xref: /openbmc/linux/drivers/net/ethernet/3com/3c59x.c (revision 206e8c00752fbe9cc463184236ac64b2a532cda5)
1 /* EtherLinkXL.c: A 3Com EtherLink PCI III/XL ethernet driver for linux. */
2 /*
3 	Written 1996-1999 by Donald Becker.
4 
5 	This software may be used and distributed according to the terms
6 	of the GNU General Public License, incorporated herein by reference.
7 
8 	This driver is for the 3Com "Vortex" and "Boomerang" series ethercards.
9 	Members of the series include Fast EtherLink 3c590/3c592/3c595/3c597
10 	and the EtherLink XL 3c900 and 3c905 cards.
11 
12 	Problem reports and questions should be directed to
13 	vortex@scyld.com
14 
15 	The author may be reached as becker@scyld.com, or C/O
16 	Scyld Computing Corporation
17 	410 Severn Ave., Suite 210
18 	Annapolis MD 21403
19 
20 */
21 
22 /*
23  * FIXME: This driver _could_ support MTU changing, but doesn't.  See Don's hamachi.c implementation
24  * as well as other drivers
25  *
26  * NOTE: If you make 'vortex_debug' a constant (#define vortex_debug 0) the driver shrinks by 2k
27  * due to dead code elimination.  There will be some performance benefits from this due to
28  * elimination of all the tests and reduced cache footprint.
29  */
30 
31 
32 #define DRV_NAME	"3c59x"
33 
34 
35 
36 /* A few values that may be tweaked. */
37 /* Keep the ring sizes a power of two for efficiency. */
38 #define TX_RING_SIZE	16
39 #define RX_RING_SIZE	32
40 #define PKT_BUF_SZ		1536			/* Size of each temporary Rx buffer.*/
41 
42 /* "Knobs" that adjust features and parameters. */
43 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
44    Setting to > 1512 effectively disables this feature. */
45 #ifndef __arm__
46 static int rx_copybreak = 200;
47 #else
48 /* ARM systems perform better by disregarding the bus-master
49    transfer capability of these cards. -- rmk */
50 static int rx_copybreak = 1513;
51 #endif
52 /* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
53 static const int mtu = 1500;
54 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
55 static int max_interrupt_work = 32;
56 /* Tx timeout interval (millisecs) */
57 static int watchdog = 5000;
58 
59 /* Allow aggregation of Tx interrupts.  Saves CPU load at the cost
60  * of possible Tx stalls if the system is blocking interrupts
61  * somewhere else.  Undefine this to disable.
62  */
63 #define tx_interrupt_mitigation 1
64 
65 /* Put out somewhat more debugging messages. (0: no msg, 1 minimal .. 6). */
66 #define vortex_debug debug
67 #ifdef VORTEX_DEBUG
68 static int vortex_debug = VORTEX_DEBUG;
69 #else
70 static int vortex_debug = 1;
71 #endif
72 
73 #include <linux/module.h>
74 #include <linux/kernel.h>
75 #include <linux/string.h>
76 #include <linux/timer.h>
77 #include <linux/errno.h>
78 #include <linux/in.h>
79 #include <linux/ioport.h>
80 #include <linux/interrupt.h>
81 #include <linux/pci.h>
82 #include <linux/mii.h>
83 #include <linux/init.h>
84 #include <linux/netdevice.h>
85 #include <linux/etherdevice.h>
86 #include <linux/skbuff.h>
87 #include <linux/ethtool.h>
88 #include <linux/highmem.h>
89 #include <linux/eisa.h>
90 #include <linux/bitops.h>
91 #include <linux/jiffies.h>
92 #include <linux/gfp.h>
93 #include <asm/irq.h>			/* For nr_irqs only. */
94 #include <asm/io.h>
95 #include <asm/uaccess.h>
96 
97 /* Kernel compatibility defines, some common to David Hinds' PCMCIA package.
98    This is only in the support-all-kernels source code. */
99 
100 #define RUN_AT(x) (jiffies + (x))
101 
102 #include <linux/delay.h>
103 
104 
105 static const char version[] =
106 	DRV_NAME ": Donald Becker and others.\n";
107 
108 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
109 MODULE_DESCRIPTION("3Com 3c59x/3c9xx ethernet driver ");
110 MODULE_LICENSE("GPL");
111 
112 
113 /* Operational parameter that usually are not changed. */
114 
115 /* The Vortex size is twice that of the original EtherLinkIII series: the
116    runtime register window, window 1, is now always mapped in.
117    The Boomerang size is twice as large as the Vortex -- it has additional
118    bus master control registers. */
119 #define VORTEX_TOTAL_SIZE 0x20
120 #define BOOMERANG_TOTAL_SIZE 0x40
121 
122 /* Set iff a MII transceiver on any interface requires mdio preamble.
123    This only set with the original DP83840 on older 3c905 boards, so the extra
124    code size of a per-interface flag is not worthwhile. */
125 static char mii_preamble_required;
126 
127 #define PFX DRV_NAME ": "
128 
129 
130 
131 /*
132 				Theory of Operation
133 
134 I. Board Compatibility
135 
136 This device driver is designed for the 3Com FastEtherLink and FastEtherLink
137 XL, 3Com's PCI to 10/100baseT adapters.  It also works with the 10Mbs
138 versions of the FastEtherLink cards.  The supported product IDs are
139   3c590, 3c592, 3c595, 3c597, 3c900, 3c905
140 
141 The related ISA 3c515 is supported with a separate driver, 3c515.c, included
142 with the kernel source or available from
143     cesdis.gsfc.nasa.gov:/pub/linux/drivers/3c515.html
144 
145 II. Board-specific settings
146 
147 PCI bus devices are configured by the system at boot time, so no jumpers
148 need to be set on the board.  The system BIOS should be set to assign the
149 PCI INTA signal to an otherwise unused system IRQ line.
150 
151 The EEPROM settings for media type and forced-full-duplex are observed.
152 The EEPROM media type should be left at the default "autoselect" unless using
153 10base2 or AUI connections which cannot be reliably detected.
154 
155 III. Driver operation
156 
157 The 3c59x series use an interface that's very similar to the previous 3c5x9
158 series.  The primary interface is two programmed-I/O FIFOs, with an
159 alternate single-contiguous-region bus-master transfer (see next).
160 
161 The 3c900 "Boomerang" series uses a full-bus-master interface with separate
162 lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
163 DEC Tulip and Intel Speedo3.  The first chip version retains a compatible
164 programmed-I/O interface that has been removed in 'B' and subsequent board
165 revisions.
166 
167 One extension that is advertised in a very large font is that the adapters
168 are capable of being bus masters.  On the Vortex chip this capability was
169 only for a single contiguous region making it far less useful than the full
170 bus master capability.  There is a significant performance impact of taking
171 an extra interrupt or polling for the completion of each transfer, as well
172 as difficulty sharing the single transfer engine between the transmit and
173 receive threads.  Using DMA transfers is a win only with large blocks or
174 with the flawed versions of the Intel Orion motherboard PCI controller.
175 
176 The Boomerang chip's full-bus-master interface is useful, and has the
177 currently-unused advantages over other similar chips that queued transmit
178 packets may be reordered and receive buffer groups are associated with a
179 single frame.
180 
181 With full-bus-master support, this driver uses a "RX_COPYBREAK" scheme.
182 Rather than a fixed intermediate receive buffer, this scheme allocates
183 full-sized skbuffs as receive buffers.  The value RX_COPYBREAK is used as
184 the copying breakpoint: it is chosen to trade-off the memory wasted by
185 passing the full-sized skbuff to the queue layer for all frames vs. the
186 copying cost of copying a frame to a correctly-sized skbuff.
187 
188 IIIC. Synchronization
189 The driver runs as two independent, single-threaded flows of control.  One
190 is the send-packet routine, which enforces single-threaded use by the
191 dev->tbusy flag.  The other thread is the interrupt handler, which is single
192 threaded by the hardware and other software.
193 
194 IV. Notes
195 
196 Thanks to Cameron Spitzer and Terry Murphy of 3Com for providing development
197 3c590, 3c595, and 3c900 boards.
198 The name "Vortex" is the internal 3Com project name for the PCI ASIC, and
199 the EISA version is called "Demon".  According to Terry these names come
200 from rides at the local amusement park.
201 
202 The new chips support both ethernet (1.5K) and FDDI (4.5K) packet sizes!
203 This driver only supports ethernet packets because of the skbuff allocation
204 limit of 4K.
205 */
206 
207 /* This table drives the PCI probe routines.  It's mostly boilerplate in all
208    of the drivers, and will likely be provided by some future kernel.
209 */
210 enum pci_flags_bit {
211 	PCI_USES_MASTER=4,
212 };
213 
214 enum {	IS_VORTEX=1, IS_BOOMERANG=2, IS_CYCLONE=4, IS_TORNADO=8,
215 	EEPROM_8BIT=0x10,	/* AKPM: Uses 0x230 as the base bitmaps for EEPROM reads */
216 	HAS_PWR_CTRL=0x20, HAS_MII=0x40, HAS_NWAY=0x80, HAS_CB_FNS=0x100,
217 	INVERT_MII_PWR=0x200, INVERT_LED_PWR=0x400, MAX_COLLISION_RESET=0x800,
218 	EEPROM_OFFSET=0x1000, HAS_HWCKSM=0x2000, WNO_XCVR_PWR=0x4000,
219 	EXTRA_PREAMBLE=0x8000, EEPROM_RESET=0x10000, };
220 
221 enum vortex_chips {
222 	CH_3C590 = 0,
223 	CH_3C592,
224 	CH_3C597,
225 	CH_3C595_1,
226 	CH_3C595_2,
227 
228 	CH_3C595_3,
229 	CH_3C900_1,
230 	CH_3C900_2,
231 	CH_3C900_3,
232 	CH_3C900_4,
233 
234 	CH_3C900_5,
235 	CH_3C900B_FL,
236 	CH_3C905_1,
237 	CH_3C905_2,
238 	CH_3C905B_TX,
239 	CH_3C905B_1,
240 
241 	CH_3C905B_2,
242 	CH_3C905B_FX,
243 	CH_3C905C,
244 	CH_3C9202,
245 	CH_3C980,
246 	CH_3C9805,
247 
248 	CH_3CSOHO100_TX,
249 	CH_3C555,
250 	CH_3C556,
251 	CH_3C556B,
252 	CH_3C575,
253 
254 	CH_3C575_1,
255 	CH_3CCFE575,
256 	CH_3CCFE575CT,
257 	CH_3CCFE656,
258 	CH_3CCFEM656,
259 
260 	CH_3CCFEM656_1,
261 	CH_3C450,
262 	CH_3C920,
263 	CH_3C982A,
264 	CH_3C982B,
265 
266 	CH_905BT4,
267 	CH_920B_EMB_WNM,
268 };
269 
270 
271 /* note: this array directly indexed by above enums, and MUST
272  * be kept in sync with both the enums above, and the PCI device
273  * table below
274  */
275 static struct vortex_chip_info {
276 	const char *name;
277 	int flags;
278 	int drv_flags;
279 	int io_size;
280 } vortex_info_tbl[] = {
281 	{"3c590 Vortex 10Mbps",
282 	 PCI_USES_MASTER, IS_VORTEX, 32, },
283 	{"3c592 EISA 10Mbps Demon/Vortex",					/* AKPM: from Don's 3c59x_cb.c 0.49H */
284 	 PCI_USES_MASTER, IS_VORTEX, 32, },
285 	{"3c597 EISA Fast Demon/Vortex",					/* AKPM: from Don's 3c59x_cb.c 0.49H */
286 	 PCI_USES_MASTER, IS_VORTEX, 32, },
287 	{"3c595 Vortex 100baseTx",
288 	 PCI_USES_MASTER, IS_VORTEX, 32, },
289 	{"3c595 Vortex 100baseT4",
290 	 PCI_USES_MASTER, IS_VORTEX, 32, },
291 
292 	{"3c595 Vortex 100base-MII",
293 	 PCI_USES_MASTER, IS_VORTEX, 32, },
294 	{"3c900 Boomerang 10baseT",
295 	 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
296 	{"3c900 Boomerang 10Mbps Combo",
297 	 PCI_USES_MASTER, IS_BOOMERANG|EEPROM_RESET, 64, },
298 	{"3c900 Cyclone 10Mbps TPO",						/* AKPM: from Don's 0.99M */
299 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
300 	{"3c900 Cyclone 10Mbps Combo",
301 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
302 
303 	{"3c900 Cyclone 10Mbps TPC",						/* AKPM: from Don's 0.99M */
304 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
305 	{"3c900B-FL Cyclone 10base-FL",
306 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
307 	{"3c905 Boomerang 100baseTx",
308 	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
309 	{"3c905 Boomerang 100baseT4",
310 	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_RESET, 64, },
311 	{"3C905B-TX Fast Etherlink XL PCI",
312 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
313 	{"3c905B Cyclone 100baseTx",
314 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
315 
316 	{"3c905B Cyclone 10/100/BNC",
317 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
318 	{"3c905B-FX Cyclone 100baseFx",
319 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM, 128, },
320 	{"3c905C Tornado",
321 	PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
322 	{"3c920B-EMB-WNM (ATI Radeon 9100 IGP)",
323 	 PCI_USES_MASTER, IS_TORNADO|HAS_MII|HAS_HWCKSM, 128, },
324 	{"3c980 Cyclone",
325 	 PCI_USES_MASTER, IS_CYCLONE|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
326 
327 	{"3c980C Python-T",
328 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM, 128, },
329 	{"3cSOHO100-TX Hurricane",
330 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
331 	{"3c555 Laptop Hurricane",
332 	 PCI_USES_MASTER, IS_CYCLONE|EEPROM_8BIT|HAS_HWCKSM, 128, },
333 	{"3c556 Laptop Tornado",
334 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_8BIT|HAS_CB_FNS|INVERT_MII_PWR|
335 									HAS_HWCKSM, 128, },
336 	{"3c556B Laptop Hurricane",
337 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|EEPROM_OFFSET|HAS_CB_FNS|INVERT_MII_PWR|
338 	                                WNO_XCVR_PWR|HAS_HWCKSM, 128, },
339 
340 	{"3c575 [Megahertz] 10/100 LAN 	CardBus",
341 	PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
342 	{"3c575 Boomerang CardBus",
343 	 PCI_USES_MASTER, IS_BOOMERANG|HAS_MII|EEPROM_8BIT, 128, },
344 	{"3CCFE575BT Cyclone CardBus",
345 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|
346 									INVERT_LED_PWR|HAS_HWCKSM, 128, },
347 	{"3CCFE575CT Tornado CardBus",
348 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
349 									MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
350 	{"3CCFE656 Cyclone CardBus",
351 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
352 									INVERT_LED_PWR|HAS_HWCKSM, 128, },
353 
354 	{"3CCFEM656B Cyclone+Winmodem CardBus",
355 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
356 									INVERT_LED_PWR|HAS_HWCKSM, 128, },
357 	{"3CXFEM656C Tornado+Winmodem CardBus",			/* From pcmcia-cs-3.1.5 */
358 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_CB_FNS|EEPROM_8BIT|INVERT_MII_PWR|
359 									MAX_COLLISION_RESET|HAS_HWCKSM, 128, },
360 	{"3c450 HomePNA Tornado",						/* AKPM: from Don's 0.99Q */
361 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
362 	{"3c920 Tornado",
363 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
364 	{"3c982 Hydra Dual Port A",
365 	 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
366 
367 	{"3c982 Hydra Dual Port B",
368 	 PCI_USES_MASTER, IS_TORNADO|HAS_HWCKSM|HAS_NWAY, 128, },
369 	{"3c905B-T4",
370 	 PCI_USES_MASTER, IS_CYCLONE|HAS_NWAY|HAS_HWCKSM|EXTRA_PREAMBLE, 128, },
371 	{"3c920B-EMB-WNM Tornado",
372 	 PCI_USES_MASTER, IS_TORNADO|HAS_NWAY|HAS_HWCKSM, 128, },
373 
374 	{NULL,}, /* NULL terminated list. */
375 };
376 
377 
378 static const struct pci_device_id vortex_pci_tbl[] = {
379 	{ 0x10B7, 0x5900, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C590 },
380 	{ 0x10B7, 0x5920, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C592 },
381 	{ 0x10B7, 0x5970, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C597 },
382 	{ 0x10B7, 0x5950, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_1 },
383 	{ 0x10B7, 0x5951, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_2 },
384 
385 	{ 0x10B7, 0x5952, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C595_3 },
386 	{ 0x10B7, 0x9000, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_1 },
387 	{ 0x10B7, 0x9001, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_2 },
388 	{ 0x10B7, 0x9004, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_3 },
389 	{ 0x10B7, 0x9005, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_4 },
390 
391 	{ 0x10B7, 0x9006, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900_5 },
392 	{ 0x10B7, 0x900A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C900B_FL },
393 	{ 0x10B7, 0x9050, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_1 },
394 	{ 0x10B7, 0x9051, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905_2 },
395 	{ 0x10B7, 0x9054, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_TX },
396 	{ 0x10B7, 0x9055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_1 },
397 
398 	{ 0x10B7, 0x9058, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_2 },
399 	{ 0x10B7, 0x905A, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905B_FX },
400 	{ 0x10B7, 0x9200, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C905C },
401 	{ 0x10B7, 0x9202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9202 },
402 	{ 0x10B7, 0x9800, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C980 },
403 	{ 0x10B7, 0x9805, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C9805 },
404 
405 	{ 0x10B7, 0x7646, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CSOHO100_TX },
406 	{ 0x10B7, 0x5055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C555 },
407 	{ 0x10B7, 0x6055, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556 },
408 	{ 0x10B7, 0x6056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C556B },
409 	{ 0x10B7, 0x5b57, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575 },
410 
411 	{ 0x10B7, 0x5057, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C575_1 },
412 	{ 0x10B7, 0x5157, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575 },
413 	{ 0x10B7, 0x5257, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE575CT },
414 	{ 0x10B7, 0x6560, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFE656 },
415 	{ 0x10B7, 0x6562, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656 },
416 
417 	{ 0x10B7, 0x6564, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3CCFEM656_1 },
418 	{ 0x10B7, 0x4500, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C450 },
419 	{ 0x10B7, 0x9201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C920 },
420 	{ 0x10B7, 0x1201, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982A },
421 	{ 0x10B7, 0x1202, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_3C982B },
422 
423 	{ 0x10B7, 0x9056, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_905BT4 },
424 	{ 0x10B7, 0x9210, PCI_ANY_ID, PCI_ANY_ID, 0, 0, CH_920B_EMB_WNM },
425 
426 	{0,}						/* 0 terminated list. */
427 };
428 MODULE_DEVICE_TABLE(pci, vortex_pci_tbl);
429 
430 
431 /* Operational definitions.
432    These are not used by other compilation units and thus are not
433    exported in a ".h" file.
434 
435    First the windows.  There are eight register windows, with the command
436    and status registers available in each.
437    */
438 #define EL3_CMD 0x0e
439 #define EL3_STATUS 0x0e
440 
441 /* The top five bits written to EL3_CMD are a command, the lower
442    11 bits are the parameter, if applicable.
443    Note that 11 parameters bits was fine for ethernet, but the new chip
444    can handle FDDI length frames (~4500 octets) and now parameters count
445    32-bit 'Dwords' rather than octets. */
446 
447 enum vortex_cmd {
448 	TotalReset = 0<<11, SelectWindow = 1<<11, StartCoax = 2<<11,
449 	RxDisable = 3<<11, RxEnable = 4<<11, RxReset = 5<<11,
450 	UpStall = 6<<11, UpUnstall = (6<<11)+1,
451 	DownStall = (6<<11)+2, DownUnstall = (6<<11)+3,
452 	RxDiscard = 8<<11, TxEnable = 9<<11, TxDisable = 10<<11, TxReset = 11<<11,
453 	FakeIntr = 12<<11, AckIntr = 13<<11, SetIntrEnb = 14<<11,
454 	SetStatusEnb = 15<<11, SetRxFilter = 16<<11, SetRxThreshold = 17<<11,
455 	SetTxThreshold = 18<<11, SetTxStart = 19<<11,
456 	StartDMAUp = 20<<11, StartDMADown = (20<<11)+1, StatsEnable = 21<<11,
457 	StatsDisable = 22<<11, StopCoax = 23<<11, SetFilterBit = 25<<11,};
458 
459 /* The SetRxFilter command accepts the following classes: */
460 enum RxFilter {
461 	RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8 };
462 
463 /* Bits in the general status register. */
464 enum vortex_status {
465 	IntLatch = 0x0001, HostError = 0x0002, TxComplete = 0x0004,
466 	TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
467 	IntReq = 0x0040, StatsFull = 0x0080,
468 	DMADone = 1<<8, DownComplete = 1<<9, UpComplete = 1<<10,
469 	DMAInProgress = 1<<11,			/* DMA controller is still busy.*/
470 	CmdInProgress = 1<<12,			/* EL3_CMD is still busy.*/
471 };
472 
473 /* Register window 1 offsets, the window used in normal operation.
474    On the Vortex this window is always mapped at offsets 0x10-0x1f. */
475 enum Window1 {
476 	TX_FIFO = 0x10,  RX_FIFO = 0x10,  RxErrors = 0x14,
477 	RxStatus = 0x18,  Timer=0x1A, TxStatus = 0x1B,
478 	TxFree = 0x1C, /* Remaining free bytes in Tx buffer. */
479 };
480 enum Window0 {
481 	Wn0EepromCmd = 10,		/* Window 0: EEPROM command register. */
482 	Wn0EepromData = 12,		/* Window 0: EEPROM results register. */
483 	IntrStatus=0x0E,		/* Valid in all windows. */
484 };
485 enum Win0_EEPROM_bits {
486 	EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
487 	EEPROM_EWENB = 0x30,		/* Enable erasing/writing for 10 msec. */
488 	EEPROM_EWDIS = 0x00,		/* Disable EWENB before 10 msec timeout. */
489 };
490 /* EEPROM locations. */
491 enum eeprom_offset {
492 	PhysAddr01=0, PhysAddr23=1, PhysAddr45=2, ModelID=3,
493 	EtherLink3ID=7, IFXcvrIO=8, IRQLine=9,
494 	NodeAddr01=10, NodeAddr23=11, NodeAddr45=12,
495 	DriverTune=13, Checksum=15};
496 
497 enum Window2 {			/* Window 2. */
498 	Wn2_ResetOptions=12,
499 };
500 enum Window3 {			/* Window 3: MAC/config bits. */
501 	Wn3_Config=0, Wn3_MaxPktSize=4, Wn3_MAC_Ctrl=6, Wn3_Options=8,
502 };
503 
504 #define BFEXT(value, offset, bitcount)  \
505     ((((unsigned long)(value)) >> (offset)) & ((1 << (bitcount)) - 1))
506 
507 #define BFINS(lhs, rhs, offset, bitcount)					\
508 	(((lhs) & ~((((1 << (bitcount)) - 1)) << (offset))) |	\
509 	(((rhs) & ((1 << (bitcount)) - 1)) << (offset)))
510 
511 #define RAM_SIZE(v)		BFEXT(v, 0, 3)
512 #define RAM_WIDTH(v)	BFEXT(v, 3, 1)
513 #define RAM_SPEED(v)	BFEXT(v, 4, 2)
514 #define ROM_SIZE(v)		BFEXT(v, 6, 2)
515 #define RAM_SPLIT(v)	BFEXT(v, 16, 2)
516 #define XCVR(v)			BFEXT(v, 20, 4)
517 #define AUTOSELECT(v)	BFEXT(v, 24, 1)
518 
519 enum Window4 {		/* Window 4: Xcvr/media bits. */
520 	Wn4_FIFODiag = 4, Wn4_NetDiag = 6, Wn4_PhysicalMgmt=8, Wn4_Media = 10,
521 };
522 enum Win4_Media_bits {
523 	Media_SQE = 0x0008,		/* Enable SQE error counting for AUI. */
524 	Media_10TP = 0x00C0,	/* Enable link beat and jabber for 10baseT. */
525 	Media_Lnk = 0x0080,		/* Enable just link beat for 100TX/100FX. */
526 	Media_LnkBeat = 0x0800,
527 };
528 enum Window7 {					/* Window 7: Bus Master control. */
529 	Wn7_MasterAddr = 0, Wn7_VlanEtherType=4, Wn7_MasterLen = 6,
530 	Wn7_MasterStatus = 12,
531 };
532 /* Boomerang bus master control registers. */
533 enum MasterCtrl {
534 	PktStatus = 0x20, DownListPtr = 0x24, FragAddr = 0x28, FragLen = 0x2c,
535 	TxFreeThreshold = 0x2f, UpPktStatus = 0x30, UpListPtr = 0x38,
536 };
537 
538 /* The Rx and Tx descriptor lists.
539    Caution Alpha hackers: these types are 32 bits!  Note also the 8 byte
540    alignment contraint on tx_ring[] and rx_ring[]. */
541 #define LAST_FRAG 	0x80000000			/* Last Addr/Len pair in descriptor. */
542 #define DN_COMPLETE	0x00010000			/* This packet has been downloaded */
543 struct boom_rx_desc {
544 	__le32 next;					/* Last entry points to 0.   */
545 	__le32 status;
546 	__le32 addr;					/* Up to 63 addr/len pairs possible. */
547 	__le32 length;					/* Set LAST_FRAG to indicate last pair. */
548 };
549 /* Values for the Rx status entry. */
550 enum rx_desc_status {
551 	RxDComplete=0x00008000, RxDError=0x4000,
552 	/* See boomerang_rx() for actual error bits */
553 	IPChksumErr=1<<25, TCPChksumErr=1<<26, UDPChksumErr=1<<27,
554 	IPChksumValid=1<<29, TCPChksumValid=1<<30, UDPChksumValid=1<<31,
555 };
556 
557 #ifdef MAX_SKB_FRAGS
558 #define DO_ZEROCOPY 1
559 #else
560 #define DO_ZEROCOPY 0
561 #endif
562 
563 struct boom_tx_desc {
564 	__le32 next;					/* Last entry points to 0.   */
565 	__le32 status;					/* bits 0:12 length, others see below.  */
566 #if DO_ZEROCOPY
567 	struct {
568 		__le32 addr;
569 		__le32 length;
570 	} frag[1+MAX_SKB_FRAGS];
571 #else
572 		__le32 addr;
573 		__le32 length;
574 #endif
575 };
576 
577 /* Values for the Tx status entry. */
578 enum tx_desc_status {
579 	CRCDisable=0x2000, TxDComplete=0x8000,
580 	AddIPChksum=0x02000000, AddTCPChksum=0x04000000, AddUDPChksum=0x08000000,
581 	TxIntrUploaded=0x80000000,		/* IRQ when in FIFO, but maybe not sent. */
582 };
583 
584 /* Chip features we care about in vp->capabilities, read from the EEPROM. */
585 enum ChipCaps { CapBusMaster=0x20, CapPwrMgmt=0x2000 };
586 
587 struct vortex_extra_stats {
588 	unsigned long tx_deferred;
589 	unsigned long tx_max_collisions;
590 	unsigned long tx_multiple_collisions;
591 	unsigned long tx_single_collisions;
592 	unsigned long rx_bad_ssd;
593 };
594 
595 struct vortex_private {
596 	/* The Rx and Tx rings should be quad-word-aligned. */
597 	struct boom_rx_desc* rx_ring;
598 	struct boom_tx_desc* tx_ring;
599 	dma_addr_t rx_ring_dma;
600 	dma_addr_t tx_ring_dma;
601 	/* The addresses of transmit- and receive-in-place skbuffs. */
602 	struct sk_buff* rx_skbuff[RX_RING_SIZE];
603 	struct sk_buff* tx_skbuff[TX_RING_SIZE];
604 	unsigned int cur_rx, cur_tx;		/* The next free ring entry */
605 	unsigned int dirty_rx, dirty_tx;	/* The ring entries to be free()ed. */
606 	struct vortex_extra_stats xstats;	/* NIC-specific extra stats */
607 	struct sk_buff *tx_skb;				/* Packet being eaten by bus master ctrl.  */
608 	dma_addr_t tx_skb_dma;				/* Allocated DMA address for bus master ctrl DMA.   */
609 
610 	/* PCI configuration space information. */
611 	struct device *gendev;
612 	void __iomem *ioaddr;			/* IO address space */
613 	void __iomem *cb_fn_base;		/* CardBus function status addr space. */
614 
615 	/* Some values here only for performance evaluation and path-coverage */
616 	int rx_nocopy, rx_copy, queued_packet, rx_csumhits;
617 	int card_idx;
618 
619 	/* The remainder are related to chip state, mostly media selection. */
620 	struct timer_list timer;			/* Media selection timer. */
621 	struct timer_list rx_oom_timer;		/* Rx skb allocation retry timer */
622 	int options;						/* User-settable misc. driver options. */
623 	unsigned int media_override:4, 		/* Passed-in media type. */
624 		default_media:4,				/* Read from the EEPROM/Wn3_Config. */
625 		full_duplex:1, autoselect:1,
626 		bus_master:1,					/* Vortex can only do a fragment bus-m. */
627 		full_bus_master_tx:1, full_bus_master_rx:2, /* Boomerang  */
628 		flow_ctrl:1,					/* Use 802.3x flow control (PAUSE only) */
629 		partner_flow_ctrl:1,			/* Partner supports flow control */
630 		has_nway:1,
631 		enable_wol:1,					/* Wake-on-LAN is enabled */
632 		pm_state_valid:1,				/* pci_dev->saved_config_space has sane contents */
633 		open:1,
634 		medialock:1,
635 		large_frames:1,			/* accept large frames */
636 		handling_irq:1;			/* private in_irq indicator */
637 	/* {get|set}_wol operations are already serialized by rtnl.
638 	 * no additional locking is required for the enable_wol and acpi_set_WOL()
639 	 */
640 	int drv_flags;
641 	u16 status_enable;
642 	u16 intr_enable;
643 	u16 available_media;				/* From Wn3_Options. */
644 	u16 capabilities, info1, info2;		/* Various, from EEPROM. */
645 	u16 advertising;					/* NWay media advertisement */
646 	unsigned char phys[2];				/* MII device addresses. */
647 	u16 deferred;						/* Resend these interrupts when we
648 										 * bale from the ISR */
649 	u16 io_size;						/* Size of PCI region (for release_region) */
650 
651 	/* Serialises access to hardware other than MII and variables below.
652 	 * The lock hierarchy is rtnl_lock > {lock, mii_lock} > window_lock. */
653 	spinlock_t lock;
654 
655 	spinlock_t mii_lock;		/* Serialises access to MII */
656 	struct mii_if_info mii;		/* MII lib hooks/info */
657 	spinlock_t window_lock;		/* Serialises access to windowed regs */
658 	int window;			/* Register window */
659 };
660 
661 static void window_set(struct vortex_private *vp, int window)
662 {
663 	if (window != vp->window) {
664 		iowrite16(SelectWindow + window, vp->ioaddr + EL3_CMD);
665 		vp->window = window;
666 	}
667 }
668 
669 #define DEFINE_WINDOW_IO(size)						\
670 static u ## size							\
671 window_read ## size(struct vortex_private *vp, int window, int addr)	\
672 {									\
673 	unsigned long flags;						\
674 	u ## size ret;							\
675 	spin_lock_irqsave(&vp->window_lock, flags);			\
676 	window_set(vp, window);						\
677 	ret = ioread ## size(vp->ioaddr + addr);			\
678 	spin_unlock_irqrestore(&vp->window_lock, flags);		\
679 	return ret;							\
680 }									\
681 static void								\
682 window_write ## size(struct vortex_private *vp, u ## size value,	\
683 		     int window, int addr)				\
684 {									\
685 	unsigned long flags;						\
686 	spin_lock_irqsave(&vp->window_lock, flags);			\
687 	window_set(vp, window);						\
688 	iowrite ## size(value, vp->ioaddr + addr);			\
689 	spin_unlock_irqrestore(&vp->window_lock, flags);		\
690 }
691 DEFINE_WINDOW_IO(8)
692 DEFINE_WINDOW_IO(16)
693 DEFINE_WINDOW_IO(32)
694 
695 #ifdef CONFIG_PCI
696 #define DEVICE_PCI(dev) ((dev_is_pci(dev)) ? to_pci_dev((dev)) : NULL)
697 #else
698 #define DEVICE_PCI(dev) NULL
699 #endif
700 
701 #define VORTEX_PCI(vp)							\
702 	((struct pci_dev *) (((vp)->gendev) ? DEVICE_PCI((vp)->gendev) : NULL))
703 
704 #ifdef CONFIG_EISA
705 #define DEVICE_EISA(dev) (((dev)->bus == &eisa_bus_type) ? to_eisa_device((dev)) : NULL)
706 #else
707 #define DEVICE_EISA(dev) NULL
708 #endif
709 
710 #define VORTEX_EISA(vp)							\
711 	((struct eisa_device *) (((vp)->gendev) ? DEVICE_EISA((vp)->gendev) : NULL))
712 
713 /* The action to take with a media selection timer tick.
714    Note that we deviate from the 3Com order by checking 10base2 before AUI.
715  */
716 enum xcvr_types {
717 	XCVR_10baseT=0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
718 	XCVR_100baseFx, XCVR_MII=6, XCVR_NWAY=8, XCVR_ExtMII=9, XCVR_Default=10,
719 };
720 
721 static const struct media_table {
722 	char *name;
723 	unsigned int media_bits:16,		/* Bits to set in Wn4_Media register. */
724 		mask:8,						/* The transceiver-present bit in Wn3_Config.*/
725 		next:8;						/* The media type to try next. */
726 	int wait;						/* Time before we check media status. */
727 } media_tbl[] = {
728   {	"10baseT",   Media_10TP,0x08, XCVR_10base2, (14*HZ)/10},
729   { "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1*HZ)/10},
730   { "undefined", 0,			0x80, XCVR_10baseT, 10000},
731   { "10base2",   0,			0x10, XCVR_AUI,		(1*HZ)/10},
732   { "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14*HZ)/10},
733   { "100baseFX", Media_Lnk, 0x04, XCVR_MII,		(14*HZ)/10},
734   { "MII",		 0,			0x41, XCVR_10baseT, 3*HZ },
735   { "undefined", 0,			0x01, XCVR_10baseT, 10000},
736   { "Autonegotiate", 0,		0x41, XCVR_10baseT, 3*HZ},
737   { "MII-External",	 0,		0x41, XCVR_10baseT, 3*HZ },
738   { "Default",	 0,			0xFF, XCVR_10baseT, 10000},
739 };
740 
741 static struct {
742 	const char str[ETH_GSTRING_LEN];
743 } ethtool_stats_keys[] = {
744 	{ "tx_deferred" },
745 	{ "tx_max_collisions" },
746 	{ "tx_multiple_collisions" },
747 	{ "tx_single_collisions" },
748 	{ "rx_bad_ssd" },
749 };
750 
751 /* number of ETHTOOL_GSTATS u64's */
752 #define VORTEX_NUM_STATS    5
753 
754 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
755 				   int chip_idx, int card_idx);
756 static int vortex_up(struct net_device *dev);
757 static void vortex_down(struct net_device *dev, int final);
758 static int vortex_open(struct net_device *dev);
759 static void mdio_sync(struct vortex_private *vp, int bits);
760 static int mdio_read(struct net_device *dev, int phy_id, int location);
761 static void mdio_write(struct net_device *vp, int phy_id, int location, int value);
762 static void vortex_timer(unsigned long arg);
763 static void rx_oom_timer(unsigned long arg);
764 static netdev_tx_t vortex_start_xmit(struct sk_buff *skb,
765 				     struct net_device *dev);
766 static netdev_tx_t boomerang_start_xmit(struct sk_buff *skb,
767 					struct net_device *dev);
768 static int vortex_rx(struct net_device *dev);
769 static int boomerang_rx(struct net_device *dev);
770 static irqreturn_t vortex_interrupt(int irq, void *dev_id);
771 static irqreturn_t boomerang_interrupt(int irq, void *dev_id);
772 static int vortex_close(struct net_device *dev);
773 static void dump_tx_ring(struct net_device *dev);
774 static void update_stats(void __iomem *ioaddr, struct net_device *dev);
775 static struct net_device_stats *vortex_get_stats(struct net_device *dev);
776 static void set_rx_mode(struct net_device *dev);
777 #ifdef CONFIG_PCI
778 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd);
779 #endif
780 static void vortex_tx_timeout(struct net_device *dev);
781 static void acpi_set_WOL(struct net_device *dev);
782 static const struct ethtool_ops vortex_ethtool_ops;
783 static void set_8021q_mode(struct net_device *dev, int enable);
784 
785 /* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
786 /* Option count limit only -- unlimited interfaces are supported. */
787 #define MAX_UNITS 8
788 static int options[MAX_UNITS] = { [0 ... MAX_UNITS-1] = -1 };
789 static int full_duplex[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
790 static int hw_checksums[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
791 static int flow_ctrl[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
792 static int enable_wol[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
793 static int use_mmio[MAX_UNITS] = {[0 ... MAX_UNITS-1] = -1 };
794 static int global_options = -1;
795 static int global_full_duplex = -1;
796 static int global_enable_wol = -1;
797 static int global_use_mmio = -1;
798 
799 /* Variables to work-around the Compaq PCI BIOS32 problem. */
800 static int compaq_ioaddr, compaq_irq, compaq_device_id = 0x5900;
801 static struct net_device *compaq_net_device;
802 
803 static int vortex_cards_found;
804 
805 module_param(debug, int, 0);
806 module_param(global_options, int, 0);
807 module_param_array(options, int, NULL, 0);
808 module_param(global_full_duplex, int, 0);
809 module_param_array(full_duplex, int, NULL, 0);
810 module_param_array(hw_checksums, int, NULL, 0);
811 module_param_array(flow_ctrl, int, NULL, 0);
812 module_param(global_enable_wol, int, 0);
813 module_param_array(enable_wol, int, NULL, 0);
814 module_param(rx_copybreak, int, 0);
815 module_param(max_interrupt_work, int, 0);
816 module_param(compaq_ioaddr, int, 0);
817 module_param(compaq_irq, int, 0);
818 module_param(compaq_device_id, int, 0);
819 module_param(watchdog, int, 0);
820 module_param(global_use_mmio, int, 0);
821 module_param_array(use_mmio, int, NULL, 0);
822 MODULE_PARM_DESC(debug, "3c59x debug level (0-6)");
823 MODULE_PARM_DESC(options, "3c59x: Bits 0-3: media type, bit 4: bus mastering, bit 9: full duplex");
824 MODULE_PARM_DESC(global_options, "3c59x: same as options, but applies to all NICs if options is unset");
825 MODULE_PARM_DESC(full_duplex, "3c59x full duplex setting(s) (1)");
826 MODULE_PARM_DESC(global_full_duplex, "3c59x: same as full_duplex, but applies to all NICs if full_duplex is unset");
827 MODULE_PARM_DESC(hw_checksums, "3c59x Hardware checksum checking by adapter(s) (0-1)");
828 MODULE_PARM_DESC(flow_ctrl, "3c59x 802.3x flow control usage (PAUSE only) (0-1)");
829 MODULE_PARM_DESC(enable_wol, "3c59x: Turn on Wake-on-LAN for adapter(s) (0-1)");
830 MODULE_PARM_DESC(global_enable_wol, "3c59x: same as enable_wol, but applies to all NICs if enable_wol is unset");
831 MODULE_PARM_DESC(rx_copybreak, "3c59x copy breakpoint for copy-only-tiny-frames");
832 MODULE_PARM_DESC(max_interrupt_work, "3c59x maximum events handled per interrupt");
833 MODULE_PARM_DESC(compaq_ioaddr, "3c59x PCI I/O base address (Compaq BIOS problem workaround)");
834 MODULE_PARM_DESC(compaq_irq, "3c59x PCI IRQ number (Compaq BIOS problem workaround)");
835 MODULE_PARM_DESC(compaq_device_id, "3c59x PCI device ID (Compaq BIOS problem workaround)");
836 MODULE_PARM_DESC(watchdog, "3c59x transmit timeout in milliseconds");
837 MODULE_PARM_DESC(global_use_mmio, "3c59x: same as use_mmio, but applies to all NICs if options is unset");
838 MODULE_PARM_DESC(use_mmio, "3c59x: use memory-mapped PCI I/O resource (0-1)");
839 
840 #ifdef CONFIG_NET_POLL_CONTROLLER
841 static void poll_vortex(struct net_device *dev)
842 {
843 	struct vortex_private *vp = netdev_priv(dev);
844 	unsigned long flags;
845 	local_irq_save(flags);
846 	(vp->full_bus_master_rx ? boomerang_interrupt:vortex_interrupt)(dev->irq,dev);
847 	local_irq_restore(flags);
848 }
849 #endif
850 
851 #ifdef CONFIG_PM
852 
853 static int vortex_suspend(struct device *dev)
854 {
855 	struct pci_dev *pdev = to_pci_dev(dev);
856 	struct net_device *ndev = pci_get_drvdata(pdev);
857 
858 	if (!ndev || !netif_running(ndev))
859 		return 0;
860 
861 	netif_device_detach(ndev);
862 	vortex_down(ndev, 1);
863 
864 	return 0;
865 }
866 
867 static int vortex_resume(struct device *dev)
868 {
869 	struct pci_dev *pdev = to_pci_dev(dev);
870 	struct net_device *ndev = pci_get_drvdata(pdev);
871 	int err;
872 
873 	if (!ndev || !netif_running(ndev))
874 		return 0;
875 
876 	err = vortex_up(ndev);
877 	if (err)
878 		return err;
879 
880 	netif_device_attach(ndev);
881 
882 	return 0;
883 }
884 
885 static const struct dev_pm_ops vortex_pm_ops = {
886 	.suspend = vortex_suspend,
887 	.resume = vortex_resume,
888 	.freeze = vortex_suspend,
889 	.thaw = vortex_resume,
890 	.poweroff = vortex_suspend,
891 	.restore = vortex_resume,
892 };
893 
894 #define VORTEX_PM_OPS (&vortex_pm_ops)
895 
896 #else /* !CONFIG_PM */
897 
898 #define VORTEX_PM_OPS NULL
899 
900 #endif /* !CONFIG_PM */
901 
902 #ifdef CONFIG_EISA
903 static struct eisa_device_id vortex_eisa_ids[] = {
904 	{ "TCM5920", CH_3C592 },
905 	{ "TCM5970", CH_3C597 },
906 	{ "" }
907 };
908 MODULE_DEVICE_TABLE(eisa, vortex_eisa_ids);
909 
910 static int __init vortex_eisa_probe(struct device *device)
911 {
912 	void __iomem *ioaddr;
913 	struct eisa_device *edev;
914 
915 	edev = to_eisa_device(device);
916 
917 	if (!request_region(edev->base_addr, VORTEX_TOTAL_SIZE, DRV_NAME))
918 		return -EBUSY;
919 
920 	ioaddr = ioport_map(edev->base_addr, VORTEX_TOTAL_SIZE);
921 
922 	if (vortex_probe1(device, ioaddr, ioread16(ioaddr + 0xC88) >> 12,
923 					  edev->id.driver_data, vortex_cards_found)) {
924 		release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
925 		return -ENODEV;
926 	}
927 
928 	vortex_cards_found++;
929 
930 	return 0;
931 }
932 
933 static int vortex_eisa_remove(struct device *device)
934 {
935 	struct eisa_device *edev;
936 	struct net_device *dev;
937 	struct vortex_private *vp;
938 	void __iomem *ioaddr;
939 
940 	edev = to_eisa_device(device);
941 	dev = eisa_get_drvdata(edev);
942 
943 	if (!dev) {
944 		pr_err("vortex_eisa_remove called for Compaq device!\n");
945 		BUG();
946 	}
947 
948 	vp = netdev_priv(dev);
949 	ioaddr = vp->ioaddr;
950 
951 	unregister_netdev(dev);
952 	iowrite16(TotalReset|0x14, ioaddr + EL3_CMD);
953 	release_region(edev->base_addr, VORTEX_TOTAL_SIZE);
954 
955 	free_netdev(dev);
956 	return 0;
957 }
958 
959 static struct eisa_driver vortex_eisa_driver = {
960 	.id_table = vortex_eisa_ids,
961 	.driver   = {
962 		.name    = "3c59x",
963 		.probe   = vortex_eisa_probe,
964 		.remove  = vortex_eisa_remove
965 	}
966 };
967 
968 #endif /* CONFIG_EISA */
969 
970 /* returns count found (>= 0), or negative on error */
971 static int __init vortex_eisa_init(void)
972 {
973 	int eisa_found = 0;
974 	int orig_cards_found = vortex_cards_found;
975 
976 #ifdef CONFIG_EISA
977 	int err;
978 
979 	err = eisa_driver_register (&vortex_eisa_driver);
980 	if (!err) {
981 		/*
982 		 * Because of the way EISA bus is probed, we cannot assume
983 		 * any device have been found when we exit from
984 		 * eisa_driver_register (the bus root driver may not be
985 		 * initialized yet). So we blindly assume something was
986 		 * found, and let the sysfs magic happened...
987 		 */
988 		eisa_found = 1;
989 	}
990 #endif
991 
992 	/* Special code to work-around the Compaq PCI BIOS32 problem. */
993 	if (compaq_ioaddr) {
994 		vortex_probe1(NULL, ioport_map(compaq_ioaddr, VORTEX_TOTAL_SIZE),
995 			      compaq_irq, compaq_device_id, vortex_cards_found++);
996 	}
997 
998 	return vortex_cards_found - orig_cards_found + eisa_found;
999 }
1000 
1001 /* returns count (>= 0), or negative on error */
1002 static int vortex_init_one(struct pci_dev *pdev,
1003 			   const struct pci_device_id *ent)
1004 {
1005 	int rc, unit, pci_bar;
1006 	struct vortex_chip_info *vci;
1007 	void __iomem *ioaddr;
1008 
1009 	/* wake up and enable device */
1010 	rc = pci_enable_device(pdev);
1011 	if (rc < 0)
1012 		goto out;
1013 
1014 	rc = pci_request_regions(pdev, DRV_NAME);
1015 	if (rc < 0)
1016 		goto out_disable;
1017 
1018 	unit = vortex_cards_found;
1019 
1020 	if (global_use_mmio < 0 && (unit >= MAX_UNITS || use_mmio[unit] < 0)) {
1021 		/* Determine the default if the user didn't override us */
1022 		vci = &vortex_info_tbl[ent->driver_data];
1023 		pci_bar = vci->drv_flags & (IS_CYCLONE | IS_TORNADO) ? 1 : 0;
1024 	} else if (unit < MAX_UNITS && use_mmio[unit] >= 0)
1025 		pci_bar = use_mmio[unit] ? 1 : 0;
1026 	else
1027 		pci_bar = global_use_mmio ? 1 : 0;
1028 
1029 	ioaddr = pci_iomap(pdev, pci_bar, 0);
1030 	if (!ioaddr) /* If mapping fails, fall-back to BAR 0... */
1031 		ioaddr = pci_iomap(pdev, 0, 0);
1032 	if (!ioaddr) {
1033 		rc = -ENOMEM;
1034 		goto out_release;
1035 	}
1036 
1037 	rc = vortex_probe1(&pdev->dev, ioaddr, pdev->irq,
1038 			   ent->driver_data, unit);
1039 	if (rc < 0)
1040 		goto out_iounmap;
1041 
1042 	vortex_cards_found++;
1043 	goto out;
1044 
1045 out_iounmap:
1046 	pci_iounmap(pdev, ioaddr);
1047 out_release:
1048 	pci_release_regions(pdev);
1049 out_disable:
1050 	pci_disable_device(pdev);
1051 out:
1052 	return rc;
1053 }
1054 
1055 static const struct net_device_ops boomrang_netdev_ops = {
1056 	.ndo_open		= vortex_open,
1057 	.ndo_stop		= vortex_close,
1058 	.ndo_start_xmit		= boomerang_start_xmit,
1059 	.ndo_tx_timeout		= vortex_tx_timeout,
1060 	.ndo_get_stats		= vortex_get_stats,
1061 #ifdef CONFIG_PCI
1062 	.ndo_do_ioctl 		= vortex_ioctl,
1063 #endif
1064 	.ndo_set_rx_mode	= set_rx_mode,
1065 	.ndo_change_mtu		= eth_change_mtu,
1066 	.ndo_set_mac_address 	= eth_mac_addr,
1067 	.ndo_validate_addr	= eth_validate_addr,
1068 #ifdef CONFIG_NET_POLL_CONTROLLER
1069 	.ndo_poll_controller	= poll_vortex,
1070 #endif
1071 };
1072 
1073 static const struct net_device_ops vortex_netdev_ops = {
1074 	.ndo_open		= vortex_open,
1075 	.ndo_stop		= vortex_close,
1076 	.ndo_start_xmit		= vortex_start_xmit,
1077 	.ndo_tx_timeout		= vortex_tx_timeout,
1078 	.ndo_get_stats		= vortex_get_stats,
1079 #ifdef CONFIG_PCI
1080 	.ndo_do_ioctl 		= vortex_ioctl,
1081 #endif
1082 	.ndo_set_rx_mode	= set_rx_mode,
1083 	.ndo_change_mtu		= eth_change_mtu,
1084 	.ndo_set_mac_address 	= eth_mac_addr,
1085 	.ndo_validate_addr	= eth_validate_addr,
1086 #ifdef CONFIG_NET_POLL_CONTROLLER
1087 	.ndo_poll_controller	= poll_vortex,
1088 #endif
1089 };
1090 
1091 /*
1092  * Start up the PCI/EISA device which is described by *gendev.
1093  * Return 0 on success.
1094  *
1095  * NOTE: pdev can be NULL, for the case of a Compaq device
1096  */
1097 static int vortex_probe1(struct device *gendev, void __iomem *ioaddr, int irq,
1098 			 int chip_idx, int card_idx)
1099 {
1100 	struct vortex_private *vp;
1101 	int option;
1102 	unsigned int eeprom[0x40], checksum = 0;		/* EEPROM contents */
1103 	int i, step;
1104 	struct net_device *dev;
1105 	static int printed_version;
1106 	int retval, print_info;
1107 	struct vortex_chip_info * const vci = &vortex_info_tbl[chip_idx];
1108 	const char *print_name = "3c59x";
1109 	struct pci_dev *pdev = NULL;
1110 	struct eisa_device *edev = NULL;
1111 
1112 	if (!printed_version) {
1113 		pr_info("%s", version);
1114 		printed_version = 1;
1115 	}
1116 
1117 	if (gendev) {
1118 		if ((pdev = DEVICE_PCI(gendev))) {
1119 			print_name = pci_name(pdev);
1120 		}
1121 
1122 		if ((edev = DEVICE_EISA(gendev))) {
1123 			print_name = dev_name(&edev->dev);
1124 		}
1125 	}
1126 
1127 	dev = alloc_etherdev(sizeof(*vp));
1128 	retval = -ENOMEM;
1129 	if (!dev)
1130 		goto out;
1131 
1132 	SET_NETDEV_DEV(dev, gendev);
1133 	vp = netdev_priv(dev);
1134 
1135 	option = global_options;
1136 
1137 	/* The lower four bits are the media type. */
1138 	if (dev->mem_start) {
1139 		/*
1140 		 * The 'options' param is passed in as the third arg to the
1141 		 * LILO 'ether=' argument for non-modular use
1142 		 */
1143 		option = dev->mem_start;
1144 	}
1145 	else if (card_idx < MAX_UNITS) {
1146 		if (options[card_idx] >= 0)
1147 			option = options[card_idx];
1148 	}
1149 
1150 	if (option > 0) {
1151 		if (option & 0x8000)
1152 			vortex_debug = 7;
1153 		if (option & 0x4000)
1154 			vortex_debug = 2;
1155 		if (option & 0x0400)
1156 			vp->enable_wol = 1;
1157 	}
1158 
1159 	print_info = (vortex_debug > 1);
1160 	if (print_info)
1161 		pr_info("See Documentation/networking/vortex.txt\n");
1162 
1163 	pr_info("%s: 3Com %s %s at %p.\n",
1164 	       print_name,
1165 	       pdev ? "PCI" : "EISA",
1166 	       vci->name,
1167 	       ioaddr);
1168 
1169 	dev->base_addr = (unsigned long)ioaddr;
1170 	dev->irq = irq;
1171 	dev->mtu = mtu;
1172 	vp->ioaddr = ioaddr;
1173 	vp->large_frames = mtu > 1500;
1174 	vp->drv_flags = vci->drv_flags;
1175 	vp->has_nway = (vci->drv_flags & HAS_NWAY) ? 1 : 0;
1176 	vp->io_size = vci->io_size;
1177 	vp->card_idx = card_idx;
1178 	vp->window = -1;
1179 
1180 	/* module list only for Compaq device */
1181 	if (gendev == NULL) {
1182 		compaq_net_device = dev;
1183 	}
1184 
1185 	/* PCI-only startup logic */
1186 	if (pdev) {
1187 		/* enable bus-mastering if necessary */
1188 		if (vci->flags & PCI_USES_MASTER)
1189 			pci_set_master(pdev);
1190 
1191 		if (vci->drv_flags & IS_VORTEX) {
1192 			u8 pci_latency;
1193 			u8 new_latency = 248;
1194 
1195 			/* Check the PCI latency value.  On the 3c590 series the latency timer
1196 			   must be set to the maximum value to avoid data corruption that occurs
1197 			   when the timer expires during a transfer.  This bug exists the Vortex
1198 			   chip only. */
1199 			pci_read_config_byte(pdev, PCI_LATENCY_TIMER, &pci_latency);
1200 			if (pci_latency < new_latency) {
1201 				pr_info("%s: Overriding PCI latency timer (CFLT) setting of %d, new value is %d.\n",
1202 					print_name, pci_latency, new_latency);
1203 				pci_write_config_byte(pdev, PCI_LATENCY_TIMER, new_latency);
1204 			}
1205 		}
1206 	}
1207 
1208 	spin_lock_init(&vp->lock);
1209 	spin_lock_init(&vp->mii_lock);
1210 	spin_lock_init(&vp->window_lock);
1211 	vp->gendev = gendev;
1212 	vp->mii.dev = dev;
1213 	vp->mii.mdio_read = mdio_read;
1214 	vp->mii.mdio_write = mdio_write;
1215 	vp->mii.phy_id_mask = 0x1f;
1216 	vp->mii.reg_num_mask = 0x1f;
1217 
1218 	/* Makes sure rings are at least 16 byte aligned. */
1219 	vp->rx_ring = pci_alloc_consistent(pdev, sizeof(struct boom_rx_desc) * RX_RING_SIZE
1220 					   + sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1221 					   &vp->rx_ring_dma);
1222 	retval = -ENOMEM;
1223 	if (!vp->rx_ring)
1224 		goto free_device;
1225 
1226 	vp->tx_ring = (struct boom_tx_desc *)(vp->rx_ring + RX_RING_SIZE);
1227 	vp->tx_ring_dma = vp->rx_ring_dma + sizeof(struct boom_rx_desc) * RX_RING_SIZE;
1228 
1229 	/* if we are a PCI driver, we store info in pdev->driver_data
1230 	 * instead of a module list */
1231 	if (pdev)
1232 		pci_set_drvdata(pdev, dev);
1233 	if (edev)
1234 		eisa_set_drvdata(edev, dev);
1235 
1236 	vp->media_override = 7;
1237 	if (option >= 0) {
1238 		vp->media_override = ((option & 7) == 2)  ?  0  :  option & 15;
1239 		if (vp->media_override != 7)
1240 			vp->medialock = 1;
1241 		vp->full_duplex = (option & 0x200) ? 1 : 0;
1242 		vp->bus_master = (option & 16) ? 1 : 0;
1243 	}
1244 
1245 	if (global_full_duplex > 0)
1246 		vp->full_duplex = 1;
1247 	if (global_enable_wol > 0)
1248 		vp->enable_wol = 1;
1249 
1250 	if (card_idx < MAX_UNITS) {
1251 		if (full_duplex[card_idx] > 0)
1252 			vp->full_duplex = 1;
1253 		if (flow_ctrl[card_idx] > 0)
1254 			vp->flow_ctrl = 1;
1255 		if (enable_wol[card_idx] > 0)
1256 			vp->enable_wol = 1;
1257 	}
1258 
1259 	vp->mii.force_media = vp->full_duplex;
1260 	vp->options = option;
1261 	/* Read the station address from the EEPROM. */
1262 	{
1263 		int base;
1264 
1265 		if (vci->drv_flags & EEPROM_8BIT)
1266 			base = 0x230;
1267 		else if (vci->drv_flags & EEPROM_OFFSET)
1268 			base = EEPROM_Read + 0x30;
1269 		else
1270 			base = EEPROM_Read;
1271 
1272 		for (i = 0; i < 0x40; i++) {
1273 			int timer;
1274 			window_write16(vp, base + i, 0, Wn0EepromCmd);
1275 			/* Pause for at least 162 us. for the read to take place. */
1276 			for (timer = 10; timer >= 0; timer--) {
1277 				udelay(162);
1278 				if ((window_read16(vp, 0, Wn0EepromCmd) &
1279 				     0x8000) == 0)
1280 					break;
1281 			}
1282 			eeprom[i] = window_read16(vp, 0, Wn0EepromData);
1283 		}
1284 	}
1285 	for (i = 0; i < 0x18; i++)
1286 		checksum ^= eeprom[i];
1287 	checksum = (checksum ^ (checksum >> 8)) & 0xff;
1288 	if (checksum != 0x00) {		/* Grrr, needless incompatible change 3Com. */
1289 		while (i < 0x21)
1290 			checksum ^= eeprom[i++];
1291 		checksum = (checksum ^ (checksum >> 8)) & 0xff;
1292 	}
1293 	if ((checksum != 0x00) && !(vci->drv_flags & IS_TORNADO))
1294 		pr_cont(" ***INVALID CHECKSUM %4.4x*** ", checksum);
1295 	for (i = 0; i < 3; i++)
1296 		((__be16 *)dev->dev_addr)[i] = htons(eeprom[i + 10]);
1297 	if (print_info)
1298 		pr_cont(" %pM", dev->dev_addr);
1299 	/* Unfortunately an all zero eeprom passes the checksum and this
1300 	   gets found in the wild in failure cases. Crypto is hard 8) */
1301 	if (!is_valid_ether_addr(dev->dev_addr)) {
1302 		retval = -EINVAL;
1303 		pr_err("*** EEPROM MAC address is invalid.\n");
1304 		goto free_ring;	/* With every pack */
1305 	}
1306 	for (i = 0; i < 6; i++)
1307 		window_write8(vp, dev->dev_addr[i], 2, i);
1308 
1309 	if (print_info)
1310 		pr_cont(", IRQ %d\n", dev->irq);
1311 	/* Tell them about an invalid IRQ. */
1312 	if (dev->irq <= 0 || dev->irq >= nr_irqs)
1313 		pr_warn(" *** Warning: IRQ %d is unlikely to work! ***\n",
1314 			dev->irq);
1315 
1316 	step = (window_read8(vp, 4, Wn4_NetDiag) & 0x1e) >> 1;
1317 	if (print_info) {
1318 		pr_info("  product code %02x%02x rev %02x.%d date %02d-%02d-%02d\n",
1319 			eeprom[6]&0xff, eeprom[6]>>8, eeprom[0x14],
1320 			step, (eeprom[4]>>5) & 15, eeprom[4] & 31, eeprom[4]>>9);
1321 	}
1322 
1323 
1324 	if (pdev && vci->drv_flags & HAS_CB_FNS) {
1325 		unsigned short n;
1326 
1327 		vp->cb_fn_base = pci_iomap(pdev, 2, 0);
1328 		if (!vp->cb_fn_base) {
1329 			retval = -ENOMEM;
1330 			goto free_ring;
1331 		}
1332 
1333 		if (print_info) {
1334 			pr_info("%s: CardBus functions mapped %16.16llx->%p\n",
1335 				print_name,
1336 				(unsigned long long)pci_resource_start(pdev, 2),
1337 				vp->cb_fn_base);
1338 		}
1339 
1340 		n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1341 		if (vp->drv_flags & INVERT_LED_PWR)
1342 			n |= 0x10;
1343 		if (vp->drv_flags & INVERT_MII_PWR)
1344 			n |= 0x4000;
1345 		window_write16(vp, n, 2, Wn2_ResetOptions);
1346 		if (vp->drv_flags & WNO_XCVR_PWR) {
1347 			window_write16(vp, 0x0800, 0, 0);
1348 		}
1349 	}
1350 
1351 	/* Extract our information from the EEPROM data. */
1352 	vp->info1 = eeprom[13];
1353 	vp->info2 = eeprom[15];
1354 	vp->capabilities = eeprom[16];
1355 
1356 	if (vp->info1 & 0x8000) {
1357 		vp->full_duplex = 1;
1358 		if (print_info)
1359 			pr_info("Full duplex capable\n");
1360 	}
1361 
1362 	{
1363 		static const char * const ram_split[] = {"5:3", "3:1", "1:1", "3:5"};
1364 		unsigned int config;
1365 		vp->available_media = window_read16(vp, 3, Wn3_Options);
1366 		if ((vp->available_media & 0xff) == 0)		/* Broken 3c916 */
1367 			vp->available_media = 0x40;
1368 		config = window_read32(vp, 3, Wn3_Config);
1369 		if (print_info) {
1370 			pr_debug("  Internal config register is %4.4x, transceivers %#x.\n",
1371 				config, window_read16(vp, 3, Wn3_Options));
1372 			pr_info("  %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
1373 				   8 << RAM_SIZE(config),
1374 				   RAM_WIDTH(config) ? "word" : "byte",
1375 				   ram_split[RAM_SPLIT(config)],
1376 				   AUTOSELECT(config) ? "autoselect/" : "",
1377 				   XCVR(config) > XCVR_ExtMII ? "<invalid transceiver>" :
1378 				   media_tbl[XCVR(config)].name);
1379 		}
1380 		vp->default_media = XCVR(config);
1381 		if (vp->default_media == XCVR_NWAY)
1382 			vp->has_nway = 1;
1383 		vp->autoselect = AUTOSELECT(config);
1384 	}
1385 
1386 	if (vp->media_override != 7) {
1387 		pr_info("%s:  Media override to transceiver type %d (%s).\n",
1388 				print_name, vp->media_override,
1389 				media_tbl[vp->media_override].name);
1390 		dev->if_port = vp->media_override;
1391 	} else
1392 		dev->if_port = vp->default_media;
1393 
1394 	if ((vp->available_media & 0x40) || (vci->drv_flags & HAS_NWAY) ||
1395 		dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1396 		int phy, phy_idx = 0;
1397 		mii_preamble_required++;
1398 		if (vp->drv_flags & EXTRA_PREAMBLE)
1399 			mii_preamble_required++;
1400 		mdio_sync(vp, 32);
1401 		mdio_read(dev, 24, MII_BMSR);
1402 		for (phy = 0; phy < 32 && phy_idx < 1; phy++) {
1403 			int mii_status, phyx;
1404 
1405 			/*
1406 			 * For the 3c905CX we look at index 24 first, because it bogusly
1407 			 * reports an external PHY at all indices
1408 			 */
1409 			if (phy == 0)
1410 				phyx = 24;
1411 			else if (phy <= 24)
1412 				phyx = phy - 1;
1413 			else
1414 				phyx = phy;
1415 			mii_status = mdio_read(dev, phyx, MII_BMSR);
1416 			if (mii_status  &&  mii_status != 0xffff) {
1417 				vp->phys[phy_idx++] = phyx;
1418 				if (print_info) {
1419 					pr_info("  MII transceiver found at address %d, status %4x.\n",
1420 						phyx, mii_status);
1421 				}
1422 				if ((mii_status & 0x0040) == 0)
1423 					mii_preamble_required++;
1424 			}
1425 		}
1426 		mii_preamble_required--;
1427 		if (phy_idx == 0) {
1428 			pr_warn("  ***WARNING*** No MII transceivers found!\n");
1429 			vp->phys[0] = 24;
1430 		} else {
1431 			vp->advertising = mdio_read(dev, vp->phys[0], MII_ADVERTISE);
1432 			if (vp->full_duplex) {
1433 				/* Only advertise the FD media types. */
1434 				vp->advertising &= ~0x02A0;
1435 				mdio_write(dev, vp->phys[0], 4, vp->advertising);
1436 			}
1437 		}
1438 		vp->mii.phy_id = vp->phys[0];
1439 	}
1440 
1441 	if (vp->capabilities & CapBusMaster) {
1442 		vp->full_bus_master_tx = 1;
1443 		if (print_info) {
1444 			pr_info("  Enabling bus-master transmits and %s receives.\n",
1445 			(vp->info2 & 1) ? "early" : "whole-frame" );
1446 		}
1447 		vp->full_bus_master_rx = (vp->info2 & 1) ? 1 : 2;
1448 		vp->bus_master = 0;		/* AKPM: vortex only */
1449 	}
1450 
1451 	/* The 3c59x-specific entries in the device structure. */
1452 	if (vp->full_bus_master_tx) {
1453 		dev->netdev_ops = &boomrang_netdev_ops;
1454 		/* Actually, it still should work with iommu. */
1455 		if (card_idx < MAX_UNITS &&
1456 		    ((hw_checksums[card_idx] == -1 && (vp->drv_flags & HAS_HWCKSM)) ||
1457 				hw_checksums[card_idx] == 1)) {
1458 			dev->features |= NETIF_F_IP_CSUM | NETIF_F_SG;
1459 		}
1460 	} else
1461 		dev->netdev_ops =  &vortex_netdev_ops;
1462 
1463 	if (print_info) {
1464 		pr_info("%s: scatter/gather %sabled. h/w checksums %sabled\n",
1465 				print_name,
1466 				(dev->features & NETIF_F_SG) ? "en":"dis",
1467 				(dev->features & NETIF_F_IP_CSUM) ? "en":"dis");
1468 	}
1469 
1470 	dev->ethtool_ops = &vortex_ethtool_ops;
1471 	dev->watchdog_timeo = (watchdog * HZ) / 1000;
1472 
1473 	if (pdev) {
1474 		vp->pm_state_valid = 1;
1475 		pci_save_state(pdev);
1476  		acpi_set_WOL(dev);
1477 	}
1478 	retval = register_netdev(dev);
1479 	if (retval == 0)
1480 		return 0;
1481 
1482 free_ring:
1483 	pci_free_consistent(pdev,
1484 						sizeof(struct boom_rx_desc) * RX_RING_SIZE
1485 							+ sizeof(struct boom_tx_desc) * TX_RING_SIZE,
1486 						vp->rx_ring,
1487 						vp->rx_ring_dma);
1488 free_device:
1489 	free_netdev(dev);
1490 	pr_err(PFX "vortex_probe1 fails.  Returns %d\n", retval);
1491 out:
1492 	return retval;
1493 }
1494 
1495 static void
1496 issue_and_wait(struct net_device *dev, int cmd)
1497 {
1498 	struct vortex_private *vp = netdev_priv(dev);
1499 	void __iomem *ioaddr = vp->ioaddr;
1500 	int i;
1501 
1502 	iowrite16(cmd, ioaddr + EL3_CMD);
1503 	for (i = 0; i < 2000; i++) {
1504 		if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
1505 			return;
1506 	}
1507 
1508 	/* OK, that didn't work.  Do it the slow way.  One second */
1509 	for (i = 0; i < 100000; i++) {
1510 		if (!(ioread16(ioaddr + EL3_STATUS) & CmdInProgress)) {
1511 			if (vortex_debug > 1)
1512 				pr_info("%s: command 0x%04x took %d usecs\n",
1513 					   dev->name, cmd, i * 10);
1514 			return;
1515 		}
1516 		udelay(10);
1517 	}
1518 	pr_err("%s: command 0x%04x did not complete! Status=0x%x\n",
1519 			   dev->name, cmd, ioread16(ioaddr + EL3_STATUS));
1520 }
1521 
1522 static void
1523 vortex_set_duplex(struct net_device *dev)
1524 {
1525 	struct vortex_private *vp = netdev_priv(dev);
1526 
1527 	pr_info("%s:  setting %s-duplex.\n",
1528 		dev->name, (vp->full_duplex) ? "full" : "half");
1529 
1530 	/* Set the full-duplex bit. */
1531 	window_write16(vp,
1532 		       ((vp->info1 & 0x8000) || vp->full_duplex ? 0x20 : 0) |
1533 		       (vp->large_frames ? 0x40 : 0) |
1534 		       ((vp->full_duplex && vp->flow_ctrl && vp->partner_flow_ctrl) ?
1535 			0x100 : 0),
1536 		       3, Wn3_MAC_Ctrl);
1537 }
1538 
1539 static void vortex_check_media(struct net_device *dev, unsigned int init)
1540 {
1541 	struct vortex_private *vp = netdev_priv(dev);
1542 	unsigned int ok_to_print = 0;
1543 
1544 	if (vortex_debug > 3)
1545 		ok_to_print = 1;
1546 
1547 	if (mii_check_media(&vp->mii, ok_to_print, init)) {
1548 		vp->full_duplex = vp->mii.full_duplex;
1549 		vortex_set_duplex(dev);
1550 	} else if (init) {
1551 		vortex_set_duplex(dev);
1552 	}
1553 }
1554 
1555 static int
1556 vortex_up(struct net_device *dev)
1557 {
1558 	struct vortex_private *vp = netdev_priv(dev);
1559 	void __iomem *ioaddr = vp->ioaddr;
1560 	unsigned int config;
1561 	int i, mii_reg1, mii_reg5, err = 0;
1562 
1563 	if (VORTEX_PCI(vp)) {
1564 		pci_set_power_state(VORTEX_PCI(vp), PCI_D0);	/* Go active */
1565 		if (vp->pm_state_valid)
1566 			pci_restore_state(VORTEX_PCI(vp));
1567 		err = pci_enable_device(VORTEX_PCI(vp));
1568 		if (err) {
1569 			pr_warn("%s: Could not enable device\n", dev->name);
1570 			goto err_out;
1571 		}
1572 	}
1573 
1574 	/* Before initializing select the active media port. */
1575 	config = window_read32(vp, 3, Wn3_Config);
1576 
1577 	if (vp->media_override != 7) {
1578 		pr_info("%s: Media override to transceiver %d (%s).\n",
1579 			   dev->name, vp->media_override,
1580 			   media_tbl[vp->media_override].name);
1581 		dev->if_port = vp->media_override;
1582 	} else if (vp->autoselect) {
1583 		if (vp->has_nway) {
1584 			if (vortex_debug > 1)
1585 				pr_info("%s: using NWAY device table, not %d\n",
1586 								dev->name, dev->if_port);
1587 			dev->if_port = XCVR_NWAY;
1588 		} else {
1589 			/* Find first available media type, starting with 100baseTx. */
1590 			dev->if_port = XCVR_100baseTx;
1591 			while (! (vp->available_media & media_tbl[dev->if_port].mask))
1592 				dev->if_port = media_tbl[dev->if_port].next;
1593 			if (vortex_debug > 1)
1594 				pr_info("%s: first available media type: %s\n",
1595 					dev->name, media_tbl[dev->if_port].name);
1596 		}
1597 	} else {
1598 		dev->if_port = vp->default_media;
1599 		if (vortex_debug > 1)
1600 			pr_info("%s: using default media %s\n",
1601 				dev->name, media_tbl[dev->if_port].name);
1602 	}
1603 
1604 	init_timer(&vp->timer);
1605 	vp->timer.expires = RUN_AT(media_tbl[dev->if_port].wait);
1606 	vp->timer.data = (unsigned long)dev;
1607 	vp->timer.function = vortex_timer;		/* timer handler */
1608 	add_timer(&vp->timer);
1609 
1610 	init_timer(&vp->rx_oom_timer);
1611 	vp->rx_oom_timer.data = (unsigned long)dev;
1612 	vp->rx_oom_timer.function = rx_oom_timer;
1613 
1614 	if (vortex_debug > 1)
1615 		pr_debug("%s: Initial media type %s.\n",
1616 			   dev->name, media_tbl[dev->if_port].name);
1617 
1618 	vp->full_duplex = vp->mii.force_media;
1619 	config = BFINS(config, dev->if_port, 20, 4);
1620 	if (vortex_debug > 6)
1621 		pr_debug("vortex_up(): writing 0x%x to InternalConfig\n", config);
1622 	window_write32(vp, config, 3, Wn3_Config);
1623 
1624 	if (dev->if_port == XCVR_MII || dev->if_port == XCVR_NWAY) {
1625 		mii_reg1 = mdio_read(dev, vp->phys[0], MII_BMSR);
1626 		mii_reg5 = mdio_read(dev, vp->phys[0], MII_LPA);
1627 		vp->partner_flow_ctrl = ((mii_reg5 & 0x0400) != 0);
1628 		vp->mii.full_duplex = vp->full_duplex;
1629 
1630 		vortex_check_media(dev, 1);
1631 	}
1632 	else
1633 		vortex_set_duplex(dev);
1634 
1635 	issue_and_wait(dev, TxReset);
1636 	/*
1637 	 * Don't reset the PHY - that upsets autonegotiation during DHCP operations.
1638 	 */
1639 	issue_and_wait(dev, RxReset|0x04);
1640 
1641 
1642 	iowrite16(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
1643 
1644 	if (vortex_debug > 1) {
1645 		pr_debug("%s: vortex_up() irq %d media status %4.4x.\n",
1646 			   dev->name, dev->irq, window_read16(vp, 4, Wn4_Media));
1647 	}
1648 
1649 	/* Set the station address and mask in window 2 each time opened. */
1650 	for (i = 0; i < 6; i++)
1651 		window_write8(vp, dev->dev_addr[i], 2, i);
1652 	for (; i < 12; i+=2)
1653 		window_write16(vp, 0, 2, i);
1654 
1655 	if (vp->cb_fn_base) {
1656 		unsigned short n = window_read16(vp, 2, Wn2_ResetOptions) & ~0x4010;
1657 		if (vp->drv_flags & INVERT_LED_PWR)
1658 			n |= 0x10;
1659 		if (vp->drv_flags & INVERT_MII_PWR)
1660 			n |= 0x4000;
1661 		window_write16(vp, n, 2, Wn2_ResetOptions);
1662 	}
1663 
1664 	if (dev->if_port == XCVR_10base2)
1665 		/* Start the thinnet transceiver. We should really wait 50ms...*/
1666 		iowrite16(StartCoax, ioaddr + EL3_CMD);
1667 	if (dev->if_port != XCVR_NWAY) {
1668 		window_write16(vp,
1669 			       (window_read16(vp, 4, Wn4_Media) &
1670 				~(Media_10TP|Media_SQE)) |
1671 			       media_tbl[dev->if_port].media_bits,
1672 			       4, Wn4_Media);
1673 	}
1674 
1675 	/* Switch to the stats window, and clear all stats by reading. */
1676 	iowrite16(StatsDisable, ioaddr + EL3_CMD);
1677 	for (i = 0; i < 10; i++)
1678 		window_read8(vp, 6, i);
1679 	window_read16(vp, 6, 10);
1680 	window_read16(vp, 6, 12);
1681 	/* New: On the Vortex we must also clear the BadSSD counter. */
1682 	window_read8(vp, 4, 12);
1683 	/* ..and on the Boomerang we enable the extra statistics bits. */
1684 	window_write16(vp, 0x0040, 4, Wn4_NetDiag);
1685 
1686 	if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1687 		vp->cur_rx = vp->dirty_rx = 0;
1688 		/* Initialize the RxEarly register as recommended. */
1689 		iowrite16(SetRxThreshold + (1536>>2), ioaddr + EL3_CMD);
1690 		iowrite32(0x0020, ioaddr + PktStatus);
1691 		iowrite32(vp->rx_ring_dma, ioaddr + UpListPtr);
1692 	}
1693 	if (vp->full_bus_master_tx) { 		/* Boomerang bus master Tx. */
1694 		vp->cur_tx = vp->dirty_tx = 0;
1695 		if (vp->drv_flags & IS_BOOMERANG)
1696 			iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold); /* Room for a packet. */
1697 		/* Clear the Rx, Tx rings. */
1698 		for (i = 0; i < RX_RING_SIZE; i++)	/* AKPM: this is done in vortex_open, too */
1699 			vp->rx_ring[i].status = 0;
1700 		for (i = 0; i < TX_RING_SIZE; i++)
1701 			vp->tx_skbuff[i] = NULL;
1702 		iowrite32(0, ioaddr + DownListPtr);
1703 	}
1704 	/* Set receiver mode: presumably accept b-case and phys addr only. */
1705 	set_rx_mode(dev);
1706 	/* enable 802.1q tagged frames */
1707 	set_8021q_mode(dev, 1);
1708 	iowrite16(StatsEnable, ioaddr + EL3_CMD); /* Turn on statistics. */
1709 
1710 	iowrite16(RxEnable, ioaddr + EL3_CMD); /* Enable the receiver. */
1711 	iowrite16(TxEnable, ioaddr + EL3_CMD); /* Enable transmitter. */
1712 	/* Allow status bits to be seen. */
1713 	vp->status_enable = SetStatusEnb | HostError|IntReq|StatsFull|TxComplete|
1714 		(vp->full_bus_master_tx ? DownComplete : TxAvailable) |
1715 		(vp->full_bus_master_rx ? UpComplete : RxComplete) |
1716 		(vp->bus_master ? DMADone : 0);
1717 	vp->intr_enable = SetIntrEnb | IntLatch | TxAvailable |
1718 		(vp->full_bus_master_rx ? 0 : RxComplete) |
1719 		StatsFull | HostError | TxComplete | IntReq
1720 		| (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete;
1721 	iowrite16(vp->status_enable, ioaddr + EL3_CMD);
1722 	/* Ack all pending events, and set active indicator mask. */
1723 	iowrite16(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
1724 		 ioaddr + EL3_CMD);
1725 	iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
1726 	if (vp->cb_fn_base)			/* The PCMCIA people are idiots.  */
1727 		iowrite32(0x8000, vp->cb_fn_base + 4);
1728 	netif_start_queue (dev);
1729 	netdev_reset_queue(dev);
1730 err_out:
1731 	return err;
1732 }
1733 
1734 static int
1735 vortex_open(struct net_device *dev)
1736 {
1737 	struct vortex_private *vp = netdev_priv(dev);
1738 	int i;
1739 	int retval;
1740 
1741 	/* Use the now-standard shared IRQ implementation. */
1742 	if ((retval = request_irq(dev->irq, vp->full_bus_master_rx ?
1743 				boomerang_interrupt : vortex_interrupt, IRQF_SHARED, dev->name, dev))) {
1744 		pr_err("%s: Could not reserve IRQ %d\n", dev->name, dev->irq);
1745 		goto err;
1746 	}
1747 
1748 	if (vp->full_bus_master_rx) { /* Boomerang bus master. */
1749 		if (vortex_debug > 2)
1750 			pr_debug("%s:  Filling in the Rx ring.\n", dev->name);
1751 		for (i = 0; i < RX_RING_SIZE; i++) {
1752 			struct sk_buff *skb;
1753 			vp->rx_ring[i].next = cpu_to_le32(vp->rx_ring_dma + sizeof(struct boom_rx_desc) * (i+1));
1754 			vp->rx_ring[i].status = 0;	/* Clear complete bit. */
1755 			vp->rx_ring[i].length = cpu_to_le32(PKT_BUF_SZ | LAST_FRAG);
1756 
1757 			skb = __netdev_alloc_skb(dev, PKT_BUF_SZ + NET_IP_ALIGN,
1758 						 GFP_KERNEL);
1759 			vp->rx_skbuff[i] = skb;
1760 			if (skb == NULL)
1761 				break;			/* Bad news!  */
1762 
1763 			skb_reserve(skb, NET_IP_ALIGN);	/* Align IP on 16 byte boundaries */
1764 			vp->rx_ring[i].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
1765 		}
1766 		if (i != RX_RING_SIZE) {
1767 			pr_emerg("%s: no memory for rx ring\n", dev->name);
1768 			retval = -ENOMEM;
1769 			goto err_free_skb;
1770 		}
1771 		/* Wrap the ring. */
1772 		vp->rx_ring[i-1].next = cpu_to_le32(vp->rx_ring_dma);
1773 	}
1774 
1775 	retval = vortex_up(dev);
1776 	if (!retval)
1777 		goto out;
1778 
1779 err_free_skb:
1780 	for (i = 0; i < RX_RING_SIZE; i++) {
1781 		if (vp->rx_skbuff[i]) {
1782 			dev_kfree_skb(vp->rx_skbuff[i]);
1783 			vp->rx_skbuff[i] = NULL;
1784 		}
1785 	}
1786 	free_irq(dev->irq, dev);
1787 err:
1788 	if (vortex_debug > 1)
1789 		pr_err("%s: vortex_open() fails: returning %d\n", dev->name, retval);
1790 out:
1791 	return retval;
1792 }
1793 
1794 static void
1795 vortex_timer(unsigned long data)
1796 {
1797 	struct net_device *dev = (struct net_device *)data;
1798 	struct vortex_private *vp = netdev_priv(dev);
1799 	void __iomem *ioaddr = vp->ioaddr;
1800 	int next_tick = 60*HZ;
1801 	int ok = 0;
1802 	int media_status;
1803 
1804 	if (vortex_debug > 2) {
1805 		pr_debug("%s: Media selection timer tick happened, %s.\n",
1806 			   dev->name, media_tbl[dev->if_port].name);
1807 		pr_debug("dev->watchdog_timeo=%d\n", dev->watchdog_timeo);
1808 	}
1809 
1810 	media_status = window_read16(vp, 4, Wn4_Media);
1811 	switch (dev->if_port) {
1812 	case XCVR_10baseT:  case XCVR_100baseTx:  case XCVR_100baseFx:
1813 		if (media_status & Media_LnkBeat) {
1814 			netif_carrier_on(dev);
1815 			ok = 1;
1816 			if (vortex_debug > 1)
1817 				pr_debug("%s: Media %s has link beat, %x.\n",
1818 					   dev->name, media_tbl[dev->if_port].name, media_status);
1819 		} else {
1820 			netif_carrier_off(dev);
1821 			if (vortex_debug > 1) {
1822 				pr_debug("%s: Media %s has no link beat, %x.\n",
1823 					   dev->name, media_tbl[dev->if_port].name, media_status);
1824 			}
1825 		}
1826 		break;
1827 	case XCVR_MII: case XCVR_NWAY:
1828 		{
1829 			ok = 1;
1830 			vortex_check_media(dev, 0);
1831 		}
1832 		break;
1833 	  default:					/* Other media types handled by Tx timeouts. */
1834 		if (vortex_debug > 1)
1835 		  pr_debug("%s: Media %s has no indication, %x.\n",
1836 				 dev->name, media_tbl[dev->if_port].name, media_status);
1837 		ok = 1;
1838 	}
1839 
1840 	if (dev->flags & IFF_SLAVE || !netif_carrier_ok(dev))
1841 		next_tick = 5*HZ;
1842 
1843 	if (vp->medialock)
1844 		goto leave_media_alone;
1845 
1846 	if (!ok) {
1847 		unsigned int config;
1848 
1849 		spin_lock_irq(&vp->lock);
1850 
1851 		do {
1852 			dev->if_port = media_tbl[dev->if_port].next;
1853 		} while ( ! (vp->available_media & media_tbl[dev->if_port].mask));
1854 		if (dev->if_port == XCVR_Default) { /* Go back to default. */
1855 		  dev->if_port = vp->default_media;
1856 		  if (vortex_debug > 1)
1857 			pr_debug("%s: Media selection failing, using default %s port.\n",
1858 				   dev->name, media_tbl[dev->if_port].name);
1859 		} else {
1860 			if (vortex_debug > 1)
1861 				pr_debug("%s: Media selection failed, now trying %s port.\n",
1862 					   dev->name, media_tbl[dev->if_port].name);
1863 			next_tick = media_tbl[dev->if_port].wait;
1864 		}
1865 		window_write16(vp,
1866 			       (media_status & ~(Media_10TP|Media_SQE)) |
1867 			       media_tbl[dev->if_port].media_bits,
1868 			       4, Wn4_Media);
1869 
1870 		config = window_read32(vp, 3, Wn3_Config);
1871 		config = BFINS(config, dev->if_port, 20, 4);
1872 		window_write32(vp, config, 3, Wn3_Config);
1873 
1874 		iowrite16(dev->if_port == XCVR_10base2 ? StartCoax : StopCoax,
1875 			 ioaddr + EL3_CMD);
1876 		if (vortex_debug > 1)
1877 			pr_debug("wrote 0x%08x to Wn3_Config\n", config);
1878 		/* AKPM: FIXME: Should reset Rx & Tx here.  P60 of 3c90xc.pdf */
1879 
1880 		spin_unlock_irq(&vp->lock);
1881 	}
1882 
1883 leave_media_alone:
1884 	if (vortex_debug > 2)
1885 	  pr_debug("%s: Media selection timer finished, %s.\n",
1886 			 dev->name, media_tbl[dev->if_port].name);
1887 
1888 	mod_timer(&vp->timer, RUN_AT(next_tick));
1889 	if (vp->deferred)
1890 		iowrite16(FakeIntr, ioaddr + EL3_CMD);
1891 }
1892 
1893 static void vortex_tx_timeout(struct net_device *dev)
1894 {
1895 	struct vortex_private *vp = netdev_priv(dev);
1896 	void __iomem *ioaddr = vp->ioaddr;
1897 
1898 	pr_err("%s: transmit timed out, tx_status %2.2x status %4.4x.\n",
1899 		   dev->name, ioread8(ioaddr + TxStatus),
1900 		   ioread16(ioaddr + EL3_STATUS));
1901 	pr_err("  diagnostics: net %04x media %04x dma %08x fifo %04x\n",
1902 			window_read16(vp, 4, Wn4_NetDiag),
1903 			window_read16(vp, 4, Wn4_Media),
1904 			ioread32(ioaddr + PktStatus),
1905 			window_read16(vp, 4, Wn4_FIFODiag));
1906 	/* Slight code bloat to be user friendly. */
1907 	if ((ioread8(ioaddr + TxStatus) & 0x88) == 0x88)
1908 		pr_err("%s: Transmitter encountered 16 collisions --"
1909 			   " network cable problem?\n", dev->name);
1910 	if (ioread16(ioaddr + EL3_STATUS) & IntLatch) {
1911 		pr_err("%s: Interrupt posted but not delivered --"
1912 			   " IRQ blocked by another device?\n", dev->name);
1913 		/* Bad idea here.. but we might as well handle a few events. */
1914 		{
1915 			/*
1916 			 * Block interrupts because vortex_interrupt does a bare spin_lock()
1917 			 */
1918 			unsigned long flags;
1919 			local_irq_save(flags);
1920 			if (vp->full_bus_master_tx)
1921 				boomerang_interrupt(dev->irq, dev);
1922 			else
1923 				vortex_interrupt(dev->irq, dev);
1924 			local_irq_restore(flags);
1925 		}
1926 	}
1927 
1928 	if (vortex_debug > 0)
1929 		dump_tx_ring(dev);
1930 
1931 	issue_and_wait(dev, TxReset);
1932 
1933 	dev->stats.tx_errors++;
1934 	if (vp->full_bus_master_tx) {
1935 		pr_debug("%s: Resetting the Tx ring pointer.\n", dev->name);
1936 		if (vp->cur_tx - vp->dirty_tx > 0  &&  ioread32(ioaddr + DownListPtr) == 0)
1937 			iowrite32(vp->tx_ring_dma + (vp->dirty_tx % TX_RING_SIZE) * sizeof(struct boom_tx_desc),
1938 				 ioaddr + DownListPtr);
1939 		if (vp->cur_tx - vp->dirty_tx < TX_RING_SIZE) {
1940 			netif_wake_queue (dev);
1941 			netdev_reset_queue (dev);
1942 		}
1943 		if (vp->drv_flags & IS_BOOMERANG)
1944 			iowrite8(PKT_BUF_SZ>>8, ioaddr + TxFreeThreshold);
1945 		iowrite16(DownUnstall, ioaddr + EL3_CMD);
1946 	} else {
1947 		dev->stats.tx_dropped++;
1948 		netif_wake_queue(dev);
1949 		netdev_reset_queue(dev);
1950 	}
1951 	/* Issue Tx Enable */
1952 	iowrite16(TxEnable, ioaddr + EL3_CMD);
1953 	dev->trans_start = jiffies; /* prevent tx timeout */
1954 }
1955 
1956 /*
1957  * Handle uncommon interrupt sources.  This is a separate routine to minimize
1958  * the cache impact.
1959  */
1960 static void
1961 vortex_error(struct net_device *dev, int status)
1962 {
1963 	struct vortex_private *vp = netdev_priv(dev);
1964 	void __iomem *ioaddr = vp->ioaddr;
1965 	int do_tx_reset = 0, reset_mask = 0;
1966 	unsigned char tx_status = 0;
1967 
1968 	if (vortex_debug > 2) {
1969 		pr_err("%s: vortex_error(), status=0x%x\n", dev->name, status);
1970 	}
1971 
1972 	if (status & TxComplete) {			/* Really "TxError" for us. */
1973 		tx_status = ioread8(ioaddr + TxStatus);
1974 		/* Presumably a tx-timeout. We must merely re-enable. */
1975 		if (vortex_debug > 2 ||
1976 		    (tx_status != 0x88 && vortex_debug > 0)) {
1977 			pr_err("%s: Transmit error, Tx status register %2.2x.\n",
1978 				   dev->name, tx_status);
1979 			if (tx_status == 0x82) {
1980 				pr_err("Probably a duplex mismatch.  See "
1981 						"Documentation/networking/vortex.txt\n");
1982 			}
1983 			dump_tx_ring(dev);
1984 		}
1985 		if (tx_status & 0x14)  dev->stats.tx_fifo_errors++;
1986 		if (tx_status & 0x38)  dev->stats.tx_aborted_errors++;
1987 		if (tx_status & 0x08)  vp->xstats.tx_max_collisions++;
1988 		iowrite8(0, ioaddr + TxStatus);
1989 		if (tx_status & 0x30) {			/* txJabber or txUnderrun */
1990 			do_tx_reset = 1;
1991 		} else if ((tx_status & 0x08) && (vp->drv_flags & MAX_COLLISION_RESET))  {	/* maxCollisions */
1992 			do_tx_reset = 1;
1993 			reset_mask = 0x0108;		/* Reset interface logic, but not download logic */
1994 		} else {				/* Merely re-enable the transmitter. */
1995 			iowrite16(TxEnable, ioaddr + EL3_CMD);
1996 		}
1997 	}
1998 
1999 	if (status & RxEarly)				/* Rx early is unused. */
2000 		iowrite16(AckIntr | RxEarly, ioaddr + EL3_CMD);
2001 
2002 	if (status & StatsFull) {			/* Empty statistics. */
2003 		static int DoneDidThat;
2004 		if (vortex_debug > 4)
2005 			pr_debug("%s: Updating stats.\n", dev->name);
2006 		update_stats(ioaddr, dev);
2007 		/* HACK: Disable statistics as an interrupt source. */
2008 		/* This occurs when we have the wrong media type! */
2009 		if (DoneDidThat == 0  &&
2010 			ioread16(ioaddr + EL3_STATUS) & StatsFull) {
2011 			pr_warn("%s: Updating statistics failed, disabling stats as an interrupt source\n",
2012 				dev->name);
2013 			iowrite16(SetIntrEnb |
2014 				  (window_read16(vp, 5, 10) & ~StatsFull),
2015 				  ioaddr + EL3_CMD);
2016 			vp->intr_enable &= ~StatsFull;
2017 			DoneDidThat++;
2018 		}
2019 	}
2020 	if (status & IntReq) {		/* Restore all interrupt sources.  */
2021 		iowrite16(vp->status_enable, ioaddr + EL3_CMD);
2022 		iowrite16(vp->intr_enable, ioaddr + EL3_CMD);
2023 	}
2024 	if (status & HostError) {
2025 		u16 fifo_diag;
2026 		fifo_diag = window_read16(vp, 4, Wn4_FIFODiag);
2027 		pr_err("%s: Host error, FIFO diagnostic register %4.4x.\n",
2028 			   dev->name, fifo_diag);
2029 		/* Adapter failure requires Tx/Rx reset and reinit. */
2030 		if (vp->full_bus_master_tx) {
2031 			int bus_status = ioread32(ioaddr + PktStatus);
2032 			/* 0x80000000 PCI master abort. */
2033 			/* 0x40000000 PCI target abort. */
2034 			if (vortex_debug)
2035 				pr_err("%s: PCI bus error, bus status %8.8x\n", dev->name, bus_status);
2036 
2037 			/* In this case, blow the card away */
2038 			/* Must not enter D3 or we can't legally issue the reset! */
2039 			vortex_down(dev, 0);
2040 			issue_and_wait(dev, TotalReset | 0xff);
2041 			vortex_up(dev);		/* AKPM: bug.  vortex_up() assumes that the rx ring is full. It may not be. */
2042 		} else if (fifo_diag & 0x0400)
2043 			do_tx_reset = 1;
2044 		if (fifo_diag & 0x3000) {
2045 			/* Reset Rx fifo and upload logic */
2046 			issue_and_wait(dev, RxReset|0x07);
2047 			/* Set the Rx filter to the current state. */
2048 			set_rx_mode(dev);
2049 			/* enable 802.1q VLAN tagged frames */
2050 			set_8021q_mode(dev, 1);
2051 			iowrite16(RxEnable, ioaddr + EL3_CMD); /* Re-enable the receiver. */
2052 			iowrite16(AckIntr | HostError, ioaddr + EL3_CMD);
2053 		}
2054 	}
2055 
2056 	if (do_tx_reset) {
2057 		issue_and_wait(dev, TxReset|reset_mask);
2058 		iowrite16(TxEnable, ioaddr + EL3_CMD);
2059 		if (!vp->full_bus_master_tx)
2060 			netif_wake_queue(dev);
2061 	}
2062 }
2063 
2064 static netdev_tx_t
2065 vortex_start_xmit(struct sk_buff *skb, struct net_device *dev)
2066 {
2067 	struct vortex_private *vp = netdev_priv(dev);
2068 	void __iomem *ioaddr = vp->ioaddr;
2069 	int skblen = skb->len;
2070 
2071 	/* Put out the doubleword header... */
2072 	iowrite32(skb->len, ioaddr + TX_FIFO);
2073 	if (vp->bus_master) {
2074 		/* Set the bus-master controller to transfer the packet. */
2075 		int len = (skb->len + 3) & ~3;
2076 		vp->tx_skb_dma = pci_map_single(VORTEX_PCI(vp), skb->data, len,
2077 						PCI_DMA_TODEVICE);
2078 		spin_lock_irq(&vp->window_lock);
2079 		window_set(vp, 7);
2080 		iowrite32(vp->tx_skb_dma, ioaddr + Wn7_MasterAddr);
2081 		iowrite16(len, ioaddr + Wn7_MasterLen);
2082 		spin_unlock_irq(&vp->window_lock);
2083 		vp->tx_skb = skb;
2084 		skb_tx_timestamp(skb);
2085 		iowrite16(StartDMADown, ioaddr + EL3_CMD);
2086 		/* netif_wake_queue() will be called at the DMADone interrupt. */
2087 	} else {
2088 		/* ... and the packet rounded to a doubleword. */
2089 		skb_tx_timestamp(skb);
2090 		iowrite32_rep(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
2091 		dev_consume_skb_any (skb);
2092 		if (ioread16(ioaddr + TxFree) > 1536) {
2093 			netif_start_queue (dev);	/* AKPM: redundant? */
2094 		} else {
2095 			/* Interrupt us when the FIFO has room for max-sized packet. */
2096 			netif_stop_queue(dev);
2097 			iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2098 		}
2099 	}
2100 
2101 	netdev_sent_queue(dev, skblen);
2102 
2103 	/* Clear the Tx status stack. */
2104 	{
2105 		int tx_status;
2106 		int i = 32;
2107 
2108 		while (--i > 0	&&	(tx_status = ioread8(ioaddr + TxStatus)) > 0) {
2109 			if (tx_status & 0x3C) {		/* A Tx-disabling error occurred.  */
2110 				if (vortex_debug > 2)
2111 				  pr_debug("%s: Tx error, status %2.2x.\n",
2112 						 dev->name, tx_status);
2113 				if (tx_status & 0x04) dev->stats.tx_fifo_errors++;
2114 				if (tx_status & 0x38) dev->stats.tx_aborted_errors++;
2115 				if (tx_status & 0x30) {
2116 					issue_and_wait(dev, TxReset);
2117 				}
2118 				iowrite16(TxEnable, ioaddr + EL3_CMD);
2119 			}
2120 			iowrite8(0x00, ioaddr + TxStatus); /* Pop the status stack. */
2121 		}
2122 	}
2123 	return NETDEV_TX_OK;
2124 }
2125 
2126 static netdev_tx_t
2127 boomerang_start_xmit(struct sk_buff *skb, struct net_device *dev)
2128 {
2129 	struct vortex_private *vp = netdev_priv(dev);
2130 	void __iomem *ioaddr = vp->ioaddr;
2131 	/* Calculate the next Tx descriptor entry. */
2132 	int entry = vp->cur_tx % TX_RING_SIZE;
2133 	int skblen = skb->len;
2134 	struct boom_tx_desc *prev_entry = &vp->tx_ring[(vp->cur_tx-1) % TX_RING_SIZE];
2135 	unsigned long flags;
2136 	dma_addr_t dma_addr;
2137 
2138 	if (vortex_debug > 6) {
2139 		pr_debug("boomerang_start_xmit()\n");
2140 		pr_debug("%s: Trying to send a packet, Tx index %d.\n",
2141 			   dev->name, vp->cur_tx);
2142 	}
2143 
2144 	/*
2145 	 * We can't allow a recursion from our interrupt handler back into the
2146 	 * tx routine, as they take the same spin lock, and that causes
2147 	 * deadlock.  Just return NETDEV_TX_BUSY and let the stack try again in
2148 	 * a bit
2149 	 */
2150 	if (vp->handling_irq)
2151 		return NETDEV_TX_BUSY;
2152 
2153 	if (vp->cur_tx - vp->dirty_tx >= TX_RING_SIZE) {
2154 		if (vortex_debug > 0)
2155 			pr_warn("%s: BUG! Tx Ring full, refusing to send buffer\n",
2156 				dev->name);
2157 		netif_stop_queue(dev);
2158 		return NETDEV_TX_BUSY;
2159 	}
2160 
2161 	vp->tx_skbuff[entry] = skb;
2162 
2163 	vp->tx_ring[entry].next = 0;
2164 #if DO_ZEROCOPY
2165 	if (skb->ip_summed != CHECKSUM_PARTIAL)
2166 			vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2167 	else
2168 			vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded | AddTCPChksum | AddUDPChksum);
2169 
2170 	if (!skb_shinfo(skb)->nr_frags) {
2171 		dma_addr = pci_map_single(VORTEX_PCI(vp), skb->data, skb->len,
2172 					  PCI_DMA_TODEVICE);
2173 		if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr))
2174 			goto out_dma_err;
2175 
2176 		vp->tx_ring[entry].frag[0].addr = cpu_to_le32(dma_addr);
2177 		vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb->len | LAST_FRAG);
2178 	} else {
2179 		int i;
2180 
2181 		dma_addr = pci_map_single(VORTEX_PCI(vp), skb->data,
2182 					  skb_headlen(skb), PCI_DMA_TODEVICE);
2183 		if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr))
2184 			goto out_dma_err;
2185 
2186 		vp->tx_ring[entry].frag[0].addr = cpu_to_le32(dma_addr);
2187 		vp->tx_ring[entry].frag[0].length = cpu_to_le32(skb_headlen(skb));
2188 
2189 		for (i = 0; i < skb_shinfo(skb)->nr_frags; i++) {
2190 			skb_frag_t *frag = &skb_shinfo(skb)->frags[i];
2191 
2192 			dma_addr = skb_frag_dma_map(&VORTEX_PCI(vp)->dev, frag,
2193 						    0,
2194 						    frag->size,
2195 						    DMA_TO_DEVICE);
2196 			if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr)) {
2197 				for(i = i-1; i >= 0; i--)
2198 					dma_unmap_page(&VORTEX_PCI(vp)->dev,
2199 						       le32_to_cpu(vp->tx_ring[entry].frag[i+1].addr),
2200 						       le32_to_cpu(vp->tx_ring[entry].frag[i+1].length),
2201 						       DMA_TO_DEVICE);
2202 
2203 				pci_unmap_single(VORTEX_PCI(vp),
2204 						 le32_to_cpu(vp->tx_ring[entry].frag[0].addr),
2205 						 le32_to_cpu(vp->tx_ring[entry].frag[0].length),
2206 						 PCI_DMA_TODEVICE);
2207 
2208 				goto out_dma_err;
2209 			}
2210 
2211 			vp->tx_ring[entry].frag[i+1].addr =
2212 						cpu_to_le32(dma_addr);
2213 
2214 			if (i == skb_shinfo(skb)->nr_frags-1)
2215 					vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag)|LAST_FRAG);
2216 			else
2217 					vp->tx_ring[entry].frag[i+1].length = cpu_to_le32(skb_frag_size(frag));
2218 		}
2219 	}
2220 #else
2221 	dma_addr = pci_map_single(VORTEX_PCI(vp), skb->data, skb->len, PCI_DMA_TODEVICE);
2222 	if (dma_mapping_error(&VORTEX_PCI(vp)->dev, dma_addr))
2223 		goto out_dma_err;
2224 	vp->tx_ring[entry].addr = cpu_to_le32(dma_addr);
2225 	vp->tx_ring[entry].length = cpu_to_le32(skb->len | LAST_FRAG);
2226 	vp->tx_ring[entry].status = cpu_to_le32(skb->len | TxIntrUploaded);
2227 #endif
2228 
2229 	spin_lock_irqsave(&vp->lock, flags);
2230 	/* Wait for the stall to complete. */
2231 	issue_and_wait(dev, DownStall);
2232 	prev_entry->next = cpu_to_le32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc));
2233 	if (ioread32(ioaddr + DownListPtr) == 0) {
2234 		iowrite32(vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc), ioaddr + DownListPtr);
2235 		vp->queued_packet++;
2236 	}
2237 
2238 	vp->cur_tx++;
2239 	netdev_sent_queue(dev, skblen);
2240 
2241 	if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1) {
2242 		netif_stop_queue (dev);
2243 	} else {					/* Clear previous interrupt enable. */
2244 #if defined(tx_interrupt_mitigation)
2245 		/* Dubious. If in boomeang_interrupt "faster" cyclone ifdef
2246 		 * were selected, this would corrupt DN_COMPLETE. No?
2247 		 */
2248 		prev_entry->status &= cpu_to_le32(~TxIntrUploaded);
2249 #endif
2250 	}
2251 	skb_tx_timestamp(skb);
2252 	iowrite16(DownUnstall, ioaddr + EL3_CMD);
2253 	spin_unlock_irqrestore(&vp->lock, flags);
2254 out:
2255 	return NETDEV_TX_OK;
2256 out_dma_err:
2257 	dev_err(&VORTEX_PCI(vp)->dev, "Error mapping dma buffer\n");
2258 	goto out;
2259 }
2260 
2261 /* The interrupt handler does all of the Rx thread work and cleans up
2262    after the Tx thread. */
2263 
2264 /*
2265  * This is the ISR for the vortex series chips.
2266  * full_bus_master_tx == 0 && full_bus_master_rx == 0
2267  */
2268 
2269 static irqreturn_t
2270 vortex_interrupt(int irq, void *dev_id)
2271 {
2272 	struct net_device *dev = dev_id;
2273 	struct vortex_private *vp = netdev_priv(dev);
2274 	void __iomem *ioaddr;
2275 	int status;
2276 	int work_done = max_interrupt_work;
2277 	int handled = 0;
2278 	unsigned int bytes_compl = 0, pkts_compl = 0;
2279 
2280 	ioaddr = vp->ioaddr;
2281 	spin_lock(&vp->lock);
2282 
2283 	status = ioread16(ioaddr + EL3_STATUS);
2284 
2285 	if (vortex_debug > 6)
2286 		pr_debug("vortex_interrupt(). status=0x%4x\n", status);
2287 
2288 	if ((status & IntLatch) == 0)
2289 		goto handler_exit;		/* No interrupt: shared IRQs cause this */
2290 	handled = 1;
2291 
2292 	if (status & IntReq) {
2293 		status |= vp->deferred;
2294 		vp->deferred = 0;
2295 	}
2296 
2297 	if (status == 0xffff)		/* h/w no longer present (hotplug)? */
2298 		goto handler_exit;
2299 
2300 	if (vortex_debug > 4)
2301 		pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2302 			   dev->name, status, ioread8(ioaddr + Timer));
2303 
2304 	spin_lock(&vp->window_lock);
2305 	window_set(vp, 7);
2306 
2307 	do {
2308 		if (vortex_debug > 5)
2309 				pr_debug("%s: In interrupt loop, status %4.4x.\n",
2310 					   dev->name, status);
2311 		if (status & RxComplete)
2312 			vortex_rx(dev);
2313 
2314 		if (status & TxAvailable) {
2315 			if (vortex_debug > 5)
2316 				pr_debug("	TX room bit was handled.\n");
2317 			/* There's room in the FIFO for a full-sized packet. */
2318 			iowrite16(AckIntr | TxAvailable, ioaddr + EL3_CMD);
2319 			netif_wake_queue (dev);
2320 		}
2321 
2322 		if (status & DMADone) {
2323 			if (ioread16(ioaddr + Wn7_MasterStatus) & 0x1000) {
2324 				iowrite16(0x1000, ioaddr + Wn7_MasterStatus); /* Ack the event. */
2325 				pci_unmap_single(VORTEX_PCI(vp), vp->tx_skb_dma, (vp->tx_skb->len + 3) & ~3, PCI_DMA_TODEVICE);
2326 				pkts_compl++;
2327 				bytes_compl += vp->tx_skb->len;
2328 				dev_kfree_skb_irq(vp->tx_skb); /* Release the transferred buffer */
2329 				if (ioread16(ioaddr + TxFree) > 1536) {
2330 					/*
2331 					 * AKPM: FIXME: I don't think we need this.  If the queue was stopped due to
2332 					 * insufficient FIFO room, the TxAvailable test will succeed and call
2333 					 * netif_wake_queue()
2334 					 */
2335 					netif_wake_queue(dev);
2336 				} else { /* Interrupt when FIFO has room for max-sized packet. */
2337 					iowrite16(SetTxThreshold + (1536>>2), ioaddr + EL3_CMD);
2338 					netif_stop_queue(dev);
2339 				}
2340 			}
2341 		}
2342 		/* Check for all uncommon interrupts at once. */
2343 		if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq)) {
2344 			if (status == 0xffff)
2345 				break;
2346 			if (status & RxEarly)
2347 				vortex_rx(dev);
2348 			spin_unlock(&vp->window_lock);
2349 			vortex_error(dev, status);
2350 			spin_lock(&vp->window_lock);
2351 			window_set(vp, 7);
2352 		}
2353 
2354 		if (--work_done < 0) {
2355 			pr_warn("%s: Too much work in interrupt, status %4.4x\n",
2356 				dev->name, status);
2357 			/* Disable all pending interrupts. */
2358 			do {
2359 				vp->deferred |= status;
2360 				iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2361 					 ioaddr + EL3_CMD);
2362 				iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2363 			} while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2364 			/* The timer will reenable interrupts. */
2365 			mod_timer(&vp->timer, jiffies + 1*HZ);
2366 			break;
2367 		}
2368 		/* Acknowledge the IRQ. */
2369 		iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2370 	} while ((status = ioread16(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
2371 
2372 	netdev_completed_queue(dev, pkts_compl, bytes_compl);
2373 	spin_unlock(&vp->window_lock);
2374 
2375 	if (vortex_debug > 4)
2376 		pr_debug("%s: exiting interrupt, status %4.4x.\n",
2377 			   dev->name, status);
2378 handler_exit:
2379 	spin_unlock(&vp->lock);
2380 	return IRQ_RETVAL(handled);
2381 }
2382 
2383 /*
2384  * This is the ISR for the boomerang series chips.
2385  * full_bus_master_tx == 1 && full_bus_master_rx == 1
2386  */
2387 
2388 static irqreturn_t
2389 boomerang_interrupt(int irq, void *dev_id)
2390 {
2391 	struct net_device *dev = dev_id;
2392 	struct vortex_private *vp = netdev_priv(dev);
2393 	void __iomem *ioaddr;
2394 	int status;
2395 	int work_done = max_interrupt_work;
2396 	int handled = 0;
2397 	unsigned int bytes_compl = 0, pkts_compl = 0;
2398 
2399 	ioaddr = vp->ioaddr;
2400 
2401 
2402 	/*
2403 	 * It seems dopey to put the spinlock this early, but we could race against vortex_tx_timeout
2404 	 * and boomerang_start_xmit
2405 	 */
2406 	spin_lock(&vp->lock);
2407 	vp->handling_irq = 1;
2408 
2409 	status = ioread16(ioaddr + EL3_STATUS);
2410 
2411 	if (vortex_debug > 6)
2412 		pr_debug("boomerang_interrupt. status=0x%4x\n", status);
2413 
2414 	if ((status & IntLatch) == 0)
2415 		goto handler_exit;		/* No interrupt: shared IRQs can cause this */
2416 	handled = 1;
2417 
2418 	if (status == 0xffff) {		/* h/w no longer present (hotplug)? */
2419 		if (vortex_debug > 1)
2420 			pr_debug("boomerang_interrupt(1): status = 0xffff\n");
2421 		goto handler_exit;
2422 	}
2423 
2424 	if (status & IntReq) {
2425 		status |= vp->deferred;
2426 		vp->deferred = 0;
2427 	}
2428 
2429 	if (vortex_debug > 4)
2430 		pr_debug("%s: interrupt, status %4.4x, latency %d ticks.\n",
2431 			   dev->name, status, ioread8(ioaddr + Timer));
2432 	do {
2433 		if (vortex_debug > 5)
2434 				pr_debug("%s: In interrupt loop, status %4.4x.\n",
2435 					   dev->name, status);
2436 		if (status & UpComplete) {
2437 			iowrite16(AckIntr | UpComplete, ioaddr + EL3_CMD);
2438 			if (vortex_debug > 5)
2439 				pr_debug("boomerang_interrupt->boomerang_rx\n");
2440 			boomerang_rx(dev);
2441 		}
2442 
2443 		if (status & DownComplete) {
2444 			unsigned int dirty_tx = vp->dirty_tx;
2445 
2446 			iowrite16(AckIntr | DownComplete, ioaddr + EL3_CMD);
2447 			while (vp->cur_tx - dirty_tx > 0) {
2448 				int entry = dirty_tx % TX_RING_SIZE;
2449 #if 1	/* AKPM: the latter is faster, but cyclone-only */
2450 				if (ioread32(ioaddr + DownListPtr) ==
2451 					vp->tx_ring_dma + entry * sizeof(struct boom_tx_desc))
2452 					break;			/* It still hasn't been processed. */
2453 #else
2454 				if ((vp->tx_ring[entry].status & DN_COMPLETE) == 0)
2455 					break;			/* It still hasn't been processed. */
2456 #endif
2457 
2458 				if (vp->tx_skbuff[entry]) {
2459 					struct sk_buff *skb = vp->tx_skbuff[entry];
2460 #if DO_ZEROCOPY
2461 					int i;
2462 					for (i=0; i<=skb_shinfo(skb)->nr_frags; i++)
2463 							pci_unmap_single(VORTEX_PCI(vp),
2464 											 le32_to_cpu(vp->tx_ring[entry].frag[i].addr),
2465 											 le32_to_cpu(vp->tx_ring[entry].frag[i].length)&0xFFF,
2466 											 PCI_DMA_TODEVICE);
2467 #else
2468 					pci_unmap_single(VORTEX_PCI(vp),
2469 						le32_to_cpu(vp->tx_ring[entry].addr), skb->len, PCI_DMA_TODEVICE);
2470 #endif
2471 					pkts_compl++;
2472 					bytes_compl += skb->len;
2473 					dev_kfree_skb_irq(skb);
2474 					vp->tx_skbuff[entry] = NULL;
2475 				} else {
2476 					pr_debug("boomerang_interrupt: no skb!\n");
2477 				}
2478 				/* dev->stats.tx_packets++;  Counted below. */
2479 				dirty_tx++;
2480 			}
2481 			vp->dirty_tx = dirty_tx;
2482 			if (vp->cur_tx - dirty_tx <= TX_RING_SIZE - 1) {
2483 				if (vortex_debug > 6)
2484 					pr_debug("boomerang_interrupt: wake queue\n");
2485 				netif_wake_queue (dev);
2486 			}
2487 		}
2488 
2489 		/* Check for all uncommon interrupts at once. */
2490 		if (status & (HostError | RxEarly | StatsFull | TxComplete | IntReq))
2491 			vortex_error(dev, status);
2492 
2493 		if (--work_done < 0) {
2494 			pr_warn("%s: Too much work in interrupt, status %4.4x\n",
2495 				dev->name, status);
2496 			/* Disable all pending interrupts. */
2497 			do {
2498 				vp->deferred |= status;
2499 				iowrite16(SetStatusEnb | (~vp->deferred & vp->status_enable),
2500 					 ioaddr + EL3_CMD);
2501 				iowrite16(AckIntr | (vp->deferred & 0x7ff), ioaddr + EL3_CMD);
2502 			} while ((status = ioread16(ioaddr + EL3_CMD)) & IntLatch);
2503 			/* The timer will reenable interrupts. */
2504 			mod_timer(&vp->timer, jiffies + 1*HZ);
2505 			break;
2506 		}
2507 		/* Acknowledge the IRQ. */
2508 		iowrite16(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
2509 		if (vp->cb_fn_base)			/* The PCMCIA people are idiots.  */
2510 			iowrite32(0x8000, vp->cb_fn_base + 4);
2511 
2512 	} while ((status = ioread16(ioaddr + EL3_STATUS)) & IntLatch);
2513 	netdev_completed_queue(dev, pkts_compl, bytes_compl);
2514 
2515 	if (vortex_debug > 4)
2516 		pr_debug("%s: exiting interrupt, status %4.4x.\n",
2517 			   dev->name, status);
2518 handler_exit:
2519 	vp->handling_irq = 0;
2520 	spin_unlock(&vp->lock);
2521 	return IRQ_RETVAL(handled);
2522 }
2523 
2524 static int vortex_rx(struct net_device *dev)
2525 {
2526 	struct vortex_private *vp = netdev_priv(dev);
2527 	void __iomem *ioaddr = vp->ioaddr;
2528 	int i;
2529 	short rx_status;
2530 
2531 	if (vortex_debug > 5)
2532 		pr_debug("vortex_rx(): status %4.4x, rx_status %4.4x.\n",
2533 			   ioread16(ioaddr+EL3_STATUS), ioread16(ioaddr+RxStatus));
2534 	while ((rx_status = ioread16(ioaddr + RxStatus)) > 0) {
2535 		if (rx_status & 0x4000) { /* Error, update stats. */
2536 			unsigned char rx_error = ioread8(ioaddr + RxErrors);
2537 			if (vortex_debug > 2)
2538 				pr_debug(" Rx error: status %2.2x.\n", rx_error);
2539 			dev->stats.rx_errors++;
2540 			if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2541 			if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2542 			if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2543 			if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2544 			if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2545 		} else {
2546 			/* The packet length: up to 4.5K!. */
2547 			int pkt_len = rx_status & 0x1fff;
2548 			struct sk_buff *skb;
2549 
2550 			skb = netdev_alloc_skb(dev, pkt_len + 5);
2551 			if (vortex_debug > 4)
2552 				pr_debug("Receiving packet size %d status %4.4x.\n",
2553 					   pkt_len, rx_status);
2554 			if (skb != NULL) {
2555 				skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
2556 				/* 'skb_put()' points to the start of sk_buff data area. */
2557 				if (vp->bus_master &&
2558 					! (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)) {
2559 					dma_addr_t dma = pci_map_single(VORTEX_PCI(vp), skb_put(skb, pkt_len),
2560 									   pkt_len, PCI_DMA_FROMDEVICE);
2561 					iowrite32(dma, ioaddr + Wn7_MasterAddr);
2562 					iowrite16((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
2563 					iowrite16(StartDMAUp, ioaddr + EL3_CMD);
2564 					while (ioread16(ioaddr + Wn7_MasterStatus) & 0x8000)
2565 						;
2566 					pci_unmap_single(VORTEX_PCI(vp), dma, pkt_len, PCI_DMA_FROMDEVICE);
2567 				} else {
2568 					ioread32_rep(ioaddr + RX_FIFO,
2569 					             skb_put(skb, pkt_len),
2570 						     (pkt_len + 3) >> 2);
2571 				}
2572 				iowrite16(RxDiscard, ioaddr + EL3_CMD); /* Pop top Rx packet. */
2573 				skb->protocol = eth_type_trans(skb, dev);
2574 				netif_rx(skb);
2575 				dev->stats.rx_packets++;
2576 				/* Wait a limited time to go to next packet. */
2577 				for (i = 200; i >= 0; i--)
2578 					if ( ! (ioread16(ioaddr + EL3_STATUS) & CmdInProgress))
2579 						break;
2580 				continue;
2581 			} else if (vortex_debug > 0)
2582 				pr_notice("%s: No memory to allocate a sk_buff of size %d.\n",
2583 					dev->name, pkt_len);
2584 			dev->stats.rx_dropped++;
2585 		}
2586 		issue_and_wait(dev, RxDiscard);
2587 	}
2588 
2589 	return 0;
2590 }
2591 
2592 static int
2593 boomerang_rx(struct net_device *dev)
2594 {
2595 	struct vortex_private *vp = netdev_priv(dev);
2596 	int entry = vp->cur_rx % RX_RING_SIZE;
2597 	void __iomem *ioaddr = vp->ioaddr;
2598 	int rx_status;
2599 	int rx_work_limit = vp->dirty_rx + RX_RING_SIZE - vp->cur_rx;
2600 
2601 	if (vortex_debug > 5)
2602 		pr_debug("boomerang_rx(): status %4.4x\n", ioread16(ioaddr+EL3_STATUS));
2603 
2604 	while ((rx_status = le32_to_cpu(vp->rx_ring[entry].status)) & RxDComplete){
2605 		if (--rx_work_limit < 0)
2606 			break;
2607 		if (rx_status & RxDError) { /* Error, update stats. */
2608 			unsigned char rx_error = rx_status >> 16;
2609 			if (vortex_debug > 2)
2610 				pr_debug(" Rx error: status %2.2x.\n", rx_error);
2611 			dev->stats.rx_errors++;
2612 			if (rx_error & 0x01)  dev->stats.rx_over_errors++;
2613 			if (rx_error & 0x02)  dev->stats.rx_length_errors++;
2614 			if (rx_error & 0x04)  dev->stats.rx_frame_errors++;
2615 			if (rx_error & 0x08)  dev->stats.rx_crc_errors++;
2616 			if (rx_error & 0x10)  dev->stats.rx_length_errors++;
2617 		} else {
2618 			/* The packet length: up to 4.5K!. */
2619 			int pkt_len = rx_status & 0x1fff;
2620 			struct sk_buff *skb;
2621 			dma_addr_t dma = le32_to_cpu(vp->rx_ring[entry].addr);
2622 
2623 			if (vortex_debug > 4)
2624 				pr_debug("Receiving packet size %d status %4.4x.\n",
2625 					   pkt_len, rx_status);
2626 
2627 			/* Check if the packet is long enough to just accept without
2628 			   copying to a properly sized skbuff. */
2629 			if (pkt_len < rx_copybreak &&
2630 			    (skb = netdev_alloc_skb(dev, pkt_len + 2)) != NULL) {
2631 				skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
2632 				pci_dma_sync_single_for_cpu(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2633 				/* 'skb_put()' points to the start of sk_buff data area. */
2634 				memcpy(skb_put(skb, pkt_len),
2635 					   vp->rx_skbuff[entry]->data,
2636 					   pkt_len);
2637 				pci_dma_sync_single_for_device(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2638 				vp->rx_copy++;
2639 			} else {
2640 				/* Pass up the skbuff already on the Rx ring. */
2641 				skb = vp->rx_skbuff[entry];
2642 				vp->rx_skbuff[entry] = NULL;
2643 				skb_put(skb, pkt_len);
2644 				pci_unmap_single(VORTEX_PCI(vp), dma, PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2645 				vp->rx_nocopy++;
2646 			}
2647 			skb->protocol = eth_type_trans(skb, dev);
2648 			{					/* Use hardware checksum info. */
2649 				int csum_bits = rx_status & 0xee000000;
2650 				if (csum_bits &&
2651 					(csum_bits == (IPChksumValid | TCPChksumValid) ||
2652 					 csum_bits == (IPChksumValid | UDPChksumValid))) {
2653 					skb->ip_summed = CHECKSUM_UNNECESSARY;
2654 					vp->rx_csumhits++;
2655 				}
2656 			}
2657 			netif_rx(skb);
2658 			dev->stats.rx_packets++;
2659 		}
2660 		entry = (++vp->cur_rx) % RX_RING_SIZE;
2661 	}
2662 	/* Refill the Rx ring buffers. */
2663 	for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) {
2664 		struct sk_buff *skb;
2665 		entry = vp->dirty_rx % RX_RING_SIZE;
2666 		if (vp->rx_skbuff[entry] == NULL) {
2667 			skb = netdev_alloc_skb_ip_align(dev, PKT_BUF_SZ);
2668 			if (skb == NULL) {
2669 				static unsigned long last_jif;
2670 				if (time_after(jiffies, last_jif + 10 * HZ)) {
2671 					pr_warn("%s: memory shortage\n",
2672 						dev->name);
2673 					last_jif = jiffies;
2674 				}
2675 				if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)
2676 					mod_timer(&vp->rx_oom_timer, RUN_AT(HZ * 1));
2677 				break;			/* Bad news!  */
2678 			}
2679 
2680 			vp->rx_ring[entry].addr = cpu_to_le32(pci_map_single(VORTEX_PCI(vp), skb->data, PKT_BUF_SZ, PCI_DMA_FROMDEVICE));
2681 			vp->rx_skbuff[entry] = skb;
2682 		}
2683 		vp->rx_ring[entry].status = 0;	/* Clear complete bit. */
2684 		iowrite16(UpUnstall, ioaddr + EL3_CMD);
2685 	}
2686 	return 0;
2687 }
2688 
2689 /*
2690  * If we've hit a total OOM refilling the Rx ring we poll once a second
2691  * for some memory.  Otherwise there is no way to restart the rx process.
2692  */
2693 static void
2694 rx_oom_timer(unsigned long arg)
2695 {
2696 	struct net_device *dev = (struct net_device *)arg;
2697 	struct vortex_private *vp = netdev_priv(dev);
2698 
2699 	spin_lock_irq(&vp->lock);
2700 	if ((vp->cur_rx - vp->dirty_rx) == RX_RING_SIZE)	/* This test is redundant, but makes me feel good */
2701 		boomerang_rx(dev);
2702 	if (vortex_debug > 1) {
2703 		pr_debug("%s: rx_oom_timer %s\n", dev->name,
2704 			((vp->cur_rx - vp->dirty_rx) != RX_RING_SIZE) ? "succeeded" : "retrying");
2705 	}
2706 	spin_unlock_irq(&vp->lock);
2707 }
2708 
2709 static void
2710 vortex_down(struct net_device *dev, int final_down)
2711 {
2712 	struct vortex_private *vp = netdev_priv(dev);
2713 	void __iomem *ioaddr = vp->ioaddr;
2714 
2715 	netdev_reset_queue(dev);
2716 	netif_stop_queue(dev);
2717 
2718 	del_timer_sync(&vp->rx_oom_timer);
2719 	del_timer_sync(&vp->timer);
2720 
2721 	/* Turn off statistics ASAP.  We update dev->stats below. */
2722 	iowrite16(StatsDisable, ioaddr + EL3_CMD);
2723 
2724 	/* Disable the receiver and transmitter. */
2725 	iowrite16(RxDisable, ioaddr + EL3_CMD);
2726 	iowrite16(TxDisable, ioaddr + EL3_CMD);
2727 
2728 	/* Disable receiving 802.1q tagged frames */
2729 	set_8021q_mode(dev, 0);
2730 
2731 	if (dev->if_port == XCVR_10base2)
2732 		/* Turn off thinnet power.  Green! */
2733 		iowrite16(StopCoax, ioaddr + EL3_CMD);
2734 
2735 	iowrite16(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
2736 
2737 	update_stats(ioaddr, dev);
2738 	if (vp->full_bus_master_rx)
2739 		iowrite32(0, ioaddr + UpListPtr);
2740 	if (vp->full_bus_master_tx)
2741 		iowrite32(0, ioaddr + DownListPtr);
2742 
2743 	if (final_down && VORTEX_PCI(vp)) {
2744 		vp->pm_state_valid = 1;
2745 		pci_save_state(VORTEX_PCI(vp));
2746 		acpi_set_WOL(dev);
2747 	}
2748 }
2749 
2750 static int
2751 vortex_close(struct net_device *dev)
2752 {
2753 	struct vortex_private *vp = netdev_priv(dev);
2754 	void __iomem *ioaddr = vp->ioaddr;
2755 	int i;
2756 
2757 	if (netif_device_present(dev))
2758 		vortex_down(dev, 1);
2759 
2760 	if (vortex_debug > 1) {
2761 		pr_debug("%s: vortex_close() status %4.4x, Tx status %2.2x.\n",
2762 			   dev->name, ioread16(ioaddr + EL3_STATUS), ioread8(ioaddr + TxStatus));
2763 		pr_debug("%s: vortex close stats: rx_nocopy %d rx_copy %d"
2764 			   " tx_queued %d Rx pre-checksummed %d.\n",
2765 			   dev->name, vp->rx_nocopy, vp->rx_copy, vp->queued_packet, vp->rx_csumhits);
2766 	}
2767 
2768 #if DO_ZEROCOPY
2769 	if (vp->rx_csumhits &&
2770 	    (vp->drv_flags & HAS_HWCKSM) == 0 &&
2771 	    (vp->card_idx >= MAX_UNITS || hw_checksums[vp->card_idx] == -1)) {
2772 		pr_warn("%s supports hardware checksums, and we're not using them!\n",
2773 			dev->name);
2774 	}
2775 #endif
2776 
2777 	free_irq(dev->irq, dev);
2778 
2779 	if (vp->full_bus_master_rx) { /* Free Boomerang bus master Rx buffers. */
2780 		for (i = 0; i < RX_RING_SIZE; i++)
2781 			if (vp->rx_skbuff[i]) {
2782 				pci_unmap_single(	VORTEX_PCI(vp), le32_to_cpu(vp->rx_ring[i].addr),
2783 									PKT_BUF_SZ, PCI_DMA_FROMDEVICE);
2784 				dev_kfree_skb(vp->rx_skbuff[i]);
2785 				vp->rx_skbuff[i] = NULL;
2786 			}
2787 	}
2788 	if (vp->full_bus_master_tx) { /* Free Boomerang bus master Tx buffers. */
2789 		for (i = 0; i < TX_RING_SIZE; i++) {
2790 			if (vp->tx_skbuff[i]) {
2791 				struct sk_buff *skb = vp->tx_skbuff[i];
2792 #if DO_ZEROCOPY
2793 				int k;
2794 
2795 				for (k=0; k<=skb_shinfo(skb)->nr_frags; k++)
2796 						pci_unmap_single(VORTEX_PCI(vp),
2797 										 le32_to_cpu(vp->tx_ring[i].frag[k].addr),
2798 										 le32_to_cpu(vp->tx_ring[i].frag[k].length)&0xFFF,
2799 										 PCI_DMA_TODEVICE);
2800 #else
2801 				pci_unmap_single(VORTEX_PCI(vp), le32_to_cpu(vp->tx_ring[i].addr), skb->len, PCI_DMA_TODEVICE);
2802 #endif
2803 				dev_kfree_skb(skb);
2804 				vp->tx_skbuff[i] = NULL;
2805 			}
2806 		}
2807 	}
2808 
2809 	return 0;
2810 }
2811 
2812 static void
2813 dump_tx_ring(struct net_device *dev)
2814 {
2815 	if (vortex_debug > 0) {
2816 	struct vortex_private *vp = netdev_priv(dev);
2817 		void __iomem *ioaddr = vp->ioaddr;
2818 
2819 		if (vp->full_bus_master_tx) {
2820 			int i;
2821 			int stalled = ioread32(ioaddr + PktStatus) & 0x04;	/* Possible racy. But it's only debug stuff */
2822 
2823 			pr_err("  Flags; bus-master %d, dirty %d(%d) current %d(%d)\n",
2824 					vp->full_bus_master_tx,
2825 					vp->dirty_tx, vp->dirty_tx % TX_RING_SIZE,
2826 					vp->cur_tx, vp->cur_tx % TX_RING_SIZE);
2827 			pr_err("  Transmit list %8.8x vs. %p.\n",
2828 				   ioread32(ioaddr + DownListPtr),
2829 				   &vp->tx_ring[vp->dirty_tx % TX_RING_SIZE]);
2830 			issue_and_wait(dev, DownStall);
2831 			for (i = 0; i < TX_RING_SIZE; i++) {
2832 				unsigned int length;
2833 
2834 #if DO_ZEROCOPY
2835 				length = le32_to_cpu(vp->tx_ring[i].frag[0].length);
2836 #else
2837 				length = le32_to_cpu(vp->tx_ring[i].length);
2838 #endif
2839 				pr_err("  %d: @%p  length %8.8x status %8.8x\n",
2840 					   i, &vp->tx_ring[i], length,
2841 					   le32_to_cpu(vp->tx_ring[i].status));
2842 			}
2843 			if (!stalled)
2844 				iowrite16(DownUnstall, ioaddr + EL3_CMD);
2845 		}
2846 	}
2847 }
2848 
2849 static struct net_device_stats *vortex_get_stats(struct net_device *dev)
2850 {
2851 	struct vortex_private *vp = netdev_priv(dev);
2852 	void __iomem *ioaddr = vp->ioaddr;
2853 	unsigned long flags;
2854 
2855 	if (netif_device_present(dev)) {	/* AKPM: Used to be netif_running */
2856 		spin_lock_irqsave (&vp->lock, flags);
2857 		update_stats(ioaddr, dev);
2858 		spin_unlock_irqrestore (&vp->lock, flags);
2859 	}
2860 	return &dev->stats;
2861 }
2862 
2863 /*  Update statistics.
2864 	Unlike with the EL3 we need not worry about interrupts changing
2865 	the window setting from underneath us, but we must still guard
2866 	against a race condition with a StatsUpdate interrupt updating the
2867 	table.  This is done by checking that the ASM (!) code generated uses
2868 	atomic updates with '+='.
2869 	*/
2870 static void update_stats(void __iomem *ioaddr, struct net_device *dev)
2871 {
2872 	struct vortex_private *vp = netdev_priv(dev);
2873 
2874 	/* Unlike the 3c5x9 we need not turn off stats updates while reading. */
2875 	/* Switch to the stats window, and read everything. */
2876 	dev->stats.tx_carrier_errors		+= window_read8(vp, 6, 0);
2877 	dev->stats.tx_heartbeat_errors		+= window_read8(vp, 6, 1);
2878 	dev->stats.tx_window_errors		+= window_read8(vp, 6, 4);
2879 	dev->stats.rx_fifo_errors		+= window_read8(vp, 6, 5);
2880 	dev->stats.tx_packets			+= window_read8(vp, 6, 6);
2881 	dev->stats.tx_packets			+= (window_read8(vp, 6, 9) &
2882 						    0x30) << 4;
2883 	/* Rx packets	*/			window_read8(vp, 6, 7);   /* Must read to clear */
2884 	/* Don't bother with register 9, an extension of registers 6&7.
2885 	   If we do use the 6&7 values the atomic update assumption above
2886 	   is invalid. */
2887 	dev->stats.rx_bytes 			+= window_read16(vp, 6, 10);
2888 	dev->stats.tx_bytes 			+= window_read16(vp, 6, 12);
2889 	/* Extra stats for get_ethtool_stats() */
2890 	vp->xstats.tx_multiple_collisions	+= window_read8(vp, 6, 2);
2891 	vp->xstats.tx_single_collisions         += window_read8(vp, 6, 3);
2892 	vp->xstats.tx_deferred			+= window_read8(vp, 6, 8);
2893 	vp->xstats.rx_bad_ssd			+= window_read8(vp, 4, 12);
2894 
2895 	dev->stats.collisions = vp->xstats.tx_multiple_collisions
2896 		+ vp->xstats.tx_single_collisions
2897 		+ vp->xstats.tx_max_collisions;
2898 
2899 	{
2900 		u8 up = window_read8(vp, 4, 13);
2901 		dev->stats.rx_bytes += (up & 0x0f) << 16;
2902 		dev->stats.tx_bytes += (up & 0xf0) << 12;
2903 	}
2904 }
2905 
2906 static int vortex_nway_reset(struct net_device *dev)
2907 {
2908 	struct vortex_private *vp = netdev_priv(dev);
2909 
2910 	return mii_nway_restart(&vp->mii);
2911 }
2912 
2913 static int vortex_get_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2914 {
2915 	struct vortex_private *vp = netdev_priv(dev);
2916 
2917 	return mii_ethtool_gset(&vp->mii, cmd);
2918 }
2919 
2920 static int vortex_set_settings(struct net_device *dev, struct ethtool_cmd *cmd)
2921 {
2922 	struct vortex_private *vp = netdev_priv(dev);
2923 
2924 	return mii_ethtool_sset(&vp->mii, cmd);
2925 }
2926 
2927 static u32 vortex_get_msglevel(struct net_device *dev)
2928 {
2929 	return vortex_debug;
2930 }
2931 
2932 static void vortex_set_msglevel(struct net_device *dev, u32 dbg)
2933 {
2934 	vortex_debug = dbg;
2935 }
2936 
2937 static int vortex_get_sset_count(struct net_device *dev, int sset)
2938 {
2939 	switch (sset) {
2940 	case ETH_SS_STATS:
2941 		return VORTEX_NUM_STATS;
2942 	default:
2943 		return -EOPNOTSUPP;
2944 	}
2945 }
2946 
2947 static void vortex_get_ethtool_stats(struct net_device *dev,
2948 	struct ethtool_stats *stats, u64 *data)
2949 {
2950 	struct vortex_private *vp = netdev_priv(dev);
2951 	void __iomem *ioaddr = vp->ioaddr;
2952 	unsigned long flags;
2953 
2954 	spin_lock_irqsave(&vp->lock, flags);
2955 	update_stats(ioaddr, dev);
2956 	spin_unlock_irqrestore(&vp->lock, flags);
2957 
2958 	data[0] = vp->xstats.tx_deferred;
2959 	data[1] = vp->xstats.tx_max_collisions;
2960 	data[2] = vp->xstats.tx_multiple_collisions;
2961 	data[3] = vp->xstats.tx_single_collisions;
2962 	data[4] = vp->xstats.rx_bad_ssd;
2963 }
2964 
2965 
2966 static void vortex_get_strings(struct net_device *dev, u32 stringset, u8 *data)
2967 {
2968 	switch (stringset) {
2969 	case ETH_SS_STATS:
2970 		memcpy(data, &ethtool_stats_keys, sizeof(ethtool_stats_keys));
2971 		break;
2972 	default:
2973 		WARN_ON(1);
2974 		break;
2975 	}
2976 }
2977 
2978 static void vortex_get_drvinfo(struct net_device *dev,
2979 					struct ethtool_drvinfo *info)
2980 {
2981 	struct vortex_private *vp = netdev_priv(dev);
2982 
2983 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
2984 	if (VORTEX_PCI(vp)) {
2985 		strlcpy(info->bus_info, pci_name(VORTEX_PCI(vp)),
2986 			sizeof(info->bus_info));
2987 	} else {
2988 		if (VORTEX_EISA(vp))
2989 			strlcpy(info->bus_info, dev_name(vp->gendev),
2990 				sizeof(info->bus_info));
2991 		else
2992 			snprintf(info->bus_info, sizeof(info->bus_info),
2993 				"EISA 0x%lx %d", dev->base_addr, dev->irq);
2994 	}
2995 }
2996 
2997 static void vortex_get_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
2998 {
2999 	struct vortex_private *vp = netdev_priv(dev);
3000 
3001 	if (!VORTEX_PCI(vp))
3002 		return;
3003 
3004 	wol->supported = WAKE_MAGIC;
3005 
3006 	wol->wolopts = 0;
3007 	if (vp->enable_wol)
3008 		wol->wolopts |= WAKE_MAGIC;
3009 }
3010 
3011 static int vortex_set_wol(struct net_device *dev, struct ethtool_wolinfo *wol)
3012 {
3013 	struct vortex_private *vp = netdev_priv(dev);
3014 
3015 	if (!VORTEX_PCI(vp))
3016 		return -EOPNOTSUPP;
3017 
3018 	if (wol->wolopts & ~WAKE_MAGIC)
3019 		return -EINVAL;
3020 
3021 	if (wol->wolopts & WAKE_MAGIC)
3022 		vp->enable_wol = 1;
3023 	else
3024 		vp->enable_wol = 0;
3025 	acpi_set_WOL(dev);
3026 
3027 	return 0;
3028 }
3029 
3030 static const struct ethtool_ops vortex_ethtool_ops = {
3031 	.get_drvinfo		= vortex_get_drvinfo,
3032 	.get_strings            = vortex_get_strings,
3033 	.get_msglevel           = vortex_get_msglevel,
3034 	.set_msglevel           = vortex_set_msglevel,
3035 	.get_ethtool_stats      = vortex_get_ethtool_stats,
3036 	.get_sset_count		= vortex_get_sset_count,
3037 	.get_settings           = vortex_get_settings,
3038 	.set_settings           = vortex_set_settings,
3039 	.get_link               = ethtool_op_get_link,
3040 	.nway_reset             = vortex_nway_reset,
3041 	.get_wol                = vortex_get_wol,
3042 	.set_wol                = vortex_set_wol,
3043 	.get_ts_info		= ethtool_op_get_ts_info,
3044 };
3045 
3046 #ifdef CONFIG_PCI
3047 /*
3048  *	Must power the device up to do MDIO operations
3049  */
3050 static int vortex_ioctl(struct net_device *dev, struct ifreq *rq, int cmd)
3051 {
3052 	int err;
3053 	struct vortex_private *vp = netdev_priv(dev);
3054 	pci_power_t state = 0;
3055 
3056 	if(VORTEX_PCI(vp))
3057 		state = VORTEX_PCI(vp)->current_state;
3058 
3059 	/* The kernel core really should have pci_get_power_state() */
3060 
3061 	if(state != 0)
3062 		pci_set_power_state(VORTEX_PCI(vp), PCI_D0);
3063 	err = generic_mii_ioctl(&vp->mii, if_mii(rq), cmd, NULL);
3064 	if(state != 0)
3065 		pci_set_power_state(VORTEX_PCI(vp), state);
3066 
3067 	return err;
3068 }
3069 #endif
3070 
3071 
3072 /* Pre-Cyclone chips have no documented multicast filter, so the only
3073    multicast setting is to receive all multicast frames.  At least
3074    the chip has a very clean way to set the mode, unlike many others. */
3075 static void set_rx_mode(struct net_device *dev)
3076 {
3077 	struct vortex_private *vp = netdev_priv(dev);
3078 	void __iomem *ioaddr = vp->ioaddr;
3079 	int new_mode;
3080 
3081 	if (dev->flags & IFF_PROMISC) {
3082 		if (vortex_debug > 3)
3083 			pr_notice("%s: Setting promiscuous mode.\n", dev->name);
3084 		new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast|RxProm;
3085 	} else	if (!netdev_mc_empty(dev) || dev->flags & IFF_ALLMULTI) {
3086 		new_mode = SetRxFilter|RxStation|RxMulticast|RxBroadcast;
3087 	} else
3088 		new_mode = SetRxFilter | RxStation | RxBroadcast;
3089 
3090 	iowrite16(new_mode, ioaddr + EL3_CMD);
3091 }
3092 
3093 #if defined(CONFIG_VLAN_8021Q) || defined(CONFIG_VLAN_8021Q_MODULE)
3094 /* Setup the card so that it can receive frames with an 802.1q VLAN tag.
3095    Note that this must be done after each RxReset due to some backwards
3096    compatibility logic in the Cyclone and Tornado ASICs */
3097 
3098 /* The Ethernet Type used for 802.1q tagged frames */
3099 #define VLAN_ETHER_TYPE 0x8100
3100 
3101 static void set_8021q_mode(struct net_device *dev, int enable)
3102 {
3103 	struct vortex_private *vp = netdev_priv(dev);
3104 	int mac_ctrl;
3105 
3106 	if ((vp->drv_flags&IS_CYCLONE) || (vp->drv_flags&IS_TORNADO)) {
3107 		/* cyclone and tornado chipsets can recognize 802.1q
3108 		 * tagged frames and treat them correctly */
3109 
3110 		int max_pkt_size = dev->mtu+14;	/* MTU+Ethernet header */
3111 		if (enable)
3112 			max_pkt_size += 4;	/* 802.1Q VLAN tag */
3113 
3114 		window_write16(vp, max_pkt_size, 3, Wn3_MaxPktSize);
3115 
3116 		/* set VlanEtherType to let the hardware checksumming
3117 		   treat tagged frames correctly */
3118 		window_write16(vp, VLAN_ETHER_TYPE, 7, Wn7_VlanEtherType);
3119 	} else {
3120 		/* on older cards we have to enable large frames */
3121 
3122 		vp->large_frames = dev->mtu > 1500 || enable;
3123 
3124 		mac_ctrl = window_read16(vp, 3, Wn3_MAC_Ctrl);
3125 		if (vp->large_frames)
3126 			mac_ctrl |= 0x40;
3127 		else
3128 			mac_ctrl &= ~0x40;
3129 		window_write16(vp, mac_ctrl, 3, Wn3_MAC_Ctrl);
3130 	}
3131 }
3132 #else
3133 
3134 static void set_8021q_mode(struct net_device *dev, int enable)
3135 {
3136 }
3137 
3138 
3139 #endif
3140 
3141 /* MII transceiver control section.
3142    Read and write the MII registers using software-generated serial
3143    MDIO protocol.  See the MII specifications or DP83840A data sheet
3144    for details. */
3145 
3146 /* The maximum data clock rate is 2.5 Mhz.  The minimum timing is usually
3147    met by back-to-back PCI I/O cycles, but we insert a delay to avoid
3148    "overclocking" issues. */
3149 static void mdio_delay(struct vortex_private *vp)
3150 {
3151 	window_read32(vp, 4, Wn4_PhysicalMgmt);
3152 }
3153 
3154 #define MDIO_SHIFT_CLK	0x01
3155 #define MDIO_DIR_WRITE	0x04
3156 #define MDIO_DATA_WRITE0 (0x00 | MDIO_DIR_WRITE)
3157 #define MDIO_DATA_WRITE1 (0x02 | MDIO_DIR_WRITE)
3158 #define MDIO_DATA_READ	0x02
3159 #define MDIO_ENB_IN		0x00
3160 
3161 /* Generate the preamble required for initial synchronization and
3162    a few older transceivers. */
3163 static void mdio_sync(struct vortex_private *vp, int bits)
3164 {
3165 	/* Establish sync by sending at least 32 logic ones. */
3166 	while (-- bits >= 0) {
3167 		window_write16(vp, MDIO_DATA_WRITE1, 4, Wn4_PhysicalMgmt);
3168 		mdio_delay(vp);
3169 		window_write16(vp, MDIO_DATA_WRITE1 | MDIO_SHIFT_CLK,
3170 			       4, Wn4_PhysicalMgmt);
3171 		mdio_delay(vp);
3172 	}
3173 }
3174 
3175 static int mdio_read(struct net_device *dev, int phy_id, int location)
3176 {
3177 	int i;
3178 	struct vortex_private *vp = netdev_priv(dev);
3179 	int read_cmd = (0xf6 << 10) | (phy_id << 5) | location;
3180 	unsigned int retval = 0;
3181 
3182 	spin_lock_bh(&vp->mii_lock);
3183 
3184 	if (mii_preamble_required)
3185 		mdio_sync(vp, 32);
3186 
3187 	/* Shift the read command bits out. */
3188 	for (i = 14; i >= 0; i--) {
3189 		int dataval = (read_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3190 		window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3191 		mdio_delay(vp);
3192 		window_write16(vp, dataval | MDIO_SHIFT_CLK,
3193 			       4, Wn4_PhysicalMgmt);
3194 		mdio_delay(vp);
3195 	}
3196 	/* Read the two transition, 16 data, and wire-idle bits. */
3197 	for (i = 19; i > 0; i--) {
3198 		window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3199 		mdio_delay(vp);
3200 		retval = (retval << 1) |
3201 			((window_read16(vp, 4, Wn4_PhysicalMgmt) &
3202 			  MDIO_DATA_READ) ? 1 : 0);
3203 		window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3204 			       4, Wn4_PhysicalMgmt);
3205 		mdio_delay(vp);
3206 	}
3207 
3208 	spin_unlock_bh(&vp->mii_lock);
3209 
3210 	return retval & 0x20000 ? 0xffff : retval>>1 & 0xffff;
3211 }
3212 
3213 static void mdio_write(struct net_device *dev, int phy_id, int location, int value)
3214 {
3215 	struct vortex_private *vp = netdev_priv(dev);
3216 	int write_cmd = 0x50020000 | (phy_id << 23) | (location << 18) | value;
3217 	int i;
3218 
3219 	spin_lock_bh(&vp->mii_lock);
3220 
3221 	if (mii_preamble_required)
3222 		mdio_sync(vp, 32);
3223 
3224 	/* Shift the command bits out. */
3225 	for (i = 31; i >= 0; i--) {
3226 		int dataval = (write_cmd&(1<<i)) ? MDIO_DATA_WRITE1 : MDIO_DATA_WRITE0;
3227 		window_write16(vp, dataval, 4, Wn4_PhysicalMgmt);
3228 		mdio_delay(vp);
3229 		window_write16(vp, dataval | MDIO_SHIFT_CLK,
3230 			       4, Wn4_PhysicalMgmt);
3231 		mdio_delay(vp);
3232 	}
3233 	/* Leave the interface idle. */
3234 	for (i = 1; i >= 0; i--) {
3235 		window_write16(vp, MDIO_ENB_IN, 4, Wn4_PhysicalMgmt);
3236 		mdio_delay(vp);
3237 		window_write16(vp, MDIO_ENB_IN | MDIO_SHIFT_CLK,
3238 			       4, Wn4_PhysicalMgmt);
3239 		mdio_delay(vp);
3240 	}
3241 
3242 	spin_unlock_bh(&vp->mii_lock);
3243 }
3244 
3245 /* ACPI: Advanced Configuration and Power Interface. */
3246 /* Set Wake-On-LAN mode and put the board into D3 (power-down) state. */
3247 static void acpi_set_WOL(struct net_device *dev)
3248 {
3249 	struct vortex_private *vp = netdev_priv(dev);
3250 	void __iomem *ioaddr = vp->ioaddr;
3251 
3252 	device_set_wakeup_enable(vp->gendev, vp->enable_wol);
3253 
3254 	if (vp->enable_wol) {
3255 		/* Power up on: 1==Downloaded Filter, 2==Magic Packets, 4==Link Status. */
3256 		window_write16(vp, 2, 7, 0x0c);
3257 		/* The RxFilter must accept the WOL frames. */
3258 		iowrite16(SetRxFilter|RxStation|RxMulticast|RxBroadcast, ioaddr + EL3_CMD);
3259 		iowrite16(RxEnable, ioaddr + EL3_CMD);
3260 
3261 		if (pci_enable_wake(VORTEX_PCI(vp), PCI_D3hot, 1)) {
3262 			pr_info("%s: WOL not supported.\n", pci_name(VORTEX_PCI(vp)));
3263 
3264 			vp->enable_wol = 0;
3265 			return;
3266 		}
3267 
3268 		if (VORTEX_PCI(vp)->current_state < PCI_D3hot)
3269 			return;
3270 
3271 		/* Change the power state to D3; RxEnable doesn't take effect. */
3272 		pci_set_power_state(VORTEX_PCI(vp), PCI_D3hot);
3273 	}
3274 }
3275 
3276 
3277 static void vortex_remove_one(struct pci_dev *pdev)
3278 {
3279 	struct net_device *dev = pci_get_drvdata(pdev);
3280 	struct vortex_private *vp;
3281 
3282 	if (!dev) {
3283 		pr_err("vortex_remove_one called for Compaq device!\n");
3284 		BUG();
3285 	}
3286 
3287 	vp = netdev_priv(dev);
3288 
3289 	if (vp->cb_fn_base)
3290 		pci_iounmap(pdev, vp->cb_fn_base);
3291 
3292 	unregister_netdev(dev);
3293 
3294 	pci_set_power_state(pdev, PCI_D0);	/* Go active */
3295 	if (vp->pm_state_valid)
3296 		pci_restore_state(pdev);
3297 	pci_disable_device(pdev);
3298 
3299 	/* Should really use issue_and_wait() here */
3300 	iowrite16(TotalReset | ((vp->drv_flags & EEPROM_RESET) ? 0x04 : 0x14),
3301 	     vp->ioaddr + EL3_CMD);
3302 
3303 	pci_iounmap(pdev, vp->ioaddr);
3304 
3305 	pci_free_consistent(pdev,
3306 						sizeof(struct boom_rx_desc) * RX_RING_SIZE
3307 							+ sizeof(struct boom_tx_desc) * TX_RING_SIZE,
3308 						vp->rx_ring,
3309 						vp->rx_ring_dma);
3310 
3311 	pci_release_regions(pdev);
3312 
3313 	free_netdev(dev);
3314 }
3315 
3316 
3317 static struct pci_driver vortex_driver = {
3318 	.name		= "3c59x",
3319 	.probe		= vortex_init_one,
3320 	.remove		= vortex_remove_one,
3321 	.id_table	= vortex_pci_tbl,
3322 	.driver.pm	= VORTEX_PM_OPS,
3323 };
3324 
3325 
3326 static int vortex_have_pci;
3327 static int vortex_have_eisa;
3328 
3329 
3330 static int __init vortex_init(void)
3331 {
3332 	int pci_rc, eisa_rc;
3333 
3334 	pci_rc = pci_register_driver(&vortex_driver);
3335 	eisa_rc = vortex_eisa_init();
3336 
3337 	if (pci_rc == 0)
3338 		vortex_have_pci = 1;
3339 	if (eisa_rc > 0)
3340 		vortex_have_eisa = 1;
3341 
3342 	return (vortex_have_pci + vortex_have_eisa) ? 0 : -ENODEV;
3343 }
3344 
3345 
3346 static void __exit vortex_eisa_cleanup(void)
3347 {
3348 	void __iomem *ioaddr;
3349 
3350 #ifdef CONFIG_EISA
3351 	/* Take care of the EISA devices */
3352 	eisa_driver_unregister(&vortex_eisa_driver);
3353 #endif
3354 
3355 	if (compaq_net_device) {
3356 		ioaddr = ioport_map(compaq_net_device->base_addr,
3357 		                    VORTEX_TOTAL_SIZE);
3358 
3359 		unregister_netdev(compaq_net_device);
3360 		iowrite16(TotalReset, ioaddr + EL3_CMD);
3361 		release_region(compaq_net_device->base_addr,
3362 		               VORTEX_TOTAL_SIZE);
3363 
3364 		free_netdev(compaq_net_device);
3365 	}
3366 }
3367 
3368 
3369 static void __exit vortex_cleanup(void)
3370 {
3371 	if (vortex_have_pci)
3372 		pci_unregister_driver(&vortex_driver);
3373 	if (vortex_have_eisa)
3374 		vortex_eisa_cleanup();
3375 }
3376 
3377 
3378 module_init(vortex_init);
3379 module_exit(vortex_cleanup);
3380