xref: /openbmc/linux/drivers/net/dsa/rzn1_a5psw.c (revision c4c3c32d)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Copyright (C) 2022 Schneider-Electric
4  *
5  * Clément Léger <clement.leger@bootlin.com>
6  */
7 
8 #include <linux/clk.h>
9 #include <linux/etherdevice.h>
10 #include <linux/if_bridge.h>
11 #include <linux/if_ether.h>
12 #include <linux/kernel.h>
13 #include <linux/module.h>
14 #include <linux/of.h>
15 #include <linux/of_mdio.h>
16 #include <net/dsa.h>
17 
18 #include "rzn1_a5psw.h"
19 
20 struct a5psw_stats {
21 	u16 offset;
22 	const char name[ETH_GSTRING_LEN];
23 };
24 
25 #define STAT_DESC(_offset) {	\
26 	.offset = A5PSW_##_offset,	\
27 	.name = __stringify(_offset),	\
28 }
29 
30 static const struct a5psw_stats a5psw_stats[] = {
31 	STAT_DESC(aFramesTransmittedOK),
32 	STAT_DESC(aFramesReceivedOK),
33 	STAT_DESC(aFrameCheckSequenceErrors),
34 	STAT_DESC(aAlignmentErrors),
35 	STAT_DESC(aOctetsTransmittedOK),
36 	STAT_DESC(aOctetsReceivedOK),
37 	STAT_DESC(aTxPAUSEMACCtrlFrames),
38 	STAT_DESC(aRxPAUSEMACCtrlFrames),
39 	STAT_DESC(ifInErrors),
40 	STAT_DESC(ifOutErrors),
41 	STAT_DESC(ifInUcastPkts),
42 	STAT_DESC(ifInMulticastPkts),
43 	STAT_DESC(ifInBroadcastPkts),
44 	STAT_DESC(ifOutDiscards),
45 	STAT_DESC(ifOutUcastPkts),
46 	STAT_DESC(ifOutMulticastPkts),
47 	STAT_DESC(ifOutBroadcastPkts),
48 	STAT_DESC(etherStatsDropEvents),
49 	STAT_DESC(etherStatsOctets),
50 	STAT_DESC(etherStatsPkts),
51 	STAT_DESC(etherStatsUndersizePkts),
52 	STAT_DESC(etherStatsOversizePkts),
53 	STAT_DESC(etherStatsPkts64Octets),
54 	STAT_DESC(etherStatsPkts65to127Octets),
55 	STAT_DESC(etherStatsPkts128to255Octets),
56 	STAT_DESC(etherStatsPkts256to511Octets),
57 	STAT_DESC(etherStatsPkts1024to1518Octets),
58 	STAT_DESC(etherStatsPkts1519toXOctets),
59 	STAT_DESC(etherStatsJabbers),
60 	STAT_DESC(etherStatsFragments),
61 	STAT_DESC(VLANReceived),
62 	STAT_DESC(VLANTransmitted),
63 	STAT_DESC(aDeferred),
64 	STAT_DESC(aMultipleCollisions),
65 	STAT_DESC(aSingleCollisions),
66 	STAT_DESC(aLateCollisions),
67 	STAT_DESC(aExcessiveCollisions),
68 	STAT_DESC(aCarrierSenseErrors),
69 };
70 
71 static void a5psw_reg_writel(struct a5psw *a5psw, int offset, u32 value)
72 {
73 	writel(value, a5psw->base + offset);
74 }
75 
76 static u32 a5psw_reg_readl(struct a5psw *a5psw, int offset)
77 {
78 	return readl(a5psw->base + offset);
79 }
80 
81 static void a5psw_reg_rmw(struct a5psw *a5psw, int offset, u32 mask, u32 val)
82 {
83 	u32 reg;
84 
85 	spin_lock(&a5psw->reg_lock);
86 
87 	reg = a5psw_reg_readl(a5psw, offset);
88 	reg &= ~mask;
89 	reg |= val;
90 	a5psw_reg_writel(a5psw, offset, reg);
91 
92 	spin_unlock(&a5psw->reg_lock);
93 }
94 
95 static enum dsa_tag_protocol a5psw_get_tag_protocol(struct dsa_switch *ds,
96 						    int port,
97 						    enum dsa_tag_protocol mp)
98 {
99 	return DSA_TAG_PROTO_RZN1_A5PSW;
100 }
101 
102 static void a5psw_port_pattern_set(struct a5psw *a5psw, int port, int pattern,
103 				   bool enable)
104 {
105 	u32 rx_match = 0;
106 
107 	if (enable)
108 		rx_match |= A5PSW_RXMATCH_CONFIG_PATTERN(pattern);
109 
110 	a5psw_reg_rmw(a5psw, A5PSW_RXMATCH_CONFIG(port),
111 		      A5PSW_RXMATCH_CONFIG_PATTERN(pattern), rx_match);
112 }
113 
114 static void a5psw_port_mgmtfwd_set(struct a5psw *a5psw, int port, bool enable)
115 {
116 	/* Enable "management forward" pattern matching, this will forward
117 	 * packets from this port only towards the management port and thus
118 	 * isolate the port.
119 	 */
120 	a5psw_port_pattern_set(a5psw, port, A5PSW_PATTERN_MGMTFWD, enable);
121 }
122 
123 static void a5psw_port_tx_enable(struct a5psw *a5psw, int port, bool enable)
124 {
125 	u32 mask = A5PSW_PORT_ENA_TX(port);
126 	u32 reg = enable ? mask : 0;
127 
128 	/* Even though the port TX is disabled through TXENA bit in the
129 	 * PORT_ENA register, it can still send BPDUs. This depends on the tag
130 	 * configuration added when sending packets from the CPU port to the
131 	 * switch port. Indeed, when using forced forwarding without filtering,
132 	 * even disabled ports will be able to send packets that are tagged.
133 	 * This allows to implement STP support when ports are in a state where
134 	 * forwarding traffic should be stopped but BPDUs should still be sent.
135 	 */
136 	a5psw_reg_rmw(a5psw, A5PSW_PORT_ENA, mask, reg);
137 }
138 
139 static void a5psw_port_enable_set(struct a5psw *a5psw, int port, bool enable)
140 {
141 	u32 port_ena = 0;
142 
143 	if (enable)
144 		port_ena |= A5PSW_PORT_ENA_TX_RX(port);
145 
146 	a5psw_reg_rmw(a5psw, A5PSW_PORT_ENA, A5PSW_PORT_ENA_TX_RX(port),
147 		      port_ena);
148 }
149 
150 static int a5psw_lk_execute_ctrl(struct a5psw *a5psw, u32 *ctrl)
151 {
152 	int ret;
153 
154 	a5psw_reg_writel(a5psw, A5PSW_LK_ADDR_CTRL, *ctrl);
155 
156 	ret = readl_poll_timeout(a5psw->base + A5PSW_LK_ADDR_CTRL, *ctrl,
157 				 !(*ctrl & A5PSW_LK_ADDR_CTRL_BUSY),
158 				 A5PSW_LK_BUSY_USEC_POLL, A5PSW_CTRL_TIMEOUT);
159 	if (ret)
160 		dev_err(a5psw->dev, "LK_CTRL timeout waiting for BUSY bit\n");
161 
162 	return ret;
163 }
164 
165 static void a5psw_port_fdb_flush(struct a5psw *a5psw, int port)
166 {
167 	u32 ctrl = A5PSW_LK_ADDR_CTRL_DELETE_PORT | BIT(port);
168 
169 	mutex_lock(&a5psw->lk_lock);
170 	a5psw_lk_execute_ctrl(a5psw, &ctrl);
171 	mutex_unlock(&a5psw->lk_lock);
172 }
173 
174 static void a5psw_port_authorize_set(struct a5psw *a5psw, int port,
175 				     bool authorize)
176 {
177 	u32 reg = a5psw_reg_readl(a5psw, A5PSW_AUTH_PORT(port));
178 
179 	if (authorize)
180 		reg |= A5PSW_AUTH_PORT_AUTHORIZED;
181 	else
182 		reg &= ~A5PSW_AUTH_PORT_AUTHORIZED;
183 
184 	a5psw_reg_writel(a5psw, A5PSW_AUTH_PORT(port), reg);
185 }
186 
187 static void a5psw_port_disable(struct dsa_switch *ds, int port)
188 {
189 	struct a5psw *a5psw = ds->priv;
190 
191 	a5psw_port_authorize_set(a5psw, port, false);
192 	a5psw_port_enable_set(a5psw, port, false);
193 }
194 
195 static int a5psw_port_enable(struct dsa_switch *ds, int port,
196 			     struct phy_device *phy)
197 {
198 	struct a5psw *a5psw = ds->priv;
199 
200 	a5psw_port_authorize_set(a5psw, port, true);
201 	a5psw_port_enable_set(a5psw, port, true);
202 
203 	return 0;
204 }
205 
206 static int a5psw_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
207 {
208 	struct a5psw *a5psw = ds->priv;
209 
210 	new_mtu += ETH_HLEN + A5PSW_EXTRA_MTU_LEN + ETH_FCS_LEN;
211 	a5psw_reg_writel(a5psw, A5PSW_FRM_LENGTH(port), new_mtu);
212 
213 	return 0;
214 }
215 
216 static int a5psw_port_max_mtu(struct dsa_switch *ds, int port)
217 {
218 	return A5PSW_MAX_MTU;
219 }
220 
221 static void a5psw_phylink_get_caps(struct dsa_switch *ds, int port,
222 				   struct phylink_config *config)
223 {
224 	unsigned long *intf = config->supported_interfaces;
225 
226 	config->mac_capabilities = MAC_1000FD;
227 
228 	if (dsa_is_cpu_port(ds, port)) {
229 		/* GMII is used internally and GMAC2 is connected to the switch
230 		 * using 1000Mbps Full-Duplex mode only (cf ethernet manual)
231 		 */
232 		__set_bit(PHY_INTERFACE_MODE_GMII, intf);
233 	} else {
234 		config->mac_capabilities |= MAC_100 | MAC_10;
235 		phy_interface_set_rgmii(intf);
236 		__set_bit(PHY_INTERFACE_MODE_RMII, intf);
237 		__set_bit(PHY_INTERFACE_MODE_MII, intf);
238 	}
239 }
240 
241 static struct phylink_pcs *
242 a5psw_phylink_mac_select_pcs(struct dsa_switch *ds, int port,
243 			     phy_interface_t interface)
244 {
245 	struct dsa_port *dp = dsa_to_port(ds, port);
246 	struct a5psw *a5psw = ds->priv;
247 
248 	if (!dsa_port_is_cpu(dp) && a5psw->pcs[port])
249 		return a5psw->pcs[port];
250 
251 	return NULL;
252 }
253 
254 static void a5psw_phylink_mac_link_down(struct dsa_switch *ds, int port,
255 					unsigned int mode,
256 					phy_interface_t interface)
257 {
258 	struct a5psw *a5psw = ds->priv;
259 	u32 cmd_cfg;
260 
261 	cmd_cfg = a5psw_reg_readl(a5psw, A5PSW_CMD_CFG(port));
262 	cmd_cfg &= ~(A5PSW_CMD_CFG_RX_ENA | A5PSW_CMD_CFG_TX_ENA);
263 	a5psw_reg_writel(a5psw, A5PSW_CMD_CFG(port), cmd_cfg);
264 }
265 
266 static void a5psw_phylink_mac_link_up(struct dsa_switch *ds, int port,
267 				      unsigned int mode,
268 				      phy_interface_t interface,
269 				      struct phy_device *phydev, int speed,
270 				      int duplex, bool tx_pause, bool rx_pause)
271 {
272 	u32 cmd_cfg = A5PSW_CMD_CFG_RX_ENA | A5PSW_CMD_CFG_TX_ENA |
273 		      A5PSW_CMD_CFG_TX_CRC_APPEND;
274 	struct a5psw *a5psw = ds->priv;
275 
276 	if (speed == SPEED_1000)
277 		cmd_cfg |= A5PSW_CMD_CFG_ETH_SPEED;
278 
279 	if (duplex == DUPLEX_HALF)
280 		cmd_cfg |= A5PSW_CMD_CFG_HD_ENA;
281 
282 	cmd_cfg |= A5PSW_CMD_CFG_CNTL_FRM_ENA;
283 
284 	if (!rx_pause)
285 		cmd_cfg &= ~A5PSW_CMD_CFG_PAUSE_IGNORE;
286 
287 	a5psw_reg_writel(a5psw, A5PSW_CMD_CFG(port), cmd_cfg);
288 }
289 
290 static int a5psw_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
291 {
292 	struct a5psw *a5psw = ds->priv;
293 	unsigned long rate;
294 	u64 max, tmp;
295 	u32 agetime;
296 
297 	rate = clk_get_rate(a5psw->clk);
298 	max = div64_ul(((u64)A5PSW_LK_AGETIME_MASK * A5PSW_TABLE_ENTRIES * 1024),
299 		       rate) * 1000;
300 	if (msecs > max)
301 		return -EINVAL;
302 
303 	tmp = div_u64(rate, MSEC_PER_SEC);
304 	agetime = div_u64(msecs * tmp, 1024 * A5PSW_TABLE_ENTRIES);
305 
306 	a5psw_reg_writel(a5psw, A5PSW_LK_AGETIME, agetime);
307 
308 	return 0;
309 }
310 
311 static void a5psw_port_learning_set(struct a5psw *a5psw, int port, bool learn)
312 {
313 	u32 mask = A5PSW_INPUT_LEARN_DIS(port);
314 	u32 reg = !learn ? mask : 0;
315 
316 	a5psw_reg_rmw(a5psw, A5PSW_INPUT_LEARN, mask, reg);
317 }
318 
319 static void a5psw_port_rx_block_set(struct a5psw *a5psw, int port, bool block)
320 {
321 	u32 mask = A5PSW_INPUT_LEARN_BLOCK(port);
322 	u32 reg = block ? mask : 0;
323 
324 	a5psw_reg_rmw(a5psw, A5PSW_INPUT_LEARN, mask, reg);
325 }
326 
327 static void a5psw_flooding_set_resolution(struct a5psw *a5psw, int port,
328 					  bool set)
329 {
330 	u8 offsets[] = {A5PSW_UCAST_DEF_MASK, A5PSW_BCAST_DEF_MASK,
331 			A5PSW_MCAST_DEF_MASK};
332 	int i;
333 
334 	if (set)
335 		a5psw->bridged_ports |= BIT(port);
336 	else
337 		a5psw->bridged_ports &= ~BIT(port);
338 
339 	for (i = 0; i < ARRAY_SIZE(offsets); i++)
340 		a5psw_reg_writel(a5psw, offsets[i], a5psw->bridged_ports);
341 }
342 
343 static void a5psw_port_set_standalone(struct a5psw *a5psw, int port,
344 				      bool standalone)
345 {
346 	a5psw_port_learning_set(a5psw, port, !standalone);
347 	a5psw_flooding_set_resolution(a5psw, port, !standalone);
348 	a5psw_port_mgmtfwd_set(a5psw, port, standalone);
349 }
350 
351 static int a5psw_port_bridge_join(struct dsa_switch *ds, int port,
352 				  struct dsa_bridge bridge,
353 				  bool *tx_fwd_offload,
354 				  struct netlink_ext_ack *extack)
355 {
356 	struct a5psw *a5psw = ds->priv;
357 
358 	/* We only support 1 bridge device */
359 	if (a5psw->br_dev && bridge.dev != a5psw->br_dev) {
360 		NL_SET_ERR_MSG_MOD(extack,
361 				   "Forwarding offload supported for a single bridge");
362 		return -EOPNOTSUPP;
363 	}
364 
365 	a5psw->br_dev = bridge.dev;
366 	a5psw_port_set_standalone(a5psw, port, false);
367 
368 	return 0;
369 }
370 
371 static void a5psw_port_bridge_leave(struct dsa_switch *ds, int port,
372 				    struct dsa_bridge bridge)
373 {
374 	struct a5psw *a5psw = ds->priv;
375 
376 	a5psw_port_set_standalone(a5psw, port, true);
377 
378 	/* No more ports bridged */
379 	if (a5psw->bridged_ports == BIT(A5PSW_CPU_PORT))
380 		a5psw->br_dev = NULL;
381 }
382 
383 static void a5psw_port_stp_state_set(struct dsa_switch *ds, int port, u8 state)
384 {
385 	bool learning_enabled, rx_enabled, tx_enabled;
386 	struct a5psw *a5psw = ds->priv;
387 
388 	switch (state) {
389 	case BR_STATE_DISABLED:
390 	case BR_STATE_BLOCKING:
391 	case BR_STATE_LISTENING:
392 		rx_enabled = false;
393 		tx_enabled = false;
394 		learning_enabled = false;
395 		break;
396 	case BR_STATE_LEARNING:
397 		rx_enabled = false;
398 		tx_enabled = false;
399 		learning_enabled = true;
400 		break;
401 	case BR_STATE_FORWARDING:
402 		rx_enabled = true;
403 		tx_enabled = true;
404 		learning_enabled = true;
405 		break;
406 	default:
407 		dev_err(ds->dev, "invalid STP state: %d\n", state);
408 		return;
409 	}
410 
411 	a5psw_port_learning_set(a5psw, port, learning_enabled);
412 	a5psw_port_rx_block_set(a5psw, port, !rx_enabled);
413 	a5psw_port_tx_enable(a5psw, port, tx_enabled);
414 }
415 
416 static void a5psw_port_fast_age(struct dsa_switch *ds, int port)
417 {
418 	struct a5psw *a5psw = ds->priv;
419 
420 	a5psw_port_fdb_flush(a5psw, port);
421 }
422 
423 static int a5psw_lk_execute_lookup(struct a5psw *a5psw, union lk_data *lk_data,
424 				   u16 *entry)
425 {
426 	u32 ctrl;
427 	int ret;
428 
429 	a5psw_reg_writel(a5psw, A5PSW_LK_DATA_LO, lk_data->lo);
430 	a5psw_reg_writel(a5psw, A5PSW_LK_DATA_HI, lk_data->hi);
431 
432 	ctrl = A5PSW_LK_ADDR_CTRL_LOOKUP;
433 	ret = a5psw_lk_execute_ctrl(a5psw, &ctrl);
434 	if (ret)
435 		return ret;
436 
437 	*entry = ctrl & A5PSW_LK_ADDR_CTRL_ADDRESS;
438 
439 	return 0;
440 }
441 
442 static int a5psw_port_fdb_add(struct dsa_switch *ds, int port,
443 			      const unsigned char *addr, u16 vid,
444 			      struct dsa_db db)
445 {
446 	struct a5psw *a5psw = ds->priv;
447 	union lk_data lk_data = {0};
448 	bool inc_learncount = false;
449 	int ret = 0;
450 	u16 entry;
451 	u32 reg;
452 
453 	ether_addr_copy(lk_data.entry.mac, addr);
454 	lk_data.entry.port_mask = BIT(port);
455 
456 	mutex_lock(&a5psw->lk_lock);
457 
458 	/* Set the value to be written in the lookup table */
459 	ret = a5psw_lk_execute_lookup(a5psw, &lk_data, &entry);
460 	if (ret)
461 		goto lk_unlock;
462 
463 	lk_data.hi = a5psw_reg_readl(a5psw, A5PSW_LK_DATA_HI);
464 	if (!lk_data.entry.valid) {
465 		inc_learncount = true;
466 		/* port_mask set to 0x1f when entry is not valid, clear it */
467 		lk_data.entry.port_mask = 0;
468 		lk_data.entry.prio = 0;
469 	}
470 
471 	lk_data.entry.port_mask |= BIT(port);
472 	lk_data.entry.is_static = 1;
473 	lk_data.entry.valid = 1;
474 
475 	a5psw_reg_writel(a5psw, A5PSW_LK_DATA_HI, lk_data.hi);
476 
477 	reg = A5PSW_LK_ADDR_CTRL_WRITE | entry;
478 	ret = a5psw_lk_execute_ctrl(a5psw, &reg);
479 	if (ret)
480 		goto lk_unlock;
481 
482 	if (inc_learncount) {
483 		reg = A5PSW_LK_LEARNCOUNT_MODE_INC;
484 		a5psw_reg_writel(a5psw, A5PSW_LK_LEARNCOUNT, reg);
485 	}
486 
487 lk_unlock:
488 	mutex_unlock(&a5psw->lk_lock);
489 
490 	return ret;
491 }
492 
493 static int a5psw_port_fdb_del(struct dsa_switch *ds, int port,
494 			      const unsigned char *addr, u16 vid,
495 			      struct dsa_db db)
496 {
497 	struct a5psw *a5psw = ds->priv;
498 	union lk_data lk_data = {0};
499 	bool clear = false;
500 	u16 entry;
501 	u32 reg;
502 	int ret;
503 
504 	ether_addr_copy(lk_data.entry.mac, addr);
505 
506 	mutex_lock(&a5psw->lk_lock);
507 
508 	ret = a5psw_lk_execute_lookup(a5psw, &lk_data, &entry);
509 	if (ret)
510 		goto lk_unlock;
511 
512 	lk_data.hi = a5psw_reg_readl(a5psw, A5PSW_LK_DATA_HI);
513 
514 	/* Our hardware does not associate any VID to the FDB entries so this
515 	 * means that if two entries were added for the same mac but for
516 	 * different VID, then, on the deletion of the first one, we would also
517 	 * delete the second one. Since there is unfortunately nothing we can do
518 	 * about that, do not return an error...
519 	 */
520 	if (!lk_data.entry.valid)
521 		goto lk_unlock;
522 
523 	lk_data.entry.port_mask &= ~BIT(port);
524 	/* If there is no more port in the mask, clear the entry */
525 	if (lk_data.entry.port_mask == 0)
526 		clear = true;
527 
528 	a5psw_reg_writel(a5psw, A5PSW_LK_DATA_HI, lk_data.hi);
529 
530 	reg = entry;
531 	if (clear)
532 		reg |= A5PSW_LK_ADDR_CTRL_CLEAR;
533 	else
534 		reg |= A5PSW_LK_ADDR_CTRL_WRITE;
535 
536 	ret = a5psw_lk_execute_ctrl(a5psw, &reg);
537 	if (ret)
538 		goto lk_unlock;
539 
540 	/* Decrement LEARNCOUNT */
541 	if (clear) {
542 		reg = A5PSW_LK_LEARNCOUNT_MODE_DEC;
543 		a5psw_reg_writel(a5psw, A5PSW_LK_LEARNCOUNT, reg);
544 	}
545 
546 lk_unlock:
547 	mutex_unlock(&a5psw->lk_lock);
548 
549 	return ret;
550 }
551 
552 static int a5psw_port_fdb_dump(struct dsa_switch *ds, int port,
553 			       dsa_fdb_dump_cb_t *cb, void *data)
554 {
555 	struct a5psw *a5psw = ds->priv;
556 	union lk_data lk_data;
557 	int i = 0, ret = 0;
558 	u32 reg;
559 
560 	mutex_lock(&a5psw->lk_lock);
561 
562 	for (i = 0; i < A5PSW_TABLE_ENTRIES; i++) {
563 		reg = A5PSW_LK_ADDR_CTRL_READ | A5PSW_LK_ADDR_CTRL_WAIT | i;
564 
565 		ret = a5psw_lk_execute_ctrl(a5psw, &reg);
566 		if (ret)
567 			goto out_unlock;
568 
569 		lk_data.hi = a5psw_reg_readl(a5psw, A5PSW_LK_DATA_HI);
570 		/* If entry is not valid or does not contain the port, skip */
571 		if (!lk_data.entry.valid ||
572 		    !(lk_data.entry.port_mask & BIT(port)))
573 			continue;
574 
575 		lk_data.lo = a5psw_reg_readl(a5psw, A5PSW_LK_DATA_LO);
576 
577 		ret = cb(lk_data.entry.mac, 0, lk_data.entry.is_static, data);
578 		if (ret)
579 			goto out_unlock;
580 	}
581 
582 out_unlock:
583 	mutex_unlock(&a5psw->lk_lock);
584 
585 	return ret;
586 }
587 
588 static u64 a5psw_read_stat(struct a5psw *a5psw, u32 offset, int port)
589 {
590 	u32 reg_lo, reg_hi;
591 
592 	reg_lo = a5psw_reg_readl(a5psw, offset + A5PSW_PORT_OFFSET(port));
593 	/* A5PSW_STATS_HIWORD is latched on stat read */
594 	reg_hi = a5psw_reg_readl(a5psw, A5PSW_STATS_HIWORD);
595 
596 	return ((u64)reg_hi << 32) | reg_lo;
597 }
598 
599 static void a5psw_get_strings(struct dsa_switch *ds, int port, u32 stringset,
600 			      uint8_t *data)
601 {
602 	unsigned int u;
603 
604 	if (stringset != ETH_SS_STATS)
605 		return;
606 
607 	for (u = 0; u < ARRAY_SIZE(a5psw_stats); u++) {
608 		memcpy(data + u * ETH_GSTRING_LEN, a5psw_stats[u].name,
609 		       ETH_GSTRING_LEN);
610 	}
611 }
612 
613 static void a5psw_get_ethtool_stats(struct dsa_switch *ds, int port,
614 				    uint64_t *data)
615 {
616 	struct a5psw *a5psw = ds->priv;
617 	unsigned int u;
618 
619 	for (u = 0; u < ARRAY_SIZE(a5psw_stats); u++)
620 		data[u] = a5psw_read_stat(a5psw, a5psw_stats[u].offset, port);
621 }
622 
623 static int a5psw_get_sset_count(struct dsa_switch *ds, int port, int sset)
624 {
625 	if (sset != ETH_SS_STATS)
626 		return 0;
627 
628 	return ARRAY_SIZE(a5psw_stats);
629 }
630 
631 static void a5psw_get_eth_mac_stats(struct dsa_switch *ds, int port,
632 				    struct ethtool_eth_mac_stats *mac_stats)
633 {
634 	struct a5psw *a5psw = ds->priv;
635 
636 #define RD(name) a5psw_read_stat(a5psw, A5PSW_##name, port)
637 	mac_stats->FramesTransmittedOK = RD(aFramesTransmittedOK);
638 	mac_stats->SingleCollisionFrames = RD(aSingleCollisions);
639 	mac_stats->MultipleCollisionFrames = RD(aMultipleCollisions);
640 	mac_stats->FramesReceivedOK = RD(aFramesReceivedOK);
641 	mac_stats->FrameCheckSequenceErrors = RD(aFrameCheckSequenceErrors);
642 	mac_stats->AlignmentErrors = RD(aAlignmentErrors);
643 	mac_stats->OctetsTransmittedOK = RD(aOctetsTransmittedOK);
644 	mac_stats->FramesWithDeferredXmissions = RD(aDeferred);
645 	mac_stats->LateCollisions = RD(aLateCollisions);
646 	mac_stats->FramesAbortedDueToXSColls = RD(aExcessiveCollisions);
647 	mac_stats->FramesLostDueToIntMACXmitError = RD(ifOutErrors);
648 	mac_stats->CarrierSenseErrors = RD(aCarrierSenseErrors);
649 	mac_stats->OctetsReceivedOK = RD(aOctetsReceivedOK);
650 	mac_stats->FramesLostDueToIntMACRcvError = RD(ifInErrors);
651 	mac_stats->MulticastFramesXmittedOK = RD(ifOutMulticastPkts);
652 	mac_stats->BroadcastFramesXmittedOK = RD(ifOutBroadcastPkts);
653 	mac_stats->FramesWithExcessiveDeferral = RD(aDeferred);
654 	mac_stats->MulticastFramesReceivedOK = RD(ifInMulticastPkts);
655 	mac_stats->BroadcastFramesReceivedOK = RD(ifInBroadcastPkts);
656 #undef RD
657 }
658 
659 static const struct ethtool_rmon_hist_range a5psw_rmon_ranges[] = {
660 	{ 0, 64 },
661 	{ 65, 127 },
662 	{ 128, 255 },
663 	{ 256, 511 },
664 	{ 512, 1023 },
665 	{ 1024, 1518 },
666 	{ 1519, A5PSW_MAX_MTU },
667 	{}
668 };
669 
670 static void a5psw_get_rmon_stats(struct dsa_switch *ds, int port,
671 				 struct ethtool_rmon_stats *rmon_stats,
672 				 const struct ethtool_rmon_hist_range **ranges)
673 {
674 	struct a5psw *a5psw = ds->priv;
675 
676 #define RD(name) a5psw_read_stat(a5psw, A5PSW_##name, port)
677 	rmon_stats->undersize_pkts = RD(etherStatsUndersizePkts);
678 	rmon_stats->oversize_pkts = RD(etherStatsOversizePkts);
679 	rmon_stats->fragments = RD(etherStatsFragments);
680 	rmon_stats->jabbers = RD(etherStatsJabbers);
681 	rmon_stats->hist[0] = RD(etherStatsPkts64Octets);
682 	rmon_stats->hist[1] = RD(etherStatsPkts65to127Octets);
683 	rmon_stats->hist[2] = RD(etherStatsPkts128to255Octets);
684 	rmon_stats->hist[3] = RD(etherStatsPkts256to511Octets);
685 	rmon_stats->hist[4] = RD(etherStatsPkts512to1023Octets);
686 	rmon_stats->hist[5] = RD(etherStatsPkts1024to1518Octets);
687 	rmon_stats->hist[6] = RD(etherStatsPkts1519toXOctets);
688 #undef RD
689 
690 	*ranges = a5psw_rmon_ranges;
691 }
692 
693 static void a5psw_get_eth_ctrl_stats(struct dsa_switch *ds, int port,
694 				     struct ethtool_eth_ctrl_stats *ctrl_stats)
695 {
696 	struct a5psw *a5psw = ds->priv;
697 	u64 stat;
698 
699 	stat = a5psw_read_stat(a5psw, A5PSW_aTxPAUSEMACCtrlFrames, port);
700 	ctrl_stats->MACControlFramesTransmitted = stat;
701 	stat = a5psw_read_stat(a5psw, A5PSW_aRxPAUSEMACCtrlFrames, port);
702 	ctrl_stats->MACControlFramesReceived = stat;
703 }
704 
705 static int a5psw_setup(struct dsa_switch *ds)
706 {
707 	struct a5psw *a5psw = ds->priv;
708 	int port, vlan, ret;
709 	struct dsa_port *dp;
710 	u32 reg;
711 
712 	/* Validate that there is only 1 CPU port with index A5PSW_CPU_PORT */
713 	dsa_switch_for_each_cpu_port(dp, ds) {
714 		if (dp->index != A5PSW_CPU_PORT) {
715 			dev_err(a5psw->dev, "Invalid CPU port\n");
716 			return -EINVAL;
717 		}
718 	}
719 
720 	/* Configure management port */
721 	reg = A5PSW_CPU_PORT | A5PSW_MGMT_CFG_ENABLE;
722 	a5psw_reg_writel(a5psw, A5PSW_MGMT_CFG, reg);
723 
724 	/* Set pattern 0 to forward all frame to mgmt port */
725 	a5psw_reg_writel(a5psw, A5PSW_PATTERN_CTRL(A5PSW_PATTERN_MGMTFWD),
726 			 A5PSW_PATTERN_CTRL_MGMTFWD);
727 
728 	/* Enable port tagging */
729 	reg = FIELD_PREP(A5PSW_MGMT_TAG_CFG_TAGFIELD, ETH_P_DSA_A5PSW);
730 	reg |= A5PSW_MGMT_TAG_CFG_ENABLE | A5PSW_MGMT_TAG_CFG_ALL_FRAMES;
731 	a5psw_reg_writel(a5psw, A5PSW_MGMT_TAG_CFG, reg);
732 
733 	/* Enable normal switch operation */
734 	reg = A5PSW_LK_ADDR_CTRL_BLOCKING | A5PSW_LK_ADDR_CTRL_LEARNING |
735 	      A5PSW_LK_ADDR_CTRL_AGEING | A5PSW_LK_ADDR_CTRL_ALLOW_MIGR |
736 	      A5PSW_LK_ADDR_CTRL_CLEAR_TABLE;
737 	a5psw_reg_writel(a5psw, A5PSW_LK_CTRL, reg);
738 
739 	ret = readl_poll_timeout(a5psw->base + A5PSW_LK_CTRL, reg,
740 				 !(reg & A5PSW_LK_ADDR_CTRL_CLEAR_TABLE),
741 				 A5PSW_LK_BUSY_USEC_POLL, A5PSW_CTRL_TIMEOUT);
742 	if (ret) {
743 		dev_err(a5psw->dev, "Failed to clear lookup table\n");
744 		return ret;
745 	}
746 
747 	/* Reset learn count to 0 */
748 	reg = A5PSW_LK_LEARNCOUNT_MODE_SET;
749 	a5psw_reg_writel(a5psw, A5PSW_LK_LEARNCOUNT, reg);
750 
751 	/* Clear VLAN resource table */
752 	reg = A5PSW_VLAN_RES_WR_PORTMASK | A5PSW_VLAN_RES_WR_TAGMASK;
753 	for (vlan = 0; vlan < A5PSW_VLAN_COUNT; vlan++)
754 		a5psw_reg_writel(a5psw, A5PSW_VLAN_RES(vlan), reg);
755 
756 	/* Reset all ports */
757 	dsa_switch_for_each_port(dp, ds) {
758 		port = dp->index;
759 
760 		/* Reset the port */
761 		a5psw_reg_writel(a5psw, A5PSW_CMD_CFG(port),
762 				 A5PSW_CMD_CFG_SW_RESET);
763 
764 		/* Enable only CPU port */
765 		a5psw_port_enable_set(a5psw, port, dsa_port_is_cpu(dp));
766 
767 		if (dsa_port_is_unused(dp))
768 			continue;
769 
770 		/* Enable egress flooding and learning for CPU port */
771 		if (dsa_port_is_cpu(dp)) {
772 			a5psw_flooding_set_resolution(a5psw, port, true);
773 			a5psw_port_learning_set(a5psw, port, true);
774 		}
775 
776 		/* Enable standalone mode for user ports */
777 		if (dsa_port_is_user(dp))
778 			a5psw_port_set_standalone(a5psw, port, true);
779 	}
780 
781 	return 0;
782 }
783 
784 static const struct dsa_switch_ops a5psw_switch_ops = {
785 	.get_tag_protocol = a5psw_get_tag_protocol,
786 	.setup = a5psw_setup,
787 	.port_disable = a5psw_port_disable,
788 	.port_enable = a5psw_port_enable,
789 	.phylink_get_caps = a5psw_phylink_get_caps,
790 	.phylink_mac_select_pcs = a5psw_phylink_mac_select_pcs,
791 	.phylink_mac_link_down = a5psw_phylink_mac_link_down,
792 	.phylink_mac_link_up = a5psw_phylink_mac_link_up,
793 	.port_change_mtu = a5psw_port_change_mtu,
794 	.port_max_mtu = a5psw_port_max_mtu,
795 	.get_sset_count = a5psw_get_sset_count,
796 	.get_strings = a5psw_get_strings,
797 	.get_ethtool_stats = a5psw_get_ethtool_stats,
798 	.get_eth_mac_stats = a5psw_get_eth_mac_stats,
799 	.get_eth_ctrl_stats = a5psw_get_eth_ctrl_stats,
800 	.get_rmon_stats = a5psw_get_rmon_stats,
801 	.set_ageing_time = a5psw_set_ageing_time,
802 	.port_bridge_join = a5psw_port_bridge_join,
803 	.port_bridge_leave = a5psw_port_bridge_leave,
804 	.port_stp_state_set = a5psw_port_stp_state_set,
805 	.port_fast_age = a5psw_port_fast_age,
806 	.port_fdb_add = a5psw_port_fdb_add,
807 	.port_fdb_del = a5psw_port_fdb_del,
808 	.port_fdb_dump = a5psw_port_fdb_dump,
809 };
810 
811 static int a5psw_mdio_wait_busy(struct a5psw *a5psw)
812 {
813 	u32 status;
814 	int err;
815 
816 	err = readl_poll_timeout(a5psw->base + A5PSW_MDIO_CFG_STATUS, status,
817 				 !(status & A5PSW_MDIO_CFG_STATUS_BUSY), 10,
818 				 1000 * USEC_PER_MSEC);
819 	if (err)
820 		dev_err(a5psw->dev, "MDIO command timeout\n");
821 
822 	return err;
823 }
824 
825 static int a5psw_mdio_read(struct mii_bus *bus, int phy_id, int phy_reg)
826 {
827 	struct a5psw *a5psw = bus->priv;
828 	u32 cmd, status;
829 	int ret;
830 
831 	cmd = A5PSW_MDIO_COMMAND_READ;
832 	cmd |= FIELD_PREP(A5PSW_MDIO_COMMAND_REG_ADDR, phy_reg);
833 	cmd |= FIELD_PREP(A5PSW_MDIO_COMMAND_PHY_ADDR, phy_id);
834 
835 	a5psw_reg_writel(a5psw, A5PSW_MDIO_COMMAND, cmd);
836 
837 	ret = a5psw_mdio_wait_busy(a5psw);
838 	if (ret)
839 		return ret;
840 
841 	ret = a5psw_reg_readl(a5psw, A5PSW_MDIO_DATA) & A5PSW_MDIO_DATA_MASK;
842 
843 	status = a5psw_reg_readl(a5psw, A5PSW_MDIO_CFG_STATUS);
844 	if (status & A5PSW_MDIO_CFG_STATUS_READERR)
845 		return -EIO;
846 
847 	return ret;
848 }
849 
850 static int a5psw_mdio_write(struct mii_bus *bus, int phy_id, int phy_reg,
851 			    u16 phy_data)
852 {
853 	struct a5psw *a5psw = bus->priv;
854 	u32 cmd;
855 
856 	cmd = FIELD_PREP(A5PSW_MDIO_COMMAND_REG_ADDR, phy_reg);
857 	cmd |= FIELD_PREP(A5PSW_MDIO_COMMAND_PHY_ADDR, phy_id);
858 
859 	a5psw_reg_writel(a5psw, A5PSW_MDIO_COMMAND, cmd);
860 	a5psw_reg_writel(a5psw, A5PSW_MDIO_DATA, phy_data);
861 
862 	return a5psw_mdio_wait_busy(a5psw);
863 }
864 
865 static int a5psw_mdio_config(struct a5psw *a5psw, u32 mdio_freq)
866 {
867 	unsigned long rate;
868 	unsigned long div;
869 	u32 cfgstatus;
870 
871 	rate = clk_get_rate(a5psw->hclk);
872 	div = ((rate / mdio_freq) / 2);
873 	if (div > FIELD_MAX(A5PSW_MDIO_CFG_STATUS_CLKDIV) ||
874 	    div < A5PSW_MDIO_CLK_DIV_MIN) {
875 		dev_err(a5psw->dev, "MDIO clock div %ld out of range\n", div);
876 		return -ERANGE;
877 	}
878 
879 	cfgstatus = FIELD_PREP(A5PSW_MDIO_CFG_STATUS_CLKDIV, div);
880 
881 	a5psw_reg_writel(a5psw, A5PSW_MDIO_CFG_STATUS, cfgstatus);
882 
883 	return 0;
884 }
885 
886 static int a5psw_probe_mdio(struct a5psw *a5psw, struct device_node *node)
887 {
888 	struct device *dev = a5psw->dev;
889 	struct mii_bus *bus;
890 	u32 mdio_freq;
891 	int ret;
892 
893 	if (of_property_read_u32(node, "clock-frequency", &mdio_freq))
894 		mdio_freq = A5PSW_MDIO_DEF_FREQ;
895 
896 	ret = a5psw_mdio_config(a5psw, mdio_freq);
897 	if (ret)
898 		return ret;
899 
900 	bus = devm_mdiobus_alloc(dev);
901 	if (!bus)
902 		return -ENOMEM;
903 
904 	bus->name = "a5psw_mdio";
905 	bus->read = a5psw_mdio_read;
906 	bus->write = a5psw_mdio_write;
907 	bus->priv = a5psw;
908 	bus->parent = dev;
909 	snprintf(bus->id, MII_BUS_ID_SIZE, "%s", dev_name(dev));
910 
911 	a5psw->mii_bus = bus;
912 
913 	return devm_of_mdiobus_register(dev, bus, node);
914 }
915 
916 static void a5psw_pcs_free(struct a5psw *a5psw)
917 {
918 	int i;
919 
920 	for (i = 0; i < ARRAY_SIZE(a5psw->pcs); i++) {
921 		if (a5psw->pcs[i])
922 			miic_destroy(a5psw->pcs[i]);
923 	}
924 }
925 
926 static int a5psw_pcs_get(struct a5psw *a5psw)
927 {
928 	struct device_node *ports, *port, *pcs_node;
929 	struct phylink_pcs *pcs;
930 	int ret;
931 	u32 reg;
932 
933 	ports = of_get_child_by_name(a5psw->dev->of_node, "ethernet-ports");
934 	if (!ports)
935 		return -EINVAL;
936 
937 	for_each_available_child_of_node(ports, port) {
938 		pcs_node = of_parse_phandle(port, "pcs-handle", 0);
939 		if (!pcs_node)
940 			continue;
941 
942 		if (of_property_read_u32(port, "reg", &reg)) {
943 			ret = -EINVAL;
944 			goto free_pcs;
945 		}
946 
947 		if (reg >= ARRAY_SIZE(a5psw->pcs)) {
948 			ret = -ENODEV;
949 			goto free_pcs;
950 		}
951 
952 		pcs = miic_create(a5psw->dev, pcs_node);
953 		if (IS_ERR(pcs)) {
954 			dev_err(a5psw->dev, "Failed to create PCS for port %d\n",
955 				reg);
956 			ret = PTR_ERR(pcs);
957 			goto free_pcs;
958 		}
959 
960 		a5psw->pcs[reg] = pcs;
961 		of_node_put(pcs_node);
962 	}
963 	of_node_put(ports);
964 
965 	return 0;
966 
967 free_pcs:
968 	of_node_put(pcs_node);
969 	of_node_put(port);
970 	of_node_put(ports);
971 	a5psw_pcs_free(a5psw);
972 
973 	return ret;
974 }
975 
976 static int a5psw_probe(struct platform_device *pdev)
977 {
978 	struct device *dev = &pdev->dev;
979 	struct device_node *mdio;
980 	struct dsa_switch *ds;
981 	struct a5psw *a5psw;
982 	int ret;
983 
984 	a5psw = devm_kzalloc(dev, sizeof(*a5psw), GFP_KERNEL);
985 	if (!a5psw)
986 		return -ENOMEM;
987 
988 	a5psw->dev = dev;
989 	mutex_init(&a5psw->lk_lock);
990 	spin_lock_init(&a5psw->reg_lock);
991 	a5psw->base = devm_platform_ioremap_resource(pdev, 0);
992 	if (IS_ERR(a5psw->base))
993 		return PTR_ERR(a5psw->base);
994 
995 	ret = a5psw_pcs_get(a5psw);
996 	if (ret)
997 		return ret;
998 
999 	a5psw->hclk = devm_clk_get(dev, "hclk");
1000 	if (IS_ERR(a5psw->hclk)) {
1001 		dev_err(dev, "failed get hclk clock\n");
1002 		ret = PTR_ERR(a5psw->hclk);
1003 		goto free_pcs;
1004 	}
1005 
1006 	a5psw->clk = devm_clk_get(dev, "clk");
1007 	if (IS_ERR(a5psw->clk)) {
1008 		dev_err(dev, "failed get clk_switch clock\n");
1009 		ret = PTR_ERR(a5psw->clk);
1010 		goto free_pcs;
1011 	}
1012 
1013 	ret = clk_prepare_enable(a5psw->clk);
1014 	if (ret)
1015 		goto free_pcs;
1016 
1017 	ret = clk_prepare_enable(a5psw->hclk);
1018 	if (ret)
1019 		goto clk_disable;
1020 
1021 	mdio = of_get_child_by_name(dev->of_node, "mdio");
1022 	if (of_device_is_available(mdio)) {
1023 		ret = a5psw_probe_mdio(a5psw, mdio);
1024 		if (ret) {
1025 			of_node_put(mdio);
1026 			dev_err(dev, "Failed to register MDIO: %d\n", ret);
1027 			goto hclk_disable;
1028 		}
1029 	}
1030 
1031 	of_node_put(mdio);
1032 
1033 	ds = &a5psw->ds;
1034 	ds->dev = dev;
1035 	ds->num_ports = A5PSW_PORTS_NUM;
1036 	ds->ops = &a5psw_switch_ops;
1037 	ds->priv = a5psw;
1038 
1039 	ret = dsa_register_switch(ds);
1040 	if (ret) {
1041 		dev_err(dev, "Failed to register DSA switch: %d\n", ret);
1042 		goto hclk_disable;
1043 	}
1044 
1045 	return 0;
1046 
1047 hclk_disable:
1048 	clk_disable_unprepare(a5psw->hclk);
1049 clk_disable:
1050 	clk_disable_unprepare(a5psw->clk);
1051 free_pcs:
1052 	a5psw_pcs_free(a5psw);
1053 
1054 	return ret;
1055 }
1056 
1057 static int a5psw_remove(struct platform_device *pdev)
1058 {
1059 	struct a5psw *a5psw = platform_get_drvdata(pdev);
1060 
1061 	if (!a5psw)
1062 		return 0;
1063 
1064 	dsa_unregister_switch(&a5psw->ds);
1065 	a5psw_pcs_free(a5psw);
1066 	clk_disable_unprepare(a5psw->hclk);
1067 	clk_disable_unprepare(a5psw->clk);
1068 
1069 	return 0;
1070 }
1071 
1072 static void a5psw_shutdown(struct platform_device *pdev)
1073 {
1074 	struct a5psw *a5psw = platform_get_drvdata(pdev);
1075 
1076 	if (!a5psw)
1077 		return;
1078 
1079 	dsa_switch_shutdown(&a5psw->ds);
1080 
1081 	platform_set_drvdata(pdev, NULL);
1082 }
1083 
1084 static const struct of_device_id a5psw_of_mtable[] = {
1085 	{ .compatible = "renesas,rzn1-a5psw", },
1086 	{ /* sentinel */ },
1087 };
1088 MODULE_DEVICE_TABLE(of, a5psw_of_mtable);
1089 
1090 static struct platform_driver a5psw_driver = {
1091 	.driver = {
1092 		.name	 = "rzn1_a5psw",
1093 		.of_match_table = of_match_ptr(a5psw_of_mtable),
1094 	},
1095 	.probe = a5psw_probe,
1096 	.remove = a5psw_remove,
1097 	.shutdown = a5psw_shutdown,
1098 };
1099 module_platform_driver(a5psw_driver);
1100 
1101 MODULE_LICENSE("GPL");
1102 MODULE_DESCRIPTION("Renesas RZ/N1 Advanced 5-port Switch driver");
1103 MODULE_AUTHOR("Clément Léger <clement.leger@bootlin.com>");
1104