1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Sensor-Technik Wiedemann GmbH 3 * Copyright (c) 2018-2019, Vladimir Oltean <olteanv@gmail.com> 4 */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <linux/delay.h> 9 #include <linux/module.h> 10 #include <linux/printk.h> 11 #include <linux/spi/spi.h> 12 #include <linux/errno.h> 13 #include <linux/gpio/consumer.h> 14 #include <linux/phylink.h> 15 #include <linux/of.h> 16 #include <linux/of_net.h> 17 #include <linux/of_mdio.h> 18 #include <linux/of_device.h> 19 #include <linux/pcs/pcs-xpcs.h> 20 #include <linux/netdev_features.h> 21 #include <linux/netdevice.h> 22 #include <linux/if_bridge.h> 23 #include <linux/if_ether.h> 24 #include <linux/dsa/8021q.h> 25 #include "sja1105.h" 26 #include "sja1105_tas.h" 27 28 #define SJA1105_UNKNOWN_MULTICAST 0x010000000000ull 29 30 /* Configure the optional reset pin and bring up switch */ 31 static int sja1105_hw_reset(struct device *dev, unsigned int pulse_len, 32 unsigned int startup_delay) 33 { 34 struct gpio_desc *gpio; 35 36 gpio = gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH); 37 if (IS_ERR(gpio)) 38 return PTR_ERR(gpio); 39 40 if (!gpio) 41 return 0; 42 43 gpiod_set_value_cansleep(gpio, 1); 44 /* Wait for minimum reset pulse length */ 45 msleep(pulse_len); 46 gpiod_set_value_cansleep(gpio, 0); 47 /* Wait until chip is ready after reset */ 48 msleep(startup_delay); 49 50 gpiod_put(gpio); 51 52 return 0; 53 } 54 55 static void 56 sja1105_port_allow_traffic(struct sja1105_l2_forwarding_entry *l2_fwd, 57 int from, int to, bool allow) 58 { 59 if (allow) 60 l2_fwd[from].reach_port |= BIT(to); 61 else 62 l2_fwd[from].reach_port &= ~BIT(to); 63 } 64 65 static bool sja1105_can_forward(struct sja1105_l2_forwarding_entry *l2_fwd, 66 int from, int to) 67 { 68 return !!(l2_fwd[from].reach_port & BIT(to)); 69 } 70 71 static int sja1105_is_vlan_configured(struct sja1105_private *priv, u16 vid) 72 { 73 struct sja1105_vlan_lookup_entry *vlan; 74 int count, i; 75 76 vlan = priv->static_config.tables[BLK_IDX_VLAN_LOOKUP].entries; 77 count = priv->static_config.tables[BLK_IDX_VLAN_LOOKUP].entry_count; 78 79 for (i = 0; i < count; i++) 80 if (vlan[i].vlanid == vid) 81 return i; 82 83 /* Return an invalid entry index if not found */ 84 return -1; 85 } 86 87 static int sja1105_drop_untagged(struct dsa_switch *ds, int port, bool drop) 88 { 89 struct sja1105_private *priv = ds->priv; 90 struct sja1105_mac_config_entry *mac; 91 92 mac = priv->static_config.tables[BLK_IDX_MAC_CONFIG].entries; 93 94 if (mac[port].drpuntag == drop) 95 return 0; 96 97 mac[port].drpuntag = drop; 98 99 return sja1105_dynamic_config_write(priv, BLK_IDX_MAC_CONFIG, port, 100 &mac[port], true); 101 } 102 103 static int sja1105_pvid_apply(struct sja1105_private *priv, int port, u16 pvid) 104 { 105 struct sja1105_mac_config_entry *mac; 106 107 mac = priv->static_config.tables[BLK_IDX_MAC_CONFIG].entries; 108 109 if (mac[port].vlanid == pvid) 110 return 0; 111 112 mac[port].vlanid = pvid; 113 114 return sja1105_dynamic_config_write(priv, BLK_IDX_MAC_CONFIG, port, 115 &mac[port], true); 116 } 117 118 static int sja1105_commit_pvid(struct dsa_switch *ds, int port) 119 { 120 struct dsa_port *dp = dsa_to_port(ds, port); 121 struct sja1105_private *priv = ds->priv; 122 struct sja1105_vlan_lookup_entry *vlan; 123 bool drop_untagged = false; 124 int match, rc; 125 u16 pvid; 126 127 if (dp->bridge_dev && br_vlan_enabled(dp->bridge_dev)) 128 pvid = priv->bridge_pvid[port]; 129 else 130 pvid = priv->tag_8021q_pvid[port]; 131 132 rc = sja1105_pvid_apply(priv, port, pvid); 133 if (rc) 134 return rc; 135 136 /* Only force dropping of untagged packets when the port is under a 137 * VLAN-aware bridge. When the tag_8021q pvid is used, we are 138 * deliberately removing the RX VLAN from the port's VMEMB_PORT list, 139 * to prevent DSA tag spoofing from the link partner. Untagged packets 140 * are the only ones that should be received with tag_8021q, so 141 * definitely don't drop them. 142 */ 143 if (pvid == priv->bridge_pvid[port]) { 144 vlan = priv->static_config.tables[BLK_IDX_VLAN_LOOKUP].entries; 145 146 match = sja1105_is_vlan_configured(priv, pvid); 147 148 if (match < 0 || !(vlan[match].vmemb_port & BIT(port))) 149 drop_untagged = true; 150 } 151 152 if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) 153 drop_untagged = true; 154 155 return sja1105_drop_untagged(ds, port, drop_untagged); 156 } 157 158 static int sja1105_init_mac_settings(struct sja1105_private *priv) 159 { 160 struct sja1105_mac_config_entry default_mac = { 161 /* Enable all 8 priority queues on egress. 162 * Every queue i holds top[i] - base[i] frames. 163 * Sum of top[i] - base[i] is 511 (max hardware limit). 164 */ 165 .top = {0x3F, 0x7F, 0xBF, 0xFF, 0x13F, 0x17F, 0x1BF, 0x1FF}, 166 .base = {0x0, 0x40, 0x80, 0xC0, 0x100, 0x140, 0x180, 0x1C0}, 167 .enabled = {true, true, true, true, true, true, true, true}, 168 /* Keep standard IFG of 12 bytes on egress. */ 169 .ifg = 0, 170 /* Always put the MAC speed in automatic mode, where it can be 171 * adjusted at runtime by PHYLINK. 172 */ 173 .speed = priv->info->port_speed[SJA1105_SPEED_AUTO], 174 /* No static correction for 1-step 1588 events */ 175 .tp_delin = 0, 176 .tp_delout = 0, 177 /* Disable aging for critical TTEthernet traffic */ 178 .maxage = 0xFF, 179 /* Internal VLAN (pvid) to apply to untagged ingress */ 180 .vlanprio = 0, 181 .vlanid = 1, 182 .ing_mirr = false, 183 .egr_mirr = false, 184 /* Don't drop traffic with other EtherType than ETH_P_IP */ 185 .drpnona664 = false, 186 /* Don't drop double-tagged traffic */ 187 .drpdtag = false, 188 /* Don't drop untagged traffic */ 189 .drpuntag = false, 190 /* Don't retag 802.1p (VID 0) traffic with the pvid */ 191 .retag = false, 192 /* Disable learning and I/O on user ports by default - 193 * STP will enable it. 194 */ 195 .dyn_learn = false, 196 .egress = false, 197 .ingress = false, 198 }; 199 struct sja1105_mac_config_entry *mac; 200 struct dsa_switch *ds = priv->ds; 201 struct sja1105_table *table; 202 struct dsa_port *dp; 203 204 table = &priv->static_config.tables[BLK_IDX_MAC_CONFIG]; 205 206 /* Discard previous MAC Configuration Table */ 207 if (table->entry_count) { 208 kfree(table->entries); 209 table->entry_count = 0; 210 } 211 212 table->entries = kcalloc(table->ops->max_entry_count, 213 table->ops->unpacked_entry_size, GFP_KERNEL); 214 if (!table->entries) 215 return -ENOMEM; 216 217 table->entry_count = table->ops->max_entry_count; 218 219 mac = table->entries; 220 221 list_for_each_entry(dp, &ds->dst->ports, list) { 222 if (dp->ds != ds) 223 continue; 224 225 mac[dp->index] = default_mac; 226 227 /* Let sja1105_bridge_stp_state_set() keep address learning 228 * enabled for the DSA ports. CPU ports use software-assisted 229 * learning to ensure that only FDB entries belonging to the 230 * bridge are learned, and that they are learned towards all 231 * CPU ports in a cross-chip topology if multiple CPU ports 232 * exist. 233 */ 234 if (dsa_port_is_dsa(dp)) 235 dp->learning = true; 236 237 /* Disallow untagged packets from being received on the 238 * CPU and DSA ports. 239 */ 240 if (dsa_port_is_cpu(dp) || dsa_port_is_dsa(dp)) 241 mac[dp->index].drpuntag = true; 242 } 243 244 return 0; 245 } 246 247 static int sja1105_init_mii_settings(struct sja1105_private *priv) 248 { 249 struct device *dev = &priv->spidev->dev; 250 struct sja1105_xmii_params_entry *mii; 251 struct dsa_switch *ds = priv->ds; 252 struct sja1105_table *table; 253 int i; 254 255 table = &priv->static_config.tables[BLK_IDX_XMII_PARAMS]; 256 257 /* Discard previous xMII Mode Parameters Table */ 258 if (table->entry_count) { 259 kfree(table->entries); 260 table->entry_count = 0; 261 } 262 263 table->entries = kcalloc(table->ops->max_entry_count, 264 table->ops->unpacked_entry_size, GFP_KERNEL); 265 if (!table->entries) 266 return -ENOMEM; 267 268 /* Override table based on PHYLINK DT bindings */ 269 table->entry_count = table->ops->max_entry_count; 270 271 mii = table->entries; 272 273 for (i = 0; i < ds->num_ports; i++) { 274 sja1105_mii_role_t role = XMII_MAC; 275 276 if (dsa_is_unused_port(priv->ds, i)) 277 continue; 278 279 switch (priv->phy_mode[i]) { 280 case PHY_INTERFACE_MODE_INTERNAL: 281 if (priv->info->internal_phy[i] == SJA1105_NO_PHY) 282 goto unsupported; 283 284 mii->xmii_mode[i] = XMII_MODE_MII; 285 if (priv->info->internal_phy[i] == SJA1105_PHY_BASE_TX) 286 mii->special[i] = true; 287 288 break; 289 case PHY_INTERFACE_MODE_REVMII: 290 role = XMII_PHY; 291 fallthrough; 292 case PHY_INTERFACE_MODE_MII: 293 if (!priv->info->supports_mii[i]) 294 goto unsupported; 295 296 mii->xmii_mode[i] = XMII_MODE_MII; 297 break; 298 case PHY_INTERFACE_MODE_REVRMII: 299 role = XMII_PHY; 300 fallthrough; 301 case PHY_INTERFACE_MODE_RMII: 302 if (!priv->info->supports_rmii[i]) 303 goto unsupported; 304 305 mii->xmii_mode[i] = XMII_MODE_RMII; 306 break; 307 case PHY_INTERFACE_MODE_RGMII: 308 case PHY_INTERFACE_MODE_RGMII_ID: 309 case PHY_INTERFACE_MODE_RGMII_RXID: 310 case PHY_INTERFACE_MODE_RGMII_TXID: 311 if (!priv->info->supports_rgmii[i]) 312 goto unsupported; 313 314 mii->xmii_mode[i] = XMII_MODE_RGMII; 315 break; 316 case PHY_INTERFACE_MODE_SGMII: 317 if (!priv->info->supports_sgmii[i]) 318 goto unsupported; 319 320 mii->xmii_mode[i] = XMII_MODE_SGMII; 321 mii->special[i] = true; 322 break; 323 case PHY_INTERFACE_MODE_2500BASEX: 324 if (!priv->info->supports_2500basex[i]) 325 goto unsupported; 326 327 mii->xmii_mode[i] = XMII_MODE_SGMII; 328 mii->special[i] = true; 329 break; 330 unsupported: 331 default: 332 dev_err(dev, "Unsupported PHY mode %s on port %d!\n", 333 phy_modes(priv->phy_mode[i]), i); 334 return -EINVAL; 335 } 336 337 mii->phy_mac[i] = role; 338 } 339 return 0; 340 } 341 342 static int sja1105_init_static_fdb(struct sja1105_private *priv) 343 { 344 struct sja1105_l2_lookup_entry *l2_lookup; 345 struct sja1105_table *table; 346 int port; 347 348 table = &priv->static_config.tables[BLK_IDX_L2_LOOKUP]; 349 350 /* We only populate the FDB table through dynamic L2 Address Lookup 351 * entries, except for a special entry at the end which is a catch-all 352 * for unknown multicast and will be used to control flooding domain. 353 */ 354 if (table->entry_count) { 355 kfree(table->entries); 356 table->entry_count = 0; 357 } 358 359 if (!priv->info->can_limit_mcast_flood) 360 return 0; 361 362 table->entries = kcalloc(1, table->ops->unpacked_entry_size, 363 GFP_KERNEL); 364 if (!table->entries) 365 return -ENOMEM; 366 367 table->entry_count = 1; 368 l2_lookup = table->entries; 369 370 /* All L2 multicast addresses have an odd first octet */ 371 l2_lookup[0].macaddr = SJA1105_UNKNOWN_MULTICAST; 372 l2_lookup[0].mask_macaddr = SJA1105_UNKNOWN_MULTICAST; 373 l2_lookup[0].lockeds = true; 374 l2_lookup[0].index = SJA1105_MAX_L2_LOOKUP_COUNT - 1; 375 376 /* Flood multicast to every port by default */ 377 for (port = 0; port < priv->ds->num_ports; port++) 378 if (!dsa_is_unused_port(priv->ds, port)) 379 l2_lookup[0].destports |= BIT(port); 380 381 return 0; 382 } 383 384 static int sja1105_init_l2_lookup_params(struct sja1105_private *priv) 385 { 386 struct sja1105_l2_lookup_params_entry default_l2_lookup_params = { 387 /* Learned FDB entries are forgotten after 300 seconds */ 388 .maxage = SJA1105_AGEING_TIME_MS(300000), 389 /* All entries within a FDB bin are available for learning */ 390 .dyn_tbsz = SJA1105ET_FDB_BIN_SIZE, 391 /* And the P/Q/R/S equivalent setting: */ 392 .start_dynspc = 0, 393 /* 2^8 + 2^5 + 2^3 + 2^2 + 2^1 + 1 in Koopman notation */ 394 .poly = 0x97, 395 /* This selects between Independent VLAN Learning (IVL) and 396 * Shared VLAN Learning (SVL) 397 */ 398 .shared_learn = true, 399 /* Don't discard management traffic based on ENFPORT - 400 * we don't perform SMAC port enforcement anyway, so 401 * what we are setting here doesn't matter. 402 */ 403 .no_enf_hostprt = false, 404 /* Don't learn SMAC for mac_fltres1 and mac_fltres0. 405 * Maybe correlate with no_linklocal_learn from bridge driver? 406 */ 407 .no_mgmt_learn = true, 408 /* P/Q/R/S only */ 409 .use_static = true, 410 /* Dynamically learned FDB entries can overwrite other (older) 411 * dynamic FDB entries 412 */ 413 .owr_dyn = true, 414 .drpnolearn = true, 415 }; 416 struct dsa_switch *ds = priv->ds; 417 int port, num_used_ports = 0; 418 struct sja1105_table *table; 419 u64 max_fdb_entries; 420 421 for (port = 0; port < ds->num_ports; port++) 422 if (!dsa_is_unused_port(ds, port)) 423 num_used_ports++; 424 425 max_fdb_entries = SJA1105_MAX_L2_LOOKUP_COUNT / num_used_ports; 426 427 for (port = 0; port < ds->num_ports; port++) { 428 if (dsa_is_unused_port(ds, port)) 429 continue; 430 431 default_l2_lookup_params.maxaddrp[port] = max_fdb_entries; 432 } 433 434 table = &priv->static_config.tables[BLK_IDX_L2_LOOKUP_PARAMS]; 435 436 if (table->entry_count) { 437 kfree(table->entries); 438 table->entry_count = 0; 439 } 440 441 table->entries = kcalloc(table->ops->max_entry_count, 442 table->ops->unpacked_entry_size, GFP_KERNEL); 443 if (!table->entries) 444 return -ENOMEM; 445 446 table->entry_count = table->ops->max_entry_count; 447 448 /* This table only has a single entry */ 449 ((struct sja1105_l2_lookup_params_entry *)table->entries)[0] = 450 default_l2_lookup_params; 451 452 return 0; 453 } 454 455 /* Set up a default VLAN for untagged traffic injected from the CPU 456 * using management routes (e.g. STP, PTP) as opposed to tag_8021q. 457 * All DT-defined ports are members of this VLAN, and there are no 458 * restrictions on forwarding (since the CPU selects the destination). 459 * Frames from this VLAN will always be transmitted as untagged, and 460 * neither the bridge nor the 8021q module cannot create this VLAN ID. 461 */ 462 static int sja1105_init_static_vlan(struct sja1105_private *priv) 463 { 464 struct sja1105_table *table; 465 struct sja1105_vlan_lookup_entry pvid = { 466 .type_entry = SJA1110_VLAN_D_TAG, 467 .ving_mirr = 0, 468 .vegr_mirr = 0, 469 .vmemb_port = 0, 470 .vlan_bc = 0, 471 .tag_port = 0, 472 .vlanid = SJA1105_DEFAULT_VLAN, 473 }; 474 struct dsa_switch *ds = priv->ds; 475 int port; 476 477 table = &priv->static_config.tables[BLK_IDX_VLAN_LOOKUP]; 478 479 if (table->entry_count) { 480 kfree(table->entries); 481 table->entry_count = 0; 482 } 483 484 table->entries = kzalloc(table->ops->unpacked_entry_size, 485 GFP_KERNEL); 486 if (!table->entries) 487 return -ENOMEM; 488 489 table->entry_count = 1; 490 491 for (port = 0; port < ds->num_ports; port++) { 492 if (dsa_is_unused_port(ds, port)) 493 continue; 494 495 pvid.vmemb_port |= BIT(port); 496 pvid.vlan_bc |= BIT(port); 497 pvid.tag_port &= ~BIT(port); 498 499 if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) { 500 priv->tag_8021q_pvid[port] = SJA1105_DEFAULT_VLAN; 501 priv->bridge_pvid[port] = SJA1105_DEFAULT_VLAN; 502 } 503 } 504 505 ((struct sja1105_vlan_lookup_entry *)table->entries)[0] = pvid; 506 return 0; 507 } 508 509 static int sja1105_init_l2_forwarding(struct sja1105_private *priv) 510 { 511 struct sja1105_l2_forwarding_entry *l2fwd; 512 struct dsa_switch *ds = priv->ds; 513 struct dsa_switch_tree *dst; 514 struct sja1105_table *table; 515 struct dsa_link *dl; 516 int port, tc; 517 int from, to; 518 519 table = &priv->static_config.tables[BLK_IDX_L2_FORWARDING]; 520 521 if (table->entry_count) { 522 kfree(table->entries); 523 table->entry_count = 0; 524 } 525 526 table->entries = kcalloc(table->ops->max_entry_count, 527 table->ops->unpacked_entry_size, GFP_KERNEL); 528 if (!table->entries) 529 return -ENOMEM; 530 531 table->entry_count = table->ops->max_entry_count; 532 533 l2fwd = table->entries; 534 535 /* First 5 entries in the L2 Forwarding Table define the forwarding 536 * rules and the VLAN PCP to ingress queue mapping. 537 * Set up the ingress queue mapping first. 538 */ 539 for (port = 0; port < ds->num_ports; port++) { 540 if (dsa_is_unused_port(ds, port)) 541 continue; 542 543 for (tc = 0; tc < SJA1105_NUM_TC; tc++) 544 l2fwd[port].vlan_pmap[tc] = tc; 545 } 546 547 /* Then manage the forwarding domain for user ports. These can forward 548 * only to the always-on domain (CPU port and DSA links) 549 */ 550 for (from = 0; from < ds->num_ports; from++) { 551 if (!dsa_is_user_port(ds, from)) 552 continue; 553 554 for (to = 0; to < ds->num_ports; to++) { 555 if (!dsa_is_cpu_port(ds, to) && 556 !dsa_is_dsa_port(ds, to)) 557 continue; 558 559 l2fwd[from].bc_domain |= BIT(to); 560 l2fwd[from].fl_domain |= BIT(to); 561 562 sja1105_port_allow_traffic(l2fwd, from, to, true); 563 } 564 } 565 566 /* Then manage the forwarding domain for DSA links and CPU ports (the 567 * always-on domain). These can send packets to any enabled port except 568 * themselves. 569 */ 570 for (from = 0; from < ds->num_ports; from++) { 571 if (!dsa_is_cpu_port(ds, from) && !dsa_is_dsa_port(ds, from)) 572 continue; 573 574 for (to = 0; to < ds->num_ports; to++) { 575 if (dsa_is_unused_port(ds, to)) 576 continue; 577 578 if (from == to) 579 continue; 580 581 l2fwd[from].bc_domain |= BIT(to); 582 l2fwd[from].fl_domain |= BIT(to); 583 584 sja1105_port_allow_traffic(l2fwd, from, to, true); 585 } 586 } 587 588 /* In odd topologies ("H" connections where there is a DSA link to 589 * another switch which also has its own CPU port), TX packets can loop 590 * back into the system (they are flooded from CPU port 1 to the DSA 591 * link, and from there to CPU port 2). Prevent this from happening by 592 * cutting RX from DSA links towards our CPU port, if the remote switch 593 * has its own CPU port and therefore doesn't need ours for network 594 * stack termination. 595 */ 596 dst = ds->dst; 597 598 list_for_each_entry(dl, &dst->rtable, list) { 599 if (dl->dp->ds != ds || dl->link_dp->cpu_dp == dl->dp->cpu_dp) 600 continue; 601 602 from = dl->dp->index; 603 to = dsa_upstream_port(ds, from); 604 605 dev_warn(ds->dev, 606 "H topology detected, cutting RX from DSA link %d to CPU port %d to prevent TX packet loops\n", 607 from, to); 608 609 sja1105_port_allow_traffic(l2fwd, from, to, false); 610 611 l2fwd[from].bc_domain &= ~BIT(to); 612 l2fwd[from].fl_domain &= ~BIT(to); 613 } 614 615 /* Finally, manage the egress flooding domain. All ports start up with 616 * flooding enabled, including the CPU port and DSA links. 617 */ 618 for (port = 0; port < ds->num_ports; port++) { 619 if (dsa_is_unused_port(ds, port)) 620 continue; 621 622 priv->ucast_egress_floods |= BIT(port); 623 priv->bcast_egress_floods |= BIT(port); 624 } 625 626 /* Next 8 entries define VLAN PCP mapping from ingress to egress. 627 * Create a one-to-one mapping. 628 */ 629 for (tc = 0; tc < SJA1105_NUM_TC; tc++) { 630 for (port = 0; port < ds->num_ports; port++) { 631 if (dsa_is_unused_port(ds, port)) 632 continue; 633 634 l2fwd[ds->num_ports + tc].vlan_pmap[port] = tc; 635 } 636 637 l2fwd[ds->num_ports + tc].type_egrpcp2outputq = true; 638 } 639 640 return 0; 641 } 642 643 static int sja1110_init_pcp_remapping(struct sja1105_private *priv) 644 { 645 struct sja1110_pcp_remapping_entry *pcp_remap; 646 struct dsa_switch *ds = priv->ds; 647 struct sja1105_table *table; 648 int port, tc; 649 650 table = &priv->static_config.tables[BLK_IDX_PCP_REMAPPING]; 651 652 /* Nothing to do for SJA1105 */ 653 if (!table->ops->max_entry_count) 654 return 0; 655 656 if (table->entry_count) { 657 kfree(table->entries); 658 table->entry_count = 0; 659 } 660 661 table->entries = kcalloc(table->ops->max_entry_count, 662 table->ops->unpacked_entry_size, GFP_KERNEL); 663 if (!table->entries) 664 return -ENOMEM; 665 666 table->entry_count = table->ops->max_entry_count; 667 668 pcp_remap = table->entries; 669 670 /* Repeat the configuration done for vlan_pmap */ 671 for (port = 0; port < ds->num_ports; port++) { 672 if (dsa_is_unused_port(ds, port)) 673 continue; 674 675 for (tc = 0; tc < SJA1105_NUM_TC; tc++) 676 pcp_remap[port].egrpcp[tc] = tc; 677 } 678 679 return 0; 680 } 681 682 static int sja1105_init_l2_forwarding_params(struct sja1105_private *priv) 683 { 684 struct sja1105_l2_forwarding_params_entry *l2fwd_params; 685 struct sja1105_table *table; 686 687 table = &priv->static_config.tables[BLK_IDX_L2_FORWARDING_PARAMS]; 688 689 if (table->entry_count) { 690 kfree(table->entries); 691 table->entry_count = 0; 692 } 693 694 table->entries = kcalloc(table->ops->max_entry_count, 695 table->ops->unpacked_entry_size, GFP_KERNEL); 696 if (!table->entries) 697 return -ENOMEM; 698 699 table->entry_count = table->ops->max_entry_count; 700 701 /* This table only has a single entry */ 702 l2fwd_params = table->entries; 703 704 /* Disallow dynamic reconfiguration of vlan_pmap */ 705 l2fwd_params->max_dynp = 0; 706 /* Use a single memory partition for all ingress queues */ 707 l2fwd_params->part_spc[0] = priv->info->max_frame_mem; 708 709 return 0; 710 } 711 712 void sja1105_frame_memory_partitioning(struct sja1105_private *priv) 713 { 714 struct sja1105_l2_forwarding_params_entry *l2_fwd_params; 715 struct sja1105_vl_forwarding_params_entry *vl_fwd_params; 716 struct sja1105_table *table; 717 718 table = &priv->static_config.tables[BLK_IDX_L2_FORWARDING_PARAMS]; 719 l2_fwd_params = table->entries; 720 l2_fwd_params->part_spc[0] = SJA1105_MAX_FRAME_MEMORY; 721 722 /* If we have any critical-traffic virtual links, we need to reserve 723 * some frame buffer memory for them. At the moment, hardcode the value 724 * at 100 blocks of 128 bytes of memory each. This leaves 829 blocks 725 * remaining for best-effort traffic. TODO: figure out a more flexible 726 * way to perform the frame buffer partitioning. 727 */ 728 if (!priv->static_config.tables[BLK_IDX_VL_FORWARDING].entry_count) 729 return; 730 731 table = &priv->static_config.tables[BLK_IDX_VL_FORWARDING_PARAMS]; 732 vl_fwd_params = table->entries; 733 734 l2_fwd_params->part_spc[0] -= SJA1105_VL_FRAME_MEMORY; 735 vl_fwd_params->partspc[0] = SJA1105_VL_FRAME_MEMORY; 736 } 737 738 /* SJA1110 TDMACONFIGIDX values: 739 * 740 * | 100 Mbps ports | 1Gbps ports | 2.5Gbps ports | Disabled ports 741 * -----+----------------+---------------+---------------+--------------- 742 * 0 | 0, [5:10] | [1:2] | [3:4] | retag 743 * 1 |0, [5:10], retag| [1:2] | [3:4] | - 744 * 2 | 0, [5:10] | [1:3], retag | 4 | - 745 * 3 | 0, [5:10] |[1:2], 4, retag| 3 | - 746 * 4 | 0, 2, [5:10] | 1, retag | [3:4] | - 747 * 5 | 0, 1, [5:10] | 2, retag | [3:4] | - 748 * 14 | 0, [5:10] | [1:4], retag | - | - 749 * 15 | [5:10] | [0:4], retag | - | - 750 */ 751 static void sja1110_select_tdmaconfigidx(struct sja1105_private *priv) 752 { 753 struct sja1105_general_params_entry *general_params; 754 struct sja1105_table *table; 755 bool port_1_is_base_tx; 756 bool port_3_is_2500; 757 bool port_4_is_2500; 758 u64 tdmaconfigidx; 759 760 if (priv->info->device_id != SJA1110_DEVICE_ID) 761 return; 762 763 table = &priv->static_config.tables[BLK_IDX_GENERAL_PARAMS]; 764 general_params = table->entries; 765 766 /* All the settings below are "as opposed to SGMII", which is the 767 * other pinmuxing option. 768 */ 769 port_1_is_base_tx = priv->phy_mode[1] == PHY_INTERFACE_MODE_INTERNAL; 770 port_3_is_2500 = priv->phy_mode[3] == PHY_INTERFACE_MODE_2500BASEX; 771 port_4_is_2500 = priv->phy_mode[4] == PHY_INTERFACE_MODE_2500BASEX; 772 773 if (port_1_is_base_tx) 774 /* Retagging port will operate at 1 Gbps */ 775 tdmaconfigidx = 5; 776 else if (port_3_is_2500 && port_4_is_2500) 777 /* Retagging port will operate at 100 Mbps */ 778 tdmaconfigidx = 1; 779 else if (port_3_is_2500) 780 /* Retagging port will operate at 1 Gbps */ 781 tdmaconfigidx = 3; 782 else if (port_4_is_2500) 783 /* Retagging port will operate at 1 Gbps */ 784 tdmaconfigidx = 2; 785 else 786 /* Retagging port will operate at 1 Gbps */ 787 tdmaconfigidx = 14; 788 789 general_params->tdmaconfigidx = tdmaconfigidx; 790 } 791 792 static int sja1105_init_topology(struct sja1105_private *priv, 793 struct sja1105_general_params_entry *general_params) 794 { 795 struct dsa_switch *ds = priv->ds; 796 int port; 797 798 /* The host port is the destination for traffic matching mac_fltres1 799 * and mac_fltres0 on all ports except itself. Default to an invalid 800 * value. 801 */ 802 general_params->host_port = ds->num_ports; 803 804 /* Link-local traffic received on casc_port will be forwarded 805 * to host_port without embedding the source port and device ID 806 * info in the destination MAC address, and no RX timestamps will be 807 * taken either (presumably because it is a cascaded port and a 808 * downstream SJA switch already did that). 809 * To disable the feature, we need to do different things depending on 810 * switch generation. On SJA1105 we need to set an invalid port, while 811 * on SJA1110 which support multiple cascaded ports, this field is a 812 * bitmask so it must be left zero. 813 */ 814 if (!priv->info->multiple_cascade_ports) 815 general_params->casc_port = ds->num_ports; 816 817 for (port = 0; port < ds->num_ports; port++) { 818 bool is_upstream = dsa_is_upstream_port(ds, port); 819 bool is_dsa_link = dsa_is_dsa_port(ds, port); 820 821 /* Upstream ports can be dedicated CPU ports or 822 * upstream-facing DSA links 823 */ 824 if (is_upstream) { 825 if (general_params->host_port == ds->num_ports) { 826 general_params->host_port = port; 827 } else { 828 dev_err(ds->dev, 829 "Port %llu is already a host port, configuring %d as one too is not supported\n", 830 general_params->host_port, port); 831 return -EINVAL; 832 } 833 } 834 835 /* Cascade ports are downstream-facing DSA links */ 836 if (is_dsa_link && !is_upstream) { 837 if (priv->info->multiple_cascade_ports) { 838 general_params->casc_port |= BIT(port); 839 } else if (general_params->casc_port == ds->num_ports) { 840 general_params->casc_port = port; 841 } else { 842 dev_err(ds->dev, 843 "Port %llu is already a cascade port, configuring %d as one too is not supported\n", 844 general_params->casc_port, port); 845 return -EINVAL; 846 } 847 } 848 } 849 850 if (general_params->host_port == ds->num_ports) { 851 dev_err(ds->dev, "No host port configured\n"); 852 return -EINVAL; 853 } 854 855 return 0; 856 } 857 858 static int sja1105_init_general_params(struct sja1105_private *priv) 859 { 860 struct sja1105_general_params_entry default_general_params = { 861 /* Allow dynamic changing of the mirror port */ 862 .mirr_ptacu = true, 863 .switchid = priv->ds->index, 864 /* Priority queue for link-local management frames 865 * (both ingress to and egress from CPU - PTP, STP etc) 866 */ 867 .hostprio = 7, 868 .mac_fltres1 = SJA1105_LINKLOCAL_FILTER_A, 869 .mac_flt1 = SJA1105_LINKLOCAL_FILTER_A_MASK, 870 .incl_srcpt1 = false, 871 .send_meta1 = false, 872 .mac_fltres0 = SJA1105_LINKLOCAL_FILTER_B, 873 .mac_flt0 = SJA1105_LINKLOCAL_FILTER_B_MASK, 874 .incl_srcpt0 = false, 875 .send_meta0 = false, 876 /* Default to an invalid value */ 877 .mirr_port = priv->ds->num_ports, 878 /* No TTEthernet */ 879 .vllupformat = SJA1105_VL_FORMAT_PSFP, 880 .vlmarker = 0, 881 .vlmask = 0, 882 /* Only update correctionField for 1-step PTP (L2 transport) */ 883 .ignore2stf = 0, 884 /* Forcefully disable VLAN filtering by telling 885 * the switch that VLAN has a different EtherType. 886 */ 887 .tpid = ETH_P_SJA1105, 888 .tpid2 = ETH_P_SJA1105, 889 /* Enable the TTEthernet engine on SJA1110 */ 890 .tte_en = true, 891 /* Set up the EtherType for control packets on SJA1110 */ 892 .header_type = ETH_P_SJA1110, 893 }; 894 struct sja1105_general_params_entry *general_params; 895 struct sja1105_table *table; 896 int rc; 897 898 rc = sja1105_init_topology(priv, &default_general_params); 899 if (rc) 900 return rc; 901 902 table = &priv->static_config.tables[BLK_IDX_GENERAL_PARAMS]; 903 904 if (table->entry_count) { 905 kfree(table->entries); 906 table->entry_count = 0; 907 } 908 909 table->entries = kcalloc(table->ops->max_entry_count, 910 table->ops->unpacked_entry_size, GFP_KERNEL); 911 if (!table->entries) 912 return -ENOMEM; 913 914 table->entry_count = table->ops->max_entry_count; 915 916 general_params = table->entries; 917 918 /* This table only has a single entry */ 919 general_params[0] = default_general_params; 920 921 sja1110_select_tdmaconfigidx(priv); 922 923 return 0; 924 } 925 926 static int sja1105_init_avb_params(struct sja1105_private *priv) 927 { 928 struct sja1105_avb_params_entry *avb; 929 struct sja1105_table *table; 930 931 table = &priv->static_config.tables[BLK_IDX_AVB_PARAMS]; 932 933 /* Discard previous AVB Parameters Table */ 934 if (table->entry_count) { 935 kfree(table->entries); 936 table->entry_count = 0; 937 } 938 939 table->entries = kcalloc(table->ops->max_entry_count, 940 table->ops->unpacked_entry_size, GFP_KERNEL); 941 if (!table->entries) 942 return -ENOMEM; 943 944 table->entry_count = table->ops->max_entry_count; 945 946 avb = table->entries; 947 948 /* Configure the MAC addresses for meta frames */ 949 avb->destmeta = SJA1105_META_DMAC; 950 avb->srcmeta = SJA1105_META_SMAC; 951 /* On P/Q/R/S, configure the direction of the PTP_CLK pin as input by 952 * default. This is because there might be boards with a hardware 953 * layout where enabling the pin as output might cause an electrical 954 * clash. On E/T the pin is always an output, which the board designers 955 * probably already knew, so even if there are going to be electrical 956 * issues, there's nothing we can do. 957 */ 958 avb->cas_master = false; 959 960 return 0; 961 } 962 963 /* The L2 policing table is 2-stage. The table is looked up for each frame 964 * according to the ingress port, whether it was broadcast or not, and the 965 * classified traffic class (given by VLAN PCP). This portion of the lookup is 966 * fixed, and gives access to the SHARINDX, an indirection register pointing 967 * within the policing table itself, which is used to resolve the policer that 968 * will be used for this frame. 969 * 970 * Stage 1 Stage 2 971 * +------------+--------+ +---------------------------------+ 972 * |Port 0 TC 0 |SHARINDX| | Policer 0: Rate, Burst, MTU | 973 * +------------+--------+ +---------------------------------+ 974 * |Port 0 TC 1 |SHARINDX| | Policer 1: Rate, Burst, MTU | 975 * +------------+--------+ +---------------------------------+ 976 * ... | Policer 2: Rate, Burst, MTU | 977 * +------------+--------+ +---------------------------------+ 978 * |Port 0 TC 7 |SHARINDX| | Policer 3: Rate, Burst, MTU | 979 * +------------+--------+ +---------------------------------+ 980 * |Port 1 TC 0 |SHARINDX| | Policer 4: Rate, Burst, MTU | 981 * +------------+--------+ +---------------------------------+ 982 * ... | Policer 5: Rate, Burst, MTU | 983 * +------------+--------+ +---------------------------------+ 984 * |Port 1 TC 7 |SHARINDX| | Policer 6: Rate, Burst, MTU | 985 * +------------+--------+ +---------------------------------+ 986 * ... | Policer 7: Rate, Burst, MTU | 987 * +------------+--------+ +---------------------------------+ 988 * |Port 4 TC 7 |SHARINDX| ... 989 * +------------+--------+ 990 * |Port 0 BCAST|SHARINDX| ... 991 * +------------+--------+ 992 * |Port 1 BCAST|SHARINDX| ... 993 * +------------+--------+ 994 * ... ... 995 * +------------+--------+ +---------------------------------+ 996 * |Port 4 BCAST|SHARINDX| | Policer 44: Rate, Burst, MTU | 997 * +------------+--------+ +---------------------------------+ 998 * 999 * In this driver, we shall use policers 0-4 as statically alocated port 1000 * (matchall) policers. So we need to make the SHARINDX for all lookups 1001 * corresponding to this ingress port (8 VLAN PCP lookups and 1 broadcast 1002 * lookup) equal. 1003 * The remaining policers (40) shall be dynamically allocated for flower 1004 * policers, where the key is either vlan_prio or dst_mac ff:ff:ff:ff:ff:ff. 1005 */ 1006 #define SJA1105_RATE_MBPS(speed) (((speed) * 64000) / 1000) 1007 1008 static int sja1105_init_l2_policing(struct sja1105_private *priv) 1009 { 1010 struct sja1105_l2_policing_entry *policing; 1011 struct dsa_switch *ds = priv->ds; 1012 struct sja1105_table *table; 1013 int port, tc; 1014 1015 table = &priv->static_config.tables[BLK_IDX_L2_POLICING]; 1016 1017 /* Discard previous L2 Policing Table */ 1018 if (table->entry_count) { 1019 kfree(table->entries); 1020 table->entry_count = 0; 1021 } 1022 1023 table->entries = kcalloc(table->ops->max_entry_count, 1024 table->ops->unpacked_entry_size, GFP_KERNEL); 1025 if (!table->entries) 1026 return -ENOMEM; 1027 1028 table->entry_count = table->ops->max_entry_count; 1029 1030 policing = table->entries; 1031 1032 /* Setup shared indices for the matchall policers */ 1033 for (port = 0; port < ds->num_ports; port++) { 1034 int mcast = (ds->num_ports * (SJA1105_NUM_TC + 1)) + port; 1035 int bcast = (ds->num_ports * SJA1105_NUM_TC) + port; 1036 1037 for (tc = 0; tc < SJA1105_NUM_TC; tc++) 1038 policing[port * SJA1105_NUM_TC + tc].sharindx = port; 1039 1040 policing[bcast].sharindx = port; 1041 /* Only SJA1110 has multicast policers */ 1042 if (mcast <= table->ops->max_entry_count) 1043 policing[mcast].sharindx = port; 1044 } 1045 1046 /* Setup the matchall policer parameters */ 1047 for (port = 0; port < ds->num_ports; port++) { 1048 int mtu = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN; 1049 1050 if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) 1051 mtu += VLAN_HLEN; 1052 1053 policing[port].smax = 65535; /* Burst size in bytes */ 1054 policing[port].rate = SJA1105_RATE_MBPS(1000); 1055 policing[port].maxlen = mtu; 1056 policing[port].partition = 0; 1057 } 1058 1059 return 0; 1060 } 1061 1062 static int sja1105_static_config_load(struct sja1105_private *priv) 1063 { 1064 int rc; 1065 1066 sja1105_static_config_free(&priv->static_config); 1067 rc = sja1105_static_config_init(&priv->static_config, 1068 priv->info->static_ops, 1069 priv->info->device_id); 1070 if (rc) 1071 return rc; 1072 1073 /* Build static configuration */ 1074 rc = sja1105_init_mac_settings(priv); 1075 if (rc < 0) 1076 return rc; 1077 rc = sja1105_init_mii_settings(priv); 1078 if (rc < 0) 1079 return rc; 1080 rc = sja1105_init_static_fdb(priv); 1081 if (rc < 0) 1082 return rc; 1083 rc = sja1105_init_static_vlan(priv); 1084 if (rc < 0) 1085 return rc; 1086 rc = sja1105_init_l2_lookup_params(priv); 1087 if (rc < 0) 1088 return rc; 1089 rc = sja1105_init_l2_forwarding(priv); 1090 if (rc < 0) 1091 return rc; 1092 rc = sja1105_init_l2_forwarding_params(priv); 1093 if (rc < 0) 1094 return rc; 1095 rc = sja1105_init_l2_policing(priv); 1096 if (rc < 0) 1097 return rc; 1098 rc = sja1105_init_general_params(priv); 1099 if (rc < 0) 1100 return rc; 1101 rc = sja1105_init_avb_params(priv); 1102 if (rc < 0) 1103 return rc; 1104 rc = sja1110_init_pcp_remapping(priv); 1105 if (rc < 0) 1106 return rc; 1107 1108 /* Send initial configuration to hardware via SPI */ 1109 return sja1105_static_config_upload(priv); 1110 } 1111 1112 /* This is the "new way" for a MAC driver to configure its RGMII delay lines, 1113 * based on the explicit "rx-internal-delay-ps" and "tx-internal-delay-ps" 1114 * properties. It has the advantage of working with fixed links and with PHYs 1115 * that apply RGMII delays too, and the MAC driver needs not perform any 1116 * special checks. 1117 * 1118 * Previously we were acting upon the "phy-mode" property when we were 1119 * operating in fixed-link, basically acting as a PHY, but with a reversed 1120 * interpretation: PHY_INTERFACE_MODE_RGMII_TXID means that the MAC should 1121 * behave as if it is connected to a PHY which has applied RGMII delays in the 1122 * TX direction. So if anything, RX delays should have been added by the MAC, 1123 * but we were adding TX delays. 1124 * 1125 * If the "{rx,tx}-internal-delay-ps" properties are not specified, we fall 1126 * back to the legacy behavior and apply delays on fixed-link ports based on 1127 * the reverse interpretation of the phy-mode. This is a deviation from the 1128 * expected default behavior which is to simply apply no delays. To achieve 1129 * that behavior with the new bindings, it is mandatory to specify 1130 * "{rx,tx}-internal-delay-ps" with a value of 0. 1131 */ 1132 static int sja1105_parse_rgmii_delays(struct sja1105_private *priv, int port, 1133 struct device_node *port_dn) 1134 { 1135 phy_interface_t phy_mode = priv->phy_mode[port]; 1136 struct device *dev = &priv->spidev->dev; 1137 int rx_delay = -1, tx_delay = -1; 1138 1139 if (!phy_interface_mode_is_rgmii(phy_mode)) 1140 return 0; 1141 1142 of_property_read_u32(port_dn, "rx-internal-delay-ps", &rx_delay); 1143 of_property_read_u32(port_dn, "tx-internal-delay-ps", &tx_delay); 1144 1145 if (rx_delay == -1 && tx_delay == -1 && priv->fixed_link[port]) { 1146 dev_warn(dev, 1147 "Port %d interpreting RGMII delay settings based on \"phy-mode\" property, " 1148 "please update device tree to specify \"rx-internal-delay-ps\" and " 1149 "\"tx-internal-delay-ps\"", 1150 port); 1151 1152 if (phy_mode == PHY_INTERFACE_MODE_RGMII_RXID || 1153 phy_mode == PHY_INTERFACE_MODE_RGMII_ID) 1154 rx_delay = 2000; 1155 1156 if (phy_mode == PHY_INTERFACE_MODE_RGMII_TXID || 1157 phy_mode == PHY_INTERFACE_MODE_RGMII_ID) 1158 tx_delay = 2000; 1159 } 1160 1161 if (rx_delay < 0) 1162 rx_delay = 0; 1163 if (tx_delay < 0) 1164 tx_delay = 0; 1165 1166 if ((rx_delay || tx_delay) && !priv->info->setup_rgmii_delay) { 1167 dev_err(dev, "Chip cannot apply RGMII delays\n"); 1168 return -EINVAL; 1169 } 1170 1171 if ((rx_delay && rx_delay < SJA1105_RGMII_DELAY_MIN_PS) || 1172 (tx_delay && tx_delay < SJA1105_RGMII_DELAY_MIN_PS) || 1173 (rx_delay > SJA1105_RGMII_DELAY_MAX_PS) || 1174 (tx_delay > SJA1105_RGMII_DELAY_MAX_PS)) { 1175 dev_err(dev, 1176 "port %d RGMII delay values out of range, must be between %d and %d ps\n", 1177 port, SJA1105_RGMII_DELAY_MIN_PS, SJA1105_RGMII_DELAY_MAX_PS); 1178 return -ERANGE; 1179 } 1180 1181 priv->rgmii_rx_delay_ps[port] = rx_delay; 1182 priv->rgmii_tx_delay_ps[port] = tx_delay; 1183 1184 return 0; 1185 } 1186 1187 static int sja1105_parse_ports_node(struct sja1105_private *priv, 1188 struct device_node *ports_node) 1189 { 1190 struct device *dev = &priv->spidev->dev; 1191 struct device_node *child; 1192 1193 for_each_available_child_of_node(ports_node, child) { 1194 struct device_node *phy_node; 1195 phy_interface_t phy_mode; 1196 u32 index; 1197 int err; 1198 1199 /* Get switch port number from DT */ 1200 if (of_property_read_u32(child, "reg", &index) < 0) { 1201 dev_err(dev, "Port number not defined in device tree " 1202 "(property \"reg\")\n"); 1203 of_node_put(child); 1204 return -ENODEV; 1205 } 1206 1207 /* Get PHY mode from DT */ 1208 err = of_get_phy_mode(child, &phy_mode); 1209 if (err) { 1210 dev_err(dev, "Failed to read phy-mode or " 1211 "phy-interface-type property for port %d\n", 1212 index); 1213 of_node_put(child); 1214 return -ENODEV; 1215 } 1216 1217 phy_node = of_parse_phandle(child, "phy-handle", 0); 1218 if (!phy_node) { 1219 if (!of_phy_is_fixed_link(child)) { 1220 dev_err(dev, "phy-handle or fixed-link " 1221 "properties missing!\n"); 1222 of_node_put(child); 1223 return -ENODEV; 1224 } 1225 /* phy-handle is missing, but fixed-link isn't. 1226 * So it's a fixed link. Default to PHY role. 1227 */ 1228 priv->fixed_link[index] = true; 1229 } else { 1230 of_node_put(phy_node); 1231 } 1232 1233 priv->phy_mode[index] = phy_mode; 1234 1235 err = sja1105_parse_rgmii_delays(priv, index, child); 1236 if (err) { 1237 of_node_put(child); 1238 return err; 1239 } 1240 } 1241 1242 return 0; 1243 } 1244 1245 static int sja1105_parse_dt(struct sja1105_private *priv) 1246 { 1247 struct device *dev = &priv->spidev->dev; 1248 struct device_node *switch_node = dev->of_node; 1249 struct device_node *ports_node; 1250 int rc; 1251 1252 ports_node = of_get_child_by_name(switch_node, "ports"); 1253 if (!ports_node) 1254 ports_node = of_get_child_by_name(switch_node, "ethernet-ports"); 1255 if (!ports_node) { 1256 dev_err(dev, "Incorrect bindings: absent \"ports\" node\n"); 1257 return -ENODEV; 1258 } 1259 1260 rc = sja1105_parse_ports_node(priv, ports_node); 1261 of_node_put(ports_node); 1262 1263 return rc; 1264 } 1265 1266 /* Convert link speed from SJA1105 to ethtool encoding */ 1267 static int sja1105_port_speed_to_ethtool(struct sja1105_private *priv, 1268 u64 speed) 1269 { 1270 if (speed == priv->info->port_speed[SJA1105_SPEED_10MBPS]) 1271 return SPEED_10; 1272 if (speed == priv->info->port_speed[SJA1105_SPEED_100MBPS]) 1273 return SPEED_100; 1274 if (speed == priv->info->port_speed[SJA1105_SPEED_1000MBPS]) 1275 return SPEED_1000; 1276 if (speed == priv->info->port_speed[SJA1105_SPEED_2500MBPS]) 1277 return SPEED_2500; 1278 return SPEED_UNKNOWN; 1279 } 1280 1281 /* Set link speed in the MAC configuration for a specific port. */ 1282 static int sja1105_adjust_port_config(struct sja1105_private *priv, int port, 1283 int speed_mbps) 1284 { 1285 struct sja1105_mac_config_entry *mac; 1286 struct device *dev = priv->ds->dev; 1287 u64 speed; 1288 int rc; 1289 1290 /* On P/Q/R/S, one can read from the device via the MAC reconfiguration 1291 * tables. On E/T, MAC reconfig tables are not readable, only writable. 1292 * We have to *know* what the MAC looks like. For the sake of keeping 1293 * the code common, we'll use the static configuration tables as a 1294 * reasonable approximation for both E/T and P/Q/R/S. 1295 */ 1296 mac = priv->static_config.tables[BLK_IDX_MAC_CONFIG].entries; 1297 1298 switch (speed_mbps) { 1299 case SPEED_UNKNOWN: 1300 /* PHYLINK called sja1105_mac_config() to inform us about 1301 * the state->interface, but AN has not completed and the 1302 * speed is not yet valid. UM10944.pdf says that setting 1303 * SJA1105_SPEED_AUTO at runtime disables the port, so that is 1304 * ok for power consumption in case AN will never complete - 1305 * otherwise PHYLINK should come back with a new update. 1306 */ 1307 speed = priv->info->port_speed[SJA1105_SPEED_AUTO]; 1308 break; 1309 case SPEED_10: 1310 speed = priv->info->port_speed[SJA1105_SPEED_10MBPS]; 1311 break; 1312 case SPEED_100: 1313 speed = priv->info->port_speed[SJA1105_SPEED_100MBPS]; 1314 break; 1315 case SPEED_1000: 1316 speed = priv->info->port_speed[SJA1105_SPEED_1000MBPS]; 1317 break; 1318 case SPEED_2500: 1319 speed = priv->info->port_speed[SJA1105_SPEED_2500MBPS]; 1320 break; 1321 default: 1322 dev_err(dev, "Invalid speed %iMbps\n", speed_mbps); 1323 return -EINVAL; 1324 } 1325 1326 /* Overwrite SJA1105_SPEED_AUTO from the static MAC configuration 1327 * table, since this will be used for the clocking setup, and we no 1328 * longer need to store it in the static config (already told hardware 1329 * we want auto during upload phase). 1330 * Actually for the SGMII port, the MAC is fixed at 1 Gbps and 1331 * we need to configure the PCS only (if even that). 1332 */ 1333 if (priv->phy_mode[port] == PHY_INTERFACE_MODE_SGMII) 1334 mac[port].speed = priv->info->port_speed[SJA1105_SPEED_1000MBPS]; 1335 else if (priv->phy_mode[port] == PHY_INTERFACE_MODE_2500BASEX) 1336 mac[port].speed = priv->info->port_speed[SJA1105_SPEED_2500MBPS]; 1337 else 1338 mac[port].speed = speed; 1339 1340 /* Write to the dynamic reconfiguration tables */ 1341 rc = sja1105_dynamic_config_write(priv, BLK_IDX_MAC_CONFIG, port, 1342 &mac[port], true); 1343 if (rc < 0) { 1344 dev_err(dev, "Failed to write MAC config: %d\n", rc); 1345 return rc; 1346 } 1347 1348 /* Reconfigure the PLLs for the RGMII interfaces (required 125 MHz at 1349 * gigabit, 25 MHz at 100 Mbps and 2.5 MHz at 10 Mbps). For MII and 1350 * RMII no change of the clock setup is required. Actually, changing 1351 * the clock setup does interrupt the clock signal for a certain time 1352 * which causes trouble for all PHYs relying on this signal. 1353 */ 1354 if (!phy_interface_mode_is_rgmii(priv->phy_mode[port])) 1355 return 0; 1356 1357 return sja1105_clocking_setup_port(priv, port); 1358 } 1359 1360 /* The SJA1105 MAC programming model is through the static config (the xMII 1361 * Mode table cannot be dynamically reconfigured), and we have to program 1362 * that early (earlier than PHYLINK calls us, anyway). 1363 * So just error out in case the connected PHY attempts to change the initial 1364 * system interface MII protocol from what is defined in the DT, at least for 1365 * now. 1366 */ 1367 static bool sja1105_phy_mode_mismatch(struct sja1105_private *priv, int port, 1368 phy_interface_t interface) 1369 { 1370 return priv->phy_mode[port] != interface; 1371 } 1372 1373 static void sja1105_mac_config(struct dsa_switch *ds, int port, 1374 unsigned int mode, 1375 const struct phylink_link_state *state) 1376 { 1377 struct dsa_port *dp = dsa_to_port(ds, port); 1378 struct sja1105_private *priv = ds->priv; 1379 struct dw_xpcs *xpcs; 1380 1381 if (sja1105_phy_mode_mismatch(priv, port, state->interface)) { 1382 dev_err(ds->dev, "Changing PHY mode to %s not supported!\n", 1383 phy_modes(state->interface)); 1384 return; 1385 } 1386 1387 xpcs = priv->xpcs[port]; 1388 1389 if (xpcs) 1390 phylink_set_pcs(dp->pl, &xpcs->pcs); 1391 } 1392 1393 static void sja1105_mac_link_down(struct dsa_switch *ds, int port, 1394 unsigned int mode, 1395 phy_interface_t interface) 1396 { 1397 sja1105_inhibit_tx(ds->priv, BIT(port), true); 1398 } 1399 1400 static void sja1105_mac_link_up(struct dsa_switch *ds, int port, 1401 unsigned int mode, 1402 phy_interface_t interface, 1403 struct phy_device *phydev, 1404 int speed, int duplex, 1405 bool tx_pause, bool rx_pause) 1406 { 1407 struct sja1105_private *priv = ds->priv; 1408 1409 sja1105_adjust_port_config(priv, port, speed); 1410 1411 sja1105_inhibit_tx(priv, BIT(port), false); 1412 } 1413 1414 static void sja1105_phylink_validate(struct dsa_switch *ds, int port, 1415 unsigned long *supported, 1416 struct phylink_link_state *state) 1417 { 1418 /* Construct a new mask which exhaustively contains all link features 1419 * supported by the MAC, and then apply that (logical AND) to what will 1420 * be sent to the PHY for "marketing". 1421 */ 1422 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 1423 struct sja1105_private *priv = ds->priv; 1424 struct sja1105_xmii_params_entry *mii; 1425 1426 mii = priv->static_config.tables[BLK_IDX_XMII_PARAMS].entries; 1427 1428 /* include/linux/phylink.h says: 1429 * When @state->interface is %PHY_INTERFACE_MODE_NA, phylink 1430 * expects the MAC driver to return all supported link modes. 1431 */ 1432 if (state->interface != PHY_INTERFACE_MODE_NA && 1433 sja1105_phy_mode_mismatch(priv, port, state->interface)) { 1434 linkmode_zero(supported); 1435 return; 1436 } 1437 1438 /* The MAC does not support pause frames, and also doesn't 1439 * support half-duplex traffic modes. 1440 */ 1441 phylink_set(mask, Autoneg); 1442 phylink_set(mask, MII); 1443 phylink_set(mask, 10baseT_Full); 1444 phylink_set(mask, 100baseT_Full); 1445 phylink_set(mask, 100baseT1_Full); 1446 if (mii->xmii_mode[port] == XMII_MODE_RGMII || 1447 mii->xmii_mode[port] == XMII_MODE_SGMII) 1448 phylink_set(mask, 1000baseT_Full); 1449 if (priv->info->supports_2500basex[port]) { 1450 phylink_set(mask, 2500baseT_Full); 1451 phylink_set(mask, 2500baseX_Full); 1452 } 1453 1454 linkmode_and(supported, supported, mask); 1455 linkmode_and(state->advertising, state->advertising, mask); 1456 } 1457 1458 static int 1459 sja1105_find_static_fdb_entry(struct sja1105_private *priv, int port, 1460 const struct sja1105_l2_lookup_entry *requested) 1461 { 1462 struct sja1105_l2_lookup_entry *l2_lookup; 1463 struct sja1105_table *table; 1464 int i; 1465 1466 table = &priv->static_config.tables[BLK_IDX_L2_LOOKUP]; 1467 l2_lookup = table->entries; 1468 1469 for (i = 0; i < table->entry_count; i++) 1470 if (l2_lookup[i].macaddr == requested->macaddr && 1471 l2_lookup[i].vlanid == requested->vlanid && 1472 l2_lookup[i].destports & BIT(port)) 1473 return i; 1474 1475 return -1; 1476 } 1477 1478 /* We want FDB entries added statically through the bridge command to persist 1479 * across switch resets, which are a common thing during normal SJA1105 1480 * operation. So we have to back them up in the static configuration tables 1481 * and hence apply them on next static config upload... yay! 1482 */ 1483 static int 1484 sja1105_static_fdb_change(struct sja1105_private *priv, int port, 1485 const struct sja1105_l2_lookup_entry *requested, 1486 bool keep) 1487 { 1488 struct sja1105_l2_lookup_entry *l2_lookup; 1489 struct sja1105_table *table; 1490 int rc, match; 1491 1492 table = &priv->static_config.tables[BLK_IDX_L2_LOOKUP]; 1493 1494 match = sja1105_find_static_fdb_entry(priv, port, requested); 1495 if (match < 0) { 1496 /* Can't delete a missing entry. */ 1497 if (!keep) 1498 return 0; 1499 1500 /* No match => new entry */ 1501 rc = sja1105_table_resize(table, table->entry_count + 1); 1502 if (rc) 1503 return rc; 1504 1505 match = table->entry_count - 1; 1506 } 1507 1508 /* Assign pointer after the resize (it may be new memory) */ 1509 l2_lookup = table->entries; 1510 1511 /* We have a match. 1512 * If the job was to add this FDB entry, it's already done (mostly 1513 * anyway, since the port forwarding mask may have changed, case in 1514 * which we update it). 1515 * Otherwise we have to delete it. 1516 */ 1517 if (keep) { 1518 l2_lookup[match] = *requested; 1519 return 0; 1520 } 1521 1522 /* To remove, the strategy is to overwrite the element with 1523 * the last one, and then reduce the array size by 1 1524 */ 1525 l2_lookup[match] = l2_lookup[table->entry_count - 1]; 1526 return sja1105_table_resize(table, table->entry_count - 1); 1527 } 1528 1529 /* First-generation switches have a 4-way set associative TCAM that 1530 * holds the FDB entries. An FDB index spans from 0 to 1023 and is comprised of 1531 * a "bin" (grouping of 4 entries) and a "way" (an entry within a bin). 1532 * For the placement of a newly learnt FDB entry, the switch selects the bin 1533 * based on a hash function, and the way within that bin incrementally. 1534 */ 1535 static int sja1105et_fdb_index(int bin, int way) 1536 { 1537 return bin * SJA1105ET_FDB_BIN_SIZE + way; 1538 } 1539 1540 static int sja1105et_is_fdb_entry_in_bin(struct sja1105_private *priv, int bin, 1541 const u8 *addr, u16 vid, 1542 struct sja1105_l2_lookup_entry *match, 1543 int *last_unused) 1544 { 1545 int way; 1546 1547 for (way = 0; way < SJA1105ET_FDB_BIN_SIZE; way++) { 1548 struct sja1105_l2_lookup_entry l2_lookup = {0}; 1549 int index = sja1105et_fdb_index(bin, way); 1550 1551 /* Skip unused entries, optionally marking them 1552 * into the return value 1553 */ 1554 if (sja1105_dynamic_config_read(priv, BLK_IDX_L2_LOOKUP, 1555 index, &l2_lookup)) { 1556 if (last_unused) 1557 *last_unused = way; 1558 continue; 1559 } 1560 1561 if (l2_lookup.macaddr == ether_addr_to_u64(addr) && 1562 l2_lookup.vlanid == vid) { 1563 if (match) 1564 *match = l2_lookup; 1565 return way; 1566 } 1567 } 1568 /* Return an invalid entry index if not found */ 1569 return -1; 1570 } 1571 1572 int sja1105et_fdb_add(struct dsa_switch *ds, int port, 1573 const unsigned char *addr, u16 vid) 1574 { 1575 struct sja1105_l2_lookup_entry l2_lookup = {0}, tmp; 1576 struct sja1105_private *priv = ds->priv; 1577 struct device *dev = ds->dev; 1578 int last_unused = -1; 1579 int start, end, i; 1580 int bin, way, rc; 1581 1582 bin = sja1105et_fdb_hash(priv, addr, vid); 1583 1584 way = sja1105et_is_fdb_entry_in_bin(priv, bin, addr, vid, 1585 &l2_lookup, &last_unused); 1586 if (way >= 0) { 1587 /* We have an FDB entry. Is our port in the destination 1588 * mask? If yes, we need to do nothing. If not, we need 1589 * to rewrite the entry by adding this port to it. 1590 */ 1591 if ((l2_lookup.destports & BIT(port)) && l2_lookup.lockeds) 1592 return 0; 1593 l2_lookup.destports |= BIT(port); 1594 } else { 1595 int index = sja1105et_fdb_index(bin, way); 1596 1597 /* We don't have an FDB entry. We construct a new one and 1598 * try to find a place for it within the FDB table. 1599 */ 1600 l2_lookup.macaddr = ether_addr_to_u64(addr); 1601 l2_lookup.destports = BIT(port); 1602 l2_lookup.vlanid = vid; 1603 1604 if (last_unused >= 0) { 1605 way = last_unused; 1606 } else { 1607 /* Bin is full, need to evict somebody. 1608 * Choose victim at random. If you get these messages 1609 * often, you may need to consider changing the 1610 * distribution function: 1611 * static_config[BLK_IDX_L2_LOOKUP_PARAMS].entries->poly 1612 */ 1613 get_random_bytes(&way, sizeof(u8)); 1614 way %= SJA1105ET_FDB_BIN_SIZE; 1615 dev_warn(dev, "Warning, FDB bin %d full while adding entry for %pM. Evicting entry %u.\n", 1616 bin, addr, way); 1617 /* Evict entry */ 1618 sja1105_dynamic_config_write(priv, BLK_IDX_L2_LOOKUP, 1619 index, NULL, false); 1620 } 1621 } 1622 l2_lookup.lockeds = true; 1623 l2_lookup.index = sja1105et_fdb_index(bin, way); 1624 1625 rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_LOOKUP, 1626 l2_lookup.index, &l2_lookup, 1627 true); 1628 if (rc < 0) 1629 return rc; 1630 1631 /* Invalidate a dynamically learned entry if that exists */ 1632 start = sja1105et_fdb_index(bin, 0); 1633 end = sja1105et_fdb_index(bin, way); 1634 1635 for (i = start; i < end; i++) { 1636 rc = sja1105_dynamic_config_read(priv, BLK_IDX_L2_LOOKUP, 1637 i, &tmp); 1638 if (rc == -ENOENT) 1639 continue; 1640 if (rc) 1641 return rc; 1642 1643 if (tmp.macaddr != ether_addr_to_u64(addr) || tmp.vlanid != vid) 1644 continue; 1645 1646 rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_LOOKUP, 1647 i, NULL, false); 1648 if (rc) 1649 return rc; 1650 1651 break; 1652 } 1653 1654 return sja1105_static_fdb_change(priv, port, &l2_lookup, true); 1655 } 1656 1657 int sja1105et_fdb_del(struct dsa_switch *ds, int port, 1658 const unsigned char *addr, u16 vid) 1659 { 1660 struct sja1105_l2_lookup_entry l2_lookup = {0}; 1661 struct sja1105_private *priv = ds->priv; 1662 int index, bin, way, rc; 1663 bool keep; 1664 1665 bin = sja1105et_fdb_hash(priv, addr, vid); 1666 way = sja1105et_is_fdb_entry_in_bin(priv, bin, addr, vid, 1667 &l2_lookup, NULL); 1668 if (way < 0) 1669 return 0; 1670 index = sja1105et_fdb_index(bin, way); 1671 1672 /* We have an FDB entry. Is our port in the destination mask? If yes, 1673 * we need to remove it. If the resulting port mask becomes empty, we 1674 * need to completely evict the FDB entry. 1675 * Otherwise we just write it back. 1676 */ 1677 l2_lookup.destports &= ~BIT(port); 1678 1679 if (l2_lookup.destports) 1680 keep = true; 1681 else 1682 keep = false; 1683 1684 rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_LOOKUP, 1685 index, &l2_lookup, keep); 1686 if (rc < 0) 1687 return rc; 1688 1689 return sja1105_static_fdb_change(priv, port, &l2_lookup, keep); 1690 } 1691 1692 int sja1105pqrs_fdb_add(struct dsa_switch *ds, int port, 1693 const unsigned char *addr, u16 vid) 1694 { 1695 struct sja1105_l2_lookup_entry l2_lookup = {0}, tmp; 1696 struct sja1105_private *priv = ds->priv; 1697 int rc, i; 1698 1699 /* Search for an existing entry in the FDB table */ 1700 l2_lookup.macaddr = ether_addr_to_u64(addr); 1701 l2_lookup.vlanid = vid; 1702 l2_lookup.mask_macaddr = GENMASK_ULL(ETH_ALEN * 8 - 1, 0); 1703 l2_lookup.mask_vlanid = VLAN_VID_MASK; 1704 l2_lookup.destports = BIT(port); 1705 1706 tmp = l2_lookup; 1707 1708 rc = sja1105_dynamic_config_read(priv, BLK_IDX_L2_LOOKUP, 1709 SJA1105_SEARCH, &tmp); 1710 if (rc == 0 && tmp.index != SJA1105_MAX_L2_LOOKUP_COUNT - 1) { 1711 /* Found a static entry and this port is already in the entry's 1712 * port mask => job done 1713 */ 1714 if ((tmp.destports & BIT(port)) && tmp.lockeds) 1715 return 0; 1716 1717 l2_lookup = tmp; 1718 1719 /* l2_lookup.index is populated by the switch in case it 1720 * found something. 1721 */ 1722 l2_lookup.destports |= BIT(port); 1723 goto skip_finding_an_index; 1724 } 1725 1726 /* Not found, so try to find an unused spot in the FDB. 1727 * This is slightly inefficient because the strategy is knock-knock at 1728 * every possible position from 0 to 1023. 1729 */ 1730 for (i = 0; i < SJA1105_MAX_L2_LOOKUP_COUNT; i++) { 1731 rc = sja1105_dynamic_config_read(priv, BLK_IDX_L2_LOOKUP, 1732 i, NULL); 1733 if (rc < 0) 1734 break; 1735 } 1736 if (i == SJA1105_MAX_L2_LOOKUP_COUNT) { 1737 dev_err(ds->dev, "FDB is full, cannot add entry.\n"); 1738 return -EINVAL; 1739 } 1740 l2_lookup.index = i; 1741 1742 skip_finding_an_index: 1743 l2_lookup.lockeds = true; 1744 1745 rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_LOOKUP, 1746 l2_lookup.index, &l2_lookup, 1747 true); 1748 if (rc < 0) 1749 return rc; 1750 1751 /* The switch learns dynamic entries and looks up the FDB left to 1752 * right. It is possible that our addition was concurrent with the 1753 * dynamic learning of the same address, so now that the static entry 1754 * has been installed, we are certain that address learning for this 1755 * particular address has been turned off, so the dynamic entry either 1756 * is in the FDB at an index smaller than the static one, or isn't (it 1757 * can also be at a larger index, but in that case it is inactive 1758 * because the static FDB entry will match first, and the dynamic one 1759 * will eventually age out). Search for a dynamically learned address 1760 * prior to our static one and invalidate it. 1761 */ 1762 tmp = l2_lookup; 1763 1764 rc = sja1105_dynamic_config_read(priv, BLK_IDX_L2_LOOKUP, 1765 SJA1105_SEARCH, &tmp); 1766 if (rc < 0) { 1767 dev_err(ds->dev, 1768 "port %d failed to read back entry for %pM vid %d: %pe\n", 1769 port, addr, vid, ERR_PTR(rc)); 1770 return rc; 1771 } 1772 1773 if (tmp.index < l2_lookup.index) { 1774 rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_LOOKUP, 1775 tmp.index, NULL, false); 1776 if (rc < 0) 1777 return rc; 1778 } 1779 1780 return sja1105_static_fdb_change(priv, port, &l2_lookup, true); 1781 } 1782 1783 int sja1105pqrs_fdb_del(struct dsa_switch *ds, int port, 1784 const unsigned char *addr, u16 vid) 1785 { 1786 struct sja1105_l2_lookup_entry l2_lookup = {0}; 1787 struct sja1105_private *priv = ds->priv; 1788 bool keep; 1789 int rc; 1790 1791 l2_lookup.macaddr = ether_addr_to_u64(addr); 1792 l2_lookup.vlanid = vid; 1793 l2_lookup.mask_macaddr = GENMASK_ULL(ETH_ALEN * 8 - 1, 0); 1794 l2_lookup.mask_vlanid = VLAN_VID_MASK; 1795 l2_lookup.destports = BIT(port); 1796 1797 rc = sja1105_dynamic_config_read(priv, BLK_IDX_L2_LOOKUP, 1798 SJA1105_SEARCH, &l2_lookup); 1799 if (rc < 0) 1800 return 0; 1801 1802 l2_lookup.destports &= ~BIT(port); 1803 1804 /* Decide whether we remove just this port from the FDB entry, 1805 * or if we remove it completely. 1806 */ 1807 if (l2_lookup.destports) 1808 keep = true; 1809 else 1810 keep = false; 1811 1812 rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_LOOKUP, 1813 l2_lookup.index, &l2_lookup, keep); 1814 if (rc < 0) 1815 return rc; 1816 1817 return sja1105_static_fdb_change(priv, port, &l2_lookup, keep); 1818 } 1819 1820 static int sja1105_fdb_add(struct dsa_switch *ds, int port, 1821 const unsigned char *addr, u16 vid) 1822 { 1823 struct sja1105_private *priv = ds->priv; 1824 1825 return priv->info->fdb_add_cmd(ds, port, addr, vid); 1826 } 1827 1828 static int sja1105_fdb_del(struct dsa_switch *ds, int port, 1829 const unsigned char *addr, u16 vid) 1830 { 1831 struct sja1105_private *priv = ds->priv; 1832 1833 return priv->info->fdb_del_cmd(ds, port, addr, vid); 1834 } 1835 1836 static int sja1105_fdb_dump(struct dsa_switch *ds, int port, 1837 dsa_fdb_dump_cb_t *cb, void *data) 1838 { 1839 struct dsa_port *dp = dsa_to_port(ds, port); 1840 struct sja1105_private *priv = ds->priv; 1841 struct device *dev = ds->dev; 1842 int i; 1843 1844 for (i = 0; i < SJA1105_MAX_L2_LOOKUP_COUNT; i++) { 1845 struct sja1105_l2_lookup_entry l2_lookup = {0}; 1846 u8 macaddr[ETH_ALEN]; 1847 int rc; 1848 1849 rc = sja1105_dynamic_config_read(priv, BLK_IDX_L2_LOOKUP, 1850 i, &l2_lookup); 1851 /* No fdb entry at i, not an issue */ 1852 if (rc == -ENOENT) 1853 continue; 1854 if (rc) { 1855 dev_err(dev, "Failed to dump FDB: %d\n", rc); 1856 return rc; 1857 } 1858 1859 /* FDB dump callback is per port. This means we have to 1860 * disregard a valid entry if it's not for this port, even if 1861 * only to revisit it later. This is inefficient because the 1862 * 1024-sized FDB table needs to be traversed 4 times through 1863 * SPI during a 'bridge fdb show' command. 1864 */ 1865 if (!(l2_lookup.destports & BIT(port))) 1866 continue; 1867 1868 /* We need to hide the FDB entry for unknown multicast */ 1869 if (l2_lookup.macaddr == SJA1105_UNKNOWN_MULTICAST && 1870 l2_lookup.mask_macaddr == SJA1105_UNKNOWN_MULTICAST) 1871 continue; 1872 1873 u64_to_ether_addr(l2_lookup.macaddr, macaddr); 1874 1875 /* We need to hide the dsa_8021q VLANs from the user. */ 1876 if (!dsa_port_is_vlan_filtering(dp)) 1877 l2_lookup.vlanid = 0; 1878 rc = cb(macaddr, l2_lookup.vlanid, l2_lookup.lockeds, data); 1879 if (rc) 1880 return rc; 1881 } 1882 return 0; 1883 } 1884 1885 static void sja1105_fast_age(struct dsa_switch *ds, int port) 1886 { 1887 struct sja1105_private *priv = ds->priv; 1888 int i; 1889 1890 for (i = 0; i < SJA1105_MAX_L2_LOOKUP_COUNT; i++) { 1891 struct sja1105_l2_lookup_entry l2_lookup = {0}; 1892 u8 macaddr[ETH_ALEN]; 1893 int rc; 1894 1895 rc = sja1105_dynamic_config_read(priv, BLK_IDX_L2_LOOKUP, 1896 i, &l2_lookup); 1897 /* No fdb entry at i, not an issue */ 1898 if (rc == -ENOENT) 1899 continue; 1900 if (rc) { 1901 dev_err(ds->dev, "Failed to read FDB: %pe\n", 1902 ERR_PTR(rc)); 1903 return; 1904 } 1905 1906 if (!(l2_lookup.destports & BIT(port))) 1907 continue; 1908 1909 /* Don't delete static FDB entries */ 1910 if (l2_lookup.lockeds) 1911 continue; 1912 1913 u64_to_ether_addr(l2_lookup.macaddr, macaddr); 1914 1915 rc = sja1105_fdb_del(ds, port, macaddr, l2_lookup.vlanid); 1916 if (rc) { 1917 dev_err(ds->dev, 1918 "Failed to delete FDB entry %pM vid %lld: %pe\n", 1919 macaddr, l2_lookup.vlanid, ERR_PTR(rc)); 1920 return; 1921 } 1922 } 1923 } 1924 1925 static int sja1105_mdb_add(struct dsa_switch *ds, int port, 1926 const struct switchdev_obj_port_mdb *mdb) 1927 { 1928 return sja1105_fdb_add(ds, port, mdb->addr, mdb->vid); 1929 } 1930 1931 static int sja1105_mdb_del(struct dsa_switch *ds, int port, 1932 const struct switchdev_obj_port_mdb *mdb) 1933 { 1934 return sja1105_fdb_del(ds, port, mdb->addr, mdb->vid); 1935 } 1936 1937 /* Common function for unicast and broadcast flood configuration. 1938 * Flooding is configured between each {ingress, egress} port pair, and since 1939 * the bridge's semantics are those of "egress flooding", it means we must 1940 * enable flooding towards this port from all ingress ports that are in the 1941 * same forwarding domain. 1942 */ 1943 static int sja1105_manage_flood_domains(struct sja1105_private *priv) 1944 { 1945 struct sja1105_l2_forwarding_entry *l2_fwd; 1946 struct dsa_switch *ds = priv->ds; 1947 int from, to, rc; 1948 1949 l2_fwd = priv->static_config.tables[BLK_IDX_L2_FORWARDING].entries; 1950 1951 for (from = 0; from < ds->num_ports; from++) { 1952 u64 fl_domain = 0, bc_domain = 0; 1953 1954 for (to = 0; to < priv->ds->num_ports; to++) { 1955 if (!sja1105_can_forward(l2_fwd, from, to)) 1956 continue; 1957 1958 if (priv->ucast_egress_floods & BIT(to)) 1959 fl_domain |= BIT(to); 1960 if (priv->bcast_egress_floods & BIT(to)) 1961 bc_domain |= BIT(to); 1962 } 1963 1964 /* Nothing changed, nothing to do */ 1965 if (l2_fwd[from].fl_domain == fl_domain && 1966 l2_fwd[from].bc_domain == bc_domain) 1967 continue; 1968 1969 l2_fwd[from].fl_domain = fl_domain; 1970 l2_fwd[from].bc_domain = bc_domain; 1971 1972 rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_FORWARDING, 1973 from, &l2_fwd[from], true); 1974 if (rc < 0) 1975 return rc; 1976 } 1977 1978 return 0; 1979 } 1980 1981 static int sja1105_bridge_member(struct dsa_switch *ds, int port, 1982 struct net_device *br, bool member) 1983 { 1984 struct sja1105_l2_forwarding_entry *l2_fwd; 1985 struct sja1105_private *priv = ds->priv; 1986 int i, rc; 1987 1988 l2_fwd = priv->static_config.tables[BLK_IDX_L2_FORWARDING].entries; 1989 1990 for (i = 0; i < ds->num_ports; i++) { 1991 /* Add this port to the forwarding matrix of the 1992 * other ports in the same bridge, and viceversa. 1993 */ 1994 if (!dsa_is_user_port(ds, i)) 1995 continue; 1996 /* For the ports already under the bridge, only one thing needs 1997 * to be done, and that is to add this port to their 1998 * reachability domain. So we can perform the SPI write for 1999 * them immediately. However, for this port itself (the one 2000 * that is new to the bridge), we need to add all other ports 2001 * to its reachability domain. So we do that incrementally in 2002 * this loop, and perform the SPI write only at the end, once 2003 * the domain contains all other bridge ports. 2004 */ 2005 if (i == port) 2006 continue; 2007 if (dsa_to_port(ds, i)->bridge_dev != br) 2008 continue; 2009 sja1105_port_allow_traffic(l2_fwd, i, port, member); 2010 sja1105_port_allow_traffic(l2_fwd, port, i, member); 2011 2012 rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_FORWARDING, 2013 i, &l2_fwd[i], true); 2014 if (rc < 0) 2015 return rc; 2016 } 2017 2018 rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_FORWARDING, 2019 port, &l2_fwd[port], true); 2020 if (rc) 2021 return rc; 2022 2023 rc = sja1105_commit_pvid(ds, port); 2024 if (rc) 2025 return rc; 2026 2027 return sja1105_manage_flood_domains(priv); 2028 } 2029 2030 static void sja1105_bridge_stp_state_set(struct dsa_switch *ds, int port, 2031 u8 state) 2032 { 2033 struct dsa_port *dp = dsa_to_port(ds, port); 2034 struct sja1105_private *priv = ds->priv; 2035 struct sja1105_mac_config_entry *mac; 2036 2037 mac = priv->static_config.tables[BLK_IDX_MAC_CONFIG].entries; 2038 2039 switch (state) { 2040 case BR_STATE_DISABLED: 2041 case BR_STATE_BLOCKING: 2042 /* From UM10944 description of DRPDTAG (why put this there?): 2043 * "Management traffic flows to the port regardless of the state 2044 * of the INGRESS flag". So BPDUs are still be allowed to pass. 2045 * At the moment no difference between DISABLED and BLOCKING. 2046 */ 2047 mac[port].ingress = false; 2048 mac[port].egress = false; 2049 mac[port].dyn_learn = false; 2050 break; 2051 case BR_STATE_LISTENING: 2052 mac[port].ingress = true; 2053 mac[port].egress = false; 2054 mac[port].dyn_learn = false; 2055 break; 2056 case BR_STATE_LEARNING: 2057 mac[port].ingress = true; 2058 mac[port].egress = false; 2059 mac[port].dyn_learn = dp->learning; 2060 break; 2061 case BR_STATE_FORWARDING: 2062 mac[port].ingress = true; 2063 mac[port].egress = true; 2064 mac[port].dyn_learn = dp->learning; 2065 break; 2066 default: 2067 dev_err(ds->dev, "invalid STP state: %d\n", state); 2068 return; 2069 } 2070 2071 sja1105_dynamic_config_write(priv, BLK_IDX_MAC_CONFIG, port, 2072 &mac[port], true); 2073 } 2074 2075 static int sja1105_bridge_join(struct dsa_switch *ds, int port, 2076 struct net_device *br) 2077 { 2078 return sja1105_bridge_member(ds, port, br, true); 2079 } 2080 2081 static void sja1105_bridge_leave(struct dsa_switch *ds, int port, 2082 struct net_device *br) 2083 { 2084 sja1105_bridge_member(ds, port, br, false); 2085 } 2086 2087 #define BYTES_PER_KBIT (1000LL / 8) 2088 2089 static int sja1105_find_unused_cbs_shaper(struct sja1105_private *priv) 2090 { 2091 int i; 2092 2093 for (i = 0; i < priv->info->num_cbs_shapers; i++) 2094 if (!priv->cbs[i].idle_slope && !priv->cbs[i].send_slope) 2095 return i; 2096 2097 return -1; 2098 } 2099 2100 static int sja1105_delete_cbs_shaper(struct sja1105_private *priv, int port, 2101 int prio) 2102 { 2103 int i; 2104 2105 for (i = 0; i < priv->info->num_cbs_shapers; i++) { 2106 struct sja1105_cbs_entry *cbs = &priv->cbs[i]; 2107 2108 if (cbs->port == port && cbs->prio == prio) { 2109 memset(cbs, 0, sizeof(*cbs)); 2110 return sja1105_dynamic_config_write(priv, BLK_IDX_CBS, 2111 i, cbs, true); 2112 } 2113 } 2114 2115 return 0; 2116 } 2117 2118 static int sja1105_setup_tc_cbs(struct dsa_switch *ds, int port, 2119 struct tc_cbs_qopt_offload *offload) 2120 { 2121 struct sja1105_private *priv = ds->priv; 2122 struct sja1105_cbs_entry *cbs; 2123 int index; 2124 2125 if (!offload->enable) 2126 return sja1105_delete_cbs_shaper(priv, port, offload->queue); 2127 2128 index = sja1105_find_unused_cbs_shaper(priv); 2129 if (index < 0) 2130 return -ENOSPC; 2131 2132 cbs = &priv->cbs[index]; 2133 cbs->port = port; 2134 cbs->prio = offload->queue; 2135 /* locredit and sendslope are negative by definition. In hardware, 2136 * positive values must be provided, and the negative sign is implicit. 2137 */ 2138 cbs->credit_hi = offload->hicredit; 2139 cbs->credit_lo = abs(offload->locredit); 2140 /* User space is in kbits/sec, hardware in bytes/sec */ 2141 cbs->idle_slope = offload->idleslope * BYTES_PER_KBIT; 2142 cbs->send_slope = abs(offload->sendslope * BYTES_PER_KBIT); 2143 /* Convert the negative values from 64-bit 2's complement 2144 * to 32-bit 2's complement (for the case of 0x80000000 whose 2145 * negative is still negative). 2146 */ 2147 cbs->credit_lo &= GENMASK_ULL(31, 0); 2148 cbs->send_slope &= GENMASK_ULL(31, 0); 2149 2150 return sja1105_dynamic_config_write(priv, BLK_IDX_CBS, index, cbs, 2151 true); 2152 } 2153 2154 static int sja1105_reload_cbs(struct sja1105_private *priv) 2155 { 2156 int rc = 0, i; 2157 2158 /* The credit based shapers are only allocated if 2159 * CONFIG_NET_SCH_CBS is enabled. 2160 */ 2161 if (!priv->cbs) 2162 return 0; 2163 2164 for (i = 0; i < priv->info->num_cbs_shapers; i++) { 2165 struct sja1105_cbs_entry *cbs = &priv->cbs[i]; 2166 2167 if (!cbs->idle_slope && !cbs->send_slope) 2168 continue; 2169 2170 rc = sja1105_dynamic_config_write(priv, BLK_IDX_CBS, i, cbs, 2171 true); 2172 if (rc) 2173 break; 2174 } 2175 2176 return rc; 2177 } 2178 2179 static const char * const sja1105_reset_reasons[] = { 2180 [SJA1105_VLAN_FILTERING] = "VLAN filtering", 2181 [SJA1105_RX_HWTSTAMPING] = "RX timestamping", 2182 [SJA1105_AGEING_TIME] = "Ageing time", 2183 [SJA1105_SCHEDULING] = "Time-aware scheduling", 2184 [SJA1105_BEST_EFFORT_POLICING] = "Best-effort policing", 2185 [SJA1105_VIRTUAL_LINKS] = "Virtual links", 2186 }; 2187 2188 /* For situations where we need to change a setting at runtime that is only 2189 * available through the static configuration, resetting the switch in order 2190 * to upload the new static config is unavoidable. Back up the settings we 2191 * modify at runtime (currently only MAC) and restore them after uploading, 2192 * such that this operation is relatively seamless. 2193 */ 2194 int sja1105_static_config_reload(struct sja1105_private *priv, 2195 enum sja1105_reset_reason reason) 2196 { 2197 struct ptp_system_timestamp ptp_sts_before; 2198 struct ptp_system_timestamp ptp_sts_after; 2199 int speed_mbps[SJA1105_MAX_NUM_PORTS]; 2200 u16 bmcr[SJA1105_MAX_NUM_PORTS] = {0}; 2201 struct sja1105_mac_config_entry *mac; 2202 struct dsa_switch *ds = priv->ds; 2203 s64 t1, t2, t3, t4; 2204 s64 t12, t34; 2205 int rc, i; 2206 s64 now; 2207 2208 mutex_lock(&priv->mgmt_lock); 2209 2210 mac = priv->static_config.tables[BLK_IDX_MAC_CONFIG].entries; 2211 2212 /* Back up the dynamic link speed changed by sja1105_adjust_port_config 2213 * in order to temporarily restore it to SJA1105_SPEED_AUTO - which the 2214 * switch wants to see in the static config in order to allow us to 2215 * change it through the dynamic interface later. 2216 */ 2217 for (i = 0; i < ds->num_ports; i++) { 2218 u32 reg_addr = mdiobus_c45_addr(MDIO_MMD_VEND2, MDIO_CTRL1); 2219 2220 speed_mbps[i] = sja1105_port_speed_to_ethtool(priv, 2221 mac[i].speed); 2222 mac[i].speed = priv->info->port_speed[SJA1105_SPEED_AUTO]; 2223 2224 if (priv->xpcs[i]) 2225 bmcr[i] = mdiobus_read(priv->mdio_pcs, i, reg_addr); 2226 } 2227 2228 /* No PTP operations can run right now */ 2229 mutex_lock(&priv->ptp_data.lock); 2230 2231 rc = __sja1105_ptp_gettimex(ds, &now, &ptp_sts_before); 2232 if (rc < 0) { 2233 mutex_unlock(&priv->ptp_data.lock); 2234 goto out; 2235 } 2236 2237 /* Reset switch and send updated static configuration */ 2238 rc = sja1105_static_config_upload(priv); 2239 if (rc < 0) { 2240 mutex_unlock(&priv->ptp_data.lock); 2241 goto out; 2242 } 2243 2244 rc = __sja1105_ptp_settime(ds, 0, &ptp_sts_after); 2245 if (rc < 0) { 2246 mutex_unlock(&priv->ptp_data.lock); 2247 goto out; 2248 } 2249 2250 t1 = timespec64_to_ns(&ptp_sts_before.pre_ts); 2251 t2 = timespec64_to_ns(&ptp_sts_before.post_ts); 2252 t3 = timespec64_to_ns(&ptp_sts_after.pre_ts); 2253 t4 = timespec64_to_ns(&ptp_sts_after.post_ts); 2254 /* Mid point, corresponds to pre-reset PTPCLKVAL */ 2255 t12 = t1 + (t2 - t1) / 2; 2256 /* Mid point, corresponds to post-reset PTPCLKVAL, aka 0 */ 2257 t34 = t3 + (t4 - t3) / 2; 2258 /* Advance PTPCLKVAL by the time it took since its readout */ 2259 now += (t34 - t12); 2260 2261 __sja1105_ptp_adjtime(ds, now); 2262 2263 mutex_unlock(&priv->ptp_data.lock); 2264 2265 dev_info(priv->ds->dev, 2266 "Reset switch and programmed static config. Reason: %s\n", 2267 sja1105_reset_reasons[reason]); 2268 2269 /* Configure the CGU (PLLs) for MII and RMII PHYs. 2270 * For these interfaces there is no dynamic configuration 2271 * needed, since PLLs have same settings at all speeds. 2272 */ 2273 if (priv->info->clocking_setup) { 2274 rc = priv->info->clocking_setup(priv); 2275 if (rc < 0) 2276 goto out; 2277 } 2278 2279 for (i = 0; i < ds->num_ports; i++) { 2280 struct dw_xpcs *xpcs = priv->xpcs[i]; 2281 unsigned int mode; 2282 2283 rc = sja1105_adjust_port_config(priv, i, speed_mbps[i]); 2284 if (rc < 0) 2285 goto out; 2286 2287 if (!xpcs) 2288 continue; 2289 2290 if (bmcr[i] & BMCR_ANENABLE) 2291 mode = MLO_AN_INBAND; 2292 else if (priv->fixed_link[i]) 2293 mode = MLO_AN_FIXED; 2294 else 2295 mode = MLO_AN_PHY; 2296 2297 rc = xpcs_do_config(xpcs, priv->phy_mode[i], mode); 2298 if (rc < 0) 2299 goto out; 2300 2301 if (!phylink_autoneg_inband(mode)) { 2302 int speed = SPEED_UNKNOWN; 2303 2304 if (priv->phy_mode[i] == PHY_INTERFACE_MODE_2500BASEX) 2305 speed = SPEED_2500; 2306 else if (bmcr[i] & BMCR_SPEED1000) 2307 speed = SPEED_1000; 2308 else if (bmcr[i] & BMCR_SPEED100) 2309 speed = SPEED_100; 2310 else 2311 speed = SPEED_10; 2312 2313 xpcs_link_up(&xpcs->pcs, mode, priv->phy_mode[i], 2314 speed, DUPLEX_FULL); 2315 } 2316 } 2317 2318 rc = sja1105_reload_cbs(priv); 2319 if (rc < 0) 2320 goto out; 2321 out: 2322 mutex_unlock(&priv->mgmt_lock); 2323 2324 return rc; 2325 } 2326 2327 static enum dsa_tag_protocol 2328 sja1105_get_tag_protocol(struct dsa_switch *ds, int port, 2329 enum dsa_tag_protocol mp) 2330 { 2331 struct sja1105_private *priv = ds->priv; 2332 2333 return priv->info->tag_proto; 2334 } 2335 2336 /* The TPID setting belongs to the General Parameters table, 2337 * which can only be partially reconfigured at runtime (and not the TPID). 2338 * So a switch reset is required. 2339 */ 2340 int sja1105_vlan_filtering(struct dsa_switch *ds, int port, bool enabled, 2341 struct netlink_ext_ack *extack) 2342 { 2343 struct sja1105_l2_lookup_params_entry *l2_lookup_params; 2344 struct sja1105_general_params_entry *general_params; 2345 struct sja1105_private *priv = ds->priv; 2346 struct sja1105_table *table; 2347 struct sja1105_rule *rule; 2348 u16 tpid, tpid2; 2349 int rc; 2350 2351 list_for_each_entry(rule, &priv->flow_block.rules, list) { 2352 if (rule->type == SJA1105_RULE_VL) { 2353 NL_SET_ERR_MSG_MOD(extack, 2354 "Cannot change VLAN filtering with active VL rules"); 2355 return -EBUSY; 2356 } 2357 } 2358 2359 if (enabled) { 2360 /* Enable VLAN filtering. */ 2361 tpid = ETH_P_8021Q; 2362 tpid2 = ETH_P_8021AD; 2363 } else { 2364 /* Disable VLAN filtering. */ 2365 tpid = ETH_P_SJA1105; 2366 tpid2 = ETH_P_SJA1105; 2367 } 2368 2369 table = &priv->static_config.tables[BLK_IDX_GENERAL_PARAMS]; 2370 general_params = table->entries; 2371 /* EtherType used to identify inner tagged (C-tag) VLAN traffic */ 2372 general_params->tpid = tpid; 2373 /* EtherType used to identify outer tagged (S-tag) VLAN traffic */ 2374 general_params->tpid2 = tpid2; 2375 /* When VLAN filtering is on, we need to at least be able to 2376 * decode management traffic through the "backup plan". 2377 */ 2378 general_params->incl_srcpt1 = enabled; 2379 general_params->incl_srcpt0 = enabled; 2380 2381 /* VLAN filtering => independent VLAN learning. 2382 * No VLAN filtering (or best effort) => shared VLAN learning. 2383 * 2384 * In shared VLAN learning mode, untagged traffic still gets 2385 * pvid-tagged, and the FDB table gets populated with entries 2386 * containing the "real" (pvid or from VLAN tag) VLAN ID. 2387 * However the switch performs a masked L2 lookup in the FDB, 2388 * effectively only looking up a frame's DMAC (and not VID) for the 2389 * forwarding decision. 2390 * 2391 * This is extremely convenient for us, because in modes with 2392 * vlan_filtering=0, dsa_8021q actually installs unique pvid's into 2393 * each front panel port. This is good for identification but breaks 2394 * learning badly - the VID of the learnt FDB entry is unique, aka 2395 * no frames coming from any other port are going to have it. So 2396 * for forwarding purposes, this is as though learning was broken 2397 * (all frames get flooded). 2398 */ 2399 table = &priv->static_config.tables[BLK_IDX_L2_LOOKUP_PARAMS]; 2400 l2_lookup_params = table->entries; 2401 l2_lookup_params->shared_learn = !enabled; 2402 2403 for (port = 0; port < ds->num_ports; port++) { 2404 if (dsa_is_unused_port(ds, port)) 2405 continue; 2406 2407 rc = sja1105_commit_pvid(ds, port); 2408 if (rc) 2409 return rc; 2410 } 2411 2412 rc = sja1105_static_config_reload(priv, SJA1105_VLAN_FILTERING); 2413 if (rc) 2414 NL_SET_ERR_MSG_MOD(extack, "Failed to change VLAN Ethertype"); 2415 2416 return rc; 2417 } 2418 2419 static int sja1105_vlan_add(struct sja1105_private *priv, int port, u16 vid, 2420 u16 flags, bool allowed_ingress) 2421 { 2422 struct sja1105_vlan_lookup_entry *vlan; 2423 struct sja1105_table *table; 2424 int match, rc; 2425 2426 table = &priv->static_config.tables[BLK_IDX_VLAN_LOOKUP]; 2427 2428 match = sja1105_is_vlan_configured(priv, vid); 2429 if (match < 0) { 2430 rc = sja1105_table_resize(table, table->entry_count + 1); 2431 if (rc) 2432 return rc; 2433 match = table->entry_count - 1; 2434 } 2435 2436 /* Assign pointer after the resize (it's new memory) */ 2437 vlan = table->entries; 2438 2439 vlan[match].type_entry = SJA1110_VLAN_D_TAG; 2440 vlan[match].vlanid = vid; 2441 vlan[match].vlan_bc |= BIT(port); 2442 2443 if (allowed_ingress) 2444 vlan[match].vmemb_port |= BIT(port); 2445 else 2446 vlan[match].vmemb_port &= ~BIT(port); 2447 2448 if (flags & BRIDGE_VLAN_INFO_UNTAGGED) 2449 vlan[match].tag_port &= ~BIT(port); 2450 else 2451 vlan[match].tag_port |= BIT(port); 2452 2453 return sja1105_dynamic_config_write(priv, BLK_IDX_VLAN_LOOKUP, vid, 2454 &vlan[match], true); 2455 } 2456 2457 static int sja1105_vlan_del(struct sja1105_private *priv, int port, u16 vid) 2458 { 2459 struct sja1105_vlan_lookup_entry *vlan; 2460 struct sja1105_table *table; 2461 bool keep = true; 2462 int match, rc; 2463 2464 table = &priv->static_config.tables[BLK_IDX_VLAN_LOOKUP]; 2465 2466 match = sja1105_is_vlan_configured(priv, vid); 2467 /* Can't delete a missing entry. */ 2468 if (match < 0) 2469 return 0; 2470 2471 /* Assign pointer after the resize (it's new memory) */ 2472 vlan = table->entries; 2473 2474 vlan[match].vlanid = vid; 2475 vlan[match].vlan_bc &= ~BIT(port); 2476 vlan[match].vmemb_port &= ~BIT(port); 2477 /* Also unset tag_port, just so we don't have a confusing bitmap 2478 * (no practical purpose). 2479 */ 2480 vlan[match].tag_port &= ~BIT(port); 2481 2482 /* If there's no port left as member of this VLAN, 2483 * it's time for it to go. 2484 */ 2485 if (!vlan[match].vmemb_port) 2486 keep = false; 2487 2488 rc = sja1105_dynamic_config_write(priv, BLK_IDX_VLAN_LOOKUP, vid, 2489 &vlan[match], keep); 2490 if (rc < 0) 2491 return rc; 2492 2493 if (!keep) 2494 return sja1105_table_delete_entry(table, match); 2495 2496 return 0; 2497 } 2498 2499 static int sja1105_bridge_vlan_add(struct dsa_switch *ds, int port, 2500 const struct switchdev_obj_port_vlan *vlan, 2501 struct netlink_ext_ack *extack) 2502 { 2503 struct sja1105_private *priv = ds->priv; 2504 u16 flags = vlan->flags; 2505 int rc; 2506 2507 /* Be sure to deny alterations to the configuration done by tag_8021q. 2508 */ 2509 if (vid_is_dsa_8021q(vlan->vid)) { 2510 NL_SET_ERR_MSG_MOD(extack, 2511 "Range 1024-3071 reserved for dsa_8021q operation"); 2512 return -EBUSY; 2513 } 2514 2515 /* Always install bridge VLANs as egress-tagged on CPU and DSA ports */ 2516 if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) 2517 flags = 0; 2518 2519 rc = sja1105_vlan_add(priv, port, vlan->vid, flags, true); 2520 if (rc) 2521 return rc; 2522 2523 if (vlan->flags & BRIDGE_VLAN_INFO_PVID) 2524 priv->bridge_pvid[port] = vlan->vid; 2525 2526 return sja1105_commit_pvid(ds, port); 2527 } 2528 2529 static int sja1105_bridge_vlan_del(struct dsa_switch *ds, int port, 2530 const struct switchdev_obj_port_vlan *vlan) 2531 { 2532 struct sja1105_private *priv = ds->priv; 2533 int rc; 2534 2535 rc = sja1105_vlan_del(priv, port, vlan->vid); 2536 if (rc) 2537 return rc; 2538 2539 /* In case the pvid was deleted, make sure that untagged packets will 2540 * be dropped. 2541 */ 2542 return sja1105_commit_pvid(ds, port); 2543 } 2544 2545 static int sja1105_dsa_8021q_vlan_add(struct dsa_switch *ds, int port, u16 vid, 2546 u16 flags) 2547 { 2548 struct sja1105_private *priv = ds->priv; 2549 bool allowed_ingress = true; 2550 int rc; 2551 2552 /* Prevent attackers from trying to inject a DSA tag from 2553 * the outside world. 2554 */ 2555 if (dsa_is_user_port(ds, port)) 2556 allowed_ingress = false; 2557 2558 rc = sja1105_vlan_add(priv, port, vid, flags, allowed_ingress); 2559 if (rc) 2560 return rc; 2561 2562 if (flags & BRIDGE_VLAN_INFO_PVID) 2563 priv->tag_8021q_pvid[port] = vid; 2564 2565 return sja1105_commit_pvid(ds, port); 2566 } 2567 2568 static int sja1105_dsa_8021q_vlan_del(struct dsa_switch *ds, int port, u16 vid) 2569 { 2570 struct sja1105_private *priv = ds->priv; 2571 2572 return sja1105_vlan_del(priv, port, vid); 2573 } 2574 2575 static int sja1105_prechangeupper(struct dsa_switch *ds, int port, 2576 struct netdev_notifier_changeupper_info *info) 2577 { 2578 struct netlink_ext_ack *extack = info->info.extack; 2579 struct net_device *upper = info->upper_dev; 2580 struct dsa_switch_tree *dst = ds->dst; 2581 struct dsa_port *dp; 2582 2583 if (is_vlan_dev(upper)) { 2584 NL_SET_ERR_MSG_MOD(extack, "8021q uppers are not supported"); 2585 return -EBUSY; 2586 } 2587 2588 if (netif_is_bridge_master(upper)) { 2589 list_for_each_entry(dp, &dst->ports, list) { 2590 if (dp->bridge_dev && dp->bridge_dev != upper && 2591 br_vlan_enabled(dp->bridge_dev)) { 2592 NL_SET_ERR_MSG_MOD(extack, 2593 "Only one VLAN-aware bridge is supported"); 2594 return -EBUSY; 2595 } 2596 } 2597 } 2598 2599 return 0; 2600 } 2601 2602 static void sja1105_port_disable(struct dsa_switch *ds, int port) 2603 { 2604 struct sja1105_private *priv = ds->priv; 2605 struct sja1105_port *sp = &priv->ports[port]; 2606 2607 if (!dsa_is_user_port(ds, port)) 2608 return; 2609 2610 kthread_cancel_work_sync(&sp->xmit_work); 2611 skb_queue_purge(&sp->xmit_queue); 2612 } 2613 2614 static int sja1105_mgmt_xmit(struct dsa_switch *ds, int port, int slot, 2615 struct sk_buff *skb, bool takets) 2616 { 2617 struct sja1105_mgmt_entry mgmt_route = {0}; 2618 struct sja1105_private *priv = ds->priv; 2619 struct ethhdr *hdr; 2620 int timeout = 10; 2621 int rc; 2622 2623 hdr = eth_hdr(skb); 2624 2625 mgmt_route.macaddr = ether_addr_to_u64(hdr->h_dest); 2626 mgmt_route.destports = BIT(port); 2627 mgmt_route.enfport = 1; 2628 mgmt_route.tsreg = 0; 2629 mgmt_route.takets = takets; 2630 2631 rc = sja1105_dynamic_config_write(priv, BLK_IDX_MGMT_ROUTE, 2632 slot, &mgmt_route, true); 2633 if (rc < 0) { 2634 kfree_skb(skb); 2635 return rc; 2636 } 2637 2638 /* Transfer skb to the host port. */ 2639 dsa_enqueue_skb(skb, dsa_to_port(ds, port)->slave); 2640 2641 /* Wait until the switch has processed the frame */ 2642 do { 2643 rc = sja1105_dynamic_config_read(priv, BLK_IDX_MGMT_ROUTE, 2644 slot, &mgmt_route); 2645 if (rc < 0) { 2646 dev_err_ratelimited(priv->ds->dev, 2647 "failed to poll for mgmt route\n"); 2648 continue; 2649 } 2650 2651 /* UM10944: The ENFPORT flag of the respective entry is 2652 * cleared when a match is found. The host can use this 2653 * flag as an acknowledgment. 2654 */ 2655 cpu_relax(); 2656 } while (mgmt_route.enfport && --timeout); 2657 2658 if (!timeout) { 2659 /* Clean up the management route so that a follow-up 2660 * frame may not match on it by mistake. 2661 * This is only hardware supported on P/Q/R/S - on E/T it is 2662 * a no-op and we are silently discarding the -EOPNOTSUPP. 2663 */ 2664 sja1105_dynamic_config_write(priv, BLK_IDX_MGMT_ROUTE, 2665 slot, &mgmt_route, false); 2666 dev_err_ratelimited(priv->ds->dev, "xmit timed out\n"); 2667 } 2668 2669 return NETDEV_TX_OK; 2670 } 2671 2672 #define work_to_port(work) \ 2673 container_of((work), struct sja1105_port, xmit_work) 2674 #define tagger_to_sja1105(t) \ 2675 container_of((t), struct sja1105_private, tagger_data) 2676 2677 /* Deferred work is unfortunately necessary because setting up the management 2678 * route cannot be done from atomit context (SPI transfer takes a sleepable 2679 * lock on the bus) 2680 */ 2681 static void sja1105_port_deferred_xmit(struct kthread_work *work) 2682 { 2683 struct sja1105_port *sp = work_to_port(work); 2684 struct sja1105_tagger_data *tagger_data = sp->data; 2685 struct sja1105_private *priv = tagger_to_sja1105(tagger_data); 2686 int port = sp - priv->ports; 2687 struct sk_buff *skb; 2688 2689 while ((skb = skb_dequeue(&sp->xmit_queue)) != NULL) { 2690 struct sk_buff *clone = SJA1105_SKB_CB(skb)->clone; 2691 2692 mutex_lock(&priv->mgmt_lock); 2693 2694 sja1105_mgmt_xmit(priv->ds, port, 0, skb, !!clone); 2695 2696 /* The clone, if there, was made by dsa_skb_tx_timestamp */ 2697 if (clone) 2698 sja1105_ptp_txtstamp_skb(priv->ds, port, clone); 2699 2700 mutex_unlock(&priv->mgmt_lock); 2701 } 2702 } 2703 2704 /* The MAXAGE setting belongs to the L2 Forwarding Parameters table, 2705 * which cannot be reconfigured at runtime. So a switch reset is required. 2706 */ 2707 static int sja1105_set_ageing_time(struct dsa_switch *ds, 2708 unsigned int ageing_time) 2709 { 2710 struct sja1105_l2_lookup_params_entry *l2_lookup_params; 2711 struct sja1105_private *priv = ds->priv; 2712 struct sja1105_table *table; 2713 unsigned int maxage; 2714 2715 table = &priv->static_config.tables[BLK_IDX_L2_LOOKUP_PARAMS]; 2716 l2_lookup_params = table->entries; 2717 2718 maxage = SJA1105_AGEING_TIME_MS(ageing_time); 2719 2720 if (l2_lookup_params->maxage == maxage) 2721 return 0; 2722 2723 l2_lookup_params->maxage = maxage; 2724 2725 return sja1105_static_config_reload(priv, SJA1105_AGEING_TIME); 2726 } 2727 2728 static int sja1105_change_mtu(struct dsa_switch *ds, int port, int new_mtu) 2729 { 2730 struct sja1105_l2_policing_entry *policing; 2731 struct sja1105_private *priv = ds->priv; 2732 2733 new_mtu += VLAN_ETH_HLEN + ETH_FCS_LEN; 2734 2735 if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) 2736 new_mtu += VLAN_HLEN; 2737 2738 policing = priv->static_config.tables[BLK_IDX_L2_POLICING].entries; 2739 2740 if (policing[port].maxlen == new_mtu) 2741 return 0; 2742 2743 policing[port].maxlen = new_mtu; 2744 2745 return sja1105_static_config_reload(priv, SJA1105_BEST_EFFORT_POLICING); 2746 } 2747 2748 static int sja1105_get_max_mtu(struct dsa_switch *ds, int port) 2749 { 2750 return 2043 - VLAN_ETH_HLEN - ETH_FCS_LEN; 2751 } 2752 2753 static int sja1105_port_setup_tc(struct dsa_switch *ds, int port, 2754 enum tc_setup_type type, 2755 void *type_data) 2756 { 2757 switch (type) { 2758 case TC_SETUP_QDISC_TAPRIO: 2759 return sja1105_setup_tc_taprio(ds, port, type_data); 2760 case TC_SETUP_QDISC_CBS: 2761 return sja1105_setup_tc_cbs(ds, port, type_data); 2762 default: 2763 return -EOPNOTSUPP; 2764 } 2765 } 2766 2767 /* We have a single mirror (@to) port, but can configure ingress and egress 2768 * mirroring on all other (@from) ports. 2769 * We need to allow mirroring rules only as long as the @to port is always the 2770 * same, and we need to unset the @to port from mirr_port only when there is no 2771 * mirroring rule that references it. 2772 */ 2773 static int sja1105_mirror_apply(struct sja1105_private *priv, int from, int to, 2774 bool ingress, bool enabled) 2775 { 2776 struct sja1105_general_params_entry *general_params; 2777 struct sja1105_mac_config_entry *mac; 2778 struct dsa_switch *ds = priv->ds; 2779 struct sja1105_table *table; 2780 bool already_enabled; 2781 u64 new_mirr_port; 2782 int rc; 2783 2784 table = &priv->static_config.tables[BLK_IDX_GENERAL_PARAMS]; 2785 general_params = table->entries; 2786 2787 mac = priv->static_config.tables[BLK_IDX_MAC_CONFIG].entries; 2788 2789 already_enabled = (general_params->mirr_port != ds->num_ports); 2790 if (already_enabled && enabled && general_params->mirr_port != to) { 2791 dev_err(priv->ds->dev, 2792 "Delete mirroring rules towards port %llu first\n", 2793 general_params->mirr_port); 2794 return -EBUSY; 2795 } 2796 2797 new_mirr_port = to; 2798 if (!enabled) { 2799 bool keep = false; 2800 int port; 2801 2802 /* Anybody still referencing mirr_port? */ 2803 for (port = 0; port < ds->num_ports; port++) { 2804 if (mac[port].ing_mirr || mac[port].egr_mirr) { 2805 keep = true; 2806 break; 2807 } 2808 } 2809 /* Unset already_enabled for next time */ 2810 if (!keep) 2811 new_mirr_port = ds->num_ports; 2812 } 2813 if (new_mirr_port != general_params->mirr_port) { 2814 general_params->mirr_port = new_mirr_port; 2815 2816 rc = sja1105_dynamic_config_write(priv, BLK_IDX_GENERAL_PARAMS, 2817 0, general_params, true); 2818 if (rc < 0) 2819 return rc; 2820 } 2821 2822 if (ingress) 2823 mac[from].ing_mirr = enabled; 2824 else 2825 mac[from].egr_mirr = enabled; 2826 2827 return sja1105_dynamic_config_write(priv, BLK_IDX_MAC_CONFIG, from, 2828 &mac[from], true); 2829 } 2830 2831 static int sja1105_mirror_add(struct dsa_switch *ds, int port, 2832 struct dsa_mall_mirror_tc_entry *mirror, 2833 bool ingress) 2834 { 2835 return sja1105_mirror_apply(ds->priv, port, mirror->to_local_port, 2836 ingress, true); 2837 } 2838 2839 static void sja1105_mirror_del(struct dsa_switch *ds, int port, 2840 struct dsa_mall_mirror_tc_entry *mirror) 2841 { 2842 sja1105_mirror_apply(ds->priv, port, mirror->to_local_port, 2843 mirror->ingress, false); 2844 } 2845 2846 static int sja1105_port_policer_add(struct dsa_switch *ds, int port, 2847 struct dsa_mall_policer_tc_entry *policer) 2848 { 2849 struct sja1105_l2_policing_entry *policing; 2850 struct sja1105_private *priv = ds->priv; 2851 2852 policing = priv->static_config.tables[BLK_IDX_L2_POLICING].entries; 2853 2854 /* In hardware, every 8 microseconds the credit level is incremented by 2855 * the value of RATE bytes divided by 64, up to a maximum of SMAX 2856 * bytes. 2857 */ 2858 policing[port].rate = div_u64(512 * policer->rate_bytes_per_sec, 2859 1000000); 2860 policing[port].smax = policer->burst; 2861 2862 return sja1105_static_config_reload(priv, SJA1105_BEST_EFFORT_POLICING); 2863 } 2864 2865 static void sja1105_port_policer_del(struct dsa_switch *ds, int port) 2866 { 2867 struct sja1105_l2_policing_entry *policing; 2868 struct sja1105_private *priv = ds->priv; 2869 2870 policing = priv->static_config.tables[BLK_IDX_L2_POLICING].entries; 2871 2872 policing[port].rate = SJA1105_RATE_MBPS(1000); 2873 policing[port].smax = 65535; 2874 2875 sja1105_static_config_reload(priv, SJA1105_BEST_EFFORT_POLICING); 2876 } 2877 2878 static int sja1105_port_set_learning(struct sja1105_private *priv, int port, 2879 bool enabled) 2880 { 2881 struct sja1105_mac_config_entry *mac; 2882 2883 mac = priv->static_config.tables[BLK_IDX_MAC_CONFIG].entries; 2884 2885 mac[port].dyn_learn = enabled; 2886 2887 return sja1105_dynamic_config_write(priv, BLK_IDX_MAC_CONFIG, port, 2888 &mac[port], true); 2889 } 2890 2891 static int sja1105_port_ucast_bcast_flood(struct sja1105_private *priv, int to, 2892 struct switchdev_brport_flags flags) 2893 { 2894 if (flags.mask & BR_FLOOD) { 2895 if (flags.val & BR_FLOOD) 2896 priv->ucast_egress_floods |= BIT(to); 2897 else 2898 priv->ucast_egress_floods &= ~BIT(to); 2899 } 2900 2901 if (flags.mask & BR_BCAST_FLOOD) { 2902 if (flags.val & BR_BCAST_FLOOD) 2903 priv->bcast_egress_floods |= BIT(to); 2904 else 2905 priv->bcast_egress_floods &= ~BIT(to); 2906 } 2907 2908 return sja1105_manage_flood_domains(priv); 2909 } 2910 2911 static int sja1105_port_mcast_flood(struct sja1105_private *priv, int to, 2912 struct switchdev_brport_flags flags, 2913 struct netlink_ext_ack *extack) 2914 { 2915 struct sja1105_l2_lookup_entry *l2_lookup; 2916 struct sja1105_table *table; 2917 int match; 2918 2919 table = &priv->static_config.tables[BLK_IDX_L2_LOOKUP]; 2920 l2_lookup = table->entries; 2921 2922 for (match = 0; match < table->entry_count; match++) 2923 if (l2_lookup[match].macaddr == SJA1105_UNKNOWN_MULTICAST && 2924 l2_lookup[match].mask_macaddr == SJA1105_UNKNOWN_MULTICAST) 2925 break; 2926 2927 if (match == table->entry_count) { 2928 NL_SET_ERR_MSG_MOD(extack, 2929 "Could not find FDB entry for unknown multicast"); 2930 return -ENOSPC; 2931 } 2932 2933 if (flags.val & BR_MCAST_FLOOD) 2934 l2_lookup[match].destports |= BIT(to); 2935 else 2936 l2_lookup[match].destports &= ~BIT(to); 2937 2938 return sja1105_dynamic_config_write(priv, BLK_IDX_L2_LOOKUP, 2939 l2_lookup[match].index, 2940 &l2_lookup[match], 2941 true); 2942 } 2943 2944 static int sja1105_port_pre_bridge_flags(struct dsa_switch *ds, int port, 2945 struct switchdev_brport_flags flags, 2946 struct netlink_ext_ack *extack) 2947 { 2948 struct sja1105_private *priv = ds->priv; 2949 2950 if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD | 2951 BR_BCAST_FLOOD)) 2952 return -EINVAL; 2953 2954 if (flags.mask & (BR_FLOOD | BR_MCAST_FLOOD) && 2955 !priv->info->can_limit_mcast_flood) { 2956 bool multicast = !!(flags.val & BR_MCAST_FLOOD); 2957 bool unicast = !!(flags.val & BR_FLOOD); 2958 2959 if (unicast != multicast) { 2960 NL_SET_ERR_MSG_MOD(extack, 2961 "This chip cannot configure multicast flooding independently of unicast"); 2962 return -EINVAL; 2963 } 2964 } 2965 2966 return 0; 2967 } 2968 2969 static int sja1105_port_bridge_flags(struct dsa_switch *ds, int port, 2970 struct switchdev_brport_flags flags, 2971 struct netlink_ext_ack *extack) 2972 { 2973 struct sja1105_private *priv = ds->priv; 2974 int rc; 2975 2976 if (flags.mask & BR_LEARNING) { 2977 bool learn_ena = !!(flags.val & BR_LEARNING); 2978 2979 rc = sja1105_port_set_learning(priv, port, learn_ena); 2980 if (rc) 2981 return rc; 2982 } 2983 2984 if (flags.mask & (BR_FLOOD | BR_BCAST_FLOOD)) { 2985 rc = sja1105_port_ucast_bcast_flood(priv, port, flags); 2986 if (rc) 2987 return rc; 2988 } 2989 2990 /* For chips that can't offload BR_MCAST_FLOOD independently, there 2991 * is nothing to do here, we ensured the configuration is in sync by 2992 * offloading BR_FLOOD. 2993 */ 2994 if (flags.mask & BR_MCAST_FLOOD && priv->info->can_limit_mcast_flood) { 2995 rc = sja1105_port_mcast_flood(priv, port, flags, 2996 extack); 2997 if (rc) 2998 return rc; 2999 } 3000 3001 return 0; 3002 } 3003 3004 static void sja1105_teardown_ports(struct sja1105_private *priv) 3005 { 3006 struct dsa_switch *ds = priv->ds; 3007 int port; 3008 3009 for (port = 0; port < ds->num_ports; port++) { 3010 struct sja1105_port *sp = &priv->ports[port]; 3011 3012 if (sp->xmit_worker) 3013 kthread_destroy_worker(sp->xmit_worker); 3014 } 3015 } 3016 3017 static int sja1105_setup_ports(struct sja1105_private *priv) 3018 { 3019 struct sja1105_tagger_data *tagger_data = &priv->tagger_data; 3020 struct dsa_switch *ds = priv->ds; 3021 int port, rc; 3022 3023 /* Connections between dsa_port and sja1105_port */ 3024 for (port = 0; port < ds->num_ports; port++) { 3025 struct sja1105_port *sp = &priv->ports[port]; 3026 struct dsa_port *dp = dsa_to_port(ds, port); 3027 struct kthread_worker *worker; 3028 struct net_device *slave; 3029 3030 if (!dsa_port_is_user(dp)) 3031 continue; 3032 3033 dp->priv = sp; 3034 sp->data = tagger_data; 3035 slave = dp->slave; 3036 kthread_init_work(&sp->xmit_work, sja1105_port_deferred_xmit); 3037 worker = kthread_create_worker(0, "%s_xmit", slave->name); 3038 if (IS_ERR(worker)) { 3039 rc = PTR_ERR(worker); 3040 dev_err(ds->dev, 3041 "failed to create deferred xmit thread: %d\n", 3042 rc); 3043 goto out_destroy_workers; 3044 } 3045 sp->xmit_worker = worker; 3046 skb_queue_head_init(&sp->xmit_queue); 3047 } 3048 3049 return 0; 3050 3051 out_destroy_workers: 3052 sja1105_teardown_ports(priv); 3053 return rc; 3054 } 3055 3056 /* The programming model for the SJA1105 switch is "all-at-once" via static 3057 * configuration tables. Some of these can be dynamically modified at runtime, 3058 * but not the xMII mode parameters table. 3059 * Furthermode, some PHYs may not have crystals for generating their clocks 3060 * (e.g. RMII). Instead, their 50MHz clock is supplied via the SJA1105 port's 3061 * ref_clk pin. So port clocking needs to be initialized early, before 3062 * connecting to PHYs is attempted, otherwise they won't respond through MDIO. 3063 * Setting correct PHY link speed does not matter now. 3064 * But dsa_slave_phy_setup is called later than sja1105_setup, so the PHY 3065 * bindings are not yet parsed by DSA core. We need to parse early so that we 3066 * can populate the xMII mode parameters table. 3067 */ 3068 static int sja1105_setup(struct dsa_switch *ds) 3069 { 3070 struct sja1105_private *priv = ds->priv; 3071 int rc; 3072 3073 if (priv->info->disable_microcontroller) { 3074 rc = priv->info->disable_microcontroller(priv); 3075 if (rc < 0) { 3076 dev_err(ds->dev, 3077 "Failed to disable microcontroller: %pe\n", 3078 ERR_PTR(rc)); 3079 return rc; 3080 } 3081 } 3082 3083 /* Create and send configuration down to device */ 3084 rc = sja1105_static_config_load(priv); 3085 if (rc < 0) { 3086 dev_err(ds->dev, "Failed to load static config: %d\n", rc); 3087 return rc; 3088 } 3089 3090 /* Configure the CGU (PHY link modes and speeds) */ 3091 if (priv->info->clocking_setup) { 3092 rc = priv->info->clocking_setup(priv); 3093 if (rc < 0) { 3094 dev_err(ds->dev, 3095 "Failed to configure MII clocking: %pe\n", 3096 ERR_PTR(rc)); 3097 goto out_static_config_free; 3098 } 3099 } 3100 3101 rc = sja1105_setup_ports(priv); 3102 if (rc) 3103 goto out_static_config_free; 3104 3105 sja1105_tas_setup(ds); 3106 sja1105_flower_setup(ds); 3107 3108 rc = sja1105_ptp_clock_register(ds); 3109 if (rc < 0) { 3110 dev_err(ds->dev, "Failed to register PTP clock: %d\n", rc); 3111 goto out_flower_teardown; 3112 } 3113 3114 rc = sja1105_mdiobus_register(ds); 3115 if (rc < 0) { 3116 dev_err(ds->dev, "Failed to register MDIO bus: %pe\n", 3117 ERR_PTR(rc)); 3118 goto out_ptp_clock_unregister; 3119 } 3120 3121 rc = sja1105_devlink_setup(ds); 3122 if (rc < 0) 3123 goto out_mdiobus_unregister; 3124 3125 rtnl_lock(); 3126 rc = dsa_tag_8021q_register(ds, htons(ETH_P_8021Q)); 3127 rtnl_unlock(); 3128 if (rc) 3129 goto out_devlink_teardown; 3130 3131 /* On SJA1105, VLAN filtering per se is always enabled in hardware. 3132 * The only thing we can do to disable it is lie about what the 802.1Q 3133 * EtherType is. 3134 * So it will still try to apply VLAN filtering, but all ingress 3135 * traffic (except frames received with EtherType of ETH_P_SJA1105) 3136 * will be internally tagged with a distorted VLAN header where the 3137 * TPID is ETH_P_SJA1105, and the VLAN ID is the port pvid. 3138 */ 3139 ds->vlan_filtering_is_global = true; 3140 ds->untag_bridge_pvid = true; 3141 /* tag_8021q has 3 bits for the VBID, and the value 0 is reserved */ 3142 ds->num_fwd_offloading_bridges = 7; 3143 3144 /* Advertise the 8 egress queues */ 3145 ds->num_tx_queues = SJA1105_NUM_TC; 3146 3147 ds->mtu_enforcement_ingress = true; 3148 ds->assisted_learning_on_cpu_port = true; 3149 3150 return 0; 3151 3152 out_devlink_teardown: 3153 sja1105_devlink_teardown(ds); 3154 out_mdiobus_unregister: 3155 sja1105_mdiobus_unregister(ds); 3156 out_ptp_clock_unregister: 3157 sja1105_ptp_clock_unregister(ds); 3158 out_flower_teardown: 3159 sja1105_flower_teardown(ds); 3160 sja1105_tas_teardown(ds); 3161 sja1105_teardown_ports(priv); 3162 out_static_config_free: 3163 sja1105_static_config_free(&priv->static_config); 3164 3165 return rc; 3166 } 3167 3168 static void sja1105_teardown(struct dsa_switch *ds) 3169 { 3170 struct sja1105_private *priv = ds->priv; 3171 3172 rtnl_lock(); 3173 dsa_tag_8021q_unregister(ds); 3174 rtnl_unlock(); 3175 3176 sja1105_devlink_teardown(ds); 3177 sja1105_mdiobus_unregister(ds); 3178 sja1105_ptp_clock_unregister(ds); 3179 sja1105_flower_teardown(ds); 3180 sja1105_tas_teardown(ds); 3181 sja1105_teardown_ports(priv); 3182 sja1105_static_config_free(&priv->static_config); 3183 } 3184 3185 static const struct dsa_switch_ops sja1105_switch_ops = { 3186 .get_tag_protocol = sja1105_get_tag_protocol, 3187 .setup = sja1105_setup, 3188 .teardown = sja1105_teardown, 3189 .set_ageing_time = sja1105_set_ageing_time, 3190 .port_change_mtu = sja1105_change_mtu, 3191 .port_max_mtu = sja1105_get_max_mtu, 3192 .phylink_validate = sja1105_phylink_validate, 3193 .phylink_mac_config = sja1105_mac_config, 3194 .phylink_mac_link_up = sja1105_mac_link_up, 3195 .phylink_mac_link_down = sja1105_mac_link_down, 3196 .get_strings = sja1105_get_strings, 3197 .get_ethtool_stats = sja1105_get_ethtool_stats, 3198 .get_sset_count = sja1105_get_sset_count, 3199 .get_ts_info = sja1105_get_ts_info, 3200 .port_disable = sja1105_port_disable, 3201 .port_fdb_dump = sja1105_fdb_dump, 3202 .port_fdb_add = sja1105_fdb_add, 3203 .port_fdb_del = sja1105_fdb_del, 3204 .port_fast_age = sja1105_fast_age, 3205 .port_bridge_join = sja1105_bridge_join, 3206 .port_bridge_leave = sja1105_bridge_leave, 3207 .port_pre_bridge_flags = sja1105_port_pre_bridge_flags, 3208 .port_bridge_flags = sja1105_port_bridge_flags, 3209 .port_stp_state_set = sja1105_bridge_stp_state_set, 3210 .port_vlan_filtering = sja1105_vlan_filtering, 3211 .port_vlan_add = sja1105_bridge_vlan_add, 3212 .port_vlan_del = sja1105_bridge_vlan_del, 3213 .port_mdb_add = sja1105_mdb_add, 3214 .port_mdb_del = sja1105_mdb_del, 3215 .port_hwtstamp_get = sja1105_hwtstamp_get, 3216 .port_hwtstamp_set = sja1105_hwtstamp_set, 3217 .port_rxtstamp = sja1105_port_rxtstamp, 3218 .port_txtstamp = sja1105_port_txtstamp, 3219 .port_setup_tc = sja1105_port_setup_tc, 3220 .port_mirror_add = sja1105_mirror_add, 3221 .port_mirror_del = sja1105_mirror_del, 3222 .port_policer_add = sja1105_port_policer_add, 3223 .port_policer_del = sja1105_port_policer_del, 3224 .cls_flower_add = sja1105_cls_flower_add, 3225 .cls_flower_del = sja1105_cls_flower_del, 3226 .cls_flower_stats = sja1105_cls_flower_stats, 3227 .devlink_info_get = sja1105_devlink_info_get, 3228 .tag_8021q_vlan_add = sja1105_dsa_8021q_vlan_add, 3229 .tag_8021q_vlan_del = sja1105_dsa_8021q_vlan_del, 3230 .port_prechangeupper = sja1105_prechangeupper, 3231 .port_bridge_tx_fwd_offload = dsa_tag_8021q_bridge_tx_fwd_offload, 3232 .port_bridge_tx_fwd_unoffload = dsa_tag_8021q_bridge_tx_fwd_unoffload, 3233 }; 3234 3235 static const struct of_device_id sja1105_dt_ids[]; 3236 3237 static int sja1105_check_device_id(struct sja1105_private *priv) 3238 { 3239 const struct sja1105_regs *regs = priv->info->regs; 3240 u8 prod_id[SJA1105_SIZE_DEVICE_ID] = {0}; 3241 struct device *dev = &priv->spidev->dev; 3242 const struct of_device_id *match; 3243 u32 device_id; 3244 u64 part_no; 3245 int rc; 3246 3247 rc = sja1105_xfer_u32(priv, SPI_READ, regs->device_id, &device_id, 3248 NULL); 3249 if (rc < 0) 3250 return rc; 3251 3252 rc = sja1105_xfer_buf(priv, SPI_READ, regs->prod_id, prod_id, 3253 SJA1105_SIZE_DEVICE_ID); 3254 if (rc < 0) 3255 return rc; 3256 3257 sja1105_unpack(prod_id, &part_no, 19, 4, SJA1105_SIZE_DEVICE_ID); 3258 3259 for (match = sja1105_dt_ids; match->compatible[0]; match++) { 3260 const struct sja1105_info *info = match->data; 3261 3262 /* Is what's been probed in our match table at all? */ 3263 if (info->device_id != device_id || info->part_no != part_no) 3264 continue; 3265 3266 /* But is it what's in the device tree? */ 3267 if (priv->info->device_id != device_id || 3268 priv->info->part_no != part_no) { 3269 dev_warn(dev, "Device tree specifies chip %s but found %s, please fix it!\n", 3270 priv->info->name, info->name); 3271 /* It isn't. No problem, pick that up. */ 3272 priv->info = info; 3273 } 3274 3275 return 0; 3276 } 3277 3278 dev_err(dev, "Unexpected {device ID, part number}: 0x%x 0x%llx\n", 3279 device_id, part_no); 3280 3281 return -ENODEV; 3282 } 3283 3284 static int sja1105_probe(struct spi_device *spi) 3285 { 3286 struct device *dev = &spi->dev; 3287 struct sja1105_private *priv; 3288 size_t max_xfer, max_msg; 3289 struct dsa_switch *ds; 3290 int rc; 3291 3292 if (!dev->of_node) { 3293 dev_err(dev, "No DTS bindings for SJA1105 driver\n"); 3294 return -EINVAL; 3295 } 3296 3297 rc = sja1105_hw_reset(dev, 1, 1); 3298 if (rc) 3299 return rc; 3300 3301 priv = devm_kzalloc(dev, sizeof(struct sja1105_private), GFP_KERNEL); 3302 if (!priv) 3303 return -ENOMEM; 3304 3305 /* Populate our driver private structure (priv) based on 3306 * the device tree node that was probed (spi) 3307 */ 3308 priv->spidev = spi; 3309 spi_set_drvdata(spi, priv); 3310 3311 /* Configure the SPI bus */ 3312 spi->bits_per_word = 8; 3313 rc = spi_setup(spi); 3314 if (rc < 0) { 3315 dev_err(dev, "Could not init SPI\n"); 3316 return rc; 3317 } 3318 3319 /* In sja1105_xfer, we send spi_messages composed of two spi_transfers: 3320 * a small one for the message header and another one for the current 3321 * chunk of the packed buffer. 3322 * Check that the restrictions imposed by the SPI controller are 3323 * respected: the chunk buffer is smaller than the max transfer size, 3324 * and the total length of the chunk plus its message header is smaller 3325 * than the max message size. 3326 * We do that during probe time since the maximum transfer size is a 3327 * runtime invariant. 3328 */ 3329 max_xfer = spi_max_transfer_size(spi); 3330 max_msg = spi_max_message_size(spi); 3331 3332 /* We need to send at least one 64-bit word of SPI payload per message 3333 * in order to be able to make useful progress. 3334 */ 3335 if (max_msg < SJA1105_SIZE_SPI_MSG_HEADER + 8) { 3336 dev_err(dev, "SPI master cannot send large enough buffers, aborting\n"); 3337 return -EINVAL; 3338 } 3339 3340 priv->max_xfer_len = SJA1105_SIZE_SPI_MSG_MAXLEN; 3341 if (priv->max_xfer_len > max_xfer) 3342 priv->max_xfer_len = max_xfer; 3343 if (priv->max_xfer_len > max_msg - SJA1105_SIZE_SPI_MSG_HEADER) 3344 priv->max_xfer_len = max_msg - SJA1105_SIZE_SPI_MSG_HEADER; 3345 3346 priv->info = of_device_get_match_data(dev); 3347 3348 /* Detect hardware device */ 3349 rc = sja1105_check_device_id(priv); 3350 if (rc < 0) { 3351 dev_err(dev, "Device ID check failed: %d\n", rc); 3352 return rc; 3353 } 3354 3355 dev_info(dev, "Probed switch chip: %s\n", priv->info->name); 3356 3357 ds = devm_kzalloc(dev, sizeof(*ds), GFP_KERNEL); 3358 if (!ds) 3359 return -ENOMEM; 3360 3361 ds->dev = dev; 3362 ds->num_ports = priv->info->num_ports; 3363 ds->ops = &sja1105_switch_ops; 3364 ds->priv = priv; 3365 priv->ds = ds; 3366 3367 mutex_init(&priv->ptp_data.lock); 3368 mutex_init(&priv->dynamic_config_lock); 3369 mutex_init(&priv->mgmt_lock); 3370 3371 rc = sja1105_parse_dt(priv); 3372 if (rc < 0) { 3373 dev_err(ds->dev, "Failed to parse DT: %d\n", rc); 3374 return rc; 3375 } 3376 3377 if (IS_ENABLED(CONFIG_NET_SCH_CBS)) { 3378 priv->cbs = devm_kcalloc(dev, priv->info->num_cbs_shapers, 3379 sizeof(struct sja1105_cbs_entry), 3380 GFP_KERNEL); 3381 if (!priv->cbs) 3382 return -ENOMEM; 3383 } 3384 3385 return dsa_register_switch(priv->ds); 3386 } 3387 3388 static int sja1105_remove(struct spi_device *spi) 3389 { 3390 struct sja1105_private *priv = spi_get_drvdata(spi); 3391 3392 if (!priv) 3393 return 0; 3394 3395 dsa_unregister_switch(priv->ds); 3396 3397 spi_set_drvdata(spi, NULL); 3398 3399 return 0; 3400 } 3401 3402 static void sja1105_shutdown(struct spi_device *spi) 3403 { 3404 struct sja1105_private *priv = spi_get_drvdata(spi); 3405 3406 if (!priv) 3407 return; 3408 3409 dsa_switch_shutdown(priv->ds); 3410 3411 spi_set_drvdata(spi, NULL); 3412 } 3413 3414 static const struct of_device_id sja1105_dt_ids[] = { 3415 { .compatible = "nxp,sja1105e", .data = &sja1105e_info }, 3416 { .compatible = "nxp,sja1105t", .data = &sja1105t_info }, 3417 { .compatible = "nxp,sja1105p", .data = &sja1105p_info }, 3418 { .compatible = "nxp,sja1105q", .data = &sja1105q_info }, 3419 { .compatible = "nxp,sja1105r", .data = &sja1105r_info }, 3420 { .compatible = "nxp,sja1105s", .data = &sja1105s_info }, 3421 { .compatible = "nxp,sja1110a", .data = &sja1110a_info }, 3422 { .compatible = "nxp,sja1110b", .data = &sja1110b_info }, 3423 { .compatible = "nxp,sja1110c", .data = &sja1110c_info }, 3424 { .compatible = "nxp,sja1110d", .data = &sja1110d_info }, 3425 { /* sentinel */ }, 3426 }; 3427 MODULE_DEVICE_TABLE(of, sja1105_dt_ids); 3428 3429 static struct spi_driver sja1105_driver = { 3430 .driver = { 3431 .name = "sja1105", 3432 .owner = THIS_MODULE, 3433 .of_match_table = of_match_ptr(sja1105_dt_ids), 3434 }, 3435 .probe = sja1105_probe, 3436 .remove = sja1105_remove, 3437 .shutdown = sja1105_shutdown, 3438 }; 3439 3440 module_spi_driver(sja1105_driver); 3441 3442 MODULE_AUTHOR("Vladimir Oltean <olteanv@gmail.com>"); 3443 MODULE_AUTHOR("Georg Waibel <georg.waibel@sensor-technik.de>"); 3444 MODULE_DESCRIPTION("SJA1105 Driver"); 3445 MODULE_LICENSE("GPL v2"); 3446