1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Sensor-Technik Wiedemann GmbH
3  * Copyright (c) 2018-2019, Vladimir Oltean <olteanv@gmail.com>
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/delay.h>
9 #include <linux/module.h>
10 #include <linux/printk.h>
11 #include <linux/spi/spi.h>
12 #include <linux/errno.h>
13 #include <linux/gpio/consumer.h>
14 #include <linux/phylink.h>
15 #include <linux/of.h>
16 #include <linux/of_net.h>
17 #include <linux/of_mdio.h>
18 #include <linux/of_device.h>
19 #include <linux/pcs/pcs-xpcs.h>
20 #include <linux/netdev_features.h>
21 #include <linux/netdevice.h>
22 #include <linux/if_bridge.h>
23 #include <linux/if_ether.h>
24 #include <linux/dsa/8021q.h>
25 #include "sja1105.h"
26 #include "sja1105_tas.h"
27 
28 #define SJA1105_UNKNOWN_MULTICAST	0x010000000000ull
29 #define SJA1105_DEFAULT_VLAN		(VLAN_N_VID - 1)
30 
31 static const struct dsa_switch_ops sja1105_switch_ops;
32 
33 static void sja1105_hw_reset(struct gpio_desc *gpio, unsigned int pulse_len,
34 			     unsigned int startup_delay)
35 {
36 	gpiod_set_value_cansleep(gpio, 1);
37 	/* Wait for minimum reset pulse length */
38 	msleep(pulse_len);
39 	gpiod_set_value_cansleep(gpio, 0);
40 	/* Wait until chip is ready after reset */
41 	msleep(startup_delay);
42 }
43 
44 static void
45 sja1105_port_allow_traffic(struct sja1105_l2_forwarding_entry *l2_fwd,
46 			   int from, int to, bool allow)
47 {
48 	if (allow)
49 		l2_fwd[from].reach_port |= BIT(to);
50 	else
51 		l2_fwd[from].reach_port &= ~BIT(to);
52 }
53 
54 static bool sja1105_can_forward(struct sja1105_l2_forwarding_entry *l2_fwd,
55 				int from, int to)
56 {
57 	return !!(l2_fwd[from].reach_port & BIT(to));
58 }
59 
60 static int sja1105_init_mac_settings(struct sja1105_private *priv)
61 {
62 	struct sja1105_mac_config_entry default_mac = {
63 		/* Enable all 8 priority queues on egress.
64 		 * Every queue i holds top[i] - base[i] frames.
65 		 * Sum of top[i] - base[i] is 511 (max hardware limit).
66 		 */
67 		.top  = {0x3F, 0x7F, 0xBF, 0xFF, 0x13F, 0x17F, 0x1BF, 0x1FF},
68 		.base = {0x0, 0x40, 0x80, 0xC0, 0x100, 0x140, 0x180, 0x1C0},
69 		.enabled = {true, true, true, true, true, true, true, true},
70 		/* Keep standard IFG of 12 bytes on egress. */
71 		.ifg = 0,
72 		/* Always put the MAC speed in automatic mode, where it can be
73 		 * adjusted at runtime by PHYLINK.
74 		 */
75 		.speed = priv->info->port_speed[SJA1105_SPEED_AUTO],
76 		/* No static correction for 1-step 1588 events */
77 		.tp_delin = 0,
78 		.tp_delout = 0,
79 		/* Disable aging for critical TTEthernet traffic */
80 		.maxage = 0xFF,
81 		/* Internal VLAN (pvid) to apply to untagged ingress */
82 		.vlanprio = 0,
83 		.vlanid = 1,
84 		.ing_mirr = false,
85 		.egr_mirr = false,
86 		/* Don't drop traffic with other EtherType than ETH_P_IP */
87 		.drpnona664 = false,
88 		/* Don't drop double-tagged traffic */
89 		.drpdtag = false,
90 		/* Don't drop untagged traffic */
91 		.drpuntag = false,
92 		/* Don't retag 802.1p (VID 0) traffic with the pvid */
93 		.retag = false,
94 		/* Disable learning and I/O on user ports by default -
95 		 * STP will enable it.
96 		 */
97 		.dyn_learn = false,
98 		.egress = false,
99 		.ingress = false,
100 	};
101 	struct sja1105_mac_config_entry *mac;
102 	struct dsa_switch *ds = priv->ds;
103 	struct sja1105_table *table;
104 	int i;
105 
106 	table = &priv->static_config.tables[BLK_IDX_MAC_CONFIG];
107 
108 	/* Discard previous MAC Configuration Table */
109 	if (table->entry_count) {
110 		kfree(table->entries);
111 		table->entry_count = 0;
112 	}
113 
114 	table->entries = kcalloc(table->ops->max_entry_count,
115 				 table->ops->unpacked_entry_size, GFP_KERNEL);
116 	if (!table->entries)
117 		return -ENOMEM;
118 
119 	table->entry_count = table->ops->max_entry_count;
120 
121 	mac = table->entries;
122 
123 	for (i = 0; i < ds->num_ports; i++) {
124 		mac[i] = default_mac;
125 
126 		/* Let sja1105_bridge_stp_state_set() keep address learning
127 		 * enabled for the CPU port.
128 		 */
129 		if (dsa_is_cpu_port(ds, i))
130 			priv->learn_ena |= BIT(i);
131 	}
132 
133 	return 0;
134 }
135 
136 static int sja1105_init_mii_settings(struct sja1105_private *priv)
137 {
138 	struct device *dev = &priv->spidev->dev;
139 	struct sja1105_xmii_params_entry *mii;
140 	struct dsa_switch *ds = priv->ds;
141 	struct sja1105_table *table;
142 	int i;
143 
144 	table = &priv->static_config.tables[BLK_IDX_XMII_PARAMS];
145 
146 	/* Discard previous xMII Mode Parameters Table */
147 	if (table->entry_count) {
148 		kfree(table->entries);
149 		table->entry_count = 0;
150 	}
151 
152 	table->entries = kcalloc(table->ops->max_entry_count,
153 				 table->ops->unpacked_entry_size, GFP_KERNEL);
154 	if (!table->entries)
155 		return -ENOMEM;
156 
157 	/* Override table based on PHYLINK DT bindings */
158 	table->entry_count = table->ops->max_entry_count;
159 
160 	mii = table->entries;
161 
162 	for (i = 0; i < ds->num_ports; i++) {
163 		sja1105_mii_role_t role = XMII_MAC;
164 
165 		if (dsa_is_unused_port(priv->ds, i))
166 			continue;
167 
168 		switch (priv->phy_mode[i]) {
169 		case PHY_INTERFACE_MODE_INTERNAL:
170 			if (priv->info->internal_phy[i] == SJA1105_NO_PHY)
171 				goto unsupported;
172 
173 			mii->xmii_mode[i] = XMII_MODE_MII;
174 			if (priv->info->internal_phy[i] == SJA1105_PHY_BASE_TX)
175 				mii->special[i] = true;
176 
177 			break;
178 		case PHY_INTERFACE_MODE_REVMII:
179 			role = XMII_PHY;
180 			fallthrough;
181 		case PHY_INTERFACE_MODE_MII:
182 			if (!priv->info->supports_mii[i])
183 				goto unsupported;
184 
185 			mii->xmii_mode[i] = XMII_MODE_MII;
186 			break;
187 		case PHY_INTERFACE_MODE_REVRMII:
188 			role = XMII_PHY;
189 			fallthrough;
190 		case PHY_INTERFACE_MODE_RMII:
191 			if (!priv->info->supports_rmii[i])
192 				goto unsupported;
193 
194 			mii->xmii_mode[i] = XMII_MODE_RMII;
195 			break;
196 		case PHY_INTERFACE_MODE_RGMII:
197 		case PHY_INTERFACE_MODE_RGMII_ID:
198 		case PHY_INTERFACE_MODE_RGMII_RXID:
199 		case PHY_INTERFACE_MODE_RGMII_TXID:
200 			if (!priv->info->supports_rgmii[i])
201 				goto unsupported;
202 
203 			mii->xmii_mode[i] = XMII_MODE_RGMII;
204 			break;
205 		case PHY_INTERFACE_MODE_SGMII:
206 			if (!priv->info->supports_sgmii[i])
207 				goto unsupported;
208 
209 			mii->xmii_mode[i] = XMII_MODE_SGMII;
210 			mii->special[i] = true;
211 			break;
212 		case PHY_INTERFACE_MODE_2500BASEX:
213 			if (!priv->info->supports_2500basex[i])
214 				goto unsupported;
215 
216 			mii->xmii_mode[i] = XMII_MODE_SGMII;
217 			mii->special[i] = true;
218 			break;
219 unsupported:
220 		default:
221 			dev_err(dev, "Unsupported PHY mode %s on port %d!\n",
222 				phy_modes(priv->phy_mode[i]), i);
223 			return -EINVAL;
224 		}
225 
226 		mii->phy_mac[i] = role;
227 	}
228 	return 0;
229 }
230 
231 static int sja1105_init_static_fdb(struct sja1105_private *priv)
232 {
233 	struct sja1105_l2_lookup_entry *l2_lookup;
234 	struct sja1105_table *table;
235 	int port;
236 
237 	table = &priv->static_config.tables[BLK_IDX_L2_LOOKUP];
238 
239 	/* We only populate the FDB table through dynamic L2 Address Lookup
240 	 * entries, except for a special entry at the end which is a catch-all
241 	 * for unknown multicast and will be used to control flooding domain.
242 	 */
243 	if (table->entry_count) {
244 		kfree(table->entries);
245 		table->entry_count = 0;
246 	}
247 
248 	if (!priv->info->can_limit_mcast_flood)
249 		return 0;
250 
251 	table->entries = kcalloc(1, table->ops->unpacked_entry_size,
252 				 GFP_KERNEL);
253 	if (!table->entries)
254 		return -ENOMEM;
255 
256 	table->entry_count = 1;
257 	l2_lookup = table->entries;
258 
259 	/* All L2 multicast addresses have an odd first octet */
260 	l2_lookup[0].macaddr = SJA1105_UNKNOWN_MULTICAST;
261 	l2_lookup[0].mask_macaddr = SJA1105_UNKNOWN_MULTICAST;
262 	l2_lookup[0].lockeds = true;
263 	l2_lookup[0].index = SJA1105_MAX_L2_LOOKUP_COUNT - 1;
264 
265 	/* Flood multicast to every port by default */
266 	for (port = 0; port < priv->ds->num_ports; port++)
267 		if (!dsa_is_unused_port(priv->ds, port))
268 			l2_lookup[0].destports |= BIT(port);
269 
270 	return 0;
271 }
272 
273 static int sja1105_init_l2_lookup_params(struct sja1105_private *priv)
274 {
275 	struct sja1105_l2_lookup_params_entry default_l2_lookup_params = {
276 		/* Learned FDB entries are forgotten after 300 seconds */
277 		.maxage = SJA1105_AGEING_TIME_MS(300000),
278 		/* All entries within a FDB bin are available for learning */
279 		.dyn_tbsz = SJA1105ET_FDB_BIN_SIZE,
280 		/* And the P/Q/R/S equivalent setting: */
281 		.start_dynspc = 0,
282 		/* 2^8 + 2^5 + 2^3 + 2^2 + 2^1 + 1 in Koopman notation */
283 		.poly = 0x97,
284 		/* This selects between Independent VLAN Learning (IVL) and
285 		 * Shared VLAN Learning (SVL)
286 		 */
287 		.shared_learn = true,
288 		/* Don't discard management traffic based on ENFPORT -
289 		 * we don't perform SMAC port enforcement anyway, so
290 		 * what we are setting here doesn't matter.
291 		 */
292 		.no_enf_hostprt = false,
293 		/* Don't learn SMAC for mac_fltres1 and mac_fltres0.
294 		 * Maybe correlate with no_linklocal_learn from bridge driver?
295 		 */
296 		.no_mgmt_learn = true,
297 		/* P/Q/R/S only */
298 		.use_static = true,
299 		/* Dynamically learned FDB entries can overwrite other (older)
300 		 * dynamic FDB entries
301 		 */
302 		.owr_dyn = true,
303 		.drpnolearn = true,
304 	};
305 	struct dsa_switch *ds = priv->ds;
306 	int port, num_used_ports = 0;
307 	struct sja1105_table *table;
308 	u64 max_fdb_entries;
309 
310 	for (port = 0; port < ds->num_ports; port++)
311 		if (!dsa_is_unused_port(ds, port))
312 			num_used_ports++;
313 
314 	max_fdb_entries = SJA1105_MAX_L2_LOOKUP_COUNT / num_used_ports;
315 
316 	for (port = 0; port < ds->num_ports; port++) {
317 		if (dsa_is_unused_port(ds, port))
318 			continue;
319 
320 		default_l2_lookup_params.maxaddrp[port] = max_fdb_entries;
321 	}
322 
323 	table = &priv->static_config.tables[BLK_IDX_L2_LOOKUP_PARAMS];
324 
325 	if (table->entry_count) {
326 		kfree(table->entries);
327 		table->entry_count = 0;
328 	}
329 
330 	table->entries = kcalloc(table->ops->max_entry_count,
331 				 table->ops->unpacked_entry_size, GFP_KERNEL);
332 	if (!table->entries)
333 		return -ENOMEM;
334 
335 	table->entry_count = table->ops->max_entry_count;
336 
337 	/* This table only has a single entry */
338 	((struct sja1105_l2_lookup_params_entry *)table->entries)[0] =
339 				default_l2_lookup_params;
340 
341 	return 0;
342 }
343 
344 /* Set up a default VLAN for untagged traffic injected from the CPU
345  * using management routes (e.g. STP, PTP) as opposed to tag_8021q.
346  * All DT-defined ports are members of this VLAN, and there are no
347  * restrictions on forwarding (since the CPU selects the destination).
348  * Frames from this VLAN will always be transmitted as untagged, and
349  * neither the bridge nor the 8021q module cannot create this VLAN ID.
350  */
351 static int sja1105_init_static_vlan(struct sja1105_private *priv)
352 {
353 	struct sja1105_table *table;
354 	struct sja1105_vlan_lookup_entry pvid = {
355 		.type_entry = SJA1110_VLAN_D_TAG,
356 		.ving_mirr = 0,
357 		.vegr_mirr = 0,
358 		.vmemb_port = 0,
359 		.vlan_bc = 0,
360 		.tag_port = 0,
361 		.vlanid = SJA1105_DEFAULT_VLAN,
362 	};
363 	struct dsa_switch *ds = priv->ds;
364 	int port;
365 
366 	table = &priv->static_config.tables[BLK_IDX_VLAN_LOOKUP];
367 
368 	if (table->entry_count) {
369 		kfree(table->entries);
370 		table->entry_count = 0;
371 	}
372 
373 	table->entries = kzalloc(table->ops->unpacked_entry_size,
374 				 GFP_KERNEL);
375 	if (!table->entries)
376 		return -ENOMEM;
377 
378 	table->entry_count = 1;
379 
380 	for (port = 0; port < ds->num_ports; port++) {
381 		struct sja1105_bridge_vlan *v;
382 
383 		if (dsa_is_unused_port(ds, port))
384 			continue;
385 
386 		pvid.vmemb_port |= BIT(port);
387 		pvid.vlan_bc |= BIT(port);
388 		pvid.tag_port &= ~BIT(port);
389 
390 		v = kzalloc(sizeof(*v), GFP_KERNEL);
391 		if (!v)
392 			return -ENOMEM;
393 
394 		v->port = port;
395 		v->vid = SJA1105_DEFAULT_VLAN;
396 		v->untagged = true;
397 		if (dsa_is_cpu_port(ds, port))
398 			v->pvid = true;
399 		list_add(&v->list, &priv->dsa_8021q_vlans);
400 
401 		v = kmemdup(v, sizeof(*v), GFP_KERNEL);
402 		if (!v)
403 			return -ENOMEM;
404 
405 		list_add(&v->list, &priv->bridge_vlans);
406 	}
407 
408 	((struct sja1105_vlan_lookup_entry *)table->entries)[0] = pvid;
409 	return 0;
410 }
411 
412 static int sja1105_init_l2_forwarding(struct sja1105_private *priv)
413 {
414 	struct sja1105_l2_forwarding_entry *l2fwd;
415 	struct dsa_switch *ds = priv->ds;
416 	struct sja1105_table *table;
417 	int i, j;
418 
419 	table = &priv->static_config.tables[BLK_IDX_L2_FORWARDING];
420 
421 	if (table->entry_count) {
422 		kfree(table->entries);
423 		table->entry_count = 0;
424 	}
425 
426 	table->entries = kcalloc(table->ops->max_entry_count,
427 				 table->ops->unpacked_entry_size, GFP_KERNEL);
428 	if (!table->entries)
429 		return -ENOMEM;
430 
431 	table->entry_count = table->ops->max_entry_count;
432 
433 	l2fwd = table->entries;
434 
435 	/* First 5 entries define the forwarding rules */
436 	for (i = 0; i < ds->num_ports; i++) {
437 		unsigned int upstream = dsa_upstream_port(priv->ds, i);
438 
439 		if (dsa_is_unused_port(ds, i))
440 			continue;
441 
442 		for (j = 0; j < SJA1105_NUM_TC; j++)
443 			l2fwd[i].vlan_pmap[j] = j;
444 
445 		/* All ports start up with egress flooding enabled,
446 		 * including the CPU port.
447 		 */
448 		priv->ucast_egress_floods |= BIT(i);
449 		priv->bcast_egress_floods |= BIT(i);
450 
451 		if (i == upstream)
452 			continue;
453 
454 		sja1105_port_allow_traffic(l2fwd, i, upstream, true);
455 		sja1105_port_allow_traffic(l2fwd, upstream, i, true);
456 
457 		l2fwd[i].bc_domain = BIT(upstream);
458 		l2fwd[i].fl_domain = BIT(upstream);
459 
460 		l2fwd[upstream].bc_domain |= BIT(i);
461 		l2fwd[upstream].fl_domain |= BIT(i);
462 	}
463 
464 	/* Next 8 entries define VLAN PCP mapping from ingress to egress.
465 	 * Create a one-to-one mapping.
466 	 */
467 	for (i = 0; i < SJA1105_NUM_TC; i++) {
468 		for (j = 0; j < ds->num_ports; j++) {
469 			if (dsa_is_unused_port(ds, j))
470 				continue;
471 
472 			l2fwd[ds->num_ports + i].vlan_pmap[j] = i;
473 		}
474 
475 		l2fwd[ds->num_ports + i].type_egrpcp2outputq = true;
476 	}
477 
478 	return 0;
479 }
480 
481 static int sja1110_init_pcp_remapping(struct sja1105_private *priv)
482 {
483 	struct sja1110_pcp_remapping_entry *pcp_remap;
484 	struct dsa_switch *ds = priv->ds;
485 	struct sja1105_table *table;
486 	int port, tc;
487 
488 	table = &priv->static_config.tables[BLK_IDX_PCP_REMAPPING];
489 
490 	/* Nothing to do for SJA1105 */
491 	if (!table->ops->max_entry_count)
492 		return 0;
493 
494 	if (table->entry_count) {
495 		kfree(table->entries);
496 		table->entry_count = 0;
497 	}
498 
499 	table->entries = kcalloc(table->ops->max_entry_count,
500 				 table->ops->unpacked_entry_size, GFP_KERNEL);
501 	if (!table->entries)
502 		return -ENOMEM;
503 
504 	table->entry_count = table->ops->max_entry_count;
505 
506 	pcp_remap = table->entries;
507 
508 	/* Repeat the configuration done for vlan_pmap */
509 	for (port = 0; port < ds->num_ports; port++) {
510 		if (dsa_is_unused_port(ds, port))
511 			continue;
512 
513 		for (tc = 0; tc < SJA1105_NUM_TC; tc++)
514 			pcp_remap[port].egrpcp[tc] = tc;
515 	}
516 
517 	return 0;
518 }
519 
520 static int sja1105_init_l2_forwarding_params(struct sja1105_private *priv)
521 {
522 	struct sja1105_l2_forwarding_params_entry *l2fwd_params;
523 	struct sja1105_table *table;
524 
525 	table = &priv->static_config.tables[BLK_IDX_L2_FORWARDING_PARAMS];
526 
527 	if (table->entry_count) {
528 		kfree(table->entries);
529 		table->entry_count = 0;
530 	}
531 
532 	table->entries = kcalloc(table->ops->max_entry_count,
533 				 table->ops->unpacked_entry_size, GFP_KERNEL);
534 	if (!table->entries)
535 		return -ENOMEM;
536 
537 	table->entry_count = table->ops->max_entry_count;
538 
539 	/* This table only has a single entry */
540 	l2fwd_params = table->entries;
541 
542 	/* Disallow dynamic reconfiguration of vlan_pmap */
543 	l2fwd_params->max_dynp = 0;
544 	/* Use a single memory partition for all ingress queues */
545 	l2fwd_params->part_spc[0] = priv->info->max_frame_mem;
546 
547 	return 0;
548 }
549 
550 void sja1105_frame_memory_partitioning(struct sja1105_private *priv)
551 {
552 	struct sja1105_l2_forwarding_params_entry *l2_fwd_params;
553 	struct sja1105_vl_forwarding_params_entry *vl_fwd_params;
554 	int max_mem = priv->info->max_frame_mem;
555 	struct sja1105_table *table;
556 
557 	/* VLAN retagging is implemented using a loopback port that consumes
558 	 * frame buffers. That leaves less for us.
559 	 */
560 	if (priv->vlan_state == SJA1105_VLAN_BEST_EFFORT)
561 		max_mem -= SJA1105_FRAME_MEMORY_RETAGGING_OVERHEAD;
562 
563 	table = &priv->static_config.tables[BLK_IDX_L2_FORWARDING_PARAMS];
564 	l2_fwd_params = table->entries;
565 	l2_fwd_params->part_spc[0] = max_mem;
566 
567 	/* If we have any critical-traffic virtual links, we need to reserve
568 	 * some frame buffer memory for them. At the moment, hardcode the value
569 	 * at 100 blocks of 128 bytes of memory each. This leaves 829 blocks
570 	 * remaining for best-effort traffic. TODO: figure out a more flexible
571 	 * way to perform the frame buffer partitioning.
572 	 */
573 	if (!priv->static_config.tables[BLK_IDX_VL_FORWARDING].entry_count)
574 		return;
575 
576 	table = &priv->static_config.tables[BLK_IDX_VL_FORWARDING_PARAMS];
577 	vl_fwd_params = table->entries;
578 
579 	l2_fwd_params->part_spc[0] -= SJA1105_VL_FRAME_MEMORY;
580 	vl_fwd_params->partspc[0] = SJA1105_VL_FRAME_MEMORY;
581 }
582 
583 /* SJA1110 TDMACONFIGIDX values:
584  *
585  *      | 100 Mbps ports |  1Gbps ports  | 2.5Gbps ports | Disabled ports
586  * -----+----------------+---------------+---------------+---------------
587  *   0  |   0, [5:10]    |     [1:2]     |     [3:4]     |     retag
588  *   1  |0, [5:10], retag|     [1:2]     |     [3:4]     |       -
589  *   2  |   0, [5:10]    |  [1:3], retag |       4       |       -
590  *   3  |   0, [5:10]    |[1:2], 4, retag|       3       |       -
591  *   4  |  0, 2, [5:10]  |    1, retag   |     [3:4]     |       -
592  *   5  |  0, 1, [5:10]  |    2, retag   |     [3:4]     |       -
593  *  14  |   0, [5:10]    | [1:4], retag  |       -       |       -
594  *  15  |     [5:10]     | [0:4], retag  |       -       |       -
595  */
596 static void sja1110_select_tdmaconfigidx(struct sja1105_private *priv)
597 {
598 	struct sja1105_general_params_entry *general_params;
599 	struct sja1105_table *table;
600 	bool port_1_is_base_tx;
601 	bool port_3_is_2500;
602 	bool port_4_is_2500;
603 	u64 tdmaconfigidx;
604 
605 	if (priv->info->device_id != SJA1110_DEVICE_ID)
606 		return;
607 
608 	table = &priv->static_config.tables[BLK_IDX_GENERAL_PARAMS];
609 	general_params = table->entries;
610 
611 	/* All the settings below are "as opposed to SGMII", which is the
612 	 * other pinmuxing option.
613 	 */
614 	port_1_is_base_tx = priv->phy_mode[1] == PHY_INTERFACE_MODE_INTERNAL;
615 	port_3_is_2500 = priv->phy_mode[3] == PHY_INTERFACE_MODE_2500BASEX;
616 	port_4_is_2500 = priv->phy_mode[4] == PHY_INTERFACE_MODE_2500BASEX;
617 
618 	if (port_1_is_base_tx)
619 		/* Retagging port will operate at 1 Gbps */
620 		tdmaconfigidx = 5;
621 	else if (port_3_is_2500 && port_4_is_2500)
622 		/* Retagging port will operate at 100 Mbps */
623 		tdmaconfigidx = 1;
624 	else if (port_3_is_2500)
625 		/* Retagging port will operate at 1 Gbps */
626 		tdmaconfigidx = 3;
627 	else if (port_4_is_2500)
628 		/* Retagging port will operate at 1 Gbps */
629 		tdmaconfigidx = 2;
630 	else
631 		/* Retagging port will operate at 1 Gbps */
632 		tdmaconfigidx = 14;
633 
634 	general_params->tdmaconfigidx = tdmaconfigidx;
635 }
636 
637 static int sja1105_init_general_params(struct sja1105_private *priv)
638 {
639 	struct sja1105_general_params_entry default_general_params = {
640 		/* Allow dynamic changing of the mirror port */
641 		.mirr_ptacu = true,
642 		.switchid = priv->ds->index,
643 		/* Priority queue for link-local management frames
644 		 * (both ingress to and egress from CPU - PTP, STP etc)
645 		 */
646 		.hostprio = 7,
647 		.mac_fltres1 = SJA1105_LINKLOCAL_FILTER_A,
648 		.mac_flt1    = SJA1105_LINKLOCAL_FILTER_A_MASK,
649 		.incl_srcpt1 = false,
650 		.send_meta1  = false,
651 		.mac_fltres0 = SJA1105_LINKLOCAL_FILTER_B,
652 		.mac_flt0    = SJA1105_LINKLOCAL_FILTER_B_MASK,
653 		.incl_srcpt0 = false,
654 		.send_meta0  = false,
655 		/* The destination for traffic matching mac_fltres1 and
656 		 * mac_fltres0 on all ports except host_port. Such traffic
657 		 * receieved on host_port itself would be dropped, except
658 		 * by installing a temporary 'management route'
659 		 */
660 		.host_port = priv->ds->num_ports,
661 		/* Default to an invalid value */
662 		.mirr_port = priv->ds->num_ports,
663 		/* No TTEthernet */
664 		.vllupformat = SJA1105_VL_FORMAT_PSFP,
665 		.vlmarker = 0,
666 		.vlmask = 0,
667 		/* Only update correctionField for 1-step PTP (L2 transport) */
668 		.ignore2stf = 0,
669 		/* Forcefully disable VLAN filtering by telling
670 		 * the switch that VLAN has a different EtherType.
671 		 */
672 		.tpid = ETH_P_SJA1105,
673 		.tpid2 = ETH_P_SJA1105,
674 		/* Enable the TTEthernet engine on SJA1110 */
675 		.tte_en = true,
676 		/* Set up the EtherType for control packets on SJA1110 */
677 		.header_type = ETH_P_SJA1110,
678 	};
679 	struct sja1105_general_params_entry *general_params;
680 	struct dsa_switch *ds = priv->ds;
681 	struct sja1105_table *table;
682 	int port;
683 
684 	for (port = 0; port < ds->num_ports; port++) {
685 		if (dsa_is_cpu_port(ds, port)) {
686 			default_general_params.host_port = port;
687 			break;
688 		}
689 	}
690 
691 	table = &priv->static_config.tables[BLK_IDX_GENERAL_PARAMS];
692 
693 	if (table->entry_count) {
694 		kfree(table->entries);
695 		table->entry_count = 0;
696 	}
697 
698 	table->entries = kcalloc(table->ops->max_entry_count,
699 				 table->ops->unpacked_entry_size, GFP_KERNEL);
700 	if (!table->entries)
701 		return -ENOMEM;
702 
703 	table->entry_count = table->ops->max_entry_count;
704 
705 	general_params = table->entries;
706 
707 	/* This table only has a single entry */
708 	general_params[0] = default_general_params;
709 
710 	sja1110_select_tdmaconfigidx(priv);
711 
712 	/* Link-local traffic received on casc_port will be forwarded
713 	 * to host_port without embedding the source port and device ID
714 	 * info in the destination MAC address, and no RX timestamps will be
715 	 * taken either (presumably because it is a cascaded port and a
716 	 * downstream SJA switch already did that).
717 	 * To disable the feature, we need to do different things depending on
718 	 * switch generation. On SJA1105 we need to set an invalid port, while
719 	 * on SJA1110 which support multiple cascaded ports, this field is a
720 	 * bitmask so it must be left zero.
721 	 */
722 	if (!priv->info->multiple_cascade_ports)
723 		general_params->casc_port = ds->num_ports;
724 
725 	return 0;
726 }
727 
728 static int sja1105_init_avb_params(struct sja1105_private *priv)
729 {
730 	struct sja1105_avb_params_entry *avb;
731 	struct sja1105_table *table;
732 
733 	table = &priv->static_config.tables[BLK_IDX_AVB_PARAMS];
734 
735 	/* Discard previous AVB Parameters Table */
736 	if (table->entry_count) {
737 		kfree(table->entries);
738 		table->entry_count = 0;
739 	}
740 
741 	table->entries = kcalloc(table->ops->max_entry_count,
742 				 table->ops->unpacked_entry_size, GFP_KERNEL);
743 	if (!table->entries)
744 		return -ENOMEM;
745 
746 	table->entry_count = table->ops->max_entry_count;
747 
748 	avb = table->entries;
749 
750 	/* Configure the MAC addresses for meta frames */
751 	avb->destmeta = SJA1105_META_DMAC;
752 	avb->srcmeta  = SJA1105_META_SMAC;
753 	/* On P/Q/R/S, configure the direction of the PTP_CLK pin as input by
754 	 * default. This is because there might be boards with a hardware
755 	 * layout where enabling the pin as output might cause an electrical
756 	 * clash. On E/T the pin is always an output, which the board designers
757 	 * probably already knew, so even if there are going to be electrical
758 	 * issues, there's nothing we can do.
759 	 */
760 	avb->cas_master = false;
761 
762 	return 0;
763 }
764 
765 /* The L2 policing table is 2-stage. The table is looked up for each frame
766  * according to the ingress port, whether it was broadcast or not, and the
767  * classified traffic class (given by VLAN PCP). This portion of the lookup is
768  * fixed, and gives access to the SHARINDX, an indirection register pointing
769  * within the policing table itself, which is used to resolve the policer that
770  * will be used for this frame.
771  *
772  *  Stage 1                              Stage 2
773  * +------------+--------+              +---------------------------------+
774  * |Port 0 TC 0 |SHARINDX|              | Policer 0: Rate, Burst, MTU     |
775  * +------------+--------+              +---------------------------------+
776  * |Port 0 TC 1 |SHARINDX|              | Policer 1: Rate, Burst, MTU     |
777  * +------------+--------+              +---------------------------------+
778  *    ...                               | Policer 2: Rate, Burst, MTU     |
779  * +------------+--------+              +---------------------------------+
780  * |Port 0 TC 7 |SHARINDX|              | Policer 3: Rate, Burst, MTU     |
781  * +------------+--------+              +---------------------------------+
782  * |Port 1 TC 0 |SHARINDX|              | Policer 4: Rate, Burst, MTU     |
783  * +------------+--------+              +---------------------------------+
784  *    ...                               | Policer 5: Rate, Burst, MTU     |
785  * +------------+--------+              +---------------------------------+
786  * |Port 1 TC 7 |SHARINDX|              | Policer 6: Rate, Burst, MTU     |
787  * +------------+--------+              +---------------------------------+
788  *    ...                               | Policer 7: Rate, Burst, MTU     |
789  * +------------+--------+              +---------------------------------+
790  * |Port 4 TC 7 |SHARINDX|                 ...
791  * +------------+--------+
792  * |Port 0 BCAST|SHARINDX|                 ...
793  * +------------+--------+
794  * |Port 1 BCAST|SHARINDX|                 ...
795  * +------------+--------+
796  *    ...                                  ...
797  * +------------+--------+              +---------------------------------+
798  * |Port 4 BCAST|SHARINDX|              | Policer 44: Rate, Burst, MTU    |
799  * +------------+--------+              +---------------------------------+
800  *
801  * In this driver, we shall use policers 0-4 as statically alocated port
802  * (matchall) policers. So we need to make the SHARINDX for all lookups
803  * corresponding to this ingress port (8 VLAN PCP lookups and 1 broadcast
804  * lookup) equal.
805  * The remaining policers (40) shall be dynamically allocated for flower
806  * policers, where the key is either vlan_prio or dst_mac ff:ff:ff:ff:ff:ff.
807  */
808 #define SJA1105_RATE_MBPS(speed) (((speed) * 64000) / 1000)
809 
810 static int sja1105_init_l2_policing(struct sja1105_private *priv)
811 {
812 	struct sja1105_l2_policing_entry *policing;
813 	struct dsa_switch *ds = priv->ds;
814 	struct sja1105_table *table;
815 	int port, tc;
816 
817 	table = &priv->static_config.tables[BLK_IDX_L2_POLICING];
818 
819 	/* Discard previous L2 Policing Table */
820 	if (table->entry_count) {
821 		kfree(table->entries);
822 		table->entry_count = 0;
823 	}
824 
825 	table->entries = kcalloc(table->ops->max_entry_count,
826 				 table->ops->unpacked_entry_size, GFP_KERNEL);
827 	if (!table->entries)
828 		return -ENOMEM;
829 
830 	table->entry_count = table->ops->max_entry_count;
831 
832 	policing = table->entries;
833 
834 	/* Setup shared indices for the matchall policers */
835 	for (port = 0; port < ds->num_ports; port++) {
836 		int mcast = (ds->num_ports * (SJA1105_NUM_TC + 1)) + port;
837 		int bcast = (ds->num_ports * SJA1105_NUM_TC) + port;
838 
839 		for (tc = 0; tc < SJA1105_NUM_TC; tc++)
840 			policing[port * SJA1105_NUM_TC + tc].sharindx = port;
841 
842 		policing[bcast].sharindx = port;
843 		/* Only SJA1110 has multicast policers */
844 		if (mcast <= table->ops->max_entry_count)
845 			policing[mcast].sharindx = port;
846 	}
847 
848 	/* Setup the matchall policer parameters */
849 	for (port = 0; port < ds->num_ports; port++) {
850 		int mtu = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
851 
852 		if (dsa_is_cpu_port(priv->ds, port))
853 			mtu += VLAN_HLEN;
854 
855 		policing[port].smax = 65535; /* Burst size in bytes */
856 		policing[port].rate = SJA1105_RATE_MBPS(1000);
857 		policing[port].maxlen = mtu;
858 		policing[port].partition = 0;
859 	}
860 
861 	return 0;
862 }
863 
864 static int sja1105_static_config_load(struct sja1105_private *priv)
865 {
866 	int rc;
867 
868 	sja1105_static_config_free(&priv->static_config);
869 	rc = sja1105_static_config_init(&priv->static_config,
870 					priv->info->static_ops,
871 					priv->info->device_id);
872 	if (rc)
873 		return rc;
874 
875 	/* Build static configuration */
876 	rc = sja1105_init_mac_settings(priv);
877 	if (rc < 0)
878 		return rc;
879 	rc = sja1105_init_mii_settings(priv);
880 	if (rc < 0)
881 		return rc;
882 	rc = sja1105_init_static_fdb(priv);
883 	if (rc < 0)
884 		return rc;
885 	rc = sja1105_init_static_vlan(priv);
886 	if (rc < 0)
887 		return rc;
888 	rc = sja1105_init_l2_lookup_params(priv);
889 	if (rc < 0)
890 		return rc;
891 	rc = sja1105_init_l2_forwarding(priv);
892 	if (rc < 0)
893 		return rc;
894 	rc = sja1105_init_l2_forwarding_params(priv);
895 	if (rc < 0)
896 		return rc;
897 	rc = sja1105_init_l2_policing(priv);
898 	if (rc < 0)
899 		return rc;
900 	rc = sja1105_init_general_params(priv);
901 	if (rc < 0)
902 		return rc;
903 	rc = sja1105_init_avb_params(priv);
904 	if (rc < 0)
905 		return rc;
906 	rc = sja1110_init_pcp_remapping(priv);
907 	if (rc < 0)
908 		return rc;
909 
910 	/* Send initial configuration to hardware via SPI */
911 	return sja1105_static_config_upload(priv);
912 }
913 
914 static int sja1105_parse_rgmii_delays(struct sja1105_private *priv)
915 {
916 	struct dsa_switch *ds = priv->ds;
917 	int port;
918 
919 	for (port = 0; port < ds->num_ports; port++) {
920 		if (!priv->fixed_link[port])
921 			continue;
922 
923 		if (priv->phy_mode[port] == PHY_INTERFACE_MODE_RGMII_RXID ||
924 		    priv->phy_mode[port] == PHY_INTERFACE_MODE_RGMII_ID)
925 			priv->rgmii_rx_delay[port] = true;
926 
927 		if (priv->phy_mode[port] == PHY_INTERFACE_MODE_RGMII_TXID ||
928 		    priv->phy_mode[port] == PHY_INTERFACE_MODE_RGMII_ID)
929 			priv->rgmii_tx_delay[port] = true;
930 
931 		if ((priv->rgmii_rx_delay[port] || priv->rgmii_tx_delay[port]) &&
932 		    !priv->info->setup_rgmii_delay)
933 			return -EINVAL;
934 	}
935 	return 0;
936 }
937 
938 static int sja1105_parse_ports_node(struct sja1105_private *priv,
939 				    struct device_node *ports_node)
940 {
941 	struct device *dev = &priv->spidev->dev;
942 	struct device_node *child;
943 
944 	for_each_available_child_of_node(ports_node, child) {
945 		struct device_node *phy_node;
946 		phy_interface_t phy_mode;
947 		u32 index;
948 		int err;
949 
950 		/* Get switch port number from DT */
951 		if (of_property_read_u32(child, "reg", &index) < 0) {
952 			dev_err(dev, "Port number not defined in device tree "
953 				"(property \"reg\")\n");
954 			of_node_put(child);
955 			return -ENODEV;
956 		}
957 
958 		/* Get PHY mode from DT */
959 		err = of_get_phy_mode(child, &phy_mode);
960 		if (err) {
961 			dev_err(dev, "Failed to read phy-mode or "
962 				"phy-interface-type property for port %d\n",
963 				index);
964 			of_node_put(child);
965 			return -ENODEV;
966 		}
967 
968 		phy_node = of_parse_phandle(child, "phy-handle", 0);
969 		if (!phy_node) {
970 			if (!of_phy_is_fixed_link(child)) {
971 				dev_err(dev, "phy-handle or fixed-link "
972 					"properties missing!\n");
973 				of_node_put(child);
974 				return -ENODEV;
975 			}
976 			/* phy-handle is missing, but fixed-link isn't.
977 			 * So it's a fixed link. Default to PHY role.
978 			 */
979 			priv->fixed_link[index] = true;
980 		} else {
981 			of_node_put(phy_node);
982 		}
983 
984 		priv->phy_mode[index] = phy_mode;
985 	}
986 
987 	return 0;
988 }
989 
990 static int sja1105_parse_dt(struct sja1105_private *priv)
991 {
992 	struct device *dev = &priv->spidev->dev;
993 	struct device_node *switch_node = dev->of_node;
994 	struct device_node *ports_node;
995 	int rc;
996 
997 	ports_node = of_get_child_by_name(switch_node, "ports");
998 	if (!ports_node)
999 		ports_node = of_get_child_by_name(switch_node, "ethernet-ports");
1000 	if (!ports_node) {
1001 		dev_err(dev, "Incorrect bindings: absent \"ports\" node\n");
1002 		return -ENODEV;
1003 	}
1004 
1005 	rc = sja1105_parse_ports_node(priv, ports_node);
1006 	of_node_put(ports_node);
1007 
1008 	return rc;
1009 }
1010 
1011 /* Convert link speed from SJA1105 to ethtool encoding */
1012 static int sja1105_port_speed_to_ethtool(struct sja1105_private *priv,
1013 					 u64 speed)
1014 {
1015 	if (speed == priv->info->port_speed[SJA1105_SPEED_10MBPS])
1016 		return SPEED_10;
1017 	if (speed == priv->info->port_speed[SJA1105_SPEED_100MBPS])
1018 		return SPEED_100;
1019 	if (speed == priv->info->port_speed[SJA1105_SPEED_1000MBPS])
1020 		return SPEED_1000;
1021 	if (speed == priv->info->port_speed[SJA1105_SPEED_2500MBPS])
1022 		return SPEED_2500;
1023 	return SPEED_UNKNOWN;
1024 }
1025 
1026 /* Set link speed in the MAC configuration for a specific port. */
1027 static int sja1105_adjust_port_config(struct sja1105_private *priv, int port,
1028 				      int speed_mbps)
1029 {
1030 	struct sja1105_mac_config_entry *mac;
1031 	struct device *dev = priv->ds->dev;
1032 	u64 speed;
1033 	int rc;
1034 
1035 	/* On P/Q/R/S, one can read from the device via the MAC reconfiguration
1036 	 * tables. On E/T, MAC reconfig tables are not readable, only writable.
1037 	 * We have to *know* what the MAC looks like.  For the sake of keeping
1038 	 * the code common, we'll use the static configuration tables as a
1039 	 * reasonable approximation for both E/T and P/Q/R/S.
1040 	 */
1041 	mac = priv->static_config.tables[BLK_IDX_MAC_CONFIG].entries;
1042 
1043 	switch (speed_mbps) {
1044 	case SPEED_UNKNOWN:
1045 		/* PHYLINK called sja1105_mac_config() to inform us about
1046 		 * the state->interface, but AN has not completed and the
1047 		 * speed is not yet valid. UM10944.pdf says that setting
1048 		 * SJA1105_SPEED_AUTO at runtime disables the port, so that is
1049 		 * ok for power consumption in case AN will never complete -
1050 		 * otherwise PHYLINK should come back with a new update.
1051 		 */
1052 		speed = priv->info->port_speed[SJA1105_SPEED_AUTO];
1053 		break;
1054 	case SPEED_10:
1055 		speed = priv->info->port_speed[SJA1105_SPEED_10MBPS];
1056 		break;
1057 	case SPEED_100:
1058 		speed = priv->info->port_speed[SJA1105_SPEED_100MBPS];
1059 		break;
1060 	case SPEED_1000:
1061 		speed = priv->info->port_speed[SJA1105_SPEED_1000MBPS];
1062 		break;
1063 	case SPEED_2500:
1064 		speed = priv->info->port_speed[SJA1105_SPEED_2500MBPS];
1065 		break;
1066 	default:
1067 		dev_err(dev, "Invalid speed %iMbps\n", speed_mbps);
1068 		return -EINVAL;
1069 	}
1070 
1071 	/* Overwrite SJA1105_SPEED_AUTO from the static MAC configuration
1072 	 * table, since this will be used for the clocking setup, and we no
1073 	 * longer need to store it in the static config (already told hardware
1074 	 * we want auto during upload phase).
1075 	 * Actually for the SGMII port, the MAC is fixed at 1 Gbps and
1076 	 * we need to configure the PCS only (if even that).
1077 	 */
1078 	if (priv->phy_mode[port] == PHY_INTERFACE_MODE_SGMII)
1079 		mac[port].speed = priv->info->port_speed[SJA1105_SPEED_1000MBPS];
1080 	else if (priv->phy_mode[port] == PHY_INTERFACE_MODE_2500BASEX)
1081 		mac[port].speed = priv->info->port_speed[SJA1105_SPEED_2500MBPS];
1082 	else
1083 		mac[port].speed = speed;
1084 
1085 	/* Write to the dynamic reconfiguration tables */
1086 	rc = sja1105_dynamic_config_write(priv, BLK_IDX_MAC_CONFIG, port,
1087 					  &mac[port], true);
1088 	if (rc < 0) {
1089 		dev_err(dev, "Failed to write MAC config: %d\n", rc);
1090 		return rc;
1091 	}
1092 
1093 	/* Reconfigure the PLLs for the RGMII interfaces (required 125 MHz at
1094 	 * gigabit, 25 MHz at 100 Mbps and 2.5 MHz at 10 Mbps). For MII and
1095 	 * RMII no change of the clock setup is required. Actually, changing
1096 	 * the clock setup does interrupt the clock signal for a certain time
1097 	 * which causes trouble for all PHYs relying on this signal.
1098 	 */
1099 	if (!phy_interface_mode_is_rgmii(priv->phy_mode[port]))
1100 		return 0;
1101 
1102 	return sja1105_clocking_setup_port(priv, port);
1103 }
1104 
1105 /* The SJA1105 MAC programming model is through the static config (the xMII
1106  * Mode table cannot be dynamically reconfigured), and we have to program
1107  * that early (earlier than PHYLINK calls us, anyway).
1108  * So just error out in case the connected PHY attempts to change the initial
1109  * system interface MII protocol from what is defined in the DT, at least for
1110  * now.
1111  */
1112 static bool sja1105_phy_mode_mismatch(struct sja1105_private *priv, int port,
1113 				      phy_interface_t interface)
1114 {
1115 	return priv->phy_mode[port] != interface;
1116 }
1117 
1118 static void sja1105_mac_config(struct dsa_switch *ds, int port,
1119 			       unsigned int mode,
1120 			       const struct phylink_link_state *state)
1121 {
1122 	struct dsa_port *dp = dsa_to_port(ds, port);
1123 	struct sja1105_private *priv = ds->priv;
1124 	struct dw_xpcs *xpcs;
1125 
1126 	if (sja1105_phy_mode_mismatch(priv, port, state->interface)) {
1127 		dev_err(ds->dev, "Changing PHY mode to %s not supported!\n",
1128 			phy_modes(state->interface));
1129 		return;
1130 	}
1131 
1132 	xpcs = priv->xpcs[port];
1133 
1134 	if (xpcs)
1135 		phylink_set_pcs(dp->pl, &xpcs->pcs);
1136 }
1137 
1138 static void sja1105_mac_link_down(struct dsa_switch *ds, int port,
1139 				  unsigned int mode,
1140 				  phy_interface_t interface)
1141 {
1142 	sja1105_inhibit_tx(ds->priv, BIT(port), true);
1143 }
1144 
1145 static void sja1105_mac_link_up(struct dsa_switch *ds, int port,
1146 				unsigned int mode,
1147 				phy_interface_t interface,
1148 				struct phy_device *phydev,
1149 				int speed, int duplex,
1150 				bool tx_pause, bool rx_pause)
1151 {
1152 	struct sja1105_private *priv = ds->priv;
1153 
1154 	sja1105_adjust_port_config(priv, port, speed);
1155 
1156 	sja1105_inhibit_tx(priv, BIT(port), false);
1157 }
1158 
1159 static void sja1105_phylink_validate(struct dsa_switch *ds, int port,
1160 				     unsigned long *supported,
1161 				     struct phylink_link_state *state)
1162 {
1163 	/* Construct a new mask which exhaustively contains all link features
1164 	 * supported by the MAC, and then apply that (logical AND) to what will
1165 	 * be sent to the PHY for "marketing".
1166 	 */
1167 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1168 	struct sja1105_private *priv = ds->priv;
1169 	struct sja1105_xmii_params_entry *mii;
1170 
1171 	mii = priv->static_config.tables[BLK_IDX_XMII_PARAMS].entries;
1172 
1173 	/* include/linux/phylink.h says:
1174 	 *     When @state->interface is %PHY_INTERFACE_MODE_NA, phylink
1175 	 *     expects the MAC driver to return all supported link modes.
1176 	 */
1177 	if (state->interface != PHY_INTERFACE_MODE_NA &&
1178 	    sja1105_phy_mode_mismatch(priv, port, state->interface)) {
1179 		bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
1180 		return;
1181 	}
1182 
1183 	/* The MAC does not support pause frames, and also doesn't
1184 	 * support half-duplex traffic modes.
1185 	 */
1186 	phylink_set(mask, Autoneg);
1187 	phylink_set(mask, MII);
1188 	phylink_set(mask, 10baseT_Full);
1189 	phylink_set(mask, 100baseT_Full);
1190 	phylink_set(mask, 100baseT1_Full);
1191 	if (mii->xmii_mode[port] == XMII_MODE_RGMII ||
1192 	    mii->xmii_mode[port] == XMII_MODE_SGMII)
1193 		phylink_set(mask, 1000baseT_Full);
1194 	if (priv->info->supports_2500basex[port]) {
1195 		phylink_set(mask, 2500baseT_Full);
1196 		phylink_set(mask, 2500baseX_Full);
1197 	}
1198 
1199 	bitmap_and(supported, supported, mask, __ETHTOOL_LINK_MODE_MASK_NBITS);
1200 	bitmap_and(state->advertising, state->advertising, mask,
1201 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
1202 }
1203 
1204 static int
1205 sja1105_find_static_fdb_entry(struct sja1105_private *priv, int port,
1206 			      const struct sja1105_l2_lookup_entry *requested)
1207 {
1208 	struct sja1105_l2_lookup_entry *l2_lookup;
1209 	struct sja1105_table *table;
1210 	int i;
1211 
1212 	table = &priv->static_config.tables[BLK_IDX_L2_LOOKUP];
1213 	l2_lookup = table->entries;
1214 
1215 	for (i = 0; i < table->entry_count; i++)
1216 		if (l2_lookup[i].macaddr == requested->macaddr &&
1217 		    l2_lookup[i].vlanid == requested->vlanid &&
1218 		    l2_lookup[i].destports & BIT(port))
1219 			return i;
1220 
1221 	return -1;
1222 }
1223 
1224 /* We want FDB entries added statically through the bridge command to persist
1225  * across switch resets, which are a common thing during normal SJA1105
1226  * operation. So we have to back them up in the static configuration tables
1227  * and hence apply them on next static config upload... yay!
1228  */
1229 static int
1230 sja1105_static_fdb_change(struct sja1105_private *priv, int port,
1231 			  const struct sja1105_l2_lookup_entry *requested,
1232 			  bool keep)
1233 {
1234 	struct sja1105_l2_lookup_entry *l2_lookup;
1235 	struct sja1105_table *table;
1236 	int rc, match;
1237 
1238 	table = &priv->static_config.tables[BLK_IDX_L2_LOOKUP];
1239 
1240 	match = sja1105_find_static_fdb_entry(priv, port, requested);
1241 	if (match < 0) {
1242 		/* Can't delete a missing entry. */
1243 		if (!keep)
1244 			return 0;
1245 
1246 		/* No match => new entry */
1247 		rc = sja1105_table_resize(table, table->entry_count + 1);
1248 		if (rc)
1249 			return rc;
1250 
1251 		match = table->entry_count - 1;
1252 	}
1253 
1254 	/* Assign pointer after the resize (it may be new memory) */
1255 	l2_lookup = table->entries;
1256 
1257 	/* We have a match.
1258 	 * If the job was to add this FDB entry, it's already done (mostly
1259 	 * anyway, since the port forwarding mask may have changed, case in
1260 	 * which we update it).
1261 	 * Otherwise we have to delete it.
1262 	 */
1263 	if (keep) {
1264 		l2_lookup[match] = *requested;
1265 		return 0;
1266 	}
1267 
1268 	/* To remove, the strategy is to overwrite the element with
1269 	 * the last one, and then reduce the array size by 1
1270 	 */
1271 	l2_lookup[match] = l2_lookup[table->entry_count - 1];
1272 	return sja1105_table_resize(table, table->entry_count - 1);
1273 }
1274 
1275 /* First-generation switches have a 4-way set associative TCAM that
1276  * holds the FDB entries. An FDB index spans from 0 to 1023 and is comprised of
1277  * a "bin" (grouping of 4 entries) and a "way" (an entry within a bin).
1278  * For the placement of a newly learnt FDB entry, the switch selects the bin
1279  * based on a hash function, and the way within that bin incrementally.
1280  */
1281 static int sja1105et_fdb_index(int bin, int way)
1282 {
1283 	return bin * SJA1105ET_FDB_BIN_SIZE + way;
1284 }
1285 
1286 static int sja1105et_is_fdb_entry_in_bin(struct sja1105_private *priv, int bin,
1287 					 const u8 *addr, u16 vid,
1288 					 struct sja1105_l2_lookup_entry *match,
1289 					 int *last_unused)
1290 {
1291 	int way;
1292 
1293 	for (way = 0; way < SJA1105ET_FDB_BIN_SIZE; way++) {
1294 		struct sja1105_l2_lookup_entry l2_lookup = {0};
1295 		int index = sja1105et_fdb_index(bin, way);
1296 
1297 		/* Skip unused entries, optionally marking them
1298 		 * into the return value
1299 		 */
1300 		if (sja1105_dynamic_config_read(priv, BLK_IDX_L2_LOOKUP,
1301 						index, &l2_lookup)) {
1302 			if (last_unused)
1303 				*last_unused = way;
1304 			continue;
1305 		}
1306 
1307 		if (l2_lookup.macaddr == ether_addr_to_u64(addr) &&
1308 		    l2_lookup.vlanid == vid) {
1309 			if (match)
1310 				*match = l2_lookup;
1311 			return way;
1312 		}
1313 	}
1314 	/* Return an invalid entry index if not found */
1315 	return -1;
1316 }
1317 
1318 int sja1105et_fdb_add(struct dsa_switch *ds, int port,
1319 		      const unsigned char *addr, u16 vid)
1320 {
1321 	struct sja1105_l2_lookup_entry l2_lookup = {0}, tmp;
1322 	struct sja1105_private *priv = ds->priv;
1323 	struct device *dev = ds->dev;
1324 	int last_unused = -1;
1325 	int start, end, i;
1326 	int bin, way, rc;
1327 
1328 	bin = sja1105et_fdb_hash(priv, addr, vid);
1329 
1330 	way = sja1105et_is_fdb_entry_in_bin(priv, bin, addr, vid,
1331 					    &l2_lookup, &last_unused);
1332 	if (way >= 0) {
1333 		/* We have an FDB entry. Is our port in the destination
1334 		 * mask? If yes, we need to do nothing. If not, we need
1335 		 * to rewrite the entry by adding this port to it.
1336 		 */
1337 		if ((l2_lookup.destports & BIT(port)) && l2_lookup.lockeds)
1338 			return 0;
1339 		l2_lookup.destports |= BIT(port);
1340 	} else {
1341 		int index = sja1105et_fdb_index(bin, way);
1342 
1343 		/* We don't have an FDB entry. We construct a new one and
1344 		 * try to find a place for it within the FDB table.
1345 		 */
1346 		l2_lookup.macaddr = ether_addr_to_u64(addr);
1347 		l2_lookup.destports = BIT(port);
1348 		l2_lookup.vlanid = vid;
1349 
1350 		if (last_unused >= 0) {
1351 			way = last_unused;
1352 		} else {
1353 			/* Bin is full, need to evict somebody.
1354 			 * Choose victim at random. If you get these messages
1355 			 * often, you may need to consider changing the
1356 			 * distribution function:
1357 			 * static_config[BLK_IDX_L2_LOOKUP_PARAMS].entries->poly
1358 			 */
1359 			get_random_bytes(&way, sizeof(u8));
1360 			way %= SJA1105ET_FDB_BIN_SIZE;
1361 			dev_warn(dev, "Warning, FDB bin %d full while adding entry for %pM. Evicting entry %u.\n",
1362 				 bin, addr, way);
1363 			/* Evict entry */
1364 			sja1105_dynamic_config_write(priv, BLK_IDX_L2_LOOKUP,
1365 						     index, NULL, false);
1366 		}
1367 	}
1368 	l2_lookup.lockeds = true;
1369 	l2_lookup.index = sja1105et_fdb_index(bin, way);
1370 
1371 	rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_LOOKUP,
1372 					  l2_lookup.index, &l2_lookup,
1373 					  true);
1374 	if (rc < 0)
1375 		return rc;
1376 
1377 	/* Invalidate a dynamically learned entry if that exists */
1378 	start = sja1105et_fdb_index(bin, 0);
1379 	end = sja1105et_fdb_index(bin, way);
1380 
1381 	for (i = start; i < end; i++) {
1382 		rc = sja1105_dynamic_config_read(priv, BLK_IDX_L2_LOOKUP,
1383 						 i, &tmp);
1384 		if (rc == -ENOENT)
1385 			continue;
1386 		if (rc)
1387 			return rc;
1388 
1389 		if (tmp.macaddr != ether_addr_to_u64(addr) || tmp.vlanid != vid)
1390 			continue;
1391 
1392 		rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_LOOKUP,
1393 						  i, NULL, false);
1394 		if (rc)
1395 			return rc;
1396 
1397 		break;
1398 	}
1399 
1400 	return sja1105_static_fdb_change(priv, port, &l2_lookup, true);
1401 }
1402 
1403 int sja1105et_fdb_del(struct dsa_switch *ds, int port,
1404 		      const unsigned char *addr, u16 vid)
1405 {
1406 	struct sja1105_l2_lookup_entry l2_lookup = {0};
1407 	struct sja1105_private *priv = ds->priv;
1408 	int index, bin, way, rc;
1409 	bool keep;
1410 
1411 	bin = sja1105et_fdb_hash(priv, addr, vid);
1412 	way = sja1105et_is_fdb_entry_in_bin(priv, bin, addr, vid,
1413 					    &l2_lookup, NULL);
1414 	if (way < 0)
1415 		return 0;
1416 	index = sja1105et_fdb_index(bin, way);
1417 
1418 	/* We have an FDB entry. Is our port in the destination mask? If yes,
1419 	 * we need to remove it. If the resulting port mask becomes empty, we
1420 	 * need to completely evict the FDB entry.
1421 	 * Otherwise we just write it back.
1422 	 */
1423 	l2_lookup.destports &= ~BIT(port);
1424 
1425 	if (l2_lookup.destports)
1426 		keep = true;
1427 	else
1428 		keep = false;
1429 
1430 	rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_LOOKUP,
1431 					  index, &l2_lookup, keep);
1432 	if (rc < 0)
1433 		return rc;
1434 
1435 	return sja1105_static_fdb_change(priv, port, &l2_lookup, keep);
1436 }
1437 
1438 int sja1105pqrs_fdb_add(struct dsa_switch *ds, int port,
1439 			const unsigned char *addr, u16 vid)
1440 {
1441 	struct sja1105_l2_lookup_entry l2_lookup = {0}, tmp;
1442 	struct sja1105_private *priv = ds->priv;
1443 	int rc, i;
1444 
1445 	/* Search for an existing entry in the FDB table */
1446 	l2_lookup.macaddr = ether_addr_to_u64(addr);
1447 	l2_lookup.vlanid = vid;
1448 	l2_lookup.mask_macaddr = GENMASK_ULL(ETH_ALEN * 8 - 1, 0);
1449 	l2_lookup.mask_vlanid = VLAN_VID_MASK;
1450 	l2_lookup.destports = BIT(port);
1451 
1452 	tmp = l2_lookup;
1453 
1454 	rc = sja1105_dynamic_config_read(priv, BLK_IDX_L2_LOOKUP,
1455 					 SJA1105_SEARCH, &tmp);
1456 	if (rc == 0 && tmp.index != SJA1105_MAX_L2_LOOKUP_COUNT - 1) {
1457 		/* Found a static entry and this port is already in the entry's
1458 		 * port mask => job done
1459 		 */
1460 		if ((tmp.destports & BIT(port)) && tmp.lockeds)
1461 			return 0;
1462 
1463 		l2_lookup = tmp;
1464 
1465 		/* l2_lookup.index is populated by the switch in case it
1466 		 * found something.
1467 		 */
1468 		l2_lookup.destports |= BIT(port);
1469 		goto skip_finding_an_index;
1470 	}
1471 
1472 	/* Not found, so try to find an unused spot in the FDB.
1473 	 * This is slightly inefficient because the strategy is knock-knock at
1474 	 * every possible position from 0 to 1023.
1475 	 */
1476 	for (i = 0; i < SJA1105_MAX_L2_LOOKUP_COUNT; i++) {
1477 		rc = sja1105_dynamic_config_read(priv, BLK_IDX_L2_LOOKUP,
1478 						 i, NULL);
1479 		if (rc < 0)
1480 			break;
1481 	}
1482 	if (i == SJA1105_MAX_L2_LOOKUP_COUNT) {
1483 		dev_err(ds->dev, "FDB is full, cannot add entry.\n");
1484 		return -EINVAL;
1485 	}
1486 	l2_lookup.index = i;
1487 
1488 skip_finding_an_index:
1489 	l2_lookup.lockeds = true;
1490 
1491 	rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_LOOKUP,
1492 					  l2_lookup.index, &l2_lookup,
1493 					  true);
1494 	if (rc < 0)
1495 		return rc;
1496 
1497 	/* The switch learns dynamic entries and looks up the FDB left to
1498 	 * right. It is possible that our addition was concurrent with the
1499 	 * dynamic learning of the same address, so now that the static entry
1500 	 * has been installed, we are certain that address learning for this
1501 	 * particular address has been turned off, so the dynamic entry either
1502 	 * is in the FDB at an index smaller than the static one, or isn't (it
1503 	 * can also be at a larger index, but in that case it is inactive
1504 	 * because the static FDB entry will match first, and the dynamic one
1505 	 * will eventually age out). Search for a dynamically learned address
1506 	 * prior to our static one and invalidate it.
1507 	 */
1508 	tmp = l2_lookup;
1509 
1510 	rc = sja1105_dynamic_config_read(priv, BLK_IDX_L2_LOOKUP,
1511 					 SJA1105_SEARCH, &tmp);
1512 	if (rc < 0) {
1513 		dev_err(ds->dev,
1514 			"port %d failed to read back entry for %pM vid %d: %pe\n",
1515 			port, addr, vid, ERR_PTR(rc));
1516 		return rc;
1517 	}
1518 
1519 	if (tmp.index < l2_lookup.index) {
1520 		rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_LOOKUP,
1521 						  tmp.index, NULL, false);
1522 		if (rc < 0)
1523 			return rc;
1524 	}
1525 
1526 	return sja1105_static_fdb_change(priv, port, &l2_lookup, true);
1527 }
1528 
1529 int sja1105pqrs_fdb_del(struct dsa_switch *ds, int port,
1530 			const unsigned char *addr, u16 vid)
1531 {
1532 	struct sja1105_l2_lookup_entry l2_lookup = {0};
1533 	struct sja1105_private *priv = ds->priv;
1534 	bool keep;
1535 	int rc;
1536 
1537 	l2_lookup.macaddr = ether_addr_to_u64(addr);
1538 	l2_lookup.vlanid = vid;
1539 	l2_lookup.mask_macaddr = GENMASK_ULL(ETH_ALEN * 8 - 1, 0);
1540 	l2_lookup.mask_vlanid = VLAN_VID_MASK;
1541 	l2_lookup.destports = BIT(port);
1542 
1543 	rc = sja1105_dynamic_config_read(priv, BLK_IDX_L2_LOOKUP,
1544 					 SJA1105_SEARCH, &l2_lookup);
1545 	if (rc < 0)
1546 		return 0;
1547 
1548 	l2_lookup.destports &= ~BIT(port);
1549 
1550 	/* Decide whether we remove just this port from the FDB entry,
1551 	 * or if we remove it completely.
1552 	 */
1553 	if (l2_lookup.destports)
1554 		keep = true;
1555 	else
1556 		keep = false;
1557 
1558 	rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_LOOKUP,
1559 					  l2_lookup.index, &l2_lookup, keep);
1560 	if (rc < 0)
1561 		return rc;
1562 
1563 	return sja1105_static_fdb_change(priv, port, &l2_lookup, keep);
1564 }
1565 
1566 static int sja1105_fdb_add(struct dsa_switch *ds, int port,
1567 			   const unsigned char *addr, u16 vid)
1568 {
1569 	struct sja1105_private *priv = ds->priv;
1570 
1571 	/* dsa_8021q is in effect when the bridge's vlan_filtering isn't,
1572 	 * so the switch still does some VLAN processing internally.
1573 	 * But Shared VLAN Learning (SVL) is also active, and it will take
1574 	 * care of autonomous forwarding between the unique pvid's of each
1575 	 * port.  Here we just make sure that users can't add duplicate FDB
1576 	 * entries when in this mode - the actual VID doesn't matter except
1577 	 * for what gets printed in 'bridge fdb show'.  In the case of zero,
1578 	 * no VID gets printed at all.
1579 	 */
1580 	if (priv->vlan_state != SJA1105_VLAN_FILTERING_FULL)
1581 		vid = 0;
1582 
1583 	return priv->info->fdb_add_cmd(ds, port, addr, vid);
1584 }
1585 
1586 static int sja1105_fdb_del(struct dsa_switch *ds, int port,
1587 			   const unsigned char *addr, u16 vid)
1588 {
1589 	struct sja1105_private *priv = ds->priv;
1590 
1591 	if (priv->vlan_state != SJA1105_VLAN_FILTERING_FULL)
1592 		vid = 0;
1593 
1594 	return priv->info->fdb_del_cmd(ds, port, addr, vid);
1595 }
1596 
1597 static int sja1105_fdb_dump(struct dsa_switch *ds, int port,
1598 			    dsa_fdb_dump_cb_t *cb, void *data)
1599 {
1600 	struct sja1105_private *priv = ds->priv;
1601 	struct device *dev = ds->dev;
1602 	int i;
1603 
1604 	for (i = 0; i < SJA1105_MAX_L2_LOOKUP_COUNT; i++) {
1605 		struct sja1105_l2_lookup_entry l2_lookup = {0};
1606 		u8 macaddr[ETH_ALEN];
1607 		int rc;
1608 
1609 		rc = sja1105_dynamic_config_read(priv, BLK_IDX_L2_LOOKUP,
1610 						 i, &l2_lookup);
1611 		/* No fdb entry at i, not an issue */
1612 		if (rc == -ENOENT)
1613 			continue;
1614 		if (rc) {
1615 			dev_err(dev, "Failed to dump FDB: %d\n", rc);
1616 			return rc;
1617 		}
1618 
1619 		/* FDB dump callback is per port. This means we have to
1620 		 * disregard a valid entry if it's not for this port, even if
1621 		 * only to revisit it later. This is inefficient because the
1622 		 * 1024-sized FDB table needs to be traversed 4 times through
1623 		 * SPI during a 'bridge fdb show' command.
1624 		 */
1625 		if (!(l2_lookup.destports & BIT(port)))
1626 			continue;
1627 
1628 		/* We need to hide the FDB entry for unknown multicast */
1629 		if (l2_lookup.macaddr == SJA1105_UNKNOWN_MULTICAST &&
1630 		    l2_lookup.mask_macaddr == SJA1105_UNKNOWN_MULTICAST)
1631 			continue;
1632 
1633 		u64_to_ether_addr(l2_lookup.macaddr, macaddr);
1634 
1635 		/* We need to hide the dsa_8021q VLANs from the user. */
1636 		if (priv->vlan_state == SJA1105_VLAN_UNAWARE)
1637 			l2_lookup.vlanid = 0;
1638 		cb(macaddr, l2_lookup.vlanid, l2_lookup.lockeds, data);
1639 	}
1640 	return 0;
1641 }
1642 
1643 static int sja1105_mdb_add(struct dsa_switch *ds, int port,
1644 			   const struct switchdev_obj_port_mdb *mdb)
1645 {
1646 	return sja1105_fdb_add(ds, port, mdb->addr, mdb->vid);
1647 }
1648 
1649 static int sja1105_mdb_del(struct dsa_switch *ds, int port,
1650 			   const struct switchdev_obj_port_mdb *mdb)
1651 {
1652 	return sja1105_fdb_del(ds, port, mdb->addr, mdb->vid);
1653 }
1654 
1655 /* Common function for unicast and broadcast flood configuration.
1656  * Flooding is configured between each {ingress, egress} port pair, and since
1657  * the bridge's semantics are those of "egress flooding", it means we must
1658  * enable flooding towards this port from all ingress ports that are in the
1659  * same forwarding domain.
1660  */
1661 static int sja1105_manage_flood_domains(struct sja1105_private *priv)
1662 {
1663 	struct sja1105_l2_forwarding_entry *l2_fwd;
1664 	struct dsa_switch *ds = priv->ds;
1665 	int from, to, rc;
1666 
1667 	l2_fwd = priv->static_config.tables[BLK_IDX_L2_FORWARDING].entries;
1668 
1669 	for (from = 0; from < ds->num_ports; from++) {
1670 		u64 fl_domain = 0, bc_domain = 0;
1671 
1672 		for (to = 0; to < priv->ds->num_ports; to++) {
1673 			if (!sja1105_can_forward(l2_fwd, from, to))
1674 				continue;
1675 
1676 			if (priv->ucast_egress_floods & BIT(to))
1677 				fl_domain |= BIT(to);
1678 			if (priv->bcast_egress_floods & BIT(to))
1679 				bc_domain |= BIT(to);
1680 		}
1681 
1682 		/* Nothing changed, nothing to do */
1683 		if (l2_fwd[from].fl_domain == fl_domain &&
1684 		    l2_fwd[from].bc_domain == bc_domain)
1685 			continue;
1686 
1687 		l2_fwd[from].fl_domain = fl_domain;
1688 		l2_fwd[from].bc_domain = bc_domain;
1689 
1690 		rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_FORWARDING,
1691 						  from, &l2_fwd[from], true);
1692 		if (rc < 0)
1693 			return rc;
1694 	}
1695 
1696 	return 0;
1697 }
1698 
1699 static int sja1105_bridge_member(struct dsa_switch *ds, int port,
1700 				 struct net_device *br, bool member)
1701 {
1702 	struct sja1105_l2_forwarding_entry *l2_fwd;
1703 	struct sja1105_private *priv = ds->priv;
1704 	int i, rc;
1705 
1706 	l2_fwd = priv->static_config.tables[BLK_IDX_L2_FORWARDING].entries;
1707 
1708 	for (i = 0; i < ds->num_ports; i++) {
1709 		/* Add this port to the forwarding matrix of the
1710 		 * other ports in the same bridge, and viceversa.
1711 		 */
1712 		if (!dsa_is_user_port(ds, i))
1713 			continue;
1714 		/* For the ports already under the bridge, only one thing needs
1715 		 * to be done, and that is to add this port to their
1716 		 * reachability domain. So we can perform the SPI write for
1717 		 * them immediately. However, for this port itself (the one
1718 		 * that is new to the bridge), we need to add all other ports
1719 		 * to its reachability domain. So we do that incrementally in
1720 		 * this loop, and perform the SPI write only at the end, once
1721 		 * the domain contains all other bridge ports.
1722 		 */
1723 		if (i == port)
1724 			continue;
1725 		if (dsa_to_port(ds, i)->bridge_dev != br)
1726 			continue;
1727 		sja1105_port_allow_traffic(l2_fwd, i, port, member);
1728 		sja1105_port_allow_traffic(l2_fwd, port, i, member);
1729 
1730 		rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_FORWARDING,
1731 						  i, &l2_fwd[i], true);
1732 		if (rc < 0)
1733 			return rc;
1734 	}
1735 
1736 	rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_FORWARDING,
1737 					  port, &l2_fwd[port], true);
1738 	if (rc)
1739 		return rc;
1740 
1741 	return sja1105_manage_flood_domains(priv);
1742 }
1743 
1744 static void sja1105_bridge_stp_state_set(struct dsa_switch *ds, int port,
1745 					 u8 state)
1746 {
1747 	struct sja1105_private *priv = ds->priv;
1748 	struct sja1105_mac_config_entry *mac;
1749 
1750 	mac = priv->static_config.tables[BLK_IDX_MAC_CONFIG].entries;
1751 
1752 	switch (state) {
1753 	case BR_STATE_DISABLED:
1754 	case BR_STATE_BLOCKING:
1755 		/* From UM10944 description of DRPDTAG (why put this there?):
1756 		 * "Management traffic flows to the port regardless of the state
1757 		 * of the INGRESS flag". So BPDUs are still be allowed to pass.
1758 		 * At the moment no difference between DISABLED and BLOCKING.
1759 		 */
1760 		mac[port].ingress   = false;
1761 		mac[port].egress    = false;
1762 		mac[port].dyn_learn = false;
1763 		break;
1764 	case BR_STATE_LISTENING:
1765 		mac[port].ingress   = true;
1766 		mac[port].egress    = false;
1767 		mac[port].dyn_learn = false;
1768 		break;
1769 	case BR_STATE_LEARNING:
1770 		mac[port].ingress   = true;
1771 		mac[port].egress    = false;
1772 		mac[port].dyn_learn = !!(priv->learn_ena & BIT(port));
1773 		break;
1774 	case BR_STATE_FORWARDING:
1775 		mac[port].ingress   = true;
1776 		mac[port].egress    = true;
1777 		mac[port].dyn_learn = !!(priv->learn_ena & BIT(port));
1778 		break;
1779 	default:
1780 		dev_err(ds->dev, "invalid STP state: %d\n", state);
1781 		return;
1782 	}
1783 
1784 	sja1105_dynamic_config_write(priv, BLK_IDX_MAC_CONFIG, port,
1785 				     &mac[port], true);
1786 }
1787 
1788 static int sja1105_bridge_join(struct dsa_switch *ds, int port,
1789 			       struct net_device *br)
1790 {
1791 	return sja1105_bridge_member(ds, port, br, true);
1792 }
1793 
1794 static void sja1105_bridge_leave(struct dsa_switch *ds, int port,
1795 				 struct net_device *br)
1796 {
1797 	sja1105_bridge_member(ds, port, br, false);
1798 }
1799 
1800 #define BYTES_PER_KBIT (1000LL / 8)
1801 
1802 static int sja1105_find_unused_cbs_shaper(struct sja1105_private *priv)
1803 {
1804 	int i;
1805 
1806 	for (i = 0; i < priv->info->num_cbs_shapers; i++)
1807 		if (!priv->cbs[i].idle_slope && !priv->cbs[i].send_slope)
1808 			return i;
1809 
1810 	return -1;
1811 }
1812 
1813 static int sja1105_delete_cbs_shaper(struct sja1105_private *priv, int port,
1814 				     int prio)
1815 {
1816 	int i;
1817 
1818 	for (i = 0; i < priv->info->num_cbs_shapers; i++) {
1819 		struct sja1105_cbs_entry *cbs = &priv->cbs[i];
1820 
1821 		if (cbs->port == port && cbs->prio == prio) {
1822 			memset(cbs, 0, sizeof(*cbs));
1823 			return sja1105_dynamic_config_write(priv, BLK_IDX_CBS,
1824 							    i, cbs, true);
1825 		}
1826 	}
1827 
1828 	return 0;
1829 }
1830 
1831 static int sja1105_setup_tc_cbs(struct dsa_switch *ds, int port,
1832 				struct tc_cbs_qopt_offload *offload)
1833 {
1834 	struct sja1105_private *priv = ds->priv;
1835 	struct sja1105_cbs_entry *cbs;
1836 	int index;
1837 
1838 	if (!offload->enable)
1839 		return sja1105_delete_cbs_shaper(priv, port, offload->queue);
1840 
1841 	index = sja1105_find_unused_cbs_shaper(priv);
1842 	if (index < 0)
1843 		return -ENOSPC;
1844 
1845 	cbs = &priv->cbs[index];
1846 	cbs->port = port;
1847 	cbs->prio = offload->queue;
1848 	/* locredit and sendslope are negative by definition. In hardware,
1849 	 * positive values must be provided, and the negative sign is implicit.
1850 	 */
1851 	cbs->credit_hi = offload->hicredit;
1852 	cbs->credit_lo = abs(offload->locredit);
1853 	/* User space is in kbits/sec, hardware in bytes/sec */
1854 	cbs->idle_slope = offload->idleslope * BYTES_PER_KBIT;
1855 	cbs->send_slope = abs(offload->sendslope * BYTES_PER_KBIT);
1856 	/* Convert the negative values from 64-bit 2's complement
1857 	 * to 32-bit 2's complement (for the case of 0x80000000 whose
1858 	 * negative is still negative).
1859 	 */
1860 	cbs->credit_lo &= GENMASK_ULL(31, 0);
1861 	cbs->send_slope &= GENMASK_ULL(31, 0);
1862 
1863 	return sja1105_dynamic_config_write(priv, BLK_IDX_CBS, index, cbs,
1864 					    true);
1865 }
1866 
1867 static int sja1105_reload_cbs(struct sja1105_private *priv)
1868 {
1869 	int rc = 0, i;
1870 
1871 	/* The credit based shapers are only allocated if
1872 	 * CONFIG_NET_SCH_CBS is enabled.
1873 	 */
1874 	if (!priv->cbs)
1875 		return 0;
1876 
1877 	for (i = 0; i < priv->info->num_cbs_shapers; i++) {
1878 		struct sja1105_cbs_entry *cbs = &priv->cbs[i];
1879 
1880 		if (!cbs->idle_slope && !cbs->send_slope)
1881 			continue;
1882 
1883 		rc = sja1105_dynamic_config_write(priv, BLK_IDX_CBS, i, cbs,
1884 						  true);
1885 		if (rc)
1886 			break;
1887 	}
1888 
1889 	return rc;
1890 }
1891 
1892 static const char * const sja1105_reset_reasons[] = {
1893 	[SJA1105_VLAN_FILTERING] = "VLAN filtering",
1894 	[SJA1105_RX_HWTSTAMPING] = "RX timestamping",
1895 	[SJA1105_AGEING_TIME] = "Ageing time",
1896 	[SJA1105_SCHEDULING] = "Time-aware scheduling",
1897 	[SJA1105_BEST_EFFORT_POLICING] = "Best-effort policing",
1898 	[SJA1105_VIRTUAL_LINKS] = "Virtual links",
1899 };
1900 
1901 /* For situations where we need to change a setting at runtime that is only
1902  * available through the static configuration, resetting the switch in order
1903  * to upload the new static config is unavoidable. Back up the settings we
1904  * modify at runtime (currently only MAC) and restore them after uploading,
1905  * such that this operation is relatively seamless.
1906  */
1907 int sja1105_static_config_reload(struct sja1105_private *priv,
1908 				 enum sja1105_reset_reason reason)
1909 {
1910 	struct ptp_system_timestamp ptp_sts_before;
1911 	struct ptp_system_timestamp ptp_sts_after;
1912 	int speed_mbps[SJA1105_MAX_NUM_PORTS];
1913 	u16 bmcr[SJA1105_MAX_NUM_PORTS] = {0};
1914 	struct sja1105_mac_config_entry *mac;
1915 	struct dsa_switch *ds = priv->ds;
1916 	s64 t1, t2, t3, t4;
1917 	s64 t12, t34;
1918 	int rc, i;
1919 	s64 now;
1920 
1921 	mutex_lock(&priv->mgmt_lock);
1922 
1923 	mac = priv->static_config.tables[BLK_IDX_MAC_CONFIG].entries;
1924 
1925 	/* Back up the dynamic link speed changed by sja1105_adjust_port_config
1926 	 * in order to temporarily restore it to SJA1105_SPEED_AUTO - which the
1927 	 * switch wants to see in the static config in order to allow us to
1928 	 * change it through the dynamic interface later.
1929 	 */
1930 	for (i = 0; i < ds->num_ports; i++) {
1931 		u32 reg_addr = mdiobus_c45_addr(MDIO_MMD_VEND2, MDIO_CTRL1);
1932 
1933 		speed_mbps[i] = sja1105_port_speed_to_ethtool(priv,
1934 							      mac[i].speed);
1935 		mac[i].speed = priv->info->port_speed[SJA1105_SPEED_AUTO];
1936 
1937 		if (priv->xpcs[i])
1938 			bmcr[i] = mdiobus_read(priv->mdio_pcs, i, reg_addr);
1939 	}
1940 
1941 	/* No PTP operations can run right now */
1942 	mutex_lock(&priv->ptp_data.lock);
1943 
1944 	rc = __sja1105_ptp_gettimex(ds, &now, &ptp_sts_before);
1945 	if (rc < 0) {
1946 		mutex_unlock(&priv->ptp_data.lock);
1947 		goto out;
1948 	}
1949 
1950 	/* Reset switch and send updated static configuration */
1951 	rc = sja1105_static_config_upload(priv);
1952 	if (rc < 0) {
1953 		mutex_unlock(&priv->ptp_data.lock);
1954 		goto out;
1955 	}
1956 
1957 	rc = __sja1105_ptp_settime(ds, 0, &ptp_sts_after);
1958 	if (rc < 0) {
1959 		mutex_unlock(&priv->ptp_data.lock);
1960 		goto out;
1961 	}
1962 
1963 	t1 = timespec64_to_ns(&ptp_sts_before.pre_ts);
1964 	t2 = timespec64_to_ns(&ptp_sts_before.post_ts);
1965 	t3 = timespec64_to_ns(&ptp_sts_after.pre_ts);
1966 	t4 = timespec64_to_ns(&ptp_sts_after.post_ts);
1967 	/* Mid point, corresponds to pre-reset PTPCLKVAL */
1968 	t12 = t1 + (t2 - t1) / 2;
1969 	/* Mid point, corresponds to post-reset PTPCLKVAL, aka 0 */
1970 	t34 = t3 + (t4 - t3) / 2;
1971 	/* Advance PTPCLKVAL by the time it took since its readout */
1972 	now += (t34 - t12);
1973 
1974 	__sja1105_ptp_adjtime(ds, now);
1975 
1976 	mutex_unlock(&priv->ptp_data.lock);
1977 
1978 	dev_info(priv->ds->dev,
1979 		 "Reset switch and programmed static config. Reason: %s\n",
1980 		 sja1105_reset_reasons[reason]);
1981 
1982 	/* Configure the CGU (PLLs) for MII and RMII PHYs.
1983 	 * For these interfaces there is no dynamic configuration
1984 	 * needed, since PLLs have same settings at all speeds.
1985 	 */
1986 	if (priv->info->clocking_setup) {
1987 		rc = priv->info->clocking_setup(priv);
1988 		if (rc < 0)
1989 			goto out;
1990 	}
1991 
1992 	for (i = 0; i < ds->num_ports; i++) {
1993 		struct dw_xpcs *xpcs = priv->xpcs[i];
1994 		unsigned int mode;
1995 
1996 		rc = sja1105_adjust_port_config(priv, i, speed_mbps[i]);
1997 		if (rc < 0)
1998 			goto out;
1999 
2000 		if (!xpcs)
2001 			continue;
2002 
2003 		if (bmcr[i] & BMCR_ANENABLE)
2004 			mode = MLO_AN_INBAND;
2005 		else if (priv->fixed_link[i])
2006 			mode = MLO_AN_FIXED;
2007 		else
2008 			mode = MLO_AN_PHY;
2009 
2010 		rc = xpcs_do_config(xpcs, priv->phy_mode[i], mode);
2011 		if (rc < 0)
2012 			goto out;
2013 
2014 		if (!phylink_autoneg_inband(mode)) {
2015 			int speed = SPEED_UNKNOWN;
2016 
2017 			if (priv->phy_mode[i] == PHY_INTERFACE_MODE_2500BASEX)
2018 				speed = SPEED_2500;
2019 			else if (bmcr[i] & BMCR_SPEED1000)
2020 				speed = SPEED_1000;
2021 			else if (bmcr[i] & BMCR_SPEED100)
2022 				speed = SPEED_100;
2023 			else
2024 				speed = SPEED_10;
2025 
2026 			xpcs_link_up(&xpcs->pcs, mode, priv->phy_mode[i],
2027 				     speed, DUPLEX_FULL);
2028 		}
2029 	}
2030 
2031 	rc = sja1105_reload_cbs(priv);
2032 	if (rc < 0)
2033 		goto out;
2034 out:
2035 	mutex_unlock(&priv->mgmt_lock);
2036 
2037 	return rc;
2038 }
2039 
2040 static int sja1105_pvid_apply(struct sja1105_private *priv, int port, u16 pvid)
2041 {
2042 	struct sja1105_mac_config_entry *mac;
2043 
2044 	mac = priv->static_config.tables[BLK_IDX_MAC_CONFIG].entries;
2045 
2046 	mac[port].vlanid = pvid;
2047 
2048 	return sja1105_dynamic_config_write(priv, BLK_IDX_MAC_CONFIG, port,
2049 					   &mac[port], true);
2050 }
2051 
2052 static int sja1105_crosschip_bridge_join(struct dsa_switch *ds,
2053 					 int tree_index, int sw_index,
2054 					 int other_port, struct net_device *br)
2055 {
2056 	struct dsa_switch *other_ds = dsa_switch_find(tree_index, sw_index);
2057 	struct sja1105_private *other_priv = other_ds->priv;
2058 	struct sja1105_private *priv = ds->priv;
2059 	int port, rc;
2060 
2061 	if (other_ds->ops != &sja1105_switch_ops)
2062 		return 0;
2063 
2064 	for (port = 0; port < ds->num_ports; port++) {
2065 		if (!dsa_is_user_port(ds, port))
2066 			continue;
2067 		if (dsa_to_port(ds, port)->bridge_dev != br)
2068 			continue;
2069 
2070 		rc = dsa_8021q_crosschip_bridge_join(priv->dsa_8021q_ctx,
2071 						     port,
2072 						     other_priv->dsa_8021q_ctx,
2073 						     other_port);
2074 		if (rc)
2075 			return rc;
2076 
2077 		rc = dsa_8021q_crosschip_bridge_join(other_priv->dsa_8021q_ctx,
2078 						     other_port,
2079 						     priv->dsa_8021q_ctx,
2080 						     port);
2081 		if (rc)
2082 			return rc;
2083 	}
2084 
2085 	return 0;
2086 }
2087 
2088 static void sja1105_crosschip_bridge_leave(struct dsa_switch *ds,
2089 					   int tree_index, int sw_index,
2090 					   int other_port,
2091 					   struct net_device *br)
2092 {
2093 	struct dsa_switch *other_ds = dsa_switch_find(tree_index, sw_index);
2094 	struct sja1105_private *other_priv = other_ds->priv;
2095 	struct sja1105_private *priv = ds->priv;
2096 	int port;
2097 
2098 	if (other_ds->ops != &sja1105_switch_ops)
2099 		return;
2100 
2101 	for (port = 0; port < ds->num_ports; port++) {
2102 		if (!dsa_is_user_port(ds, port))
2103 			continue;
2104 		if (dsa_to_port(ds, port)->bridge_dev != br)
2105 			continue;
2106 
2107 		dsa_8021q_crosschip_bridge_leave(priv->dsa_8021q_ctx, port,
2108 						 other_priv->dsa_8021q_ctx,
2109 						 other_port);
2110 
2111 		dsa_8021q_crosschip_bridge_leave(other_priv->dsa_8021q_ctx,
2112 						 other_port,
2113 						 priv->dsa_8021q_ctx, port);
2114 	}
2115 }
2116 
2117 static int sja1105_setup_8021q_tagging(struct dsa_switch *ds, bool enabled)
2118 {
2119 	struct sja1105_private *priv = ds->priv;
2120 	int rc;
2121 
2122 	rc = dsa_8021q_setup(priv->dsa_8021q_ctx, enabled);
2123 	if (rc)
2124 		return rc;
2125 
2126 	dev_info(ds->dev, "%s switch tagging\n",
2127 		 enabled ? "Enabled" : "Disabled");
2128 	return 0;
2129 }
2130 
2131 static enum dsa_tag_protocol
2132 sja1105_get_tag_protocol(struct dsa_switch *ds, int port,
2133 			 enum dsa_tag_protocol mp)
2134 {
2135 	struct sja1105_private *priv = ds->priv;
2136 
2137 	return priv->info->tag_proto;
2138 }
2139 
2140 static int sja1105_find_free_subvlan(u16 *subvlan_map, bool pvid)
2141 {
2142 	int subvlan;
2143 
2144 	if (pvid)
2145 		return 0;
2146 
2147 	for (subvlan = 1; subvlan < DSA_8021Q_N_SUBVLAN; subvlan++)
2148 		if (subvlan_map[subvlan] == VLAN_N_VID)
2149 			return subvlan;
2150 
2151 	return -1;
2152 }
2153 
2154 static int sja1105_find_subvlan(u16 *subvlan_map, u16 vid)
2155 {
2156 	int subvlan;
2157 
2158 	for (subvlan = 0; subvlan < DSA_8021Q_N_SUBVLAN; subvlan++)
2159 		if (subvlan_map[subvlan] == vid)
2160 			return subvlan;
2161 
2162 	return -1;
2163 }
2164 
2165 static int sja1105_find_committed_subvlan(struct sja1105_private *priv,
2166 					  int port, u16 vid)
2167 {
2168 	struct sja1105_port *sp = &priv->ports[port];
2169 
2170 	return sja1105_find_subvlan(sp->subvlan_map, vid);
2171 }
2172 
2173 static void sja1105_init_subvlan_map(u16 *subvlan_map)
2174 {
2175 	int subvlan;
2176 
2177 	for (subvlan = 0; subvlan < DSA_8021Q_N_SUBVLAN; subvlan++)
2178 		subvlan_map[subvlan] = VLAN_N_VID;
2179 }
2180 
2181 static void sja1105_commit_subvlan_map(struct sja1105_private *priv, int port,
2182 				       u16 *subvlan_map)
2183 {
2184 	struct sja1105_port *sp = &priv->ports[port];
2185 	int subvlan;
2186 
2187 	for (subvlan = 0; subvlan < DSA_8021Q_N_SUBVLAN; subvlan++)
2188 		sp->subvlan_map[subvlan] = subvlan_map[subvlan];
2189 }
2190 
2191 static int sja1105_is_vlan_configured(struct sja1105_private *priv, u16 vid)
2192 {
2193 	struct sja1105_vlan_lookup_entry *vlan;
2194 	int count, i;
2195 
2196 	vlan = priv->static_config.tables[BLK_IDX_VLAN_LOOKUP].entries;
2197 	count = priv->static_config.tables[BLK_IDX_VLAN_LOOKUP].entry_count;
2198 
2199 	for (i = 0; i < count; i++)
2200 		if (vlan[i].vlanid == vid)
2201 			return i;
2202 
2203 	/* Return an invalid entry index if not found */
2204 	return -1;
2205 }
2206 
2207 static int
2208 sja1105_find_retagging_entry(struct sja1105_retagging_entry *retagging,
2209 			     int count, int from_port, u16 from_vid,
2210 			     u16 to_vid)
2211 {
2212 	int i;
2213 
2214 	for (i = 0; i < count; i++)
2215 		if (retagging[i].ing_port == BIT(from_port) &&
2216 		    retagging[i].vlan_ing == from_vid &&
2217 		    retagging[i].vlan_egr == to_vid)
2218 			return i;
2219 
2220 	/* Return an invalid entry index if not found */
2221 	return -1;
2222 }
2223 
2224 static int sja1105_commit_vlans(struct sja1105_private *priv,
2225 				struct sja1105_vlan_lookup_entry *new_vlan,
2226 				struct sja1105_retagging_entry *new_retagging,
2227 				int num_retagging)
2228 {
2229 	struct sja1105_retagging_entry *retagging;
2230 	struct sja1105_vlan_lookup_entry *vlan;
2231 	struct sja1105_table *table;
2232 	int num_vlans = 0;
2233 	int rc, i, k = 0;
2234 
2235 	/* VLAN table */
2236 	table = &priv->static_config.tables[BLK_IDX_VLAN_LOOKUP];
2237 	vlan = table->entries;
2238 
2239 	for (i = 0; i < VLAN_N_VID; i++) {
2240 		int match = sja1105_is_vlan_configured(priv, i);
2241 
2242 		if (new_vlan[i].vlanid != VLAN_N_VID)
2243 			num_vlans++;
2244 
2245 		if (new_vlan[i].vlanid == VLAN_N_VID && match >= 0) {
2246 			/* Was there before, no longer is. Delete */
2247 			dev_dbg(priv->ds->dev, "Deleting VLAN %d\n", i);
2248 			rc = sja1105_dynamic_config_write(priv,
2249 							  BLK_IDX_VLAN_LOOKUP,
2250 							  i, &vlan[match], false);
2251 			if (rc < 0)
2252 				return rc;
2253 		} else if (new_vlan[i].vlanid != VLAN_N_VID) {
2254 			/* Nothing changed, don't do anything */
2255 			if (match >= 0 &&
2256 			    vlan[match].vlanid == new_vlan[i].vlanid &&
2257 			    vlan[match].tag_port == new_vlan[i].tag_port &&
2258 			    vlan[match].vlan_bc == new_vlan[i].vlan_bc &&
2259 			    vlan[match].vmemb_port == new_vlan[i].vmemb_port)
2260 				continue;
2261 			/* Update entry */
2262 			dev_dbg(priv->ds->dev, "Updating VLAN %d\n", i);
2263 			rc = sja1105_dynamic_config_write(priv,
2264 							  BLK_IDX_VLAN_LOOKUP,
2265 							  i, &new_vlan[i],
2266 							  true);
2267 			if (rc < 0)
2268 				return rc;
2269 		}
2270 	}
2271 
2272 	if (table->entry_count)
2273 		kfree(table->entries);
2274 
2275 	table->entries = kcalloc(num_vlans, table->ops->unpacked_entry_size,
2276 				 GFP_KERNEL);
2277 	if (!table->entries)
2278 		return -ENOMEM;
2279 
2280 	table->entry_count = num_vlans;
2281 	vlan = table->entries;
2282 
2283 	for (i = 0; i < VLAN_N_VID; i++) {
2284 		if (new_vlan[i].vlanid == VLAN_N_VID)
2285 			continue;
2286 		vlan[k++] = new_vlan[i];
2287 	}
2288 
2289 	/* VLAN Retagging Table */
2290 	table = &priv->static_config.tables[BLK_IDX_RETAGGING];
2291 	retagging = table->entries;
2292 
2293 	for (i = 0; i < table->entry_count; i++) {
2294 		rc = sja1105_dynamic_config_write(priv, BLK_IDX_RETAGGING,
2295 						  i, &retagging[i], false);
2296 		if (rc)
2297 			return rc;
2298 	}
2299 
2300 	if (table->entry_count)
2301 		kfree(table->entries);
2302 
2303 	table->entries = kcalloc(num_retagging, table->ops->unpacked_entry_size,
2304 				 GFP_KERNEL);
2305 	if (!table->entries)
2306 		return -ENOMEM;
2307 
2308 	table->entry_count = num_retagging;
2309 	retagging = table->entries;
2310 
2311 	for (i = 0; i < num_retagging; i++) {
2312 		retagging[i] = new_retagging[i];
2313 
2314 		/* Update entry */
2315 		rc = sja1105_dynamic_config_write(priv, BLK_IDX_RETAGGING,
2316 						  i, &retagging[i], true);
2317 		if (rc < 0)
2318 			return rc;
2319 	}
2320 
2321 	return 0;
2322 }
2323 
2324 struct sja1105_crosschip_vlan {
2325 	struct list_head list;
2326 	u16 vid;
2327 	bool untagged;
2328 	int port;
2329 	int other_port;
2330 	struct dsa_8021q_context *other_ctx;
2331 };
2332 
2333 struct sja1105_crosschip_switch {
2334 	struct list_head list;
2335 	struct dsa_8021q_context *other_ctx;
2336 };
2337 
2338 static int sja1105_commit_pvid(struct sja1105_private *priv)
2339 {
2340 	struct sja1105_bridge_vlan *v;
2341 	struct list_head *vlan_list;
2342 	int rc = 0;
2343 
2344 	if (priv->vlan_state == SJA1105_VLAN_FILTERING_FULL)
2345 		vlan_list = &priv->bridge_vlans;
2346 	else
2347 		vlan_list = &priv->dsa_8021q_vlans;
2348 
2349 	list_for_each_entry(v, vlan_list, list) {
2350 		if (v->pvid) {
2351 			rc = sja1105_pvid_apply(priv, v->port, v->vid);
2352 			if (rc)
2353 				break;
2354 		}
2355 	}
2356 
2357 	return rc;
2358 }
2359 
2360 static int
2361 sja1105_build_bridge_vlans(struct sja1105_private *priv,
2362 			   struct sja1105_vlan_lookup_entry *new_vlan)
2363 {
2364 	struct sja1105_bridge_vlan *v;
2365 
2366 	if (priv->vlan_state == SJA1105_VLAN_UNAWARE)
2367 		return 0;
2368 
2369 	list_for_each_entry(v, &priv->bridge_vlans, list) {
2370 		int match = v->vid;
2371 
2372 		new_vlan[match].vlanid = v->vid;
2373 		new_vlan[match].vmemb_port |= BIT(v->port);
2374 		new_vlan[match].vlan_bc |= BIT(v->port);
2375 		if (!v->untagged)
2376 			new_vlan[match].tag_port |= BIT(v->port);
2377 		new_vlan[match].type_entry = SJA1110_VLAN_D_TAG;
2378 	}
2379 
2380 	return 0;
2381 }
2382 
2383 static int
2384 sja1105_build_dsa_8021q_vlans(struct sja1105_private *priv,
2385 			      struct sja1105_vlan_lookup_entry *new_vlan)
2386 {
2387 	struct sja1105_bridge_vlan *v;
2388 
2389 	if (priv->vlan_state == SJA1105_VLAN_FILTERING_FULL)
2390 		return 0;
2391 
2392 	list_for_each_entry(v, &priv->dsa_8021q_vlans, list) {
2393 		int match = v->vid;
2394 
2395 		new_vlan[match].vlanid = v->vid;
2396 		new_vlan[match].vmemb_port |= BIT(v->port);
2397 		new_vlan[match].vlan_bc |= BIT(v->port);
2398 		if (!v->untagged)
2399 			new_vlan[match].tag_port |= BIT(v->port);
2400 		new_vlan[match].type_entry = SJA1110_VLAN_D_TAG;
2401 	}
2402 
2403 	return 0;
2404 }
2405 
2406 static int sja1105_build_subvlans(struct sja1105_private *priv,
2407 				  u16 subvlan_map[][DSA_8021Q_N_SUBVLAN],
2408 				  struct sja1105_vlan_lookup_entry *new_vlan,
2409 				  struct sja1105_retagging_entry *new_retagging,
2410 				  int *num_retagging)
2411 {
2412 	struct sja1105_bridge_vlan *v;
2413 	int k = *num_retagging;
2414 
2415 	if (priv->vlan_state != SJA1105_VLAN_BEST_EFFORT)
2416 		return 0;
2417 
2418 	list_for_each_entry(v, &priv->bridge_vlans, list) {
2419 		int upstream = dsa_upstream_port(priv->ds, v->port);
2420 		int match, subvlan;
2421 		u16 rx_vid;
2422 
2423 		/* Only sub-VLANs on user ports need to be applied.
2424 		 * Bridge VLANs also include VLANs added automatically
2425 		 * by DSA on the CPU port.
2426 		 */
2427 		if (!dsa_is_user_port(priv->ds, v->port))
2428 			continue;
2429 
2430 		subvlan = sja1105_find_subvlan(subvlan_map[v->port],
2431 					       v->vid);
2432 		if (subvlan < 0) {
2433 			subvlan = sja1105_find_free_subvlan(subvlan_map[v->port],
2434 							    v->pvid);
2435 			if (subvlan < 0) {
2436 				dev_err(priv->ds->dev, "No more free subvlans\n");
2437 				return -ENOSPC;
2438 			}
2439 		}
2440 
2441 		rx_vid = dsa_8021q_rx_vid_subvlan(priv->ds, v->port, subvlan);
2442 
2443 		/* @v->vid on @v->port needs to be retagged to @rx_vid
2444 		 * on @upstream. Assume @v->vid on @v->port and on
2445 		 * @upstream was already configured by the previous
2446 		 * iteration over bridge_vlans.
2447 		 */
2448 		match = rx_vid;
2449 		new_vlan[match].vlanid = rx_vid;
2450 		new_vlan[match].vmemb_port |= BIT(v->port);
2451 		new_vlan[match].vmemb_port |= BIT(upstream);
2452 		new_vlan[match].vlan_bc |= BIT(v->port);
2453 		new_vlan[match].vlan_bc |= BIT(upstream);
2454 		/* The "untagged" flag is set the same as for the
2455 		 * original VLAN
2456 		 */
2457 		if (!v->untagged)
2458 			new_vlan[match].tag_port |= BIT(v->port);
2459 		/* But it's always tagged towards the CPU */
2460 		new_vlan[match].tag_port |= BIT(upstream);
2461 		new_vlan[match].type_entry = SJA1110_VLAN_D_TAG;
2462 
2463 		/* The Retagging Table generates packet *clones* with
2464 		 * the new VLAN. This is a very odd hardware quirk
2465 		 * which we need to suppress by dropping the original
2466 		 * packet.
2467 		 * Deny egress of the original VLAN towards the CPU
2468 		 * port. This will force the switch to drop it, and
2469 		 * we'll see only the retagged packets.
2470 		 */
2471 		match = v->vid;
2472 		new_vlan[match].vlan_bc &= ~BIT(upstream);
2473 
2474 		/* And the retagging itself */
2475 		new_retagging[k].vlan_ing = v->vid;
2476 		new_retagging[k].vlan_egr = rx_vid;
2477 		new_retagging[k].ing_port = BIT(v->port);
2478 		new_retagging[k].egr_port = BIT(upstream);
2479 		if (k++ == SJA1105_MAX_RETAGGING_COUNT) {
2480 			dev_err(priv->ds->dev, "No more retagging rules\n");
2481 			return -ENOSPC;
2482 		}
2483 
2484 		subvlan_map[v->port][subvlan] = v->vid;
2485 	}
2486 
2487 	*num_retagging = k;
2488 
2489 	return 0;
2490 }
2491 
2492 /* Sadly, in crosschip scenarios where the CPU port is also the link to another
2493  * switch, we should retag backwards (the dsa_8021q vid to the original vid) on
2494  * the CPU port of neighbour switches.
2495  */
2496 static int
2497 sja1105_build_crosschip_subvlans(struct sja1105_private *priv,
2498 				 struct sja1105_vlan_lookup_entry *new_vlan,
2499 				 struct sja1105_retagging_entry *new_retagging,
2500 				 int *num_retagging)
2501 {
2502 	struct sja1105_crosschip_vlan *tmp, *pos;
2503 	struct dsa_8021q_crosschip_link *c;
2504 	struct sja1105_bridge_vlan *v, *w;
2505 	struct list_head crosschip_vlans;
2506 	int k = *num_retagging;
2507 	int rc = 0;
2508 
2509 	if (priv->vlan_state != SJA1105_VLAN_BEST_EFFORT)
2510 		return 0;
2511 
2512 	INIT_LIST_HEAD(&crosschip_vlans);
2513 
2514 	list_for_each_entry(c, &priv->dsa_8021q_ctx->crosschip_links, list) {
2515 		struct sja1105_private *other_priv = c->other_ctx->ds->priv;
2516 
2517 		if (other_priv->vlan_state == SJA1105_VLAN_FILTERING_FULL)
2518 			continue;
2519 
2520 		/* Crosschip links are also added to the CPU ports.
2521 		 * Ignore those.
2522 		 */
2523 		if (!dsa_is_user_port(priv->ds, c->port))
2524 			continue;
2525 		if (!dsa_is_user_port(c->other_ctx->ds, c->other_port))
2526 			continue;
2527 
2528 		/* Search for VLANs on the remote port */
2529 		list_for_each_entry(v, &other_priv->bridge_vlans, list) {
2530 			bool already_added = false;
2531 			bool we_have_it = false;
2532 
2533 			if (v->port != c->other_port)
2534 				continue;
2535 
2536 			/* If @v is a pvid on @other_ds, it does not need
2537 			 * re-retagging, because its SVL field is 0 and we
2538 			 * already allow that, via the dsa_8021q crosschip
2539 			 * links.
2540 			 */
2541 			if (v->pvid)
2542 				continue;
2543 
2544 			/* Search for the VLAN on our local port */
2545 			list_for_each_entry(w, &priv->bridge_vlans, list) {
2546 				if (w->port == c->port && w->vid == v->vid) {
2547 					we_have_it = true;
2548 					break;
2549 				}
2550 			}
2551 
2552 			if (!we_have_it)
2553 				continue;
2554 
2555 			list_for_each_entry(tmp, &crosschip_vlans, list) {
2556 				if (tmp->vid == v->vid &&
2557 				    tmp->untagged == v->untagged &&
2558 				    tmp->port == c->port &&
2559 				    tmp->other_port == v->port &&
2560 				    tmp->other_ctx == c->other_ctx) {
2561 					already_added = true;
2562 					break;
2563 				}
2564 			}
2565 
2566 			if (already_added)
2567 				continue;
2568 
2569 			tmp = kzalloc(sizeof(*tmp), GFP_KERNEL);
2570 			if (!tmp) {
2571 				dev_err(priv->ds->dev, "Failed to allocate memory\n");
2572 				rc = -ENOMEM;
2573 				goto out;
2574 			}
2575 			tmp->vid = v->vid;
2576 			tmp->port = c->port;
2577 			tmp->other_port = v->port;
2578 			tmp->other_ctx = c->other_ctx;
2579 			tmp->untagged = v->untagged;
2580 			list_add(&tmp->list, &crosschip_vlans);
2581 		}
2582 	}
2583 
2584 	list_for_each_entry(tmp, &crosschip_vlans, list) {
2585 		struct sja1105_private *other_priv = tmp->other_ctx->ds->priv;
2586 		int upstream = dsa_upstream_port(priv->ds, tmp->port);
2587 		int match, subvlan;
2588 		u16 rx_vid;
2589 
2590 		subvlan = sja1105_find_committed_subvlan(other_priv,
2591 							 tmp->other_port,
2592 							 tmp->vid);
2593 		/* If this happens, it's a bug. The neighbour switch does not
2594 		 * have a subvlan for tmp->vid on tmp->other_port, but it
2595 		 * should, since we already checked for its vlan_state.
2596 		 */
2597 		if (WARN_ON(subvlan < 0)) {
2598 			rc = -EINVAL;
2599 			goto out;
2600 		}
2601 
2602 		rx_vid = dsa_8021q_rx_vid_subvlan(tmp->other_ctx->ds,
2603 						  tmp->other_port,
2604 						  subvlan);
2605 
2606 		/* The @rx_vid retagged from @tmp->vid on
2607 		 * {@tmp->other_ds, @tmp->other_port} needs to be
2608 		 * re-retagged to @tmp->vid on the way back to us.
2609 		 *
2610 		 * Assume the original @tmp->vid is already configured
2611 		 * on this local switch, otherwise we wouldn't be
2612 		 * retagging its subvlan on the other switch in the
2613 		 * first place. We just need to add a reverse retagging
2614 		 * rule for @rx_vid and install @rx_vid on our ports.
2615 		 */
2616 		match = rx_vid;
2617 		new_vlan[match].vlanid = rx_vid;
2618 		new_vlan[match].vmemb_port |= BIT(tmp->port);
2619 		new_vlan[match].vmemb_port |= BIT(upstream);
2620 		/* The "untagged" flag is set the same as for the
2621 		 * original VLAN. And towards the CPU, it doesn't
2622 		 * really matter, because @rx_vid will only receive
2623 		 * traffic on that port. For consistency with other dsa_8021q
2624 		 * VLANs, we'll keep the CPU port tagged.
2625 		 */
2626 		if (!tmp->untagged)
2627 			new_vlan[match].tag_port |= BIT(tmp->port);
2628 		new_vlan[match].tag_port |= BIT(upstream);
2629 		new_vlan[match].type_entry = SJA1110_VLAN_D_TAG;
2630 		/* Deny egress of @rx_vid towards our front-panel port.
2631 		 * This will force the switch to drop it, and we'll see
2632 		 * only the re-retagged packets (having the original,
2633 		 * pre-initial-retagging, VLAN @tmp->vid).
2634 		 */
2635 		new_vlan[match].vlan_bc &= ~BIT(tmp->port);
2636 
2637 		/* On reverse retagging, the same ingress VLAN goes to multiple
2638 		 * ports. So we have an opportunity to create composite rules
2639 		 * to not waste the limited space in the retagging table.
2640 		 */
2641 		k = sja1105_find_retagging_entry(new_retagging, *num_retagging,
2642 						 upstream, rx_vid, tmp->vid);
2643 		if (k < 0) {
2644 			if (*num_retagging == SJA1105_MAX_RETAGGING_COUNT) {
2645 				dev_err(priv->ds->dev, "No more retagging rules\n");
2646 				rc = -ENOSPC;
2647 				goto out;
2648 			}
2649 			k = (*num_retagging)++;
2650 		}
2651 		/* And the retagging itself */
2652 		new_retagging[k].vlan_ing = rx_vid;
2653 		new_retagging[k].vlan_egr = tmp->vid;
2654 		new_retagging[k].ing_port = BIT(upstream);
2655 		new_retagging[k].egr_port |= BIT(tmp->port);
2656 	}
2657 
2658 out:
2659 	list_for_each_entry_safe(tmp, pos, &crosschip_vlans, list) {
2660 		list_del(&tmp->list);
2661 		kfree(tmp);
2662 	}
2663 
2664 	return rc;
2665 }
2666 
2667 static int sja1105_build_vlan_table(struct sja1105_private *priv, bool notify);
2668 
2669 static int sja1105_notify_crosschip_switches(struct sja1105_private *priv)
2670 {
2671 	struct sja1105_crosschip_switch *s, *pos;
2672 	struct list_head crosschip_switches;
2673 	struct dsa_8021q_crosschip_link *c;
2674 	int rc = 0;
2675 
2676 	INIT_LIST_HEAD(&crosschip_switches);
2677 
2678 	list_for_each_entry(c, &priv->dsa_8021q_ctx->crosschip_links, list) {
2679 		bool already_added = false;
2680 
2681 		list_for_each_entry(s, &crosschip_switches, list) {
2682 			if (s->other_ctx == c->other_ctx) {
2683 				already_added = true;
2684 				break;
2685 			}
2686 		}
2687 
2688 		if (already_added)
2689 			continue;
2690 
2691 		s = kzalloc(sizeof(*s), GFP_KERNEL);
2692 		if (!s) {
2693 			dev_err(priv->ds->dev, "Failed to allocate memory\n");
2694 			rc = -ENOMEM;
2695 			goto out;
2696 		}
2697 		s->other_ctx = c->other_ctx;
2698 		list_add(&s->list, &crosschip_switches);
2699 	}
2700 
2701 	list_for_each_entry(s, &crosschip_switches, list) {
2702 		struct sja1105_private *other_priv = s->other_ctx->ds->priv;
2703 
2704 		rc = sja1105_build_vlan_table(other_priv, false);
2705 		if (rc)
2706 			goto out;
2707 	}
2708 
2709 out:
2710 	list_for_each_entry_safe(s, pos, &crosschip_switches, list) {
2711 		list_del(&s->list);
2712 		kfree(s);
2713 	}
2714 
2715 	return rc;
2716 }
2717 
2718 static int sja1105_build_vlan_table(struct sja1105_private *priv, bool notify)
2719 {
2720 	u16 subvlan_map[SJA1105_MAX_NUM_PORTS][DSA_8021Q_N_SUBVLAN];
2721 	struct sja1105_retagging_entry *new_retagging;
2722 	struct sja1105_vlan_lookup_entry *new_vlan;
2723 	struct sja1105_table *table;
2724 	int i, num_retagging = 0;
2725 	int rc;
2726 
2727 	table = &priv->static_config.tables[BLK_IDX_VLAN_LOOKUP];
2728 	new_vlan = kcalloc(VLAN_N_VID,
2729 			   table->ops->unpacked_entry_size, GFP_KERNEL);
2730 	if (!new_vlan)
2731 		return -ENOMEM;
2732 
2733 	table = &priv->static_config.tables[BLK_IDX_VLAN_LOOKUP];
2734 	new_retagging = kcalloc(SJA1105_MAX_RETAGGING_COUNT,
2735 				table->ops->unpacked_entry_size, GFP_KERNEL);
2736 	if (!new_retagging) {
2737 		kfree(new_vlan);
2738 		return -ENOMEM;
2739 	}
2740 
2741 	for (i = 0; i < VLAN_N_VID; i++)
2742 		new_vlan[i].vlanid = VLAN_N_VID;
2743 
2744 	for (i = 0; i < SJA1105_MAX_RETAGGING_COUNT; i++)
2745 		new_retagging[i].vlan_ing = VLAN_N_VID;
2746 
2747 	for (i = 0; i < priv->ds->num_ports; i++)
2748 		sja1105_init_subvlan_map(subvlan_map[i]);
2749 
2750 	/* Bridge VLANs */
2751 	rc = sja1105_build_bridge_vlans(priv, new_vlan);
2752 	if (rc)
2753 		goto out;
2754 
2755 	/* VLANs necessary for dsa_8021q operation, given to us by tag_8021q.c:
2756 	 * - RX VLANs
2757 	 * - TX VLANs
2758 	 * - Crosschip links
2759 	 */
2760 	rc = sja1105_build_dsa_8021q_vlans(priv, new_vlan);
2761 	if (rc)
2762 		goto out;
2763 
2764 	/* Private VLANs necessary for dsa_8021q operation, which we need to
2765 	 * determine on our own:
2766 	 * - Sub-VLANs
2767 	 * - Sub-VLANs of crosschip switches
2768 	 */
2769 	rc = sja1105_build_subvlans(priv, subvlan_map, new_vlan, new_retagging,
2770 				    &num_retagging);
2771 	if (rc)
2772 		goto out;
2773 
2774 	rc = sja1105_build_crosschip_subvlans(priv, new_vlan, new_retagging,
2775 					      &num_retagging);
2776 	if (rc)
2777 		goto out;
2778 
2779 	rc = sja1105_commit_vlans(priv, new_vlan, new_retagging, num_retagging);
2780 	if (rc)
2781 		goto out;
2782 
2783 	rc = sja1105_commit_pvid(priv);
2784 	if (rc)
2785 		goto out;
2786 
2787 	for (i = 0; i < priv->ds->num_ports; i++)
2788 		sja1105_commit_subvlan_map(priv, i, subvlan_map[i]);
2789 
2790 	if (notify) {
2791 		rc = sja1105_notify_crosschip_switches(priv);
2792 		if (rc)
2793 			goto out;
2794 	}
2795 
2796 out:
2797 	kfree(new_vlan);
2798 	kfree(new_retagging);
2799 
2800 	return rc;
2801 }
2802 
2803 /* The TPID setting belongs to the General Parameters table,
2804  * which can only be partially reconfigured at runtime (and not the TPID).
2805  * So a switch reset is required.
2806  */
2807 int sja1105_vlan_filtering(struct dsa_switch *ds, int port, bool enabled,
2808 			   struct netlink_ext_ack *extack)
2809 {
2810 	struct sja1105_l2_lookup_params_entry *l2_lookup_params;
2811 	struct sja1105_general_params_entry *general_params;
2812 	struct sja1105_private *priv = ds->priv;
2813 	enum sja1105_vlan_state state;
2814 	struct sja1105_table *table;
2815 	struct sja1105_rule *rule;
2816 	bool want_tagging;
2817 	u16 tpid, tpid2;
2818 	int rc;
2819 
2820 	list_for_each_entry(rule, &priv->flow_block.rules, list) {
2821 		if (rule->type == SJA1105_RULE_VL) {
2822 			NL_SET_ERR_MSG_MOD(extack,
2823 					   "Cannot change VLAN filtering with active VL rules");
2824 			return -EBUSY;
2825 		}
2826 	}
2827 
2828 	if (enabled) {
2829 		/* Enable VLAN filtering. */
2830 		tpid  = ETH_P_8021Q;
2831 		tpid2 = ETH_P_8021AD;
2832 	} else {
2833 		/* Disable VLAN filtering. */
2834 		tpid  = ETH_P_SJA1105;
2835 		tpid2 = ETH_P_SJA1105;
2836 	}
2837 
2838 	for (port = 0; port < ds->num_ports; port++) {
2839 		struct sja1105_port *sp = &priv->ports[port];
2840 
2841 		if (enabled)
2842 			sp->xmit_tpid = priv->info->qinq_tpid;
2843 		else
2844 			sp->xmit_tpid = ETH_P_SJA1105;
2845 	}
2846 
2847 	if (!enabled)
2848 		state = SJA1105_VLAN_UNAWARE;
2849 	else if (priv->best_effort_vlan_filtering)
2850 		state = SJA1105_VLAN_BEST_EFFORT;
2851 	else
2852 		state = SJA1105_VLAN_FILTERING_FULL;
2853 
2854 	if (priv->vlan_state == state)
2855 		return 0;
2856 
2857 	priv->vlan_state = state;
2858 	want_tagging = (state == SJA1105_VLAN_UNAWARE ||
2859 			state == SJA1105_VLAN_BEST_EFFORT);
2860 
2861 	table = &priv->static_config.tables[BLK_IDX_GENERAL_PARAMS];
2862 	general_params = table->entries;
2863 	/* EtherType used to identify inner tagged (C-tag) VLAN traffic */
2864 	general_params->tpid = tpid;
2865 	/* EtherType used to identify outer tagged (S-tag) VLAN traffic */
2866 	general_params->tpid2 = tpid2;
2867 	/* When VLAN filtering is on, we need to at least be able to
2868 	 * decode management traffic through the "backup plan".
2869 	 */
2870 	general_params->incl_srcpt1 = enabled;
2871 	general_params->incl_srcpt0 = enabled;
2872 
2873 	want_tagging = priv->best_effort_vlan_filtering || !enabled;
2874 
2875 	/* VLAN filtering => independent VLAN learning.
2876 	 * No VLAN filtering (or best effort) => shared VLAN learning.
2877 	 *
2878 	 * In shared VLAN learning mode, untagged traffic still gets
2879 	 * pvid-tagged, and the FDB table gets populated with entries
2880 	 * containing the "real" (pvid or from VLAN tag) VLAN ID.
2881 	 * However the switch performs a masked L2 lookup in the FDB,
2882 	 * effectively only looking up a frame's DMAC (and not VID) for the
2883 	 * forwarding decision.
2884 	 *
2885 	 * This is extremely convenient for us, because in modes with
2886 	 * vlan_filtering=0, dsa_8021q actually installs unique pvid's into
2887 	 * each front panel port. This is good for identification but breaks
2888 	 * learning badly - the VID of the learnt FDB entry is unique, aka
2889 	 * no frames coming from any other port are going to have it. So
2890 	 * for forwarding purposes, this is as though learning was broken
2891 	 * (all frames get flooded).
2892 	 */
2893 	table = &priv->static_config.tables[BLK_IDX_L2_LOOKUP_PARAMS];
2894 	l2_lookup_params = table->entries;
2895 	l2_lookup_params->shared_learn = want_tagging;
2896 
2897 	sja1105_frame_memory_partitioning(priv);
2898 
2899 	rc = sja1105_build_vlan_table(priv, false);
2900 	if (rc)
2901 		return rc;
2902 
2903 	rc = sja1105_static_config_reload(priv, SJA1105_VLAN_FILTERING);
2904 	if (rc)
2905 		NL_SET_ERR_MSG_MOD(extack, "Failed to change VLAN Ethertype");
2906 
2907 	/* Switch port identification based on 802.1Q is only passable
2908 	 * if we are not under a vlan_filtering bridge. So make sure
2909 	 * the two configurations are mutually exclusive (of course, the
2910 	 * user may know better, i.e. best_effort_vlan_filtering).
2911 	 */
2912 	return sja1105_setup_8021q_tagging(ds, want_tagging);
2913 }
2914 
2915 /* Returns number of VLANs added (0 or 1) on success,
2916  * or a negative error code.
2917  */
2918 static int sja1105_vlan_add_one(struct dsa_switch *ds, int port, u16 vid,
2919 				u16 flags, struct list_head *vlan_list)
2920 {
2921 	bool untagged = flags & BRIDGE_VLAN_INFO_UNTAGGED;
2922 	bool pvid = flags & BRIDGE_VLAN_INFO_PVID;
2923 	struct sja1105_bridge_vlan *v;
2924 
2925 	list_for_each_entry(v, vlan_list, list) {
2926 		if (v->port == port && v->vid == vid) {
2927 			/* Already added */
2928 			if (v->untagged == untagged && v->pvid == pvid)
2929 				/* Nothing changed */
2930 				return 0;
2931 
2932 			/* It's the same VLAN, but some of the flags changed
2933 			 * and the user did not bother to delete it first.
2934 			 * Update it and trigger sja1105_build_vlan_table.
2935 			 */
2936 			v->untagged = untagged;
2937 			v->pvid = pvid;
2938 			return 1;
2939 		}
2940 	}
2941 
2942 	v = kzalloc(sizeof(*v), GFP_KERNEL);
2943 	if (!v) {
2944 		dev_err(ds->dev, "Out of memory while storing VLAN\n");
2945 		return -ENOMEM;
2946 	}
2947 
2948 	v->port = port;
2949 	v->vid = vid;
2950 	v->untagged = untagged;
2951 	v->pvid = pvid;
2952 	list_add(&v->list, vlan_list);
2953 
2954 	return 1;
2955 }
2956 
2957 /* Returns number of VLANs deleted (0 or 1) */
2958 static int sja1105_vlan_del_one(struct dsa_switch *ds, int port, u16 vid,
2959 				struct list_head *vlan_list)
2960 {
2961 	struct sja1105_bridge_vlan *v, *n;
2962 
2963 	list_for_each_entry_safe(v, n, vlan_list, list) {
2964 		if (v->port == port && v->vid == vid) {
2965 			list_del(&v->list);
2966 			kfree(v);
2967 			return 1;
2968 		}
2969 	}
2970 
2971 	return 0;
2972 }
2973 
2974 static int sja1105_vlan_add(struct dsa_switch *ds, int port,
2975 			    const struct switchdev_obj_port_vlan *vlan,
2976 			    struct netlink_ext_ack *extack)
2977 {
2978 	struct sja1105_private *priv = ds->priv;
2979 	bool vlan_table_changed = false;
2980 	int rc;
2981 
2982 	/* If the user wants best-effort VLAN filtering (aka vlan_filtering
2983 	 * bridge plus tagging), be sure to at least deny alterations to the
2984 	 * configuration done by dsa_8021q.
2985 	 */
2986 	if (priv->vlan_state != SJA1105_VLAN_FILTERING_FULL &&
2987 	    vid_is_dsa_8021q(vlan->vid)) {
2988 		NL_SET_ERR_MSG_MOD(extack,
2989 				   "Range 1024-3071 reserved for dsa_8021q operation");
2990 		return -EBUSY;
2991 	}
2992 
2993 	rc = sja1105_vlan_add_one(ds, port, vlan->vid, vlan->flags,
2994 				  &priv->bridge_vlans);
2995 	if (rc < 0)
2996 		return rc;
2997 	if (rc > 0)
2998 		vlan_table_changed = true;
2999 
3000 	if (!vlan_table_changed)
3001 		return 0;
3002 
3003 	return sja1105_build_vlan_table(priv, true);
3004 }
3005 
3006 static int sja1105_vlan_del(struct dsa_switch *ds, int port,
3007 			    const struct switchdev_obj_port_vlan *vlan)
3008 {
3009 	struct sja1105_private *priv = ds->priv;
3010 	bool vlan_table_changed = false;
3011 	int rc;
3012 
3013 	rc = sja1105_vlan_del_one(ds, port, vlan->vid, &priv->bridge_vlans);
3014 	if (rc > 0)
3015 		vlan_table_changed = true;
3016 
3017 	if (!vlan_table_changed)
3018 		return 0;
3019 
3020 	return sja1105_build_vlan_table(priv, true);
3021 }
3022 
3023 static int sja1105_dsa_8021q_vlan_add(struct dsa_switch *ds, int port, u16 vid,
3024 				      u16 flags)
3025 {
3026 	struct sja1105_private *priv = ds->priv;
3027 	int rc;
3028 
3029 	rc = sja1105_vlan_add_one(ds, port, vid, flags, &priv->dsa_8021q_vlans);
3030 	if (rc <= 0)
3031 		return rc;
3032 
3033 	return sja1105_build_vlan_table(priv, true);
3034 }
3035 
3036 static int sja1105_dsa_8021q_vlan_del(struct dsa_switch *ds, int port, u16 vid)
3037 {
3038 	struct sja1105_private *priv = ds->priv;
3039 	int rc;
3040 
3041 	rc = sja1105_vlan_del_one(ds, port, vid, &priv->dsa_8021q_vlans);
3042 	if (!rc)
3043 		return 0;
3044 
3045 	return sja1105_build_vlan_table(priv, true);
3046 }
3047 
3048 static const struct dsa_8021q_ops sja1105_dsa_8021q_ops = {
3049 	.vlan_add	= sja1105_dsa_8021q_vlan_add,
3050 	.vlan_del	= sja1105_dsa_8021q_vlan_del,
3051 };
3052 
3053 /* The programming model for the SJA1105 switch is "all-at-once" via static
3054  * configuration tables. Some of these can be dynamically modified at runtime,
3055  * but not the xMII mode parameters table.
3056  * Furthermode, some PHYs may not have crystals for generating their clocks
3057  * (e.g. RMII). Instead, their 50MHz clock is supplied via the SJA1105 port's
3058  * ref_clk pin. So port clocking needs to be initialized early, before
3059  * connecting to PHYs is attempted, otherwise they won't respond through MDIO.
3060  * Setting correct PHY link speed does not matter now.
3061  * But dsa_slave_phy_setup is called later than sja1105_setup, so the PHY
3062  * bindings are not yet parsed by DSA core. We need to parse early so that we
3063  * can populate the xMII mode parameters table.
3064  */
3065 static int sja1105_setup(struct dsa_switch *ds)
3066 {
3067 	struct sja1105_private *priv = ds->priv;
3068 	int rc;
3069 
3070 	rc = sja1105_parse_dt(priv);
3071 	if (rc < 0) {
3072 		dev_err(ds->dev, "Failed to parse DT: %d\n", rc);
3073 		return rc;
3074 	}
3075 
3076 	/* Error out early if internal delays are required through DT
3077 	 * and we can't apply them.
3078 	 */
3079 	rc = sja1105_parse_rgmii_delays(priv);
3080 	if (rc < 0) {
3081 		dev_err(ds->dev, "RGMII delay not supported\n");
3082 		return rc;
3083 	}
3084 
3085 	rc = sja1105_ptp_clock_register(ds);
3086 	if (rc < 0) {
3087 		dev_err(ds->dev, "Failed to register PTP clock: %d\n", rc);
3088 		return rc;
3089 	}
3090 
3091 	rc = sja1105_mdiobus_register(ds);
3092 	if (rc < 0) {
3093 		dev_err(ds->dev, "Failed to register MDIO bus: %pe\n",
3094 			ERR_PTR(rc));
3095 		goto out_ptp_clock_unregister;
3096 	}
3097 
3098 	if (priv->info->disable_microcontroller) {
3099 		rc = priv->info->disable_microcontroller(priv);
3100 		if (rc < 0) {
3101 			dev_err(ds->dev,
3102 				"Failed to disable microcontroller: %pe\n",
3103 				ERR_PTR(rc));
3104 			goto out_mdiobus_unregister;
3105 		}
3106 	}
3107 
3108 	/* Create and send configuration down to device */
3109 	rc = sja1105_static_config_load(priv);
3110 	if (rc < 0) {
3111 		dev_err(ds->dev, "Failed to load static config: %d\n", rc);
3112 		goto out_mdiobus_unregister;
3113 	}
3114 
3115 	/* Configure the CGU (PHY link modes and speeds) */
3116 	if (priv->info->clocking_setup) {
3117 		rc = priv->info->clocking_setup(priv);
3118 		if (rc < 0) {
3119 			dev_err(ds->dev,
3120 				"Failed to configure MII clocking: %pe\n",
3121 				ERR_PTR(rc));
3122 			goto out_static_config_free;
3123 		}
3124 	}
3125 
3126 	/* On SJA1105, VLAN filtering per se is always enabled in hardware.
3127 	 * The only thing we can do to disable it is lie about what the 802.1Q
3128 	 * EtherType is.
3129 	 * So it will still try to apply VLAN filtering, but all ingress
3130 	 * traffic (except frames received with EtherType of ETH_P_SJA1105)
3131 	 * will be internally tagged with a distorted VLAN header where the
3132 	 * TPID is ETH_P_SJA1105, and the VLAN ID is the port pvid.
3133 	 */
3134 	ds->vlan_filtering_is_global = true;
3135 
3136 	/* Advertise the 8 egress queues */
3137 	ds->num_tx_queues = SJA1105_NUM_TC;
3138 
3139 	ds->mtu_enforcement_ingress = true;
3140 
3141 	priv->best_effort_vlan_filtering = true;
3142 
3143 	rc = sja1105_devlink_setup(ds);
3144 	if (rc < 0)
3145 		goto out_static_config_free;
3146 
3147 	/* The DSA/switchdev model brings up switch ports in standalone mode by
3148 	 * default, and that means vlan_filtering is 0 since they're not under
3149 	 * a bridge, so it's safe to set up switch tagging at this time.
3150 	 */
3151 	rtnl_lock();
3152 	rc = sja1105_setup_8021q_tagging(ds, true);
3153 	rtnl_unlock();
3154 	if (rc)
3155 		goto out_devlink_teardown;
3156 
3157 	return 0;
3158 
3159 out_devlink_teardown:
3160 	sja1105_devlink_teardown(ds);
3161 out_mdiobus_unregister:
3162 	sja1105_mdiobus_unregister(ds);
3163 out_ptp_clock_unregister:
3164 	sja1105_ptp_clock_unregister(ds);
3165 out_static_config_free:
3166 	sja1105_static_config_free(&priv->static_config);
3167 
3168 	return rc;
3169 }
3170 
3171 static void sja1105_teardown(struct dsa_switch *ds)
3172 {
3173 	struct sja1105_private *priv = ds->priv;
3174 	struct sja1105_bridge_vlan *v, *n;
3175 	int port;
3176 
3177 	for (port = 0; port < ds->num_ports; port++) {
3178 		struct sja1105_port *sp = &priv->ports[port];
3179 
3180 		if (!dsa_is_user_port(ds, port))
3181 			continue;
3182 
3183 		if (sp->xmit_worker)
3184 			kthread_destroy_worker(sp->xmit_worker);
3185 	}
3186 
3187 	sja1105_devlink_teardown(ds);
3188 	sja1105_flower_teardown(ds);
3189 	sja1105_tas_teardown(ds);
3190 	sja1105_ptp_clock_unregister(ds);
3191 	sja1105_static_config_free(&priv->static_config);
3192 
3193 	list_for_each_entry_safe(v, n, &priv->dsa_8021q_vlans, list) {
3194 		list_del(&v->list);
3195 		kfree(v);
3196 	}
3197 
3198 	list_for_each_entry_safe(v, n, &priv->bridge_vlans, list) {
3199 		list_del(&v->list);
3200 		kfree(v);
3201 	}
3202 }
3203 
3204 static void sja1105_port_disable(struct dsa_switch *ds, int port)
3205 {
3206 	struct sja1105_private *priv = ds->priv;
3207 	struct sja1105_port *sp = &priv->ports[port];
3208 
3209 	if (!dsa_is_user_port(ds, port))
3210 		return;
3211 
3212 	kthread_cancel_work_sync(&sp->xmit_work);
3213 	skb_queue_purge(&sp->xmit_queue);
3214 }
3215 
3216 static int sja1105_mgmt_xmit(struct dsa_switch *ds, int port, int slot,
3217 			     struct sk_buff *skb, bool takets)
3218 {
3219 	struct sja1105_mgmt_entry mgmt_route = {0};
3220 	struct sja1105_private *priv = ds->priv;
3221 	struct ethhdr *hdr;
3222 	int timeout = 10;
3223 	int rc;
3224 
3225 	hdr = eth_hdr(skb);
3226 
3227 	mgmt_route.macaddr = ether_addr_to_u64(hdr->h_dest);
3228 	mgmt_route.destports = BIT(port);
3229 	mgmt_route.enfport = 1;
3230 	mgmt_route.tsreg = 0;
3231 	mgmt_route.takets = takets;
3232 
3233 	rc = sja1105_dynamic_config_write(priv, BLK_IDX_MGMT_ROUTE,
3234 					  slot, &mgmt_route, true);
3235 	if (rc < 0) {
3236 		kfree_skb(skb);
3237 		return rc;
3238 	}
3239 
3240 	/* Transfer skb to the host port. */
3241 	dsa_enqueue_skb(skb, dsa_to_port(ds, port)->slave);
3242 
3243 	/* Wait until the switch has processed the frame */
3244 	do {
3245 		rc = sja1105_dynamic_config_read(priv, BLK_IDX_MGMT_ROUTE,
3246 						 slot, &mgmt_route);
3247 		if (rc < 0) {
3248 			dev_err_ratelimited(priv->ds->dev,
3249 					    "failed to poll for mgmt route\n");
3250 			continue;
3251 		}
3252 
3253 		/* UM10944: The ENFPORT flag of the respective entry is
3254 		 * cleared when a match is found. The host can use this
3255 		 * flag as an acknowledgment.
3256 		 */
3257 		cpu_relax();
3258 	} while (mgmt_route.enfport && --timeout);
3259 
3260 	if (!timeout) {
3261 		/* Clean up the management route so that a follow-up
3262 		 * frame may not match on it by mistake.
3263 		 * This is only hardware supported on P/Q/R/S - on E/T it is
3264 		 * a no-op and we are silently discarding the -EOPNOTSUPP.
3265 		 */
3266 		sja1105_dynamic_config_write(priv, BLK_IDX_MGMT_ROUTE,
3267 					     slot, &mgmt_route, false);
3268 		dev_err_ratelimited(priv->ds->dev, "xmit timed out\n");
3269 	}
3270 
3271 	return NETDEV_TX_OK;
3272 }
3273 
3274 #define work_to_port(work) \
3275 		container_of((work), struct sja1105_port, xmit_work)
3276 #define tagger_to_sja1105(t) \
3277 		container_of((t), struct sja1105_private, tagger_data)
3278 
3279 /* Deferred work is unfortunately necessary because setting up the management
3280  * route cannot be done from atomit context (SPI transfer takes a sleepable
3281  * lock on the bus)
3282  */
3283 static void sja1105_port_deferred_xmit(struct kthread_work *work)
3284 {
3285 	struct sja1105_port *sp = work_to_port(work);
3286 	struct sja1105_tagger_data *tagger_data = sp->data;
3287 	struct sja1105_private *priv = tagger_to_sja1105(tagger_data);
3288 	int port = sp - priv->ports;
3289 	struct sk_buff *skb;
3290 
3291 	while ((skb = skb_dequeue(&sp->xmit_queue)) != NULL) {
3292 		struct sk_buff *clone = SJA1105_SKB_CB(skb)->clone;
3293 
3294 		mutex_lock(&priv->mgmt_lock);
3295 
3296 		sja1105_mgmt_xmit(priv->ds, port, 0, skb, !!clone);
3297 
3298 		/* The clone, if there, was made by dsa_skb_tx_timestamp */
3299 		if (clone)
3300 			sja1105_ptp_txtstamp_skb(priv->ds, port, clone);
3301 
3302 		mutex_unlock(&priv->mgmt_lock);
3303 	}
3304 }
3305 
3306 /* The MAXAGE setting belongs to the L2 Forwarding Parameters table,
3307  * which cannot be reconfigured at runtime. So a switch reset is required.
3308  */
3309 static int sja1105_set_ageing_time(struct dsa_switch *ds,
3310 				   unsigned int ageing_time)
3311 {
3312 	struct sja1105_l2_lookup_params_entry *l2_lookup_params;
3313 	struct sja1105_private *priv = ds->priv;
3314 	struct sja1105_table *table;
3315 	unsigned int maxage;
3316 
3317 	table = &priv->static_config.tables[BLK_IDX_L2_LOOKUP_PARAMS];
3318 	l2_lookup_params = table->entries;
3319 
3320 	maxage = SJA1105_AGEING_TIME_MS(ageing_time);
3321 
3322 	if (l2_lookup_params->maxage == maxage)
3323 		return 0;
3324 
3325 	l2_lookup_params->maxage = maxage;
3326 
3327 	return sja1105_static_config_reload(priv, SJA1105_AGEING_TIME);
3328 }
3329 
3330 static int sja1105_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
3331 {
3332 	struct sja1105_l2_policing_entry *policing;
3333 	struct sja1105_private *priv = ds->priv;
3334 
3335 	new_mtu += VLAN_ETH_HLEN + ETH_FCS_LEN;
3336 
3337 	if (dsa_is_cpu_port(ds, port))
3338 		new_mtu += VLAN_HLEN;
3339 
3340 	policing = priv->static_config.tables[BLK_IDX_L2_POLICING].entries;
3341 
3342 	if (policing[port].maxlen == new_mtu)
3343 		return 0;
3344 
3345 	policing[port].maxlen = new_mtu;
3346 
3347 	return sja1105_static_config_reload(priv, SJA1105_BEST_EFFORT_POLICING);
3348 }
3349 
3350 static int sja1105_get_max_mtu(struct dsa_switch *ds, int port)
3351 {
3352 	return 2043 - VLAN_ETH_HLEN - ETH_FCS_LEN;
3353 }
3354 
3355 static int sja1105_port_setup_tc(struct dsa_switch *ds, int port,
3356 				 enum tc_setup_type type,
3357 				 void *type_data)
3358 {
3359 	switch (type) {
3360 	case TC_SETUP_QDISC_TAPRIO:
3361 		return sja1105_setup_tc_taprio(ds, port, type_data);
3362 	case TC_SETUP_QDISC_CBS:
3363 		return sja1105_setup_tc_cbs(ds, port, type_data);
3364 	default:
3365 		return -EOPNOTSUPP;
3366 	}
3367 }
3368 
3369 /* We have a single mirror (@to) port, but can configure ingress and egress
3370  * mirroring on all other (@from) ports.
3371  * We need to allow mirroring rules only as long as the @to port is always the
3372  * same, and we need to unset the @to port from mirr_port only when there is no
3373  * mirroring rule that references it.
3374  */
3375 static int sja1105_mirror_apply(struct sja1105_private *priv, int from, int to,
3376 				bool ingress, bool enabled)
3377 {
3378 	struct sja1105_general_params_entry *general_params;
3379 	struct sja1105_mac_config_entry *mac;
3380 	struct dsa_switch *ds = priv->ds;
3381 	struct sja1105_table *table;
3382 	bool already_enabled;
3383 	u64 new_mirr_port;
3384 	int rc;
3385 
3386 	table = &priv->static_config.tables[BLK_IDX_GENERAL_PARAMS];
3387 	general_params = table->entries;
3388 
3389 	mac = priv->static_config.tables[BLK_IDX_MAC_CONFIG].entries;
3390 
3391 	already_enabled = (general_params->mirr_port != ds->num_ports);
3392 	if (already_enabled && enabled && general_params->mirr_port != to) {
3393 		dev_err(priv->ds->dev,
3394 			"Delete mirroring rules towards port %llu first\n",
3395 			general_params->mirr_port);
3396 		return -EBUSY;
3397 	}
3398 
3399 	new_mirr_port = to;
3400 	if (!enabled) {
3401 		bool keep = false;
3402 		int port;
3403 
3404 		/* Anybody still referencing mirr_port? */
3405 		for (port = 0; port < ds->num_ports; port++) {
3406 			if (mac[port].ing_mirr || mac[port].egr_mirr) {
3407 				keep = true;
3408 				break;
3409 			}
3410 		}
3411 		/* Unset already_enabled for next time */
3412 		if (!keep)
3413 			new_mirr_port = ds->num_ports;
3414 	}
3415 	if (new_mirr_port != general_params->mirr_port) {
3416 		general_params->mirr_port = new_mirr_port;
3417 
3418 		rc = sja1105_dynamic_config_write(priv, BLK_IDX_GENERAL_PARAMS,
3419 						  0, general_params, true);
3420 		if (rc < 0)
3421 			return rc;
3422 	}
3423 
3424 	if (ingress)
3425 		mac[from].ing_mirr = enabled;
3426 	else
3427 		mac[from].egr_mirr = enabled;
3428 
3429 	return sja1105_dynamic_config_write(priv, BLK_IDX_MAC_CONFIG, from,
3430 					    &mac[from], true);
3431 }
3432 
3433 static int sja1105_mirror_add(struct dsa_switch *ds, int port,
3434 			      struct dsa_mall_mirror_tc_entry *mirror,
3435 			      bool ingress)
3436 {
3437 	return sja1105_mirror_apply(ds->priv, port, mirror->to_local_port,
3438 				    ingress, true);
3439 }
3440 
3441 static void sja1105_mirror_del(struct dsa_switch *ds, int port,
3442 			       struct dsa_mall_mirror_tc_entry *mirror)
3443 {
3444 	sja1105_mirror_apply(ds->priv, port, mirror->to_local_port,
3445 			     mirror->ingress, false);
3446 }
3447 
3448 static int sja1105_port_policer_add(struct dsa_switch *ds, int port,
3449 				    struct dsa_mall_policer_tc_entry *policer)
3450 {
3451 	struct sja1105_l2_policing_entry *policing;
3452 	struct sja1105_private *priv = ds->priv;
3453 
3454 	policing = priv->static_config.tables[BLK_IDX_L2_POLICING].entries;
3455 
3456 	/* In hardware, every 8 microseconds the credit level is incremented by
3457 	 * the value of RATE bytes divided by 64, up to a maximum of SMAX
3458 	 * bytes.
3459 	 */
3460 	policing[port].rate = div_u64(512 * policer->rate_bytes_per_sec,
3461 				      1000000);
3462 	policing[port].smax = policer->burst;
3463 
3464 	return sja1105_static_config_reload(priv, SJA1105_BEST_EFFORT_POLICING);
3465 }
3466 
3467 static void sja1105_port_policer_del(struct dsa_switch *ds, int port)
3468 {
3469 	struct sja1105_l2_policing_entry *policing;
3470 	struct sja1105_private *priv = ds->priv;
3471 
3472 	policing = priv->static_config.tables[BLK_IDX_L2_POLICING].entries;
3473 
3474 	policing[port].rate = SJA1105_RATE_MBPS(1000);
3475 	policing[port].smax = 65535;
3476 
3477 	sja1105_static_config_reload(priv, SJA1105_BEST_EFFORT_POLICING);
3478 }
3479 
3480 static int sja1105_port_set_learning(struct sja1105_private *priv, int port,
3481 				     bool enabled)
3482 {
3483 	struct sja1105_mac_config_entry *mac;
3484 	int rc;
3485 
3486 	mac = priv->static_config.tables[BLK_IDX_MAC_CONFIG].entries;
3487 
3488 	mac[port].dyn_learn = enabled;
3489 
3490 	rc = sja1105_dynamic_config_write(priv, BLK_IDX_MAC_CONFIG, port,
3491 					  &mac[port], true);
3492 	if (rc)
3493 		return rc;
3494 
3495 	if (enabled)
3496 		priv->learn_ena |= BIT(port);
3497 	else
3498 		priv->learn_ena &= ~BIT(port);
3499 
3500 	return 0;
3501 }
3502 
3503 static int sja1105_port_ucast_bcast_flood(struct sja1105_private *priv, int to,
3504 					  struct switchdev_brport_flags flags)
3505 {
3506 	if (flags.mask & BR_FLOOD) {
3507 		if (flags.val & BR_FLOOD)
3508 			priv->ucast_egress_floods |= BIT(to);
3509 		else
3510 			priv->ucast_egress_floods &= ~BIT(to);
3511 	}
3512 
3513 	if (flags.mask & BR_BCAST_FLOOD) {
3514 		if (flags.val & BR_BCAST_FLOOD)
3515 			priv->bcast_egress_floods |= BIT(to);
3516 		else
3517 			priv->bcast_egress_floods &= ~BIT(to);
3518 	}
3519 
3520 	return sja1105_manage_flood_domains(priv);
3521 }
3522 
3523 static int sja1105_port_mcast_flood(struct sja1105_private *priv, int to,
3524 				    struct switchdev_brport_flags flags,
3525 				    struct netlink_ext_ack *extack)
3526 {
3527 	struct sja1105_l2_lookup_entry *l2_lookup;
3528 	struct sja1105_table *table;
3529 	int match;
3530 
3531 	table = &priv->static_config.tables[BLK_IDX_L2_LOOKUP];
3532 	l2_lookup = table->entries;
3533 
3534 	for (match = 0; match < table->entry_count; match++)
3535 		if (l2_lookup[match].macaddr == SJA1105_UNKNOWN_MULTICAST &&
3536 		    l2_lookup[match].mask_macaddr == SJA1105_UNKNOWN_MULTICAST)
3537 			break;
3538 
3539 	if (match == table->entry_count) {
3540 		NL_SET_ERR_MSG_MOD(extack,
3541 				   "Could not find FDB entry for unknown multicast");
3542 		return -ENOSPC;
3543 	}
3544 
3545 	if (flags.val & BR_MCAST_FLOOD)
3546 		l2_lookup[match].destports |= BIT(to);
3547 	else
3548 		l2_lookup[match].destports &= ~BIT(to);
3549 
3550 	return sja1105_dynamic_config_write(priv, BLK_IDX_L2_LOOKUP,
3551 					    l2_lookup[match].index,
3552 					    &l2_lookup[match],
3553 					    true);
3554 }
3555 
3556 static int sja1105_port_pre_bridge_flags(struct dsa_switch *ds, int port,
3557 					 struct switchdev_brport_flags flags,
3558 					 struct netlink_ext_ack *extack)
3559 {
3560 	struct sja1105_private *priv = ds->priv;
3561 
3562 	if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
3563 			   BR_BCAST_FLOOD))
3564 		return -EINVAL;
3565 
3566 	if (flags.mask & (BR_FLOOD | BR_MCAST_FLOOD) &&
3567 	    !priv->info->can_limit_mcast_flood) {
3568 		bool multicast = !!(flags.val & BR_MCAST_FLOOD);
3569 		bool unicast = !!(flags.val & BR_FLOOD);
3570 
3571 		if (unicast != multicast) {
3572 			NL_SET_ERR_MSG_MOD(extack,
3573 					   "This chip cannot configure multicast flooding independently of unicast");
3574 			return -EINVAL;
3575 		}
3576 	}
3577 
3578 	return 0;
3579 }
3580 
3581 static int sja1105_port_bridge_flags(struct dsa_switch *ds, int port,
3582 				     struct switchdev_brport_flags flags,
3583 				     struct netlink_ext_ack *extack)
3584 {
3585 	struct sja1105_private *priv = ds->priv;
3586 	int rc;
3587 
3588 	if (flags.mask & BR_LEARNING) {
3589 		bool learn_ena = !!(flags.val & BR_LEARNING);
3590 
3591 		rc = sja1105_port_set_learning(priv, port, learn_ena);
3592 		if (rc)
3593 			return rc;
3594 	}
3595 
3596 	if (flags.mask & (BR_FLOOD | BR_BCAST_FLOOD)) {
3597 		rc = sja1105_port_ucast_bcast_flood(priv, port, flags);
3598 		if (rc)
3599 			return rc;
3600 	}
3601 
3602 	/* For chips that can't offload BR_MCAST_FLOOD independently, there
3603 	 * is nothing to do here, we ensured the configuration is in sync by
3604 	 * offloading BR_FLOOD.
3605 	 */
3606 	if (flags.mask & BR_MCAST_FLOOD && priv->info->can_limit_mcast_flood) {
3607 		rc = sja1105_port_mcast_flood(priv, port, flags,
3608 					      extack);
3609 		if (rc)
3610 			return rc;
3611 	}
3612 
3613 	return 0;
3614 }
3615 
3616 static const struct dsa_switch_ops sja1105_switch_ops = {
3617 	.get_tag_protocol	= sja1105_get_tag_protocol,
3618 	.setup			= sja1105_setup,
3619 	.teardown		= sja1105_teardown,
3620 	.set_ageing_time	= sja1105_set_ageing_time,
3621 	.port_change_mtu	= sja1105_change_mtu,
3622 	.port_max_mtu		= sja1105_get_max_mtu,
3623 	.phylink_validate	= sja1105_phylink_validate,
3624 	.phylink_mac_config	= sja1105_mac_config,
3625 	.phylink_mac_link_up	= sja1105_mac_link_up,
3626 	.phylink_mac_link_down	= sja1105_mac_link_down,
3627 	.get_strings		= sja1105_get_strings,
3628 	.get_ethtool_stats	= sja1105_get_ethtool_stats,
3629 	.get_sset_count		= sja1105_get_sset_count,
3630 	.get_ts_info		= sja1105_get_ts_info,
3631 	.port_disable		= sja1105_port_disable,
3632 	.port_fdb_dump		= sja1105_fdb_dump,
3633 	.port_fdb_add		= sja1105_fdb_add,
3634 	.port_fdb_del		= sja1105_fdb_del,
3635 	.port_bridge_join	= sja1105_bridge_join,
3636 	.port_bridge_leave	= sja1105_bridge_leave,
3637 	.port_pre_bridge_flags	= sja1105_port_pre_bridge_flags,
3638 	.port_bridge_flags	= sja1105_port_bridge_flags,
3639 	.port_stp_state_set	= sja1105_bridge_stp_state_set,
3640 	.port_vlan_filtering	= sja1105_vlan_filtering,
3641 	.port_vlan_add		= sja1105_vlan_add,
3642 	.port_vlan_del		= sja1105_vlan_del,
3643 	.port_mdb_add		= sja1105_mdb_add,
3644 	.port_mdb_del		= sja1105_mdb_del,
3645 	.port_hwtstamp_get	= sja1105_hwtstamp_get,
3646 	.port_hwtstamp_set	= sja1105_hwtstamp_set,
3647 	.port_rxtstamp		= sja1105_port_rxtstamp,
3648 	.port_txtstamp		= sja1105_port_txtstamp,
3649 	.port_setup_tc		= sja1105_port_setup_tc,
3650 	.port_mirror_add	= sja1105_mirror_add,
3651 	.port_mirror_del	= sja1105_mirror_del,
3652 	.port_policer_add	= sja1105_port_policer_add,
3653 	.port_policer_del	= sja1105_port_policer_del,
3654 	.cls_flower_add		= sja1105_cls_flower_add,
3655 	.cls_flower_del		= sja1105_cls_flower_del,
3656 	.cls_flower_stats	= sja1105_cls_flower_stats,
3657 	.crosschip_bridge_join	= sja1105_crosschip_bridge_join,
3658 	.crosschip_bridge_leave	= sja1105_crosschip_bridge_leave,
3659 	.devlink_param_get	= sja1105_devlink_param_get,
3660 	.devlink_param_set	= sja1105_devlink_param_set,
3661 	.devlink_info_get	= sja1105_devlink_info_get,
3662 };
3663 
3664 static const struct of_device_id sja1105_dt_ids[];
3665 
3666 static int sja1105_check_device_id(struct sja1105_private *priv)
3667 {
3668 	const struct sja1105_regs *regs = priv->info->regs;
3669 	u8 prod_id[SJA1105_SIZE_DEVICE_ID] = {0};
3670 	struct device *dev = &priv->spidev->dev;
3671 	const struct of_device_id *match;
3672 	u32 device_id;
3673 	u64 part_no;
3674 	int rc;
3675 
3676 	rc = sja1105_xfer_u32(priv, SPI_READ, regs->device_id, &device_id,
3677 			      NULL);
3678 	if (rc < 0)
3679 		return rc;
3680 
3681 	rc = sja1105_xfer_buf(priv, SPI_READ, regs->prod_id, prod_id,
3682 			      SJA1105_SIZE_DEVICE_ID);
3683 	if (rc < 0)
3684 		return rc;
3685 
3686 	sja1105_unpack(prod_id, &part_no, 19, 4, SJA1105_SIZE_DEVICE_ID);
3687 
3688 	for (match = sja1105_dt_ids; match->compatible[0]; match++) {
3689 		const struct sja1105_info *info = match->data;
3690 
3691 		/* Is what's been probed in our match table at all? */
3692 		if (info->device_id != device_id || info->part_no != part_no)
3693 			continue;
3694 
3695 		/* But is it what's in the device tree? */
3696 		if (priv->info->device_id != device_id ||
3697 		    priv->info->part_no != part_no) {
3698 			dev_warn(dev, "Device tree specifies chip %s but found %s, please fix it!\n",
3699 				 priv->info->name, info->name);
3700 			/* It isn't. No problem, pick that up. */
3701 			priv->info = info;
3702 		}
3703 
3704 		return 0;
3705 	}
3706 
3707 	dev_err(dev, "Unexpected {device ID, part number}: 0x%x 0x%llx\n",
3708 		device_id, part_no);
3709 
3710 	return -ENODEV;
3711 }
3712 
3713 static int sja1105_probe(struct spi_device *spi)
3714 {
3715 	struct sja1105_tagger_data *tagger_data;
3716 	struct device *dev = &spi->dev;
3717 	struct sja1105_private *priv;
3718 	size_t max_xfer, max_msg;
3719 	struct dsa_switch *ds;
3720 	int rc, port;
3721 
3722 	if (!dev->of_node) {
3723 		dev_err(dev, "No DTS bindings for SJA1105 driver\n");
3724 		return -EINVAL;
3725 	}
3726 
3727 	priv = devm_kzalloc(dev, sizeof(struct sja1105_private), GFP_KERNEL);
3728 	if (!priv)
3729 		return -ENOMEM;
3730 
3731 	/* Configure the optional reset pin and bring up switch */
3732 	priv->reset_gpio = devm_gpiod_get(dev, "reset", GPIOD_OUT_HIGH);
3733 	if (IS_ERR(priv->reset_gpio))
3734 		dev_dbg(dev, "reset-gpios not defined, ignoring\n");
3735 	else
3736 		sja1105_hw_reset(priv->reset_gpio, 1, 1);
3737 
3738 	/* Populate our driver private structure (priv) based on
3739 	 * the device tree node that was probed (spi)
3740 	 */
3741 	priv->spidev = spi;
3742 	spi_set_drvdata(spi, priv);
3743 
3744 	/* Configure the SPI bus */
3745 	spi->bits_per_word = 8;
3746 	rc = spi_setup(spi);
3747 	if (rc < 0) {
3748 		dev_err(dev, "Could not init SPI\n");
3749 		return rc;
3750 	}
3751 
3752 	/* In sja1105_xfer, we send spi_messages composed of two spi_transfers:
3753 	 * a small one for the message header and another one for the current
3754 	 * chunk of the packed buffer.
3755 	 * Check that the restrictions imposed by the SPI controller are
3756 	 * respected: the chunk buffer is smaller than the max transfer size,
3757 	 * and the total length of the chunk plus its message header is smaller
3758 	 * than the max message size.
3759 	 * We do that during probe time since the maximum transfer size is a
3760 	 * runtime invariant.
3761 	 */
3762 	max_xfer = spi_max_transfer_size(spi);
3763 	max_msg = spi_max_message_size(spi);
3764 
3765 	/* We need to send at least one 64-bit word of SPI payload per message
3766 	 * in order to be able to make useful progress.
3767 	 */
3768 	if (max_msg < SJA1105_SIZE_SPI_MSG_HEADER + 8) {
3769 		dev_err(dev, "SPI master cannot send large enough buffers, aborting\n");
3770 		return -EINVAL;
3771 	}
3772 
3773 	priv->max_xfer_len = SJA1105_SIZE_SPI_MSG_MAXLEN;
3774 	if (priv->max_xfer_len > max_xfer)
3775 		priv->max_xfer_len = max_xfer;
3776 	if (priv->max_xfer_len > max_msg - SJA1105_SIZE_SPI_MSG_HEADER)
3777 		priv->max_xfer_len = max_msg - SJA1105_SIZE_SPI_MSG_HEADER;
3778 
3779 	priv->info = of_device_get_match_data(dev);
3780 
3781 	/* Detect hardware device */
3782 	rc = sja1105_check_device_id(priv);
3783 	if (rc < 0) {
3784 		dev_err(dev, "Device ID check failed: %d\n", rc);
3785 		return rc;
3786 	}
3787 
3788 	dev_info(dev, "Probed switch chip: %s\n", priv->info->name);
3789 
3790 	ds = devm_kzalloc(dev, sizeof(*ds), GFP_KERNEL);
3791 	if (!ds)
3792 		return -ENOMEM;
3793 
3794 	ds->dev = dev;
3795 	ds->num_ports = priv->info->num_ports;
3796 	ds->ops = &sja1105_switch_ops;
3797 	ds->priv = priv;
3798 	priv->ds = ds;
3799 
3800 	tagger_data = &priv->tagger_data;
3801 
3802 	mutex_init(&priv->ptp_data.lock);
3803 	mutex_init(&priv->mgmt_lock);
3804 
3805 	priv->dsa_8021q_ctx = devm_kzalloc(dev, sizeof(*priv->dsa_8021q_ctx),
3806 					   GFP_KERNEL);
3807 	if (!priv->dsa_8021q_ctx)
3808 		return -ENOMEM;
3809 
3810 	priv->dsa_8021q_ctx->ops = &sja1105_dsa_8021q_ops;
3811 	priv->dsa_8021q_ctx->proto = htons(ETH_P_8021Q);
3812 	priv->dsa_8021q_ctx->ds = ds;
3813 
3814 	INIT_LIST_HEAD(&priv->dsa_8021q_ctx->crosschip_links);
3815 	INIT_LIST_HEAD(&priv->bridge_vlans);
3816 	INIT_LIST_HEAD(&priv->dsa_8021q_vlans);
3817 
3818 	sja1105_tas_setup(ds);
3819 	sja1105_flower_setup(ds);
3820 
3821 	rc = dsa_register_switch(priv->ds);
3822 	if (rc)
3823 		return rc;
3824 
3825 	if (IS_ENABLED(CONFIG_NET_SCH_CBS)) {
3826 		priv->cbs = devm_kcalloc(dev, priv->info->num_cbs_shapers,
3827 					 sizeof(struct sja1105_cbs_entry),
3828 					 GFP_KERNEL);
3829 		if (!priv->cbs) {
3830 			rc = -ENOMEM;
3831 			goto out_unregister_switch;
3832 		}
3833 	}
3834 
3835 	/* Connections between dsa_port and sja1105_port */
3836 	for (port = 0; port < ds->num_ports; port++) {
3837 		struct sja1105_port *sp = &priv->ports[port];
3838 		struct dsa_port *dp = dsa_to_port(ds, port);
3839 		struct net_device *slave;
3840 		int subvlan;
3841 
3842 		if (!dsa_is_user_port(ds, port))
3843 			continue;
3844 
3845 		dp->priv = sp;
3846 		sp->dp = dp;
3847 		sp->data = tagger_data;
3848 		slave = dp->slave;
3849 		kthread_init_work(&sp->xmit_work, sja1105_port_deferred_xmit);
3850 		sp->xmit_worker = kthread_create_worker(0, "%s_xmit",
3851 							slave->name);
3852 		if (IS_ERR(sp->xmit_worker)) {
3853 			rc = PTR_ERR(sp->xmit_worker);
3854 			dev_err(ds->dev,
3855 				"failed to create deferred xmit thread: %d\n",
3856 				rc);
3857 			goto out_destroy_workers;
3858 		}
3859 		skb_queue_head_init(&sp->xmit_queue);
3860 		sp->xmit_tpid = ETH_P_SJA1105;
3861 
3862 		for (subvlan = 0; subvlan < DSA_8021Q_N_SUBVLAN; subvlan++)
3863 			sp->subvlan_map[subvlan] = VLAN_N_VID;
3864 	}
3865 
3866 	return 0;
3867 
3868 out_destroy_workers:
3869 	while (port-- > 0) {
3870 		struct sja1105_port *sp = &priv->ports[port];
3871 
3872 		if (!dsa_is_user_port(ds, port))
3873 			continue;
3874 
3875 		kthread_destroy_worker(sp->xmit_worker);
3876 	}
3877 
3878 out_unregister_switch:
3879 	dsa_unregister_switch(ds);
3880 
3881 	return rc;
3882 }
3883 
3884 static int sja1105_remove(struct spi_device *spi)
3885 {
3886 	struct sja1105_private *priv = spi_get_drvdata(spi);
3887 
3888 	dsa_unregister_switch(priv->ds);
3889 	return 0;
3890 }
3891 
3892 static const struct of_device_id sja1105_dt_ids[] = {
3893 	{ .compatible = "nxp,sja1105e", .data = &sja1105e_info },
3894 	{ .compatible = "nxp,sja1105t", .data = &sja1105t_info },
3895 	{ .compatible = "nxp,sja1105p", .data = &sja1105p_info },
3896 	{ .compatible = "nxp,sja1105q", .data = &sja1105q_info },
3897 	{ .compatible = "nxp,sja1105r", .data = &sja1105r_info },
3898 	{ .compatible = "nxp,sja1105s", .data = &sja1105s_info },
3899 	{ .compatible = "nxp,sja1110a", .data = &sja1110a_info },
3900 	{ .compatible = "nxp,sja1110b", .data = &sja1110b_info },
3901 	{ .compatible = "nxp,sja1110c", .data = &sja1110c_info },
3902 	{ .compatible = "nxp,sja1110d", .data = &sja1110d_info },
3903 	{ /* sentinel */ },
3904 };
3905 MODULE_DEVICE_TABLE(of, sja1105_dt_ids);
3906 
3907 static struct spi_driver sja1105_driver = {
3908 	.driver = {
3909 		.name  = "sja1105",
3910 		.owner = THIS_MODULE,
3911 		.of_match_table = of_match_ptr(sja1105_dt_ids),
3912 	},
3913 	.probe  = sja1105_probe,
3914 	.remove = sja1105_remove,
3915 };
3916 
3917 module_spi_driver(sja1105_driver);
3918 
3919 MODULE_AUTHOR("Vladimir Oltean <olteanv@gmail.com>");
3920 MODULE_AUTHOR("Georg Waibel <georg.waibel@sensor-technik.de>");
3921 MODULE_DESCRIPTION("SJA1105 Driver");
3922 MODULE_LICENSE("GPL v2");
3923