pdev, vp->ioaddr);
3281 
3282 	dma_free_coherent(&pdev->dev,
3283 			sizeof(struct boom_rx_desc) * RX_RING_SIZE +
3284 			sizeof(struct boom_tx_desc) * TX_RING_SIZE,
3285 			vp->rx_ring, vp->rx_ring_dma);
3286 
3287 	pci_release_regions(pdev);
3288 
3289 	free_netdev(dev);
3290 }
3291 
3292 
3293 static struct pci_driver vortex_driver = {
3294 	.name		= "3c59x",
3295 	.probe		= vortex_init_one,
3296 	.remove		= vortex_remove_one,
3297 	.id_table	= vortex_pci_tbl,
3298 	.driver.pm	= VORTEX_PM_OPS,
3299 };
3300 
3301 
3302 static int vortex_have_pci;
3303 static int vortex_have_eisa;
3304 
3305 
3306 static int __init vortex_init(void)
3307 {
3308 	int pci_rc, eisa_rc;
3309 
3310 	pci_rc = pci_register_driver(&vortex_driver);
3311 	eisa_rc = vortex_eisa_init();
3312 
3313 	if (pci_rc == 0)
3314 		vortex_have_pci = 1;
3315 	if (eisa_rc > 0)
3316 		vortex_have_eisa = 1;
3317 
3318 	return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV;
3319 }
3320 
3321 
3322 static void __exit vortex_eisa_cleanup(void)
3323 {
3324 	void __iomem *ioaddr;
3325 
3326 #ifdef CONFIG_EISA
3327 	/* Take care of the EISA devices */
3328 	eisa_driver_unregister(&vortex_eisa_driver);
3329 #endif
3330 
3331 	if (compaq_net_device) {
3332 		ioaddr = ioport_map(compaq_net_device->base_addr,
3333 		                    VORTEX_TOTAL_SIZE);
3334 
3335 		unregister_netdev(compaq_net_device);
3336 		iowrite16(TotalReset, ioaddr + EL3_CMD);
3337 		release_region(compaq_net_device->base_addr,
3338 		               VORTEX_TOTAL_SIZE);
3339 
3340 		free_netdev(compaq_net_device);
3341 	}
3342 }
3343 
3344 
3345 static void __exit vortex_cleanup(void)
3346 {
3347 	if (vortex_have_pci)
3348 		pci_unregister_driver(&vortex_driver);
3349 	if (vortex_have_eisa)
3350 		vortex_eisa_cleanup();
3351 }
3352 
3353 
3354 module_init(vortex_init);
3355 module_exit(vortex_cleanup);
3356