xref: /openbmc/linux/drivers/net/dsa/mt7530.c (revision fed8b7e366e7c8f81e957ef91aa8f0a38e038c66)
1 /*
2  * Mediatek MT7530 DSA Switch driver
3  * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  */
14 #include <linux/etherdevice.h>
15 #include <linux/if_bridge.h>
16 #include <linux/iopoll.h>
17 #include <linux/mdio.h>
18 #include <linux/mfd/syscon.h>
19 #include <linux/module.h>
20 #include <linux/netdevice.h>
21 #include <linux/of_gpio.h>
22 #include <linux/of_mdio.h>
23 #include <linux/of_net.h>
24 #include <linux/of_platform.h>
25 #include <linux/phy.h>
26 #include <linux/regmap.h>
27 #include <linux/regulator/consumer.h>
28 #include <linux/reset.h>
29 #include <linux/gpio/consumer.h>
30 #include <net/dsa.h>
31 
32 #include "mt7530.h"
33 
34 /* String, offset, and register size in bytes if different from 4 bytes */
35 static const struct mt7530_mib_desc mt7530_mib[] = {
36 	MIB_DESC(1, 0x00, "TxDrop"),
37 	MIB_DESC(1, 0x04, "TxCrcErr"),
38 	MIB_DESC(1, 0x08, "TxUnicast"),
39 	MIB_DESC(1, 0x0c, "TxMulticast"),
40 	MIB_DESC(1, 0x10, "TxBroadcast"),
41 	MIB_DESC(1, 0x14, "TxCollision"),
42 	MIB_DESC(1, 0x18, "TxSingleCollision"),
43 	MIB_DESC(1, 0x1c, "TxMultipleCollision"),
44 	MIB_DESC(1, 0x20, "TxDeferred"),
45 	MIB_DESC(1, 0x24, "TxLateCollision"),
46 	MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
47 	MIB_DESC(1, 0x2c, "TxPause"),
48 	MIB_DESC(1, 0x30, "TxPktSz64"),
49 	MIB_DESC(1, 0x34, "TxPktSz65To127"),
50 	MIB_DESC(1, 0x38, "TxPktSz128To255"),
51 	MIB_DESC(1, 0x3c, "TxPktSz256To511"),
52 	MIB_DESC(1, 0x40, "TxPktSz512To1023"),
53 	MIB_DESC(1, 0x44, "Tx1024ToMax"),
54 	MIB_DESC(2, 0x48, "TxBytes"),
55 	MIB_DESC(1, 0x60, "RxDrop"),
56 	MIB_DESC(1, 0x64, "RxFiltering"),
57 	MIB_DESC(1, 0x6c, "RxMulticast"),
58 	MIB_DESC(1, 0x70, "RxBroadcast"),
59 	MIB_DESC(1, 0x74, "RxAlignErr"),
60 	MIB_DESC(1, 0x78, "RxCrcErr"),
61 	MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
62 	MIB_DESC(1, 0x80, "RxFragErr"),
63 	MIB_DESC(1, 0x84, "RxOverSzErr"),
64 	MIB_DESC(1, 0x88, "RxJabberErr"),
65 	MIB_DESC(1, 0x8c, "RxPause"),
66 	MIB_DESC(1, 0x90, "RxPktSz64"),
67 	MIB_DESC(1, 0x94, "RxPktSz65To127"),
68 	MIB_DESC(1, 0x98, "RxPktSz128To255"),
69 	MIB_DESC(1, 0x9c, "RxPktSz256To511"),
70 	MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
71 	MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
72 	MIB_DESC(2, 0xa8, "RxBytes"),
73 	MIB_DESC(1, 0xb0, "RxCtrlDrop"),
74 	MIB_DESC(1, 0xb4, "RxIngressDrop"),
75 	MIB_DESC(1, 0xb8, "RxArlDrop"),
76 };
77 
78 static int
79 mt7623_trgmii_write(struct mt7530_priv *priv,  u32 reg, u32 val)
80 {
81 	int ret;
82 
83 	ret =  regmap_write(priv->ethernet, TRGMII_BASE(reg), val);
84 	if (ret < 0)
85 		dev_err(priv->dev,
86 			"failed to priv write register\n");
87 	return ret;
88 }
89 
90 static u32
91 mt7623_trgmii_read(struct mt7530_priv *priv, u32 reg)
92 {
93 	int ret;
94 	u32 val;
95 
96 	ret = regmap_read(priv->ethernet, TRGMII_BASE(reg), &val);
97 	if (ret < 0) {
98 		dev_err(priv->dev,
99 			"failed to priv read register\n");
100 		return ret;
101 	}
102 
103 	return val;
104 }
105 
106 static void
107 mt7623_trgmii_rmw(struct mt7530_priv *priv, u32 reg,
108 		  u32 mask, u32 set)
109 {
110 	u32 val;
111 
112 	val = mt7623_trgmii_read(priv, reg);
113 	val &= ~mask;
114 	val |= set;
115 	mt7623_trgmii_write(priv, reg, val);
116 }
117 
118 static void
119 mt7623_trgmii_set(struct mt7530_priv *priv, u32 reg, u32 val)
120 {
121 	mt7623_trgmii_rmw(priv, reg, 0, val);
122 }
123 
124 static void
125 mt7623_trgmii_clear(struct mt7530_priv *priv, u32 reg, u32 val)
126 {
127 	mt7623_trgmii_rmw(priv, reg, val, 0);
128 }
129 
130 static int
131 core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
132 {
133 	struct mii_bus *bus = priv->bus;
134 	int value, ret;
135 
136 	/* Write the desired MMD Devad */
137 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
138 	if (ret < 0)
139 		goto err;
140 
141 	/* Write the desired MMD register address */
142 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
143 	if (ret < 0)
144 		goto err;
145 
146 	/* Select the Function : DATA with no post increment */
147 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
148 	if (ret < 0)
149 		goto err;
150 
151 	/* Read the content of the MMD's selected register */
152 	value = bus->read(bus, 0, MII_MMD_DATA);
153 
154 	return value;
155 err:
156 	dev_err(&bus->dev,  "failed to read mmd register\n");
157 
158 	return ret;
159 }
160 
161 static int
162 core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
163 			int devad, u32 data)
164 {
165 	struct mii_bus *bus = priv->bus;
166 	int ret;
167 
168 	/* Write the desired MMD Devad */
169 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
170 	if (ret < 0)
171 		goto err;
172 
173 	/* Write the desired MMD register address */
174 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
175 	if (ret < 0)
176 		goto err;
177 
178 	/* Select the Function : DATA with no post increment */
179 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
180 	if (ret < 0)
181 		goto err;
182 
183 	/* Write the data into MMD's selected register */
184 	ret = bus->write(bus, 0, MII_MMD_DATA, data);
185 err:
186 	if (ret < 0)
187 		dev_err(&bus->dev,
188 			"failed to write mmd register\n");
189 	return ret;
190 }
191 
192 static void
193 core_write(struct mt7530_priv *priv, u32 reg, u32 val)
194 {
195 	struct mii_bus *bus = priv->bus;
196 
197 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
198 
199 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
200 
201 	mutex_unlock(&bus->mdio_lock);
202 }
203 
204 static void
205 core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
206 {
207 	struct mii_bus *bus = priv->bus;
208 	u32 val;
209 
210 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
211 
212 	val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2);
213 	val &= ~mask;
214 	val |= set;
215 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
216 
217 	mutex_unlock(&bus->mdio_lock);
218 }
219 
220 static void
221 core_set(struct mt7530_priv *priv, u32 reg, u32 val)
222 {
223 	core_rmw(priv, reg, 0, val);
224 }
225 
226 static void
227 core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
228 {
229 	core_rmw(priv, reg, val, 0);
230 }
231 
232 static int
233 mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
234 {
235 	struct mii_bus *bus = priv->bus;
236 	u16 page, r, lo, hi;
237 	int ret;
238 
239 	page = (reg >> 6) & 0x3ff;
240 	r  = (reg >> 2) & 0xf;
241 	lo = val & 0xffff;
242 	hi = val >> 16;
243 
244 	/* MT7530 uses 31 as the pseudo port */
245 	ret = bus->write(bus, 0x1f, 0x1f, page);
246 	if (ret < 0)
247 		goto err;
248 
249 	ret = bus->write(bus, 0x1f, r,  lo);
250 	if (ret < 0)
251 		goto err;
252 
253 	ret = bus->write(bus, 0x1f, 0x10, hi);
254 err:
255 	if (ret < 0)
256 		dev_err(&bus->dev,
257 			"failed to write mt7530 register\n");
258 	return ret;
259 }
260 
261 static u32
262 mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
263 {
264 	struct mii_bus *bus = priv->bus;
265 	u16 page, r, lo, hi;
266 	int ret;
267 
268 	page = (reg >> 6) & 0x3ff;
269 	r = (reg >> 2) & 0xf;
270 
271 	/* MT7530 uses 31 as the pseudo port */
272 	ret = bus->write(bus, 0x1f, 0x1f, page);
273 	if (ret < 0) {
274 		dev_err(&bus->dev,
275 			"failed to read mt7530 register\n");
276 		return ret;
277 	}
278 
279 	lo = bus->read(bus, 0x1f, r);
280 	hi = bus->read(bus, 0x1f, 0x10);
281 
282 	return (hi << 16) | (lo & 0xffff);
283 }
284 
285 static void
286 mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
287 {
288 	struct mii_bus *bus = priv->bus;
289 
290 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
291 
292 	mt7530_mii_write(priv, reg, val);
293 
294 	mutex_unlock(&bus->mdio_lock);
295 }
296 
297 static u32
298 _mt7530_read(struct mt7530_dummy_poll *p)
299 {
300 	struct mii_bus		*bus = p->priv->bus;
301 	u32 val;
302 
303 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
304 
305 	val = mt7530_mii_read(p->priv, p->reg);
306 
307 	mutex_unlock(&bus->mdio_lock);
308 
309 	return val;
310 }
311 
312 static u32
313 mt7530_read(struct mt7530_priv *priv, u32 reg)
314 {
315 	struct mt7530_dummy_poll p;
316 
317 	INIT_MT7530_DUMMY_POLL(&p, priv, reg);
318 	return _mt7530_read(&p);
319 }
320 
321 static void
322 mt7530_rmw(struct mt7530_priv *priv, u32 reg,
323 	   u32 mask, u32 set)
324 {
325 	struct mii_bus *bus = priv->bus;
326 	u32 val;
327 
328 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
329 
330 	val = mt7530_mii_read(priv, reg);
331 	val &= ~mask;
332 	val |= set;
333 	mt7530_mii_write(priv, reg, val);
334 
335 	mutex_unlock(&bus->mdio_lock);
336 }
337 
338 static void
339 mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
340 {
341 	mt7530_rmw(priv, reg, 0, val);
342 }
343 
344 static void
345 mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
346 {
347 	mt7530_rmw(priv, reg, val, 0);
348 }
349 
350 static int
351 mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
352 {
353 	u32 val;
354 	int ret;
355 	struct mt7530_dummy_poll p;
356 
357 	/* Set the command operating upon the MAC address entries */
358 	val = ATC_BUSY | ATC_MAT(0) | cmd;
359 	mt7530_write(priv, MT7530_ATC, val);
360 
361 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
362 	ret = readx_poll_timeout(_mt7530_read, &p, val,
363 				 !(val & ATC_BUSY), 20, 20000);
364 	if (ret < 0) {
365 		dev_err(priv->dev, "reset timeout\n");
366 		return ret;
367 	}
368 
369 	/* Additional sanity for read command if the specified
370 	 * entry is invalid
371 	 */
372 	val = mt7530_read(priv, MT7530_ATC);
373 	if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
374 		return -EINVAL;
375 
376 	if (rsp)
377 		*rsp = val;
378 
379 	return 0;
380 }
381 
382 static void
383 mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
384 {
385 	u32 reg[3];
386 	int i;
387 
388 	/* Read from ARL table into an array */
389 	for (i = 0; i < 3; i++) {
390 		reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
391 
392 		dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
393 			__func__, __LINE__, i, reg[i]);
394 	}
395 
396 	fdb->vid = (reg[1] >> CVID) & CVID_MASK;
397 	fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
398 	fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
399 	fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
400 	fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
401 	fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
402 	fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
403 	fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
404 	fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
405 	fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
406 }
407 
408 static void
409 mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
410 		 u8 port_mask, const u8 *mac,
411 		 u8 aging, u8 type)
412 {
413 	u32 reg[3] = { 0 };
414 	int i;
415 
416 	reg[1] |= vid & CVID_MASK;
417 	reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
418 	reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
419 	/* STATIC_ENT indicate that entry is static wouldn't
420 	 * be aged out and STATIC_EMP specified as erasing an
421 	 * entry
422 	 */
423 	reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
424 	reg[1] |= mac[5] << MAC_BYTE_5;
425 	reg[1] |= mac[4] << MAC_BYTE_4;
426 	reg[0] |= mac[3] << MAC_BYTE_3;
427 	reg[0] |= mac[2] << MAC_BYTE_2;
428 	reg[0] |= mac[1] << MAC_BYTE_1;
429 	reg[0] |= mac[0] << MAC_BYTE_0;
430 
431 	/* Write array into the ARL table */
432 	for (i = 0; i < 3; i++)
433 		mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
434 }
435 
436 static int
437 mt7530_pad_clk_setup(struct dsa_switch *ds, int mode)
438 {
439 	struct mt7530_priv *priv = ds->priv;
440 	u32 ncpo1, ssc_delta, trgint, i;
441 
442 	switch (mode) {
443 	case PHY_INTERFACE_MODE_RGMII:
444 		trgint = 0;
445 		ncpo1 = 0x0c80;
446 		ssc_delta = 0x87;
447 		break;
448 	case PHY_INTERFACE_MODE_TRGMII:
449 		trgint = 1;
450 		ncpo1 = 0x1400;
451 		ssc_delta = 0x57;
452 		break;
453 	default:
454 		dev_err(priv->dev, "xMII mode %d not supported\n", mode);
455 		return -EINVAL;
456 	}
457 
458 	mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
459 		   P6_INTF_MODE(trgint));
460 
461 	/* Lower Tx Driving for TRGMII path */
462 	for (i = 0 ; i < NUM_TRGMII_CTRL ; i++)
463 		mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
464 			     TD_DM_DRVP(8) | TD_DM_DRVN(8));
465 
466 	/* Setup core clock for MT7530 */
467 	if (!trgint) {
468 		/* Disable MT7530 core clock */
469 		core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
470 
471 		/* Disable PLL, since phy_device has not yet been created
472 		 * provided for phy_[read,write]_mmd_indirect is called, we
473 		 * provide our own core_write_mmd_indirect to complete this
474 		 * function.
475 		 */
476 		core_write_mmd_indirect(priv,
477 					CORE_GSWPLL_GRP1,
478 					MDIO_MMD_VEND2,
479 					0);
480 
481 		/* Set core clock into 500Mhz */
482 		core_write(priv, CORE_GSWPLL_GRP2,
483 			   RG_GSWPLL_POSDIV_500M(1) |
484 			   RG_GSWPLL_FBKDIV_500M(25));
485 
486 		/* Enable PLL */
487 		core_write(priv, CORE_GSWPLL_GRP1,
488 			   RG_GSWPLL_EN_PRE |
489 			   RG_GSWPLL_POSDIV_200M(2) |
490 			   RG_GSWPLL_FBKDIV_200M(32));
491 
492 		/* Enable MT7530 core clock */
493 		core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
494 	}
495 
496 	/* Setup the MT7530 TRGMII Tx Clock */
497 	core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
498 	core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
499 	core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
500 	core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
501 	core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
502 	core_write(priv, CORE_PLL_GROUP4,
503 		   RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN |
504 		   RG_SYSPLL_BIAS_LPF_EN);
505 	core_write(priv, CORE_PLL_GROUP2,
506 		   RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN |
507 		   RG_SYSPLL_POSDIV(1));
508 	core_write(priv, CORE_PLL_GROUP7,
509 		   RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) |
510 		   RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
511 	core_set(priv, CORE_TRGMII_GSW_CLK_CG,
512 		 REG_GSWCK_EN | REG_TRGMIICK_EN);
513 
514 	if (!trgint)
515 		for (i = 0 ; i < NUM_TRGMII_CTRL; i++)
516 			mt7530_rmw(priv, MT7530_TRGMII_RD(i),
517 				   RD_TAP_MASK, RD_TAP(16));
518 	else
519 		mt7623_trgmii_set(priv, GSW_INTF_MODE, INTF_MODE_TRGMII);
520 
521 	return 0;
522 }
523 
524 static int
525 mt7623_pad_clk_setup(struct dsa_switch *ds)
526 {
527 	struct mt7530_priv *priv = ds->priv;
528 	int i;
529 
530 	for (i = 0 ; i < NUM_TRGMII_CTRL; i++)
531 		mt7623_trgmii_write(priv, GSW_TRGMII_TD_ODT(i),
532 				    TD_DM_DRVP(8) | TD_DM_DRVN(8));
533 
534 	mt7623_trgmii_set(priv, GSW_TRGMII_RCK_CTRL, RX_RST | RXC_DQSISEL);
535 	mt7623_trgmii_clear(priv, GSW_TRGMII_RCK_CTRL, RX_RST);
536 
537 	return 0;
538 }
539 
540 static void
541 mt7530_mib_reset(struct dsa_switch *ds)
542 {
543 	struct mt7530_priv *priv = ds->priv;
544 
545 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
546 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
547 }
548 
549 static void
550 mt7530_port_set_status(struct mt7530_priv *priv, int port, int enable)
551 {
552 	u32 mask = PMCR_TX_EN | PMCR_RX_EN;
553 
554 	if (enable)
555 		mt7530_set(priv, MT7530_PMCR_P(port), mask);
556 	else
557 		mt7530_clear(priv, MT7530_PMCR_P(port), mask);
558 }
559 
560 static int mt7530_phy_read(struct dsa_switch *ds, int port, int regnum)
561 {
562 	struct mt7530_priv *priv = ds->priv;
563 
564 	return mdiobus_read_nested(priv->bus, port, regnum);
565 }
566 
567 static int mt7530_phy_write(struct dsa_switch *ds, int port, int regnum,
568 			    u16 val)
569 {
570 	struct mt7530_priv *priv = ds->priv;
571 
572 	return mdiobus_write_nested(priv->bus, port, regnum, val);
573 }
574 
575 static void
576 mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
577 		   uint8_t *data)
578 {
579 	int i;
580 
581 	if (stringset != ETH_SS_STATS)
582 		return;
583 
584 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
585 		strncpy(data + i * ETH_GSTRING_LEN, mt7530_mib[i].name,
586 			ETH_GSTRING_LEN);
587 }
588 
589 static void
590 mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
591 			 uint64_t *data)
592 {
593 	struct mt7530_priv *priv = ds->priv;
594 	const struct mt7530_mib_desc *mib;
595 	u32 reg, i;
596 	u64 hi;
597 
598 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
599 		mib = &mt7530_mib[i];
600 		reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
601 
602 		data[i] = mt7530_read(priv, reg);
603 		if (mib->size == 2) {
604 			hi = mt7530_read(priv, reg + 4);
605 			data[i] |= hi << 32;
606 		}
607 	}
608 }
609 
610 static int
611 mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
612 {
613 	if (sset != ETH_SS_STATS)
614 		return 0;
615 
616 	return ARRAY_SIZE(mt7530_mib);
617 }
618 
619 static void mt7530_adjust_link(struct dsa_switch *ds, int port,
620 			       struct phy_device *phydev)
621 {
622 	struct mt7530_priv *priv = ds->priv;
623 
624 	if (phy_is_pseudo_fixed_link(phydev)) {
625 		dev_dbg(priv->dev, "phy-mode for master device = %x\n",
626 			phydev->interface);
627 
628 		/* Setup TX circuit incluing relevant PAD and driving */
629 		mt7530_pad_clk_setup(ds, phydev->interface);
630 
631 		/* Setup RX circuit, relevant PAD and driving on the host
632 		 * which must be placed after the setup on the device side is
633 		 * all finished.
634 		 */
635 		mt7623_pad_clk_setup(ds);
636 	} else {
637 		u16 lcl_adv = 0, rmt_adv = 0;
638 		u8 flowctrl;
639 		u32 mcr = PMCR_USERP_LINK | PMCR_FORCE_MODE;
640 
641 		switch (phydev->speed) {
642 		case SPEED_1000:
643 			mcr |= PMCR_FORCE_SPEED_1000;
644 			break;
645 		case SPEED_100:
646 			mcr |= PMCR_FORCE_SPEED_100;
647 			break;
648 		};
649 
650 		if (phydev->link)
651 			mcr |= PMCR_FORCE_LNK;
652 
653 		if (phydev->duplex) {
654 			mcr |= PMCR_FORCE_FDX;
655 
656 			if (phydev->pause)
657 				rmt_adv = LPA_PAUSE_CAP;
658 			if (phydev->asym_pause)
659 				rmt_adv |= LPA_PAUSE_ASYM;
660 
661 			lcl_adv = ethtool_adv_to_lcl_adv_t(phydev->advertising);
662 			flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
663 
664 			if (flowctrl & FLOW_CTRL_TX)
665 				mcr |= PMCR_TX_FC_EN;
666 			if (flowctrl & FLOW_CTRL_RX)
667 				mcr |= PMCR_RX_FC_EN;
668 		}
669 		mt7530_write(priv, MT7530_PMCR_P(port), mcr);
670 	}
671 }
672 
673 static int
674 mt7530_cpu_port_enable(struct mt7530_priv *priv,
675 		       int port)
676 {
677 	/* Enable Mediatek header mode on the cpu port */
678 	mt7530_write(priv, MT7530_PVC_P(port),
679 		     PORT_SPEC_TAG);
680 
681 	/* Setup the MAC by default for the cpu port */
682 	mt7530_write(priv, MT7530_PMCR_P(port), PMCR_CPUP_LINK);
683 
684 	/* Disable auto learning on the cpu port */
685 	mt7530_set(priv, MT7530_PSC_P(port), SA_DIS);
686 
687 	/* Unknown unicast frame fordwarding to the cpu port */
688 	mt7530_set(priv, MT7530_MFC, UNU_FFP(BIT(port)));
689 
690 	/* CPU port gets connected to all user ports of
691 	 * the switch
692 	 */
693 	mt7530_write(priv, MT7530_PCR_P(port),
694 		     PCR_MATRIX(dsa_user_ports(priv->ds)));
695 
696 	return 0;
697 }
698 
699 static int
700 mt7530_port_enable(struct dsa_switch *ds, int port,
701 		   struct phy_device *phy)
702 {
703 	struct mt7530_priv *priv = ds->priv;
704 
705 	mutex_lock(&priv->reg_mutex);
706 
707 	/* Setup the MAC for the user port */
708 	mt7530_write(priv, MT7530_PMCR_P(port), PMCR_USERP_LINK);
709 
710 	/* Allow the user port gets connected to the cpu port and also
711 	 * restore the port matrix if the port is the member of a certain
712 	 * bridge.
713 	 */
714 	priv->ports[port].pm |= PCR_MATRIX(BIT(MT7530_CPU_PORT));
715 	priv->ports[port].enable = true;
716 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
717 		   priv->ports[port].pm);
718 	mt7530_port_set_status(priv, port, 1);
719 
720 	mutex_unlock(&priv->reg_mutex);
721 
722 	return 0;
723 }
724 
725 static void
726 mt7530_port_disable(struct dsa_switch *ds, int port,
727 		    struct phy_device *phy)
728 {
729 	struct mt7530_priv *priv = ds->priv;
730 
731 	mutex_lock(&priv->reg_mutex);
732 
733 	/* Clear up all port matrix which could be restored in the next
734 	 * enablement for the port.
735 	 */
736 	priv->ports[port].enable = false;
737 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
738 		   PCR_MATRIX_CLR);
739 	mt7530_port_set_status(priv, port, 0);
740 
741 	mutex_unlock(&priv->reg_mutex);
742 }
743 
744 static void
745 mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
746 {
747 	struct mt7530_priv *priv = ds->priv;
748 	u32 stp_state;
749 
750 	switch (state) {
751 	case BR_STATE_DISABLED:
752 		stp_state = MT7530_STP_DISABLED;
753 		break;
754 	case BR_STATE_BLOCKING:
755 		stp_state = MT7530_STP_BLOCKING;
756 		break;
757 	case BR_STATE_LISTENING:
758 		stp_state = MT7530_STP_LISTENING;
759 		break;
760 	case BR_STATE_LEARNING:
761 		stp_state = MT7530_STP_LEARNING;
762 		break;
763 	case BR_STATE_FORWARDING:
764 	default:
765 		stp_state = MT7530_STP_FORWARDING;
766 		break;
767 	}
768 
769 	mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK, stp_state);
770 }
771 
772 static int
773 mt7530_port_bridge_join(struct dsa_switch *ds, int port,
774 			struct net_device *bridge)
775 {
776 	struct mt7530_priv *priv = ds->priv;
777 	u32 port_bitmap = BIT(MT7530_CPU_PORT);
778 	int i;
779 
780 	mutex_lock(&priv->reg_mutex);
781 
782 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
783 		/* Add this port to the port matrix of the other ports in the
784 		 * same bridge. If the port is disabled, port matrix is kept
785 		 * and not being setup until the port becomes enabled.
786 		 */
787 		if (dsa_is_user_port(ds, i) && i != port) {
788 			if (dsa_to_port(ds, i)->bridge_dev != bridge)
789 				continue;
790 			if (priv->ports[i].enable)
791 				mt7530_set(priv, MT7530_PCR_P(i),
792 					   PCR_MATRIX(BIT(port)));
793 			priv->ports[i].pm |= PCR_MATRIX(BIT(port));
794 
795 			port_bitmap |= BIT(i);
796 		}
797 	}
798 
799 	/* Add the all other ports to this port matrix. */
800 	if (priv->ports[port].enable)
801 		mt7530_rmw(priv, MT7530_PCR_P(port),
802 			   PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
803 	priv->ports[port].pm |= PCR_MATRIX(port_bitmap);
804 
805 	mutex_unlock(&priv->reg_mutex);
806 
807 	return 0;
808 }
809 
810 static void
811 mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
812 {
813 	struct mt7530_priv *priv = ds->priv;
814 	bool all_user_ports_removed = true;
815 	int i;
816 
817 	/* When a port is removed from the bridge, the port would be set up
818 	 * back to the default as is at initial boot which is a VLAN-unaware
819 	 * port.
820 	 */
821 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
822 		   MT7530_PORT_MATRIX_MODE);
823 	mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK,
824 		   VLAN_ATTR(MT7530_VLAN_TRANSPARENT));
825 
826 	priv->ports[port].vlan_filtering = false;
827 
828 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
829 		if (dsa_is_user_port(ds, i) &&
830 		    priv->ports[i].vlan_filtering) {
831 			all_user_ports_removed = false;
832 			break;
833 		}
834 	}
835 
836 	/* CPU port also does the same thing until all user ports belonging to
837 	 * the CPU port get out of VLAN filtering mode.
838 	 */
839 	if (all_user_ports_removed) {
840 		mt7530_write(priv, MT7530_PCR_P(MT7530_CPU_PORT),
841 			     PCR_MATRIX(dsa_user_ports(priv->ds)));
842 		mt7530_write(priv, MT7530_PVC_P(MT7530_CPU_PORT),
843 			     PORT_SPEC_TAG);
844 	}
845 }
846 
847 static void
848 mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
849 {
850 	struct mt7530_priv *priv = ds->priv;
851 
852 	/* The real fabric path would be decided on the membership in the
853 	 * entry of VLAN table. PCR_MATRIX set up here with ALL_MEMBERS
854 	 * means potential VLAN can be consisting of certain subset of all
855 	 * ports.
856 	 */
857 	mt7530_rmw(priv, MT7530_PCR_P(port),
858 		   PCR_MATRIX_MASK, PCR_MATRIX(MT7530_ALL_MEMBERS));
859 
860 	/* Trapped into security mode allows packet forwarding through VLAN
861 	 * table lookup.
862 	 */
863 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
864 		   MT7530_PORT_SECURITY_MODE);
865 
866 	/* Set the port as a user port which is to be able to recognize VID
867 	 * from incoming packets before fetching entry within the VLAN table.
868 	 */
869 	mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK,
870 		   VLAN_ATTR(MT7530_VLAN_USER));
871 }
872 
873 static void
874 mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
875 			 struct net_device *bridge)
876 {
877 	struct mt7530_priv *priv = ds->priv;
878 	int i;
879 
880 	mutex_lock(&priv->reg_mutex);
881 
882 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
883 		/* Remove this port from the port matrix of the other ports
884 		 * in the same bridge. If the port is disabled, port matrix
885 		 * is kept and not being setup until the port becomes enabled.
886 		 * And the other port's port matrix cannot be broken when the
887 		 * other port is still a VLAN-aware port.
888 		 */
889 		if (!priv->ports[i].vlan_filtering &&
890 		    dsa_is_user_port(ds, i) && i != port) {
891 			if (dsa_to_port(ds, i)->bridge_dev != bridge)
892 				continue;
893 			if (priv->ports[i].enable)
894 				mt7530_clear(priv, MT7530_PCR_P(i),
895 					     PCR_MATRIX(BIT(port)));
896 			priv->ports[i].pm &= ~PCR_MATRIX(BIT(port));
897 		}
898 	}
899 
900 	/* Set the cpu port to be the only one in the port matrix of
901 	 * this port.
902 	 */
903 	if (priv->ports[port].enable)
904 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
905 			   PCR_MATRIX(BIT(MT7530_CPU_PORT)));
906 	priv->ports[port].pm = PCR_MATRIX(BIT(MT7530_CPU_PORT));
907 
908 	mt7530_port_set_vlan_unaware(ds, port);
909 
910 	mutex_unlock(&priv->reg_mutex);
911 }
912 
913 static int
914 mt7530_port_fdb_add(struct dsa_switch *ds, int port,
915 		    const unsigned char *addr, u16 vid)
916 {
917 	struct mt7530_priv *priv = ds->priv;
918 	int ret;
919 	u8 port_mask = BIT(port);
920 
921 	mutex_lock(&priv->reg_mutex);
922 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
923 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
924 	mutex_unlock(&priv->reg_mutex);
925 
926 	return ret;
927 }
928 
929 static int
930 mt7530_port_fdb_del(struct dsa_switch *ds, int port,
931 		    const unsigned char *addr, u16 vid)
932 {
933 	struct mt7530_priv *priv = ds->priv;
934 	int ret;
935 	u8 port_mask = BIT(port);
936 
937 	mutex_lock(&priv->reg_mutex);
938 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
939 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
940 	mutex_unlock(&priv->reg_mutex);
941 
942 	return ret;
943 }
944 
945 static int
946 mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
947 		     dsa_fdb_dump_cb_t *cb, void *data)
948 {
949 	struct mt7530_priv *priv = ds->priv;
950 	struct mt7530_fdb _fdb = { 0 };
951 	int cnt = MT7530_NUM_FDB_RECORDS;
952 	int ret = 0;
953 	u32 rsp = 0;
954 
955 	mutex_lock(&priv->reg_mutex);
956 
957 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
958 	if (ret < 0)
959 		goto err;
960 
961 	do {
962 		if (rsp & ATC_SRCH_HIT) {
963 			mt7530_fdb_read(priv, &_fdb);
964 			if (_fdb.port_mask & BIT(port)) {
965 				ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
966 					 data);
967 				if (ret < 0)
968 					break;
969 			}
970 		}
971 	} while (--cnt &&
972 		 !(rsp & ATC_SRCH_END) &&
973 		 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
974 err:
975 	mutex_unlock(&priv->reg_mutex);
976 
977 	return 0;
978 }
979 
980 static int
981 mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
982 {
983 	struct mt7530_dummy_poll p;
984 	u32 val;
985 	int ret;
986 
987 	val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
988 	mt7530_write(priv, MT7530_VTCR, val);
989 
990 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
991 	ret = readx_poll_timeout(_mt7530_read, &p, val,
992 				 !(val & VTCR_BUSY), 20, 20000);
993 	if (ret < 0) {
994 		dev_err(priv->dev, "poll timeout\n");
995 		return ret;
996 	}
997 
998 	val = mt7530_read(priv, MT7530_VTCR);
999 	if (val & VTCR_INVALID) {
1000 		dev_err(priv->dev, "read VTCR invalid\n");
1001 		return -EINVAL;
1002 	}
1003 
1004 	return 0;
1005 }
1006 
1007 static int
1008 mt7530_port_vlan_filtering(struct dsa_switch *ds, int port,
1009 			   bool vlan_filtering)
1010 {
1011 	struct mt7530_priv *priv = ds->priv;
1012 
1013 	priv->ports[port].vlan_filtering = vlan_filtering;
1014 
1015 	if (vlan_filtering) {
1016 		/* The port is being kept as VLAN-unaware port when bridge is
1017 		 * set up with vlan_filtering not being set, Otherwise, the
1018 		 * port and the corresponding CPU port is required the setup
1019 		 * for becoming a VLAN-aware port.
1020 		 */
1021 		mt7530_port_set_vlan_aware(ds, port);
1022 		mt7530_port_set_vlan_aware(ds, MT7530_CPU_PORT);
1023 	}
1024 
1025 	return 0;
1026 }
1027 
1028 static int
1029 mt7530_port_vlan_prepare(struct dsa_switch *ds, int port,
1030 			 const struct switchdev_obj_port_vlan *vlan)
1031 {
1032 	/* nothing needed */
1033 
1034 	return 0;
1035 }
1036 
1037 static void
1038 mt7530_hw_vlan_add(struct mt7530_priv *priv,
1039 		   struct mt7530_hw_vlan_entry *entry)
1040 {
1041 	u8 new_members;
1042 	u32 val;
1043 
1044 	new_members = entry->old_members | BIT(entry->port) |
1045 		      BIT(MT7530_CPU_PORT);
1046 
1047 	/* Validate the entry with independent learning, create egress tag per
1048 	 * VLAN and joining the port as one of the port members.
1049 	 */
1050 	val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | VLAN_VALID;
1051 	mt7530_write(priv, MT7530_VAWD1, val);
1052 
1053 	/* Decide whether adding tag or not for those outgoing packets from the
1054 	 * port inside the VLAN.
1055 	 */
1056 	val = entry->untagged ? MT7530_VLAN_EGRESS_UNTAG :
1057 				MT7530_VLAN_EGRESS_TAG;
1058 	mt7530_rmw(priv, MT7530_VAWD2,
1059 		   ETAG_CTRL_P_MASK(entry->port),
1060 		   ETAG_CTRL_P(entry->port, val));
1061 
1062 	/* CPU port is always taken as a tagged port for serving more than one
1063 	 * VLANs across and also being applied with egress type stack mode for
1064 	 * that VLAN tags would be appended after hardware special tag used as
1065 	 * DSA tag.
1066 	 */
1067 	mt7530_rmw(priv, MT7530_VAWD2,
1068 		   ETAG_CTRL_P_MASK(MT7530_CPU_PORT),
1069 		   ETAG_CTRL_P(MT7530_CPU_PORT,
1070 			       MT7530_VLAN_EGRESS_STACK));
1071 }
1072 
1073 static void
1074 mt7530_hw_vlan_del(struct mt7530_priv *priv,
1075 		   struct mt7530_hw_vlan_entry *entry)
1076 {
1077 	u8 new_members;
1078 	u32 val;
1079 
1080 	new_members = entry->old_members & ~BIT(entry->port);
1081 
1082 	val = mt7530_read(priv, MT7530_VAWD1);
1083 	if (!(val & VLAN_VALID)) {
1084 		dev_err(priv->dev,
1085 			"Cannot be deleted due to invalid entry\n");
1086 		return;
1087 	}
1088 
1089 	/* If certain member apart from CPU port is still alive in the VLAN,
1090 	 * the entry would be kept valid. Otherwise, the entry is got to be
1091 	 * disabled.
1092 	 */
1093 	if (new_members && new_members != BIT(MT7530_CPU_PORT)) {
1094 		val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
1095 		      VLAN_VALID;
1096 		mt7530_write(priv, MT7530_VAWD1, val);
1097 	} else {
1098 		mt7530_write(priv, MT7530_VAWD1, 0);
1099 		mt7530_write(priv, MT7530_VAWD2, 0);
1100 	}
1101 }
1102 
1103 static void
1104 mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
1105 		      struct mt7530_hw_vlan_entry *entry,
1106 		      mt7530_vlan_op vlan_op)
1107 {
1108 	u32 val;
1109 
1110 	/* Fetch entry */
1111 	mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
1112 
1113 	val = mt7530_read(priv, MT7530_VAWD1);
1114 
1115 	entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
1116 
1117 	/* Manipulate entry */
1118 	vlan_op(priv, entry);
1119 
1120 	/* Flush result to hardware */
1121 	mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
1122 }
1123 
1124 static void
1125 mt7530_port_vlan_add(struct dsa_switch *ds, int port,
1126 		     const struct switchdev_obj_port_vlan *vlan)
1127 {
1128 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1129 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1130 	struct mt7530_hw_vlan_entry new_entry;
1131 	struct mt7530_priv *priv = ds->priv;
1132 	u16 vid;
1133 
1134 	/* The port is kept as VLAN-unaware if bridge with vlan_filtering not
1135 	 * being set.
1136 	 */
1137 	if (!priv->ports[port].vlan_filtering)
1138 		return;
1139 
1140 	mutex_lock(&priv->reg_mutex);
1141 
1142 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1143 		mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
1144 		mt7530_hw_vlan_update(priv, vid, &new_entry,
1145 				      mt7530_hw_vlan_add);
1146 	}
1147 
1148 	if (pvid) {
1149 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1150 			   G0_PORT_VID(vlan->vid_end));
1151 		priv->ports[port].pvid = vlan->vid_end;
1152 	}
1153 
1154 	mutex_unlock(&priv->reg_mutex);
1155 }
1156 
1157 static int
1158 mt7530_port_vlan_del(struct dsa_switch *ds, int port,
1159 		     const struct switchdev_obj_port_vlan *vlan)
1160 {
1161 	struct mt7530_hw_vlan_entry target_entry;
1162 	struct mt7530_priv *priv = ds->priv;
1163 	u16 vid, pvid;
1164 
1165 	/* The port is kept as VLAN-unaware if bridge with vlan_filtering not
1166 	 * being set.
1167 	 */
1168 	if (!priv->ports[port].vlan_filtering)
1169 		return 0;
1170 
1171 	mutex_lock(&priv->reg_mutex);
1172 
1173 	pvid = priv->ports[port].pvid;
1174 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1175 		mt7530_hw_vlan_entry_init(&target_entry, port, 0);
1176 		mt7530_hw_vlan_update(priv, vid, &target_entry,
1177 				      mt7530_hw_vlan_del);
1178 
1179 		/* PVID is being restored to the default whenever the PVID port
1180 		 * is being removed from the VLAN.
1181 		 */
1182 		if (pvid == vid)
1183 			pvid = G0_PORT_VID_DEF;
1184 	}
1185 
1186 	mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, pvid);
1187 	priv->ports[port].pvid = pvid;
1188 
1189 	mutex_unlock(&priv->reg_mutex);
1190 
1191 	return 0;
1192 }
1193 
1194 static enum dsa_tag_protocol
1195 mtk_get_tag_protocol(struct dsa_switch *ds, int port)
1196 {
1197 	struct mt7530_priv *priv = ds->priv;
1198 
1199 	if (port != MT7530_CPU_PORT) {
1200 		dev_warn(priv->dev,
1201 			 "port not matched with tagging CPU port\n");
1202 		return DSA_TAG_PROTO_NONE;
1203 	} else {
1204 		return DSA_TAG_PROTO_MTK;
1205 	}
1206 }
1207 
1208 static int
1209 mt7530_setup(struct dsa_switch *ds)
1210 {
1211 	struct mt7530_priv *priv = ds->priv;
1212 	int ret, i;
1213 	u32 id, val;
1214 	struct device_node *dn;
1215 	struct mt7530_dummy_poll p;
1216 
1217 	/* The parent node of master netdev which holds the common system
1218 	 * controller also is the container for two GMACs nodes representing
1219 	 * as two netdev instances.
1220 	 */
1221 	dn = ds->ports[MT7530_CPU_PORT].master->dev.of_node->parent;
1222 	priv->ethernet = syscon_node_to_regmap(dn);
1223 	if (IS_ERR(priv->ethernet))
1224 		return PTR_ERR(priv->ethernet);
1225 
1226 	regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
1227 	ret = regulator_enable(priv->core_pwr);
1228 	if (ret < 0) {
1229 		dev_err(priv->dev,
1230 			"Failed to enable core power: %d\n", ret);
1231 		return ret;
1232 	}
1233 
1234 	regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
1235 	ret = regulator_enable(priv->io_pwr);
1236 	if (ret < 0) {
1237 		dev_err(priv->dev, "Failed to enable io pwr: %d\n",
1238 			ret);
1239 		return ret;
1240 	}
1241 
1242 	/* Reset whole chip through gpio pin or memory-mapped registers for
1243 	 * different type of hardware
1244 	 */
1245 	if (priv->mcm) {
1246 		reset_control_assert(priv->rstc);
1247 		usleep_range(1000, 1100);
1248 		reset_control_deassert(priv->rstc);
1249 	} else {
1250 		gpiod_set_value_cansleep(priv->reset, 0);
1251 		usleep_range(1000, 1100);
1252 		gpiod_set_value_cansleep(priv->reset, 1);
1253 	}
1254 
1255 	/* Waiting for MT7530 got to stable */
1256 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
1257 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
1258 				 20, 1000000);
1259 	if (ret < 0) {
1260 		dev_err(priv->dev, "reset timeout\n");
1261 		return ret;
1262 	}
1263 
1264 	id = mt7530_read(priv, MT7530_CREV);
1265 	id >>= CHIP_NAME_SHIFT;
1266 	if (id != MT7530_ID) {
1267 		dev_err(priv->dev, "chip %x can't be supported\n", id);
1268 		return -ENODEV;
1269 	}
1270 
1271 	/* Reset the switch through internal reset */
1272 	mt7530_write(priv, MT7530_SYS_CTRL,
1273 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
1274 		     SYS_CTRL_REG_RST);
1275 
1276 	/* Enable Port 6 only; P5 as GMAC5 which currently is not supported */
1277 	val = mt7530_read(priv, MT7530_MHWTRAP);
1278 	val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
1279 	val |= MHWTRAP_MANUAL;
1280 	mt7530_write(priv, MT7530_MHWTRAP, val);
1281 
1282 	/* Enable and reset MIB counters */
1283 	mt7530_mib_reset(ds);
1284 
1285 	mt7530_clear(priv, MT7530_MFC, UNU_FFP_MASK);
1286 
1287 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1288 		/* Disable forwarding by default on all ports */
1289 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
1290 			   PCR_MATRIX_CLR);
1291 
1292 		if (dsa_is_cpu_port(ds, i))
1293 			mt7530_cpu_port_enable(priv, i);
1294 		else
1295 			mt7530_port_disable(ds, i, NULL);
1296 	}
1297 
1298 	/* Flush the FDB table */
1299 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
1300 	if (ret < 0)
1301 		return ret;
1302 
1303 	return 0;
1304 }
1305 
1306 static const struct dsa_switch_ops mt7530_switch_ops = {
1307 	.get_tag_protocol	= mtk_get_tag_protocol,
1308 	.setup			= mt7530_setup,
1309 	.get_strings		= mt7530_get_strings,
1310 	.phy_read		= mt7530_phy_read,
1311 	.phy_write		= mt7530_phy_write,
1312 	.get_ethtool_stats	= mt7530_get_ethtool_stats,
1313 	.get_sset_count		= mt7530_get_sset_count,
1314 	.adjust_link		= mt7530_adjust_link,
1315 	.port_enable		= mt7530_port_enable,
1316 	.port_disable		= mt7530_port_disable,
1317 	.port_stp_state_set	= mt7530_stp_state_set,
1318 	.port_bridge_join	= mt7530_port_bridge_join,
1319 	.port_bridge_leave	= mt7530_port_bridge_leave,
1320 	.port_fdb_add		= mt7530_port_fdb_add,
1321 	.port_fdb_del		= mt7530_port_fdb_del,
1322 	.port_fdb_dump		= mt7530_port_fdb_dump,
1323 	.port_vlan_filtering	= mt7530_port_vlan_filtering,
1324 	.port_vlan_prepare	= mt7530_port_vlan_prepare,
1325 	.port_vlan_add		= mt7530_port_vlan_add,
1326 	.port_vlan_del		= mt7530_port_vlan_del,
1327 };
1328 
1329 static int
1330 mt7530_probe(struct mdio_device *mdiodev)
1331 {
1332 	struct mt7530_priv *priv;
1333 	struct device_node *dn;
1334 
1335 	dn = mdiodev->dev.of_node;
1336 
1337 	priv = devm_kzalloc(&mdiodev->dev, sizeof(*priv), GFP_KERNEL);
1338 	if (!priv)
1339 		return -ENOMEM;
1340 
1341 	priv->ds = dsa_switch_alloc(&mdiodev->dev, DSA_MAX_PORTS);
1342 	if (!priv->ds)
1343 		return -ENOMEM;
1344 
1345 	/* Use medatek,mcm property to distinguish hardware type that would
1346 	 * casues a little bit differences on power-on sequence.
1347 	 */
1348 	priv->mcm = of_property_read_bool(dn, "mediatek,mcm");
1349 	if (priv->mcm) {
1350 		dev_info(&mdiodev->dev, "MT7530 adapts as multi-chip module\n");
1351 
1352 		priv->rstc = devm_reset_control_get(&mdiodev->dev, "mcm");
1353 		if (IS_ERR(priv->rstc)) {
1354 			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
1355 			return PTR_ERR(priv->rstc);
1356 		}
1357 	}
1358 
1359 	priv->core_pwr = devm_regulator_get(&mdiodev->dev, "core");
1360 	if (IS_ERR(priv->core_pwr))
1361 		return PTR_ERR(priv->core_pwr);
1362 
1363 	priv->io_pwr = devm_regulator_get(&mdiodev->dev, "io");
1364 	if (IS_ERR(priv->io_pwr))
1365 		return PTR_ERR(priv->io_pwr);
1366 
1367 	/* Not MCM that indicates switch works as the remote standalone
1368 	 * integrated circuit so the GPIO pin would be used to complete
1369 	 * the reset, otherwise memory-mapped register accessing used
1370 	 * through syscon provides in the case of MCM.
1371 	 */
1372 	if (!priv->mcm) {
1373 		priv->reset = devm_gpiod_get_optional(&mdiodev->dev, "reset",
1374 						      GPIOD_OUT_LOW);
1375 		if (IS_ERR(priv->reset)) {
1376 			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
1377 			return PTR_ERR(priv->reset);
1378 		}
1379 	}
1380 
1381 	priv->bus = mdiodev->bus;
1382 	priv->dev = &mdiodev->dev;
1383 	priv->ds->priv = priv;
1384 	priv->ds->ops = &mt7530_switch_ops;
1385 	mutex_init(&priv->reg_mutex);
1386 	dev_set_drvdata(&mdiodev->dev, priv);
1387 
1388 	return dsa_register_switch(priv->ds);
1389 }
1390 
1391 static void
1392 mt7530_remove(struct mdio_device *mdiodev)
1393 {
1394 	struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev);
1395 	int ret = 0;
1396 
1397 	ret = regulator_disable(priv->core_pwr);
1398 	if (ret < 0)
1399 		dev_err(priv->dev,
1400 			"Failed to disable core power: %d\n", ret);
1401 
1402 	ret = regulator_disable(priv->io_pwr);
1403 	if (ret < 0)
1404 		dev_err(priv->dev, "Failed to disable io pwr: %d\n",
1405 			ret);
1406 
1407 	dsa_unregister_switch(priv->ds);
1408 	mutex_destroy(&priv->reg_mutex);
1409 }
1410 
1411 static const struct of_device_id mt7530_of_match[] = {
1412 	{ .compatible = "mediatek,mt7530" },
1413 	{ /* sentinel */ },
1414 };
1415 MODULE_DEVICE_TABLE(of, mt7530_of_match);
1416 
1417 static struct mdio_driver mt7530_mdio_driver = {
1418 	.probe  = mt7530_probe,
1419 	.remove = mt7530_remove,
1420 	.mdiodrv.driver = {
1421 		.name = "mt7530",
1422 		.of_match_table = mt7530_of_match,
1423 	},
1424 };
1425 
1426 mdio_module_driver(mt7530_mdio_driver);
1427 
1428 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
1429 MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
1430 MODULE_LICENSE("GPL");
1431