1 // SPDX-License-Identifier: GPL-2.0 2 /* Copyright (c) 2018, Sensor-Technik Wiedemann GmbH 3 * Copyright (c) 2018-2019, Vladimir Oltean <olteanv@gmail.com> 4 */ 5 6 #define pr_fmt(fmt) KBUILD_MODNAME ": " fmt 7 8 #include <linux/delay.h> 9 #include <linux/module.h> 10 #include <linux/printk.h> 11 #include <linux/spi/spi.h> 12 #include <linux/errno.h> 13 #include <linux/gpio/consumer.h> 14 #include <linux/phylink.h> 15 #include <linux/of.h> 16 #include <linux/of_net.h> 17 #include <linux/of_mdio.h> 18 #include <linux/of_device.h> 19 #include <linux/pcs/pcs-xpcs.h> 20 #include <linux/netdev_features.h> 21 #include <linux/netdevice.h> 22 #include <linux/if_bridge.h> 23 #include <linux/if_ether.h> 24 #include <linux/dsa/8021q.h> 25 #include "sja1105.h" 26 #include "sja1105_tas.h" 27 28 #define SJA1105_UNKNOWN_MULTICAST 0x010000000000ull 29 30 /* Configure the optional reset pin and bring up switch */ 31 static int sja1105_hw_reset(struct device *dev, unsigned int pulse_len, 32 unsigned int startup_delay) 33 { 34 struct gpio_desc *gpio; 35 36 gpio = gpiod_get_optional(dev, "reset", GPIOD_OUT_HIGH); 37 if (IS_ERR(gpio)) 38 return PTR_ERR(gpio); 39 40 if (!gpio) 41 return 0; 42 43 gpiod_set_value_cansleep(gpio, 1); 44 /* Wait for minimum reset pulse length */ 45 msleep(pulse_len); 46 gpiod_set_value_cansleep(gpio, 0); 47 /* Wait until chip is ready after reset */ 48 msleep(startup_delay); 49 50 gpiod_put(gpio); 51 52 return 0; 53 } 54 55 static void 56 sja1105_port_allow_traffic(struct sja1105_l2_forwarding_entry *l2_fwd, 57 int from, int to, bool allow) 58 { 59 if (allow) 60 l2_fwd[from].reach_port |= BIT(to); 61 else 62 l2_fwd[from].reach_port &= ~BIT(to); 63 } 64 65 static bool sja1105_can_forward(struct sja1105_l2_forwarding_entry *l2_fwd, 66 int from, int to) 67 { 68 return !!(l2_fwd[from].reach_port & BIT(to)); 69 } 70 71 static int sja1105_is_vlan_configured(struct sja1105_private *priv, u16 vid) 72 { 73 struct sja1105_vlan_lookup_entry *vlan; 74 int count, i; 75 76 vlan = priv->static_config.tables[BLK_IDX_VLAN_LOOKUP].entries; 77 count = priv->static_config.tables[BLK_IDX_VLAN_LOOKUP].entry_count; 78 79 for (i = 0; i < count; i++) 80 if (vlan[i].vlanid == vid) 81 return i; 82 83 /* Return an invalid entry index if not found */ 84 return -1; 85 } 86 87 static int sja1105_drop_untagged(struct dsa_switch *ds, int port, bool drop) 88 { 89 struct sja1105_private *priv = ds->priv; 90 struct sja1105_mac_config_entry *mac; 91 92 mac = priv->static_config.tables[BLK_IDX_MAC_CONFIG].entries; 93 94 if (mac[port].drpuntag == drop) 95 return 0; 96 97 mac[port].drpuntag = drop; 98 99 return sja1105_dynamic_config_write(priv, BLK_IDX_MAC_CONFIG, port, 100 &mac[port], true); 101 } 102 103 static int sja1105_pvid_apply(struct sja1105_private *priv, int port, u16 pvid) 104 { 105 struct sja1105_mac_config_entry *mac; 106 107 mac = priv->static_config.tables[BLK_IDX_MAC_CONFIG].entries; 108 109 if (mac[port].vlanid == pvid) 110 return 0; 111 112 mac[port].vlanid = pvid; 113 114 return sja1105_dynamic_config_write(priv, BLK_IDX_MAC_CONFIG, port, 115 &mac[port], true); 116 } 117 118 static int sja1105_commit_pvid(struct dsa_switch *ds, int port) 119 { 120 struct dsa_port *dp = dsa_to_port(ds, port); 121 struct net_device *br = dsa_port_bridge_dev_get(dp); 122 struct sja1105_private *priv = ds->priv; 123 struct sja1105_vlan_lookup_entry *vlan; 124 bool drop_untagged = false; 125 int match, rc; 126 u16 pvid; 127 128 if (br && br_vlan_enabled(br)) 129 pvid = priv->bridge_pvid[port]; 130 else 131 pvid = priv->tag_8021q_pvid[port]; 132 133 rc = sja1105_pvid_apply(priv, port, pvid); 134 if (rc) 135 return rc; 136 137 /* Only force dropping of untagged packets when the port is under a 138 * VLAN-aware bridge. When the tag_8021q pvid is used, we are 139 * deliberately removing the RX VLAN from the port's VMEMB_PORT list, 140 * to prevent DSA tag spoofing from the link partner. Untagged packets 141 * are the only ones that should be received with tag_8021q, so 142 * definitely don't drop them. 143 */ 144 if (pvid == priv->bridge_pvid[port]) { 145 vlan = priv->static_config.tables[BLK_IDX_VLAN_LOOKUP].entries; 146 147 match = sja1105_is_vlan_configured(priv, pvid); 148 149 if (match < 0 || !(vlan[match].vmemb_port & BIT(port))) 150 drop_untagged = true; 151 } 152 153 if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) 154 drop_untagged = true; 155 156 return sja1105_drop_untagged(ds, port, drop_untagged); 157 } 158 159 static int sja1105_init_mac_settings(struct sja1105_private *priv) 160 { 161 struct sja1105_mac_config_entry default_mac = { 162 /* Enable all 8 priority queues on egress. 163 * Every queue i holds top[i] - base[i] frames. 164 * Sum of top[i] - base[i] is 511 (max hardware limit). 165 */ 166 .top = {0x3F, 0x7F, 0xBF, 0xFF, 0x13F, 0x17F, 0x1BF, 0x1FF}, 167 .base = {0x0, 0x40, 0x80, 0xC0, 0x100, 0x140, 0x180, 0x1C0}, 168 .enabled = {true, true, true, true, true, true, true, true}, 169 /* Keep standard IFG of 12 bytes on egress. */ 170 .ifg = 0, 171 /* Always put the MAC speed in automatic mode, where it can be 172 * adjusted at runtime by PHYLINK. 173 */ 174 .speed = priv->info->port_speed[SJA1105_SPEED_AUTO], 175 /* No static correction for 1-step 1588 events */ 176 .tp_delin = 0, 177 .tp_delout = 0, 178 /* Disable aging for critical TTEthernet traffic */ 179 .maxage = 0xFF, 180 /* Internal VLAN (pvid) to apply to untagged ingress */ 181 .vlanprio = 0, 182 .vlanid = 1, 183 .ing_mirr = false, 184 .egr_mirr = false, 185 /* Don't drop traffic with other EtherType than ETH_P_IP */ 186 .drpnona664 = false, 187 /* Don't drop double-tagged traffic */ 188 .drpdtag = false, 189 /* Don't drop untagged traffic */ 190 .drpuntag = false, 191 /* Don't retag 802.1p (VID 0) traffic with the pvid */ 192 .retag = false, 193 /* Disable learning and I/O on user ports by default - 194 * STP will enable it. 195 */ 196 .dyn_learn = false, 197 .egress = false, 198 .ingress = false, 199 }; 200 struct sja1105_mac_config_entry *mac; 201 struct dsa_switch *ds = priv->ds; 202 struct sja1105_table *table; 203 struct dsa_port *dp; 204 205 table = &priv->static_config.tables[BLK_IDX_MAC_CONFIG]; 206 207 /* Discard previous MAC Configuration Table */ 208 if (table->entry_count) { 209 kfree(table->entries); 210 table->entry_count = 0; 211 } 212 213 table->entries = kcalloc(table->ops->max_entry_count, 214 table->ops->unpacked_entry_size, GFP_KERNEL); 215 if (!table->entries) 216 return -ENOMEM; 217 218 table->entry_count = table->ops->max_entry_count; 219 220 mac = table->entries; 221 222 list_for_each_entry(dp, &ds->dst->ports, list) { 223 if (dp->ds != ds) 224 continue; 225 226 mac[dp->index] = default_mac; 227 228 /* Let sja1105_bridge_stp_state_set() keep address learning 229 * enabled for the DSA ports. CPU ports use software-assisted 230 * learning to ensure that only FDB entries belonging to the 231 * bridge are learned, and that they are learned towards all 232 * CPU ports in a cross-chip topology if multiple CPU ports 233 * exist. 234 */ 235 if (dsa_port_is_dsa(dp)) 236 dp->learning = true; 237 238 /* Disallow untagged packets from being received on the 239 * CPU and DSA ports. 240 */ 241 if (dsa_port_is_cpu(dp) || dsa_port_is_dsa(dp)) 242 mac[dp->index].drpuntag = true; 243 } 244 245 return 0; 246 } 247 248 static int sja1105_init_mii_settings(struct sja1105_private *priv) 249 { 250 struct device *dev = &priv->spidev->dev; 251 struct sja1105_xmii_params_entry *mii; 252 struct dsa_switch *ds = priv->ds; 253 struct sja1105_table *table; 254 int i; 255 256 table = &priv->static_config.tables[BLK_IDX_XMII_PARAMS]; 257 258 /* Discard previous xMII Mode Parameters Table */ 259 if (table->entry_count) { 260 kfree(table->entries); 261 table->entry_count = 0; 262 } 263 264 table->entries = kcalloc(table->ops->max_entry_count, 265 table->ops->unpacked_entry_size, GFP_KERNEL); 266 if (!table->entries) 267 return -ENOMEM; 268 269 /* Override table based on PHYLINK DT bindings */ 270 table->entry_count = table->ops->max_entry_count; 271 272 mii = table->entries; 273 274 for (i = 0; i < ds->num_ports; i++) { 275 sja1105_mii_role_t role = XMII_MAC; 276 277 if (dsa_is_unused_port(priv->ds, i)) 278 continue; 279 280 switch (priv->phy_mode[i]) { 281 case PHY_INTERFACE_MODE_INTERNAL: 282 if (priv->info->internal_phy[i] == SJA1105_NO_PHY) 283 goto unsupported; 284 285 mii->xmii_mode[i] = XMII_MODE_MII; 286 if (priv->info->internal_phy[i] == SJA1105_PHY_BASE_TX) 287 mii->special[i] = true; 288 289 break; 290 case PHY_INTERFACE_MODE_REVMII: 291 role = XMII_PHY; 292 fallthrough; 293 case PHY_INTERFACE_MODE_MII: 294 if (!priv->info->supports_mii[i]) 295 goto unsupported; 296 297 mii->xmii_mode[i] = XMII_MODE_MII; 298 break; 299 case PHY_INTERFACE_MODE_REVRMII: 300 role = XMII_PHY; 301 fallthrough; 302 case PHY_INTERFACE_MODE_RMII: 303 if (!priv->info->supports_rmii[i]) 304 goto unsupported; 305 306 mii->xmii_mode[i] = XMII_MODE_RMII; 307 break; 308 case PHY_INTERFACE_MODE_RGMII: 309 case PHY_INTERFACE_MODE_RGMII_ID: 310 case PHY_INTERFACE_MODE_RGMII_RXID: 311 case PHY_INTERFACE_MODE_RGMII_TXID: 312 if (!priv->info->supports_rgmii[i]) 313 goto unsupported; 314 315 mii->xmii_mode[i] = XMII_MODE_RGMII; 316 break; 317 case PHY_INTERFACE_MODE_SGMII: 318 if (!priv->info->supports_sgmii[i]) 319 goto unsupported; 320 321 mii->xmii_mode[i] = XMII_MODE_SGMII; 322 mii->special[i] = true; 323 break; 324 case PHY_INTERFACE_MODE_2500BASEX: 325 if (!priv->info->supports_2500basex[i]) 326 goto unsupported; 327 328 mii->xmii_mode[i] = XMII_MODE_SGMII; 329 mii->special[i] = true; 330 break; 331 unsupported: 332 default: 333 dev_err(dev, "Unsupported PHY mode %s on port %d!\n", 334 phy_modes(priv->phy_mode[i]), i); 335 return -EINVAL; 336 } 337 338 mii->phy_mac[i] = role; 339 } 340 return 0; 341 } 342 343 static int sja1105_init_static_fdb(struct sja1105_private *priv) 344 { 345 struct sja1105_l2_lookup_entry *l2_lookup; 346 struct sja1105_table *table; 347 int port; 348 349 table = &priv->static_config.tables[BLK_IDX_L2_LOOKUP]; 350 351 /* We only populate the FDB table through dynamic L2 Address Lookup 352 * entries, except for a special entry at the end which is a catch-all 353 * for unknown multicast and will be used to control flooding domain. 354 */ 355 if (table->entry_count) { 356 kfree(table->entries); 357 table->entry_count = 0; 358 } 359 360 if (!priv->info->can_limit_mcast_flood) 361 return 0; 362 363 table->entries = kcalloc(1, table->ops->unpacked_entry_size, 364 GFP_KERNEL); 365 if (!table->entries) 366 return -ENOMEM; 367 368 table->entry_count = 1; 369 l2_lookup = table->entries; 370 371 /* All L2 multicast addresses have an odd first octet */ 372 l2_lookup[0].macaddr = SJA1105_UNKNOWN_MULTICAST; 373 l2_lookup[0].mask_macaddr = SJA1105_UNKNOWN_MULTICAST; 374 l2_lookup[0].lockeds = true; 375 l2_lookup[0].index = SJA1105_MAX_L2_LOOKUP_COUNT - 1; 376 377 /* Flood multicast to every port by default */ 378 for (port = 0; port < priv->ds->num_ports; port++) 379 if (!dsa_is_unused_port(priv->ds, port)) 380 l2_lookup[0].destports |= BIT(port); 381 382 return 0; 383 } 384 385 static int sja1105_init_l2_lookup_params(struct sja1105_private *priv) 386 { 387 struct sja1105_l2_lookup_params_entry default_l2_lookup_params = { 388 /* Learned FDB entries are forgotten after 300 seconds */ 389 .maxage = SJA1105_AGEING_TIME_MS(300000), 390 /* All entries within a FDB bin are available for learning */ 391 .dyn_tbsz = SJA1105ET_FDB_BIN_SIZE, 392 /* And the P/Q/R/S equivalent setting: */ 393 .start_dynspc = 0, 394 /* 2^8 + 2^5 + 2^3 + 2^2 + 2^1 + 1 in Koopman notation */ 395 .poly = 0x97, 396 /* This selects between Independent VLAN Learning (IVL) and 397 * Shared VLAN Learning (SVL) 398 */ 399 .shared_learn = true, 400 /* Don't discard management traffic based on ENFPORT - 401 * we don't perform SMAC port enforcement anyway, so 402 * what we are setting here doesn't matter. 403 */ 404 .no_enf_hostprt = false, 405 /* Don't learn SMAC for mac_fltres1 and mac_fltres0. 406 * Maybe correlate with no_linklocal_learn from bridge driver? 407 */ 408 .no_mgmt_learn = true, 409 /* P/Q/R/S only */ 410 .use_static = true, 411 /* Dynamically learned FDB entries can overwrite other (older) 412 * dynamic FDB entries 413 */ 414 .owr_dyn = true, 415 .drpnolearn = true, 416 }; 417 struct dsa_switch *ds = priv->ds; 418 int port, num_used_ports = 0; 419 struct sja1105_table *table; 420 u64 max_fdb_entries; 421 422 for (port = 0; port < ds->num_ports; port++) 423 if (!dsa_is_unused_port(ds, port)) 424 num_used_ports++; 425 426 max_fdb_entries = SJA1105_MAX_L2_LOOKUP_COUNT / num_used_ports; 427 428 for (port = 0; port < ds->num_ports; port++) { 429 if (dsa_is_unused_port(ds, port)) 430 continue; 431 432 default_l2_lookup_params.maxaddrp[port] = max_fdb_entries; 433 } 434 435 table = &priv->static_config.tables[BLK_IDX_L2_LOOKUP_PARAMS]; 436 437 if (table->entry_count) { 438 kfree(table->entries); 439 table->entry_count = 0; 440 } 441 442 table->entries = kcalloc(table->ops->max_entry_count, 443 table->ops->unpacked_entry_size, GFP_KERNEL); 444 if (!table->entries) 445 return -ENOMEM; 446 447 table->entry_count = table->ops->max_entry_count; 448 449 /* This table only has a single entry */ 450 ((struct sja1105_l2_lookup_params_entry *)table->entries)[0] = 451 default_l2_lookup_params; 452 453 return 0; 454 } 455 456 /* Set up a default VLAN for untagged traffic injected from the CPU 457 * using management routes (e.g. STP, PTP) as opposed to tag_8021q. 458 * All DT-defined ports are members of this VLAN, and there are no 459 * restrictions on forwarding (since the CPU selects the destination). 460 * Frames from this VLAN will always be transmitted as untagged, and 461 * neither the bridge nor the 8021q module cannot create this VLAN ID. 462 */ 463 static int sja1105_init_static_vlan(struct sja1105_private *priv) 464 { 465 struct sja1105_table *table; 466 struct sja1105_vlan_lookup_entry pvid = { 467 .type_entry = SJA1110_VLAN_D_TAG, 468 .ving_mirr = 0, 469 .vegr_mirr = 0, 470 .vmemb_port = 0, 471 .vlan_bc = 0, 472 .tag_port = 0, 473 .vlanid = SJA1105_DEFAULT_VLAN, 474 }; 475 struct dsa_switch *ds = priv->ds; 476 int port; 477 478 table = &priv->static_config.tables[BLK_IDX_VLAN_LOOKUP]; 479 480 if (table->entry_count) { 481 kfree(table->entries); 482 table->entry_count = 0; 483 } 484 485 table->entries = kzalloc(table->ops->unpacked_entry_size, 486 GFP_KERNEL); 487 if (!table->entries) 488 return -ENOMEM; 489 490 table->entry_count = 1; 491 492 for (port = 0; port < ds->num_ports; port++) { 493 if (dsa_is_unused_port(ds, port)) 494 continue; 495 496 pvid.vmemb_port |= BIT(port); 497 pvid.vlan_bc |= BIT(port); 498 pvid.tag_port &= ~BIT(port); 499 500 if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) { 501 priv->tag_8021q_pvid[port] = SJA1105_DEFAULT_VLAN; 502 priv->bridge_pvid[port] = SJA1105_DEFAULT_VLAN; 503 } 504 } 505 506 ((struct sja1105_vlan_lookup_entry *)table->entries)[0] = pvid; 507 return 0; 508 } 509 510 static int sja1105_init_l2_forwarding(struct sja1105_private *priv) 511 { 512 struct sja1105_l2_forwarding_entry *l2fwd; 513 struct dsa_switch *ds = priv->ds; 514 struct dsa_switch_tree *dst; 515 struct sja1105_table *table; 516 struct dsa_link *dl; 517 int port, tc; 518 int from, to; 519 520 table = &priv->static_config.tables[BLK_IDX_L2_FORWARDING]; 521 522 if (table->entry_count) { 523 kfree(table->entries); 524 table->entry_count = 0; 525 } 526 527 table->entries = kcalloc(table->ops->max_entry_count, 528 table->ops->unpacked_entry_size, GFP_KERNEL); 529 if (!table->entries) 530 return -ENOMEM; 531 532 table->entry_count = table->ops->max_entry_count; 533 534 l2fwd = table->entries; 535 536 /* First 5 entries in the L2 Forwarding Table define the forwarding 537 * rules and the VLAN PCP to ingress queue mapping. 538 * Set up the ingress queue mapping first. 539 */ 540 for (port = 0; port < ds->num_ports; port++) { 541 if (dsa_is_unused_port(ds, port)) 542 continue; 543 544 for (tc = 0; tc < SJA1105_NUM_TC; tc++) 545 l2fwd[port].vlan_pmap[tc] = tc; 546 } 547 548 /* Then manage the forwarding domain for user ports. These can forward 549 * only to the always-on domain (CPU port and DSA links) 550 */ 551 for (from = 0; from < ds->num_ports; from++) { 552 if (!dsa_is_user_port(ds, from)) 553 continue; 554 555 for (to = 0; to < ds->num_ports; to++) { 556 if (!dsa_is_cpu_port(ds, to) && 557 !dsa_is_dsa_port(ds, to)) 558 continue; 559 560 l2fwd[from].bc_domain |= BIT(to); 561 l2fwd[from].fl_domain |= BIT(to); 562 563 sja1105_port_allow_traffic(l2fwd, from, to, true); 564 } 565 } 566 567 /* Then manage the forwarding domain for DSA links and CPU ports (the 568 * always-on domain). These can send packets to any enabled port except 569 * themselves. 570 */ 571 for (from = 0; from < ds->num_ports; from++) { 572 if (!dsa_is_cpu_port(ds, from) && !dsa_is_dsa_port(ds, from)) 573 continue; 574 575 for (to = 0; to < ds->num_ports; to++) { 576 if (dsa_is_unused_port(ds, to)) 577 continue; 578 579 if (from == to) 580 continue; 581 582 l2fwd[from].bc_domain |= BIT(to); 583 l2fwd[from].fl_domain |= BIT(to); 584 585 sja1105_port_allow_traffic(l2fwd, from, to, true); 586 } 587 } 588 589 /* In odd topologies ("H" connections where there is a DSA link to 590 * another switch which also has its own CPU port), TX packets can loop 591 * back into the system (they are flooded from CPU port 1 to the DSA 592 * link, and from there to CPU port 2). Prevent this from happening by 593 * cutting RX from DSA links towards our CPU port, if the remote switch 594 * has its own CPU port and therefore doesn't need ours for network 595 * stack termination. 596 */ 597 dst = ds->dst; 598 599 list_for_each_entry(dl, &dst->rtable, list) { 600 if (dl->dp->ds != ds || dl->link_dp->cpu_dp == dl->dp->cpu_dp) 601 continue; 602 603 from = dl->dp->index; 604 to = dsa_upstream_port(ds, from); 605 606 dev_warn(ds->dev, 607 "H topology detected, cutting RX from DSA link %d to CPU port %d to prevent TX packet loops\n", 608 from, to); 609 610 sja1105_port_allow_traffic(l2fwd, from, to, false); 611 612 l2fwd[from].bc_domain &= ~BIT(to); 613 l2fwd[from].fl_domain &= ~BIT(to); 614 } 615 616 /* Finally, manage the egress flooding domain. All ports start up with 617 * flooding enabled, including the CPU port and DSA links. 618 */ 619 for (port = 0; port < ds->num_ports; port++) { 620 if (dsa_is_unused_port(ds, port)) 621 continue; 622 623 priv->ucast_egress_floods |= BIT(port); 624 priv->bcast_egress_floods |= BIT(port); 625 } 626 627 /* Next 8 entries define VLAN PCP mapping from ingress to egress. 628 * Create a one-to-one mapping. 629 */ 630 for (tc = 0; tc < SJA1105_NUM_TC; tc++) { 631 for (port = 0; port < ds->num_ports; port++) { 632 if (dsa_is_unused_port(ds, port)) 633 continue; 634 635 l2fwd[ds->num_ports + tc].vlan_pmap[port] = tc; 636 } 637 638 l2fwd[ds->num_ports + tc].type_egrpcp2outputq = true; 639 } 640 641 return 0; 642 } 643 644 static int sja1110_init_pcp_remapping(struct sja1105_private *priv) 645 { 646 struct sja1110_pcp_remapping_entry *pcp_remap; 647 struct dsa_switch *ds = priv->ds; 648 struct sja1105_table *table; 649 int port, tc; 650 651 table = &priv->static_config.tables[BLK_IDX_PCP_REMAPPING]; 652 653 /* Nothing to do for SJA1105 */ 654 if (!table->ops->max_entry_count) 655 return 0; 656 657 if (table->entry_count) { 658 kfree(table->entries); 659 table->entry_count = 0; 660 } 661 662 table->entries = kcalloc(table->ops->max_entry_count, 663 table->ops->unpacked_entry_size, GFP_KERNEL); 664 if (!table->entries) 665 return -ENOMEM; 666 667 table->entry_count = table->ops->max_entry_count; 668 669 pcp_remap = table->entries; 670 671 /* Repeat the configuration done for vlan_pmap */ 672 for (port = 0; port < ds->num_ports; port++) { 673 if (dsa_is_unused_port(ds, port)) 674 continue; 675 676 for (tc = 0; tc < SJA1105_NUM_TC; tc++) 677 pcp_remap[port].egrpcp[tc] = tc; 678 } 679 680 return 0; 681 } 682 683 static int sja1105_init_l2_forwarding_params(struct sja1105_private *priv) 684 { 685 struct sja1105_l2_forwarding_params_entry *l2fwd_params; 686 struct sja1105_table *table; 687 688 table = &priv->static_config.tables[BLK_IDX_L2_FORWARDING_PARAMS]; 689 690 if (table->entry_count) { 691 kfree(table->entries); 692 table->entry_count = 0; 693 } 694 695 table->entries = kcalloc(table->ops->max_entry_count, 696 table->ops->unpacked_entry_size, GFP_KERNEL); 697 if (!table->entries) 698 return -ENOMEM; 699 700 table->entry_count = table->ops->max_entry_count; 701 702 /* This table only has a single entry */ 703 l2fwd_params = table->entries; 704 705 /* Disallow dynamic reconfiguration of vlan_pmap */ 706 l2fwd_params->max_dynp = 0; 707 /* Use a single memory partition for all ingress queues */ 708 l2fwd_params->part_spc[0] = priv->info->max_frame_mem; 709 710 return 0; 711 } 712 713 void sja1105_frame_memory_partitioning(struct sja1105_private *priv) 714 { 715 struct sja1105_l2_forwarding_params_entry *l2_fwd_params; 716 struct sja1105_vl_forwarding_params_entry *vl_fwd_params; 717 struct sja1105_table *table; 718 719 table = &priv->static_config.tables[BLK_IDX_L2_FORWARDING_PARAMS]; 720 l2_fwd_params = table->entries; 721 l2_fwd_params->part_spc[0] = SJA1105_MAX_FRAME_MEMORY; 722 723 /* If we have any critical-traffic virtual links, we need to reserve 724 * some frame buffer memory for them. At the moment, hardcode the value 725 * at 100 blocks of 128 bytes of memory each. This leaves 829 blocks 726 * remaining for best-effort traffic. TODO: figure out a more flexible 727 * way to perform the frame buffer partitioning. 728 */ 729 if (!priv->static_config.tables[BLK_IDX_VL_FORWARDING].entry_count) 730 return; 731 732 table = &priv->static_config.tables[BLK_IDX_VL_FORWARDING_PARAMS]; 733 vl_fwd_params = table->entries; 734 735 l2_fwd_params->part_spc[0] -= SJA1105_VL_FRAME_MEMORY; 736 vl_fwd_params->partspc[0] = SJA1105_VL_FRAME_MEMORY; 737 } 738 739 /* SJA1110 TDMACONFIGIDX values: 740 * 741 * | 100 Mbps ports | 1Gbps ports | 2.5Gbps ports | Disabled ports 742 * -----+----------------+---------------+---------------+--------------- 743 * 0 | 0, [5:10] | [1:2] | [3:4] | retag 744 * 1 |0, [5:10], retag| [1:2] | [3:4] | - 745 * 2 | 0, [5:10] | [1:3], retag | 4 | - 746 * 3 | 0, [5:10] |[1:2], 4, retag| 3 | - 747 * 4 | 0, 2, [5:10] | 1, retag | [3:4] | - 748 * 5 | 0, 1, [5:10] | 2, retag | [3:4] | - 749 * 14 | 0, [5:10] | [1:4], retag | - | - 750 * 15 | [5:10] | [0:4], retag | - | - 751 */ 752 static void sja1110_select_tdmaconfigidx(struct sja1105_private *priv) 753 { 754 struct sja1105_general_params_entry *general_params; 755 struct sja1105_table *table; 756 bool port_1_is_base_tx; 757 bool port_3_is_2500; 758 bool port_4_is_2500; 759 u64 tdmaconfigidx; 760 761 if (priv->info->device_id != SJA1110_DEVICE_ID) 762 return; 763 764 table = &priv->static_config.tables[BLK_IDX_GENERAL_PARAMS]; 765 general_params = table->entries; 766 767 /* All the settings below are "as opposed to SGMII", which is the 768 * other pinmuxing option. 769 */ 770 port_1_is_base_tx = priv->phy_mode[1] == PHY_INTERFACE_MODE_INTERNAL; 771 port_3_is_2500 = priv->phy_mode[3] == PHY_INTERFACE_MODE_2500BASEX; 772 port_4_is_2500 = priv->phy_mode[4] == PHY_INTERFACE_MODE_2500BASEX; 773 774 if (port_1_is_base_tx) 775 /* Retagging port will operate at 1 Gbps */ 776 tdmaconfigidx = 5; 777 else if (port_3_is_2500 && port_4_is_2500) 778 /* Retagging port will operate at 100 Mbps */ 779 tdmaconfigidx = 1; 780 else if (port_3_is_2500) 781 /* Retagging port will operate at 1 Gbps */ 782 tdmaconfigidx = 3; 783 else if (port_4_is_2500) 784 /* Retagging port will operate at 1 Gbps */ 785 tdmaconfigidx = 2; 786 else 787 /* Retagging port will operate at 1 Gbps */ 788 tdmaconfigidx = 14; 789 790 general_params->tdmaconfigidx = tdmaconfigidx; 791 } 792 793 static int sja1105_init_topology(struct sja1105_private *priv, 794 struct sja1105_general_params_entry *general_params) 795 { 796 struct dsa_switch *ds = priv->ds; 797 int port; 798 799 /* The host port is the destination for traffic matching mac_fltres1 800 * and mac_fltres0 on all ports except itself. Default to an invalid 801 * value. 802 */ 803 general_params->host_port = ds->num_ports; 804 805 /* Link-local traffic received on casc_port will be forwarded 806 * to host_port without embedding the source port and device ID 807 * info in the destination MAC address, and no RX timestamps will be 808 * taken either (presumably because it is a cascaded port and a 809 * downstream SJA switch already did that). 810 * To disable the feature, we need to do different things depending on 811 * switch generation. On SJA1105 we need to set an invalid port, while 812 * on SJA1110 which support multiple cascaded ports, this field is a 813 * bitmask so it must be left zero. 814 */ 815 if (!priv->info->multiple_cascade_ports) 816 general_params->casc_port = ds->num_ports; 817 818 for (port = 0; port < ds->num_ports; port++) { 819 bool is_upstream = dsa_is_upstream_port(ds, port); 820 bool is_dsa_link = dsa_is_dsa_port(ds, port); 821 822 /* Upstream ports can be dedicated CPU ports or 823 * upstream-facing DSA links 824 */ 825 if (is_upstream) { 826 if (general_params->host_port == ds->num_ports) { 827 general_params->host_port = port; 828 } else { 829 dev_err(ds->dev, 830 "Port %llu is already a host port, configuring %d as one too is not supported\n", 831 general_params->host_port, port); 832 return -EINVAL; 833 } 834 } 835 836 /* Cascade ports are downstream-facing DSA links */ 837 if (is_dsa_link && !is_upstream) { 838 if (priv->info->multiple_cascade_ports) { 839 general_params->casc_port |= BIT(port); 840 } else if (general_params->casc_port == ds->num_ports) { 841 general_params->casc_port = port; 842 } else { 843 dev_err(ds->dev, 844 "Port %llu is already a cascade port, configuring %d as one too is not supported\n", 845 general_params->casc_port, port); 846 return -EINVAL; 847 } 848 } 849 } 850 851 if (general_params->host_port == ds->num_ports) { 852 dev_err(ds->dev, "No host port configured\n"); 853 return -EINVAL; 854 } 855 856 return 0; 857 } 858 859 static int sja1105_init_general_params(struct sja1105_private *priv) 860 { 861 struct sja1105_general_params_entry default_general_params = { 862 /* Allow dynamic changing of the mirror port */ 863 .mirr_ptacu = true, 864 .switchid = priv->ds->index, 865 /* Priority queue for link-local management frames 866 * (both ingress to and egress from CPU - PTP, STP etc) 867 */ 868 .hostprio = 7, 869 .mac_fltres1 = SJA1105_LINKLOCAL_FILTER_A, 870 .mac_flt1 = SJA1105_LINKLOCAL_FILTER_A_MASK, 871 .incl_srcpt1 = false, 872 .send_meta1 = false, 873 .mac_fltres0 = SJA1105_LINKLOCAL_FILTER_B, 874 .mac_flt0 = SJA1105_LINKLOCAL_FILTER_B_MASK, 875 .incl_srcpt0 = false, 876 .send_meta0 = false, 877 /* Default to an invalid value */ 878 .mirr_port = priv->ds->num_ports, 879 /* No TTEthernet */ 880 .vllupformat = SJA1105_VL_FORMAT_PSFP, 881 .vlmarker = 0, 882 .vlmask = 0, 883 /* Only update correctionField for 1-step PTP (L2 transport) */ 884 .ignore2stf = 0, 885 /* Forcefully disable VLAN filtering by telling 886 * the switch that VLAN has a different EtherType. 887 */ 888 .tpid = ETH_P_SJA1105, 889 .tpid2 = ETH_P_SJA1105, 890 /* Enable the TTEthernet engine on SJA1110 */ 891 .tte_en = true, 892 /* Set up the EtherType for control packets on SJA1110 */ 893 .header_type = ETH_P_SJA1110, 894 }; 895 struct sja1105_general_params_entry *general_params; 896 struct sja1105_table *table; 897 int rc; 898 899 rc = sja1105_init_topology(priv, &default_general_params); 900 if (rc) 901 return rc; 902 903 table = &priv->static_config.tables[BLK_IDX_GENERAL_PARAMS]; 904 905 if (table->entry_count) { 906 kfree(table->entries); 907 table->entry_count = 0; 908 } 909 910 table->entries = kcalloc(table->ops->max_entry_count, 911 table->ops->unpacked_entry_size, GFP_KERNEL); 912 if (!table->entries) 913 return -ENOMEM; 914 915 table->entry_count = table->ops->max_entry_count; 916 917 general_params = table->entries; 918 919 /* This table only has a single entry */ 920 general_params[0] = default_general_params; 921 922 sja1110_select_tdmaconfigidx(priv); 923 924 return 0; 925 } 926 927 static int sja1105_init_avb_params(struct sja1105_private *priv) 928 { 929 struct sja1105_avb_params_entry *avb; 930 struct sja1105_table *table; 931 932 table = &priv->static_config.tables[BLK_IDX_AVB_PARAMS]; 933 934 /* Discard previous AVB Parameters Table */ 935 if (table->entry_count) { 936 kfree(table->entries); 937 table->entry_count = 0; 938 } 939 940 table->entries = kcalloc(table->ops->max_entry_count, 941 table->ops->unpacked_entry_size, GFP_KERNEL); 942 if (!table->entries) 943 return -ENOMEM; 944 945 table->entry_count = table->ops->max_entry_count; 946 947 avb = table->entries; 948 949 /* Configure the MAC addresses for meta frames */ 950 avb->destmeta = SJA1105_META_DMAC; 951 avb->srcmeta = SJA1105_META_SMAC; 952 /* On P/Q/R/S, configure the direction of the PTP_CLK pin as input by 953 * default. This is because there might be boards with a hardware 954 * layout where enabling the pin as output might cause an electrical 955 * clash. On E/T the pin is always an output, which the board designers 956 * probably already knew, so even if there are going to be electrical 957 * issues, there's nothing we can do. 958 */ 959 avb->cas_master = false; 960 961 return 0; 962 } 963 964 /* The L2 policing table is 2-stage. The table is looked up for each frame 965 * according to the ingress port, whether it was broadcast or not, and the 966 * classified traffic class (given by VLAN PCP). This portion of the lookup is 967 * fixed, and gives access to the SHARINDX, an indirection register pointing 968 * within the policing table itself, which is used to resolve the policer that 969 * will be used for this frame. 970 * 971 * Stage 1 Stage 2 972 * +------------+--------+ +---------------------------------+ 973 * |Port 0 TC 0 |SHARINDX| | Policer 0: Rate, Burst, MTU | 974 * +------------+--------+ +---------------------------------+ 975 * |Port 0 TC 1 |SHARINDX| | Policer 1: Rate, Burst, MTU | 976 * +------------+--------+ +---------------------------------+ 977 * ... | Policer 2: Rate, Burst, MTU | 978 * +------------+--------+ +---------------------------------+ 979 * |Port 0 TC 7 |SHARINDX| | Policer 3: Rate, Burst, MTU | 980 * +------------+--------+ +---------------------------------+ 981 * |Port 1 TC 0 |SHARINDX| | Policer 4: Rate, Burst, MTU | 982 * +------------+--------+ +---------------------------------+ 983 * ... | Policer 5: Rate, Burst, MTU | 984 * +------------+--------+ +---------------------------------+ 985 * |Port 1 TC 7 |SHARINDX| | Policer 6: Rate, Burst, MTU | 986 * +------------+--------+ +---------------------------------+ 987 * ... | Policer 7: Rate, Burst, MTU | 988 * +------------+--------+ +---------------------------------+ 989 * |Port 4 TC 7 |SHARINDX| ... 990 * +------------+--------+ 991 * |Port 0 BCAST|SHARINDX| ... 992 * +------------+--------+ 993 * |Port 1 BCAST|SHARINDX| ... 994 * +------------+--------+ 995 * ... ... 996 * +------------+--------+ +---------------------------------+ 997 * |Port 4 BCAST|SHARINDX| | Policer 44: Rate, Burst, MTU | 998 * +------------+--------+ +---------------------------------+ 999 * 1000 * In this driver, we shall use policers 0-4 as statically alocated port 1001 * (matchall) policers. So we need to make the SHARINDX for all lookups 1002 * corresponding to this ingress port (8 VLAN PCP lookups and 1 broadcast 1003 * lookup) equal. 1004 * The remaining policers (40) shall be dynamically allocated for flower 1005 * policers, where the key is either vlan_prio or dst_mac ff:ff:ff:ff:ff:ff. 1006 */ 1007 #define SJA1105_RATE_MBPS(speed) (((speed) * 64000) / 1000) 1008 1009 static int sja1105_init_l2_policing(struct sja1105_private *priv) 1010 { 1011 struct sja1105_l2_policing_entry *policing; 1012 struct dsa_switch *ds = priv->ds; 1013 struct sja1105_table *table; 1014 int port, tc; 1015 1016 table = &priv->static_config.tables[BLK_IDX_L2_POLICING]; 1017 1018 /* Discard previous L2 Policing Table */ 1019 if (table->entry_count) { 1020 kfree(table->entries); 1021 table->entry_count = 0; 1022 } 1023 1024 table->entries = kcalloc(table->ops->max_entry_count, 1025 table->ops->unpacked_entry_size, GFP_KERNEL); 1026 if (!table->entries) 1027 return -ENOMEM; 1028 1029 table->entry_count = table->ops->max_entry_count; 1030 1031 policing = table->entries; 1032 1033 /* Setup shared indices for the matchall policers */ 1034 for (port = 0; port < ds->num_ports; port++) { 1035 int mcast = (ds->num_ports * (SJA1105_NUM_TC + 1)) + port; 1036 int bcast = (ds->num_ports * SJA1105_NUM_TC) + port; 1037 1038 for (tc = 0; tc < SJA1105_NUM_TC; tc++) 1039 policing[port * SJA1105_NUM_TC + tc].sharindx = port; 1040 1041 policing[bcast].sharindx = port; 1042 /* Only SJA1110 has multicast policers */ 1043 if (mcast <= table->ops->max_entry_count) 1044 policing[mcast].sharindx = port; 1045 } 1046 1047 /* Setup the matchall policer parameters */ 1048 for (port = 0; port < ds->num_ports; port++) { 1049 int mtu = VLAN_ETH_FRAME_LEN + ETH_FCS_LEN; 1050 1051 if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) 1052 mtu += VLAN_HLEN; 1053 1054 policing[port].smax = 65535; /* Burst size in bytes */ 1055 policing[port].rate = SJA1105_RATE_MBPS(1000); 1056 policing[port].maxlen = mtu; 1057 policing[port].partition = 0; 1058 } 1059 1060 return 0; 1061 } 1062 1063 static int sja1105_static_config_load(struct sja1105_private *priv) 1064 { 1065 int rc; 1066 1067 sja1105_static_config_free(&priv->static_config); 1068 rc = sja1105_static_config_init(&priv->static_config, 1069 priv->info->static_ops, 1070 priv->info->device_id); 1071 if (rc) 1072 return rc; 1073 1074 /* Build static configuration */ 1075 rc = sja1105_init_mac_settings(priv); 1076 if (rc < 0) 1077 return rc; 1078 rc = sja1105_init_mii_settings(priv); 1079 if (rc < 0) 1080 return rc; 1081 rc = sja1105_init_static_fdb(priv); 1082 if (rc < 0) 1083 return rc; 1084 rc = sja1105_init_static_vlan(priv); 1085 if (rc < 0) 1086 return rc; 1087 rc = sja1105_init_l2_lookup_params(priv); 1088 if (rc < 0) 1089 return rc; 1090 rc = sja1105_init_l2_forwarding(priv); 1091 if (rc < 0) 1092 return rc; 1093 rc = sja1105_init_l2_forwarding_params(priv); 1094 if (rc < 0) 1095 return rc; 1096 rc = sja1105_init_l2_policing(priv); 1097 if (rc < 0) 1098 return rc; 1099 rc = sja1105_init_general_params(priv); 1100 if (rc < 0) 1101 return rc; 1102 rc = sja1105_init_avb_params(priv); 1103 if (rc < 0) 1104 return rc; 1105 rc = sja1110_init_pcp_remapping(priv); 1106 if (rc < 0) 1107 return rc; 1108 1109 /* Send initial configuration to hardware via SPI */ 1110 return sja1105_static_config_upload(priv); 1111 } 1112 1113 /* This is the "new way" for a MAC driver to configure its RGMII delay lines, 1114 * based on the explicit "rx-internal-delay-ps" and "tx-internal-delay-ps" 1115 * properties. It has the advantage of working with fixed links and with PHYs 1116 * that apply RGMII delays too, and the MAC driver needs not perform any 1117 * special checks. 1118 * 1119 * Previously we were acting upon the "phy-mode" property when we were 1120 * operating in fixed-link, basically acting as a PHY, but with a reversed 1121 * interpretation: PHY_INTERFACE_MODE_RGMII_TXID means that the MAC should 1122 * behave as if it is connected to a PHY which has applied RGMII delays in the 1123 * TX direction. So if anything, RX delays should have been added by the MAC, 1124 * but we were adding TX delays. 1125 * 1126 * If the "{rx,tx}-internal-delay-ps" properties are not specified, we fall 1127 * back to the legacy behavior and apply delays on fixed-link ports based on 1128 * the reverse interpretation of the phy-mode. This is a deviation from the 1129 * expected default behavior which is to simply apply no delays. To achieve 1130 * that behavior with the new bindings, it is mandatory to specify 1131 * "{rx,tx}-internal-delay-ps" with a value of 0. 1132 */ 1133 static int sja1105_parse_rgmii_delays(struct sja1105_private *priv, int port, 1134 struct device_node *port_dn) 1135 { 1136 phy_interface_t phy_mode = priv->phy_mode[port]; 1137 struct device *dev = &priv->spidev->dev; 1138 int rx_delay = -1, tx_delay = -1; 1139 1140 if (!phy_interface_mode_is_rgmii(phy_mode)) 1141 return 0; 1142 1143 of_property_read_u32(port_dn, "rx-internal-delay-ps", &rx_delay); 1144 of_property_read_u32(port_dn, "tx-internal-delay-ps", &tx_delay); 1145 1146 if (rx_delay == -1 && tx_delay == -1 && priv->fixed_link[port]) { 1147 dev_warn(dev, 1148 "Port %d interpreting RGMII delay settings based on \"phy-mode\" property, " 1149 "please update device tree to specify \"rx-internal-delay-ps\" and " 1150 "\"tx-internal-delay-ps\"", 1151 port); 1152 1153 if (phy_mode == PHY_INTERFACE_MODE_RGMII_RXID || 1154 phy_mode == PHY_INTERFACE_MODE_RGMII_ID) 1155 rx_delay = 2000; 1156 1157 if (phy_mode == PHY_INTERFACE_MODE_RGMII_TXID || 1158 phy_mode == PHY_INTERFACE_MODE_RGMII_ID) 1159 tx_delay = 2000; 1160 } 1161 1162 if (rx_delay < 0) 1163 rx_delay = 0; 1164 if (tx_delay < 0) 1165 tx_delay = 0; 1166 1167 if ((rx_delay || tx_delay) && !priv->info->setup_rgmii_delay) { 1168 dev_err(dev, "Chip cannot apply RGMII delays\n"); 1169 return -EINVAL; 1170 } 1171 1172 if ((rx_delay && rx_delay < SJA1105_RGMII_DELAY_MIN_PS) || 1173 (tx_delay && tx_delay < SJA1105_RGMII_DELAY_MIN_PS) || 1174 (rx_delay > SJA1105_RGMII_DELAY_MAX_PS) || 1175 (tx_delay > SJA1105_RGMII_DELAY_MAX_PS)) { 1176 dev_err(dev, 1177 "port %d RGMII delay values out of range, must be between %d and %d ps\n", 1178 port, SJA1105_RGMII_DELAY_MIN_PS, SJA1105_RGMII_DELAY_MAX_PS); 1179 return -ERANGE; 1180 } 1181 1182 priv->rgmii_rx_delay_ps[port] = rx_delay; 1183 priv->rgmii_tx_delay_ps[port] = tx_delay; 1184 1185 return 0; 1186 } 1187 1188 static int sja1105_parse_ports_node(struct sja1105_private *priv, 1189 struct device_node *ports_node) 1190 { 1191 struct device *dev = &priv->spidev->dev; 1192 struct device_node *child; 1193 1194 for_each_available_child_of_node(ports_node, child) { 1195 struct device_node *phy_node; 1196 phy_interface_t phy_mode; 1197 u32 index; 1198 int err; 1199 1200 /* Get switch port number from DT */ 1201 if (of_property_read_u32(child, "reg", &index) < 0) { 1202 dev_err(dev, "Port number not defined in device tree " 1203 "(property \"reg\")\n"); 1204 of_node_put(child); 1205 return -ENODEV; 1206 } 1207 1208 /* Get PHY mode from DT */ 1209 err = of_get_phy_mode(child, &phy_mode); 1210 if (err) { 1211 dev_err(dev, "Failed to read phy-mode or " 1212 "phy-interface-type property for port %d\n", 1213 index); 1214 of_node_put(child); 1215 return -ENODEV; 1216 } 1217 1218 phy_node = of_parse_phandle(child, "phy-handle", 0); 1219 if (!phy_node) { 1220 if (!of_phy_is_fixed_link(child)) { 1221 dev_err(dev, "phy-handle or fixed-link " 1222 "properties missing!\n"); 1223 of_node_put(child); 1224 return -ENODEV; 1225 } 1226 /* phy-handle is missing, but fixed-link isn't. 1227 * So it's a fixed link. Default to PHY role. 1228 */ 1229 priv->fixed_link[index] = true; 1230 } else { 1231 of_node_put(phy_node); 1232 } 1233 1234 priv->phy_mode[index] = phy_mode; 1235 1236 err = sja1105_parse_rgmii_delays(priv, index, child); 1237 if (err) { 1238 of_node_put(child); 1239 return err; 1240 } 1241 } 1242 1243 return 0; 1244 } 1245 1246 static int sja1105_parse_dt(struct sja1105_private *priv) 1247 { 1248 struct device *dev = &priv->spidev->dev; 1249 struct device_node *switch_node = dev->of_node; 1250 struct device_node *ports_node; 1251 int rc; 1252 1253 ports_node = of_get_child_by_name(switch_node, "ports"); 1254 if (!ports_node) 1255 ports_node = of_get_child_by_name(switch_node, "ethernet-ports"); 1256 if (!ports_node) { 1257 dev_err(dev, "Incorrect bindings: absent \"ports\" node\n"); 1258 return -ENODEV; 1259 } 1260 1261 rc = sja1105_parse_ports_node(priv, ports_node); 1262 of_node_put(ports_node); 1263 1264 return rc; 1265 } 1266 1267 /* Convert link speed from SJA1105 to ethtool encoding */ 1268 static int sja1105_port_speed_to_ethtool(struct sja1105_private *priv, 1269 u64 speed) 1270 { 1271 if (speed == priv->info->port_speed[SJA1105_SPEED_10MBPS]) 1272 return SPEED_10; 1273 if (speed == priv->info->port_speed[SJA1105_SPEED_100MBPS]) 1274 return SPEED_100; 1275 if (speed == priv->info->port_speed[SJA1105_SPEED_1000MBPS]) 1276 return SPEED_1000; 1277 if (speed == priv->info->port_speed[SJA1105_SPEED_2500MBPS]) 1278 return SPEED_2500; 1279 return SPEED_UNKNOWN; 1280 } 1281 1282 /* Set link speed in the MAC configuration for a specific port. */ 1283 static int sja1105_adjust_port_config(struct sja1105_private *priv, int port, 1284 int speed_mbps) 1285 { 1286 struct sja1105_mac_config_entry *mac; 1287 struct device *dev = priv->ds->dev; 1288 u64 speed; 1289 int rc; 1290 1291 /* On P/Q/R/S, one can read from the device via the MAC reconfiguration 1292 * tables. On E/T, MAC reconfig tables are not readable, only writable. 1293 * We have to *know* what the MAC looks like. For the sake of keeping 1294 * the code common, we'll use the static configuration tables as a 1295 * reasonable approximation for both E/T and P/Q/R/S. 1296 */ 1297 mac = priv->static_config.tables[BLK_IDX_MAC_CONFIG].entries; 1298 1299 switch (speed_mbps) { 1300 case SPEED_UNKNOWN: 1301 /* PHYLINK called sja1105_mac_config() to inform us about 1302 * the state->interface, but AN has not completed and the 1303 * speed is not yet valid. UM10944.pdf says that setting 1304 * SJA1105_SPEED_AUTO at runtime disables the port, so that is 1305 * ok for power consumption in case AN will never complete - 1306 * otherwise PHYLINK should come back with a new update. 1307 */ 1308 speed = priv->info->port_speed[SJA1105_SPEED_AUTO]; 1309 break; 1310 case SPEED_10: 1311 speed = priv->info->port_speed[SJA1105_SPEED_10MBPS]; 1312 break; 1313 case SPEED_100: 1314 speed = priv->info->port_speed[SJA1105_SPEED_100MBPS]; 1315 break; 1316 case SPEED_1000: 1317 speed = priv->info->port_speed[SJA1105_SPEED_1000MBPS]; 1318 break; 1319 case SPEED_2500: 1320 speed = priv->info->port_speed[SJA1105_SPEED_2500MBPS]; 1321 break; 1322 default: 1323 dev_err(dev, "Invalid speed %iMbps\n", speed_mbps); 1324 return -EINVAL; 1325 } 1326 1327 /* Overwrite SJA1105_SPEED_AUTO from the static MAC configuration 1328 * table, since this will be used for the clocking setup, and we no 1329 * longer need to store it in the static config (already told hardware 1330 * we want auto during upload phase). 1331 * Actually for the SGMII port, the MAC is fixed at 1 Gbps and 1332 * we need to configure the PCS only (if even that). 1333 */ 1334 if (priv->phy_mode[port] == PHY_INTERFACE_MODE_SGMII) 1335 mac[port].speed = priv->info->port_speed[SJA1105_SPEED_1000MBPS]; 1336 else if (priv->phy_mode[port] == PHY_INTERFACE_MODE_2500BASEX) 1337 mac[port].speed = priv->info->port_speed[SJA1105_SPEED_2500MBPS]; 1338 else 1339 mac[port].speed = speed; 1340 1341 /* Write to the dynamic reconfiguration tables */ 1342 rc = sja1105_dynamic_config_write(priv, BLK_IDX_MAC_CONFIG, port, 1343 &mac[port], true); 1344 if (rc < 0) { 1345 dev_err(dev, "Failed to write MAC config: %d\n", rc); 1346 return rc; 1347 } 1348 1349 /* Reconfigure the PLLs for the RGMII interfaces (required 125 MHz at 1350 * gigabit, 25 MHz at 100 Mbps and 2.5 MHz at 10 Mbps). For MII and 1351 * RMII no change of the clock setup is required. Actually, changing 1352 * the clock setup does interrupt the clock signal for a certain time 1353 * which causes trouble for all PHYs relying on this signal. 1354 */ 1355 if (!phy_interface_mode_is_rgmii(priv->phy_mode[port])) 1356 return 0; 1357 1358 return sja1105_clocking_setup_port(priv, port); 1359 } 1360 1361 /* The SJA1105 MAC programming model is through the static config (the xMII 1362 * Mode table cannot be dynamically reconfigured), and we have to program 1363 * that early (earlier than PHYLINK calls us, anyway). 1364 * So just error out in case the connected PHY attempts to change the initial 1365 * system interface MII protocol from what is defined in the DT, at least for 1366 * now. 1367 */ 1368 static bool sja1105_phy_mode_mismatch(struct sja1105_private *priv, int port, 1369 phy_interface_t interface) 1370 { 1371 return priv->phy_mode[port] != interface; 1372 } 1373 1374 static void sja1105_mac_config(struct dsa_switch *ds, int port, 1375 unsigned int mode, 1376 const struct phylink_link_state *state) 1377 { 1378 struct dsa_port *dp = dsa_to_port(ds, port); 1379 struct sja1105_private *priv = ds->priv; 1380 struct dw_xpcs *xpcs; 1381 1382 if (sja1105_phy_mode_mismatch(priv, port, state->interface)) { 1383 dev_err(ds->dev, "Changing PHY mode to %s not supported!\n", 1384 phy_modes(state->interface)); 1385 return; 1386 } 1387 1388 xpcs = priv->xpcs[port]; 1389 1390 if (xpcs) 1391 phylink_set_pcs(dp->pl, &xpcs->pcs); 1392 } 1393 1394 static void sja1105_mac_link_down(struct dsa_switch *ds, int port, 1395 unsigned int mode, 1396 phy_interface_t interface) 1397 { 1398 sja1105_inhibit_tx(ds->priv, BIT(port), true); 1399 } 1400 1401 static void sja1105_mac_link_up(struct dsa_switch *ds, int port, 1402 unsigned int mode, 1403 phy_interface_t interface, 1404 struct phy_device *phydev, 1405 int speed, int duplex, 1406 bool tx_pause, bool rx_pause) 1407 { 1408 struct sja1105_private *priv = ds->priv; 1409 1410 sja1105_adjust_port_config(priv, port, speed); 1411 1412 sja1105_inhibit_tx(priv, BIT(port), false); 1413 } 1414 1415 static void sja1105_phylink_validate(struct dsa_switch *ds, int port, 1416 unsigned long *supported, 1417 struct phylink_link_state *state) 1418 { 1419 /* Construct a new mask which exhaustively contains all link features 1420 * supported by the MAC, and then apply that (logical AND) to what will 1421 * be sent to the PHY for "marketing". 1422 */ 1423 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 1424 struct sja1105_private *priv = ds->priv; 1425 struct sja1105_xmii_params_entry *mii; 1426 1427 mii = priv->static_config.tables[BLK_IDX_XMII_PARAMS].entries; 1428 1429 /* include/linux/phylink.h says: 1430 * When @state->interface is %PHY_INTERFACE_MODE_NA, phylink 1431 * expects the MAC driver to return all supported link modes. 1432 */ 1433 if (state->interface != PHY_INTERFACE_MODE_NA && 1434 sja1105_phy_mode_mismatch(priv, port, state->interface)) { 1435 linkmode_zero(supported); 1436 return; 1437 } 1438 1439 /* The MAC does not support pause frames, and also doesn't 1440 * support half-duplex traffic modes. 1441 */ 1442 phylink_set(mask, Autoneg); 1443 phylink_set(mask, MII); 1444 phylink_set(mask, 10baseT_Full); 1445 phylink_set(mask, 100baseT_Full); 1446 phylink_set(mask, 100baseT1_Full); 1447 if (mii->xmii_mode[port] == XMII_MODE_RGMII || 1448 mii->xmii_mode[port] == XMII_MODE_SGMII) 1449 phylink_set(mask, 1000baseT_Full); 1450 if (priv->info->supports_2500basex[port]) { 1451 phylink_set(mask, 2500baseT_Full); 1452 phylink_set(mask, 2500baseX_Full); 1453 } 1454 1455 linkmode_and(supported, supported, mask); 1456 linkmode_and(state->advertising, state->advertising, mask); 1457 } 1458 1459 static int 1460 sja1105_find_static_fdb_entry(struct sja1105_private *priv, int port, 1461 const struct sja1105_l2_lookup_entry *requested) 1462 { 1463 struct sja1105_l2_lookup_entry *l2_lookup; 1464 struct sja1105_table *table; 1465 int i; 1466 1467 table = &priv->static_config.tables[BLK_IDX_L2_LOOKUP]; 1468 l2_lookup = table->entries; 1469 1470 for (i = 0; i < table->entry_count; i++) 1471 if (l2_lookup[i].macaddr == requested->macaddr && 1472 l2_lookup[i].vlanid == requested->vlanid && 1473 l2_lookup[i].destports & BIT(port)) 1474 return i; 1475 1476 return -1; 1477 } 1478 1479 /* We want FDB entries added statically through the bridge command to persist 1480 * across switch resets, which are a common thing during normal SJA1105 1481 * operation. So we have to back them up in the static configuration tables 1482 * and hence apply them on next static config upload... yay! 1483 */ 1484 static int 1485 sja1105_static_fdb_change(struct sja1105_private *priv, int port, 1486 const struct sja1105_l2_lookup_entry *requested, 1487 bool keep) 1488 { 1489 struct sja1105_l2_lookup_entry *l2_lookup; 1490 struct sja1105_table *table; 1491 int rc, match; 1492 1493 table = &priv->static_config.tables[BLK_IDX_L2_LOOKUP]; 1494 1495 match = sja1105_find_static_fdb_entry(priv, port, requested); 1496 if (match < 0) { 1497 /* Can't delete a missing entry. */ 1498 if (!keep) 1499 return 0; 1500 1501 /* No match => new entry */ 1502 rc = sja1105_table_resize(table, table->entry_count + 1); 1503 if (rc) 1504 return rc; 1505 1506 match = table->entry_count - 1; 1507 } 1508 1509 /* Assign pointer after the resize (it may be new memory) */ 1510 l2_lookup = table->entries; 1511 1512 /* We have a match. 1513 * If the job was to add this FDB entry, it's already done (mostly 1514 * anyway, since the port forwarding mask may have changed, case in 1515 * which we update it). 1516 * Otherwise we have to delete it. 1517 */ 1518 if (keep) { 1519 l2_lookup[match] = *requested; 1520 return 0; 1521 } 1522 1523 /* To remove, the strategy is to overwrite the element with 1524 * the last one, and then reduce the array size by 1 1525 */ 1526 l2_lookup[match] = l2_lookup[table->entry_count - 1]; 1527 return sja1105_table_resize(table, table->entry_count - 1); 1528 } 1529 1530 /* First-generation switches have a 4-way set associative TCAM that 1531 * holds the FDB entries. An FDB index spans from 0 to 1023 and is comprised of 1532 * a "bin" (grouping of 4 entries) and a "way" (an entry within a bin). 1533 * For the placement of a newly learnt FDB entry, the switch selects the bin 1534 * based on a hash function, and the way within that bin incrementally. 1535 */ 1536 static int sja1105et_fdb_index(int bin, int way) 1537 { 1538 return bin * SJA1105ET_FDB_BIN_SIZE + way; 1539 } 1540 1541 static int sja1105et_is_fdb_entry_in_bin(struct sja1105_private *priv, int bin, 1542 const u8 *addr, u16 vid, 1543 struct sja1105_l2_lookup_entry *match, 1544 int *last_unused) 1545 { 1546 int way; 1547 1548 for (way = 0; way < SJA1105ET_FDB_BIN_SIZE; way++) { 1549 struct sja1105_l2_lookup_entry l2_lookup = {0}; 1550 int index = sja1105et_fdb_index(bin, way); 1551 1552 /* Skip unused entries, optionally marking them 1553 * into the return value 1554 */ 1555 if (sja1105_dynamic_config_read(priv, BLK_IDX_L2_LOOKUP, 1556 index, &l2_lookup)) { 1557 if (last_unused) 1558 *last_unused = way; 1559 continue; 1560 } 1561 1562 if (l2_lookup.macaddr == ether_addr_to_u64(addr) && 1563 l2_lookup.vlanid == vid) { 1564 if (match) 1565 *match = l2_lookup; 1566 return way; 1567 } 1568 } 1569 /* Return an invalid entry index if not found */ 1570 return -1; 1571 } 1572 1573 int sja1105et_fdb_add(struct dsa_switch *ds, int port, 1574 const unsigned char *addr, u16 vid) 1575 { 1576 struct sja1105_l2_lookup_entry l2_lookup = {0}, tmp; 1577 struct sja1105_private *priv = ds->priv; 1578 struct device *dev = ds->dev; 1579 int last_unused = -1; 1580 int start, end, i; 1581 int bin, way, rc; 1582 1583 bin = sja1105et_fdb_hash(priv, addr, vid); 1584 1585 way = sja1105et_is_fdb_entry_in_bin(priv, bin, addr, vid, 1586 &l2_lookup, &last_unused); 1587 if (way >= 0) { 1588 /* We have an FDB entry. Is our port in the destination 1589 * mask? If yes, we need to do nothing. If not, we need 1590 * to rewrite the entry by adding this port to it. 1591 */ 1592 if ((l2_lookup.destports & BIT(port)) && l2_lookup.lockeds) 1593 return 0; 1594 l2_lookup.destports |= BIT(port); 1595 } else { 1596 int index = sja1105et_fdb_index(bin, way); 1597 1598 /* We don't have an FDB entry. We construct a new one and 1599 * try to find a place for it within the FDB table. 1600 */ 1601 l2_lookup.macaddr = ether_addr_to_u64(addr); 1602 l2_lookup.destports = BIT(port); 1603 l2_lookup.vlanid = vid; 1604 1605 if (last_unused >= 0) { 1606 way = last_unused; 1607 } else { 1608 /* Bin is full, need to evict somebody. 1609 * Choose victim at random. If you get these messages 1610 * often, you may need to consider changing the 1611 * distribution function: 1612 * static_config[BLK_IDX_L2_LOOKUP_PARAMS].entries->poly 1613 */ 1614 get_random_bytes(&way, sizeof(u8)); 1615 way %= SJA1105ET_FDB_BIN_SIZE; 1616 dev_warn(dev, "Warning, FDB bin %d full while adding entry for %pM. Evicting entry %u.\n", 1617 bin, addr, way); 1618 /* Evict entry */ 1619 sja1105_dynamic_config_write(priv, BLK_IDX_L2_LOOKUP, 1620 index, NULL, false); 1621 } 1622 } 1623 l2_lookup.lockeds = true; 1624 l2_lookup.index = sja1105et_fdb_index(bin, way); 1625 1626 rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_LOOKUP, 1627 l2_lookup.index, &l2_lookup, 1628 true); 1629 if (rc < 0) 1630 return rc; 1631 1632 /* Invalidate a dynamically learned entry if that exists */ 1633 start = sja1105et_fdb_index(bin, 0); 1634 end = sja1105et_fdb_index(bin, way); 1635 1636 for (i = start; i < end; i++) { 1637 rc = sja1105_dynamic_config_read(priv, BLK_IDX_L2_LOOKUP, 1638 i, &tmp); 1639 if (rc == -ENOENT) 1640 continue; 1641 if (rc) 1642 return rc; 1643 1644 if (tmp.macaddr != ether_addr_to_u64(addr) || tmp.vlanid != vid) 1645 continue; 1646 1647 rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_LOOKUP, 1648 i, NULL, false); 1649 if (rc) 1650 return rc; 1651 1652 break; 1653 } 1654 1655 return sja1105_static_fdb_change(priv, port, &l2_lookup, true); 1656 } 1657 1658 int sja1105et_fdb_del(struct dsa_switch *ds, int port, 1659 const unsigned char *addr, u16 vid) 1660 { 1661 struct sja1105_l2_lookup_entry l2_lookup = {0}; 1662 struct sja1105_private *priv = ds->priv; 1663 int index, bin, way, rc; 1664 bool keep; 1665 1666 bin = sja1105et_fdb_hash(priv, addr, vid); 1667 way = sja1105et_is_fdb_entry_in_bin(priv, bin, addr, vid, 1668 &l2_lookup, NULL); 1669 if (way < 0) 1670 return 0; 1671 index = sja1105et_fdb_index(bin, way); 1672 1673 /* We have an FDB entry. Is our port in the destination mask? If yes, 1674 * we need to remove it. If the resulting port mask becomes empty, we 1675 * need to completely evict the FDB entry. 1676 * Otherwise we just write it back. 1677 */ 1678 l2_lookup.destports &= ~BIT(port); 1679 1680 if (l2_lookup.destports) 1681 keep = true; 1682 else 1683 keep = false; 1684 1685 rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_LOOKUP, 1686 index, &l2_lookup, keep); 1687 if (rc < 0) 1688 return rc; 1689 1690 return sja1105_static_fdb_change(priv, port, &l2_lookup, keep); 1691 } 1692 1693 int sja1105pqrs_fdb_add(struct dsa_switch *ds, int port, 1694 const unsigned char *addr, u16 vid) 1695 { 1696 struct sja1105_l2_lookup_entry l2_lookup = {0}, tmp; 1697 struct sja1105_private *priv = ds->priv; 1698 int rc, i; 1699 1700 /* Search for an existing entry in the FDB table */ 1701 l2_lookup.macaddr = ether_addr_to_u64(addr); 1702 l2_lookup.vlanid = vid; 1703 l2_lookup.mask_macaddr = GENMASK_ULL(ETH_ALEN * 8 - 1, 0); 1704 l2_lookup.mask_vlanid = VLAN_VID_MASK; 1705 l2_lookup.destports = BIT(port); 1706 1707 tmp = l2_lookup; 1708 1709 rc = sja1105_dynamic_config_read(priv, BLK_IDX_L2_LOOKUP, 1710 SJA1105_SEARCH, &tmp); 1711 if (rc == 0 && tmp.index != SJA1105_MAX_L2_LOOKUP_COUNT - 1) { 1712 /* Found a static entry and this port is already in the entry's 1713 * port mask => job done 1714 */ 1715 if ((tmp.destports & BIT(port)) && tmp.lockeds) 1716 return 0; 1717 1718 l2_lookup = tmp; 1719 1720 /* l2_lookup.index is populated by the switch in case it 1721 * found something. 1722 */ 1723 l2_lookup.destports |= BIT(port); 1724 goto skip_finding_an_index; 1725 } 1726 1727 /* Not found, so try to find an unused spot in the FDB. 1728 * This is slightly inefficient because the strategy is knock-knock at 1729 * every possible position from 0 to 1023. 1730 */ 1731 for (i = 0; i < SJA1105_MAX_L2_LOOKUP_COUNT; i++) { 1732 rc = sja1105_dynamic_config_read(priv, BLK_IDX_L2_LOOKUP, 1733 i, NULL); 1734 if (rc < 0) 1735 break; 1736 } 1737 if (i == SJA1105_MAX_L2_LOOKUP_COUNT) { 1738 dev_err(ds->dev, "FDB is full, cannot add entry.\n"); 1739 return -EINVAL; 1740 } 1741 l2_lookup.index = i; 1742 1743 skip_finding_an_index: 1744 l2_lookup.lockeds = true; 1745 1746 rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_LOOKUP, 1747 l2_lookup.index, &l2_lookup, 1748 true); 1749 if (rc < 0) 1750 return rc; 1751 1752 /* The switch learns dynamic entries and looks up the FDB left to 1753 * right. It is possible that our addition was concurrent with the 1754 * dynamic learning of the same address, so now that the static entry 1755 * has been installed, we are certain that address learning for this 1756 * particular address has been turned off, so the dynamic entry either 1757 * is in the FDB at an index smaller than the static one, or isn't (it 1758 * can also be at a larger index, but in that case it is inactive 1759 * because the static FDB entry will match first, and the dynamic one 1760 * will eventually age out). Search for a dynamically learned address 1761 * prior to our static one and invalidate it. 1762 */ 1763 tmp = l2_lookup; 1764 1765 rc = sja1105_dynamic_config_read(priv, BLK_IDX_L2_LOOKUP, 1766 SJA1105_SEARCH, &tmp); 1767 if (rc < 0) { 1768 dev_err(ds->dev, 1769 "port %d failed to read back entry for %pM vid %d: %pe\n", 1770 port, addr, vid, ERR_PTR(rc)); 1771 return rc; 1772 } 1773 1774 if (tmp.index < l2_lookup.index) { 1775 rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_LOOKUP, 1776 tmp.index, NULL, false); 1777 if (rc < 0) 1778 return rc; 1779 } 1780 1781 return sja1105_static_fdb_change(priv, port, &l2_lookup, true); 1782 } 1783 1784 int sja1105pqrs_fdb_del(struct dsa_switch *ds, int port, 1785 const unsigned char *addr, u16 vid) 1786 { 1787 struct sja1105_l2_lookup_entry l2_lookup = {0}; 1788 struct sja1105_private *priv = ds->priv; 1789 bool keep; 1790 int rc; 1791 1792 l2_lookup.macaddr = ether_addr_to_u64(addr); 1793 l2_lookup.vlanid = vid; 1794 l2_lookup.mask_macaddr = GENMASK_ULL(ETH_ALEN * 8 - 1, 0); 1795 l2_lookup.mask_vlanid = VLAN_VID_MASK; 1796 l2_lookup.destports = BIT(port); 1797 1798 rc = sja1105_dynamic_config_read(priv, BLK_IDX_L2_LOOKUP, 1799 SJA1105_SEARCH, &l2_lookup); 1800 if (rc < 0) 1801 return 0; 1802 1803 l2_lookup.destports &= ~BIT(port); 1804 1805 /* Decide whether we remove just this port from the FDB entry, 1806 * or if we remove it completely. 1807 */ 1808 if (l2_lookup.destports) 1809 keep = true; 1810 else 1811 keep = false; 1812 1813 rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_LOOKUP, 1814 l2_lookup.index, &l2_lookup, keep); 1815 if (rc < 0) 1816 return rc; 1817 1818 return sja1105_static_fdb_change(priv, port, &l2_lookup, keep); 1819 } 1820 1821 static int sja1105_fdb_add(struct dsa_switch *ds, int port, 1822 const unsigned char *addr, u16 vid) 1823 { 1824 struct sja1105_private *priv = ds->priv; 1825 1826 return priv->info->fdb_add_cmd(ds, port, addr, vid); 1827 } 1828 1829 static int sja1105_fdb_del(struct dsa_switch *ds, int port, 1830 const unsigned char *addr, u16 vid) 1831 { 1832 struct sja1105_private *priv = ds->priv; 1833 1834 return priv->info->fdb_del_cmd(ds, port, addr, vid); 1835 } 1836 1837 static int sja1105_fdb_dump(struct dsa_switch *ds, int port, 1838 dsa_fdb_dump_cb_t *cb, void *data) 1839 { 1840 struct dsa_port *dp = dsa_to_port(ds, port); 1841 struct sja1105_private *priv = ds->priv; 1842 struct device *dev = ds->dev; 1843 int i; 1844 1845 for (i = 0; i < SJA1105_MAX_L2_LOOKUP_COUNT; i++) { 1846 struct sja1105_l2_lookup_entry l2_lookup = {0}; 1847 u8 macaddr[ETH_ALEN]; 1848 int rc; 1849 1850 rc = sja1105_dynamic_config_read(priv, BLK_IDX_L2_LOOKUP, 1851 i, &l2_lookup); 1852 /* No fdb entry at i, not an issue */ 1853 if (rc == -ENOENT) 1854 continue; 1855 if (rc) { 1856 dev_err(dev, "Failed to dump FDB: %d\n", rc); 1857 return rc; 1858 } 1859 1860 /* FDB dump callback is per port. This means we have to 1861 * disregard a valid entry if it's not for this port, even if 1862 * only to revisit it later. This is inefficient because the 1863 * 1024-sized FDB table needs to be traversed 4 times through 1864 * SPI during a 'bridge fdb show' command. 1865 */ 1866 if (!(l2_lookup.destports & BIT(port))) 1867 continue; 1868 1869 /* We need to hide the FDB entry for unknown multicast */ 1870 if (l2_lookup.macaddr == SJA1105_UNKNOWN_MULTICAST && 1871 l2_lookup.mask_macaddr == SJA1105_UNKNOWN_MULTICAST) 1872 continue; 1873 1874 u64_to_ether_addr(l2_lookup.macaddr, macaddr); 1875 1876 /* We need to hide the dsa_8021q VLANs from the user. */ 1877 if (!dsa_port_is_vlan_filtering(dp)) 1878 l2_lookup.vlanid = 0; 1879 rc = cb(macaddr, l2_lookup.vlanid, l2_lookup.lockeds, data); 1880 if (rc) 1881 return rc; 1882 } 1883 return 0; 1884 } 1885 1886 static void sja1105_fast_age(struct dsa_switch *ds, int port) 1887 { 1888 struct sja1105_private *priv = ds->priv; 1889 int i; 1890 1891 for (i = 0; i < SJA1105_MAX_L2_LOOKUP_COUNT; i++) { 1892 struct sja1105_l2_lookup_entry l2_lookup = {0}; 1893 u8 macaddr[ETH_ALEN]; 1894 int rc; 1895 1896 rc = sja1105_dynamic_config_read(priv, BLK_IDX_L2_LOOKUP, 1897 i, &l2_lookup); 1898 /* No fdb entry at i, not an issue */ 1899 if (rc == -ENOENT) 1900 continue; 1901 if (rc) { 1902 dev_err(ds->dev, "Failed to read FDB: %pe\n", 1903 ERR_PTR(rc)); 1904 return; 1905 } 1906 1907 if (!(l2_lookup.destports & BIT(port))) 1908 continue; 1909 1910 /* Don't delete static FDB entries */ 1911 if (l2_lookup.lockeds) 1912 continue; 1913 1914 u64_to_ether_addr(l2_lookup.macaddr, macaddr); 1915 1916 rc = sja1105_fdb_del(ds, port, macaddr, l2_lookup.vlanid); 1917 if (rc) { 1918 dev_err(ds->dev, 1919 "Failed to delete FDB entry %pM vid %lld: %pe\n", 1920 macaddr, l2_lookup.vlanid, ERR_PTR(rc)); 1921 return; 1922 } 1923 } 1924 } 1925 1926 static int sja1105_mdb_add(struct dsa_switch *ds, int port, 1927 const struct switchdev_obj_port_mdb *mdb) 1928 { 1929 return sja1105_fdb_add(ds, port, mdb->addr, mdb->vid); 1930 } 1931 1932 static int sja1105_mdb_del(struct dsa_switch *ds, int port, 1933 const struct switchdev_obj_port_mdb *mdb) 1934 { 1935 return sja1105_fdb_del(ds, port, mdb->addr, mdb->vid); 1936 } 1937 1938 /* Common function for unicast and broadcast flood configuration. 1939 * Flooding is configured between each {ingress, egress} port pair, and since 1940 * the bridge's semantics are those of "egress flooding", it means we must 1941 * enable flooding towards this port from all ingress ports that are in the 1942 * same forwarding domain. 1943 */ 1944 static int sja1105_manage_flood_domains(struct sja1105_private *priv) 1945 { 1946 struct sja1105_l2_forwarding_entry *l2_fwd; 1947 struct dsa_switch *ds = priv->ds; 1948 int from, to, rc; 1949 1950 l2_fwd = priv->static_config.tables[BLK_IDX_L2_FORWARDING].entries; 1951 1952 for (from = 0; from < ds->num_ports; from++) { 1953 u64 fl_domain = 0, bc_domain = 0; 1954 1955 for (to = 0; to < priv->ds->num_ports; to++) { 1956 if (!sja1105_can_forward(l2_fwd, from, to)) 1957 continue; 1958 1959 if (priv->ucast_egress_floods & BIT(to)) 1960 fl_domain |= BIT(to); 1961 if (priv->bcast_egress_floods & BIT(to)) 1962 bc_domain |= BIT(to); 1963 } 1964 1965 /* Nothing changed, nothing to do */ 1966 if (l2_fwd[from].fl_domain == fl_domain && 1967 l2_fwd[from].bc_domain == bc_domain) 1968 continue; 1969 1970 l2_fwd[from].fl_domain = fl_domain; 1971 l2_fwd[from].bc_domain = bc_domain; 1972 1973 rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_FORWARDING, 1974 from, &l2_fwd[from], true); 1975 if (rc < 0) 1976 return rc; 1977 } 1978 1979 return 0; 1980 } 1981 1982 static int sja1105_bridge_member(struct dsa_switch *ds, int port, 1983 struct dsa_bridge bridge, bool member) 1984 { 1985 struct sja1105_l2_forwarding_entry *l2_fwd; 1986 struct sja1105_private *priv = ds->priv; 1987 int i, rc; 1988 1989 l2_fwd = priv->static_config.tables[BLK_IDX_L2_FORWARDING].entries; 1990 1991 for (i = 0; i < ds->num_ports; i++) { 1992 /* Add this port to the forwarding matrix of the 1993 * other ports in the same bridge, and viceversa. 1994 */ 1995 if (!dsa_is_user_port(ds, i)) 1996 continue; 1997 /* For the ports already under the bridge, only one thing needs 1998 * to be done, and that is to add this port to their 1999 * reachability domain. So we can perform the SPI write for 2000 * them immediately. However, for this port itself (the one 2001 * that is new to the bridge), we need to add all other ports 2002 * to its reachability domain. So we do that incrementally in 2003 * this loop, and perform the SPI write only at the end, once 2004 * the domain contains all other bridge ports. 2005 */ 2006 if (i == port) 2007 continue; 2008 if (!dsa_port_offloads_bridge(dsa_to_port(ds, i), &bridge)) 2009 continue; 2010 sja1105_port_allow_traffic(l2_fwd, i, port, member); 2011 sja1105_port_allow_traffic(l2_fwd, port, i, member); 2012 2013 rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_FORWARDING, 2014 i, &l2_fwd[i], true); 2015 if (rc < 0) 2016 return rc; 2017 } 2018 2019 rc = sja1105_dynamic_config_write(priv, BLK_IDX_L2_FORWARDING, 2020 port, &l2_fwd[port], true); 2021 if (rc) 2022 return rc; 2023 2024 rc = sja1105_commit_pvid(ds, port); 2025 if (rc) 2026 return rc; 2027 2028 return sja1105_manage_flood_domains(priv); 2029 } 2030 2031 static void sja1105_bridge_stp_state_set(struct dsa_switch *ds, int port, 2032 u8 state) 2033 { 2034 struct dsa_port *dp = dsa_to_port(ds, port); 2035 struct sja1105_private *priv = ds->priv; 2036 struct sja1105_mac_config_entry *mac; 2037 2038 mac = priv->static_config.tables[BLK_IDX_MAC_CONFIG].entries; 2039 2040 switch (state) { 2041 case BR_STATE_DISABLED: 2042 case BR_STATE_BLOCKING: 2043 /* From UM10944 description of DRPDTAG (why put this there?): 2044 * "Management traffic flows to the port regardless of the state 2045 * of the INGRESS flag". So BPDUs are still be allowed to pass. 2046 * At the moment no difference between DISABLED and BLOCKING. 2047 */ 2048 mac[port].ingress = false; 2049 mac[port].egress = false; 2050 mac[port].dyn_learn = false; 2051 break; 2052 case BR_STATE_LISTENING: 2053 mac[port].ingress = true; 2054 mac[port].egress = false; 2055 mac[port].dyn_learn = false; 2056 break; 2057 case BR_STATE_LEARNING: 2058 mac[port].ingress = true; 2059 mac[port].egress = false; 2060 mac[port].dyn_learn = dp->learning; 2061 break; 2062 case BR_STATE_FORWARDING: 2063 mac[port].ingress = true; 2064 mac[port].egress = true; 2065 mac[port].dyn_learn = dp->learning; 2066 break; 2067 default: 2068 dev_err(ds->dev, "invalid STP state: %d\n", state); 2069 return; 2070 } 2071 2072 sja1105_dynamic_config_write(priv, BLK_IDX_MAC_CONFIG, port, 2073 &mac[port], true); 2074 } 2075 2076 static int sja1105_bridge_join(struct dsa_switch *ds, int port, 2077 struct dsa_bridge bridge, 2078 bool *tx_fwd_offload) 2079 { 2080 int rc; 2081 2082 rc = sja1105_bridge_member(ds, port, bridge, true); 2083 if (rc) 2084 return rc; 2085 2086 rc = dsa_tag_8021q_bridge_tx_fwd_offload(ds, port, bridge); 2087 if (rc) { 2088 sja1105_bridge_member(ds, port, bridge, false); 2089 return rc; 2090 } 2091 2092 *tx_fwd_offload = true; 2093 2094 return 0; 2095 } 2096 2097 static void sja1105_bridge_leave(struct dsa_switch *ds, int port, 2098 struct dsa_bridge bridge) 2099 { 2100 dsa_tag_8021q_bridge_tx_fwd_unoffload(ds, port, bridge); 2101 sja1105_bridge_member(ds, port, bridge, false); 2102 } 2103 2104 #define BYTES_PER_KBIT (1000LL / 8) 2105 2106 static int sja1105_find_unused_cbs_shaper(struct sja1105_private *priv) 2107 { 2108 int i; 2109 2110 for (i = 0; i < priv->info->num_cbs_shapers; i++) 2111 if (!priv->cbs[i].idle_slope && !priv->cbs[i].send_slope) 2112 return i; 2113 2114 return -1; 2115 } 2116 2117 static int sja1105_delete_cbs_shaper(struct sja1105_private *priv, int port, 2118 int prio) 2119 { 2120 int i; 2121 2122 for (i = 0; i < priv->info->num_cbs_shapers; i++) { 2123 struct sja1105_cbs_entry *cbs = &priv->cbs[i]; 2124 2125 if (cbs->port == port && cbs->prio == prio) { 2126 memset(cbs, 0, sizeof(*cbs)); 2127 return sja1105_dynamic_config_write(priv, BLK_IDX_CBS, 2128 i, cbs, true); 2129 } 2130 } 2131 2132 return 0; 2133 } 2134 2135 static int sja1105_setup_tc_cbs(struct dsa_switch *ds, int port, 2136 struct tc_cbs_qopt_offload *offload) 2137 { 2138 struct sja1105_private *priv = ds->priv; 2139 struct sja1105_cbs_entry *cbs; 2140 int index; 2141 2142 if (!offload->enable) 2143 return sja1105_delete_cbs_shaper(priv, port, offload->queue); 2144 2145 index = sja1105_find_unused_cbs_shaper(priv); 2146 if (index < 0) 2147 return -ENOSPC; 2148 2149 cbs = &priv->cbs[index]; 2150 cbs->port = port; 2151 cbs->prio = offload->queue; 2152 /* locredit and sendslope are negative by definition. In hardware, 2153 * positive values must be provided, and the negative sign is implicit. 2154 */ 2155 cbs->credit_hi = offload->hicredit; 2156 cbs->credit_lo = abs(offload->locredit); 2157 /* User space is in kbits/sec, hardware in bytes/sec */ 2158 cbs->idle_slope = offload->idleslope * BYTES_PER_KBIT; 2159 cbs->send_slope = abs(offload->sendslope * BYTES_PER_KBIT); 2160 /* Convert the negative values from 64-bit 2's complement 2161 * to 32-bit 2's complement (for the case of 0x80000000 whose 2162 * negative is still negative). 2163 */ 2164 cbs->credit_lo &= GENMASK_ULL(31, 0); 2165 cbs->send_slope &= GENMASK_ULL(31, 0); 2166 2167 return sja1105_dynamic_config_write(priv, BLK_IDX_CBS, index, cbs, 2168 true); 2169 } 2170 2171 static int sja1105_reload_cbs(struct sja1105_private *priv) 2172 { 2173 int rc = 0, i; 2174 2175 /* The credit based shapers are only allocated if 2176 * CONFIG_NET_SCH_CBS is enabled. 2177 */ 2178 if (!priv->cbs) 2179 return 0; 2180 2181 for (i = 0; i < priv->info->num_cbs_shapers; i++) { 2182 struct sja1105_cbs_entry *cbs = &priv->cbs[i]; 2183 2184 if (!cbs->idle_slope && !cbs->send_slope) 2185 continue; 2186 2187 rc = sja1105_dynamic_config_write(priv, BLK_IDX_CBS, i, cbs, 2188 true); 2189 if (rc) 2190 break; 2191 } 2192 2193 return rc; 2194 } 2195 2196 static const char * const sja1105_reset_reasons[] = { 2197 [SJA1105_VLAN_FILTERING] = "VLAN filtering", 2198 [SJA1105_RX_HWTSTAMPING] = "RX timestamping", 2199 [SJA1105_AGEING_TIME] = "Ageing time", 2200 [SJA1105_SCHEDULING] = "Time-aware scheduling", 2201 [SJA1105_BEST_EFFORT_POLICING] = "Best-effort policing", 2202 [SJA1105_VIRTUAL_LINKS] = "Virtual links", 2203 }; 2204 2205 /* For situations where we need to change a setting at runtime that is only 2206 * available through the static configuration, resetting the switch in order 2207 * to upload the new static config is unavoidable. Back up the settings we 2208 * modify at runtime (currently only MAC) and restore them after uploading, 2209 * such that this operation is relatively seamless. 2210 */ 2211 int sja1105_static_config_reload(struct sja1105_private *priv, 2212 enum sja1105_reset_reason reason) 2213 { 2214 struct ptp_system_timestamp ptp_sts_before; 2215 struct ptp_system_timestamp ptp_sts_after; 2216 int speed_mbps[SJA1105_MAX_NUM_PORTS]; 2217 u16 bmcr[SJA1105_MAX_NUM_PORTS] = {0}; 2218 struct sja1105_mac_config_entry *mac; 2219 struct dsa_switch *ds = priv->ds; 2220 s64 t1, t2, t3, t4; 2221 s64 t12, t34; 2222 int rc, i; 2223 s64 now; 2224 2225 mutex_lock(&priv->mgmt_lock); 2226 2227 mac = priv->static_config.tables[BLK_IDX_MAC_CONFIG].entries; 2228 2229 /* Back up the dynamic link speed changed by sja1105_adjust_port_config 2230 * in order to temporarily restore it to SJA1105_SPEED_AUTO - which the 2231 * switch wants to see in the static config in order to allow us to 2232 * change it through the dynamic interface later. 2233 */ 2234 for (i = 0; i < ds->num_ports; i++) { 2235 u32 reg_addr = mdiobus_c45_addr(MDIO_MMD_VEND2, MDIO_CTRL1); 2236 2237 speed_mbps[i] = sja1105_port_speed_to_ethtool(priv, 2238 mac[i].speed); 2239 mac[i].speed = priv->info->port_speed[SJA1105_SPEED_AUTO]; 2240 2241 if (priv->xpcs[i]) 2242 bmcr[i] = mdiobus_read(priv->mdio_pcs, i, reg_addr); 2243 } 2244 2245 /* No PTP operations can run right now */ 2246 mutex_lock(&priv->ptp_data.lock); 2247 2248 rc = __sja1105_ptp_gettimex(ds, &now, &ptp_sts_before); 2249 if (rc < 0) { 2250 mutex_unlock(&priv->ptp_data.lock); 2251 goto out; 2252 } 2253 2254 /* Reset switch and send updated static configuration */ 2255 rc = sja1105_static_config_upload(priv); 2256 if (rc < 0) { 2257 mutex_unlock(&priv->ptp_data.lock); 2258 goto out; 2259 } 2260 2261 rc = __sja1105_ptp_settime(ds, 0, &ptp_sts_after); 2262 if (rc < 0) { 2263 mutex_unlock(&priv->ptp_data.lock); 2264 goto out; 2265 } 2266 2267 t1 = timespec64_to_ns(&ptp_sts_before.pre_ts); 2268 t2 = timespec64_to_ns(&ptp_sts_before.post_ts); 2269 t3 = timespec64_to_ns(&ptp_sts_after.pre_ts); 2270 t4 = timespec64_to_ns(&ptp_sts_after.post_ts); 2271 /* Mid point, corresponds to pre-reset PTPCLKVAL */ 2272 t12 = t1 + (t2 - t1) / 2; 2273 /* Mid point, corresponds to post-reset PTPCLKVAL, aka 0 */ 2274 t34 = t3 + (t4 - t3) / 2; 2275 /* Advance PTPCLKVAL by the time it took since its readout */ 2276 now += (t34 - t12); 2277 2278 __sja1105_ptp_adjtime(ds, now); 2279 2280 mutex_unlock(&priv->ptp_data.lock); 2281 2282 dev_info(priv->ds->dev, 2283 "Reset switch and programmed static config. Reason: %s\n", 2284 sja1105_reset_reasons[reason]); 2285 2286 /* Configure the CGU (PLLs) for MII and RMII PHYs. 2287 * For these interfaces there is no dynamic configuration 2288 * needed, since PLLs have same settings at all speeds. 2289 */ 2290 if (priv->info->clocking_setup) { 2291 rc = priv->info->clocking_setup(priv); 2292 if (rc < 0) 2293 goto out; 2294 } 2295 2296 for (i = 0; i < ds->num_ports; i++) { 2297 struct dw_xpcs *xpcs = priv->xpcs[i]; 2298 unsigned int mode; 2299 2300 rc = sja1105_adjust_port_config(priv, i, speed_mbps[i]); 2301 if (rc < 0) 2302 goto out; 2303 2304 if (!xpcs) 2305 continue; 2306 2307 if (bmcr[i] & BMCR_ANENABLE) 2308 mode = MLO_AN_INBAND; 2309 else if (priv->fixed_link[i]) 2310 mode = MLO_AN_FIXED; 2311 else 2312 mode = MLO_AN_PHY; 2313 2314 rc = xpcs_do_config(xpcs, priv->phy_mode[i], mode); 2315 if (rc < 0) 2316 goto out; 2317 2318 if (!phylink_autoneg_inband(mode)) { 2319 int speed = SPEED_UNKNOWN; 2320 2321 if (priv->phy_mode[i] == PHY_INTERFACE_MODE_2500BASEX) 2322 speed = SPEED_2500; 2323 else if (bmcr[i] & BMCR_SPEED1000) 2324 speed = SPEED_1000; 2325 else if (bmcr[i] & BMCR_SPEED100) 2326 speed = SPEED_100; 2327 else 2328 speed = SPEED_10; 2329 2330 xpcs_link_up(&xpcs->pcs, mode, priv->phy_mode[i], 2331 speed, DUPLEX_FULL); 2332 } 2333 } 2334 2335 rc = sja1105_reload_cbs(priv); 2336 if (rc < 0) 2337 goto out; 2338 out: 2339 mutex_unlock(&priv->mgmt_lock); 2340 2341 return rc; 2342 } 2343 2344 static enum dsa_tag_protocol 2345 sja1105_get_tag_protocol(struct dsa_switch *ds, int port, 2346 enum dsa_tag_protocol mp) 2347 { 2348 struct sja1105_private *priv = ds->priv; 2349 2350 return priv->info->tag_proto; 2351 } 2352 2353 /* The TPID setting belongs to the General Parameters table, 2354 * which can only be partially reconfigured at runtime (and not the TPID). 2355 * So a switch reset is required. 2356 */ 2357 int sja1105_vlan_filtering(struct dsa_switch *ds, int port, bool enabled, 2358 struct netlink_ext_ack *extack) 2359 { 2360 struct sja1105_l2_lookup_params_entry *l2_lookup_params; 2361 struct sja1105_general_params_entry *general_params; 2362 struct sja1105_private *priv = ds->priv; 2363 struct sja1105_table *table; 2364 struct sja1105_rule *rule; 2365 u16 tpid, tpid2; 2366 int rc; 2367 2368 list_for_each_entry(rule, &priv->flow_block.rules, list) { 2369 if (rule->type == SJA1105_RULE_VL) { 2370 NL_SET_ERR_MSG_MOD(extack, 2371 "Cannot change VLAN filtering with active VL rules"); 2372 return -EBUSY; 2373 } 2374 } 2375 2376 if (enabled) { 2377 /* Enable VLAN filtering. */ 2378 tpid = ETH_P_8021Q; 2379 tpid2 = ETH_P_8021AD; 2380 } else { 2381 /* Disable VLAN filtering. */ 2382 tpid = ETH_P_SJA1105; 2383 tpid2 = ETH_P_SJA1105; 2384 } 2385 2386 table = &priv->static_config.tables[BLK_IDX_GENERAL_PARAMS]; 2387 general_params = table->entries; 2388 /* EtherType used to identify inner tagged (C-tag) VLAN traffic */ 2389 general_params->tpid = tpid; 2390 /* EtherType used to identify outer tagged (S-tag) VLAN traffic */ 2391 general_params->tpid2 = tpid2; 2392 /* When VLAN filtering is on, we need to at least be able to 2393 * decode management traffic through the "backup plan". 2394 */ 2395 general_params->incl_srcpt1 = enabled; 2396 general_params->incl_srcpt0 = enabled; 2397 2398 /* VLAN filtering => independent VLAN learning. 2399 * No VLAN filtering (or best effort) => shared VLAN learning. 2400 * 2401 * In shared VLAN learning mode, untagged traffic still gets 2402 * pvid-tagged, and the FDB table gets populated with entries 2403 * containing the "real" (pvid or from VLAN tag) VLAN ID. 2404 * However the switch performs a masked L2 lookup in the FDB, 2405 * effectively only looking up a frame's DMAC (and not VID) for the 2406 * forwarding decision. 2407 * 2408 * This is extremely convenient for us, because in modes with 2409 * vlan_filtering=0, dsa_8021q actually installs unique pvid's into 2410 * each front panel port. This is good for identification but breaks 2411 * learning badly - the VID of the learnt FDB entry is unique, aka 2412 * no frames coming from any other port are going to have it. So 2413 * for forwarding purposes, this is as though learning was broken 2414 * (all frames get flooded). 2415 */ 2416 table = &priv->static_config.tables[BLK_IDX_L2_LOOKUP_PARAMS]; 2417 l2_lookup_params = table->entries; 2418 l2_lookup_params->shared_learn = !enabled; 2419 2420 for (port = 0; port < ds->num_ports; port++) { 2421 if (dsa_is_unused_port(ds, port)) 2422 continue; 2423 2424 rc = sja1105_commit_pvid(ds, port); 2425 if (rc) 2426 return rc; 2427 } 2428 2429 rc = sja1105_static_config_reload(priv, SJA1105_VLAN_FILTERING); 2430 if (rc) 2431 NL_SET_ERR_MSG_MOD(extack, "Failed to change VLAN Ethertype"); 2432 2433 return rc; 2434 } 2435 2436 static int sja1105_vlan_add(struct sja1105_private *priv, int port, u16 vid, 2437 u16 flags, bool allowed_ingress) 2438 { 2439 struct sja1105_vlan_lookup_entry *vlan; 2440 struct sja1105_table *table; 2441 int match, rc; 2442 2443 table = &priv->static_config.tables[BLK_IDX_VLAN_LOOKUP]; 2444 2445 match = sja1105_is_vlan_configured(priv, vid); 2446 if (match < 0) { 2447 rc = sja1105_table_resize(table, table->entry_count + 1); 2448 if (rc) 2449 return rc; 2450 match = table->entry_count - 1; 2451 } 2452 2453 /* Assign pointer after the resize (it's new memory) */ 2454 vlan = table->entries; 2455 2456 vlan[match].type_entry = SJA1110_VLAN_D_TAG; 2457 vlan[match].vlanid = vid; 2458 vlan[match].vlan_bc |= BIT(port); 2459 2460 if (allowed_ingress) 2461 vlan[match].vmemb_port |= BIT(port); 2462 else 2463 vlan[match].vmemb_port &= ~BIT(port); 2464 2465 if (flags & BRIDGE_VLAN_INFO_UNTAGGED) 2466 vlan[match].tag_port &= ~BIT(port); 2467 else 2468 vlan[match].tag_port |= BIT(port); 2469 2470 return sja1105_dynamic_config_write(priv, BLK_IDX_VLAN_LOOKUP, vid, 2471 &vlan[match], true); 2472 } 2473 2474 static int sja1105_vlan_del(struct sja1105_private *priv, int port, u16 vid) 2475 { 2476 struct sja1105_vlan_lookup_entry *vlan; 2477 struct sja1105_table *table; 2478 bool keep = true; 2479 int match, rc; 2480 2481 table = &priv->static_config.tables[BLK_IDX_VLAN_LOOKUP]; 2482 2483 match = sja1105_is_vlan_configured(priv, vid); 2484 /* Can't delete a missing entry. */ 2485 if (match < 0) 2486 return 0; 2487 2488 /* Assign pointer after the resize (it's new memory) */ 2489 vlan = table->entries; 2490 2491 vlan[match].vlanid = vid; 2492 vlan[match].vlan_bc &= ~BIT(port); 2493 vlan[match].vmemb_port &= ~BIT(port); 2494 /* Also unset tag_port, just so we don't have a confusing bitmap 2495 * (no practical purpose). 2496 */ 2497 vlan[match].tag_port &= ~BIT(port); 2498 2499 /* If there's no port left as member of this VLAN, 2500 * it's time for it to go. 2501 */ 2502 if (!vlan[match].vmemb_port) 2503 keep = false; 2504 2505 rc = sja1105_dynamic_config_write(priv, BLK_IDX_VLAN_LOOKUP, vid, 2506 &vlan[match], keep); 2507 if (rc < 0) 2508 return rc; 2509 2510 if (!keep) 2511 return sja1105_table_delete_entry(table, match); 2512 2513 return 0; 2514 } 2515 2516 static int sja1105_bridge_vlan_add(struct dsa_switch *ds, int port, 2517 const struct switchdev_obj_port_vlan *vlan, 2518 struct netlink_ext_ack *extack) 2519 { 2520 struct sja1105_private *priv = ds->priv; 2521 u16 flags = vlan->flags; 2522 int rc; 2523 2524 /* Be sure to deny alterations to the configuration done by tag_8021q. 2525 */ 2526 if (vid_is_dsa_8021q(vlan->vid)) { 2527 NL_SET_ERR_MSG_MOD(extack, 2528 "Range 1024-3071 reserved for dsa_8021q operation"); 2529 return -EBUSY; 2530 } 2531 2532 /* Always install bridge VLANs as egress-tagged on CPU and DSA ports */ 2533 if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) 2534 flags = 0; 2535 2536 rc = sja1105_vlan_add(priv, port, vlan->vid, flags, true); 2537 if (rc) 2538 return rc; 2539 2540 if (vlan->flags & BRIDGE_VLAN_INFO_PVID) 2541 priv->bridge_pvid[port] = vlan->vid; 2542 2543 return sja1105_commit_pvid(ds, port); 2544 } 2545 2546 static int sja1105_bridge_vlan_del(struct dsa_switch *ds, int port, 2547 const struct switchdev_obj_port_vlan *vlan) 2548 { 2549 struct sja1105_private *priv = ds->priv; 2550 int rc; 2551 2552 rc = sja1105_vlan_del(priv, port, vlan->vid); 2553 if (rc) 2554 return rc; 2555 2556 /* In case the pvid was deleted, make sure that untagged packets will 2557 * be dropped. 2558 */ 2559 return sja1105_commit_pvid(ds, port); 2560 } 2561 2562 static int sja1105_dsa_8021q_vlan_add(struct dsa_switch *ds, int port, u16 vid, 2563 u16 flags) 2564 { 2565 struct sja1105_private *priv = ds->priv; 2566 bool allowed_ingress = true; 2567 int rc; 2568 2569 /* Prevent attackers from trying to inject a DSA tag from 2570 * the outside world. 2571 */ 2572 if (dsa_is_user_port(ds, port)) 2573 allowed_ingress = false; 2574 2575 rc = sja1105_vlan_add(priv, port, vid, flags, allowed_ingress); 2576 if (rc) 2577 return rc; 2578 2579 if (flags & BRIDGE_VLAN_INFO_PVID) 2580 priv->tag_8021q_pvid[port] = vid; 2581 2582 return sja1105_commit_pvid(ds, port); 2583 } 2584 2585 static int sja1105_dsa_8021q_vlan_del(struct dsa_switch *ds, int port, u16 vid) 2586 { 2587 struct sja1105_private *priv = ds->priv; 2588 2589 return sja1105_vlan_del(priv, port, vid); 2590 } 2591 2592 static int sja1105_prechangeupper(struct dsa_switch *ds, int port, 2593 struct netdev_notifier_changeupper_info *info) 2594 { 2595 struct netlink_ext_ack *extack = info->info.extack; 2596 struct net_device *upper = info->upper_dev; 2597 struct dsa_switch_tree *dst = ds->dst; 2598 struct dsa_port *dp; 2599 2600 if (is_vlan_dev(upper)) { 2601 NL_SET_ERR_MSG_MOD(extack, "8021q uppers are not supported"); 2602 return -EBUSY; 2603 } 2604 2605 if (netif_is_bridge_master(upper)) { 2606 list_for_each_entry(dp, &dst->ports, list) { 2607 struct net_device *br = dsa_port_bridge_dev_get(dp); 2608 2609 if (br && br != upper && br_vlan_enabled(br)) { 2610 NL_SET_ERR_MSG_MOD(extack, 2611 "Only one VLAN-aware bridge is supported"); 2612 return -EBUSY; 2613 } 2614 } 2615 } 2616 2617 return 0; 2618 } 2619 2620 static int sja1105_mgmt_xmit(struct dsa_switch *ds, int port, int slot, 2621 struct sk_buff *skb, bool takets) 2622 { 2623 struct sja1105_mgmt_entry mgmt_route = {0}; 2624 struct sja1105_private *priv = ds->priv; 2625 struct ethhdr *hdr; 2626 int timeout = 10; 2627 int rc; 2628 2629 hdr = eth_hdr(skb); 2630 2631 mgmt_route.macaddr = ether_addr_to_u64(hdr->h_dest); 2632 mgmt_route.destports = BIT(port); 2633 mgmt_route.enfport = 1; 2634 mgmt_route.tsreg = 0; 2635 mgmt_route.takets = takets; 2636 2637 rc = sja1105_dynamic_config_write(priv, BLK_IDX_MGMT_ROUTE, 2638 slot, &mgmt_route, true); 2639 if (rc < 0) { 2640 kfree_skb(skb); 2641 return rc; 2642 } 2643 2644 /* Transfer skb to the host port. */ 2645 dsa_enqueue_skb(skb, dsa_to_port(ds, port)->slave); 2646 2647 /* Wait until the switch has processed the frame */ 2648 do { 2649 rc = sja1105_dynamic_config_read(priv, BLK_IDX_MGMT_ROUTE, 2650 slot, &mgmt_route); 2651 if (rc < 0) { 2652 dev_err_ratelimited(priv->ds->dev, 2653 "failed to poll for mgmt route\n"); 2654 continue; 2655 } 2656 2657 /* UM10944: The ENFPORT flag of the respective entry is 2658 * cleared when a match is found. The host can use this 2659 * flag as an acknowledgment. 2660 */ 2661 cpu_relax(); 2662 } while (mgmt_route.enfport && --timeout); 2663 2664 if (!timeout) { 2665 /* Clean up the management route so that a follow-up 2666 * frame may not match on it by mistake. 2667 * This is only hardware supported on P/Q/R/S - on E/T it is 2668 * a no-op and we are silently discarding the -EOPNOTSUPP. 2669 */ 2670 sja1105_dynamic_config_write(priv, BLK_IDX_MGMT_ROUTE, 2671 slot, &mgmt_route, false); 2672 dev_err_ratelimited(priv->ds->dev, "xmit timed out\n"); 2673 } 2674 2675 return NETDEV_TX_OK; 2676 } 2677 2678 #define work_to_xmit_work(w) \ 2679 container_of((w), struct sja1105_deferred_xmit_work, work) 2680 2681 /* Deferred work is unfortunately necessary because setting up the management 2682 * route cannot be done from atomit context (SPI transfer takes a sleepable 2683 * lock on the bus) 2684 */ 2685 static void sja1105_port_deferred_xmit(struct kthread_work *work) 2686 { 2687 struct sja1105_deferred_xmit_work *xmit_work = work_to_xmit_work(work); 2688 struct sk_buff *clone, *skb = xmit_work->skb; 2689 struct dsa_switch *ds = xmit_work->dp->ds; 2690 struct sja1105_private *priv = ds->priv; 2691 int port = xmit_work->dp->index; 2692 2693 clone = SJA1105_SKB_CB(skb)->clone; 2694 2695 mutex_lock(&priv->mgmt_lock); 2696 2697 sja1105_mgmt_xmit(ds, port, 0, skb, !!clone); 2698 2699 /* The clone, if there, was made by dsa_skb_tx_timestamp */ 2700 if (clone) 2701 sja1105_ptp_txtstamp_skb(ds, port, clone); 2702 2703 mutex_unlock(&priv->mgmt_lock); 2704 2705 kfree(xmit_work); 2706 } 2707 2708 static int sja1105_connect_tag_protocol(struct dsa_switch *ds, 2709 enum dsa_tag_protocol proto) 2710 { 2711 struct sja1105_private *priv = ds->priv; 2712 struct sja1105_tagger_data *tagger_data; 2713 2714 if (proto != priv->info->tag_proto) 2715 return -EPROTONOSUPPORT; 2716 2717 tagger_data = sja1105_tagger_data(ds); 2718 tagger_data->xmit_work_fn = sja1105_port_deferred_xmit; 2719 tagger_data->meta_tstamp_handler = sja1110_process_meta_tstamp; 2720 2721 return 0; 2722 } 2723 2724 /* The MAXAGE setting belongs to the L2 Forwarding Parameters table, 2725 * which cannot be reconfigured at runtime. So a switch reset is required. 2726 */ 2727 static int sja1105_set_ageing_time(struct dsa_switch *ds, 2728 unsigned int ageing_time) 2729 { 2730 struct sja1105_l2_lookup_params_entry *l2_lookup_params; 2731 struct sja1105_private *priv = ds->priv; 2732 struct sja1105_table *table; 2733 unsigned int maxage; 2734 2735 table = &priv->static_config.tables[BLK_IDX_L2_LOOKUP_PARAMS]; 2736 l2_lookup_params = table->entries; 2737 2738 maxage = SJA1105_AGEING_TIME_MS(ageing_time); 2739 2740 if (l2_lookup_params->maxage == maxage) 2741 return 0; 2742 2743 l2_lookup_params->maxage = maxage; 2744 2745 return sja1105_static_config_reload(priv, SJA1105_AGEING_TIME); 2746 } 2747 2748 static int sja1105_change_mtu(struct dsa_switch *ds, int port, int new_mtu) 2749 { 2750 struct sja1105_l2_policing_entry *policing; 2751 struct sja1105_private *priv = ds->priv; 2752 2753 new_mtu += VLAN_ETH_HLEN + ETH_FCS_LEN; 2754 2755 if (dsa_is_cpu_port(ds, port) || dsa_is_dsa_port(ds, port)) 2756 new_mtu += VLAN_HLEN; 2757 2758 policing = priv->static_config.tables[BLK_IDX_L2_POLICING].entries; 2759 2760 if (policing[port].maxlen == new_mtu) 2761 return 0; 2762 2763 policing[port].maxlen = new_mtu; 2764 2765 return sja1105_static_config_reload(priv, SJA1105_BEST_EFFORT_POLICING); 2766 } 2767 2768 static int sja1105_get_max_mtu(struct dsa_switch *ds, int port) 2769 { 2770 return 2043 - VLAN_ETH_HLEN - ETH_FCS_LEN; 2771 } 2772 2773 static int sja1105_port_setup_tc(struct dsa_switch *ds, int port, 2774 enum tc_setup_type type, 2775 void *type_data) 2776 { 2777 switch (type) { 2778 case TC_SETUP_QDISC_TAPRIO: 2779 return sja1105_setup_tc_taprio(ds, port, type_data); 2780 case TC_SETUP_QDISC_CBS: 2781 return sja1105_setup_tc_cbs(ds, port, type_data); 2782 default: 2783 return -EOPNOTSUPP; 2784 } 2785 } 2786 2787 /* We have a single mirror (@to) port, but can configure ingress and egress 2788 * mirroring on all other (@from) ports. 2789 * We need to allow mirroring rules only as long as the @to port is always the 2790 * same, and we need to unset the @to port from mirr_port only when there is no 2791 * mirroring rule that references it. 2792 */ 2793 static int sja1105_mirror_apply(struct sja1105_private *priv, int from, int to, 2794 bool ingress, bool enabled) 2795 { 2796 struct sja1105_general_params_entry *general_params; 2797 struct sja1105_mac_config_entry *mac; 2798 struct dsa_switch *ds = priv->ds; 2799 struct sja1105_table *table; 2800 bool already_enabled; 2801 u64 new_mirr_port; 2802 int rc; 2803 2804 table = &priv->static_config.tables[BLK_IDX_GENERAL_PARAMS]; 2805 general_params = table->entries; 2806 2807 mac = priv->static_config.tables[BLK_IDX_MAC_CONFIG].entries; 2808 2809 already_enabled = (general_params->mirr_port != ds->num_ports); 2810 if (already_enabled && enabled && general_params->mirr_port != to) { 2811 dev_err(priv->ds->dev, 2812 "Delete mirroring rules towards port %llu first\n", 2813 general_params->mirr_port); 2814 return -EBUSY; 2815 } 2816 2817 new_mirr_port = to; 2818 if (!enabled) { 2819 bool keep = false; 2820 int port; 2821 2822 /* Anybody still referencing mirr_port? */ 2823 for (port = 0; port < ds->num_ports; port++) { 2824 if (mac[port].ing_mirr || mac[port].egr_mirr) { 2825 keep = true; 2826 break; 2827 } 2828 } 2829 /* Unset already_enabled for next time */ 2830 if (!keep) 2831 new_mirr_port = ds->num_ports; 2832 } 2833 if (new_mirr_port != general_params->mirr_port) { 2834 general_params->mirr_port = new_mirr_port; 2835 2836 rc = sja1105_dynamic_config_write(priv, BLK_IDX_GENERAL_PARAMS, 2837 0, general_params, true); 2838 if (rc < 0) 2839 return rc; 2840 } 2841 2842 if (ingress) 2843 mac[from].ing_mirr = enabled; 2844 else 2845 mac[from].egr_mirr = enabled; 2846 2847 return sja1105_dynamic_config_write(priv, BLK_IDX_MAC_CONFIG, from, 2848 &mac[from], true); 2849 } 2850 2851 static int sja1105_mirror_add(struct dsa_switch *ds, int port, 2852 struct dsa_mall_mirror_tc_entry *mirror, 2853 bool ingress) 2854 { 2855 return sja1105_mirror_apply(ds->priv, port, mirror->to_local_port, 2856 ingress, true); 2857 } 2858 2859 static void sja1105_mirror_del(struct dsa_switch *ds, int port, 2860 struct dsa_mall_mirror_tc_entry *mirror) 2861 { 2862 sja1105_mirror_apply(ds->priv, port, mirror->to_local_port, 2863 mirror->ingress, false); 2864 } 2865 2866 static int sja1105_port_policer_add(struct dsa_switch *ds, int port, 2867 struct dsa_mall_policer_tc_entry *policer) 2868 { 2869 struct sja1105_l2_policing_entry *policing; 2870 struct sja1105_private *priv = ds->priv; 2871 2872 policing = priv->static_config.tables[BLK_IDX_L2_POLICING].entries; 2873 2874 /* In hardware, every 8 microseconds the credit level is incremented by 2875 * the value of RATE bytes divided by 64, up to a maximum of SMAX 2876 * bytes. 2877 */ 2878 policing[port].rate = div_u64(512 * policer->rate_bytes_per_sec, 2879 1000000); 2880 policing[port].smax = policer->burst; 2881 2882 return sja1105_static_config_reload(priv, SJA1105_BEST_EFFORT_POLICING); 2883 } 2884 2885 static void sja1105_port_policer_del(struct dsa_switch *ds, int port) 2886 { 2887 struct sja1105_l2_policing_entry *policing; 2888 struct sja1105_private *priv = ds->priv; 2889 2890 policing = priv->static_config.tables[BLK_IDX_L2_POLICING].entries; 2891 2892 policing[port].rate = SJA1105_RATE_MBPS(1000); 2893 policing[port].smax = 65535; 2894 2895 sja1105_static_config_reload(priv, SJA1105_BEST_EFFORT_POLICING); 2896 } 2897 2898 static int sja1105_port_set_learning(struct sja1105_private *priv, int port, 2899 bool enabled) 2900 { 2901 struct sja1105_mac_config_entry *mac; 2902 2903 mac = priv->static_config.tables[BLK_IDX_MAC_CONFIG].entries; 2904 2905 mac[port].dyn_learn = enabled; 2906 2907 return sja1105_dynamic_config_write(priv, BLK_IDX_MAC_CONFIG, port, 2908 &mac[port], true); 2909 } 2910 2911 static int sja1105_port_ucast_bcast_flood(struct sja1105_private *priv, int to, 2912 struct switchdev_brport_flags flags) 2913 { 2914 if (flags.mask & BR_FLOOD) { 2915 if (flags.val & BR_FLOOD) 2916 priv->ucast_egress_floods |= BIT(to); 2917 else 2918 priv->ucast_egress_floods &= ~BIT(to); 2919 } 2920 2921 if (flags.mask & BR_BCAST_FLOOD) { 2922 if (flags.val & BR_BCAST_FLOOD) 2923 priv->bcast_egress_floods |= BIT(to); 2924 else 2925 priv->bcast_egress_floods &= ~BIT(to); 2926 } 2927 2928 return sja1105_manage_flood_domains(priv); 2929 } 2930 2931 static int sja1105_port_mcast_flood(struct sja1105_private *priv, int to, 2932 struct switchdev_brport_flags flags, 2933 struct netlink_ext_ack *extack) 2934 { 2935 struct sja1105_l2_lookup_entry *l2_lookup; 2936 struct sja1105_table *table; 2937 int match; 2938 2939 table = &priv->static_config.tables[BLK_IDX_L2_LOOKUP]; 2940 l2_lookup = table->entries; 2941 2942 for (match = 0; match < table->entry_count; match++) 2943 if (l2_lookup[match].macaddr == SJA1105_UNKNOWN_MULTICAST && 2944 l2_lookup[match].mask_macaddr == SJA1105_UNKNOWN_MULTICAST) 2945 break; 2946 2947 if (match == table->entry_count) { 2948 NL_SET_ERR_MSG_MOD(extack, 2949 "Could not find FDB entry for unknown multicast"); 2950 return -ENOSPC; 2951 } 2952 2953 if (flags.val & BR_MCAST_FLOOD) 2954 l2_lookup[match].destports |= BIT(to); 2955 else 2956 l2_lookup[match].destports &= ~BIT(to); 2957 2958 return sja1105_dynamic_config_write(priv, BLK_IDX_L2_LOOKUP, 2959 l2_lookup[match].index, 2960 &l2_lookup[match], 2961 true); 2962 } 2963 2964 static int sja1105_port_pre_bridge_flags(struct dsa_switch *ds, int port, 2965 struct switchdev_brport_flags flags, 2966 struct netlink_ext_ack *extack) 2967 { 2968 struct sja1105_private *priv = ds->priv; 2969 2970 if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD | 2971 BR_BCAST_FLOOD)) 2972 return -EINVAL; 2973 2974 if (flags.mask & (BR_FLOOD | BR_MCAST_FLOOD) && 2975 !priv->info->can_limit_mcast_flood) { 2976 bool multicast = !!(flags.val & BR_MCAST_FLOOD); 2977 bool unicast = !!(flags.val & BR_FLOOD); 2978 2979 if (unicast != multicast) { 2980 NL_SET_ERR_MSG_MOD(extack, 2981 "This chip cannot configure multicast flooding independently of unicast"); 2982 return -EINVAL; 2983 } 2984 } 2985 2986 return 0; 2987 } 2988 2989 static int sja1105_port_bridge_flags(struct dsa_switch *ds, int port, 2990 struct switchdev_brport_flags flags, 2991 struct netlink_ext_ack *extack) 2992 { 2993 struct sja1105_private *priv = ds->priv; 2994 int rc; 2995 2996 if (flags.mask & BR_LEARNING) { 2997 bool learn_ena = !!(flags.val & BR_LEARNING); 2998 2999 rc = sja1105_port_set_learning(priv, port, learn_ena); 3000 if (rc) 3001 return rc; 3002 } 3003 3004 if (flags.mask & (BR_FLOOD | BR_BCAST_FLOOD)) { 3005 rc = sja1105_port_ucast_bcast_flood(priv, port, flags); 3006 if (rc) 3007 return rc; 3008 } 3009 3010 /* For chips that can't offload BR_MCAST_FLOOD independently, there 3011 * is nothing to do here, we ensured the configuration is in sync by 3012 * offloading BR_FLOOD. 3013 */ 3014 if (flags.mask & BR_MCAST_FLOOD && priv->info->can_limit_mcast_flood) { 3015 rc = sja1105_port_mcast_flood(priv, port, flags, 3016 extack); 3017 if (rc) 3018 return rc; 3019 } 3020 3021 return 0; 3022 } 3023 3024 /* The programming model for the SJA1105 switch is "all-at-once" via static 3025 * configuration tables. Some of these can be dynamically modified at runtime, 3026 * but not the xMII mode parameters table. 3027 * Furthermode, some PHYs may not have crystals for generating their clocks 3028 * (e.g. RMII). Instead, their 50MHz clock is supplied via the SJA1105 port's 3029 * ref_clk pin. So port clocking needs to be initialized early, before 3030 * connecting to PHYs is attempted, otherwise they won't respond through MDIO. 3031 * Setting correct PHY link speed does not matter now. 3032 * But dsa_slave_phy_setup is called later than sja1105_setup, so the PHY 3033 * bindings are not yet parsed by DSA core. We need to parse early so that we 3034 * can populate the xMII mode parameters table. 3035 */ 3036 static int sja1105_setup(struct dsa_switch *ds) 3037 { 3038 struct sja1105_private *priv = ds->priv; 3039 int rc; 3040 3041 if (priv->info->disable_microcontroller) { 3042 rc = priv->info->disable_microcontroller(priv); 3043 if (rc < 0) { 3044 dev_err(ds->dev, 3045 "Failed to disable microcontroller: %pe\n", 3046 ERR_PTR(rc)); 3047 return rc; 3048 } 3049 } 3050 3051 /* Create and send configuration down to device */ 3052 rc = sja1105_static_config_load(priv); 3053 if (rc < 0) { 3054 dev_err(ds->dev, "Failed to load static config: %d\n", rc); 3055 return rc; 3056 } 3057 3058 /* Configure the CGU (PHY link modes and speeds) */ 3059 if (priv->info->clocking_setup) { 3060 rc = priv->info->clocking_setup(priv); 3061 if (rc < 0) { 3062 dev_err(ds->dev, 3063 "Failed to configure MII clocking: %pe\n", 3064 ERR_PTR(rc)); 3065 goto out_static_config_free; 3066 } 3067 } 3068 3069 sja1105_tas_setup(ds); 3070 sja1105_flower_setup(ds); 3071 3072 rc = sja1105_ptp_clock_register(ds); 3073 if (rc < 0) { 3074 dev_err(ds->dev, "Failed to register PTP clock: %d\n", rc); 3075 goto out_flower_teardown; 3076 } 3077 3078 rc = sja1105_mdiobus_register(ds); 3079 if (rc < 0) { 3080 dev_err(ds->dev, "Failed to register MDIO bus: %pe\n", 3081 ERR_PTR(rc)); 3082 goto out_ptp_clock_unregister; 3083 } 3084 3085 rc = sja1105_devlink_setup(ds); 3086 if (rc < 0) 3087 goto out_mdiobus_unregister; 3088 3089 rtnl_lock(); 3090 rc = dsa_tag_8021q_register(ds, htons(ETH_P_8021Q)); 3091 rtnl_unlock(); 3092 if (rc) 3093 goto out_devlink_teardown; 3094 3095 /* On SJA1105, VLAN filtering per se is always enabled in hardware. 3096 * The only thing we can do to disable it is lie about what the 802.1Q 3097 * EtherType is. 3098 * So it will still try to apply VLAN filtering, but all ingress 3099 * traffic (except frames received with EtherType of ETH_P_SJA1105) 3100 * will be internally tagged with a distorted VLAN header where the 3101 * TPID is ETH_P_SJA1105, and the VLAN ID is the port pvid. 3102 */ 3103 ds->vlan_filtering_is_global = true; 3104 ds->untag_bridge_pvid = true; 3105 /* tag_8021q has 3 bits for the VBID, and the value 0 is reserved */ 3106 ds->max_num_bridges = 7; 3107 3108 /* Advertise the 8 egress queues */ 3109 ds->num_tx_queues = SJA1105_NUM_TC; 3110 3111 ds->mtu_enforcement_ingress = true; 3112 ds->assisted_learning_on_cpu_port = true; 3113 3114 return 0; 3115 3116 out_devlink_teardown: 3117 sja1105_devlink_teardown(ds); 3118 out_mdiobus_unregister: 3119 sja1105_mdiobus_unregister(ds); 3120 out_ptp_clock_unregister: 3121 sja1105_ptp_clock_unregister(ds); 3122 out_flower_teardown: 3123 sja1105_flower_teardown(ds); 3124 sja1105_tas_teardown(ds); 3125 out_static_config_free: 3126 sja1105_static_config_free(&priv->static_config); 3127 3128 return rc; 3129 } 3130 3131 static void sja1105_teardown(struct dsa_switch *ds) 3132 { 3133 struct sja1105_private *priv = ds->priv; 3134 3135 rtnl_lock(); 3136 dsa_tag_8021q_unregister(ds); 3137 rtnl_unlock(); 3138 3139 sja1105_devlink_teardown(ds); 3140 sja1105_mdiobus_unregister(ds); 3141 sja1105_ptp_clock_unregister(ds); 3142 sja1105_flower_teardown(ds); 3143 sja1105_tas_teardown(ds); 3144 sja1105_static_config_free(&priv->static_config); 3145 } 3146 3147 static const struct dsa_switch_ops sja1105_switch_ops = { 3148 .get_tag_protocol = sja1105_get_tag_protocol, 3149 .connect_tag_protocol = sja1105_connect_tag_protocol, 3150 .setup = sja1105_setup, 3151 .teardown = sja1105_teardown, 3152 .set_ageing_time = sja1105_set_ageing_time, 3153 .port_change_mtu = sja1105_change_mtu, 3154 .port_max_mtu = sja1105_get_max_mtu, 3155 .phylink_validate = sja1105_phylink_validate, 3156 .phylink_mac_config = sja1105_mac_config, 3157 .phylink_mac_link_up = sja1105_mac_link_up, 3158 .phylink_mac_link_down = sja1105_mac_link_down, 3159 .get_strings = sja1105_get_strings, 3160 .get_ethtool_stats = sja1105_get_ethtool_stats, 3161 .get_sset_count = sja1105_get_sset_count, 3162 .get_ts_info = sja1105_get_ts_info, 3163 .port_fdb_dump = sja1105_fdb_dump, 3164 .port_fdb_add = sja1105_fdb_add, 3165 .port_fdb_del = sja1105_fdb_del, 3166 .port_fast_age = sja1105_fast_age, 3167 .port_bridge_join = sja1105_bridge_join, 3168 .port_bridge_leave = sja1105_bridge_leave, 3169 .port_pre_bridge_flags = sja1105_port_pre_bridge_flags, 3170 .port_bridge_flags = sja1105_port_bridge_flags, 3171 .port_stp_state_set = sja1105_bridge_stp_state_set, 3172 .port_vlan_filtering = sja1105_vlan_filtering, 3173 .port_vlan_add = sja1105_bridge_vlan_add, 3174 .port_vlan_del = sja1105_bridge_vlan_del, 3175 .port_mdb_add = sja1105_mdb_add, 3176 .port_mdb_del = sja1105_mdb_del, 3177 .port_hwtstamp_get = sja1105_hwtstamp_get, 3178 .port_hwtstamp_set = sja1105_hwtstamp_set, 3179 .port_rxtstamp = sja1105_port_rxtstamp, 3180 .port_txtstamp = sja1105_port_txtstamp, 3181 .port_setup_tc = sja1105_port_setup_tc, 3182 .port_mirror_add = sja1105_mirror_add, 3183 .port_mirror_del = sja1105_mirror_del, 3184 .port_policer_add = sja1105_port_policer_add, 3185 .port_policer_del = sja1105_port_policer_del, 3186 .cls_flower_add = sja1105_cls_flower_add, 3187 .cls_flower_del = sja1105_cls_flower_del, 3188 .cls_flower_stats = sja1105_cls_flower_stats, 3189 .devlink_info_get = sja1105_devlink_info_get, 3190 .tag_8021q_vlan_add = sja1105_dsa_8021q_vlan_add, 3191 .tag_8021q_vlan_del = sja1105_dsa_8021q_vlan_del, 3192 .port_prechangeupper = sja1105_prechangeupper, 3193 }; 3194 3195 static const struct of_device_id sja1105_dt_ids[]; 3196 3197 static int sja1105_check_device_id(struct sja1105_private *priv) 3198 { 3199 const struct sja1105_regs *regs = priv->info->regs; 3200 u8 prod_id[SJA1105_SIZE_DEVICE_ID] = {0}; 3201 struct device *dev = &priv->spidev->dev; 3202 const struct of_device_id *match; 3203 u32 device_id; 3204 u64 part_no; 3205 int rc; 3206 3207 rc = sja1105_xfer_u32(priv, SPI_READ, regs->device_id, &device_id, 3208 NULL); 3209 if (rc < 0) 3210 return rc; 3211 3212 rc = sja1105_xfer_buf(priv, SPI_READ, regs->prod_id, prod_id, 3213 SJA1105_SIZE_DEVICE_ID); 3214 if (rc < 0) 3215 return rc; 3216 3217 sja1105_unpack(prod_id, &part_no, 19, 4, SJA1105_SIZE_DEVICE_ID); 3218 3219 for (match = sja1105_dt_ids; match->compatible[0]; match++) { 3220 const struct sja1105_info *info = match->data; 3221 3222 /* Is what's been probed in our match table at all? */ 3223 if (info->device_id != device_id || info->part_no != part_no) 3224 continue; 3225 3226 /* But is it what's in the device tree? */ 3227 if (priv->info->device_id != device_id || 3228 priv->info->part_no != part_no) { 3229 dev_warn(dev, "Device tree specifies chip %s but found %s, please fix it!\n", 3230 priv->info->name, info->name); 3231 /* It isn't. No problem, pick that up. */ 3232 priv->info = info; 3233 } 3234 3235 return 0; 3236 } 3237 3238 dev_err(dev, "Unexpected {device ID, part number}: 0x%x 0x%llx\n", 3239 device_id, part_no); 3240 3241 return -ENODEV; 3242 } 3243 3244 static int sja1105_probe(struct spi_device *spi) 3245 { 3246 struct device *dev = &spi->dev; 3247 struct sja1105_private *priv; 3248 size_t max_xfer, max_msg; 3249 struct dsa_switch *ds; 3250 int rc; 3251 3252 if (!dev->of_node) { 3253 dev_err(dev, "No DTS bindings for SJA1105 driver\n"); 3254 return -EINVAL; 3255 } 3256 3257 rc = sja1105_hw_reset(dev, 1, 1); 3258 if (rc) 3259 return rc; 3260 3261 priv = devm_kzalloc(dev, sizeof(struct sja1105_private), GFP_KERNEL); 3262 if (!priv) 3263 return -ENOMEM; 3264 3265 /* Populate our driver private structure (priv) based on 3266 * the device tree node that was probed (spi) 3267 */ 3268 priv->spidev = spi; 3269 spi_set_drvdata(spi, priv); 3270 3271 /* Configure the SPI bus */ 3272 spi->bits_per_word = 8; 3273 rc = spi_setup(spi); 3274 if (rc < 0) { 3275 dev_err(dev, "Could not init SPI\n"); 3276 return rc; 3277 } 3278 3279 /* In sja1105_xfer, we send spi_messages composed of two spi_transfers: 3280 * a small one for the message header and another one for the current 3281 * chunk of the packed buffer. 3282 * Check that the restrictions imposed by the SPI controller are 3283 * respected: the chunk buffer is smaller than the max transfer size, 3284 * and the total length of the chunk plus its message header is smaller 3285 * than the max message size. 3286 * We do that during probe time since the maximum transfer size is a 3287 * runtime invariant. 3288 */ 3289 max_xfer = spi_max_transfer_size(spi); 3290 max_msg = spi_max_message_size(spi); 3291 3292 /* We need to send at least one 64-bit word of SPI payload per message 3293 * in order to be able to make useful progress. 3294 */ 3295 if (max_msg < SJA1105_SIZE_SPI_MSG_HEADER + 8) { 3296 dev_err(dev, "SPI master cannot send large enough buffers, aborting\n"); 3297 return -EINVAL; 3298 } 3299 3300 priv->max_xfer_len = SJA1105_SIZE_SPI_MSG_MAXLEN; 3301 if (priv->max_xfer_len > max_xfer) 3302 priv->max_xfer_len = max_xfer; 3303 if (priv->max_xfer_len > max_msg - SJA1105_SIZE_SPI_MSG_HEADER) 3304 priv->max_xfer_len = max_msg - SJA1105_SIZE_SPI_MSG_HEADER; 3305 3306 priv->info = of_device_get_match_data(dev); 3307 3308 /* Detect hardware device */ 3309 rc = sja1105_check_device_id(priv); 3310 if (rc < 0) { 3311 dev_err(dev, "Device ID check failed: %d\n", rc); 3312 return rc; 3313 } 3314 3315 dev_info(dev, "Probed switch chip: %s\n", priv->info->name); 3316 3317 ds = devm_kzalloc(dev, sizeof(*ds), GFP_KERNEL); 3318 if (!ds) 3319 return -ENOMEM; 3320 3321 ds->dev = dev; 3322 ds->num_ports = priv->info->num_ports; 3323 ds->ops = &sja1105_switch_ops; 3324 ds->priv = priv; 3325 priv->ds = ds; 3326 3327 mutex_init(&priv->ptp_data.lock); 3328 mutex_init(&priv->dynamic_config_lock); 3329 mutex_init(&priv->mgmt_lock); 3330 spin_lock_init(&priv->ts_id_lock); 3331 3332 rc = sja1105_parse_dt(priv); 3333 if (rc < 0) { 3334 dev_err(ds->dev, "Failed to parse DT: %d\n", rc); 3335 return rc; 3336 } 3337 3338 if (IS_ENABLED(CONFIG_NET_SCH_CBS)) { 3339 priv->cbs = devm_kcalloc(dev, priv->info->num_cbs_shapers, 3340 sizeof(struct sja1105_cbs_entry), 3341 GFP_KERNEL); 3342 if (!priv->cbs) 3343 return -ENOMEM; 3344 } 3345 3346 return dsa_register_switch(priv->ds); 3347 } 3348 3349 static int sja1105_remove(struct spi_device *spi) 3350 { 3351 struct sja1105_private *priv = spi_get_drvdata(spi); 3352 3353 if (!priv) 3354 return 0; 3355 3356 dsa_unregister_switch(priv->ds); 3357 3358 spi_set_drvdata(spi, NULL); 3359 3360 return 0; 3361 } 3362 3363 static void sja1105_shutdown(struct spi_device *spi) 3364 { 3365 struct sja1105_private *priv = spi_get_drvdata(spi); 3366 3367 if (!priv) 3368 return; 3369 3370 dsa_switch_shutdown(priv->ds); 3371 3372 spi_set_drvdata(spi, NULL); 3373 } 3374 3375 static const struct of_device_id sja1105_dt_ids[] = { 3376 { .compatible = "nxp,sja1105e", .data = &sja1105e_info }, 3377 { .compatible = "nxp,sja1105t", .data = &sja1105t_info }, 3378 { .compatible = "nxp,sja1105p", .data = &sja1105p_info }, 3379 { .compatible = "nxp,sja1105q", .data = &sja1105q_info }, 3380 { .compatible = "nxp,sja1105r", .data = &sja1105r_info }, 3381 { .compatible = "nxp,sja1105s", .data = &sja1105s_info }, 3382 { .compatible = "nxp,sja1110a", .data = &sja1110a_info }, 3383 { .compatible = "nxp,sja1110b", .data = &sja1110b_info }, 3384 { .compatible = "nxp,sja1110c", .data = &sja1110c_info }, 3385 { .compatible = "nxp,sja1110d", .data = &sja1110d_info }, 3386 { /* sentinel */ }, 3387 }; 3388 MODULE_DEVICE_TABLE(of, sja1105_dt_ids); 3389 3390 static struct spi_driver sja1105_driver = { 3391 .driver = { 3392 .name = "sja1105", 3393 .owner = THIS_MODULE, 3394 .of_match_table = of_match_ptr(sja1105_dt_ids), 3395 }, 3396 .probe = sja1105_probe, 3397 .remove = sja1105_remove, 3398 .shutdown = sja1105_shutdown, 3399 }; 3400 3401 module_spi_driver(sja1105_driver); 3402 3403 MODULE_AUTHOR("Vladimir Oltean <olteanv@gmail.com>"); 3404 MODULE_AUTHOR("Georg Waibel <georg.waibel@sensor-technik.de>"); 3405 MODULE_DESCRIPTION("SJA1105 Driver"); 3406 MODULE_LICENSE("GPL v2"); 3407