1 // SPDX-License-Identifier: GPL-2.0
2 /* Copyright (c) 2018, Sensor-Technik Wiedemann GmbH
3  * Copyright (c) 2018-2019, Vladimir Oltean <olteanv@gmail.com>
4  */
5 
6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt
7 
8 #include <linux/delay.h>
9 #include <linux/module.h>
10 #include <linux/printk.h>
11 #include <linux/spi/spi.h>
12 #include <linux/errno.h>
13 #include <linux/gpio/consumer.h>
14 #include <linux/phylink.h>
15 #include <linux/of.h>
16 #include <linux/of_net.h>
17 #include <linux/of_mdio.h>
18 #include <linux/of_device.h>
19 #include <linux/pcs/pcs-xpcs.h>
20 #include <linux/netdev_features.h>
21 #include <linux/netdevice.h>
22 #include <linux/if_bridge.h>
23 #include <linux/if_ether.h>
24 #include <linux/dsa/8021q.h>
25 #include "sja1105.h"
26 #include "sja1105_tas.h"
27 
28 #define SJA1105_UNKNOWN_MULTICAST	0x010000000000ull
29 #define SJA1105_DEFAULT_VLAN		(VLAN_N_VID - 1)
30 
31 static const struct dsa_switch_ops sja1105_switch_ops;
32 
33 static void sja1105_hw_reset(struct gpio_desc *gpio, unsigned int pulse_len,
34 			     unsigned int startup_delay)
35 {
36 	gpiod_set_value_cansleep(gpio, 1);
37 	/* Wait for minimum reset pulse length */
38 	msleep(pulse_len);
39 	gpiod_set_value_cansleep(gpio, 0);
40 	/* Wait until chip is ready after reset */
41 	msleep(startup_delay);
42 }
43 
44 static void
45 sja1105_port_allow_traffic(struct sja1105_l2_forwarding_entry *l2_fwd,
46 			   int from, int to, bool allow)
47 {
48 	if (allow)
49 		l2_fwd[from].reach_port |= BIT(to);
50 	else
51 		l2_fwd[from].reach_port &= ~BIT(to);
52 }
53 
54 static bool sja1105_can_forward(struct sja1105_l2_forwarding_entry *l2_fwd,
55 				int from, int to)
56 {
57 	return !!(l2_fwd[from].reach_port & BIT(to));
58 }
59 
60 static int sja1105_init_mac_settings(struct sja1105_private *priv)
61 {
62 	struct sja1105_mac_config_entry default_mac = {
63 		/* Enable all 8 priority queues on egress.
64 		 * Every queue i holds top[i] - base[i] frames.
65 		 * Sum of top[i] - base[i] is 511 (max hardware limit).
66 		 */
67 		.top  = {0x3F, 0x7F, 0xBF, 0xFF, 0x13F, 0x17F, 0x1BF, 0x1FF},
68 		.base = {0x0, 0x40, 0x80, 0xC0, 0x100, 0x140, 0x180, 0x1C0},
69 		.enabled = {true, true, true, true, true, true, true, true},
70 		/* Keep standard IFG of 12 bytes on egress. */
71 		.ifg = 0,
72 		/* Always put the MAC speed in automatic mode, where it can be
73 		 * adjusted at runtime by PHYLINK.
74 		 */
75 		.speed = priv->info->port_speed[SJA1105_SPEED_AUTO],
76 		/* No static correction for 1-step 1588 events */
77 		.tp_delin = 0,
78 		.tp_delout = 0,
79 		/* Disable aging for critical TTEthernet traffic */
80 		.maxage = 0xFF,
81 		/* Internal VLAN (pvid) to apply to untagged ingress */
82 		.vlanprio = 0,
83 		.vlanid = 1,
84 		.ing_mirr = false,
85 		.egr_mirr = false,
86 		/* Don't drop traffic with other EtherType than ETH_P_IP */
87 		.drpnona664 = false,
88 		/* Don't drop double-tagged traffic */
89 		.drpdtag = false,
90 		/* Don't drop untagged traffic */
91 		.drpuntag = false,
92 		/* Don't retag 802.1p (VID 0) traffic with the pvid */
93 		.retag = false,
94 		/* Disable learning and I/O on user ports by default -
95 		 * STP will enable it.
96 		 */
97 		.dyn_learn = false,
98 		.egress = false,
99 		.ingress = false,
100 	};
101 	struct sja1105_mac_config_entry *mac;
102 	struct dsa_switch *ds = priv->ds;
103 	struct sja1105_table *table;
104 	int i;
105 
106 	table = &priv->static_config.tables[BLK_IDX_MAC_CONFIG];
107 
108 	/* Discard previous MAC Configuration Table */
109 	if (table->entry_count) {
110 		kfree(table->entries);
111 		table->entry_count = 0;
112 	}
113 
114 	table->entries = kcalloc(table->ops->max_entry_count,
115 				 table->ops->unpacked_entry_size, GFP_KERNEL);
116 	if (!table->entries)
117 		return -ENOMEM;
118 
119 	table->entry_count = table->ops->max_entry_count;
120 
121 	mac = table->entries;
122 
123 	for (i = 0; i < ds->num_ports; i++) {
124 		mac[i] = default_mac;
125 
126 		/* Let sja1105_bridge_stp_state_set() keep address learning
127 		 * enabled for the CPU port.
128 		 */
129 		if (dsa_is_cpu_port(ds, i))
130 			priv->learn_ena |= BIT(i);
131 	}
132 
133 	return 0;
134 }
135 
136 static int sja1105_init_mii_settings(struct sja1105_private *priv)
137 {
138 	struct device *dev = &priv->spidev->dev;
139 	struct sja1105_xmii_params_entry *mii;
140 	struct dsa_switch *ds = priv->ds;
141 	struct sja1105_table *table;
142 	int i;
143 
144 	table = &priv->static_config.tables[BLK_IDX_XMII_PARAMS];
145 
146 	/* Discard previous xMII Mode Parameters Table */
147 	if (table->entry_count) {
148 		kfree(table->entries);
149 		table->entry_count = 0;
150 	}
151 
152 	table->entries = kcalloc(table->ops->max_entry_count,
153 				 table->ops->unpacked_entry_size, GFP_KERNEL);
154 	if (!table->entries)
155 		return -ENOMEM;
156 
157 	/* Override table based on PHYLINK DT bindings */
158 	table->entry_count = table->ops->max_entry_count;
159 
160 	mii = table->entries;
161 
162 	for (i = 0; i < ds->num_ports; i++) {
163 		sja1105_mii_role_t role = XMII_MAC;
164 
165 		if (dsa_is_unused_port(priv->ds, i))
166 			continue;
167 
168 		switch (priv->phy_mode[i]) {
169 		case PHY_INTERFACE_MODE_INTERNAL:
170 			if (priv->info->internal_phy[i] == SJA1105_NO_PHY)
171 				goto unsupported;
172 
173 			mii->xmii_mode[i] = XMII_MODE_MII;
174 			if (priv->info->internal_phy[i] == SJA1105_PHY_BASE_TX)
175 				mii->special[i] = true;
176 
177 			break;
178 		case PHY_INTERFACE_MODE_REVMII:
179 			role = XMII_PHY;
180 			fallthrough;
181 		case PHY_INTERFACE_MODE_MII:
182 			if (!priv->info->supports_mii[i])
183 				goto unsupported;
184 
185 			mii->xmii_mode[i] = XMII_MODE_MII;
186 			break;
187 		case PHY_INTERFACE_MODE_REVRMII:
188 			role = XMII_PHY;
189 			fallthrough;
190 		case PHY_INTERFACE_MODE_RMII:
191 			if (!priv->info->supports_rmii[i])
192 				goto unsupported;
193 
194 			mii->xmii_mode[i] = XMII_MODE_RMII;
195 			break;
196 		case PHY_INTERFACE_MODE_RGMII:
197 		case PHY_INTERFACE_MODE_RGMII_ID:
198 		case PHY_INTERFACE_MODE_RGMII_RXID:
199 		case PHY_INTERFACE_MODE_RGMII_TXID:
200 			if (!priv->info->supports_rgmii[i])
201 				goto unsupported;
202 
203 			mii->xmii_mode[i] = XMII_MODE_RGMII;
204 			break;
205 		case PHY_INTERFACE_MODE_SGMII:
206 			if (!priv->info->supports_sgmii[i])
207 				goto unsupported;
208 
209 			mii->xmii_mode[i] = XMII_MODE_SGMII;
210 			mii->special[i] = true;
211 			break;
212 		case PHY_INTERFACE_MODE_2500BASEX:
213 			if (!priv->info->supports_2500basex[i])
214 				goto unsupported;
215 
216 			mii->xmii_mode[i] = XMII_MODE_SGMII;
217 			mii->special[i] = true;
218 			break;
219 unsupported:
220 		default:
221 			dev_err(dev, "Unsupported PHY mode %s on port %d!\n",
222 				phy_modes(priv->phy_mode[i]), i);
223 			return -EINVAL;
224 		}
225 
226 		mii->phy_mac[i] = role;
227 	}
228 	return 0;
229 }
230 
231 static int sja1105_init_static_fdb(struct sja1105_private *priv)
232 {
233 	struct sja1105_l2_lookup_entry *l2_lookup;
234 	struct sja1105_table *table;
235 	int port;
236 
237 	table = &priv->static_config.tables[BLK_IDX_L2_LOOKUP];
238 
239 	/* We only populate the FDB table through dynamic L2 Address Lookup
240 	 * entries, except for a special entry at the end which is a catch-all
241 	 * for unknown multicast and will be used to control flooding domain.
242 	 */
243 	if (table->entry_count) {
244 		kfree(table->entries);
245 		table->entry_count = 0;
246 	}
247 
248 	if (!priv->info->can_limit_mcast_flood)
249 		return 0;
250 
251 	table->entries = kcalloc(1, table->ops->unpacked_entry_size,
252 				 GFP_KERNEL);
253 	if (!table->entries)
254 		return -ENOMEM;
255 
256 	table->entry_count = 1;
257 	l2_lookup = table->entries;
258 
259 	/* All L2 multicast addresses have an odd first octet */
260 	l2_lookup[0].macaddr = SJA1105_UNKNOWN_MULTICAST;
261 	l2_lookup[0].mask_macaddr = SJA1105_UNKNOWN_MULTICAST;
262 	l2_lookup[0].lockeds = true;
263 	l2_lookup[0].index = SJA1105_MAX_L2_LOOKUP_COUNT - 1;
264 
265 	/* Flood multicast to every port by default */
266 	for (port = 0; port < priv->ds->num_ports; port++)
267 		if (!dsa_is_unused_port(priv->ds, port))
268 			l2_lookup[0].destports |= BIT(port);
269 
270 	return 0;
271 }
272 
273 static int sja1105_init_l2_lookup_params(struct sja1105_private *priv)
274 {
275 	struct sja1105_l2_lookup_params_entry default_l2_lookup_params = {
276 		/* Learned FDB entries are forgotten after 300 seconds */
277 		.maxage = SJA1105_AGEING_TIME_MS(300000),
278 		/* All entries within a FDB bin are available for learning */
279 		.dyn_tbsz = SJA1105ET_FDB_BIN_SIZE,
280 		/* And the P/Q/R/S equivalent setting: */
281 		.start_dynspc = 0,
282 		/* 2^8 + 2^5 + 2^3 + 2^2 + 2^1 + 1 in Koopman notation */
283 		.poly = 0x97,
284 		/* This selects between Independent VLAN Learning (IVL) and
285 		 * Shared VLAN Learning (SVL)
286 		 */
287 		.shared_learn = true,
288 		/* Don't discard management traffic based on ENFPORT -
289 		 * we don't perform SMAC port enforcement anyway, so
290 		 * what we are setting here doesn't matter.
291 		 */
292 		.no_enf_hostprt = false,
293 		/* Don't learn SMAC for mac_fltres1 and mac_fltres0.
294 		 * Maybe correlate with no_linklocal_learn from bridge driver?
295 		 */
296 		.no_mgmt_learn = true,
297 		/* P/Q/R/S only */
298 		.use_static = true,
299 		/* Dynamically learned FDB entries can overwrite other (older)
300 		 * dynamic FDB entries
301 		 */
302 		.owr_dyn = true,
303 		.drpnolearn = true,
304 	};
305 	struct dsa_switch *ds = priv->ds;
306 	int port, num_used_ports = 0;
307 	struct sja1105_table *table;
308 	u64 max_fdb_entries;
309 
310 	for (port = 0; port < ds->num_ports; port++)
311 		if (!dsa_is_unused_port(ds, port))
312 			num_used_ports++;
313 
314 	max_fdb_entries = SJA1105_MAX_L2_LOOKUP_COUNT / num_used_ports;
315 
316 	for (port = 0; port < ds->num_ports; port++) {
317 		if (dsa_is_unused_port(ds, port))
318 			continue;
319 
320 		default_l2_lookup_params.maxaddrp[port] = max_fdb_entries;
321 	}
322 
323 	table = &priv->static_config.tables[BLK_IDX_L2_LOOKUP_PARAMS];
324 
325 	if (table->entry_count) {
326 		kfree(table->entries);
327 		table->entry_count = 0;
328 	}
329 
330 	table->entries = kcalloc(table->ops->max_entry_count,
331 				 table->ops->unpacked_entry_size, GFP_KERNEL);
332 	if (!table->entries)
333 		return -ENOMEM;
334 
335 	table->entry_count = table->ops->max_entry_count;
336 
337 	/* This table only has a single entry */
338 	((struct sja1105_l2_lookup_params_entry *)table->entries)[0] =
339 				default_l2_lookup_params;
340 
341 	return 0;
342 }
343 
344 /* Set up a default VLAN for untagged traffic injected from the CPU
345  * using management routes (e.g. STP, PTP) as opposed to tag_8021q.
346  * All DT-defined ports are members of this VLAN, and there are no
347  * restrictions on forwarding (since the CPU selects the destination).
348  * Frames from this VLAN will always be transmitted as untagged, and
349  * neither the bridge nor the 8021q module cannot create this VLAN ID.
350  */
351 static int sja1105_init_static_vlan(struct sja1105_private *priv)
352 {
353 	struct sja1105_table *table;
354 	struct sja1105_vlan_lookup_entry pvid = {
355 		.type_entry = SJA1110_VLAN_D_TAG,
356 		.ving_mirr = 0,
357 		.vegr_mirr = 0,
358 		.vmemb_port = 0,
359 		.vlan_bc = 0,
360 		.tag_port = 0,
361 		.vlanid = SJA1105_DEFAULT_VLAN,
362 	};
363 	struct dsa_switch *ds = priv->ds;
364 	int port;
365 
366 	table = &priv->static_config.tables[BLK_IDX_VLAN_LOOKUP];
367 
368 	if (table->entry_count) {
369 		kfree(table->entries);
370 		table->entry_count = 0;
371 	}
372 
373 	table->entries = kzalloc(table->ops->unpacked_entry_size,
374 				 GFP_KERNEL);
375 	if (!table->entries)
376 		return -ENOMEM;
377 
378 	table->entry_count = 1;
379 
380 	for (port = 0; port < ds->num_ports; port++) {
381 		struct sja1105_bridge_vlan *v;
382 
383 		if (dsa_is_unused_port(ds, port))
384 			continue;
385 
386 		pvid.vmemb_port |= BIT(port);
387 		pvid.vlan_bc |= BIT(port);
388 		pvid.tag_port &= ~BIT(port);
389 
390 		v = kzalloc(sizeof(*v), GFP_KERNEL);
391 		if (!v)
392 			return -ENOMEM;
393 
394 		v->port = port;
395 		v->vid = SJA1105_DEFAULT_VLAN;
396 		v->untagged = true;
397 		if (dsa_is_cpu_port(ds, port))
398 			v->pvid = true;
399 		list_add(&v->list, &priv->dsa_8021q_vlans);
400 
401 		v = kmemdup(v, sizeof(*v), GFP_KERNEL);
402 		if (!v)
403 			return -ENOMEM;
404 
405 		list_add(&v->list, &priv->bridge_vlans);
406 	}
407 
408 	((struct sja1105_vlan_lookup_entry *)table->entries)[0] = pvid;
409 	return 0;
410 }
411 
412 static int sja1105_init_l2_forwarding(struct sja1105_private *priv)
413 {
414 	struct sja1105_l2_forwarding_entry *l2fwd;
415 	struct dsa_switch *ds = priv->ds;
416 	struct sja1105_table *table;
417 	int i, j;
418 
419 	table = &priv->static_config.tables[BLK_IDX_L2_FORWARDING];
420 
421 	if (table->entry_count) {
422 		kfree(table->entries);
423 		table->entry_count = 0;
424 	}
425 
426 	table->entries = kcalloc(table->ops->max_entry_count,
427 				 table->ops->unpacked_entry_size, GFP_KERNEL);
428 	if (!table->entries)
429 		return -ENOMEM;
430 
431 	table->entry_count = table->ops->max_entry_count;
432 
433 	l2fwd = table->entries;
434 
435 	/* First 5 entries define the forwarding rules */
436 	for (i = 0; i < ds->num_ports; i++) {
437 		unsigned int upstream = dsa_upstream_port(priv->ds, i);
438 
439 		if (dsa_is_unused_port(ds, i))
440 			continue;
441 
442 		for (j = 0; j < SJA1105_NUM_TC; j++)
443 			l2fwd[i].vlan_pmap[j] = j;
444 
445 		/* All ports start up with egress flooding enabled,
446 		 * including the CPU port.
447 		 */
448 		priv->ucast_egress_floods |= BIT(i);
449 		priv->bcast_egress_floods |= BIT(i);
450 
451 		if (i == upstream)
452 			continue;
453 
454 		sja1105_port_allow_traffic(l2fwd, i, upstream, true);
455 		sja1105_port_allow_traffic(l2fwd, upstream, i, true);
456 
457 		l2fwd[i].bc_domain = BIT(upstream);
458 		l2fwd[i].fl_domain = BIT(upstream);
459 
460 		l2fwd[upstream].bc_domain |= BIT(i);
461 		l2fwd[upstream].fl_domain |= BIT(i);
462 	}
463 
464 	/* Next 8 entries define VLAN PCP mapping from ingress to egress.
465 	 * Create a one-to-one mapping.
466 	 */
467 	for (i = 0; i < SJA1105_NUM_TC; i++) {
468 		for (j = 0; j < ds->num_ports; j++) {
469 			if (dsa_is_unused_port(ds, j))
470 				continue;
471 
472 			l2fwd[ds->num_ports + i].vlan_pmap[j] = i;
473 		}
474 
475 		l2fwd[ds->num_ports + i].type_egrpcp2outputq = true;
476 	}
477 
478 	return 0;
479 }
480 
481 static int sja1110_init_pcp_remapping(struct sja1105_private *priv)
482 {
483 	struct sja1110_pcp_remapping_entry *pcp_remap;
484 	struct dsa_switch *ds = priv->ds;
485 	struct sja1105_table *table;
486 	int port, tc;
487 
488 	table = &priv->static_config.tables[BLK_IDX_PCP_REMAPPING];
489 
490 	/* Nothing to do for SJA1105 */
491 	if (!table->ops->max_entry_count)
492 		return 0;
493 
494 	if (table->entry_count) {
495 		kfree(table->entries);
496 		table->entry_count = 0;
497 	}
498 
499 	table->entries = kcalloc(table->ops->max_entry_count,
500 				 table->ops->unpacked_entry_size, GFP_KERNEL);
501 	if (!table->entries)
502 		return -ENOMEM;
503 
504 	table->entry_count = table->ops->max_entry_count;
505 
506 	pcp_remap = table->entries;
507 
508 	/* Repeat the configuration done for vlan_pmap */
509 	for (port = 0; port < ds->num_ports; port++) {
510 		if (dsa_is_unused_port(ds, port))
511 			continue;
512 
513 		for (tc = 0; tc < SJA1105_NUM_TC; tc++)
514 			pcp_remap[port].egrpcp[tc] = tc;
515 	}
516 
517 	return 0;
518 }
519 
520 static int sja1105_init_l2_forwarding_params(struct sja1105_private *priv)
521 {
522 	struct sja1105_l2_forwarding_params_entry *l2fwd_params;
523 	struct sja1105_table *table;
524 
525 	table = &priv->static_config.tables[BLK_IDX_L2_FORWARDING_PARAMS];
526 
527 	if (table->entry_count) {
528 		kfree(table->entries);
529 		table->entry_count = 0;
530 	}
531 
532 	table->entries = kcalloc(table->ops->max_entry_count,
533 				 table->ops->unpacked_entry_size, GFP_KERNEL);
534 	if (!table->entries)
535 		return -ENOMEM;
536 
537 	table->entry_count = table->ops->max_entry_count;
538 
539 	/* This table only has a single entry */
540 	l2fwd_params = table->entries;
541 
542 	/* Disallow dynamic reconfiguration of vlan_pmap */
543 	l2fwd_params->max_dynp = 0;
544 	/* Use a single memory partition for all ingress queues */
545 	l2fwd_params->part_spc[0] = priv->info->max_frame_mem;
546 
547 	return 0;
548 }
549 
550 void sja1105_frame_memory_partitioning(struct sja1105_private *priv)
551 {
552 	struct sja1105_l2_forwarding_params_entry *l2_fwd_params;
553 	struct sja1105_vl_forwarding_params_entry *vl_fwd_params;
554 	int max_mem = priv->info->max_frame_mem;
555 	struct sja1105_table *table;
556 
557 	/* VLAN retagging is implemented using a loopback port that consumes
558 	 * frame buffers. That leaves less for us.
559 	 */
560 	if (priv->vlan_state == SJA1105_VLAN_BEST_EFFORT)
561 		max_mem -= SJA1105_FRAME_MEMORY_RETAGGING_OVERHEAD;
562 
563 	table = &priv->static_config.tables[BLK_IDX_L2_FORWARDING_PARAMS];
564 	l2_fwd_params = table->entries;
565 	l2_fwd_params->part_spc[0] = max_mem;
566 
567 	/* If we have any critical-traffic virtual links, we need to reserve
568 	 * some frame buffer memory for them. At the moment, hardcode the value
569 	 * at 100 blocks of 128 bytes of memory each. This leaves 829 blocks
570 	 * remaining for best-effort traffic. TODO: figure out a more flexible
571 	 * way to perform the frame buffer partitioning.
572 	 */
573 	if (!priv->static_config.tables[BLK_IDX_VL_FORWARDING].entry_count)
574 		return;
575 
576 	table = &priv->static_config.tables[BLK_IDX_VL_FORWARDING_PARAMS];
577 	vl_fwd_params = table->entries;
578 
579 	l2_fwd_params->part_spc[0] -= SJA1105_VL_FRAME_MEMORY;
580 	vl_fwd_params->partspc[0] = SJA1105_VL_FRAME_MEMORY;
581 }
582 
583 /* SJA1110 TDMACONFIGIDX values:
584  *
585  *      | 100 Mbps ports |  1Gbps ports  | 2.5Gbps ports | Disabled ports
586  * -----+----------------+---------------+---------------+---------------
587  *   0  |   0, [5:10]    |     [1:2]     |     [3:4]     |     retag
588  *   1  |0, [5:10], retag|     [1:2]     |     [3:4]     |       -
589  *   2  |   0, [5:10]    |  [1:3], retag |       4       |       -
590  *   3  |   0, [5:10]    |[1:2], 4, retag|       3       |       -
591  *   4  |  0, 2, [5:10]  |    1, retag   |     [3:4]     |       -
592  *   5  |  0, 1, [5:10]  |    2, retag   |     [3:4]     |       -
593  *  14  |   0, [5:10]    | [1:4], retag  |       -       |       -
594  *  15  |     [5:10]     | [0:4], retag  |       -       |       -
595  */
596 static void sja1110_select_tdmaconfigidx(struct sja1105_private *priv)
597 {
598 	struct sja1105_general_params_entry *general_params;
599 	struct sja1105_table *table;
600 	bool port_1_is_base_tx;
601 	bool port_3_is_2500;
602 	bool port_4_is_2500;
603 	u64 tdmaconfigidx;
604 
605 	if (priv->info->device_id != SJA1110_DEVICE_ID)
606 		return;
607 
608 	table = &priv->static_config.tables[BLK_IDX_GENERAL_PARAMS];
609 	general_params = table->entries;
610 
611 	/* All the settings below are "as opposed to SGMII", which is the
612 	 * other pinmuxing option.
613 	 */
614 	port_1_is_base_tx = priv->phy_mode[1] == PHY_INTERFACE_MODE_INTERNAL;
615 	port_3_is_2500 = priv->phy_mode[3] == PHY_INTERFACE_MODE_2500BASEX;
616 	port_4_is_2500 = priv->phy_mode[4] == PHY_INTERFACE_MODE_2500BASEX;
617 
618 	if (port_1_is_base_tx)
619 		/* Retagging port will operate at 1 Gbps */
620 		tdmaconfigidx = 5;
621 	else if (port_3_is_2500 && port_4_is_2500)
622 		/* Retagging port will operate at 100 Mbps */
623 		tdmaconfigidx = 1;
624 	else if (port_3_is_2500)
625 		/* Retagging port will operate at 1 Gbps */
626 		tdmaconfigidx = 3;
627 	else if (port_4_is_2500)
628 		/* Retagging port will operate at 1 Gbps */
629 		tdmaconfigidx = 2;
630 	else
631 		/* Retagging port will operate at 1 Gbps */
632 		tdmaconfigidx = 14;
633 
634 	general_params->tdmaconfigidx = tdmaconfigidx;
635 }
636 
637 static int sja1105_init_general_params(struct sja1105_private *priv)
638 {
639 	struct sja1105_general_params_entry default_general_params = {
640 		/* Allow dynamic changing of the mirror port */
641 		.mirr_ptacu = true,
642 		.switchid = priv->ds->index,
643 		/* Priority queue for link-local management frames
644 		 * (both ingress to and egress from CPU - PTP, STP etc)
645 		 */
646 		.hostprio = 7,
647 		.mac_fltres1 = SJA1105_LINKLOCAL_FILTER_A,
648 		.mac_flt1    = SJA1105_LINKLOCAL_FILTER_A_MASK,
649 		.incl_srcpt1 = false,
650 		.send_meta1  = false,
651 		.mac_fltres0 = SJA1105_LINKLOCAL_FILTER_B,
652 		.mac_flt0    = SJA1105_LINKLOCAL_FILTER_B_MASK,
653 		.incl_srcpt0 = false,
654 		.send_meta0  = false,
655 		/* The destination for traffic matching mac_fltres1 and
656 		 * mac_fltres0 on all ports except host_port. Such traffic
657 		 * receieved on host_port itself would be dropped, except
658 		 * by installing a temporary 'management route'
659 		 */
660 		.host_port = priv->ds->num_ports,
661 		/* Default to an invalid value */
662 		.mirr_port = priv->ds->num_ports,
663 		/* No TTEthernet */
664 		.vllupformat = SJA1105_VL_FORMAT_PSFP,
665 		.vlmarker = 0,
666 		.vlmask = 0,
667 		/* Only update correctionField for 1-step PTP (L2 transport) */
668 		.ignore2stf = 0,
669 		/* Forcefully disable VLAN filtering by telling
670 		 * the switch that VLAN has a different EtherType.
671 		 */
672 		.tpid = ETH_P_SJA1105,
673 		.tpid2 = ETH_P_SJA1105,
674 		/* Enable the TTEthernet engine on SJA1110 */
675 		.tte_en = true,
676 		/* Set up the EtherType for control packets on SJA1110 */
677 		.header_type = ETH_P_SJA1110,
678 	};
679 	struct sja1105_general_params_entry *general_params;
680 	struct dsa_switch *ds = priv->ds;
681 	struct sja1105_table *table;
682 	int port;
683 
684 	for (port = 0; port < ds->num_ports; port++) {
685 		if (dsa_is_cpu_port(ds, port)) {
686 			default_general_params.host_port = port;
687 			break;
688 		}
689 	}
690 
691 	table = &priv->static_config.tables[BLK_IDX_GENERAL_PARAMS];
692 
693 	if (table->entry_count) {
694 		kfree(table->entries);
695 		table->entry_count = 0;
696 	}
697 
698 	table->entries = kcalloc(table->ops->max_entry_count,
699 				 table->ops->unpacked_entry_size, GFP_KERNEL);
700 	if (!table->entries)
701 		return -ENOMEM;
702 
703 	table->entry_count = table->ops->max_entry_count;
704 
705 	general_params = table->entries;
706 
707 	/* This table only has a single entry */
708 	general_params[0] = default_general_params;
709 
710 	sja1110_select_tdmaconfigidx(priv);
711 
712 	/* Link-local traffic received on casc_port will be forwarded
713 	 * to host_port without embedding the source port and device ID
714 	 * info in the destination MAC address, and no RX timestamps will be
715 	 * taken either (presumably because it is a cascaded port and a
716 	 * downstream SJA switch already did that).
717 	 * To disable the feature, we need to do different things depending on
718 	 * switch generation. On SJA1105 we need to set an invalid port, while
719 	 * on SJA1110 which support multiple cascaded ports, this field is a
720 	 * bitmask so it must be left zero.
721 	 */
722 	if (!priv->info->multiple_cascade_ports)
723 		general_params->casc_port = ds->num_ports;
724 
725 	return 0;
726 }
727 
728 static int sja1105_init_avb_params(struct sja1105_private *priv)
729 {
730 	struct sja1105_avb_params_entry *avb;
731 	struct sja1105_table *table;
732 
733 	table = &priv->static_config.tables[BLK_IDX_AVB_PARAMS];
734 
735 	/* Discard previous AVB Parameters Table */
736 	if (table->entry_count) {
737 		kfree(table->entries);
738 		table->entry_count = 0;
739 	}
740 
741 	table->entries = kcalloc(table->ops->max_entry_count,
742 				 table->ops->unpacked_entry_size, GFP_KERNEL);
743 	if (!table->entries)
744 		return -ENOMEM;
745 
746 	table->entry_count = table->ops->max_entry_count;
747 
748 	avb = table->entries;
749 
750 	/* Configure the MAC addresses for meta frames */
751 	avb->destmeta = SJA1105_META_DMAC;
752 	avb->srcmeta  = SJA1105_META_SMAC;
753 	/* On P/Q/R/S, configure the direction of the PTP_CLK pin as input by
754 	 * default. This is because there might be boards with a hardware
755 	 * layout where enabling the pin as output might cause an electrical
756 	 * clash. On E/T the pin is always an output, which the board designers
757 	 * probably already knew, so even if there are going to be electrical
758 	 * issues, there's nothing we can do.
759 	 */
760 	avb->cas_master = false;
761 
762 	return 0;
763 }
764 
765 /* The L2 policing table is 2-stage. The table is looked up for each frame
766  * according to the ingress port, whether it was broadcast or not, and the
767  * classified traffic class (given by VLAN PCP). This portion of the lookup is
768  * fixed, and gives access to the SHARINDX, an indirection register pointing
769  * within the policing table itself, which is used to resolve the policer that
770  * will be used for this frame.
771  *
772  *  Stage 1                              Stage 2
773  * +------------+--------+              +---------------------------------+
774  * |Port 0 TC 0 |SHARINDX|              | Policer 0: Rate, Burst, MTU     |
775  * +------------+--------+              +---------------------------------+
776  * |Port 0 TC 1 |SHARINDX|              | Policer 1: Rate, Burst, MTU     |
777  * +------------+--------+              +---------------------------------+
778  *    ...                               | Policer 2: Rate, Burst, MTU     |
779  * +------------+--------+              +---------------------------------+
780  * |Port 0 TC 7 |SHARINDX|              | Policer 3: Rate, Burst, MTU     |
781  * +------------+--------+              +---------------------------------+
782  * |Port 1 TC 0 |SHARINDX|              | Policer 4: Rate, Burst, MTU     |
783  * +------------+--------+              +---------------------------------+
784  *    ...                               | Policer 5: Rate, Burst, MTU     |
785  * +------------+--------+              +---------------------------------+
786  * |Port 1 TC 7 |SHARINDX|              | Policer 6: Rate, Burst, MTU     |
787  * +------------+--------+              +---------------------------------+
788  *    ...                               | Policer 7: Rate, Burst, MTU     |
789  * +------------+--------+              +---------------------------------+
790  * |Port 4 TC 7 |SHARINDX|                 ...
791  * +------------+--------+
792  * |Port 0 BCAST|SHARINDX|                 ...
793  * +------------+--------+
794  * |Port 1 BCAST|SHARINDX|                 ...
795  * +------------+--------+
796  *    ...                                  ...
797  * +------------+--------+              +---------------------------------+
798  * |Port 4 BCAST|SHARINDX|              | Policer 44: Rate, Burst, MTU    |
799  * +------------+--------+              +---------------------------------+
800  *
801  * In this driver, we shall use policers 0-4 as statically alocated port
802  * (matchall) policers. So we need to make the SHARINDX for all lookups
803  * corresponding to this ingress port (8 VLAN PCP lookups and 1 broadcast
804  * lookup) equal.
805  * The remaining policers (40) shall be dynamically allocated for flower
806  * policers, where the key is either vlan_prio or dst_mac ff:ff:ff:ff:ff:ff.
807  */
808 #define SJA1105_RATE_MBPS(speed) (((speed) * 64000) / 1000)
809 
810 static int sja1105_init_l2_policing(struct sja1105_private *priv)
811 {
812 	struct sja1105_l2_policing_entry *policing;
813 	struct dsa_switch *ds = priv->ds;
814 	struct sja1105_table *table;
815 	int port, tc;
816 
817 	table = &priv->static_config.tables[BLK_IDX_L2_POLICING];
818 
819 	/* Discard previous L2 Policing Table */
820 	if (table->entry_count) {
821 		kfree(table->entries);
822 		table->entry_count = 0;
823 	}
824 
825 	table->entries = kcalloc(table->ops->max_entry_count,
826 				 table->ops->unpacked_entry_size, GFP_KERNEL);
827 	if (!table->entries)
828 		return -ENOMEM;
829 
830 	table->entry_count = table->ops->max_entry_count;
831 
832 	policing = table->entries;
833 
834 	/* Setup shared indices for the matchall policers */
835 	for (port = 0; port < ds->num_ports; port++) {
836 		int mcast = (ds->num_ports * (SJA1105_NUM_TC + 1)) + port;
837 		int bcast = (ds->num_ports * SJA1105_NUM_TC) + port;
838 
839 		for (tc = 0; tc < SJA1105_NUM_TC; tc++)
840 			policing[port * SJA1105_NUM_TC + tc].sharindx = port;
841 
842 		policing[bcast].sharindx = port;
843 		/* Only SJA1110 has multicast policers */
844 		if (mcast <= table->ops->max_entry_count)
845 			policing[mcast].sharindx = port;
846 	}
847 
848 	/* Setup the matchall policer parameters */
849 	for (port = 0; port < ds->num_ports; port++) {
850 		int mtu = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN;
851 
852 		if (dsa_is_cpu_port(priv->ds, port))
853 			mtu += VLAN_HLEN;
854 
855 		policing[port].smax = 65535; /* Burst size in bytes */
856 		policing[port].rate = SJA1105_RATE_MBPS(1000);
857 		policing[port].maxlen = mtu;
858 		policing[port].partition = 0;
859 	}
860 
861 	return 0;
862 }
863 
864 static int sja1105_static_config_load(struct sja1105_private *priv)
865 {
866 	int rc;
867 
868 	sja1105_static_config_free(&priv->static_config);
869 	rc = sja1105_static_config_init(&priv->static_config,
870 					priv->info->static_ops,
871 					priv->info->device_id);
872 	if (rc)
873 		return rc;
874 
875 	/* Build static configuration */
876 	rc = sja1105_init_mac_settings(priv);
877 	if (rc < 0)
878 		return rc;
879 	rc = sja1105_init_mii_settings(priv);
880 	if (rc < 0)
881 		return rc;
882 	rc = sja1105_init_static_fdb(priv);
883 	if (rc < 0)
884 		return rc;
885 	rc = sja1105_init_static_vlan(priv);
886 	if (rc < 0)
887 		return rc;
888 	rc = sja1105_init_l2_lookup_params(priv);
889 	if (rc < 0)
890 		return rc;
891 	rc = sja1105_init_l2_forwarding(priv);
892 	if (rc < 0)
893 		return rc;
894 	rc = sja1105_init_l2_forwarding_params(priv);
895 	if (rc < 0)
896 		return rc;
897 	rc = sja1105_init_l2_policing(priv);
898 	if (rc < 0)
899 		return rc;
900 	rc = sja1105_init_general_params(priv);
901 	if (rc < 0)
902 		return rc;
903 	rc = sja1105_init_avb_params(priv);
904 	if (rc < 0)
905 		return rc;
906 	rc = sja1110_init_pcp_remapping(priv);
907 	if (rc < 0)
908 		return rc;
909 
910 	/* Send initial configuration to hardware via SPI */
911 	return sja1105_static_config_upload(priv);
912 }
913 
914 static int sja1105_parse_rgmii_delays(struct sja1105_private *priv)
915 {
916 	struct dsa_switch *ds = priv->ds;
917 	int port;
918 
919 	for (port = 0; port < ds->num_ports; port++) {
920 		if (!priv->fixed_link[port])
921 			continue;
922 
923 		if (priv->phy_mode[port] == PHY_INTERFACE_MODE_RGMII_RXID ||
924 		    priv->phy_mode[port] == PHY_INTERFACE_MODE_RGMII_ID)
925 			priv->rgmii_rx_delay[port] = true;
926 
927 		if (priv->phy_mode[port] == PHY_INTERFACE_MODE_RGMII_TXID ||
928 		    priv->phy_mode[port] == PHY_INTERFACE_MODE_RGMII_ID)
929 			priv->rgmii_tx_delay[port] = true;
930 
931 		if ((priv->rgmii_rx_delay[port] || priv->rgmii_tx_delay[port]) &&
932 		    !priv->info->setup_rgmii_delay)
933 			return -EINVAL;
934 	}
935 	return 0;
936 }
937 
938 static int sja1105_parse_ports_node(struct sja1105_private *priv,
939 				    struct device_node *ports_node)
940 {
941 	struct device *dev = &priv->spidev->dev;
942 	struct device_node *child;
943 
944 	for_each_available_child_of_node(ports_node, child) {
945 		struct device_node *phy_node;
946 		phy_interface_t phy_mode;
947 		u32 index;
948 		int err;
949 
950 		/* Get switch port number from DT */
951 		if (of_property_read_u32(child, "reg", &index) < 0) {
952 			dev_err(dev, "Port number not defined in device tree "
953 				"(property \"reg\")\n");
954 			of_node_put(child);
955 			return -ENODEV;
956 		}
957 
958 		/* Get PHY mode from DT */
959 		err = of_get_phy_mode(child, &phy_mode);
960 		if (err) {
961 			dev_err(dev, "Failed to read phy-mode or "
962 				"phy-interface-type property for port %d\n",
963 				index);
964 			of_node_put(child);
965 			return -ENODEV;
966 		}
967 
968 		phy_node = of_parse_phandle(child, "phy-handle", 0);
969 		if (!phy_node) {
970 			if (!of_phy_is_fixed_link(child)) {
971 				dev_err(dev, "phy-handle or fixed-link "
972 					"properties missing!\n");
973 				of_node_put(child);
974 				return -ENODEV;
975 			}
976 			/* phy-handle is missing, but fixed-link isn't.
977 			 * So it's a fixed link. Default to PHY role.
978 			 */
979 			priv->fixed_link[index] = true;
980 		} else {
981 			of_node_put(phy_node);
982 		}
983 
984 		priv->phy_mode[index] = phy_mode;
985 	}
986 
987 	return 0;
988 }
989 
990 static int sja1105_parse_dt(struct sja1105_private *priv)
991 {
992 	struct device *dev = &priv->spidev->dev;
993 	struct device_node *switch_node = dev->of_node;
994 	struct device_node *ports_node;
995 	int rc;
996 
997 	ports_node = of_get_child_by_name(switch_node, "ports");
998 	if (!ports_node)
999 		ports_node = of_get_child_by_name(switch_node, "ethernet-ports");
1000 	if (!ports_node) {
1001 		dev_err(dev, "Incorrect bindings: absent \"ports\" node\n");
1002 		return -ENODEV;
1003 	}
1004 
1005 	rc = sja1105_parse_ports_node(priv, ports_node);
1006 	of_node_put(ports_node);
1007 
1008 	return rc;
1009 }
1010 
1011 /* Convert link speed from SJA1105 to ethtool encoding */
1012 static int sja1105_port_speed_to_ethtool(struct sja1105_private *priv,
1013 					 u64 speed)
1014 {
1015 	if (speed == priv->info->port_speed[SJA1105_SPEED_10MBPS])
1016 		return SPEED_10;
1017 	if (speed == priv->info->port_speed[SJA1105_SPEED_100MBPS])
1018 		return SPEED_100;
1019 	if (speed == priv->info->port_speed[SJA1105_SPEED_1000MBPS])
1020 		return SPEED_1000;
1021 	if (speed == priv->info->port_speed[SJA1105_SPEED_2500MBPS])
1022 		return SPEED_2500;
1023 	return SPEED_UNKNOWN;
1024 }
1025 
1026 /* Set link speed in the MAC configuration for a specific port. */
1027 static int sja1105_adjust_port_config(struct sja1105_private *priv, int port,
1028 				      int speed_mbps)
1029 {
1030 	struct sja1105_mac_config_entry *mac;
1031 	struct device *dev = priv->ds->dev;
1032 	u64 speed;
1033 	int rc;
1034 
1035 	/* On P/Q/R/S, one can read from the device via the MAC reconfiguration
1036 	 * tables. On E/T, MAC reconfig tables are not readable, only writable.
1037 	 * We have to *know* what the MAC looks like.  For the sake of keeping
1038 	 * the code common, we'll use the static configuration tables as a
1039 	 * reasonable approximation for both E/T and P/Q/R/S.
1040 	 */
1041 	mac = priv->static_config.tables[BLK_IDX_MAC_CONFIG].entries;
1042 
1043 	switch (speed_mbps) {
1044 	case SPEED_UNKNOWN:
1045 		/* PHYLINK called sja1105_mac_config() to inform us about
1046 		 * the state->interface, but AN has not completed and the
1047 		 * speed is not yet valid. UM10944.pdf says that setting
1048 		 * SJA1105_SPEED_AUTO at runtime disables the port, so that is
1049 		 * ok for power consumption in case AN will never complete -
1050 		 * otherwise PHYLINK should come back with a new update.
1051 		 */
1052 		speed = priv->info->port_speed[SJA1105_SPEED_AUTO];
1053 		break;
1054 	case SPEED_10:
1055 		speed = priv->info->port_speed[SJA1105_SPEED_10MBPS];
1056 		break;
1057 	case SPEED_100:
1058 		speed = priv->info->port_speed[SJA1105_SPEED_100MBPS];
1059 		break;
1060 	case SPEED_1000:
1061 		speed = priv->info->port_speed[SJA1105_SPEED_1000MBPS];
1062 		break;
1063 	case SPEED_2500:
1064 		speed = priv->info->port_speed[SJA1105_SPEED_2500MBPS];
1065 		break;
1066 	default:
1067 		dev_err(dev, "Invalid speed %iMbps\n", speed_mbps);
1068 		return -EINVAL;
1069 	}
1070 
1071 	/* Overwrite SJA1105_SPEED_AUTO from the static MAC configuration
1072 	 * table, since this will be used for the clocking setup, and we no
1073 	 * longer need to store it in the static config (already told hardware
1074 	 * we want auto during upload phase).
1075 	 * Actually for the SGMII port, the MAC is fixed at 1 Gbps and
1076 	 * we need to configure the PCS only (if even that).
1077 	 */
1078 	if (priv->phy_mode[port] == PHY_INTERFACE_MODE_SGMII)
1079 		mac[port].speed = priv->info->port_speed[SJA1105_SPEED_1000MBPS];
1080 	else if (priv->phy_mode[port] == PHY_INTERFACE_MODE_2500BASEX)
1081 		mac[port].speed = priv->info->port_speed[SJA1105_SPEED_2500MBPS];
1082 	else
1083 		mac[port].speed = speed;
1084 
1085 	/* Write to the dynamic reconfiguration tables */
1086 	rc = sja1105_dynamic_config_write(priv, BLK_IDX_MAC_CONFIG, port,
1087 					  &mac[port], true);
1088 	if (rc < 0) {
1089 		dev_err(dev, "Failed to write MAC config: %d\n", rc);
1090 		return rc;
1091 	}
1092 
1093 	/* Reconfigure the PLLs for the RGMII interfaces (required 125 MHz at
1094 	 * gigabit, 25 MHz at 100 Mbps and 2.5 MHz at 10 Mbps). For MII and
1095 	 * RMII no change of the clock setup is required. Actually, changing
1096 	 * the clock setup does interrupt the clock signal for a certain time
1097 	 * which causes trouble for all PHYs relying on this signal.
1098 	 */
1099 	if (!phy_interface_mode_is_rgmii(priv->phy_mode[port]))
1100 		return 0;
1101 
1102 	return sja1105_clocking_setup_port(priv, port);
1103 }
1104 
1105 /* The SJA1105 MAC programming model is through the static config (the xMII
1106  * Mode table cannot be dynamically reconfigured), and we have to program
1107  * that early (earlier than PHYLINK calls us, anyway).
1108  * So just error out in case the connected PHY attempts to change the initial
1109  * system interface MII protocol from what is defined in the DT, at least for
1110  * now.
1111  */
1112 static bool sja1105_phy_mode_mismatch(struct sja1105_private *priv, int port,
1113 				      phy_interface_t interface)
1114 {
1115 	return priv->phy_mode[port] != interface;
1116 }
1117 
1118 static void sja1105_mac_config(struct dsa_switch *ds, int port,
1119 			       unsigned int mode,
1120 			       const struct phylink_link_state *state)
1121 {
1122 	struct dsa_port *dp = dsa_to_port(ds, port);
1123 	struct sja1105_private *priv = ds->priv;
1124 	struct dw_xpcs *xpcs;
1125 
1126 	if (sja1105_phy_mode_mismatch(priv, port, state->interface)) {
1127 		dev_err(ds->dev, "Changing PHY mode to %s not supported!\n",
1128 			phy_modes(state->interface));
1129 		return;
1130 	}
1131 
1132 	xpcs = priv->xpcs[port];
1133 
1134 	if (xpcs)
1135 		phylink_set_pcs(dp->pl, &xpcs->pcs);
1136 }
1137 
1138 static void sja1105_mac_link_down(struct dsa_switch *ds, int port,
1139 				  unsigned int mode,
1140 				  phy_interface_t interface)
1141 {
1142 	sja1105_inhibit_tx(ds->priv, BIT(port), true);
1143 }
1144 
1145 static void sja1105_mac_link_up(struct dsa_switch *ds, int port,
1146 				unsigned int mode,
1147 				phy_interface_t interface,
1148 				struct phy_device *phydev,
1149 				int speed, int duplex,
1150 				bool tx_pause, bool rx_pause)
1151 {
1152 	struct sja1105_private *priv = ds->priv;
1153 
1154 	sja1105_adjust_port_config(priv, port, speed);
1155 
1156 	sja1105_inhibit_tx(priv, BIT(port), false);
1157 }
1158 
1159 static void sja1105_phylink_validate(struct dsa_switch *ds, int port,
1160 				     unsigned long *supported,
1161 				     struct phylink_link_state *state)
1162 {
1163 	/* Construct a new mask which exhaustively contains all link features
1164 	 * supported by the MAC, and then apply that (logical AND) to what will
1165 	 * be sent to the PHY for "marketing".
1166 	 */
1167 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
1168 	struct sja1105_private *priv = ds->priv;
1169 	struct sja1105_xmii_params_entry *mii;
1170 
1171 	mii = priv->static_config.tables[BLK_IDX_XMII_PARAMS].entries;
1172 
1173 	/* include/linux/phylink.h says:
1174 	 *     When @state->interface is %PHY_INTERFACE_MODE_NA, phylink
1175 	 *     expects the MAC driver to return all supported link modes.
1176 	 */
1177 	if (state->interface != PHY_INTERFACE_MODE_NA &&
1178 	    sja1105_phy_mode_mismatch(priv, port, state->interface)) {
1179 		bitmap_zero(supported, __ETHTOOL_LINK_MODE_MASK_NBITS);
1180 		return;
1181 	}
1182 
1183 	/* The MAC does not support pause frames, and also doesn't
1184 	 * support half-duplex traffic modes.
1185 	 */
1186 	phylink_set(mask, Autoneg);
1187 	phylink_set(mask, MII);
1188 	phylink_set(mask, 10baseT_Full);
1189 	phylink_set(mask, 100baseT_Full);
1190 	phylink_set(mask, 100baseT1_Full);
1191 	if (mii->xmii_mode[port] == XMII_MODE_RGMII ||
1192 	    mii->xmii_mode[port] == XMII_MODE_SGMII)
1193 		phylink_set(mask, 1000baseT_Full);
1194 	if (priv->info->supports_2500basex[port]) {
1195 		phylink_set(mask, 2500baseT_Full);
1196 		phylink_set(mask, 2500baseX_Full);
1197 	}
1198 
1199 	bitmap_and(supported, supported, mask, __ETHTOOL_LINK_MODE_MASK_NBITS);
1200 	bitmap_and(state->advertising, state->advertising, mask,
1201 		   __ETHTOOL_LINK_MODE_MASK_NBITS);
1202 }
1203 
1204 static int
1205 sja1105_find_static_fdb_entry(struct sja1105_private *priv, int port,
1206 			      const struct sja1105_l2_lookup_entry *requested)
1207 {
1208 	struct sja1105_l2_lookup_entry *l2_lookup;
1209 	struct sja1105_table *table;
1210 	int i;
1211 
1212 	table = &priv->static_config.tables[BLK_IDX_L2_LOOKUP];
1213 	l2_lookup = table->entries;
1214 
1215 	for (i = 0; i < table->entry_count; i++)
1216 		if (l2_lookup[i].macaddr == requested->macaddr &&
1217 		    l2_lookup[i].vlanid == requested->vlanid &&
1218 		    l2_lookup[i].destports & BIT(port))
1219 			return i;
1220 
1221 	return -1;
1222 }
1223 
1224 /* We want FDB entries added statically through the bridge command to persist
1225  * across switch resets, which are a common thing during normal SJA1105
1226  * operation. So we have to back them up in the static configuration tables
1227  * and hence apply them on next static config upload... yay!
1228  */
1229 static int
1230 sja1105_static_fdb_change(struct sja1105_private *priv, int port,
1231 			  const struct sja1105_l2_lookup_entry *requested,
1232 			  bool keep)
1233 {
1234 	struct sja1105_l2_lookup_entry *l2_lookup;
1235 	struct sja1105_table *table;
1236 	int rc, match;
1237 
1238 	table = &priv->static_config.tables[BLK_IDX_L2_LOOKUP];
1239 
1240 	match = sja1105_find_static_fdb_entry(priv, port, requested);
1241 	if (match < 0) {
1242 		/* Can't delete a missing entry. */
1243 		if (!keep)
1244 			return 0;
1245 
1246 		/* No match => new entry */
1247 		rc = sja1105_table_resize(table, table->entry_count + 1);
1248 		if (rc)
1249 			return rc;
1250 
1251 		match = table->entry_count - 1;
1252 	}
1253 
1254 	/* Assign pointer after the resize (it may be new memory) */
1255 	l2_lookup = table->entries;
1256 
1257 	/* We have a match.
1258 	 * If the job was to add this FDB entry, it's already done (mostly
1259 	 * anyway, since the port forwarding mask may have changed, case in
1260 	 * which we update it).
1261 	 * Otherwise we have to delete it.
1262 	 */
1263 	if (keep) {
1264 		l2_lookup[match] = *requested;
1265 		return 0;
1266 	}
1267 
1268 	/* To remove, the strategy is to overwrite the element with
1269 	 * the last one, and then reduce the array size by 1
1270 	 */
1271 	l2_lookup[match] = l2_lookup[table->entry_count - 1];
1272 	return sja1105_table_resize(table, table->entry_count - 1);
1273 }
1274 
1275 /* First-generation switches have a 4-way set associative TCAM that
1276  * holds the FDB entries. An FDB index spans from 0 to 1023 and is comprised of
1277  * a "bin" (grouping of 4 entries) and a "way" (an entry within a bin).
1278  * For the placement of a newly learnt FDB entry, the switch selects the bin
1279  * based on a hash function, and the way within that bin incrementally.
1280  */
1281 static int sja1105et_fdb_index(int bin, int way)
1282 {
1283 	return bin * SJA1105ET_FDB_BIN_SIZE + way;
1284 }
1285 
1286 static int sja1105et_is_fdb_entry_in_bin(struct sja1105_private *priv, int bin,
1287 					 const u8 *addr, u16 vid,
1288 					 struct sja1105_l2_lookup_entry *match,
1289 					 int *last_unused)
1290 {
1291 	int way;
1292 
1293 	for (way = 0; way < SJA1105ET_FDB_BIN_SIZE; way++) {
1294 		struct sja1105_l2_lookup_entry l2_lookup = {0};
1295 		int index = sja1105et_fdb_index(bin, way);
1296 
1297 		/* Skip unused entries, optionally marking them
1298 		 * into the return value
1299 		 */
1300 		if (sja1105_dynamic_config_read(priv, BLK_IDX_L2_LOOKUP,
1301 						index, &l2_lookup)) {
1302 			if (last_unused)
1303 				*last_unused = way;
1304 			continue;
1305 		}
1306 
1307 		if (l2_lookup.macaddr == ether_addr_to_u64(addr) &&
1308 		    l2_lookup.vlanid == vid) {
1309 			if (match)
1310 				*match = l2_lookup;
1311 			return way;
1312 		}
1313 	}
1314 	/* Return an invalid entry index if not found */
1315 	return -1;
1316 }
1317 
1318 int sja1105et_fdb_add(struct dsa_switch *ds, int port,
1319 		      const unsigned char *addr, u16 vid)
1320 {
1321 	struct sja1105_l2_lookup_entry l2_lookup = {0}, tmp;
1322 	struct sja1105_private *priv = ds->priv;
1323 	struct device *dev = ds->dev;
1324 	int last_unused = -1;
1325 	int start, end, i;
1326 	int bin, way, rc;
1327 
1328 	bin = sja1105et_fdb_hash(priv, addr, vid);
1329 
1330 	way = sja1105et_is_fdb_entry_in_bin(priv, bin, addr, vid,
1331 					    &l2_lookup, &last_unused);
1332 	if (way >= 0) {
1333 		/* We have an FDB entry. Is our port in the destination
1334 		 * mask? If yes, we need to do nothing. If not, we need
1335 		 * to rewrite the entry by adding this port to it.
1336 		 */
1337 		if ((l2_lookup.destports & BIT(port)) && l2_lookup.lockeds)
1338 			return 0;
1339 		l2_lookup.destports |= BIT(port);
1340 	} else {
1341 		int index = sja1105et_fdb_index(bin, way);
1342 
1343 		/* We don't have an FDB entry. We construct a new one and
1344 		 * try to find a place for it within the FDB table.
1345 		 */
1346 		l2_lookup.macaddr = ether_addr_to_u64(addr);
1347 		l2_lookup.destports = BIT(port);
1348 		l2_lookup.vlanid = vid;
1349 
1350 		if (last_unused >= 0) {
1351 			way = last_unused;
1352 		} else {
1353 			/* Bin is full, need to evict somebody.
1354 			 * Choose victim at random. If you get these messages
1355 			 * often, you may need to consider changing the
1356 			 * distribution function:
1357 			 * static_config[BLK_IDX_L2_LOOKUP_PARAMS].entries->poly
1358 			 */
1359 			get_random_bytes(&way, sizeof(u8));
1360 			way %= SJA1105ET_FDB_BIN_SIZE;
1361 			dev_warn(dev, "Warning, FDB bin %d full while adding entry for %pM. Evicting entry %u.\n",
1362 				 bin, addr, way);
1363 			/* Evict entry */
1364 			sja1105_dynamic_config_write(priv, BLK_IDX_L2_LOOKUP,
1365 						     index, NULL, false);
1366 		}
1367 	}
1368 	l2_lookup.lockeds = true;
1369 	l2_lookup.index = sja1105et_fdb_index(bin, way);
1370 
1371 	rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_LOOKUP,
1372 					  l2_lookup.index, &l2_lookup,
1373 					  true);
1374 	if (rc < 0)
1375 		return rc;
1376 
1377 	/* Invalidate a dynamically learned entry if that exists */
1378 	start = sja1105et_fdb_index(bin, 0);
1379 	end = sja1105et_fdb_index(bin, way);
1380 
1381 	for (i = start; i < end; i++) {
1382 		rc = sja1105_dynamic_config_read(priv, BLK_IDX_L2_LOOKUP,
1383 						 i, &tmp);
1384 		if (rc == -ENOENT)
1385 			continue;
1386 		if (rc)
1387 			return rc;
1388 
1389 		if (tmp.macaddr != ether_addr_to_u64(addr) || tmp.vlanid != vid)
1390 			continue;
1391 
1392 		rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_LOOKUP,
1393 						  i, NULL, false);
1394 		if (rc)
1395 			return rc;
1396 
1397 		break;
1398 	}
1399 
1400 	return sja1105_static_fdb_change(priv, port, &l2_lookup, true);
1401 }
1402 
1403 int sja1105et_fdb_del(struct dsa_switch *ds, int port,
1404 		      const unsigned char *addr, u16 vid)
1405 {
1406 	struct sja1105_l2_lookup_entry l2_lookup = {0};
1407 	struct sja1105_private *priv = ds->priv;
1408 	int index, bin, way, rc;
1409 	bool keep;
1410 
1411 	bin = sja1105et_fdb_hash(priv, addr, vid);
1412 	way = sja1105et_is_fdb_entry_in_bin(priv, bin, addr, vid,
1413 					    &l2_lookup, NULL);
1414 	if (way < 0)
1415 		return 0;
1416 	index = sja1105et_fdb_index(bin, way);
1417 
1418 	/* We have an FDB entry. Is our port in the destination mask? If yes,
1419 	 * we need to remove it. If the resulting port mask becomes empty, we
1420 	 * need to completely evict the FDB entry.
1421 	 * Otherwise we just write it back.
1422 	 */
1423 	l2_lookup.destports &= ~BIT(port);
1424 
1425 	if (l2_lookup.destports)
1426 		keep = true;
1427 	else
1428 		keep = false;
1429 
1430 	rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_LOOKUP,
1431 					  index, &l2_lookup, keep);
1432 	if (rc < 0)
1433 		return rc;
1434 
1435 	return sja1105_static_fdb_change(priv, port, &l2_lookup, keep);
1436 }
1437 
1438 int sja1105pqrs_fdb_add(struct dsa_switch *ds, int port,
1439 			const unsigned char *addr, u16 vid)
1440 {
1441 	struct sja1105_l2_lookup_entry l2_lookup = {0}, tmp;
1442 	struct sja1105_private *priv = ds->priv;
1443 	int rc, i;
1444 
1445 	/* Search for an existing entry in the FDB table */
1446 	l2_lookup.macaddr = ether_addr_to_u64(addr);
1447 	l2_lookup.vlanid = vid;
1448 	l2_lookup.mask_macaddr = GENMASK_ULL(ETH_ALEN * 8 - 1, 0);
1449 	l2_lookup.mask_vlanid = VLAN_VID_MASK;
1450 	l2_lookup.destports = BIT(port);
1451 
1452 	tmp = l2_lookup;
1453 
1454 	rc = sja1105_dynamic_config_read(priv, BLK_IDX_L2_LOOKUP,
1455 					 SJA1105_SEARCH, &tmp);
1456 	if (rc == 0 && tmp.index != SJA1105_MAX_L2_LOOKUP_COUNT - 1) {
1457 		/* Found a static entry and this port is already in the entry's
1458 		 * port mask => job done
1459 		 */
1460 		if ((tmp.destports & BIT(port)) && tmp.lockeds)
1461 			return 0;
1462 
1463 		l2_lookup = tmp;
1464 
1465 		/* l2_lookup.index is populated by the switch in case it
1466 		 * found something.
1467 		 */
1468 		l2_lookup.destports |= BIT(port);
1469 		goto skip_finding_an_index;
1470 	}
1471 
1472 	/* Not found, so try to find an unused spot in the FDB.
1473 	 * This is slightly inefficient because the strategy is knock-knock at
1474 	 * every possible position from 0 to 1023.
1475 	 */
1476 	for (i = 0; i < SJA1105_MAX_L2_LOOKUP_COUNT; i++) {
1477 		rc = sja1105_dynamic_config_read(priv, BLK_IDX_L2_LOOKUP,
1478 						 i, NULL);
1479 		if (rc < 0)
1480 			break;
1481 	}
1482 	if (i == SJA1105_MAX_L2_LOOKUP_COUNT) {
1483 		dev_err(ds->dev, "FDB is full, cannot add entry.\n");
1484 		return -EINVAL;
1485 	}
1486 	l2_lookup.index = i;
1487 
1488 skip_finding_an_index:
1489 	l2_lookup.lockeds = true;
1490 
1491 	rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_LOOKUP,
1492 					  l2_lookup.index, &l2_lookup,
1493 					  true);
1494 	if (rc < 0)
1495 		return rc;
1496 
1497 	/* The switch learns dynamic entries and looks up the FDB left to
1498 	 * right. It is possible that our addition was concurrent with the
1499 	 * dynamic learning of the same address, so now that the static entry
1500 	 * has been installed, we are certain that address learning for this
1501 	 * particular address has been turned off, so the dynamic entry either
1502 	 * is in the FDB at an index smaller than the static one, or isn't (it
1503 	 * can also be at a larger index, but in that case it is inactive
1504 	 * because the static FDB entry will match first, and the dynamic one
1505 	 * will eventually age out). Search for a dynamically learned address
1506 	 * prior to our static one and invalidate it.
1507 	 */
1508 	tmp = l2_lookup;
1509 
1510 	rc = sja1105_dynamic_config_read(priv, BLK_IDX_L2_LOOKUP,
1511 					 SJA1105_SEARCH, &tmp);
1512 	if (rc < 0) {
1513 		dev_err(ds->dev,
1514 			"port %d failed to read back entry for %pM vid %d: %pe\n",
1515 			port, addr, vid, ERR_PTR(rc));
1516 		return rc;
1517 	}
1518 
1519 	if (tmp.index < l2_lookup.index) {
1520 		rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_LOOKUP,
1521 						  tmp.index, NULL, false);
1522 		if (rc < 0)
1523 			return rc;
1524 	}
1525 
1526 	return sja1105_static_fdb_change(priv, port, &l2_lookup, true);
1527 }
1528 
1529 int sja1105pqrs_fdb_del(struct dsa_switch *ds, int port,
1530 			const unsigned char *addr, u16 vid)
1531 {
1532 	struct sja1105_l2_lookup_entry l2_lookup = {0};
1533 	struct sja1105_private *priv = ds->priv;
1534 	bool keep;
1535 	int rc;
1536 
1537 	l2_lookup.macaddr = ether_addr_to_u64(addr);
1538 	l2_lookup.vlanid = vid;
1539 	l2_lookup.mask_macaddr = GENMASK_ULL(ETH_ALEN * 8 - 1, 0);
1540 	l2_lookup.mask_vlanid = VLAN_VID_MASK;
1541 	l2_lookup.destports = BIT(port);
1542 
1543 	rc = sja1105_dynamic_config_read(priv, BLK_IDX_L2_LOOKUP,
1544 					 SJA1105_SEARCH, &l2_lookup);
1545 	if (rc < 0)
1546 		return 0;
1547 
1548 	l2_lookup.destports &= ~BIT(port);
1549 
1550 	/* Decide whether we remove just this port from the FDB entry,
1551 	 * or if we remove it completely.
1552 	 */
1553 	if (l2_lookup.destports)
1554 		keep = true;
1555 	else
1556 		keep = false;
1557 
1558 	rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_LOOKUP,
1559 					  l2_lookup.index, &l2_lookup, keep);
1560 	if (rc < 0)
1561 		return rc;
1562 
1563 	return sja1105_static_fdb_change(priv, port, &l2_lookup, keep);
1564 }
1565 
1566 static int sja1105_fdb_add(struct dsa_switch *ds, int port,
1567 			   const unsigned char *addr, u16 vid)
1568 {
1569 	struct sja1105_private *priv = ds->priv;
1570 
1571 	/* dsa_8021q is in effect when the bridge's vlan_filtering isn't,
1572 	 * so the switch still does some VLAN processing internally.
1573 	 * But Shared VLAN Learning (SVL) is also active, and it will take
1574 	 * care of autonomous forwarding between the unique pvid's of each
1575 	 * port.  Here we just make sure that users can't add duplicate FDB
1576 	 * entries when in this mode - the actual VID doesn't matter except
1577 	 * for what gets printed in 'bridge fdb show'.  In the case of zero,
1578 	 * no VID gets printed at all.
1579 	 */
1580 	if (priv->vlan_state != SJA1105_VLAN_FILTERING_FULL)
1581 		vid = 0;
1582 
1583 	return priv->info->fdb_add_cmd(ds, port, addr, vid);
1584 }
1585 
1586 static int sja1105_fdb_del(struct dsa_switch *ds, int port,
1587 			   const unsigned char *addr, u16 vid)
1588 {
1589 	struct sja1105_private *priv = ds->priv;
1590 
1591 	if (priv->vlan_state != SJA1105_VLAN_FILTERING_FULL)
1592 		vid = 0;
1593 
1594 	return priv->info->fdb_del_cmd(ds, port, addr, vid);
1595 }
1596 
1597 static int sja1105_fdb_dump(struct dsa_switch *ds, int port,
1598 			    dsa_fdb_dump_cb_t *cb, void *data)
1599 {
1600 	struct sja1105_private *priv = ds->priv;
1601 	struct device *dev = ds->dev;
1602 	int i;
1603 
1604 	for (i = 0; i < SJA1105_MAX_L2_LOOKUP_COUNT; i++) {
1605 		struct sja1105_l2_lookup_entry l2_lookup = {0};
1606 		u8 macaddr[ETH_ALEN];
1607 		int rc;
1608 
1609 		rc = sja1105_dynamic_config_read(priv, BLK_IDX_L2_LOOKUP,
1610 						 i, &l2_lookup);
1611 		/* No fdb entry at i, not an issue */
1612 		if (rc == -ENOENT)
1613 			continue;
1614 		if (rc) {
1615 			dev_err(dev, "Failed to dump FDB: %d\n", rc);
1616 			return rc;
1617 		}
1618 
1619 		/* FDB dump callback is per port. This means we have to
1620 		 * disregard a valid entry if it's not for this port, even if
1621 		 * only to revisit it later. This is inefficient because the
1622 		 * 1024-sized FDB table needs to be traversed 4 times through
1623 		 * SPI during a 'bridge fdb show' command.
1624 		 */
1625 		if (!(l2_lookup.destports & BIT(port)))
1626 			continue;
1627 
1628 		/* We need to hide the FDB entry for unknown multicast */
1629 		if (l2_lookup.macaddr == SJA1105_UNKNOWN_MULTICAST &&
1630 		    l2_lookup.mask_macaddr == SJA1105_UNKNOWN_MULTICAST)
1631 			continue;
1632 
1633 		u64_to_ether_addr(l2_lookup.macaddr, macaddr);
1634 
1635 		/* We need to hide the dsa_8021q VLANs from the user. */
1636 		if (priv->vlan_state == SJA1105_VLAN_UNAWARE)
1637 			l2_lookup.vlanid = 0;
1638 		rc = cb(macaddr, l2_lookup.vlanid, l2_lookup.lockeds, data);
1639 		if (rc)
1640 			return rc;
1641 	}
1642 	return 0;
1643 }
1644 
1645 static int sja1105_mdb_add(struct dsa_switch *ds, int port,
1646 			   const struct switchdev_obj_port_mdb *mdb)
1647 {
1648 	return sja1105_fdb_add(ds, port, mdb->addr, mdb->vid);
1649 }
1650 
1651 static int sja1105_mdb_del(struct dsa_switch *ds, int port,
1652 			   const struct switchdev_obj_port_mdb *mdb)
1653 {
1654 	return sja1105_fdb_del(ds, port, mdb->addr, mdb->vid);
1655 }
1656 
1657 /* Common function for unicast and broadcast flood configuration.
1658  * Flooding is configured between each {ingress, egress} port pair, and since
1659  * the bridge's semantics are those of "egress flooding", it means we must
1660  * enable flooding towards this port from all ingress ports that are in the
1661  * same forwarding domain.
1662  */
1663 static int sja1105_manage_flood_domains(struct sja1105_private *priv)
1664 {
1665 	struct sja1105_l2_forwarding_entry *l2_fwd;
1666 	struct dsa_switch *ds = priv->ds;
1667 	int from, to, rc;
1668 
1669 	l2_fwd = priv->static_config.tables[BLK_IDX_L2_FORWARDING].entries;
1670 
1671 	for (from = 0; from < ds->num_ports; from++) {
1672 		u64 fl_domain = 0, bc_domain = 0;
1673 
1674 		for (to = 0; to < priv->ds->num_ports; to++) {
1675 			if (!sja1105_can_forward(l2_fwd, from, to))
1676 				continue;
1677 
1678 			if (priv->ucast_egress_floods & BIT(to))
1679 				fl_domain |= BIT(to);
1680 			if (priv->bcast_egress_floods & BIT(to))
1681 				bc_domain |= BIT(to);
1682 		}
1683 
1684 		/* Nothing changed, nothing to do */
1685 		if (l2_fwd[from].fl_domain == fl_domain &&
1686 		    l2_fwd[from].bc_domain == bc_domain)
1687 			continue;
1688 
1689 		l2_fwd[from].fl_domain = fl_domain;
1690 		l2_fwd[from].bc_domain = bc_domain;
1691 
1692 		rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_FORWARDING,
1693 						  from, &l2_fwd[from], true);
1694 		if (rc < 0)
1695 			return rc;
1696 	}
1697 
1698 	return 0;
1699 }
1700 
1701 static int sja1105_bridge_member(struct dsa_switch *ds, int port,
1702 				 struct net_device *br, bool member)
1703 {
1704 	struct sja1105_l2_forwarding_entry *l2_fwd;
1705 	struct sja1105_private *priv = ds->priv;
1706 	int i, rc;
1707 
1708 	l2_fwd = priv->static_config.tables[BLK_IDX_L2_FORWARDING].entries;
1709 
1710 	for (i = 0; i < ds->num_ports; i++) {
1711 		/* Add this port to the forwarding matrix of the
1712 		 * other ports in the same bridge, and viceversa.
1713 		 */
1714 		if (!dsa_is_user_port(ds, i))
1715 			continue;
1716 		/* For the ports already under the bridge, only one thing needs
1717 		 * to be done, and that is to add this port to their
1718 		 * reachability domain. So we can perform the SPI write for
1719 		 * them immediately. However, for this port itself (the one
1720 		 * that is new to the bridge), we need to add all other ports
1721 		 * to its reachability domain. So we do that incrementally in
1722 		 * this loop, and perform the SPI write only at the end, once
1723 		 * the domain contains all other bridge ports.
1724 		 */
1725 		if (i == port)
1726 			continue;
1727 		if (dsa_to_port(ds, i)->bridge_dev != br)
1728 			continue;
1729 		sja1105_port_allow_traffic(l2_fwd, i, port, member);
1730 		sja1105_port_allow_traffic(l2_fwd, port, i, member);
1731 
1732 		rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_FORWARDING,
1733 						  i, &l2_fwd[i], true);
1734 		if (rc < 0)
1735 			return rc;
1736 	}
1737 
1738 	rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_FORWARDING,
1739 					  port, &l2_fwd[port], true);
1740 	if (rc)
1741 		return rc;
1742 
1743 	return sja1105_manage_flood_domains(priv);
1744 }
1745 
1746 static void sja1105_bridge_stp_state_set(struct dsa_switch *ds, int port,
1747 					 u8 state)
1748 {
1749 	struct sja1105_private *priv = ds->priv;
1750 	struct sja1105_mac_config_entry *mac;
1751 
1752 	mac = priv->static_config.tables[BLK_IDX_MAC_CONFIG].entries;
1753 
1754 	switch (state) {
1755 	case BR_STATE_DISABLED:
1756 	case BR_STATE_BLOCKING:
1757 		/* From UM10944 description of DRPDTAG (why put this there?):
1758 		 * "Management traffic flows to the port regardless of the state
1759 		 * of the INGRESS flag". So BPDUs are still be allowed to pass.
1760 		 * At the moment no difference between DISABLED and BLOCKING.
1761 		 */
1762 		mac[port].ingress   = false;
1763 		mac[port].egress    = false;
1764 		mac[port].dyn_learn = false;
1765 		break;
1766 	case BR_STATE_LISTENING:
1767 		mac[port].ingress   = true;
1768 		mac[port].egress    = false;
1769 		mac[port].dyn_learn = false;
1770 		break;
1771 	case BR_STATE_LEARNING:
1772 		mac[port].ingress   = true;
1773 		mac[port].egress    = false;
1774 		mac[port].dyn_learn = !!(priv->learn_ena & BIT(port));
1775 		break;
1776 	case BR_STATE_FORWARDING:
1777 		mac[port].ingress   = true;
1778 		mac[port].egress    = true;
1779 		mac[port].dyn_learn = !!(priv->learn_ena & BIT(port));
1780 		break;
1781 	default:
1782 		dev_err(ds->dev, "invalid STP state: %d\n", state);
1783 		return;
1784 	}
1785 
1786 	sja1105_dynamic_config_write(priv, BLK_IDX_MAC_CONFIG, port,
1787 				     &mac[port], true);
1788 }
1789 
1790 static int sja1105_bridge_join(struct dsa_switch *ds, int port,
1791 			       struct net_device *br)
1792 {
1793 	return sja1105_bridge_member(ds, port, br, true);
1794 }
1795 
1796 static void sja1105_bridge_leave(struct dsa_switch *ds, int port,
1797 				 struct net_device *br)
1798 {
1799 	sja1105_bridge_member(ds, port, br, false);
1800 }
1801 
1802 #define BYTES_PER_KBIT (1000LL / 8)
1803 
1804 static int sja1105_find_unused_cbs_shaper(struct sja1105_private *priv)
1805 {
1806 	int i;
1807 
1808 	for (i = 0; i < priv->info->num_cbs_shapers; i++)
1809 		if (!priv->cbs[i].idle_slope && !priv->cbs[i].send_slope)
1810 			return i;
1811 
1812 	return -1;
1813 }
1814 
1815 static int sja1105_delete_cbs_shaper(struct sja1105_private *priv, int port,
1816 				     int prio)
1817 {
1818 	int i;
1819 
1820 	for (i = 0; i < priv->info->num_cbs_shapers; i++) {
1821 		struct sja1105_cbs_entry *cbs = &priv->cbs[i];
1822 
1823 		if (cbs->port == port && cbs->prio == prio) {
1824 			memset(cbs, 0, sizeof(*cbs));
1825 			return sja1105_dynamic_config_write(priv, BLK_IDX_CBS,
1826 							    i, cbs, true);
1827 		}
1828 	}
1829 
1830 	return 0;
1831 }
1832 
1833 static int sja1105_setup_tc_cbs(struct dsa_switch *ds, int port,
1834 				struct tc_cbs_qopt_offload *offload)
1835 {
1836 	struct sja1105_private *priv = ds->priv;
1837 	struct sja1105_cbs_entry *cbs;
1838 	int index;
1839 
1840 	if (!offload->enable)
1841 		return sja1105_delete_cbs_shaper(priv, port, offload->queue);
1842 
1843 	index = sja1105_find_unused_cbs_shaper(priv);
1844 	if (index < 0)
1845 		return -ENOSPC;
1846 
1847 	cbs = &priv->cbs[index];
1848 	cbs->port = port;
1849 	cbs->prio = offload->queue;
1850 	/* locredit and sendslope are negative by definition. In hardware,
1851 	 * positive values must be provided, and the negative sign is implicit.
1852 	 */
1853 	cbs->credit_hi = offload->hicredit;
1854 	cbs->credit_lo = abs(offload->locredit);
1855 	/* User space is in kbits/sec, hardware in bytes/sec */
1856 	cbs->idle_slope = offload->idleslope * BYTES_PER_KBIT;
1857 	cbs->send_slope = abs(offload->sendslope * BYTES_PER_KBIT);
1858 	/* Convert the negative values from 64-bit 2's complement
1859 	 * to 32-bit 2's complement (for the case of 0x80000000 whose
1860 	 * negative is still negative).
1861 	 */
1862 	cbs->credit_lo &= GENMASK_ULL(31, 0);
1863 	cbs->send_slope &= GENMASK_ULL(31, 0);
1864 
1865 	return sja1105_dynamic_config_write(priv, BLK_IDX_CBS, index, cbs,
1866 					    true);
1867 }
1868 
1869 static int sja1105_reload_cbs(struct sja1105_private *priv)
1870 {
1871 	int rc = 0, i;
1872 
1873 	/* The credit based shapers are only allocated if
1874 	 * CONFIG_NET_SCH_CBS is enabled.
1875 	 */
1876 	if (!priv->cbs)
1877 		return 0;
1878 
1879 	for (i = 0; i < priv->info->num_cbs_shapers; i++) {
1880 		struct sja1105_cbs_entry *cbs = &priv->cbs[i];
1881 
1882 		if (!cbs->idle_slope && !cbs->send_slope)
1883 			continue;
1884 
1885 		rc = sja1105_dynamic_config_write(priv, BLK_IDX_CBS, i, cbs,
1886 						  true);
1887 		if (rc)
1888 			break;
1889 	}
1890 
1891 	return rc;
1892 }
1893 
1894 static const char * const sja1105_reset_reasons[] = {
1895 	[SJA1105_VLAN_FILTERING] = "VLAN filtering",
1896 	[SJA1105_RX_HWTSTAMPING] = "RX timestamping",
1897 	[SJA1105_AGEING_TIME] = "Ageing time",
1898 	[SJA1105_SCHEDULING] = "Time-aware scheduling",
1899 	[SJA1105_BEST_EFFORT_POLICING] = "Best-effort policing",
1900 	[SJA1105_VIRTUAL_LINKS] = "Virtual links",
1901 };
1902 
1903 /* For situations where we need to change a setting at runtime that is only
1904  * available through the static configuration, resetting the switch in order
1905  * to upload the new static config is unavoidable. Back up the settings we
1906  * modify at runtime (currently only MAC) and restore them after uploading,
1907  * such that this operation is relatively seamless.
1908  */
1909 int sja1105_static_config_reload(struct sja1105_private *priv,
1910 				 enum sja1105_reset_reason reason)
1911 {
1912 	struct ptp_system_timestamp ptp_sts_before;
1913 	struct ptp_system_timestamp ptp_sts_after;
1914 	int speed_mbps[SJA1105_MAX_NUM_PORTS];
1915 	u16 bmcr[SJA1105_MAX_NUM_PORTS] = {0};
1916 	struct sja1105_mac_config_entry *mac;
1917 	struct dsa_switch *ds = priv->ds;
1918 	s64 t1, t2, t3, t4;
1919 	s64 t12, t34;
1920 	int rc, i;
1921 	s64 now;
1922 
1923 	mutex_lock(&priv->mgmt_lock);
1924 
1925 	mac = priv->static_config.tables[BLK_IDX_MAC_CONFIG].entries;
1926 
1927 	/* Back up the dynamic link speed changed by sja1105_adjust_port_config
1928 	 * in order to temporarily restore it to SJA1105_SPEED_AUTO - which the
1929 	 * switch wants to see in the static config in order to allow us to
1930 	 * change it through the dynamic interface later.
1931 	 */
1932 	for (i = 0; i < ds->num_ports; i++) {
1933 		u32 reg_addr = mdiobus_c45_addr(MDIO_MMD_VEND2, MDIO_CTRL1);
1934 
1935 		speed_mbps[i] = sja1105_port_speed_to_ethtool(priv,
1936 							      mac[i].speed);
1937 		mac[i].speed = priv->info->port_speed[SJA1105_SPEED_AUTO];
1938 
1939 		if (priv->xpcs[i])
1940 			bmcr[i] = mdiobus_read(priv->mdio_pcs, i, reg_addr);
1941 	}
1942 
1943 	/* No PTP operations can run right now */
1944 	mutex_lock(&priv->ptp_data.lock);
1945 
1946 	rc = __sja1105_ptp_gettimex(ds, &now, &ptp_sts_before);
1947 	if (rc < 0) {
1948 		mutex_unlock(&priv->ptp_data.lock);
1949 		goto out;
1950 	}
1951 
1952 	/* Reset switch and send updated static configuration */
1953 	rc = sja1105_static_config_upload(priv);
1954 	if (rc < 0) {
1955 		mutex_unlock(&priv->ptp_data.lock);
1956 		goto out;
1957 	}
1958 
1959 	rc = __sja1105_ptp_settime(ds, 0, &ptp_sts_after);
1960 	if (rc < 0) {
1961 		mutex_unlock(&priv->ptp_data.lock);
1962 		goto out;
1963 	}
1964 
1965 	t1 = timespec64_to_ns(&ptp_sts_before.pre_ts);
1966 	t2 = timespec64_to_ns(&ptp_sts_before.post_ts);
1967 	t3 = timespec64_to_ns(&ptp_sts_after.pre_ts);
1968 	t4 = timespec64_to_ns(&ptp_sts_after.post_ts);
1969 	/* Mid point, corresponds to pre-reset PTPCLKVAL */
1970 	t12 = t1 + (t2 - t1) / 2;
1971 	/* Mid point, corresponds to post-reset PTPCLKVAL, aka 0 */
1972 	t34 = t3 + (t4 - t3) / 2;
1973 	/* Advance PTPCLKVAL by the time it took since its readout */
1974 	now += (t34 - t12);
1975 
1976 	__sja1105_ptp_adjtime(ds, now);
1977 
1978 	mutex_unlock(&priv->ptp_data.lock);
1979 
1980 	dev_info(priv->ds->dev,
1981 		 "Reset switch and programmed static config. Reason: %s\n",
1982 		 sja1105_reset_reasons[reason]);
1983 
1984 	/* Configure the CGU (PLLs) for MII and RMII PHYs.
1985 	 * For these interfaces there is no dynamic configuration
1986 	 * needed, since PLLs have same settings at all speeds.
1987 	 */
1988 	if (priv->info->clocking_setup) {
1989 		rc = priv->info->clocking_setup(priv);
1990 		if (rc < 0)
1991 			goto out;
1992 	}
1993 
1994 	for (i = 0; i < ds->num_ports; i++) {
1995 		struct dw_xpcs *xpcs = priv->xpcs[i];
1996 		unsigned int mode;
1997 
1998 		rc = sja1105_adjust_port_config(priv, i, speed_mbps[i]);
1999 		if (rc < 0)
2000 			goto out;
2001 
2002 		if (!xpcs)
2003 			continue;
2004 
2005 		if (bmcr[i] & BMCR_ANENABLE)
2006 			mode = MLO_AN_INBAND;
2007 		else if (priv->fixed_link[i])
2008 			mode = MLO_AN_FIXED;
2009 		else
2010 			mode = MLO_AN_PHY;
2011 
2012 		rc = xpcs_do_config(xpcs, priv->phy_mode[i], mode);
2013 		if (rc < 0)
2014 			goto out;
2015 
2016 		if (!phylink_autoneg_inband(mode)) {
2017 			int speed = SPEED_UNKNOWN;
2018 
2019 			if (priv->phy_mode[i] == PHY_INTERFACE_MODE_2500BASEX)
2020 				speed = SPEED_2500;
2021 			else if (bmcr[i] & BMCR_SPEED1000)
2022 				speed = SPEED_1000;
2023 			else if (bmcr[i] & BMCR_SPEED100)
2024 				speed = SPEED_100;
2025 			else
2026 				speed = SPEED_10;
2027 
2028 			xpcs_link_up(&xpcs->pcs, mode, priv->phy_mode[i],
2029 				     speed, DUPLEX_FULL);
2030 		}
2031 	}
2032 
2033 	rc = sja1105_reload_cbs(priv);
2034 	if (rc < 0)
2035 		goto out;
2036 out:
2037 	mutex_unlock(&priv->mgmt_lock);
2038 
2039 	return rc;
2040 }
2041 
2042 static int sja1105_pvid_apply(struct sja1105_private *priv, int port, u16 pvid)
2043 {
2044 	struct sja1105_mac_config_entry *mac;
2045 
2046 	mac = priv->static_config.tables[BLK_IDX_MAC_CONFIG].entries;
2047 
2048 	mac[port].vlanid = pvid;
2049 
2050 	return sja1105_dynamic_config_write(priv, BLK_IDX_MAC_CONFIG, port,
2051 					   &mac[port], true);
2052 }
2053 
2054 static int sja1105_crosschip_bridge_join(struct dsa_switch *ds,
2055 					 int tree_index, int sw_index,
2056 					 int other_port, struct net_device *br)
2057 {
2058 	struct dsa_switch *other_ds = dsa_switch_find(tree_index, sw_index);
2059 	struct sja1105_private *other_priv = other_ds->priv;
2060 	struct sja1105_private *priv = ds->priv;
2061 	int port, rc;
2062 
2063 	if (other_ds->ops != &sja1105_switch_ops)
2064 		return 0;
2065 
2066 	for (port = 0; port < ds->num_ports; port++) {
2067 		if (!dsa_is_user_port(ds, port))
2068 			continue;
2069 		if (dsa_to_port(ds, port)->bridge_dev != br)
2070 			continue;
2071 
2072 		rc = dsa_8021q_crosschip_bridge_join(priv->dsa_8021q_ctx,
2073 						     port,
2074 						     other_priv->dsa_8021q_ctx,
2075 						     other_port);
2076 		if (rc)
2077 			return rc;
2078 
2079 		rc = dsa_8021q_crosschip_bridge_join(other_priv->dsa_8021q_ctx,
2080 						     other_port,
2081 						     priv->dsa_8021q_ctx,
2082 						     port);
2083 		if (rc)
2084 			return rc;
2085 	}
2086 
2087 	return 0;
2088 }
2089 
2090 static void sja1105_crosschip_bridge_leave(struct dsa_switch *ds,
2091 					   int tree_index, int sw_index,
2092 					   int other_port,
2093 					   struct net_device *br)
2094 {
2095 	struct dsa_switch *other_ds = dsa_switch_find(tree_index, sw_index);
2096 	struct sja1105_private *other_priv = other_ds->priv;
2097 	struct sja1105_private *priv = ds->priv;
2098 	int port;
2099 
2100 	if (other_ds->ops != &sja1105_switch_ops)
2101 		return;
2102 
2103 	for (port = 0; port < ds->num_ports; port++) {
2104 		if (!dsa_is_user_port(ds, port))
2105 			continue;
2106 		if (dsa_to_port(ds, port)->bridge_dev != br)
2107 			continue;
2108 
2109 		dsa_8021q_crosschip_bridge_leave(priv->dsa_8021q_ctx, port,
2110 						 other_priv->dsa_8021q_ctx,
2111 						 other_port);
2112 
2113 		dsa_8021q_crosschip_bridge_leave(other_priv->dsa_8021q_ctx,
2114 						 other_port,
2115 						 priv->dsa_8021q_ctx, port);
2116 	}
2117 }
2118 
2119 static int sja1105_setup_8021q_tagging(struct dsa_switch *ds, bool enabled)
2120 {
2121 	struct sja1105_private *priv = ds->priv;
2122 	int rc;
2123 
2124 	rc = dsa_8021q_setup(priv->dsa_8021q_ctx, enabled);
2125 	if (rc)
2126 		return rc;
2127 
2128 	dev_info(ds->dev, "%s switch tagging\n",
2129 		 enabled ? "Enabled" : "Disabled");
2130 	return 0;
2131 }
2132 
2133 static enum dsa_tag_protocol
2134 sja1105_get_tag_protocol(struct dsa_switch *ds, int port,
2135 			 enum dsa_tag_protocol mp)
2136 {
2137 	struct sja1105_private *priv = ds->priv;
2138 
2139 	return priv->info->tag_proto;
2140 }
2141 
2142 static int sja1105_find_free_subvlan(u16 *subvlan_map, bool pvid)
2143 {
2144 	int subvlan;
2145 
2146 	if (pvid)
2147 		return 0;
2148 
2149 	for (subvlan = 1; subvlan < DSA_8021Q_N_SUBVLAN; subvlan++)
2150 		if (subvlan_map[subvlan] == VLAN_N_VID)
2151 			return subvlan;
2152 
2153 	return -1;
2154 }
2155 
2156 static int sja1105_find_subvlan(u16 *subvlan_map, u16 vid)
2157 {
2158 	int subvlan;
2159 
2160 	for (subvlan = 0; subvlan < DSA_8021Q_N_SUBVLAN; subvlan++)
2161 		if (subvlan_map[subvlan] == vid)
2162 			return subvlan;
2163 
2164 	return -1;
2165 }
2166 
2167 static int sja1105_find_committed_subvlan(struct sja1105_private *priv,
2168 					  int port, u16 vid)
2169 {
2170 	struct sja1105_port *sp = &priv->ports[port];
2171 
2172 	return sja1105_find_subvlan(sp->subvlan_map, vid);
2173 }
2174 
2175 static void sja1105_init_subvlan_map(u16 *subvlan_map)
2176 {
2177 	int subvlan;
2178 
2179 	for (subvlan = 0; subvlan < DSA_8021Q_N_SUBVLAN; subvlan++)
2180 		subvlan_map[subvlan] = VLAN_N_VID;
2181 }
2182 
2183 static void sja1105_commit_subvlan_map(struct sja1105_private *priv, int port,
2184 				       u16 *subvlan_map)
2185 {
2186 	struct sja1105_port *sp = &priv->ports[port];
2187 	int subvlan;
2188 
2189 	for (subvlan = 0; subvlan < DSA_8021Q_N_SUBVLAN; subvlan++)
2190 		sp->subvlan_map[subvlan] = subvlan_map[subvlan];
2191 }
2192 
2193 static int sja1105_is_vlan_configured(struct sja1105_private *priv, u16 vid)
2194 {
2195 	struct sja1105_vlan_lookup_entry *vlan;
2196 	int count, i;
2197 
2198 	vlan = priv->static_config.tables[BLK_IDX_VLAN_LOOKUP].entries;
2199 	count = priv->static_config.tables[BLK_IDX_VLAN_LOOKUP].entry_count;
2200 
2201 	for (i = 0; i < count; i++)
2202 		if (vlan[i].vlanid == vid)
2203 			return i;
2204 
2205 	/* Return an invalid entry index if not found */
2206 	return -1;
2207 }
2208 
2209 static int
2210 sja1105_find_retagging_entry(struct sja1105_retagging_entry *retagging,
2211 			     int count, int from_port, u16 from_vid,
2212 			     u16 to_vid)
2213 {
2214 	int i;
2215 
2216 	for (i = 0; i < count; i++)
2217 		if (retagging[i].ing_port == BIT(from_port) &&
2218 		    retagging[i].vlan_ing == from_vid &&
2219 		    retagging[i].vlan_egr == to_vid)
2220 			return i;
2221 
2222 	/* Return an invalid entry index if not found */
2223 	return -1;
2224 }
2225 
2226 static int sja1105_commit_vlans(struct sja1105_private *priv,
2227 				struct sja1105_vlan_lookup_entry *new_vlan,
2228 				struct sja1105_retagging_entry *new_retagging,
2229 				int num_retagging)
2230 {
2231 	struct sja1105_retagging_entry *retagging;
2232 	struct sja1105_vlan_lookup_entry *vlan;
2233 	struct sja1105_table *table;
2234 	int num_vlans = 0;
2235 	int rc, i, k = 0;
2236 
2237 	/* VLAN table */
2238 	table = &priv->static_config.tables[BLK_IDX_VLAN_LOOKUP];
2239 	vlan = table->entries;
2240 
2241 	for (i = 0; i < VLAN_N_VID; i++) {
2242 		int match = sja1105_is_vlan_configured(priv, i);
2243 
2244 		if (new_vlan[i].vlanid != VLAN_N_VID)
2245 			num_vlans++;
2246 
2247 		if (new_vlan[i].vlanid == VLAN_N_VID && match >= 0) {
2248 			/* Was there before, no longer is. Delete */
2249 			dev_dbg(priv->ds->dev, "Deleting VLAN %d\n", i);
2250 			rc = sja1105_dynamic_config_write(priv,
2251 							  BLK_IDX_VLAN_LOOKUP,
2252 							  i, &vlan[match], false);
2253 			if (rc < 0)
2254 				return rc;
2255 		} else if (new_vlan[i].vlanid != VLAN_N_VID) {
2256 			/* Nothing changed, don't do anything */
2257 			if (match >= 0 &&
2258 			    vlan[match].vlanid == new_vlan[i].vlanid &&
2259 			    vlan[match].tag_port == new_vlan[i].tag_port &&
2260 			    vlan[match].vlan_bc == new_vlan[i].vlan_bc &&
2261 			    vlan[match].vmemb_port == new_vlan[i].vmemb_port)
2262 				continue;
2263 			/* Update entry */
2264 			dev_dbg(priv->ds->dev, "Updating VLAN %d\n", i);
2265 			rc = sja1105_dynamic_config_write(priv,
2266 							  BLK_IDX_VLAN_LOOKUP,
2267 							  i, &new_vlan[i],
2268 							  true);
2269 			if (rc < 0)
2270 				return rc;
2271 		}
2272 	}
2273 
2274 	if (table->entry_count)
2275 		kfree(table->entries);
2276 
2277 	table->entries = kcalloc(num_vlans, table->ops->unpacked_entry_size,
2278 				 GFP_KERNEL);
2279 	if (!table->entries)
2280 		return -ENOMEM;
2281 
2282 	table->entry_count = num_vlans;
2283 	vlan = table->entries;
2284 
2285 	for (i = 0; i < VLAN_N_VID; i++) {
2286 		if (new_vlan[i].vlanid == VLAN_N_VID)
2287 			continue;
2288 		vlan[k++] = new_vlan[i];
2289 	}
2290 
2291 	/* VLAN Retagging Table */
2292 	table = &priv->static_config.tables[BLK_IDX_RETAGGING];
2293 	retagging = table->entries;
2294 
2295 	for (i = 0; i < table->entry_count; i++) {
2296 		rc = sja1105_dynamic_config_write(priv, BLK_IDX_RETAGGING,
2297 						  i, &retagging[i], false);
2298 		if (rc)
2299 			return rc;
2300 	}
2301 
2302 	if (table->entry_count)
2303 		kfree(table->entries);
2304 
2305 	table->entries = kcalloc(num_retagging, table->ops->unpacked_entry_size,
2306 				 GFP_KERNEL);
2307 	if (!table->entries)
2308 		return -ENOMEM;
2309 
2310 	table->entry_count = num_retagging;
2311 	retagging = table->entries;
2312 
2313 	for (i = 0; i < num_retagging; i++) {
2314 		retagging[i] = new_retagging[i];
2315 
2316 		/* Update entry */
2317 		rc = sja1105_dynamic_config_write(priv, BLK_IDX_RETAGGING,
2318 						  i, &retagging[i], true);
2319 		if (rc < 0)
2320 			return rc;
2321 	}
2322 
2323 	return 0;
2324 }
2325 
2326 struct sja1105_crosschip_vlan {
2327 	struct list_head list;
2328 	u16 vid;
2329 	bool untagged;
2330 	int port;
2331 	int other_port;
2332 	struct dsa_8021q_context *other_ctx;
2333 };
2334 
2335 struct sja1105_crosschip_switch {
2336 	struct list_head list;
2337 	struct dsa_8021q_context *other_ctx;
2338 };
2339 
2340 static int sja1105_commit_pvid(struct sja1105_private *priv)
2341 {
2342 	struct sja1105_bridge_vlan *v;
2343 	struct list_head *vlan_list;
2344 	int rc = 0;
2345 
2346 	if (priv->vlan_state == SJA1105_VLAN_FILTERING_FULL)
2347 		vlan_list = &priv->bridge_vlans;
2348 	else
2349 		vlan_list = &priv->dsa_8021q_vlans;
2350 
2351 	list_for_each_entry(v, vlan_list, list) {
2352 		if (v->pvid) {
2353 			rc = sja1105_pvid_apply(priv, v->port, v->vid);
2354 			if (rc)
2355 				break;
2356 		}
2357 	}
2358 
2359 	return rc;
2360 }
2361 
2362 static int
2363 sja1105_build_bridge_vlans(struct sja1105_private *priv,
2364 			   struct sja1105_vlan_lookup_entry *new_vlan)
2365 {
2366 	struct sja1105_bridge_vlan *v;
2367 
2368 	if (priv->vlan_state == SJA1105_VLAN_UNAWARE)
2369 		return 0;
2370 
2371 	list_for_each_entry(v, &priv->bridge_vlans, list) {
2372 		int match = v->vid;
2373 
2374 		new_vlan[match].vlanid = v->vid;
2375 		new_vlan[match].vmemb_port |= BIT(v->port);
2376 		new_vlan[match].vlan_bc |= BIT(v->port);
2377 		if (!v->untagged)
2378 			new_vlan[match].tag_port |= BIT(v->port);
2379 		new_vlan[match].type_entry = SJA1110_VLAN_D_TAG;
2380 	}
2381 
2382 	return 0;
2383 }
2384 
2385 static int
2386 sja1105_build_dsa_8021q_vlans(struct sja1105_private *priv,
2387 			      struct sja1105_vlan_lookup_entry *new_vlan)
2388 {
2389 	struct sja1105_bridge_vlan *v;
2390 
2391 	if (priv->vlan_state == SJA1105_VLAN_FILTERING_FULL)
2392 		return 0;
2393 
2394 	list_for_each_entry(v, &priv->dsa_8021q_vlans, list) {
2395 		int match = v->vid;
2396 
2397 		new_vlan[match].vlanid = v->vid;
2398 		new_vlan[match].vmemb_port |= BIT(v->port);
2399 		new_vlan[match].vlan_bc |= BIT(v->port);
2400 		if (!v->untagged)
2401 			new_vlan[match].tag_port |= BIT(v->port);
2402 		new_vlan[match].type_entry = SJA1110_VLAN_D_TAG;
2403 	}
2404 
2405 	return 0;
2406 }
2407 
2408 static int sja1105_build_subvlans(struct sja1105_private *priv,
2409 				  u16 subvlan_map[][DSA_8021Q_N_SUBVLAN],
2410 				  struct sja1105_vlan_lookup_entry *new_vlan,
2411 				  struct sja1105_retagging_entry *new_retagging,
2412 				  int *num_retagging)
2413 {
2414 	struct sja1105_bridge_vlan *v;
2415 	int k = *num_retagging;
2416 
2417 	if (priv->vlan_state != SJA1105_VLAN_BEST_EFFORT)
2418 		return 0;
2419 
2420 	list_for_each_entry(v, &priv->bridge_vlans, list) {
2421 		int upstream = dsa_upstream_port(priv->ds, v->port);
2422 		int match, subvlan;
2423 		u16 rx_vid;
2424 
2425 		/* Only sub-VLANs on user ports need to be applied.
2426 		 * Bridge VLANs also include VLANs added automatically
2427 		 * by DSA on the CPU port.
2428 		 */
2429 		if (!dsa_is_user_port(priv->ds, v->port))
2430 			continue;
2431 
2432 		subvlan = sja1105_find_subvlan(subvlan_map[v->port],
2433 					       v->vid);
2434 		if (subvlan < 0) {
2435 			subvlan = sja1105_find_free_subvlan(subvlan_map[v->port],
2436 							    v->pvid);
2437 			if (subvlan < 0) {
2438 				dev_err(priv->ds->dev, "No more free subvlans\n");
2439 				return -ENOSPC;
2440 			}
2441 		}
2442 
2443 		rx_vid = dsa_8021q_rx_vid_subvlan(priv->ds, v->port, subvlan);
2444 
2445 		/* @v->vid on @v->port needs to be retagged to @rx_vid
2446 		 * on @upstream. Assume @v->vid on @v->port and on
2447 		 * @upstream was already configured by the previous
2448 		 * iteration over bridge_vlans.
2449 		 */
2450 		match = rx_vid;
2451 		new_vlan[match].vlanid = rx_vid;
2452 		new_vlan[match].vmemb_port |= BIT(v->port);
2453 		new_vlan[match].vmemb_port |= BIT(upstream);
2454 		new_vlan[match].vlan_bc |= BIT(v->port);
2455 		new_vlan[match].vlan_bc |= BIT(upstream);
2456 		/* The "untagged" flag is set the same as for the
2457 		 * original VLAN
2458 		 */
2459 		if (!v->untagged)
2460 			new_vlan[match].tag_port |= BIT(v->port);
2461 		/* But it's always tagged towards the CPU */
2462 		new_vlan[match].tag_port |= BIT(upstream);
2463 		new_vlan[match].type_entry = SJA1110_VLAN_D_TAG;
2464 
2465 		/* The Retagging Table generates packet *clones* with
2466 		 * the new VLAN. This is a very odd hardware quirk
2467 		 * which we need to suppress by dropping the original
2468 		 * packet.
2469 		 * Deny egress of the original VLAN towards the CPU
2470 		 * port. This will force the switch to drop it, and
2471 		 * we'll see only the retagged packets.
2472 		 */
2473 		match = v->vid;
2474 		new_vlan[match].vlan_bc &= ~BIT(upstream);
2475 
2476 		/* And the retagging itself */
2477 		new_retagging[k].vlan_ing = v->vid;
2478 		new_retagging[k].vlan_egr = rx_vid;
2479 		new_retagging[k].ing_port = BIT(v->port);
2480 		new_retagging[k].egr_port = BIT(upstream);
2481 		if (k++ == SJA1105_MAX_RETAGGING_COUNT) {
2482 			dev_err(priv->ds->dev, "No more retagging rules\n");
2483 			return -ENOSPC;
2484 		}
2485 
2486 		subvlan_map[v->port][subvlan] = v->vid;
2487 	}
2488 
2489 	*num_retagging = k;
2490 
2491 	return 0;
2492 }
2493 
2494 /* Sadly, in crosschip scenarios where the CPU port is also the link to another
2495  * switch, we should retag backwards (the dsa_8021q vid to the original vid) on
2496  * the CPU port of neighbour switches.
2497  */
2498 static int
2499 sja1105_build_crosschip_subvlans(struct sja1105_private *priv,
2500 				 struct sja1105_vlan_lookup_entry *new_vlan,
2501 				 struct sja1105_retagging_entry *new_retagging,
2502 				 int *num_retagging)
2503 {
2504 	struct sja1105_crosschip_vlan *tmp, *pos;
2505 	struct dsa_8021q_crosschip_link *c;
2506 	struct sja1105_bridge_vlan *v, *w;
2507 	struct list_head crosschip_vlans;
2508 	int k = *num_retagging;
2509 	int rc = 0;
2510 
2511 	if (priv->vlan_state != SJA1105_VLAN_BEST_EFFORT)
2512 		return 0;
2513 
2514 	INIT_LIST_HEAD(&crosschip_vlans);
2515 
2516 	list_for_each_entry(c, &priv->dsa_8021q_ctx->crosschip_links, list) {
2517 		struct sja1105_private *other_priv = c->other_ctx->ds->priv;
2518 
2519 		if (other_priv->vlan_state == SJA1105_VLAN_FILTERING_FULL)
2520 			continue;
2521 
2522 		/* Crosschip links are also added to the CPU ports.
2523 		 * Ignore those.
2524 		 */
2525 		if (!dsa_is_user_port(priv->ds, c->port))
2526 			continue;
2527 		if (!dsa_is_user_port(c->other_ctx->ds, c->other_port))
2528 			continue;
2529 
2530 		/* Search for VLANs on the remote port */
2531 		list_for_each_entry(v, &other_priv->bridge_vlans, list) {
2532 			bool already_added = false;
2533 			bool we_have_it = false;
2534 
2535 			if (v->port != c->other_port)
2536 				continue;
2537 
2538 			/* If @v is a pvid on @other_ds, it does not need
2539 			 * re-retagging, because its SVL field is 0 and we
2540 			 * already allow that, via the dsa_8021q crosschip
2541 			 * links.
2542 			 */
2543 			if (v->pvid)
2544 				continue;
2545 
2546 			/* Search for the VLAN on our local port */
2547 			list_for_each_entry(w, &priv->bridge_vlans, list) {
2548 				if (w->port == c->port && w->vid == v->vid) {
2549 					we_have_it = true;
2550 					break;
2551 				}
2552 			}
2553 
2554 			if (!we_have_it)
2555 				continue;
2556 
2557 			list_for_each_entry(tmp, &crosschip_vlans, list) {
2558 				if (tmp->vid == v->vid &&
2559 				    tmp->untagged == v->untagged &&
2560 				    tmp->port == c->port &&
2561 				    tmp->other_port == v->port &&
2562 				    tmp->other_ctx == c->other_ctx) {
2563 					already_added = true;
2564 					break;
2565 				}
2566 			}
2567 
2568 			if (already_added)
2569 				continue;
2570 
2571 			tmp = kzalloc(sizeof(*tmp), GFP_KERNEL);
2572 			if (!tmp) {
2573 				dev_err(priv->ds->dev, "Failed to allocate memory\n");
2574 				rc = -ENOMEM;
2575 				goto out;
2576 			}
2577 			tmp->vid = v->vid;
2578 			tmp->port = c->port;
2579 			tmp->other_port = v->port;
2580 			tmp->other_ctx = c->other_ctx;
2581 			tmp->untagged = v->untagged;
2582 			list_add(&tmp->list, &crosschip_vlans);
2583 		}
2584 	}
2585 
2586 	list_for_each_entry(tmp, &crosschip_vlans, list) {
2587 		struct sja1105_private *other_priv = tmp->other_ctx->ds->priv;
2588 		int upstream = dsa_upstream_port(priv->ds, tmp->port);
2589 		int match, subvlan;
2590 		u16 rx_vid;
2591 
2592 		subvlan = sja1105_find_committed_subvlan(other_priv,
2593 							 tmp->other_port,
2594 							 tmp->vid);
2595 		/* If this happens, it's a bug. The neighbour switch does not
2596 		 * have a subvlan for tmp->vid on tmp->other_port, but it
2597 		 * should, since we already checked for its vlan_state.
2598 		 */
2599 		if (WARN_ON(subvlan < 0)) {
2600 			rc = -EINVAL;
2601 			goto out;
2602 		}
2603 
2604 		rx_vid = dsa_8021q_rx_vid_subvlan(tmp->other_ctx->ds,
2605 						  tmp->other_port,
2606 						  subvlan);
2607 
2608 		/* The @rx_vid retagged from @tmp->vid on
2609 		 * {@tmp->other_ds, @tmp->other_port} needs to be
2610 		 * re-retagged to @tmp->vid on the way back to us.
2611 		 *
2612 		 * Assume the original @tmp->vid is already configured
2613 		 * on this local switch, otherwise we wouldn't be
2614 		 * retagging its subvlan on the other switch in the
2615 		 * first place. We just need to add a reverse retagging
2616 		 * rule for @rx_vid and install @rx_vid on our ports.
2617 		 */
2618 		match = rx_vid;
2619 		new_vlan[match].vlanid = rx_vid;
2620 		new_vlan[match].vmemb_port |= BIT(tmp->port);
2621 		new_vlan[match].vmemb_port |= BIT(upstream);
2622 		/* The "untagged" flag is set the same as for the
2623 		 * original VLAN. And towards the CPU, it doesn't
2624 		 * really matter, because @rx_vid will only receive
2625 		 * traffic on that port. For consistency with other dsa_8021q
2626 		 * VLANs, we'll keep the CPU port tagged.
2627 		 */
2628 		if (!tmp->untagged)
2629 			new_vlan[match].tag_port |= BIT(tmp->port);
2630 		new_vlan[match].tag_port |= BIT(upstream);
2631 		new_vlan[match].type_entry = SJA1110_VLAN_D_TAG;
2632 		/* Deny egress of @rx_vid towards our front-panel port.
2633 		 * This will force the switch to drop it, and we'll see
2634 		 * only the re-retagged packets (having the original,
2635 		 * pre-initial-retagging, VLAN @tmp->vid).
2636 		 */
2637 		new_vlan[match].vlan_bc &= ~BIT(tmp->port);
2638 
2639 		/* On reverse retagging, the same ingress VLAN goes to multiple
2640 		 * ports. So we have an opportunity to create composite rules
2641 		 * to not waste the limited space in the retagging table.
2642 		 */
2643 		k = sja1105_find_retagging_entry(new_retagging, *num_retagging,
2644 						 upstream, rx_vid, tmp->vid);
2645 		if (k < 0) {
2646 			if (*num_retagging == SJA1105_MAX_RETAGGING_COUNT) {
2647 				dev_err(priv->ds->dev, "No more retagging rules\n");
2648 				rc = -ENOSPC;
2649 				goto out;
2650 			}
2651 			k = (*num_retagging)++;
2652 		}
2653 		/* And the retagging itself */
2654 		new_retagging[k].vlan_ing = rx_vid;
2655 		new_retagging[k].vlan_egr = tmp->vid;
2656 		new_retagging[k].ing_port = BIT(upstream);
2657 		new_retagging[k].egr_port |= BIT(tmp->port);
2658 	}
2659 
2660 out:
2661 	list_for_each_entry_safe(tmp, pos, &crosschip_vlans, list) {
2662 		list_del(&tmp->list);
2663 		kfree(tmp);
2664 	}
2665 
2666 	return rc;
2667 }
2668 
2669 static int sja1105_build_vlan_table(struct sja1105_private *priv, bool notify);
2670 
2671 static int sja1105_notify_crosschip_switches(struct sja1105_private *priv)
2672 {
2673 	struct sja1105_crosschip_switch *s, *pos;
2674 	struct list_head crosschip_switches;
2675 	struct dsa_8021q_crosschip_link *c;
2676 	int rc = 0;
2677 
2678 	INIT_LIST_HEAD(&crosschip_switches);
2679 
2680 	list_for_each_entry(c, &priv->dsa_8021q_ctx->crosschip_links, list) {
2681 		bool already_added = false;
2682 
2683 		list_for_each_entry(s, &crosschip_switches, list) {
2684 			if (s->other_ctx == c->other_ctx) {
2685 				already_added = true;
2686 				break;
2687 			}
2688 		}
2689 
2690 		if (already_added)
2691 			continue;
2692 
2693 		s = kzalloc(sizeof(*s), GFP_KERNEL);
2694 		if (!s) {
2695 			dev_err(priv->ds->dev, "Failed to allocate memory\n");
2696 			rc = -ENOMEM;
2697 			goto out;
2698 		}
2699 		s->other_ctx = c->other_ctx;
2700 		list_add(&s->list, &crosschip_switches);
2701 	}
2702 
2703 	list_for_each_entry(s, &crosschip_switches, list) {
2704 		struct sja1105_private *other_priv = s->other_ctx->ds->priv;
2705 
2706 		rc = sja1105_build_vlan_table(other_priv, false);
2707 		if (rc)
2708 			goto out;
2709 	}
2710 
2711 out:
2712 	list_for_each_entry_safe(s, pos, &crosschip_switches, list) {
2713 		list_del(&s->list);
2714 		kfree(s);
2715 	}
2716 
2717 	return rc;
2718 }
2719 
2720 static int sja1105_build_vlan_table(struct sja1105_private *priv, bool notify)
2721 {
2722 	u16 subvlan_map[SJA1105_MAX_NUM_PORTS][DSA_8021Q_N_SUBVLAN];
2723 	struct sja1105_retagging_entry *new_retagging;
2724 	struct sja1105_vlan_lookup_entry *new_vlan;
2725 	struct sja1105_table *table;
2726 	int i, num_retagging = 0;
2727 	int rc;
2728 
2729 	table = &priv->static_config.tables[BLK_IDX_VLAN_LOOKUP];
2730 	new_vlan = kcalloc(VLAN_N_VID,
2731 			   table->ops->unpacked_entry_size, GFP_KERNEL);
2732 	if (!new_vlan)
2733 		return -ENOMEM;
2734 
2735 	table = &priv->static_config.tables[BLK_IDX_VLAN_LOOKUP];
2736 	new_retagging = kcalloc(SJA1105_MAX_RETAGGING_COUNT,
2737 				table->ops->unpacked_entry_size, GFP_KERNEL);
2738 	if (!new_retagging) {
2739 		kfree(new_vlan);
2740 		return -ENOMEM;
2741 	}
2742 
2743 	for (i = 0; i < VLAN_N_VID; i++)
2744 		new_vlan[i].vlanid = VLAN_N_VID;
2745 
2746 	for (i = 0; i < SJA1105_MAX_RETAGGING_COUNT; i++)
2747 		new_retagging[i].vlan_ing = VLAN_N_VID;
2748 
2749 	for (i = 0; i < priv->ds->num_ports; i++)
2750 		sja1105_init_subvlan_map(subvlan_map[i]);
2751 
2752 	/* Bridge VLANs */
2753 	rc = sja1105_build_bridge_vlans(priv, new_vlan);
2754 	if (rc)
2755 		goto out;
2756 
2757 	/* VLANs necessary for dsa_8021q operation, given to us by tag_8021q.c:
2758 	 * - RX VLANs
2759 	 * - TX VLANs
2760 	 * - Crosschip links
2761 	 */
2762 	rc = sja1105_build_dsa_8021q_vlans(priv, new_vlan);
2763 	if (rc)
2764 		goto out;
2765 
2766 	/* Private VLANs necessary for dsa_8021q operation, which we need to
2767 	 * determine on our own:
2768 	 * - Sub-VLANs
2769 	 * - Sub-VLANs of crosschip switches
2770 	 */
2771 	rc = sja1105_build_subvlans(priv, subvlan_map, new_vlan, new_retagging,
2772 				    &num_retagging);
2773 	if (rc)
2774 		goto out;
2775 
2776 	rc = sja1105_build_crosschip_subvlans(priv, new_vlan, new_retagging,
2777 					      &num_retagging);
2778 	if (rc)
2779 		goto out;
2780 
2781 	rc = sja1105_commit_vlans(priv, new_vlan, new_retagging, num_retagging);
2782 	if (rc)
2783 		goto out;
2784 
2785 	rc = sja1105_commit_pvid(priv);
2786 	if (rc)
2787 		goto out;
2788 
2789 	for (i = 0; i < priv->ds->num_ports; i++)
2790 		sja1105_commit_subvlan_map(priv, i, subvlan_map[i]);
2791 
2792 	if (notify) {
2793 		rc = sja1105_notify_crosschip_switches(priv);
2794 		if (rc)
2795 			goto out;
2796 	}
2797 
2798 out:
2799 	kfree(new_vlan);
2800 	kfree(new_retagging);
2801 
2802 	return rc;
2803 }
2804 
2805 /* The TPID setting belongs to the General Parameters table,
2806  * which can only be partially reconfigured at runtime (and not the TPID).
2807  * So a switch reset is required.
2808  */
2809 int sja1105_vlan_filtering(struct dsa_switch *ds, int port, bool enabled,
2810 			   struct netlink_ext_ack *extack)
2811 {
2812 	struct sja1105_l2_lookup_params_entry *l2_lookup_params;
2813 	struct sja1105_general_params_entry *general_params;
2814 	struct sja1105_private *priv = ds->priv;
2815 	enum sja1105_vlan_state state;
2816 	struct sja1105_table *table;
2817 	struct sja1105_rule *rule;
2818 	bool want_tagging;
2819 	u16 tpid, tpid2;
2820 	int rc;
2821 
2822 	list_for_each_entry(rule, &priv->flow_block.rules, list) {
2823 		if (rule->type == SJA1105_RULE_VL) {
2824 			NL_SET_ERR_MSG_MOD(extack,
2825 					   "Cannot change VLAN filtering with active VL rules");
2826 			return -EBUSY;
2827 		}
2828 	}
2829 
2830 	if (enabled) {
2831 		/* Enable VLAN filtering. */
2832 		tpid  = ETH_P_8021Q;
2833 		tpid2 = ETH_P_8021AD;
2834 	} else {
2835 		/* Disable VLAN filtering. */
2836 		tpid  = ETH_P_SJA1105;
2837 		tpid2 = ETH_P_SJA1105;
2838 	}
2839 
2840 	for (port = 0; port < ds->num_ports; port++) {
2841 		struct sja1105_port *sp = &priv->ports[port];
2842 
2843 		if (enabled)
2844 			sp->xmit_tpid = priv->info->qinq_tpid;
2845 		else
2846 			sp->xmit_tpid = ETH_P_SJA1105;
2847 	}
2848 
2849 	if (!enabled)
2850 		state = SJA1105_VLAN_UNAWARE;
2851 	else if (priv->best_effort_vlan_filtering)
2852 		state = SJA1105_VLAN_BEST_EFFORT;
2853 	else
2854 		state = SJA1105_VLAN_FILTERING_FULL;
2855 
2856 	if (priv->vlan_state == state)
2857 		return 0;
2858 
2859 	priv->vlan_state = state;
2860 	want_tagging = (state == SJA1105_VLAN_UNAWARE ||
2861 			state == SJA1105_VLAN_BEST_EFFORT);
2862 
2863 	table = &priv->static_config.tables[BLK_IDX_GENERAL_PARAMS];
2864 	general_params = table->entries;
2865 	/* EtherType used to identify inner tagged (C-tag) VLAN traffic */
2866 	general_params->tpid = tpid;
2867 	/* EtherType used to identify outer tagged (S-tag) VLAN traffic */
2868 	general_params->tpid2 = tpid2;
2869 	/* When VLAN filtering is on, we need to at least be able to
2870 	 * decode management traffic through the "backup plan".
2871 	 */
2872 	general_params->incl_srcpt1 = enabled;
2873 	general_params->incl_srcpt0 = enabled;
2874 
2875 	want_tagging = priv->best_effort_vlan_filtering || !enabled;
2876 
2877 	/* VLAN filtering => independent VLAN learning.
2878 	 * No VLAN filtering (or best effort) => shared VLAN learning.
2879 	 *
2880 	 * In shared VLAN learning mode, untagged traffic still gets
2881 	 * pvid-tagged, and the FDB table gets populated with entries
2882 	 * containing the "real" (pvid or from VLAN tag) VLAN ID.
2883 	 * However the switch performs a masked L2 lookup in the FDB,
2884 	 * effectively only looking up a frame's DMAC (and not VID) for the
2885 	 * forwarding decision.
2886 	 *
2887 	 * This is extremely convenient for us, because in modes with
2888 	 * vlan_filtering=0, dsa_8021q actually installs unique pvid's into
2889 	 * each front panel port. This is good for identification but breaks
2890 	 * learning badly - the VID of the learnt FDB entry is unique, aka
2891 	 * no frames coming from any other port are going to have it. So
2892 	 * for forwarding purposes, this is as though learning was broken
2893 	 * (all frames get flooded).
2894 	 */
2895 	table = &priv->static_config.tables[BLK_IDX_L2_LOOKUP_PARAMS];
2896 	l2_lookup_params = table->entries;
2897 	l2_lookup_params->shared_learn = want_tagging;
2898 
2899 	sja1105_frame_memory_partitioning(priv);
2900 
2901 	rc = sja1105_build_vlan_table(priv, false);
2902 	if (rc)
2903 		return rc;
2904 
2905 	rc = sja1105_static_config_reload(priv, SJA1105_VLAN_FILTERING);
2906 	if (rc)
2907 		NL_SET_ERR_MSG_MOD(extack, "Failed to change VLAN Ethertype");
2908 
2909 	/* Switch port identification based on 802.1Q is only passable
2910 	 * if we are not under a vlan_filtering bridge. So make sure
2911 	 * the two configurations are mutually exclusive (of course, the
2912 	 * user may know better, i.e. best_effort_vlan_filtering).
2913 	 */
2914 	return sja1105_setup_8021q_tagging(ds, want_tagging);
2915 }
2916 
2917 /* Returns number of VLANs added (0 or 1) on success,
2918  * or a negative error code.
2919  */
2920 static int sja1105_vlan_add_one(struct dsa_switch *ds, int port, u16 vid,
2921 				u16 flags, struct list_head *vlan_list)
2922 {
2923 	bool untagged = flags & BRIDGE_VLAN_INFO_UNTAGGED;
2924 	bool pvid = flags & BRIDGE_VLAN_INFO_PVID;
2925 	struct sja1105_bridge_vlan *v;
2926 
2927 	list_for_each_entry(v, vlan_list, list) {
2928 		if (v->port == port && v->vid == vid) {
2929 			/* Already added */
2930 			if (v->untagged == untagged && v->pvid == pvid)
2931 				/* Nothing changed */
2932 				return 0;
2933 
2934 			/* It's the same VLAN, but some of the flags changed
2935 			 * and the user did not bother to delete it first.
2936 			 * Update it and trigger sja1105_build_vlan_table.
2937 			 */
2938 			v->untagged = untagged;
2939 			v->pvid = pvid;
2940 			return 1;
2941 		}
2942 	}
2943 
2944 	v = kzalloc(sizeof(*v), GFP_KERNEL);
2945 	if (!v) {
2946 		dev_err(ds->dev, "Out of memory while storing VLAN\n");
2947 		return -ENOMEM;
2948 	}
2949 
2950 	v->port = port;
2951 	v->vid = vid;
2952 	v->untagged = untagged;
2953 	v->pvid = pvid;
2954 	list_add(&v->list, vlan_list);
2955 
2956 	return 1;
2957 }
2958 
2959 /* Returns number of VLANs deleted (0 or 1) */
2960 static int sja1105_vlan_del_one(struct dsa_switch *ds, int port, u16 vid,
2961 				struct list_head *vlan_list)
2962 {
2963 	struct sja1105_bridge_vlan *v, *n;
2964 
2965 	list_for_each_entry_safe(v, n, vlan_list, list) {
2966 		if (v->port == port && v->vid == vid) {
2967 			list_del(&v->list);
2968 			kfree(v);
2969 			return 1;
2970 		}
2971 	}
2972 
2973 	return 0;
2974 }
2975 
2976 static int sja1105_vlan_add(struct dsa_switch *ds, int port,
2977 			    const struct switchdev_obj_port_vlan *vlan,
2978 			    struct netlink_ext_ack *extack)
2979 {
2980 	struct sja1105_private *priv = ds->priv;
2981 	bool vlan_table_changed = false;
2982 	int rc;
2983 
2984 	/* If the user wants best-effort VLAN filtering (aka vlan_filtering
2985 	 * bridge plus tagging), be sure to at least deny alterations to the
2986 	 * configuration done by dsa_8021q.
2987 	 */
2988 	if (priv->vlan_state != SJA1105_VLAN_FILTERING_FULL &&
2989 	    vid_is_dsa_8021q(vlan->vid)) {
2990 		NL_SET_ERR_MSG_MOD(extack,
2991 				   "Range 1024-3071 reserved for dsa_8021q operation");
2992 		return -EBUSY;
2993 	}
2994 
2995 	rc = sja1105_vlan_add_one(ds, port, vlan->vid, vlan->flags,
2996 				  &priv->bridge_vlans);
2997 	if (rc < 0)
2998 		return rc;
2999 	if (rc > 0)
3000 		vlan_table_changed = true;
3001 
3002 	if (!vlan_table_changed)
3003 		return 0;
3004 
3005 	return sja1105_build_vlan_table(priv, true);
3006 }
3007 
3008 static int sja1105_vlan_del(struct dsa_switch *ds, int port,
3009 			    const struct switchdev_obj_port_vlan *vlan)
3010 {
3011 	struct sja1105_private *priv = ds->priv;
3012 	bool vlan_table_changed = false;
3013 	int rc;
3014 
3015 	rc = sja1105_vlan_del_one(ds, port, vlan->vid, &priv->bridge_vlans);
3016 	if (rc > 0)
3017 		vlan_table_changed = true;
3018 
3019 	if (!vlan_table_changed)
3020 		return 0;
3021 
3022 	return sja1105_build_vlan_table(priv, true);
3023 }
3024 
3025 static int sja1105_dsa_8021q_vlan_add(struct dsa_switch *ds, int port, u16 vid,
3026 				      u16 flags)
3027 {
3028 	struct sja1105_private *priv = ds->priv;
3029 	int rc;
3030 
3031 	rc = sja1105_vlan_add_one(ds, port, vid, flags, &priv->dsa_8021q_vlans);
3032 	if (rc <= 0)
3033 		return rc;
3034 
3035 	return sja1105_build_vlan_table(priv, true);
3036 }
3037 
3038 static int sja1105_dsa_8021q_vlan_del(struct dsa_switch *ds, int port, u16 vid)
3039 {
3040 	struct sja1105_private *priv = ds->priv;
3041 	int rc;
3042 
3043 	rc = sja1105_vlan_del_one(ds, port, vid, &priv->dsa_8021q_vlans);
3044 	if (!rc)
3045 		return 0;
3046 
3047 	return sja1105_build_vlan_table(priv, true);
3048 }
3049 
3050 static const struct dsa_8021q_ops sja1105_dsa_8021q_ops = {
3051 	.vlan_add	= sja1105_dsa_8021q_vlan_add,
3052 	.vlan_del	= sja1105_dsa_8021q_vlan_del,
3053 };
3054 
3055 /* The programming model for the SJA1105 switch is "all-at-once" via static
3056  * configuration tables. Some of these can be dynamically modified at runtime,
3057  * but not the xMII mode parameters table.
3058  * Furthermode, some PHYs may not have crystals for generating their clocks
3059  * (e.g. RMII). Instead, their 50MHz clock is supplied via the SJA1105 port's
3060  * ref_clk pin. So port clocking needs to be initialized early, before
3061  * connecting to PHYs is attempted, otherwise they won't respond through MDIO.
3062  * Setting correct PHY link speed does not matter now.
3063  * But dsa_slave_phy_setup is called later than sja1105_setup, so the PHY
3064  * bindings are not yet parsed by DSA core. We need to parse early so that we
3065  * can populate the xMII mode parameters table.
3066  */
3067 static int sja1105_setup(struct dsa_switch *ds)
3068 {
3069 	struct sja1105_private *priv = ds->priv;
3070 	int rc;
3071 
3072 	rc = sja1105_parse_dt(priv);
3073 	if (rc < 0) {
3074 		dev_err(ds->dev, "Failed to parse DT: %d\n", rc);
3075 		return rc;
3076 	}
3077 
3078 	/* Error out early if internal delays are required through DT
3079 	 * and we can't apply them.
3080 	 */
3081 	rc = sja1105_parse_rgmii_delays(priv);
3082 	if (rc < 0) {
3083 		dev_err(ds->dev, "RGMII delay not supported\n");
3084 		return rc;
3085 	}
3086 
3087 	rc = sja1105_ptp_clock_register(ds);
3088 	if (rc < 0) {
3089 		dev_err(ds->dev, "Failed to register PTP clock: %d\n", rc);
3090 		return rc;
3091 	}
3092 
3093 	rc = sja1105_mdiobus_register(ds);
3094 	if (rc < 0) {
3095 		dev_err(ds->dev, "Failed to register MDIO bus: %pe\n",
3096 			ERR_PTR(rc));
3097 		goto out_ptp_clock_unregister;
3098 	}
3099 
3100 	if (priv->info->disable_microcontroller) {
3101 		rc = priv->info->disable_microcontroller(priv);
3102 		if (rc < 0) {
3103 			dev_err(ds->dev,
3104 				"Failed to disable microcontroller: %pe\n",
3105 				ERR_PTR(rc));
3106 			goto out_mdiobus_unregister;
3107 		}
3108 	}
3109 
3110 	/* Create and send configuration down to device */
3111 	rc = sja1105_static_config_load(priv);
3112 	if (rc < 0) {
3113 		dev_err(ds->dev, "Failed to load static config: %d\n", rc);
3114 		goto out_mdiobus_unregister;
3115 	}
3116 
3117 	/* Configure the CGU (PHY link modes and speeds) */
3118 	if (priv->info->clocking_setup) {
3119 		rc = priv->info->clocking_setup(priv);
3120 		if (rc < 0) {
3121 			dev_err(ds->dev,
3122 				"Failed to configure MII clocking: %pe\n",
3123 				ERR_PTR(rc));
3124 			goto out_static_config_free;
3125 		}
3126 	}
3127 
3128 	/* On SJA1105, VLAN filtering per se is always enabled in hardware.
3129 	 * The only thing we can do to disable it is lie about what the 802.1Q
3130 	 * EtherType is.
3131 	 * So it will still try to apply VLAN filtering, but all ingress
3132 	 * traffic (except frames received with EtherType of ETH_P_SJA1105)
3133 	 * will be internally tagged with a distorted VLAN header where the
3134 	 * TPID is ETH_P_SJA1105, and the VLAN ID is the port pvid.
3135 	 */
3136 	ds->vlan_filtering_is_global = true;
3137 
3138 	/* Advertise the 8 egress queues */
3139 	ds->num_tx_queues = SJA1105_NUM_TC;
3140 
3141 	ds->mtu_enforcement_ingress = true;
3142 
3143 	priv->best_effort_vlan_filtering = true;
3144 
3145 	rc = sja1105_devlink_setup(ds);
3146 	if (rc < 0)
3147 		goto out_static_config_free;
3148 
3149 	/* The DSA/switchdev model brings up switch ports in standalone mode by
3150 	 * default, and that means vlan_filtering is 0 since they're not under
3151 	 * a bridge, so it's safe to set up switch tagging at this time.
3152 	 */
3153 	rtnl_lock();
3154 	rc = sja1105_setup_8021q_tagging(ds, true);
3155 	rtnl_unlock();
3156 	if (rc)
3157 		goto out_devlink_teardown;
3158 
3159 	return 0;
3160 
3161 out_devlink_teardown:
3162 	sja1105_devlink_teardown(ds);
3163 out_mdiobus_unregister:
3164 	sja1105_mdiobus_unregister(ds);
3165 out_ptp_clock_unregister:
3166 	sja1105_ptp_clock_unregister(ds);
3167 out_static_config_free:
3168 	sja1105_static_config_free(&priv->static_config);
3169 
3170 	return rc;
3171 }
3172 
3173 static void sja1105_teardown(struct dsa_switch *ds)
3174 {
3175 	struct sja1105_private *priv = ds->priv;
3176 	struct sja1105_bridge_vlan *v, *n;
3177 	int port;
3178 
3179 	for (port = 0; port < ds->num_ports; port++) {
3180 		struct sja1105_port *sp = &priv->ports[port];
3181 
3182 		if (!dsa_is_user_port(ds, port))
3183 			continue;
3184 
3185 		if (sp->xmit_worker)
3186 			kthread_destroy_worker(sp->xmit_worker);
3187 	}
3188 
3189 	sja1105_devlink_teardown(ds);
3190 	sja1105_mdiobus_unregister(ds);
3191 	sja1105_flower_teardown(ds);
3192 	sja1105_tas_teardown(ds);
3193 	sja1105_ptp_clock_unregister(ds);
3194 	sja1105_static_config_free(&priv->static_config);
3195 
3196 	list_for_each_entry_safe(v, n, &priv->dsa_8021q_vlans, list) {
3197 		list_del(&v->list);
3198 		kfree(v);
3199 	}
3200 
3201 	list_for_each_entry_safe(v, n, &priv->bridge_vlans, list) {
3202 		list_del(&v->list);
3203 		kfree(v);
3204 	}
3205 }
3206 
3207 static void sja1105_port_disable(struct dsa_switch *ds, int port)
3208 {
3209 	struct sja1105_private *priv = ds->priv;
3210 	struct sja1105_port *sp = &priv->ports[port];
3211 
3212 	if (!dsa_is_user_port(ds, port))
3213 		return;
3214 
3215 	kthread_cancel_work_sync(&sp->xmit_work);
3216 	skb_queue_purge(&sp->xmit_queue);
3217 }
3218 
3219 static int sja1105_mgmt_xmit(struct dsa_switch *ds, int port, int slot,
3220 			     struct sk_buff *skb, bool takets)
3221 {
3222 	struct sja1105_mgmt_entry mgmt_route = {0};
3223 	struct sja1105_private *priv = ds->priv;
3224 	struct ethhdr *hdr;
3225 	int timeout = 10;
3226 	int rc;
3227 
3228 	hdr = eth_hdr(skb);
3229 
3230 	mgmt_route.macaddr = ether_addr_to_u64(hdr->h_dest);
3231 	mgmt_route.destports = BIT(port);
3232 	mgmt_route.enfport = 1;
3233 	mgmt_route.tsreg = 0;
3234 	mgmt_route.takets = takets;
3235 
3236 	rc = sja1105_dynamic_config_write(priv, BLK_IDX_MGMT_ROUTE,
3237 					  slot, &mgmt_route, true);
3238 	if (rc < 0) {
3239 		kfree_skb(skb);
3240 		return rc;
3241 	}
3242 
3243 	/* Transfer skb to the host port. */
3244 	dsa_enqueue_skb(skb, dsa_to_port(ds, port)->slave);
3245 
3246 	/* Wait until the switch has processed the frame */
3247 	do {
3248 		rc = sja1105_dynamic_config_read(priv, BLK_IDX_MGMT_ROUTE,
3249 						 slot, &mgmt_route);
3250 		if (rc < 0) {
3251 			dev_err_ratelimited(priv->ds->dev,
3252 					    "failed to poll for mgmt route\n");
3253 			continue;
3254 		}
3255 
3256 		/* UM10944: The ENFPORT flag of the respective entry is
3257 		 * cleared when a match is found. The host can use this
3258 		 * flag as an acknowledgment.
3259 		 */
3260 		cpu_relax();
3261 	} while (mgmt_route.enfport && --timeout);
3262 
3263 	if (!timeout) {
3264 		/* Clean up the management route so that a follow-up
3265 		 * frame may not match on it by mistake.
3266 		 * This is only hardware supported on P/Q/R/S - on E/T it is
3267 		 * a no-op and we are silently discarding the -EOPNOTSUPP.
3268 		 */
3269 		sja1105_dynamic_config_write(priv, BLK_IDX_MGMT_ROUTE,
3270 					     slot, &mgmt_route, false);
3271 		dev_err_ratelimited(priv->ds->dev, "xmit timed out\n");
3272 	}
3273 
3274 	return NETDEV_TX_OK;
3275 }
3276 
3277 #define work_to_port(work) \
3278 		container_of((work), struct sja1105_port, xmit_work)
3279 #define tagger_to_sja1105(t) \
3280 		container_of((t), struct sja1105_private, tagger_data)
3281 
3282 /* Deferred work is unfortunately necessary because setting up the management
3283  * route cannot be done from atomit context (SPI transfer takes a sleepable
3284  * lock on the bus)
3285  */
3286 static void sja1105_port_deferred_xmit(struct kthread_work *work)
3287 {
3288 	struct sja1105_port *sp = work_to_port(work);
3289 	struct sja1105_tagger_data *tagger_data = sp->data;
3290 	struct sja1105_private *priv = tagger_to_sja1105(tagger_data);
3291 	int port = sp - priv->ports;
3292 	struct sk_buff *skb;
3293 
3294 	while ((skb = skb_dequeue(&sp->xmit_queue)) != NULL) {
3295 		struct sk_buff *clone = SJA1105_SKB_CB(skb)->clone;
3296 
3297 		mutex_lock(&priv->mgmt_lock);
3298 
3299 		sja1105_mgmt_xmit(priv->ds, port, 0, skb, !!clone);
3300 
3301 		/* The clone, if there, was made by dsa_skb_tx_timestamp */
3302 		if (clone)
3303 			sja1105_ptp_txtstamp_skb(priv->ds, port, clone);
3304 
3305 		mutex_unlock(&priv->mgmt_lock);
3306 	}
3307 }
3308 
3309 /* The MAXAGE setting belongs to the L2 Forwarding Parameters table,
3310  * which cannot be reconfigured at runtime. So a switch reset is required.
3311  */
3312 static int sja1105_set_ageing_time(struct dsa_switch *ds,
3313 				   unsigned int ageing_time)
3314 {
3315 	struct sja1105_l2_lookup_params_entry *l2_lookup_params;
3316 	struct sja1105_private *priv = ds->priv;
3317 	struct sja1105_table *table;
3318 	unsigned int maxage;
3319 
3320 	table = &priv->static_config.tables[BLK_IDX_L2_LOOKUP_PARAMS];
3321 	l2_lookup_params = table->entries;
3322 
3323 	maxage = SJA1105_AGEING_TIME_MS(ageing_time);
3324 
3325 	if (l2_lookup_params->maxage == maxage)
3326 		return 0;
3327 
3328 	l2_lookup_params->maxage = maxage;
3329 
3330 	return sja1105_static_config_reload(priv, SJA1105_AGEING_TIME);
3331 }
3332 
3333 static int sja1105_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
3334 {
3335 	struct sja1105_l2_policing_entry *policing;
3336 	struct sja1105_private *priv = ds->priv;
3337 
3338 	new_mtu += VLAN_ETH_HLEN + ETH_FCS_LEN;
3339 
3340 	if (dsa_is_cpu_port(ds, port))
3341 		new_mtu += VLAN_HLEN;
3342 
3343 	policing = priv->static_config.tables[BLK_IDX_L2_POLICING].entries;
3344 
3345 	if (policing[port].maxlen == new_mtu)
3346 		return 0;
3347 
3348 	policing[port].maxlen = new_mtu;
3349 
3350 	return sja1105_static_config_reload(priv, SJA1105_BEST_EFFORT_POLICING);
3351 }
3352 
3353 static int sja1105_get_max_mtu(struct dsa_switch *ds, int port)
3354 {
3355 	return 2043 - VLAN_ETH_HLEN - ETH_FCS_LEN;
3356 }
3357 
3358 static int sja1105_port_setup_tc(struct dsa_switch *ds, int port,
3359 				 enum tc_setup_type type,
3360 				 void *type_data)
3361 {
3362 	switch (type) {
3363 	case TC_SETUP_QDISC_TAPRIO:
3364 		return sja1105_setup_tc_taprio(ds, port, type_data);
3365 	case TC_SETUP_QDISC_CBS:
3366 		return sja1105_setup_tc_cbs(ds, port, type_data);
3367 	default:
3368 		return -EOPNOTSUPP;
3369 	}
3370 }
3371 
3372 /* We have a single mirror (@to) port, but can configure ingress and egress
3373  * mirroring on all other (@from) ports.
3374  * We need to allow mirroring rules only as long as the @to port is always the
3375  * same, and we need to unset the @to port from mirr_port only when there is no
3376  * mirroring rule that references it.
3377  */
3378 static int sja1105_mirror_apply(struct sja1105_private *priv, int from, int to,
3379 				bool ingress, bool enabled)
3380 {
3381 	struct sja1105_general_params_entry *general_params;
3382 	struct sja1105_mac_config_entry *mac;
3383 	struct dsa_switch *ds = priv->ds;
3384 	struct sja1105_table *table;
3385 	bool already_enabled;
3386 	u64 new_mirr_port;
3387 	int rc;
3388 
3389 	table = &priv->static_config.tables[BLK_IDX_GENERAL_PARAMS];
3390 	general_params = table->entries;
3391 
3392 	mac = priv->static_config.tables[BLK_IDX_MAC_CONFIG].entries;
3393 
3394 	already_enabled = (general_params->mirr_port != ds->num_ports);
3395 	if (already_enabled && enabled && general_params->mirr_port != to) {
3396 		dev_err(priv->ds->dev,
3397 			"Delete mirroring rules towards port %llu first\n",
3398 			general_params->mirr_port);
3399 		return -EBUSY;
3400 	}
3401 
3402 	new_mirr_port = to;
3403 	if (!enabled) {
3404 		bool keep = false;
3405 		int port;
3406 
3407 		/* Anybody still referencing mirr_port? */
3408 		for (port = 0; port < ds->num_ports; port++) {
3409 			if (mac[port].ing_mirr || mac[port].egr_mirr) {
3410 				keep = true;
3411 				break;
3412 			}
3413 		}
3414 		/* Unset already_enabled for next time */
3415 		if (!keep)
3416 			new_mirr_port = ds->num_ports;
3417 	}
3418 	if (new_mirr_port != general_params->mirr_port) {
3419 		general_params->mirr_port = new_mirr_port;
3420 
3421 		rc = sja1105_dynamic_config_write(priv, BLK_IDX_GENERAL_PARAMS,
3422 						  0, general_params, true);
3423 		if (rc < 0)
3424 			return rc;
3425 	}
3426 
3427 	if (ingress)
3428 		mac[from].ing_mirr = enabled;
3429 	else
3430 		mac[from].egr_mirr = enabled;
3431 
3432 	return sja1105_dynamic_config_write(priv, BLK_IDX_MAC_CONFIG, from,
3433 					    &mac[from], true);
3434 }
3435 
3436 static int sja1105_mirror_add(struct dsa_switch *ds, int port,
3437 			      struct dsa_mall_mirror_tc_entry *mirror,
3438 			      bool ingress)
3439 {
3440 	return sja1105_mirror_apply(ds->priv, port, mirror->to_local_port,
3441 				    ingress, true);
3442 }
3443 
3444 static void sja1105_mirror_del(struct dsa_switch *ds, int port,
3445 			       struct dsa_mall_mirror_tc_entry *mirror)
3446 {
3447 	sja1105_mirror_apply(ds->priv, port, mirror->to_local_port,
3448 			     mirror->ingress, false);
3449 }
3450 
3451 static int sja1105_port_policer_add(struct dsa_switch *ds, int port,
3452 				    struct dsa_mall_policer_tc_entry *policer)
3453 {
3454 	struct sja1105_l2_policing_entry *policing;
3455 	struct sja1105_private *priv = ds->priv;
3456 
3457 	policing = priv->static_config.tables[BLK_IDX_L2_POLICING].entries;
3458 
3459 	/* In hardware, every 8 microseconds the credit level is incremented by
3460 	 * the value of RATE bytes divided by 64, up to a maximum of SMAX
3461 	 * bytes.
3462 	 */
3463 	policing[port].rate = div_u64(512 * policer->rate_bytes_per_sec,
3464 				      1000000);
3465 	policing[port].smax = policer->burst;
3466 
3467 	return sja1105_static_config_reload(priv, SJA1105_BEST_EFFORT_POLICING);
3468 }
3469 
3470 static void sja1105_port_policer_del(struct dsa_switch *ds, int port)
3471 {
3472 	struct sja1105_l2_policing_entry *policing;
3473 	struct sja1105_private *priv = ds->priv;
3474 
3475 	policing = priv->static_config.tables[BLK_IDX_L2_POLICING].entries;
3476 
3477 	policing[port].rate = SJA1105_RATE_MBPS(1000);
3478 	policing[port].smax = 65535;
3479 
3480 	sja1105_static_config_reload(priv, SJA1105_BEST_EFFORT_POLICING);
3481 }
3482 
3483 static int sja1105_port_set_learning(struct sja1105_private *priv, int port,
3484 				     bool enabled)
3485 {
3486 	struct sja1105_mac_config_entry *mac;
3487 	int rc;
3488 
3489 	mac = priv->static_config.tables[BLK_IDX_MAC_CONFIG].entries;
3490 
3491 	mac[port].dyn_learn = enabled;
3492 
3493 	rc = sja1105_dynamic_config_write(priv, BLK_IDX_MAC_CONFIG, port,
3494 					  &mac[port], true);
3495 	if (rc)
3496 		return rc;
3497 
3498 	if (enabled)
3499 		priv->learn_ena |= BIT(port);
3500 	else
3501 		priv->learn_ena &= ~BIT(port);
3502 
3503 	return 0;
3504 }
3505 
3506 static int sja1105_port_ucast_bcast_flood(struct sja1105_private *priv, int to,
3507 					  struct switchdev_brport_flags flags)
3508 {
3509 	if (flags.mask & BR_FLOOD) {
3510 		if (flags.val & BR_FLOOD)
3511 			priv->ucast_egress_floods |= BIT(to);
3512 		else
3513 			priv->ucast_egress_floods &= ~BIT(to);
3514 	}
3515 
3516 	if (flags.mask & BR_BCAST_FLOOD) {
3517 		if (flags.val & BR_BCAST_FLOOD)
3518 			priv->bcast_egress_floods |= BIT(to);
3519 		else
3520 			priv->bcast_egress_floods &= ~BIT(to);
3521 	}
3522 
3523 	return sja1105_manage_flood_domains(priv);
3524 }
3525 
3526 static int sja1105_port_mcast_flood(struct sja1105_private *priv, int to,
3527 				    struct switchdev_brport_flags flags,
3528 				    struct netlink_ext_ack *extack)
3529 {
3530 	struct sja1105_l2_lookup_entry *l2_lookup;
3531 	struct sja1105_table *table;
3532 	int match;
3533 
3534 	table = &priv->static_config.tables[BLK_IDX_L2_LOOKUP];
3535 	l2_lookup = table->entries;
3536 
3537 	for (match = 0; match < table->entry_count; match++)
3538 		if (l2_lookup[match].macaddr == SJA1105_UNKNOWN_MULTICAST &&
3539 		    l2_lookup[match].mask_macaddr == SJA1105_UNKNOWN_MULTICAST)
3540 			break;
3541 
3542 	if (match == table->entry_count) {
3543 		NL_SET_ERR_MSG_MOD(extack,
3544 				   "Could not find FDB entry for unknown multicast");
3545 		return -ENOSPC;
3546 	}
3547 
3548 	if (flags.val & BR_MCAST_FLOOD)
3549 		l2_lookup[match].destports |= BIT(to);
3550 	else
3551 		l2_lookup[match].destports &= ~BIT(to);
3552 
3553 	return sja1105_dynamic_config_write(priv, BLK_IDX_L2_LOOKUP,
3554 					    l2_lookup[match].index,
3555 					    &l2_lookup[match],
3556 					    true);
3557 }
3558 
3559 static int sja1105_port_pre_bridge_flags(struct dsa_switch *ds, int port,
3560 					 struct switchdev_brport_flags flags,
3561 					 struct netlink_ext_ack *extack)
3562 {
3563 	struct sja1105_private *priv = ds->priv;
3564 
3565 	if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
3566 			   BR_BCAST_FLOOD))
3567 		return -EINVAL;
3568 
3569 	if (flags.mask & (BR_FLOOD | BR_MCAST_FLOOD) &&
3570 	    !priv->info->can_limit_mcast_flood) {
3571 		bool multicast = !!(flags.val & BR_MCAST_FLOOD);
3572 		bool unicast = !!(flags.val & BR_FLOOD);
3573 
3574 		if (unicast != multicast) {
3575 			NL_SET_ERR_MSG_MOD(extack,
3576 					   "This chip cannot configure multicast flooding independently of unicast");
3577 			return -EINVAL;
3578 		}
3579 	}
3580 
3581 	return 0;
3582 }
3583 
3584 static int sja1105_port_bridge_flags(struct dsa_switch *ds, int port,
3585 				     struct switchdev_brport_flags flags,
3586 				     struct netlink_ext_ack *extack)
3587 {
3588 	struct sja1105_private *priv = ds->priv;
3589 	int rc;
3590 
3591 	if (flags.mask & BR_LEARNING) {
3592 		bool learn_ena = !!(flags.val & BR_LEARNING);
3593 
3594 		rc = sja1105_port_set_learning(priv, port, learn_ena);
3595 		if (rc)
3596 			return rc;
3597 	}
3598 
3599 	if (flags.mask & (BR_FLOOD | BR_BCAST_FLOOD)) {
3600 		rc = sja1105_port_ucast_bcast_flood(priv, port, flags);
3601 		if (rc)
3602 			return rc;
3603 	}
3604 
3605 	/* For chips that can't offload BR_MCAST_FLOOD independently, there
3606 	 * is nothing to do here, we ensured the configuration is in sync by
3607 	 * offloading BR_FLOOD.
3608 	 */
3609 	if (flags.mask & BR_MCAST_FLOOD && priv->info->can_limit_mcast_flood) {
3610 		rc = sja1105_port_mcast_flood(priv, port, flags,
3611 					      extack);
3612 		if (rc)
3613 			return rc;
3614 	}
3615 
3616 	return 0;
3617 }
3618 
3619 static const struct dsa_switch_ops sja1105_switch_ops = {
3620 	.get_tag_protocol	= sja1105_get_tag_protocol,
3621 	.setup			= sja1105_setup,
3622 	.teardown		= sja1105_teardown,
3623 	.set_ageing_time	= sja1105_set_ageing_time,
3624 	.port_change_mtu	= sja1105_change_mtu,
3625 	.port_max_mtu		= sja1105_get_max_mtu,
3626 	.phylink_validate	= sja1105_phylink_validate,
3627 	.phylink_mac_config	= sja1105_mac_config,
3628 	.phylink_mac_link_up	= sja1105_mac_link_up,
3629 	.phylink_mac_link_down	= sja1105_mac_link_down,
3630 	.get_strings		= sja1105_get_strings,
3631 	.get_ethtool_stats	= sja1105_get_ethtool_stats,
3632 	.get_sset_count		= sja1105_get_sset_count,
3633 	.get_ts_info		= sja1105_get_ts_info,
3634 	.port_disable		= sja1105_port_disable,
3635 	.port_fdb_dump		= sja1105_fdb_dump,
3636 	.port_fdb_add		= sja1105_fdb_add,
3637 	.port_fdb_del		= sja1105_fdb_del,
3638 	.port_bridge_join	= sja1105_bridge_join,
3639 	.port_bridge_leave	= sja1105_bridge_leave,
3640 	.port_pre_bridge_flags	= sja1105_port_pre_bridge_flags,
3641 	.port_bridge_flags	= sja1105_port_bridge_flags,
3642 	.port_stp_state_set	= sja1105_bridge_stp_state_set,
3643 	.port_vlan_filtering	= sja1105_vlan_filtering,
3644 	.port_vlan_add		= sja1105_vlan_add,
3645 	.port_vlan_del		= sja1105_vlan_del,
3646 	.port_mdb_add		= sja1105_mdb_add,
3647 	.port_mdb_del		= sja1105_mdb_del,
3648 	.port_hwtstamp_get	= sja1105_hwtstamp_get,
3649 	.port_hwtstamp_set	= sja1105_hwtstamp_set,
3650 	.port_rxtstamp		= sja1105_port_rxtstamp,
3651 	.port_txtstamp		= sja1105_port_txtstamp,
3652 	.port_setup_tc		= sja1105_port_setup_tc,
3653 	.port_mirror_add	= sja1105_mirror_add,
3654 	.port_mirror_del	= sja1105_mirror_del,
3655 	.port_policer_add	= sja1105_port_policer_add,
3656 	.port_policer_del	= sja1105_port_policer_del,
3657 	.cls_flower_add		= sja1105_cls_flower_add,
3658 	.cls_flower_del		= sja1105_cls_flower_del,
3659 	.cls_flower_stats	= sja1105_cls_flower_stats,
3660 	.crosschip_bridge_join	= sja1105_crosschip_bridge_join,
3661 	.crosschip_bridge_leave	= sja1105_crosschip_bridge_leave,
3662 	.devlink_param_get	= sja1105_devlink_param_get,
3663 	.devlink_param_set	= sja1105_devlink_param_set,
3664 	.devlink_info_get	= sja1105_devlink_info_get,
3665 };
3666 
3667 static const struct of_device_id sja1105_dt_ids[];
3668 
3669 static int sja1105_check_device_id(struct sja1105_private *priv)
3670 {
3671 	const struct sja1105_regs *regs = priv->info->regs;
3672 	u8 prod_id[SJA1105_SIZE_DEVICE_ID] = {0};
3673 	struct device *dev = &priv->spidev->dev;
3674 	const struct of_device_id *match;
3675 	u32 device_id;
3676 	u64 part_no;
3677 	int rc;
3678 
3679 	rc = sja1105_xfer_u32(priv, SPI_READ, regs->device_id, &device_id,
3680 			      NULL);
3681 	if (rc < 0)
3682 		return rc;
3683 
3684 	rc = sja1105_xfer_buf(priv, SPI_READ, regs->prod_id, prod_id,
3685 			      SJA1105_SIZE_DEVICE_ID);
3686 	if (rc < 0)
3687 		return rc;
3688 
3689 	sja1105_unpack(prod_id, &part_no, 19, 4, SJA1105_SIZE_DEVICE_ID);
3690 
3691 	for (match = sja1105_dt_ids; match->compatible[0]; match++) {
3692 		const struct sja1105_info *info = match->data;
3693 
3694 		/* Is what's been probed in our match table at all? */
3695 		if (info->device_id != device_id || info->part_no != part_no)
3696 			continue;
3697 
3698 		/* But is it what's in the device tree? */
3699 		if (priv->info->device_id != device_id ||
3700 		    priv->info->part_no != part_no) {
3701 			dev_warn(dev, "Device tree specifies chip %s but found %s, please fix it!\n",
3702 				 priv->info->name, info->name);
3703 			/* It isn't. No problem, pick that up. */
3704 			priv->info = info;
3705 		}
3706 
3707 		return 0;
3708 	}
3709 
3710 	dev_err(dev, "Unexpected {device ID, part number}: 0x%x 0x%llx\n",
3711 		device_id, part_no);
3712 
3713 	return -ENODEV;
3714 }
3715 
3716 static int sja1105_probe(struct spi_device *spi)
3717 {
3718 	struct sja1105_tagger_data *tagger_data;
3719 	struct device *dev = &spi->dev;
3720 	struct sja1105_private *priv;
3721 	size_t max_xfer, max_msg;
3722 	struct dsa_switch *ds;
3723 	int rc, port;
3724 
3725 	if (!dev->of_node) {
3726 		dev_err(dev, "No DTS bindings for SJA1105 driver\n");
3727 		return -EINVAL;
3728 	}
3729 
3730 	priv = devm_kzalloc(dev, sizeof(struct sja1105_private), GFP_KERNEL);
3731 	if (!priv)
3732 		return -ENOMEM;
3733 
3734 	/* Configure the optional reset pin and bring up switch */
3735 	priv->reset_gpio = devm_gpiod_get(dev, "reset", GPIOD_OUT_HIGH);
3736 	if (IS_ERR(priv->reset_gpio))
3737 		dev_dbg(dev, "reset-gpios not defined, ignoring\n");
3738 	else
3739 		sja1105_hw_reset(priv->reset_gpio, 1, 1);
3740 
3741 	/* Populate our driver private structure (priv) based on
3742 	 * the device tree node that was probed (spi)
3743 	 */
3744 	priv->spidev = spi;
3745 	spi_set_drvdata(spi, priv);
3746 
3747 	/* Configure the SPI bus */
3748 	spi->bits_per_word = 8;
3749 	rc = spi_setup(spi);
3750 	if (rc < 0) {
3751 		dev_err(dev, "Could not init SPI\n");
3752 		return rc;
3753 	}
3754 
3755 	/* In sja1105_xfer, we send spi_messages composed of two spi_transfers:
3756 	 * a small one for the message header and another one for the current
3757 	 * chunk of the packed buffer.
3758 	 * Check that the restrictions imposed by the SPI controller are
3759 	 * respected: the chunk buffer is smaller than the max transfer size,
3760 	 * and the total length of the chunk plus its message header is smaller
3761 	 * than the max message size.
3762 	 * We do that during probe time since the maximum transfer size is a
3763 	 * runtime invariant.
3764 	 */
3765 	max_xfer = spi_max_transfer_size(spi);
3766 	max_msg = spi_max_message_size(spi);
3767 
3768 	/* We need to send at least one 64-bit word of SPI payload per message
3769 	 * in order to be able to make useful progress.
3770 	 */
3771 	if (max_msg < SJA1105_SIZE_SPI_MSG_HEADER + 8) {
3772 		dev_err(dev, "SPI master cannot send large enough buffers, aborting\n");
3773 		return -EINVAL;
3774 	}
3775 
3776 	priv->max_xfer_len = SJA1105_SIZE_SPI_MSG_MAXLEN;
3777 	if (priv->max_xfer_len > max_xfer)
3778 		priv->max_xfer_len = max_xfer;
3779 	if (priv->max_xfer_len > max_msg - SJA1105_SIZE_SPI_MSG_HEADER)
3780 		priv->max_xfer_len = max_msg - SJA1105_SIZE_SPI_MSG_HEADER;
3781 
3782 	priv->info = of_device_get_match_data(dev);
3783 
3784 	/* Detect hardware device */
3785 	rc = sja1105_check_device_id(priv);
3786 	if (rc < 0) {
3787 		dev_err(dev, "Device ID check failed: %d\n", rc);
3788 		return rc;
3789 	}
3790 
3791 	dev_info(dev, "Probed switch chip: %s\n", priv->info->name);
3792 
3793 	ds = devm_kzalloc(dev, sizeof(*ds), GFP_KERNEL);
3794 	if (!ds)
3795 		return -ENOMEM;
3796 
3797 	ds->dev = dev;
3798 	ds->num_ports = priv->info->num_ports;
3799 	ds->ops = &sja1105_switch_ops;
3800 	ds->priv = priv;
3801 	priv->ds = ds;
3802 
3803 	tagger_data = &priv->tagger_data;
3804 
3805 	mutex_init(&priv->ptp_data.lock);
3806 	mutex_init(&priv->mgmt_lock);
3807 
3808 	priv->dsa_8021q_ctx = devm_kzalloc(dev, sizeof(*priv->dsa_8021q_ctx),
3809 					   GFP_KERNEL);
3810 	if (!priv->dsa_8021q_ctx)
3811 		return -ENOMEM;
3812 
3813 	priv->dsa_8021q_ctx->ops = &sja1105_dsa_8021q_ops;
3814 	priv->dsa_8021q_ctx->proto = htons(ETH_P_8021Q);
3815 	priv->dsa_8021q_ctx->ds = ds;
3816 
3817 	INIT_LIST_HEAD(&priv->dsa_8021q_ctx->crosschip_links);
3818 	INIT_LIST_HEAD(&priv->bridge_vlans);
3819 	INIT_LIST_HEAD(&priv->dsa_8021q_vlans);
3820 
3821 	sja1105_tas_setup(ds);
3822 	sja1105_flower_setup(ds);
3823 
3824 	rc = dsa_register_switch(priv->ds);
3825 	if (rc)
3826 		return rc;
3827 
3828 	if (IS_ENABLED(CONFIG_NET_SCH_CBS)) {
3829 		priv->cbs = devm_kcalloc(dev, priv->info->num_cbs_shapers,
3830 					 sizeof(struct sja1105_cbs_entry),
3831 					 GFP_KERNEL);
3832 		if (!priv->cbs) {
3833 			rc = -ENOMEM;
3834 			goto out_unregister_switch;
3835 		}
3836 	}
3837 
3838 	/* Connections between dsa_port and sja1105_port */
3839 	for (port = 0; port < ds->num_ports; port++) {
3840 		struct sja1105_port *sp = &priv->ports[port];
3841 		struct dsa_port *dp = dsa_to_port(ds, port);
3842 		struct net_device *slave;
3843 		int subvlan;
3844 
3845 		if (!dsa_is_user_port(ds, port))
3846 			continue;
3847 
3848 		dp->priv = sp;
3849 		sp->dp = dp;
3850 		sp->data = tagger_data;
3851 		slave = dp->slave;
3852 		kthread_init_work(&sp->xmit_work, sja1105_port_deferred_xmit);
3853 		sp->xmit_worker = kthread_create_worker(0, "%s_xmit",
3854 							slave->name);
3855 		if (IS_ERR(sp->xmit_worker)) {
3856 			rc = PTR_ERR(sp->xmit_worker);
3857 			dev_err(ds->dev,
3858 				"failed to create deferred xmit thread: %d\n",
3859 				rc);
3860 			goto out_destroy_workers;
3861 		}
3862 		skb_queue_head_init(&sp->xmit_queue);
3863 		sp->xmit_tpid = ETH_P_SJA1105;
3864 
3865 		for (subvlan = 0; subvlan < DSA_8021Q_N_SUBVLAN; subvlan++)
3866 			sp->subvlan_map[subvlan] = VLAN_N_VID;
3867 	}
3868 
3869 	return 0;
3870 
3871 out_destroy_workers:
3872 	while (port-- > 0) {
3873 		struct sja1105_port *sp = &priv->ports[port];
3874 
3875 		if (!dsa_is_user_port(ds, port))
3876 			continue;
3877 
3878 		kthread_destroy_worker(sp->xmit_worker);
3879 	}
3880 
3881 out_unregister_switch:
3882 	dsa_unregister_switch(ds);
3883 
3884 	return rc;
3885 }
3886 
3887 static int sja1105_remove(struct spi_device *spi)
3888 {
3889 	struct sja1105_private *priv = spi_get_drvdata(spi);
3890 
3891 	dsa_unregister_switch(priv->ds);
3892 	return 0;
3893 }
3894 
3895 static const struct of_device_id sja1105_dt_ids[] = {
3896 	{ .compatible = "nxp,sja1105e", .data = &sja1105e_info },
3897 	{ .compatible = "nxp,sja1105t", .data = &sja1105t_info },
3898 	{ .compatible = "nxp,sja1105p", .data = &sja1105p_info },
3899 	{ .compatible = "nxp,sja1105q", .data = &sja1105q_info },
3900 	{ .compatible = "nxp,sja1105r", .data = &sja1105r_info },
3901 	{ .compatible = "nxp,sja1105s", .data = &sja1105s_info },
3902 	{ .compatible = "nxp,sja1110a", .data = &sja1110a_info },
3903 	{ .compatible = "nxp,sja1110b", .data = &sja1110b_info },
3904 	{ .compatible = "nxp,sja1110c", .data = &sja1110c_info },
3905 	{ .compatible = "nxp,sja1110d", .data = &sja1110d_info },
3906 	{ /* sentinel */ },
3907 };
3908 MODULE_DEVICE_TABLE(of, sja1105_dt_ids);
3909 
3910 static struct spi_driver sja1105_driver = {
3911 	.driver = {
3912 		.name  = "sja1105",
3913 		.owner = THIS_MODULE,
3914 		.of_match_table = of_match_ptr(sja1105_dt_ids),
3915 	},
3916 	.probe  = sja1105_probe,
3917 	.remove = sja1105_remove,
3918 };
3919 
3920 module_spi_driver(sja1105_driver);
3921 
3922 MODULE_AUTHOR("Vladimir Oltean <olteanv@gmail.com>");
3923 MODULE_AUTHOR("Georg Waibel <georg.waibel@sensor-technik.de>");
3924 MODULE_DESCRIPTION("SJA1105 Driver");
3925 MODULE_LICENSE("GPL v2");
3926