xref: /openbmc/linux/drivers/net/ethernet/3com/3c515.c (revision 05cf4fe738242183f1237f1b3a28b4479348c0a1)
1 /*
2 	Written 1997-1998 by Donald Becker.
3 
4 	This software may be used and distributed according to the terms
5 	of the GNU General Public License, incorporated herein by reference.
6 
7 	This driver is for the 3Com ISA EtherLink XL "Corkscrew" 3c515 ethercard.
8 
9 	The author may be reached as becker@scyld.com, or C/O
10 	Scyld Computing Corporation
11 	410 Severn Ave., Suite 210
12 	Annapolis MD 21403
13 
14 
15 	2000/2/2- Added support for kernel-level ISAPnP
16 		by Stephen Frost <sfrost@snowman.net> and Alessandro Zummo
17 	Cleaned up for 2.3.x/softnet by Jeff Garzik and Alan Cox.
18 
19 	2001/11/17 - Added ethtool support (jgarzik)
20 
21 	2002/10/28 - Locking updates for 2.5 (alan@lxorguk.ukuu.org.uk)
22 
23 */
24 
25 #define DRV_NAME		"3c515"
26 #define DRV_VERSION		"0.99t-ac"
27 #define DRV_RELDATE		"28-Oct-2002"
28 
29 static char *version =
30 DRV_NAME ".c:v" DRV_VERSION " " DRV_RELDATE " becker@scyld.com and others\n";
31 
32 #define CORKSCREW 1
33 
34 /* "Knobs" that adjust features and parameters. */
35 /* Set the copy breakpoint for the copy-only-tiny-frames scheme.
36    Setting to > 1512 effectively disables this feature. */
37 static int rx_copybreak = 200;
38 
39 /* Allow setting MTU to a larger size, bypassing the normal ethernet setup. */
40 static const int mtu = 1500;
41 
42 /* Maximum events (Rx packets, etc.) to handle at each interrupt. */
43 static int max_interrupt_work = 20;
44 
45 /* Enable the automatic media selection code -- usually set. */
46 #define AUTOMEDIA 1
47 
48 /* Allow the use of fragment bus master transfers instead of only
49    programmed-I/O for Vortex cards.  Full-bus-master transfers are always
50    enabled by default on Boomerang cards.  If VORTEX_BUS_MASTER is defined,
51    the feature may be turned on using 'options'. */
52 #define VORTEX_BUS_MASTER
53 
54 /* A few values that may be tweaked. */
55 /* Keep the ring sizes a power of two for efficiency. */
56 #define TX_RING_SIZE	16
57 #define RX_RING_SIZE	16
58 #define PKT_BUF_SZ		1536	/* Size of each temporary Rx buffer. */
59 
60 #include <linux/module.h>
61 #include <linux/isapnp.h>
62 #include <linux/kernel.h>
63 #include <linux/netdevice.h>
64 #include <linux/string.h>
65 #include <linux/errno.h>
66 #include <linux/in.h>
67 #include <linux/ioport.h>
68 #include <linux/skbuff.h>
69 #include <linux/etherdevice.h>
70 #include <linux/interrupt.h>
71 #include <linux/timer.h>
72 #include <linux/ethtool.h>
73 #include <linux/bitops.h>
74 
75 #include <linux/uaccess.h>
76 #include <asm/io.h>
77 #include <asm/dma.h>
78 
79 #define NEW_MULTICAST
80 #include <linux/delay.h>
81 
82 #define MAX_UNITS 8
83 
84 MODULE_AUTHOR("Donald Becker <becker@scyld.com>");
85 MODULE_DESCRIPTION("3Com 3c515 Corkscrew driver");
86 MODULE_LICENSE("GPL");
87 MODULE_VERSION(DRV_VERSION);
88 
89 /* "Knobs" for adjusting internal parameters. */
90 /* Put out somewhat more debugging messages. (0 - no msg, 1 minimal msgs). */
91 #define DRIVER_DEBUG 1
92 /* Some values here only for performance evaluation and path-coverage
93    debugging. */
94 static int rx_nocopy, rx_copy, queued_packet;
95 
96 /* Number of times to check to see if the Tx FIFO has space, used in some
97    limited cases. */
98 #define WAIT_TX_AVAIL 200
99 
100 /* Operational parameter that usually are not changed. */
101 #define TX_TIMEOUT  ((4*HZ)/10)	/* Time in jiffies before concluding Tx hung */
102 
103 /* The size here is somewhat misleading: the Corkscrew also uses the ISA
104    aliased registers at <base>+0x400.
105    */
106 #define CORKSCREW_TOTAL_SIZE 0x20
107 
108 #ifdef DRIVER_DEBUG
109 static int corkscrew_debug = DRIVER_DEBUG;
110 #else
111 static int corkscrew_debug = 1;
112 #endif
113 
114 #define CORKSCREW_ID 10
115 
116 /*
117 				Theory of Operation
118 
119 I. Board Compatibility
120 
121 This device driver is designed for the 3Com 3c515 ISA Fast EtherLink XL,
122 3Com's ISA bus adapter for Fast Ethernet.  Due to the unique I/O port layout,
123 it's not practical to integrate this driver with the other EtherLink drivers.
124 
125 II. Board-specific settings
126 
127 The Corkscrew has an EEPROM for configuration, but no special settings are
128 needed for Linux.
129 
130 III. Driver operation
131 
132 The 3c515 series use an interface that's very similar to the 3c900 "Boomerang"
133 PCI cards, with the bus master interface extensively modified to work with
134 the ISA bus.
135 
136 The card is capable of full-bus-master transfers with separate
137 lists of transmit and receive descriptors, similar to the AMD LANCE/PCnet,
138 DEC Tulip and Intel Speedo3.
139 
140 This driver uses a "RX_COPYBREAK" scheme rather than a fixed intermediate
141 receive buffer.  This scheme allocates full-sized skbuffs as receive
142 buffers.  The value RX_COPYBREAK is used as the copying breakpoint: it is
143 chosen to trade-off the memory wasted by passing the full-sized skbuff to
144 the queue layer for all frames vs. the copying cost of copying a frame to a
145 correctly-sized skbuff.
146 
147 
148 IIIC. Synchronization
149 The driver runs as two independent, single-threaded flows of control.  One
150 is the send-packet routine, which enforces single-threaded use by the netif
151 layer.  The other thread is the interrupt handler, which is single
152 threaded by the hardware and other software.
153 
154 IV. Notes
155 
156 Thanks to Terry Murphy of 3Com for providing documentation and a development
157 board.
158 
159 The names "Vortex", "Boomerang" and "Corkscrew" are the internal 3Com
160 project names.  I use these names to eliminate confusion -- 3Com product
161 numbers and names are very similar and often confused.
162 
163 The new chips support both ethernet (1.5K) and FDDI (4.5K) frame sizes!
164 This driver only supports ethernet frames because of the recent MTU limit
165 of 1.5K, but the changes to support 4.5K are minimal.
166 */
167 
168 /* Operational definitions.
169    These are not used by other compilation units and thus are not
170    exported in a ".h" file.
171 
172    First the windows.  There are eight register windows, with the command
173    and status registers available in each.
174    */
175 #define EL3WINDOW(win_num) outw(SelectWindow + (win_num), ioaddr + EL3_CMD)
176 #define EL3_CMD 0x0e
177 #define EL3_STATUS 0x0e
178 
179 /* The top five bits written to EL3_CMD are a command, the lower
180    11 bits are the parameter, if applicable.
181    Note that 11 parameters bits was fine for ethernet, but the new chips
182    can handle FDDI length frames (~4500 octets) and now parameters count
183    32-bit 'Dwords' rather than octets. */
184 
185 enum corkscrew_cmd {
186 	TotalReset = 0 << 11, SelectWindow = 1 << 11, StartCoax = 2 << 11,
187 	RxDisable = 3 << 11, RxEnable = 4 << 11, RxReset = 5 << 11,
188 	UpStall = 6 << 11, UpUnstall = (6 << 11) + 1, DownStall = (6 << 11) + 2,
189 	DownUnstall = (6 << 11) + 3, RxDiscard = 8 << 11, TxEnable = 9 << 11,
190 	TxDisable = 10 << 11, TxReset = 11 << 11, FakeIntr = 12 << 11,
191 	AckIntr = 13 << 11, SetIntrEnb = 14 << 11, SetStatusEnb = 15 << 11,
192 	SetRxFilter = 16 << 11, SetRxThreshold = 17 << 11,
193 	SetTxThreshold = 18 << 11, SetTxStart = 19 << 11, StartDMAUp = 20 << 11,
194 	StartDMADown = (20 << 11) + 1, StatsEnable = 21 << 11,
195 	StatsDisable = 22 << 11, StopCoax = 23 << 11,
196 };
197 
198 /* The SetRxFilter command accepts the following classes: */
199 enum RxFilter {
200 	RxStation = 1, RxMulticast = 2, RxBroadcast = 4, RxProm = 8
201 };
202 
203 /* Bits in the general status register. */
204 enum corkscrew_status {
205 	IntLatch = 0x0001, AdapterFailure = 0x0002, TxComplete = 0x0004,
206 	TxAvailable = 0x0008, RxComplete = 0x0010, RxEarly = 0x0020,
207 	IntReq = 0x0040, StatsFull = 0x0080,
208 	DMADone = 1 << 8, DownComplete = 1 << 9, UpComplete = 1 << 10,
209 	DMAInProgress = 1 << 11,	/* DMA controller is still busy. */
210 	CmdInProgress = 1 << 12,	/* EL3_CMD is still busy. */
211 };
212 
213 /* Register window 1 offsets, the window used in normal operation.
214    On the Corkscrew this window is always mapped at offsets 0x10-0x1f. */
215 enum Window1 {
216 	TX_FIFO = 0x10, RX_FIFO = 0x10, RxErrors = 0x14,
217 	RxStatus = 0x18, Timer = 0x1A, TxStatus = 0x1B,
218 	TxFree = 0x1C,		/* Remaining free bytes in Tx buffer. */
219 };
220 enum Window0 {
221 	Wn0IRQ = 0x08,
222 #if defined(CORKSCREW)
223 	Wn0EepromCmd = 0x200A,	/* Corkscrew EEPROM command register. */
224 	Wn0EepromData = 0x200C,	/* Corkscrew EEPROM results register. */
225 #else
226 	Wn0EepromCmd = 10,	/* Window 0: EEPROM command register. */
227 	Wn0EepromData = 12,	/* Window 0: EEPROM results register. */
228 #endif
229 };
230 enum Win0_EEPROM_bits {
231 	EEPROM_Read = 0x80, EEPROM_WRITE = 0x40, EEPROM_ERASE = 0xC0,
232 	EEPROM_EWENB = 0x30,	/* Enable erasing/writing for 10 msec. */
233 	EEPROM_EWDIS = 0x00,	/* Disable EWENB before 10 msec timeout. */
234 };
235 
236 /* EEPROM locations. */
237 enum eeprom_offset {
238 	PhysAddr01 = 0, PhysAddr23 = 1, PhysAddr45 = 2, ModelID = 3,
239 	EtherLink3ID = 7,
240 };
241 
242 enum Window3 {			/* Window 3: MAC/config bits. */
243 	Wn3_Config = 0, Wn3_MAC_Ctrl = 6, Wn3_Options = 8,
244 };
245 enum wn3_config {
246 	Ram_size = 7,
247 	Ram_width = 8,
248 	Ram_speed = 0x30,
249 	Rom_size = 0xc0,
250 	Ram_split_shift = 16,
251 	Ram_split = 3 << Ram_split_shift,
252 	Xcvr_shift = 20,
253 	Xcvr = 7 << Xcvr_shift,
254 	Autoselect = 0x1000000,
255 };
256 
257 enum Window4 {
258 	Wn4_NetDiag = 6, Wn4_Media = 10,	/* Window 4: Xcvr/media bits. */
259 };
260 enum Win4_Media_bits {
261 	Media_SQE = 0x0008,	/* Enable SQE error counting for AUI. */
262 	Media_10TP = 0x00C0,	/* Enable link beat and jabber for 10baseT. */
263 	Media_Lnk = 0x0080,	/* Enable just link beat for 100TX/100FX. */
264 	Media_LnkBeat = 0x0800,
265 };
266 enum Window7 {			/* Window 7: Bus Master control. */
267 	Wn7_MasterAddr = 0, Wn7_MasterLen = 6, Wn7_MasterStatus = 12,
268 };
269 
270 /* Boomerang-style bus master control registers.  Note ISA aliases! */
271 enum MasterCtrl {
272 	PktStatus = 0x400, DownListPtr = 0x404, FragAddr = 0x408, FragLen =
273 	    0x40c,
274 	TxFreeThreshold = 0x40f, UpPktStatus = 0x410, UpListPtr = 0x418,
275 };
276 
277 /* The Rx and Tx descriptor lists.
278    Caution Alpha hackers: these types are 32 bits!  Note also the 8 byte
279    alignment contraint on tx_ring[] and rx_ring[]. */
280 struct boom_rx_desc {
281 	u32 next;
282 	s32 status;
283 	u32 addr;
284 	s32 length;
285 };
286 
287 /* Values for the Rx status entry. */
288 enum rx_desc_status {
289 	RxDComplete = 0x00008000, RxDError = 0x4000,
290 	/* See boomerang_rx() for actual error bits */
291 };
292 
293 struct boom_tx_desc {
294 	u32 next;
295 	s32 status;
296 	u32 addr;
297 	s32 length;
298 };
299 
300 struct corkscrew_private {
301 	const char *product_name;
302 	struct list_head list;
303 	struct net_device *our_dev;
304 	/* The Rx and Tx rings are here to keep them quad-word-aligned. */
305 	struct boom_rx_desc rx_ring[RX_RING_SIZE];
306 	struct boom_tx_desc tx_ring[TX_RING_SIZE];
307 	/* The addresses of transmit- and receive-in-place skbuffs. */
308 	struct sk_buff *rx_skbuff[RX_RING_SIZE];
309 	struct sk_buff *tx_skbuff[TX_RING_SIZE];
310 	unsigned int cur_rx, cur_tx;	/* The next free ring entry */
311 	unsigned int dirty_rx, dirty_tx;/* The ring entries to be free()ed. */
312 	struct sk_buff *tx_skb;	/* Packet being eaten by bus master ctrl.  */
313 	struct timer_list timer;	/* Media selection timer. */
314 	int capabilities	;	/* Adapter capabilities word. */
315 	int options;			/* User-settable misc. driver options. */
316 	int last_rx_packets;		/* For media autoselection. */
317 	unsigned int available_media:8,	/* From Wn3_Options */
318 		media_override:3,	/* Passed-in media type. */
319 		default_media:3,	/* Read from the EEPROM. */
320 		full_duplex:1, autoselect:1, bus_master:1,	/* Vortex can only do a fragment bus-m. */
321 		full_bus_master_tx:1, full_bus_master_rx:1,	/* Boomerang  */
322 		tx_full:1;
323 	spinlock_t lock;
324 	struct device *dev;
325 };
326 
327 /* The action to take with a media selection timer tick.
328    Note that we deviate from the 3Com order by checking 10base2 before AUI.
329  */
330 enum xcvr_types {
331 	XCVR_10baseT = 0, XCVR_AUI, XCVR_10baseTOnly, XCVR_10base2, XCVR_100baseTx,
332 	XCVR_100baseFx, XCVR_MII = 6, XCVR_Default = 8,
333 };
334 
335 static struct media_table {
336 	char *name;
337 	unsigned int media_bits:16,	/* Bits to set in Wn4_Media register. */
338 		mask:8,			/* The transceiver-present bit in Wn3_Config. */
339 		next:8;			/* The media type to try next. */
340 	short wait;			/* Time before we check media status. */
341 } media_tbl[] = {
342 	{ "10baseT", Media_10TP, 0x08, XCVR_10base2, (14 * HZ) / 10 },
343 	{ "10Mbs AUI", Media_SQE, 0x20, XCVR_Default, (1 * HZ) / 10},
344 	{ "undefined", 0, 0x80, XCVR_10baseT, 10000},
345 	{ "10base2", 0, 0x10, XCVR_AUI, (1 * HZ) / 10},
346 	{ "100baseTX", Media_Lnk, 0x02, XCVR_100baseFx, (14 * HZ) / 10},
347 	{ "100baseFX", Media_Lnk, 0x04, XCVR_MII, (14 * HZ) / 10},
348 	{ "MII", 0, 0x40, XCVR_10baseT, 3 * HZ},
349 	{ "undefined", 0, 0x01, XCVR_10baseT, 10000},
350 	{ "Default", 0, 0xFF, XCVR_10baseT, 10000},
351 };
352 
353 #ifdef __ISAPNP__
354 static struct isapnp_device_id corkscrew_isapnp_adapters[] = {
355 	{	ISAPNP_ANY_ID, ISAPNP_ANY_ID,
356 		ISAPNP_VENDOR('T', 'C', 'M'), ISAPNP_FUNCTION(0x5051),
357 		(long) "3Com Fast EtherLink ISA" },
358 	{ }	/* terminate list */
359 };
360 
361 MODULE_DEVICE_TABLE(isapnp, corkscrew_isapnp_adapters);
362 
363 static int nopnp;
364 #endif /* __ISAPNP__ */
365 
366 static struct net_device *corkscrew_scan(int unit);
367 static int corkscrew_setup(struct net_device *dev, int ioaddr,
368 			    struct pnp_dev *idev, int card_number);
369 static int corkscrew_open(struct net_device *dev);
370 static void corkscrew_timer(struct timer_list *t);
371 static netdev_tx_t corkscrew_start_xmit(struct sk_buff *skb,
372 					struct net_device *dev);
373 static int corkscrew_rx(struct net_device *dev);
374 static void corkscrew_timeout(struct net_device *dev);
375 static int boomerang_rx(struct net_device *dev);
376 static irqreturn_t corkscrew_interrupt(int irq, void *dev_id);
377 static int corkscrew_close(struct net_device *dev);
378 static void update_stats(int addr, struct net_device *dev);
379 static struct net_device_stats *corkscrew_get_stats(struct net_device *dev);
380 static void set_rx_mode(struct net_device *dev);
381 static const struct ethtool_ops netdev_ethtool_ops;
382 
383 
384 /*
385    Unfortunately maximizing the shared code between the integrated and
386    module version of the driver results in a complicated set of initialization
387    procedures.
388    init_module() -- modules /  tc59x_init()  -- built-in
389 		The wrappers for corkscrew_scan()
390    corkscrew_scan()  		 The common routine that scans for PCI and EISA cards
391    corkscrew_found_device() Allocate a device structure when we find a card.
392 					Different versions exist for modules and built-in.
393    corkscrew_probe1()		Fill in the device structure -- this is separated
394 					so that the modules code can put it in dev->init.
395 */
396 /* This driver uses 'options' to pass the media type, full-duplex flag, etc. */
397 /* Note: this is the only limit on the number of cards supported!! */
398 static int options[MAX_UNITS] = { -1, -1, -1, -1, -1, -1, -1, -1, };
399 
400 #ifdef MODULE
401 static int debug = -1;
402 
403 module_param(debug, int, 0);
404 module_param_array(options, int, NULL, 0);
405 module_param(rx_copybreak, int, 0);
406 module_param(max_interrupt_work, int, 0);
407 MODULE_PARM_DESC(debug, "3c515 debug level (0-6)");
408 MODULE_PARM_DESC(options, "3c515: Bits 0-2: media type, bit 3: full duplex, bit 4: bus mastering");
409 MODULE_PARM_DESC(rx_copybreak, "3c515 copy breakpoint for copy-only-tiny-frames");
410 MODULE_PARM_DESC(max_interrupt_work, "3c515 maximum events handled per interrupt");
411 
412 /* A list of all installed Vortex devices, for removing the driver module. */
413 /* we will need locking (and refcounting) if we ever use it for more */
414 static LIST_HEAD(root_corkscrew_dev);
415 
416 int init_module(void)
417 {
418 	int found = 0;
419 	if (debug >= 0)
420 		corkscrew_debug = debug;
421 	if (corkscrew_debug)
422 		pr_debug("%s", version);
423 	while (corkscrew_scan(-1))
424 		found++;
425 	return found ? 0 : -ENODEV;
426 }
427 
428 #else
429 struct net_device *tc515_probe(int unit)
430 {
431 	struct net_device *dev = corkscrew_scan(unit);
432 	static int printed;
433 
434 	if (!dev)
435 		return ERR_PTR(-ENODEV);
436 
437 	if (corkscrew_debug > 0 && !printed) {
438 		printed = 1;
439 		pr_debug("%s", version);
440 	}
441 
442 	return dev;
443 }
444 #endif				/* not MODULE */
445 
446 static int check_device(unsigned ioaddr)
447 {
448 	int timer;
449 
450 	if (!request_region(ioaddr, CORKSCREW_TOTAL_SIZE, "3c515"))
451 		return 0;
452 	/* Check the resource configuration for a matching ioaddr. */
453 	if ((inw(ioaddr + 0x2002) & 0x1f0) != (ioaddr & 0x1f0)) {
454 		release_region(ioaddr, CORKSCREW_TOTAL_SIZE);
455 		return 0;
456 	}
457 	/* Verify by reading the device ID from the EEPROM. */
458 	outw(EEPROM_Read + 7, ioaddr + Wn0EepromCmd);
459 	/* Pause for at least 162 us. for the read to take place. */
460 	for (timer = 4; timer >= 0; timer--) {
461 		udelay(162);
462 		if ((inw(ioaddr + Wn0EepromCmd) & 0x0200) == 0)
463 			break;
464 	}
465 	if (inw(ioaddr + Wn0EepromData) != 0x6d50) {
466 		release_region(ioaddr, CORKSCREW_TOTAL_SIZE);
467 		return 0;
468 	}
469 	return 1;
470 }
471 
472 static void cleanup_card(struct net_device *dev)
473 {
474 	struct corkscrew_private *vp = netdev_priv(dev);
475 	list_del_init(&vp->list);
476 	if (dev->dma)
477 		free_dma(dev->dma);
478 	outw(TotalReset, dev->base_addr + EL3_CMD);
479 	release_region(dev->base_addr, CORKSCREW_TOTAL_SIZE);
480 	if (vp->dev)
481 		pnp_device_detach(to_pnp_dev(vp->dev));
482 }
483 
484 static struct net_device *corkscrew_scan(int unit)
485 {
486 	struct net_device *dev;
487 	static int cards_found = 0;
488 	static int ioaddr;
489 	int err;
490 #ifdef __ISAPNP__
491 	short i;
492 	static int pnp_cards;
493 #endif
494 
495 	dev = alloc_etherdev(sizeof(struct corkscrew_private));
496 	if (!dev)
497 		return ERR_PTR(-ENOMEM);
498 
499 	if (unit >= 0) {
500 		sprintf(dev->name, "eth%d", unit);
501 		netdev_boot_setup_check(dev);
502 	}
503 
504 #ifdef __ISAPNP__
505 	if(nopnp == 1)
506 		goto no_pnp;
507 	for(i=0; corkscrew_isapnp_adapters[i].vendor != 0; i++) {
508 		struct pnp_dev *idev = NULL;
509 		int irq;
510 		while((idev = pnp_find_dev(NULL,
511 					   corkscrew_isapnp_adapters[i].vendor,
512 					   corkscrew_isapnp_adapters[i].function,
513 					   idev))) {
514 
515 			if (pnp_device_attach(idev) < 0)
516 				continue;
517 			if (pnp_activate_dev(idev) < 0) {
518 				pr_warn("pnp activate failed (out of resources?)\n");
519 				pnp_device_detach(idev);
520 				continue;
521 			}
522 			if (!pnp_port_valid(idev, 0) || !pnp_irq_valid(idev, 0)) {
523 				pnp_device_detach(idev);
524 				continue;
525 			}
526 			ioaddr = pnp_port_start(idev, 0);
527 			irq = pnp_irq(idev, 0);
528 			if (!check_device(ioaddr)) {
529 				pnp_device_detach(idev);
530 				continue;
531 			}
532 			if(corkscrew_debug)
533 				pr_debug("ISAPNP reports %s at i/o 0x%x, irq %d\n",
534 					(char*) corkscrew_isapnp_adapters[i].driver_data, ioaddr, irq);
535 			pr_info("3c515 Resource configuration register %#4.4x, DCR %4.4x.\n",
536 		     		inl(ioaddr + 0x2002), inw(ioaddr + 0x2000));
537 			/* irq = inw(ioaddr + 0x2002) & 15; */ /* Use the irq from isapnp */
538 			SET_NETDEV_DEV(dev, &idev->dev);
539 			pnp_cards++;
540 			err = corkscrew_setup(dev, ioaddr, idev, cards_found++);
541 			if (!err)
542 				return dev;
543 			cleanup_card(dev);
544 		}
545 	}
546 no_pnp:
547 #endif /* __ISAPNP__ */
548 
549 	/* Check all locations on the ISA bus -- evil! */
550 	for (ioaddr = 0x100; ioaddr < 0x400; ioaddr += 0x20) {
551 		if (!check_device(ioaddr))
552 			continue;
553 
554 		pr_info("3c515 Resource configuration register %#4.4x, DCR %4.4x.\n",
555 		     inl(ioaddr + 0x2002), inw(ioaddr + 0x2000));
556 		err = corkscrew_setup(dev, ioaddr, NULL, cards_found++);
557 		if (!err)
558 			return dev;
559 		cleanup_card(dev);
560 	}
561 	free_netdev(dev);
562 	return NULL;
563 }
564 
565 
566 static const struct net_device_ops netdev_ops = {
567 	.ndo_open		= corkscrew_open,
568 	.ndo_stop		= corkscrew_close,
569 	.ndo_start_xmit		= corkscrew_start_xmit,
570 	.ndo_tx_timeout		= corkscrew_timeout,
571 	.ndo_get_stats		= corkscrew_get_stats,
572 	.ndo_set_rx_mode	= set_rx_mode,
573 	.ndo_set_mac_address 	= eth_mac_addr,
574 	.ndo_validate_addr	= eth_validate_addr,
575 };
576 
577 
578 static int corkscrew_setup(struct net_device *dev, int ioaddr,
579 			    struct pnp_dev *idev, int card_number)
580 {
581 	struct corkscrew_private *vp = netdev_priv(dev);
582 	unsigned int eeprom[0x40], checksum = 0;	/* EEPROM contents */
583 	int i;
584 	int irq;
585 
586 #ifdef __ISAPNP__
587 	if (idev) {
588 		irq = pnp_irq(idev, 0);
589 		vp->dev = &idev->dev;
590 	} else {
591 		irq = inw(ioaddr + 0x2002) & 15;
592 	}
593 #else
594 	irq = inw(ioaddr + 0x2002) & 15;
595 #endif
596 
597 	dev->base_addr = ioaddr;
598 	dev->irq = irq;
599 	dev->dma = inw(ioaddr + 0x2000) & 7;
600 	vp->product_name = "3c515";
601 	vp->options = dev->mem_start;
602 	vp->our_dev = dev;
603 
604 	if (!vp->options) {
605 		 if (card_number >= MAX_UNITS)
606 			vp->options = -1;
607 		else
608 			vp->options = options[card_number];
609 	}
610 
611 	if (vp->options >= 0) {
612 		vp->media_override = vp->options & 7;
613 		if (vp->media_override == 2)
614 			vp->media_override = 0;
615 		vp->full_duplex = (vp->options & 8) ? 1 : 0;
616 		vp->bus_master = (vp->options & 16) ? 1 : 0;
617 	} else {
618 		vp->media_override = 7;
619 		vp->full_duplex = 0;
620 		vp->bus_master = 0;
621 	}
622 #ifdef MODULE
623 	list_add(&vp->list, &root_corkscrew_dev);
624 #endif
625 
626 	pr_info("%s: 3Com %s at %#3x,", dev->name, vp->product_name, ioaddr);
627 
628 	spin_lock_init(&vp->lock);
629 
630 	timer_setup(&vp->timer, corkscrew_timer, 0);
631 
632 	/* Read the station address from the EEPROM. */
633 	EL3WINDOW(0);
634 	for (i = 0; i < 0x18; i++) {
635 		__be16 *phys_addr = (__be16 *) dev->dev_addr;
636 		int timer;
637 		outw(EEPROM_Read + i, ioaddr + Wn0EepromCmd);
638 		/* Pause for at least 162 us. for the read to take place. */
639 		for (timer = 4; timer >= 0; timer--) {
640 			udelay(162);
641 			if ((inw(ioaddr + Wn0EepromCmd) & 0x0200) == 0)
642 				break;
643 		}
644 		eeprom[i] = inw(ioaddr + Wn0EepromData);
645 		checksum ^= eeprom[i];
646 		if (i < 3)
647 			phys_addr[i] = htons(eeprom[i]);
648 	}
649 	checksum = (checksum ^ (checksum >> 8)) & 0xff;
650 	if (checksum != 0x00)
651 		pr_cont(" ***INVALID CHECKSUM %4.4x*** ", checksum);
652 	pr_cont(" %pM", dev->dev_addr);
653 	if (eeprom[16] == 0x11c7) {	/* Corkscrew */
654 		if (request_dma(dev->dma, "3c515")) {
655 			pr_cont(", DMA %d allocation failed", dev->dma);
656 			dev->dma = 0;
657 		} else
658 			pr_cont(", DMA %d", dev->dma);
659 	}
660 	pr_cont(", IRQ %d\n", dev->irq);
661 	/* Tell them about an invalid IRQ. */
662 	if (corkscrew_debug && (dev->irq <= 0 || dev->irq > 15))
663 		pr_warn(" *** Warning: this IRQ is unlikely to work! ***\n");
664 
665 	{
666 		static const char * const ram_split[] = {
667 			"5:3", "3:1", "1:1", "3:5"
668 		};
669 		__u32 config;
670 		EL3WINDOW(3);
671 		vp->available_media = inw(ioaddr + Wn3_Options);
672 		config = inl(ioaddr + Wn3_Config);
673 		if (corkscrew_debug > 1)
674 			pr_info("  Internal config register is %4.4x, transceivers %#x.\n",
675 				config, inw(ioaddr + Wn3_Options));
676 		pr_info("  %dK %s-wide RAM %s Rx:Tx split, %s%s interface.\n",
677 			8 << config & Ram_size,
678 			config & Ram_width ? "word" : "byte",
679 			ram_split[(config & Ram_split) >> Ram_split_shift],
680 			config & Autoselect ? "autoselect/" : "",
681 			media_tbl[(config & Xcvr) >> Xcvr_shift].name);
682 		vp->default_media = (config & Xcvr) >> Xcvr_shift;
683 		vp->autoselect = config & Autoselect ? 1 : 0;
684 		dev->if_port = vp->default_media;
685 	}
686 	if (vp->media_override != 7) {
687 		pr_info("  Media override to transceiver type %d (%s).\n",
688 		       vp->media_override,
689 		       media_tbl[vp->media_override].name);
690 		dev->if_port = vp->media_override;
691 	}
692 
693 	vp->capabilities = eeprom[16];
694 	vp->full_bus_master_tx = (vp->capabilities & 0x20) ? 1 : 0;
695 	/* Rx is broken at 10mbps, so we always disable it. */
696 	/* vp->full_bus_master_rx = 0; */
697 	vp->full_bus_master_rx = (vp->capabilities & 0x20) ? 1 : 0;
698 
699 	/* The 3c51x-specific entries in the device structure. */
700 	dev->netdev_ops = &netdev_ops;
701 	dev->watchdog_timeo = (400 * HZ) / 1000;
702 	dev->ethtool_ops = &netdev_ethtool_ops;
703 
704 	return register_netdev(dev);
705 }
706 
707 
708 static int corkscrew_open(struct net_device *dev)
709 {
710 	int ioaddr = dev->base_addr;
711 	struct corkscrew_private *vp = netdev_priv(dev);
712 	bool armtimer = false;
713 	__u32 config;
714 	int i;
715 
716 	/* Before initializing select the active media port. */
717 	EL3WINDOW(3);
718 	if (vp->full_duplex)
719 		outb(0x20, ioaddr + Wn3_MAC_Ctrl);	/* Set the full-duplex bit. */
720 	config = inl(ioaddr + Wn3_Config);
721 
722 	if (vp->media_override != 7) {
723 		if (corkscrew_debug > 1)
724 			pr_info("%s: Media override to transceiver %d (%s).\n",
725 				dev->name, vp->media_override,
726 				media_tbl[vp->media_override].name);
727 		dev->if_port = vp->media_override;
728 	} else if (vp->autoselect) {
729 		/* Find first available media type, starting with 100baseTx. */
730 		dev->if_port = 4;
731 		while (!(vp->available_media & media_tbl[dev->if_port].mask))
732 			dev->if_port = media_tbl[dev->if_port].next;
733 
734 		if (corkscrew_debug > 1)
735 			pr_debug("%s: Initial media type %s.\n",
736 			       dev->name, media_tbl[dev->if_port].name);
737 		armtimer = true;
738 	} else
739 		dev->if_port = vp->default_media;
740 
741 	config = (config & ~Xcvr) | (dev->if_port << Xcvr_shift);
742 	outl(config, ioaddr + Wn3_Config);
743 
744 	if (corkscrew_debug > 1) {
745 		pr_debug("%s: corkscrew_open() InternalConfig %8.8x.\n",
746 		       dev->name, config);
747 	}
748 
749 	outw(TxReset, ioaddr + EL3_CMD);
750 	for (i = 20; i >= 0; i--)
751 		if (!(inw(ioaddr + EL3_STATUS) & CmdInProgress))
752 			break;
753 
754 	outw(RxReset, ioaddr + EL3_CMD);
755 	/* Wait a few ticks for the RxReset command to complete. */
756 	for (i = 20; i >= 0; i--)
757 		if (!(inw(ioaddr + EL3_STATUS) & CmdInProgress))
758 			break;
759 
760 	outw(SetStatusEnb | 0x00, ioaddr + EL3_CMD);
761 
762 	/* Use the now-standard shared IRQ implementation. */
763 	if (vp->capabilities == 0x11c7) {
764 		/* Corkscrew: Cannot share ISA resources. */
765 		if (dev->irq == 0 ||
766 		    dev->dma == 0 ||
767 		    request_irq(dev->irq, corkscrew_interrupt, 0,
768 				vp->product_name, dev))
769 			return -EAGAIN;
770 		enable_dma(dev->dma);
771 		set_dma_mode(dev->dma, DMA_MODE_CASCADE);
772 	} else if (request_irq(dev->irq, corkscrew_interrupt, IRQF_SHARED,
773 			       vp->product_name, dev)) {
774 		return -EAGAIN;
775 	}
776 
777 	if (armtimer)
778 		mod_timer(&vp->timer, jiffies + media_tbl[dev->if_port].wait);
779 
780 	if (corkscrew_debug > 1) {
781 		EL3WINDOW(4);
782 		pr_debug("%s: corkscrew_open() irq %d media status %4.4x.\n",
783 		       dev->name, dev->irq, inw(ioaddr + Wn4_Media));
784 	}
785 
786 	/* Set the station address and mask in window 2 each time opened. */
787 	EL3WINDOW(2);
788 	for (i = 0; i < 6; i++)
789 		outb(dev->dev_addr[i], ioaddr + i);
790 	for (; i < 12; i += 2)
791 		outw(0, ioaddr + i);
792 
793 	if (dev->if_port == 3)
794 		/* Start the thinnet transceiver. We should really wait 50ms... */
795 		outw(StartCoax, ioaddr + EL3_CMD);
796 	EL3WINDOW(4);
797 	outw((inw(ioaddr + Wn4_Media) & ~(Media_10TP | Media_SQE)) |
798 	     media_tbl[dev->if_port].media_bits, ioaddr + Wn4_Media);
799 
800 	/* Switch to the stats window, and clear all stats by reading. */
801 	outw(StatsDisable, ioaddr + EL3_CMD);
802 	EL3WINDOW(6);
803 	for (i = 0; i < 10; i++)
804 		inb(ioaddr + i);
805 	inw(ioaddr + 10);
806 	inw(ioaddr + 12);
807 	/* New: On the Vortex we must also clear the BadSSD counter. */
808 	EL3WINDOW(4);
809 	inb(ioaddr + 12);
810 	/* ..and on the Boomerang we enable the extra statistics bits. */
811 	outw(0x0040, ioaddr + Wn4_NetDiag);
812 
813 	/* Switch to register set 7 for normal use. */
814 	EL3WINDOW(7);
815 
816 	if (vp->full_bus_master_rx) {	/* Boomerang bus master. */
817 		vp->cur_rx = vp->dirty_rx = 0;
818 		if (corkscrew_debug > 2)
819 			pr_debug("%s:  Filling in the Rx ring.\n", dev->name);
820 		for (i = 0; i < RX_RING_SIZE; i++) {
821 			struct sk_buff *skb;
822 			if (i < (RX_RING_SIZE - 1))
823 				vp->rx_ring[i].next =
824 				    isa_virt_to_bus(&vp->rx_ring[i + 1]);
825 			else
826 				vp->rx_ring[i].next = 0;
827 			vp->rx_ring[i].status = 0;	/* Clear complete bit. */
828 			vp->rx_ring[i].length = PKT_BUF_SZ | 0x80000000;
829 			skb = netdev_alloc_skb(dev, PKT_BUF_SZ);
830 			vp->rx_skbuff[i] = skb;
831 			if (skb == NULL)
832 				break;	/* Bad news!  */
833 			skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
834 			vp->rx_ring[i].addr = isa_virt_to_bus(skb->data);
835 		}
836 		if (i != 0)
837 			vp->rx_ring[i - 1].next =
838 				isa_virt_to_bus(&vp->rx_ring[0]);	/* Wrap the ring. */
839 		outl(isa_virt_to_bus(&vp->rx_ring[0]), ioaddr + UpListPtr);
840 	}
841 	if (vp->full_bus_master_tx) {	/* Boomerang bus master Tx. */
842 		vp->cur_tx = vp->dirty_tx = 0;
843 		outb(PKT_BUF_SZ >> 8, ioaddr + TxFreeThreshold);	/* Room for a packet. */
844 		/* Clear the Tx ring. */
845 		for (i = 0; i < TX_RING_SIZE; i++)
846 			vp->tx_skbuff[i] = NULL;
847 		outl(0, ioaddr + DownListPtr);
848 	}
849 	/* Set receiver mode: presumably accept b-case and phys addr only. */
850 	set_rx_mode(dev);
851 	outw(StatsEnable, ioaddr + EL3_CMD);	/* Turn on statistics. */
852 
853 	netif_start_queue(dev);
854 
855 	outw(RxEnable, ioaddr + EL3_CMD);	/* Enable the receiver. */
856 	outw(TxEnable, ioaddr + EL3_CMD);	/* Enable transmitter. */
857 	/* Allow status bits to be seen. */
858 	outw(SetStatusEnb | AdapterFailure | IntReq | StatsFull |
859 	     (vp->full_bus_master_tx ? DownComplete : TxAvailable) |
860 	     (vp->full_bus_master_rx ? UpComplete : RxComplete) |
861 	     (vp->bus_master ? DMADone : 0), ioaddr + EL3_CMD);
862 	/* Ack all pending events, and set active indicator mask. */
863 	outw(AckIntr | IntLatch | TxAvailable | RxEarly | IntReq,
864 	     ioaddr + EL3_CMD);
865 	outw(SetIntrEnb | IntLatch | TxAvailable | RxComplete | StatsFull
866 	     | (vp->bus_master ? DMADone : 0) | UpComplete | DownComplete,
867 	     ioaddr + EL3_CMD);
868 
869 	return 0;
870 }
871 
872 static void corkscrew_timer(struct timer_list *t)
873 {
874 #ifdef AUTOMEDIA
875 	struct corkscrew_private *vp = from_timer(vp, t, timer);
876 	struct net_device *dev = vp->our_dev;
877 	int ioaddr = dev->base_addr;
878 	unsigned long flags;
879 	int ok = 0;
880 
881 	if (corkscrew_debug > 1)
882 		pr_debug("%s: Media selection timer tick happened, %s.\n",
883 		       dev->name, media_tbl[dev->if_port].name);
884 
885 	spin_lock_irqsave(&vp->lock, flags);
886 
887 	{
888 		int old_window = inw(ioaddr + EL3_CMD) >> 13;
889 		int media_status;
890 		EL3WINDOW(4);
891 		media_status = inw(ioaddr + Wn4_Media);
892 		switch (dev->if_port) {
893 		case 0:
894 		case 4:
895 		case 5:	/* 10baseT, 100baseTX, 100baseFX  */
896 			if (media_status & Media_LnkBeat) {
897 				ok = 1;
898 				if (corkscrew_debug > 1)
899 					pr_debug("%s: Media %s has link beat, %x.\n",
900 						dev->name,
901 						media_tbl[dev->if_port].name,
902 						media_status);
903 			} else if (corkscrew_debug > 1)
904 				pr_debug("%s: Media %s is has no link beat, %x.\n",
905 					dev->name,
906 					media_tbl[dev->if_port].name,
907 					media_status);
908 
909 			break;
910 		default:	/* Other media types handled by Tx timeouts. */
911 			if (corkscrew_debug > 1)
912 				pr_debug("%s: Media %s is has no indication, %x.\n",
913 					dev->name,
914 					media_tbl[dev->if_port].name,
915 					media_status);
916 			ok = 1;
917 		}
918 		if (!ok) {
919 			__u32 config;
920 
921 			do {
922 				dev->if_port =
923 				    media_tbl[dev->if_port].next;
924 			}
925 			while (!(vp->available_media & media_tbl[dev->if_port].mask));
926 
927 			if (dev->if_port == 8) {	/* Go back to default. */
928 				dev->if_port = vp->default_media;
929 				if (corkscrew_debug > 1)
930 					pr_debug("%s: Media selection failing, using default %s port.\n",
931 						dev->name,
932 						media_tbl[dev->if_port].name);
933 			} else {
934 				if (corkscrew_debug > 1)
935 					pr_debug("%s: Media selection failed, now trying %s port.\n",
936 						dev->name,
937 						media_tbl[dev->if_port].name);
938 				vp->timer.expires = jiffies + media_tbl[dev->if_port].wait;
939 				add_timer(&vp->timer);
940 			}
941 			outw((media_status & ~(Media_10TP | Media_SQE)) |
942 			     media_tbl[dev->if_port].media_bits,
943 			     ioaddr + Wn4_Media);
944 
945 			EL3WINDOW(3);
946 			config = inl(ioaddr + Wn3_Config);
947 			config = (config & ~Xcvr) | (dev->if_port << Xcvr_shift);
948 			outl(config, ioaddr + Wn3_Config);
949 
950 			outw(dev->if_port == 3 ? StartCoax : StopCoax,
951 			     ioaddr + EL3_CMD);
952 		}
953 		EL3WINDOW(old_window);
954 	}
955 
956 	spin_unlock_irqrestore(&vp->lock, flags);
957 	if (corkscrew_debug > 1)
958 		pr_debug("%s: Media selection timer finished, %s.\n",
959 		       dev->name, media_tbl[dev->if_port].name);
960 
961 #endif				/* AUTOMEDIA */
962 }
963 
964 static void corkscrew_timeout(struct net_device *dev)
965 {
966 	int i;
967 	struct corkscrew_private *vp = netdev_priv(dev);
968 	int ioaddr = dev->base_addr;
969 
970 	pr_warn("%s: transmit timed out, tx_status %2.2x status %4.4x\n",
971 		dev->name, inb(ioaddr + TxStatus),
972 		inw(ioaddr + EL3_STATUS));
973 	/* Slight code bloat to be user friendly. */
974 	if ((inb(ioaddr + TxStatus) & 0x88) == 0x88)
975 		pr_warn("%s: Transmitter encountered 16 collisions -- network cable problem?\n",
976 			dev->name);
977 #ifndef final_version
978 	pr_debug("  Flags; bus-master %d, full %d; dirty %d current %d.\n",
979 	       vp->full_bus_master_tx, vp->tx_full, vp->dirty_tx,
980 	       vp->cur_tx);
981 	pr_debug("  Down list %8.8x vs. %p.\n", inl(ioaddr + DownListPtr),
982 	       &vp->tx_ring[0]);
983 	for (i = 0; i < TX_RING_SIZE; i++) {
984 		pr_debug("  %d: %p  length %8.8x status %8.8x\n", i,
985 		       &vp->tx_ring[i],
986 		       vp->tx_ring[i].length, vp->tx_ring[i].status);
987 	}
988 #endif
989 	/* Issue TX_RESET and TX_START commands. */
990 	outw(TxReset, ioaddr + EL3_CMD);
991 	for (i = 20; i >= 0; i--)
992 		if (!(inw(ioaddr + EL3_STATUS) & CmdInProgress))
993 			break;
994 	outw(TxEnable, ioaddr + EL3_CMD);
995 	netif_trans_update(dev); /* prevent tx timeout */
996 	dev->stats.tx_errors++;
997 	dev->stats.tx_dropped++;
998 	netif_wake_queue(dev);
999 }
1000 
1001 static netdev_tx_t corkscrew_start_xmit(struct sk_buff *skb,
1002 					struct net_device *dev)
1003 {
1004 	struct corkscrew_private *vp = netdev_priv(dev);
1005 	int ioaddr = dev->base_addr;
1006 
1007 	/* Block a timer-based transmit from overlapping. */
1008 
1009 	netif_stop_queue(dev);
1010 
1011 	if (vp->full_bus_master_tx) {	/* BOOMERANG bus-master */
1012 		/* Calculate the next Tx descriptor entry. */
1013 		int entry = vp->cur_tx % TX_RING_SIZE;
1014 		struct boom_tx_desc *prev_entry;
1015 		unsigned long flags;
1016 		int i;
1017 
1018 		if (vp->tx_full)	/* No room to transmit with */
1019 			return NETDEV_TX_BUSY;
1020 		if (vp->cur_tx != 0)
1021 			prev_entry = &vp->tx_ring[(vp->cur_tx - 1) % TX_RING_SIZE];
1022 		else
1023 			prev_entry = NULL;
1024 		if (corkscrew_debug > 3)
1025 			pr_debug("%s: Trying to send a packet, Tx index %d.\n",
1026 				dev->name, vp->cur_tx);
1027 		/* vp->tx_full = 1; */
1028 		vp->tx_skbuff[entry] = skb;
1029 		vp->tx_ring[entry].next = 0;
1030 		vp->tx_ring[entry].addr = isa_virt_to_bus(skb->data);
1031 		vp->tx_ring[entry].length = skb->len | 0x80000000;
1032 		vp->tx_ring[entry].status = skb->len | 0x80000000;
1033 
1034 		spin_lock_irqsave(&vp->lock, flags);
1035 		outw(DownStall, ioaddr + EL3_CMD);
1036 		/* Wait for the stall to complete. */
1037 		for (i = 20; i >= 0; i--)
1038 			if ((inw(ioaddr + EL3_STATUS) & CmdInProgress) == 0)
1039 				break;
1040 		if (prev_entry)
1041 			prev_entry->next = isa_virt_to_bus(&vp->tx_ring[entry]);
1042 		if (inl(ioaddr + DownListPtr) == 0) {
1043 			outl(isa_virt_to_bus(&vp->tx_ring[entry]),
1044 			     ioaddr + DownListPtr);
1045 			queued_packet++;
1046 		}
1047 		outw(DownUnstall, ioaddr + EL3_CMD);
1048 		spin_unlock_irqrestore(&vp->lock, flags);
1049 
1050 		vp->cur_tx++;
1051 		if (vp->cur_tx - vp->dirty_tx > TX_RING_SIZE - 1)
1052 			vp->tx_full = 1;
1053 		else {		/* Clear previous interrupt enable. */
1054 			if (prev_entry)
1055 				prev_entry->status &= ~0x80000000;
1056 			netif_wake_queue(dev);
1057 		}
1058 		return NETDEV_TX_OK;
1059 	}
1060 	/* Put out the doubleword header... */
1061 	outl(skb->len, ioaddr + TX_FIFO);
1062 	dev->stats.tx_bytes += skb->len;
1063 #ifdef VORTEX_BUS_MASTER
1064 	if (vp->bus_master) {
1065 		/* Set the bus-master controller to transfer the packet. */
1066 		outl((int) (skb->data), ioaddr + Wn7_MasterAddr);
1067 		outw((skb->len + 3) & ~3, ioaddr + Wn7_MasterLen);
1068 		vp->tx_skb = skb;
1069 		outw(StartDMADown, ioaddr + EL3_CMD);
1070 		/* queue will be woken at the DMADone interrupt. */
1071 	} else {
1072 		/* ... and the packet rounded to a doubleword. */
1073 		outsl(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
1074 		dev_kfree_skb(skb);
1075 		if (inw(ioaddr + TxFree) > 1536) {
1076 			netif_wake_queue(dev);
1077 		} else
1078 			/* Interrupt us when the FIFO has room for max-sized packet. */
1079 			outw(SetTxThreshold + (1536 >> 2),
1080 			     ioaddr + EL3_CMD);
1081 	}
1082 #else
1083 	/* ... and the packet rounded to a doubleword. */
1084 	outsl(ioaddr + TX_FIFO, skb->data, (skb->len + 3) >> 2);
1085 	dev_kfree_skb(skb);
1086 	if (inw(ioaddr + TxFree) > 1536) {
1087 		netif_wake_queue(dev);
1088 	} else
1089 		/* Interrupt us when the FIFO has room for max-sized packet. */
1090 		outw(SetTxThreshold + (1536 >> 2), ioaddr + EL3_CMD);
1091 #endif				/* bus master */
1092 
1093 
1094 	/* Clear the Tx status stack. */
1095 	{
1096 		short tx_status;
1097 		int i = 4;
1098 
1099 		while (--i > 0 && (tx_status = inb(ioaddr + TxStatus)) > 0) {
1100 			if (tx_status & 0x3C) {	/* A Tx-disabling error occurred.  */
1101 				if (corkscrew_debug > 2)
1102 					pr_debug("%s: Tx error, status %2.2x.\n",
1103 						dev->name, tx_status);
1104 				if (tx_status & 0x04)
1105 					dev->stats.tx_fifo_errors++;
1106 				if (tx_status & 0x38)
1107 					dev->stats.tx_aborted_errors++;
1108 				if (tx_status & 0x30) {
1109 					int j;
1110 					outw(TxReset, ioaddr + EL3_CMD);
1111 					for (j = 20; j >= 0; j--)
1112 						if (!(inw(ioaddr + EL3_STATUS) & CmdInProgress))
1113 							break;
1114 				}
1115 				outw(TxEnable, ioaddr + EL3_CMD);
1116 			}
1117 			outb(0x00, ioaddr + TxStatus);	/* Pop the status stack. */
1118 		}
1119 	}
1120 	return NETDEV_TX_OK;
1121 }
1122 
1123 /* The interrupt handler does all of the Rx thread work and cleans up
1124    after the Tx thread. */
1125 
1126 static irqreturn_t corkscrew_interrupt(int irq, void *dev_id)
1127 {
1128 	/* Use the now-standard shared IRQ implementation. */
1129 	struct net_device *dev = dev_id;
1130 	struct corkscrew_private *lp = netdev_priv(dev);
1131 	int ioaddr, status;
1132 	int latency;
1133 	int i = max_interrupt_work;
1134 
1135 	ioaddr = dev->base_addr;
1136 	latency = inb(ioaddr + Timer);
1137 
1138 	spin_lock(&lp->lock);
1139 
1140 	status = inw(ioaddr + EL3_STATUS);
1141 
1142 	if (corkscrew_debug > 4)
1143 		pr_debug("%s: interrupt, status %4.4x, timer %d.\n",
1144 			dev->name, status, latency);
1145 	if ((status & 0xE000) != 0xE000) {
1146 		static int donedidthis;
1147 		/* Some interrupt controllers store a bogus interrupt from boot-time.
1148 		   Ignore a single early interrupt, but don't hang the machine for
1149 		   other interrupt problems. */
1150 		if (donedidthis++ > 100) {
1151 			pr_err("%s: Bogus interrupt, bailing. Status %4.4x, start=%d.\n",
1152 				   dev->name, status, netif_running(dev));
1153 			free_irq(dev->irq, dev);
1154 			dev->irq = -1;
1155 		}
1156 	}
1157 
1158 	do {
1159 		if (corkscrew_debug > 5)
1160 			pr_debug("%s: In interrupt loop, status %4.4x.\n",
1161 			       dev->name, status);
1162 		if (status & RxComplete)
1163 			corkscrew_rx(dev);
1164 
1165 		if (status & TxAvailable) {
1166 			if (corkscrew_debug > 5)
1167 				pr_debug("	TX room bit was handled.\n");
1168 			/* There's room in the FIFO for a full-sized packet. */
1169 			outw(AckIntr | TxAvailable, ioaddr + EL3_CMD);
1170 			netif_wake_queue(dev);
1171 		}
1172 		if (status & DownComplete) {
1173 			unsigned int dirty_tx = lp->dirty_tx;
1174 
1175 			while (lp->cur_tx - dirty_tx > 0) {
1176 				int entry = dirty_tx % TX_RING_SIZE;
1177 				if (inl(ioaddr + DownListPtr) == isa_virt_to_bus(&lp->tx_ring[entry]))
1178 					break;	/* It still hasn't been processed. */
1179 				if (lp->tx_skbuff[entry]) {
1180 					dev_kfree_skb_irq(lp->tx_skbuff[entry]);
1181 					lp->tx_skbuff[entry] = NULL;
1182 				}
1183 				dirty_tx++;
1184 			}
1185 			lp->dirty_tx = dirty_tx;
1186 			outw(AckIntr | DownComplete, ioaddr + EL3_CMD);
1187 			if (lp->tx_full && (lp->cur_tx - dirty_tx <= TX_RING_SIZE - 1)) {
1188 				lp->tx_full = 0;
1189 				netif_wake_queue(dev);
1190 			}
1191 		}
1192 #ifdef VORTEX_BUS_MASTER
1193 		if (status & DMADone) {
1194 			outw(0x1000, ioaddr + Wn7_MasterStatus);	/* Ack the event. */
1195 			dev_kfree_skb_irq(lp->tx_skb);	/* Release the transferred buffer */
1196 			netif_wake_queue(dev);
1197 		}
1198 #endif
1199 		if (status & UpComplete) {
1200 			boomerang_rx(dev);
1201 			outw(AckIntr | UpComplete, ioaddr + EL3_CMD);
1202 		}
1203 		if (status & (AdapterFailure | RxEarly | StatsFull)) {
1204 			/* Handle all uncommon interrupts at once. */
1205 			if (status & RxEarly) {	/* Rx early is unused. */
1206 				corkscrew_rx(dev);
1207 				outw(AckIntr | RxEarly, ioaddr + EL3_CMD);
1208 			}
1209 			if (status & StatsFull) {	/* Empty statistics. */
1210 				static int DoneDidThat;
1211 				if (corkscrew_debug > 4)
1212 					pr_debug("%s: Updating stats.\n", dev->name);
1213 				update_stats(ioaddr, dev);
1214 				/* DEBUG HACK: Disable statistics as an interrupt source. */
1215 				/* This occurs when we have the wrong media type! */
1216 				if (DoneDidThat == 0 && inw(ioaddr + EL3_STATUS) & StatsFull) {
1217 					int win, reg;
1218 					pr_notice("%s: Updating stats failed, disabling stats as an interrupt source.\n",
1219 						dev->name);
1220 					for (win = 0; win < 8; win++) {
1221 						EL3WINDOW(win);
1222 						pr_notice("Vortex window %d:", win);
1223 						for (reg = 0; reg < 16; reg++)
1224 							pr_cont(" %2.2x", inb(ioaddr + reg));
1225 						pr_cont("\n");
1226 					}
1227 					EL3WINDOW(7);
1228 					outw(SetIntrEnb | TxAvailable |
1229 					     RxComplete | AdapterFailure |
1230 					     UpComplete | DownComplete |
1231 					     TxComplete, ioaddr + EL3_CMD);
1232 					DoneDidThat++;
1233 				}
1234 			}
1235 			if (status & AdapterFailure) {
1236 				/* Adapter failure requires Rx reset and reinit. */
1237 				outw(RxReset, ioaddr + EL3_CMD);
1238 				/* Set the Rx filter to the current state. */
1239 				set_rx_mode(dev);
1240 				outw(RxEnable, ioaddr + EL3_CMD);	/* Re-enable the receiver. */
1241 				outw(AckIntr | AdapterFailure,
1242 				     ioaddr + EL3_CMD);
1243 			}
1244 		}
1245 
1246 		if (--i < 0) {
1247 			pr_err("%s: Too much work in interrupt, status %4.4x. Disabling functions (%4.4x).\n",
1248 				dev->name, status, SetStatusEnb | ((~status) & 0x7FE));
1249 			/* Disable all pending interrupts. */
1250 			outw(SetStatusEnb | ((~status) & 0x7FE), ioaddr + EL3_CMD);
1251 			outw(AckIntr | 0x7FF, ioaddr + EL3_CMD);
1252 			break;
1253 		}
1254 		/* Acknowledge the IRQ. */
1255 		outw(AckIntr | IntReq | IntLatch, ioaddr + EL3_CMD);
1256 
1257 	} while ((status = inw(ioaddr + EL3_STATUS)) & (IntLatch | RxComplete));
1258 
1259 	spin_unlock(&lp->lock);
1260 
1261 	if (corkscrew_debug > 4)
1262 		pr_debug("%s: exiting interrupt, status %4.4x.\n", dev->name, status);
1263 	return IRQ_HANDLED;
1264 }
1265 
1266 static int corkscrew_rx(struct net_device *dev)
1267 {
1268 	int ioaddr = dev->base_addr;
1269 	int i;
1270 	short rx_status;
1271 
1272 	if (corkscrew_debug > 5)
1273 		pr_debug("   In rx_packet(), status %4.4x, rx_status %4.4x.\n",
1274 		     inw(ioaddr + EL3_STATUS), inw(ioaddr + RxStatus));
1275 	while ((rx_status = inw(ioaddr + RxStatus)) > 0) {
1276 		if (rx_status & 0x4000) {	/* Error, update stats. */
1277 			unsigned char rx_error = inb(ioaddr + RxErrors);
1278 			if (corkscrew_debug > 2)
1279 				pr_debug(" Rx error: status %2.2x.\n",
1280 				       rx_error);
1281 			dev->stats.rx_errors++;
1282 			if (rx_error & 0x01)
1283 				dev->stats.rx_over_errors++;
1284 			if (rx_error & 0x02)
1285 				dev->stats.rx_length_errors++;
1286 			if (rx_error & 0x04)
1287 				dev->stats.rx_frame_errors++;
1288 			if (rx_error & 0x08)
1289 				dev->stats.rx_crc_errors++;
1290 			if (rx_error & 0x10)
1291 				dev->stats.rx_length_errors++;
1292 		} else {
1293 			/* The packet length: up to 4.5K!. */
1294 			short pkt_len = rx_status & 0x1fff;
1295 			struct sk_buff *skb;
1296 
1297 			skb = netdev_alloc_skb(dev, pkt_len + 5 + 2);
1298 			if (corkscrew_debug > 4)
1299 				pr_debug("Receiving packet size %d status %4.4x.\n",
1300 				     pkt_len, rx_status);
1301 			if (skb != NULL) {
1302 				skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
1303 				/* 'skb_put()' points to the start of sk_buff data area. */
1304 				insl(ioaddr + RX_FIFO,
1305 				     skb_put(skb, pkt_len),
1306 				     (pkt_len + 3) >> 2);
1307 				outw(RxDiscard, ioaddr + EL3_CMD);	/* Pop top Rx packet. */
1308 				skb->protocol = eth_type_trans(skb, dev);
1309 				netif_rx(skb);
1310 				dev->stats.rx_packets++;
1311 				dev->stats.rx_bytes += pkt_len;
1312 				/* Wait a limited time to go to next packet. */
1313 				for (i = 200; i >= 0; i--)
1314 					if (! (inw(ioaddr + EL3_STATUS) & CmdInProgress))
1315 						break;
1316 				continue;
1317 			} else if (corkscrew_debug)
1318 				pr_debug("%s: Couldn't allocate a sk_buff of size %d.\n", dev->name, pkt_len);
1319 		}
1320 		outw(RxDiscard, ioaddr + EL3_CMD);
1321 		dev->stats.rx_dropped++;
1322 		/* Wait a limited time to skip this packet. */
1323 		for (i = 200; i >= 0; i--)
1324 			if (!(inw(ioaddr + EL3_STATUS) & CmdInProgress))
1325 				break;
1326 	}
1327 	return 0;
1328 }
1329 
1330 static int boomerang_rx(struct net_device *dev)
1331 {
1332 	struct corkscrew_private *vp = netdev_priv(dev);
1333 	int entry = vp->cur_rx % RX_RING_SIZE;
1334 	int ioaddr = dev->base_addr;
1335 	int rx_status;
1336 
1337 	if (corkscrew_debug > 5)
1338 		pr_debug("   In boomerang_rx(), status %4.4x, rx_status %4.4x.\n",
1339 			inw(ioaddr + EL3_STATUS), inw(ioaddr + RxStatus));
1340 	while ((rx_status = vp->rx_ring[entry].status) & RxDComplete) {
1341 		if (rx_status & RxDError) {	/* Error, update stats. */
1342 			unsigned char rx_error = rx_status >> 16;
1343 			if (corkscrew_debug > 2)
1344 				pr_debug(" Rx error: status %2.2x.\n",
1345 				       rx_error);
1346 			dev->stats.rx_errors++;
1347 			if (rx_error & 0x01)
1348 				dev->stats.rx_over_errors++;
1349 			if (rx_error & 0x02)
1350 				dev->stats.rx_length_errors++;
1351 			if (rx_error & 0x04)
1352 				dev->stats.rx_frame_errors++;
1353 			if (rx_error & 0x08)
1354 				dev->stats.rx_crc_errors++;
1355 			if (rx_error & 0x10)
1356 				dev->stats.rx_length_errors++;
1357 		} else {
1358 			/* The packet length: up to 4.5K!. */
1359 			short pkt_len = rx_status & 0x1fff;
1360 			struct sk_buff *skb;
1361 
1362 			dev->stats.rx_bytes += pkt_len;
1363 			if (corkscrew_debug > 4)
1364 				pr_debug("Receiving packet size %d status %4.4x.\n",
1365 				     pkt_len, rx_status);
1366 
1367 			/* Check if the packet is long enough to just accept without
1368 			   copying to a properly sized skbuff. */
1369 			if (pkt_len < rx_copybreak &&
1370 			    (skb = netdev_alloc_skb(dev, pkt_len + 4)) != NULL) {
1371 				skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
1372 				/* 'skb_put()' points to the start of sk_buff data area. */
1373 				skb_put_data(skb,
1374 					     isa_bus_to_virt(vp->rx_ring[entry].addr),
1375 					     pkt_len);
1376 				rx_copy++;
1377 			} else {
1378 				void *temp;
1379 				/* Pass up the skbuff already on the Rx ring. */
1380 				skb = vp->rx_skbuff[entry];
1381 				vp->rx_skbuff[entry] = NULL;
1382 				temp = skb_put(skb, pkt_len);
1383 				/* Remove this checking code for final release. */
1384 				if (isa_bus_to_virt(vp->rx_ring[entry].addr) != temp)
1385 					pr_warn("%s: Warning -- the skbuff addresses do not match in boomerang_rx: %p vs. %p / %p\n",
1386 						dev->name,
1387 						isa_bus_to_virt(vp->rx_ring[entry].addr),
1388 						skb->head, temp);
1389 				rx_nocopy++;
1390 			}
1391 			skb->protocol = eth_type_trans(skb, dev);
1392 			netif_rx(skb);
1393 			dev->stats.rx_packets++;
1394 		}
1395 		entry = (++vp->cur_rx) % RX_RING_SIZE;
1396 	}
1397 	/* Refill the Rx ring buffers. */
1398 	for (; vp->cur_rx - vp->dirty_rx > 0; vp->dirty_rx++) {
1399 		struct sk_buff *skb;
1400 		entry = vp->dirty_rx % RX_RING_SIZE;
1401 		if (vp->rx_skbuff[entry] == NULL) {
1402 			skb = netdev_alloc_skb(dev, PKT_BUF_SZ);
1403 			if (skb == NULL)
1404 				break;	/* Bad news!  */
1405 			skb_reserve(skb, 2);	/* Align IP on 16 byte boundaries */
1406 			vp->rx_ring[entry].addr = isa_virt_to_bus(skb->data);
1407 			vp->rx_skbuff[entry] = skb;
1408 		}
1409 		vp->rx_ring[entry].status = 0;	/* Clear complete bit. */
1410 	}
1411 	return 0;
1412 }
1413 
1414 static int corkscrew_close(struct net_device *dev)
1415 {
1416 	struct corkscrew_private *vp = netdev_priv(dev);
1417 	int ioaddr = dev->base_addr;
1418 	int i;
1419 
1420 	netif_stop_queue(dev);
1421 
1422 	if (corkscrew_debug > 1) {
1423 		pr_debug("%s: corkscrew_close() status %4.4x, Tx status %2.2x.\n",
1424 		     dev->name, inw(ioaddr + EL3_STATUS),
1425 		     inb(ioaddr + TxStatus));
1426 		pr_debug("%s: corkscrew close stats: rx_nocopy %d rx_copy %d tx_queued %d.\n",
1427 			dev->name, rx_nocopy, rx_copy, queued_packet);
1428 	}
1429 
1430 	del_timer_sync(&vp->timer);
1431 
1432 	/* Turn off statistics ASAP.  We update lp->stats below. */
1433 	outw(StatsDisable, ioaddr + EL3_CMD);
1434 
1435 	/* Disable the receiver and transmitter. */
1436 	outw(RxDisable, ioaddr + EL3_CMD);
1437 	outw(TxDisable, ioaddr + EL3_CMD);
1438 
1439 	if (dev->if_port == XCVR_10base2)
1440 		/* Turn off thinnet power.  Green! */
1441 		outw(StopCoax, ioaddr + EL3_CMD);
1442 
1443 	free_irq(dev->irq, dev);
1444 
1445 	outw(SetIntrEnb | 0x0000, ioaddr + EL3_CMD);
1446 
1447 	update_stats(ioaddr, dev);
1448 	if (vp->full_bus_master_rx) {	/* Free Boomerang bus master Rx buffers. */
1449 		outl(0, ioaddr + UpListPtr);
1450 		for (i = 0; i < RX_RING_SIZE; i++)
1451 			if (vp->rx_skbuff[i]) {
1452 				dev_kfree_skb(vp->rx_skbuff[i]);
1453 				vp->rx_skbuff[i] = NULL;
1454 			}
1455 	}
1456 	if (vp->full_bus_master_tx) {	/* Free Boomerang bus master Tx buffers. */
1457 		outl(0, ioaddr + DownListPtr);
1458 		for (i = 0; i < TX_RING_SIZE; i++)
1459 			if (vp->tx_skbuff[i]) {
1460 				dev_kfree_skb(vp->tx_skbuff[i]);
1461 				vp->tx_skbuff[i] = NULL;
1462 			}
1463 	}
1464 
1465 	return 0;
1466 }
1467 
1468 static struct net_device_stats *corkscrew_get_stats(struct net_device *dev)
1469 {
1470 	struct corkscrew_private *vp = netdev_priv(dev);
1471 	unsigned long flags;
1472 
1473 	if (netif_running(dev)) {
1474 		spin_lock_irqsave(&vp->lock, flags);
1475 		update_stats(dev->base_addr, dev);
1476 		spin_unlock_irqrestore(&vp->lock, flags);
1477 	}
1478 	return &dev->stats;
1479 }
1480 
1481 /*  Update statistics.
1482 	Unlike with the EL3 we need not worry about interrupts changing
1483 	the window setting from underneath us, but we must still guard
1484 	against a race condition with a StatsUpdate interrupt updating the
1485 	table.  This is done by checking that the ASM (!) code generated uses
1486 	atomic updates with '+='.
1487 	*/
1488 static void update_stats(int ioaddr, struct net_device *dev)
1489 {
1490 	/* Unlike the 3c5x9 we need not turn off stats updates while reading. */
1491 	/* Switch to the stats window, and read everything. */
1492 	EL3WINDOW(6);
1493 	dev->stats.tx_carrier_errors += inb(ioaddr + 0);
1494 	dev->stats.tx_heartbeat_errors += inb(ioaddr + 1);
1495 	/* Multiple collisions. */ inb(ioaddr + 2);
1496 	dev->stats.collisions += inb(ioaddr + 3);
1497 	dev->stats.tx_window_errors += inb(ioaddr + 4);
1498 	dev->stats.rx_fifo_errors += inb(ioaddr + 5);
1499 	dev->stats.tx_packets += inb(ioaddr + 6);
1500 	dev->stats.tx_packets += (inb(ioaddr + 9) & 0x30) << 4;
1501 						/* Rx packets   */ inb(ioaddr + 7);
1502 						/* Must read to clear */
1503 	/* Tx deferrals */ inb(ioaddr + 8);
1504 	/* Don't bother with register 9, an extension of registers 6&7.
1505 	   If we do use the 6&7 values the atomic update assumption above
1506 	   is invalid. */
1507 	inw(ioaddr + 10);	/* Total Rx and Tx octets. */
1508 	inw(ioaddr + 12);
1509 	/* New: On the Vortex we must also clear the BadSSD counter. */
1510 	EL3WINDOW(4);
1511 	inb(ioaddr + 12);
1512 
1513 	/* We change back to window 7 (not 1) with the Vortex. */
1514 	EL3WINDOW(7);
1515 }
1516 
1517 /* This new version of set_rx_mode() supports v1.4 kernels.
1518    The Vortex chip has no documented multicast filter, so the only
1519    multicast setting is to receive all multicast frames.  At least
1520    the chip has a very clean way to set the mode, unlike many others. */
1521 static void set_rx_mode(struct net_device *dev)
1522 {
1523 	int ioaddr = dev->base_addr;
1524 	short new_mode;
1525 
1526 	if (dev->flags & IFF_PROMISC) {
1527 		if (corkscrew_debug > 3)
1528 			pr_debug("%s: Setting promiscuous mode.\n",
1529 			       dev->name);
1530 		new_mode = SetRxFilter | RxStation | RxMulticast | RxBroadcast | RxProm;
1531 	} else if (!netdev_mc_empty(dev) || dev->flags & IFF_ALLMULTI) {
1532 		new_mode = SetRxFilter | RxStation | RxMulticast | RxBroadcast;
1533 	} else
1534 		new_mode = SetRxFilter | RxStation | RxBroadcast;
1535 
1536 	outw(new_mode, ioaddr + EL3_CMD);
1537 }
1538 
1539 static void netdev_get_drvinfo(struct net_device *dev,
1540 			       struct ethtool_drvinfo *info)
1541 {
1542 	strlcpy(info->driver, DRV_NAME, sizeof(info->driver));
1543 	strlcpy(info->version, DRV_VERSION, sizeof(info->version));
1544 	snprintf(info->bus_info, sizeof(info->bus_info), "ISA 0x%lx",
1545 		 dev->base_addr);
1546 }
1547 
1548 static u32 netdev_get_msglevel(struct net_device *dev)
1549 {
1550 	return corkscrew_debug;
1551 }
1552 
1553 static void netdev_set_msglevel(struct net_device *dev, u32 level)
1554 {
1555 	corkscrew_debug = level;
1556 }
1557 
1558 static const struct ethtool_ops netdev_ethtool_ops = {
1559 	.get_drvinfo		= netdev_get_drvinfo,
1560 	.get_msglevel		= netdev_get_msglevel,
1561 	.set_msglevel		= netdev_set_msglevel,
1562 };
1563 
1564 
1565 #ifdef MODULE
1566 void cleanup_module(void)
1567 {
1568 	while (!list_empty(&root_corkscrew_dev)) {
1569 		struct net_device *dev;
1570 		struct corkscrew_private *vp;
1571 
1572 		vp = list_entry(root_corkscrew_dev.next,
1573 				struct corkscrew_private, list);
1574 		dev = vp->our_dev;
1575 		unregister_netdev(dev);
1576 		cleanup_card(dev);
1577 		free_netdev(dev);
1578 	}
1579 }
1580 #endif				/* MODULE */
1581