xref: /openbmc/linux/drivers/net/dsa/mt7530.c (revision f77d1a49)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Mediatek MT7530 DSA Switch driver
4  * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
5  */
6 #include <linux/etherdevice.h>
7 #include <linux/if_bridge.h>
8 #include <linux/iopoll.h>
9 #include <linux/mdio.h>
10 #include <linux/mfd/syscon.h>
11 #include <linux/module.h>
12 #include <linux/netdevice.h>
13 #include <linux/of_irq.h>
14 #include <linux/of_mdio.h>
15 #include <linux/of_net.h>
16 #include <linux/of_platform.h>
17 #include <linux/phylink.h>
18 #include <linux/regmap.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/reset.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/gpio/driver.h>
23 #include <net/dsa.h>
24 
25 #include "mt7530.h"
26 
27 static struct mt753x_pcs *pcs_to_mt753x_pcs(struct phylink_pcs *pcs)
28 {
29 	return container_of(pcs, struct mt753x_pcs, pcs);
30 }
31 
32 /* String, offset, and register size in bytes if different from 4 bytes */
33 static const struct mt7530_mib_desc mt7530_mib[] = {
34 	MIB_DESC(1, 0x00, "TxDrop"),
35 	MIB_DESC(1, 0x04, "TxCrcErr"),
36 	MIB_DESC(1, 0x08, "TxUnicast"),
37 	MIB_DESC(1, 0x0c, "TxMulticast"),
38 	MIB_DESC(1, 0x10, "TxBroadcast"),
39 	MIB_DESC(1, 0x14, "TxCollision"),
40 	MIB_DESC(1, 0x18, "TxSingleCollision"),
41 	MIB_DESC(1, 0x1c, "TxMultipleCollision"),
42 	MIB_DESC(1, 0x20, "TxDeferred"),
43 	MIB_DESC(1, 0x24, "TxLateCollision"),
44 	MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
45 	MIB_DESC(1, 0x2c, "TxPause"),
46 	MIB_DESC(1, 0x30, "TxPktSz64"),
47 	MIB_DESC(1, 0x34, "TxPktSz65To127"),
48 	MIB_DESC(1, 0x38, "TxPktSz128To255"),
49 	MIB_DESC(1, 0x3c, "TxPktSz256To511"),
50 	MIB_DESC(1, 0x40, "TxPktSz512To1023"),
51 	MIB_DESC(1, 0x44, "Tx1024ToMax"),
52 	MIB_DESC(2, 0x48, "TxBytes"),
53 	MIB_DESC(1, 0x60, "RxDrop"),
54 	MIB_DESC(1, 0x64, "RxFiltering"),
55 	MIB_DESC(1, 0x68, "RxUnicast"),
56 	MIB_DESC(1, 0x6c, "RxMulticast"),
57 	MIB_DESC(1, 0x70, "RxBroadcast"),
58 	MIB_DESC(1, 0x74, "RxAlignErr"),
59 	MIB_DESC(1, 0x78, "RxCrcErr"),
60 	MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
61 	MIB_DESC(1, 0x80, "RxFragErr"),
62 	MIB_DESC(1, 0x84, "RxOverSzErr"),
63 	MIB_DESC(1, 0x88, "RxJabberErr"),
64 	MIB_DESC(1, 0x8c, "RxPause"),
65 	MIB_DESC(1, 0x90, "RxPktSz64"),
66 	MIB_DESC(1, 0x94, "RxPktSz65To127"),
67 	MIB_DESC(1, 0x98, "RxPktSz128To255"),
68 	MIB_DESC(1, 0x9c, "RxPktSz256To511"),
69 	MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
70 	MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
71 	MIB_DESC(2, 0xa8, "RxBytes"),
72 	MIB_DESC(1, 0xb0, "RxCtrlDrop"),
73 	MIB_DESC(1, 0xb4, "RxIngressDrop"),
74 	MIB_DESC(1, 0xb8, "RxArlDrop"),
75 };
76 
77 /* Since phy_device has not yet been created and
78  * phy_{read,write}_mmd_indirect is not available, we provide our own
79  * core_{read,write}_mmd_indirect with core_{clear,write,set} wrappers
80  * to complete this function.
81  */
82 static int
83 core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
84 {
85 	struct mii_bus *bus = priv->bus;
86 	int value, ret;
87 
88 	/* Write the desired MMD Devad */
89 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
90 	if (ret < 0)
91 		goto err;
92 
93 	/* Write the desired MMD register address */
94 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
95 	if (ret < 0)
96 		goto err;
97 
98 	/* Select the Function : DATA with no post increment */
99 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
100 	if (ret < 0)
101 		goto err;
102 
103 	/* Read the content of the MMD's selected register */
104 	value = bus->read(bus, 0, MII_MMD_DATA);
105 
106 	return value;
107 err:
108 	dev_err(&bus->dev,  "failed to read mmd register\n");
109 
110 	return ret;
111 }
112 
113 static int
114 core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
115 			int devad, u32 data)
116 {
117 	struct mii_bus *bus = priv->bus;
118 	int ret;
119 
120 	/* Write the desired MMD Devad */
121 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
122 	if (ret < 0)
123 		goto err;
124 
125 	/* Write the desired MMD register address */
126 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
127 	if (ret < 0)
128 		goto err;
129 
130 	/* Select the Function : DATA with no post increment */
131 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
132 	if (ret < 0)
133 		goto err;
134 
135 	/* Write the data into MMD's selected register */
136 	ret = bus->write(bus, 0, MII_MMD_DATA, data);
137 err:
138 	if (ret < 0)
139 		dev_err(&bus->dev,
140 			"failed to write mmd register\n");
141 	return ret;
142 }
143 
144 static void
145 mt7530_mutex_lock(struct mt7530_priv *priv)
146 {
147 	if (priv->bus)
148 		mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
149 }
150 
151 static void
152 mt7530_mutex_unlock(struct mt7530_priv *priv)
153 {
154 	if (priv->bus)
155 		mutex_unlock(&priv->bus->mdio_lock);
156 }
157 
158 static void
159 core_write(struct mt7530_priv *priv, u32 reg, u32 val)
160 {
161 	mt7530_mutex_lock(priv);
162 
163 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
164 
165 	mt7530_mutex_unlock(priv);
166 }
167 
168 static void
169 core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
170 {
171 	u32 val;
172 
173 	mt7530_mutex_lock(priv);
174 
175 	val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2);
176 	val &= ~mask;
177 	val |= set;
178 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
179 
180 	mt7530_mutex_unlock(priv);
181 }
182 
183 static void
184 core_set(struct mt7530_priv *priv, u32 reg, u32 val)
185 {
186 	core_rmw(priv, reg, 0, val);
187 }
188 
189 static void
190 core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
191 {
192 	core_rmw(priv, reg, val, 0);
193 }
194 
195 static int
196 mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
197 {
198 	int ret;
199 
200 	ret = regmap_write(priv->regmap, reg, val);
201 
202 	if (ret < 0)
203 		dev_err(priv->dev,
204 			"failed to write mt7530 register\n");
205 
206 	return ret;
207 }
208 
209 static u32
210 mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
211 {
212 	int ret;
213 	u32 val;
214 
215 	ret = regmap_read(priv->regmap, reg, &val);
216 	if (ret) {
217 		WARN_ON_ONCE(1);
218 		dev_err(priv->dev,
219 			"failed to read mt7530 register\n");
220 		return 0;
221 	}
222 
223 	return val;
224 }
225 
226 static void
227 mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
228 {
229 	mt7530_mutex_lock(priv);
230 
231 	mt7530_mii_write(priv, reg, val);
232 
233 	mt7530_mutex_unlock(priv);
234 }
235 
236 static u32
237 _mt7530_unlocked_read(struct mt7530_dummy_poll *p)
238 {
239 	return mt7530_mii_read(p->priv, p->reg);
240 }
241 
242 static u32
243 _mt7530_read(struct mt7530_dummy_poll *p)
244 {
245 	u32 val;
246 
247 	mt7530_mutex_lock(p->priv);
248 
249 	val = mt7530_mii_read(p->priv, p->reg);
250 
251 	mt7530_mutex_unlock(p->priv);
252 
253 	return val;
254 }
255 
256 static u32
257 mt7530_read(struct mt7530_priv *priv, u32 reg)
258 {
259 	struct mt7530_dummy_poll p;
260 
261 	INIT_MT7530_DUMMY_POLL(&p, priv, reg);
262 	return _mt7530_read(&p);
263 }
264 
265 static void
266 mt7530_rmw(struct mt7530_priv *priv, u32 reg,
267 	   u32 mask, u32 set)
268 {
269 	mt7530_mutex_lock(priv);
270 
271 	regmap_update_bits(priv->regmap, reg, mask, set);
272 
273 	mt7530_mutex_unlock(priv);
274 }
275 
276 static void
277 mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
278 {
279 	mt7530_rmw(priv, reg, val, val);
280 }
281 
282 static void
283 mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
284 {
285 	mt7530_rmw(priv, reg, val, 0);
286 }
287 
288 static int
289 mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
290 {
291 	u32 val;
292 	int ret;
293 	struct mt7530_dummy_poll p;
294 
295 	/* Set the command operating upon the MAC address entries */
296 	val = ATC_BUSY | ATC_MAT(0) | cmd;
297 	mt7530_write(priv, MT7530_ATC, val);
298 
299 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
300 	ret = readx_poll_timeout(_mt7530_read, &p, val,
301 				 !(val & ATC_BUSY), 20, 20000);
302 	if (ret < 0) {
303 		dev_err(priv->dev, "reset timeout\n");
304 		return ret;
305 	}
306 
307 	/* Additional sanity for read command if the specified
308 	 * entry is invalid
309 	 */
310 	val = mt7530_read(priv, MT7530_ATC);
311 	if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
312 		return -EINVAL;
313 
314 	if (rsp)
315 		*rsp = val;
316 
317 	return 0;
318 }
319 
320 static void
321 mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
322 {
323 	u32 reg[3];
324 	int i;
325 
326 	/* Read from ARL table into an array */
327 	for (i = 0; i < 3; i++) {
328 		reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
329 
330 		dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
331 			__func__, __LINE__, i, reg[i]);
332 	}
333 
334 	fdb->vid = (reg[1] >> CVID) & CVID_MASK;
335 	fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
336 	fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
337 	fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
338 	fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
339 	fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
340 	fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
341 	fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
342 	fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
343 	fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
344 }
345 
346 static void
347 mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
348 		 u8 port_mask, const u8 *mac,
349 		 u8 aging, u8 type)
350 {
351 	u32 reg[3] = { 0 };
352 	int i;
353 
354 	reg[1] |= vid & CVID_MASK;
355 	reg[1] |= ATA2_IVL;
356 	reg[1] |= ATA2_FID(FID_BRIDGED);
357 	reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
358 	reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
359 	/* STATIC_ENT indicate that entry is static wouldn't
360 	 * be aged out and STATIC_EMP specified as erasing an
361 	 * entry
362 	 */
363 	reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
364 	reg[1] |= mac[5] << MAC_BYTE_5;
365 	reg[1] |= mac[4] << MAC_BYTE_4;
366 	reg[0] |= mac[3] << MAC_BYTE_3;
367 	reg[0] |= mac[2] << MAC_BYTE_2;
368 	reg[0] |= mac[1] << MAC_BYTE_1;
369 	reg[0] |= mac[0] << MAC_BYTE_0;
370 
371 	/* Write array into the ARL table */
372 	for (i = 0; i < 3; i++)
373 		mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
374 }
375 
376 /* Set up switch core clock for MT7530 */
377 static void mt7530_pll_setup(struct mt7530_priv *priv)
378 {
379 	/* Disable core clock */
380 	core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
381 
382 	/* Disable PLL */
383 	core_write(priv, CORE_GSWPLL_GRP1, 0);
384 
385 	/* Set core clock into 500Mhz */
386 	core_write(priv, CORE_GSWPLL_GRP2,
387 		   RG_GSWPLL_POSDIV_500M(1) |
388 		   RG_GSWPLL_FBKDIV_500M(25));
389 
390 	/* Enable PLL */
391 	core_write(priv, CORE_GSWPLL_GRP1,
392 		   RG_GSWPLL_EN_PRE |
393 		   RG_GSWPLL_POSDIV_200M(2) |
394 		   RG_GSWPLL_FBKDIV_200M(32));
395 
396 	udelay(20);
397 
398 	/* Enable core clock */
399 	core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
400 }
401 
402 /* If port 6 is available as a CPU port, always prefer that as the default,
403  * otherwise don't care.
404  */
405 static struct dsa_port *
406 mt753x_preferred_default_local_cpu_port(struct dsa_switch *ds)
407 {
408 	struct dsa_port *cpu_dp = dsa_to_port(ds, 6);
409 
410 	if (dsa_port_is_cpu(cpu_dp))
411 		return cpu_dp;
412 
413 	return NULL;
414 }
415 
416 /* Setup port 6 interface mode and TRGMII TX circuit */
417 static int
418 mt7530_pad_clk_setup(struct dsa_switch *ds, phy_interface_t interface)
419 {
420 	struct mt7530_priv *priv = ds->priv;
421 	u32 ncpo1, ssc_delta, trgint, xtal;
422 
423 	xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK;
424 
425 	if (xtal == HWTRAP_XTAL_20MHZ) {
426 		dev_err(priv->dev,
427 			"%s: MT7530 with a 20MHz XTAL is not supported!\n",
428 			__func__);
429 		return -EINVAL;
430 	}
431 
432 	switch (interface) {
433 	case PHY_INTERFACE_MODE_RGMII:
434 		trgint = 0;
435 		break;
436 	case PHY_INTERFACE_MODE_TRGMII:
437 		trgint = 1;
438 		if (xtal == HWTRAP_XTAL_25MHZ)
439 			ssc_delta = 0x57;
440 		else
441 			ssc_delta = 0x87;
442 		if (priv->id == ID_MT7621) {
443 			/* PLL frequency: 125MHz: 1.0GBit */
444 			if (xtal == HWTRAP_XTAL_40MHZ)
445 				ncpo1 = 0x0640;
446 			if (xtal == HWTRAP_XTAL_25MHZ)
447 				ncpo1 = 0x0a00;
448 		} else { /* PLL frequency: 250MHz: 2.0Gbit */
449 			if (xtal == HWTRAP_XTAL_40MHZ)
450 				ncpo1 = 0x0c80;
451 			if (xtal == HWTRAP_XTAL_25MHZ)
452 				ncpo1 = 0x1400;
453 		}
454 		break;
455 	default:
456 		dev_err(priv->dev, "xMII interface %d not supported\n",
457 			interface);
458 		return -EINVAL;
459 	}
460 
461 	mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
462 		   P6_INTF_MODE(trgint));
463 
464 	if (trgint) {
465 		/* Disable the MT7530 TRGMII clocks */
466 		core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN);
467 
468 		/* Setup the MT7530 TRGMII Tx Clock */
469 		core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
470 		core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
471 		core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
472 		core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
473 		core_write(priv, CORE_PLL_GROUP4,
474 			   RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN |
475 			   RG_SYSPLL_BIAS_LPF_EN);
476 		core_write(priv, CORE_PLL_GROUP2,
477 			   RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN |
478 			   RG_SYSPLL_POSDIV(1));
479 		core_write(priv, CORE_PLL_GROUP7,
480 			   RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) |
481 			   RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
482 
483 		/* Enable the MT7530 TRGMII clocks */
484 		core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_TRGMIICK_EN);
485 	}
486 
487 	return 0;
488 }
489 
490 static bool mt7531_dual_sgmii_supported(struct mt7530_priv *priv)
491 {
492 	u32 val;
493 
494 	val = mt7530_read(priv, MT7531_TOP_SIG_SR);
495 
496 	return (val & PAD_DUAL_SGMII_EN) != 0;
497 }
498 
499 static int
500 mt7531_pad_setup(struct dsa_switch *ds, phy_interface_t interface)
501 {
502 	return 0;
503 }
504 
505 static void
506 mt7531_pll_setup(struct mt7530_priv *priv)
507 {
508 	u32 top_sig;
509 	u32 hwstrap;
510 	u32 xtal;
511 	u32 val;
512 
513 	if (mt7531_dual_sgmii_supported(priv))
514 		return;
515 
516 	val = mt7530_read(priv, MT7531_CREV);
517 	top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR);
518 	hwstrap = mt7530_read(priv, MT7531_HWTRAP);
519 	if ((val & CHIP_REV_M) > 0)
520 		xtal = (top_sig & PAD_MCM_SMI_EN) ? HWTRAP_XTAL_FSEL_40MHZ :
521 						    HWTRAP_XTAL_FSEL_25MHZ;
522 	else
523 		xtal = hwstrap & HWTRAP_XTAL_FSEL_MASK;
524 
525 	/* Step 1 : Disable MT7531 COREPLL */
526 	val = mt7530_read(priv, MT7531_PLLGP_EN);
527 	val &= ~EN_COREPLL;
528 	mt7530_write(priv, MT7531_PLLGP_EN, val);
529 
530 	/* Step 2: switch to XTAL output */
531 	val = mt7530_read(priv, MT7531_PLLGP_EN);
532 	val |= SW_CLKSW;
533 	mt7530_write(priv, MT7531_PLLGP_EN, val);
534 
535 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
536 	val &= ~RG_COREPLL_EN;
537 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
538 
539 	/* Step 3: disable PLLGP and enable program PLLGP */
540 	val = mt7530_read(priv, MT7531_PLLGP_EN);
541 	val |= SW_PLLGP;
542 	mt7530_write(priv, MT7531_PLLGP_EN, val);
543 
544 	/* Step 4: program COREPLL output frequency to 500MHz */
545 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
546 	val &= ~RG_COREPLL_POSDIV_M;
547 	val |= 2 << RG_COREPLL_POSDIV_S;
548 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
549 	usleep_range(25, 35);
550 
551 	switch (xtal) {
552 	case HWTRAP_XTAL_FSEL_25MHZ:
553 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
554 		val &= ~RG_COREPLL_SDM_PCW_M;
555 		val |= 0x140000 << RG_COREPLL_SDM_PCW_S;
556 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
557 		break;
558 	case HWTRAP_XTAL_FSEL_40MHZ:
559 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
560 		val &= ~RG_COREPLL_SDM_PCW_M;
561 		val |= 0x190000 << RG_COREPLL_SDM_PCW_S;
562 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
563 		break;
564 	}
565 
566 	/* Set feedback divide ratio update signal to high */
567 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
568 	val |= RG_COREPLL_SDM_PCW_CHG;
569 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
570 	/* Wait for at least 16 XTAL clocks */
571 	usleep_range(10, 20);
572 
573 	/* Step 5: set feedback divide ratio update signal to low */
574 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
575 	val &= ~RG_COREPLL_SDM_PCW_CHG;
576 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
577 
578 	/* Enable 325M clock for SGMII */
579 	mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000);
580 
581 	/* Enable 250SSC clock for RGMII */
582 	mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000);
583 
584 	/* Step 6: Enable MT7531 PLL */
585 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
586 	val |= RG_COREPLL_EN;
587 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
588 
589 	val = mt7530_read(priv, MT7531_PLLGP_EN);
590 	val |= EN_COREPLL;
591 	mt7530_write(priv, MT7531_PLLGP_EN, val);
592 	usleep_range(25, 35);
593 }
594 
595 static void
596 mt7530_mib_reset(struct dsa_switch *ds)
597 {
598 	struct mt7530_priv *priv = ds->priv;
599 
600 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
601 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
602 }
603 
604 static int mt7530_phy_read_c22(struct mt7530_priv *priv, int port, int regnum)
605 {
606 	return mdiobus_read_nested(priv->bus, port, regnum);
607 }
608 
609 static int mt7530_phy_write_c22(struct mt7530_priv *priv, int port, int regnum,
610 				u16 val)
611 {
612 	return mdiobus_write_nested(priv->bus, port, regnum, val);
613 }
614 
615 static int mt7530_phy_read_c45(struct mt7530_priv *priv, int port,
616 			       int devad, int regnum)
617 {
618 	return mdiobus_c45_read_nested(priv->bus, port, devad, regnum);
619 }
620 
621 static int mt7530_phy_write_c45(struct mt7530_priv *priv, int port, int devad,
622 				int regnum, u16 val)
623 {
624 	return mdiobus_c45_write_nested(priv->bus, port, devad, regnum, val);
625 }
626 
627 static int
628 mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad,
629 			int regnum)
630 {
631 	struct mt7530_dummy_poll p;
632 	u32 reg, val;
633 	int ret;
634 
635 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
636 
637 	mt7530_mutex_lock(priv);
638 
639 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
640 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
641 	if (ret < 0) {
642 		dev_err(priv->dev, "poll timeout\n");
643 		goto out;
644 	}
645 
646 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
647 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
648 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
649 
650 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
651 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
652 	if (ret < 0) {
653 		dev_err(priv->dev, "poll timeout\n");
654 		goto out;
655 	}
656 
657 	reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) |
658 	      MT7531_MDIO_DEV_ADDR(devad);
659 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
660 
661 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
662 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
663 	if (ret < 0) {
664 		dev_err(priv->dev, "poll timeout\n");
665 		goto out;
666 	}
667 
668 	ret = val & MT7531_MDIO_RW_DATA_MASK;
669 out:
670 	mt7530_mutex_unlock(priv);
671 
672 	return ret;
673 }
674 
675 static int
676 mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad,
677 			 int regnum, u16 data)
678 {
679 	struct mt7530_dummy_poll p;
680 	u32 val, reg;
681 	int ret;
682 
683 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
684 
685 	mt7530_mutex_lock(priv);
686 
687 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
688 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
689 	if (ret < 0) {
690 		dev_err(priv->dev, "poll timeout\n");
691 		goto out;
692 	}
693 
694 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
695 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
696 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
697 
698 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
699 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
700 	if (ret < 0) {
701 		dev_err(priv->dev, "poll timeout\n");
702 		goto out;
703 	}
704 
705 	reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) |
706 	      MT7531_MDIO_DEV_ADDR(devad) | data;
707 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
708 
709 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
710 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
711 	if (ret < 0) {
712 		dev_err(priv->dev, "poll timeout\n");
713 		goto out;
714 	}
715 
716 out:
717 	mt7530_mutex_unlock(priv);
718 
719 	return ret;
720 }
721 
722 static int
723 mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum)
724 {
725 	struct mt7530_dummy_poll p;
726 	int ret;
727 	u32 val;
728 
729 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
730 
731 	mt7530_mutex_lock(priv);
732 
733 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
734 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
735 	if (ret < 0) {
736 		dev_err(priv->dev, "poll timeout\n");
737 		goto out;
738 	}
739 
740 	val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) |
741 	      MT7531_MDIO_REG_ADDR(regnum);
742 
743 	mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST);
744 
745 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
746 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
747 	if (ret < 0) {
748 		dev_err(priv->dev, "poll timeout\n");
749 		goto out;
750 	}
751 
752 	ret = val & MT7531_MDIO_RW_DATA_MASK;
753 out:
754 	mt7530_mutex_unlock(priv);
755 
756 	return ret;
757 }
758 
759 static int
760 mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum,
761 			 u16 data)
762 {
763 	struct mt7530_dummy_poll p;
764 	int ret;
765 	u32 reg;
766 
767 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
768 
769 	mt7530_mutex_lock(priv);
770 
771 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
772 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
773 	if (ret < 0) {
774 		dev_err(priv->dev, "poll timeout\n");
775 		goto out;
776 	}
777 
778 	reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) |
779 	      MT7531_MDIO_REG_ADDR(regnum) | data;
780 
781 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
782 
783 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
784 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
785 	if (ret < 0) {
786 		dev_err(priv->dev, "poll timeout\n");
787 		goto out;
788 	}
789 
790 out:
791 	mt7530_mutex_unlock(priv);
792 
793 	return ret;
794 }
795 
796 static int
797 mt753x_phy_read_c22(struct mii_bus *bus, int port, int regnum)
798 {
799 	struct mt7530_priv *priv = bus->priv;
800 
801 	return priv->info->phy_read_c22(priv, port, regnum);
802 }
803 
804 static int
805 mt753x_phy_read_c45(struct mii_bus *bus, int port, int devad, int regnum)
806 {
807 	struct mt7530_priv *priv = bus->priv;
808 
809 	return priv->info->phy_read_c45(priv, port, devad, regnum);
810 }
811 
812 static int
813 mt753x_phy_write_c22(struct mii_bus *bus, int port, int regnum, u16 val)
814 {
815 	struct mt7530_priv *priv = bus->priv;
816 
817 	return priv->info->phy_write_c22(priv, port, regnum, val);
818 }
819 
820 static int
821 mt753x_phy_write_c45(struct mii_bus *bus, int port, int devad, int regnum,
822 		     u16 val)
823 {
824 	struct mt7530_priv *priv = bus->priv;
825 
826 	return priv->info->phy_write_c45(priv, port, devad, regnum, val);
827 }
828 
829 static void
830 mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
831 		   uint8_t *data)
832 {
833 	int i;
834 
835 	if (stringset != ETH_SS_STATS)
836 		return;
837 
838 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
839 		strncpy(data + i * ETH_GSTRING_LEN, mt7530_mib[i].name,
840 			ETH_GSTRING_LEN);
841 }
842 
843 static void
844 mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
845 			 uint64_t *data)
846 {
847 	struct mt7530_priv *priv = ds->priv;
848 	const struct mt7530_mib_desc *mib;
849 	u32 reg, i;
850 	u64 hi;
851 
852 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
853 		mib = &mt7530_mib[i];
854 		reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
855 
856 		data[i] = mt7530_read(priv, reg);
857 		if (mib->size == 2) {
858 			hi = mt7530_read(priv, reg + 4);
859 			data[i] |= hi << 32;
860 		}
861 	}
862 }
863 
864 static int
865 mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
866 {
867 	if (sset != ETH_SS_STATS)
868 		return 0;
869 
870 	return ARRAY_SIZE(mt7530_mib);
871 }
872 
873 static int
874 mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
875 {
876 	struct mt7530_priv *priv = ds->priv;
877 	unsigned int secs = msecs / 1000;
878 	unsigned int tmp_age_count;
879 	unsigned int error = -1;
880 	unsigned int age_count;
881 	unsigned int age_unit;
882 
883 	/* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */
884 	if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1))
885 		return -ERANGE;
886 
887 	/* iterate through all possible age_count to find the closest pair */
888 	for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) {
889 		unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1;
890 
891 		if (tmp_age_unit <= AGE_UNIT_MAX) {
892 			unsigned int tmp_error = secs -
893 				(tmp_age_count + 1) * (tmp_age_unit + 1);
894 
895 			/* found a closer pair */
896 			if (error > tmp_error) {
897 				error = tmp_error;
898 				age_count = tmp_age_count;
899 				age_unit = tmp_age_unit;
900 			}
901 
902 			/* found the exact match, so break the loop */
903 			if (!error)
904 				break;
905 		}
906 	}
907 
908 	mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit));
909 
910 	return 0;
911 }
912 
913 static const char *p5_intf_modes(unsigned int p5_interface)
914 {
915 	switch (p5_interface) {
916 	case P5_DISABLED:
917 		return "DISABLED";
918 	case P5_INTF_SEL_PHY_P0:
919 		return "PHY P0";
920 	case P5_INTF_SEL_PHY_P4:
921 		return "PHY P4";
922 	case P5_INTF_SEL_GMAC5:
923 		return "GMAC5";
924 	case P5_INTF_SEL_GMAC5_SGMII:
925 		return "GMAC5_SGMII";
926 	default:
927 		return "unknown";
928 	}
929 }
930 
931 static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface)
932 {
933 	struct mt7530_priv *priv = ds->priv;
934 	u8 tx_delay = 0;
935 	int val;
936 
937 	mutex_lock(&priv->reg_mutex);
938 
939 	val = mt7530_read(priv, MT7530_MHWTRAP);
940 
941 	val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS;
942 	val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL;
943 
944 	switch (priv->p5_intf_sel) {
945 	case P5_INTF_SEL_PHY_P0:
946 		/* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */
947 		val |= MHWTRAP_PHY0_SEL;
948 		fallthrough;
949 	case P5_INTF_SEL_PHY_P4:
950 		/* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */
951 		val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS;
952 
953 		/* Setup the MAC by default for the cpu port */
954 		mt7530_write(priv, MT7530_PMCR_P(5), 0x56300);
955 		break;
956 	case P5_INTF_SEL_GMAC5:
957 		/* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */
958 		val &= ~MHWTRAP_P5_DIS;
959 		break;
960 	case P5_DISABLED:
961 		interface = PHY_INTERFACE_MODE_NA;
962 		break;
963 	default:
964 		dev_err(ds->dev, "Unsupported p5_intf_sel %d\n",
965 			priv->p5_intf_sel);
966 		goto unlock_exit;
967 	}
968 
969 	/* Setup RGMII settings */
970 	if (phy_interface_mode_is_rgmii(interface)) {
971 		val |= MHWTRAP_P5_RGMII_MODE;
972 
973 		/* P5 RGMII RX Clock Control: delay setting for 1000M */
974 		mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN);
975 
976 		/* Don't set delay in DSA mode */
977 		if (!dsa_is_dsa_port(priv->ds, 5) &&
978 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID ||
979 		     interface == PHY_INTERFACE_MODE_RGMII_ID))
980 			tx_delay = 4; /* n * 0.5 ns */
981 
982 		/* P5 RGMII TX Clock Control: delay x */
983 		mt7530_write(priv, MT7530_P5RGMIITXCR,
984 			     CSR_RGMII_TXC_CFG(0x10 + tx_delay));
985 
986 		/* reduce P5 RGMII Tx driving, 8mA */
987 		mt7530_write(priv, MT7530_IO_DRV_CR,
988 			     P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1));
989 	}
990 
991 	mt7530_write(priv, MT7530_MHWTRAP, val);
992 
993 	dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n",
994 		val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface));
995 
996 	priv->p5_interface = interface;
997 
998 unlock_exit:
999 	mutex_unlock(&priv->reg_mutex);
1000 }
1001 
1002 static void
1003 mt753x_trap_frames(struct mt7530_priv *priv)
1004 {
1005 	/* Trap BPDUs to the CPU port(s) */
1006 	mt7530_rmw(priv, MT753X_BPC, MT753X_BPDU_PORT_FW_MASK,
1007 		   MT753X_BPDU_CPU_ONLY);
1008 
1009 	/* Trap LLDP frames with :0E MAC DA to the CPU port(s) */
1010 	mt7530_rmw(priv, MT753X_RGAC2, MT753X_R0E_PORT_FW_MASK,
1011 		   MT753X_R0E_PORT_FW(MT753X_BPDU_CPU_ONLY));
1012 }
1013 
1014 static int
1015 mt753x_cpu_port_enable(struct dsa_switch *ds, int port)
1016 {
1017 	struct mt7530_priv *priv = ds->priv;
1018 	int ret;
1019 
1020 	/* Setup max capability of CPU port at first */
1021 	if (priv->info->cpu_port_config) {
1022 		ret = priv->info->cpu_port_config(ds, port);
1023 		if (ret)
1024 			return ret;
1025 	}
1026 
1027 	/* Enable Mediatek header mode on the cpu port */
1028 	mt7530_write(priv, MT7530_PVC_P(port),
1029 		     PORT_SPEC_TAG);
1030 
1031 	/* Enable flooding on the CPU port */
1032 	mt7530_set(priv, MT7530_MFC, BC_FFP(BIT(port)) | UNM_FFP(BIT(port)) |
1033 		   UNU_FFP(BIT(port)));
1034 
1035 	/* Set CPU port number */
1036 	if (priv->id == ID_MT7530 || priv->id == ID_MT7621)
1037 		mt7530_rmw(priv, MT7530_MFC, CPU_MASK, CPU_EN | CPU_PORT(port));
1038 
1039 	/* Add the CPU port to the CPU port bitmap for MT7531 and the switch on
1040 	 * the MT7988 SoC. Trapped frames will be forwarded to the CPU port that
1041 	 * is affine to the inbound user port.
1042 	 */
1043 	if (priv->id == ID_MT7531 || priv->id == ID_MT7988)
1044 		mt7530_set(priv, MT7531_CFC, MT7531_CPU_PMAP(BIT(port)));
1045 
1046 	/* CPU port gets connected to all user ports of
1047 	 * the switch.
1048 	 */
1049 	mt7530_write(priv, MT7530_PCR_P(port),
1050 		     PCR_MATRIX(dsa_user_ports(priv->ds)));
1051 
1052 	/* Set to fallback mode for independent VLAN learning */
1053 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1054 		   MT7530_PORT_FALLBACK_MODE);
1055 
1056 	return 0;
1057 }
1058 
1059 static int
1060 mt7530_port_enable(struct dsa_switch *ds, int port,
1061 		   struct phy_device *phy)
1062 {
1063 	struct dsa_port *dp = dsa_to_port(ds, port);
1064 	struct mt7530_priv *priv = ds->priv;
1065 
1066 	mutex_lock(&priv->reg_mutex);
1067 
1068 	/* Allow the user port gets connected to the cpu port and also
1069 	 * restore the port matrix if the port is the member of a certain
1070 	 * bridge.
1071 	 */
1072 	if (dsa_port_is_user(dp)) {
1073 		struct dsa_port *cpu_dp = dp->cpu_dp;
1074 
1075 		priv->ports[port].pm |= PCR_MATRIX(BIT(cpu_dp->index));
1076 	}
1077 	priv->ports[port].enable = true;
1078 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1079 		   priv->ports[port].pm);
1080 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1081 
1082 	mutex_unlock(&priv->reg_mutex);
1083 
1084 	return 0;
1085 }
1086 
1087 static void
1088 mt7530_port_disable(struct dsa_switch *ds, int port)
1089 {
1090 	struct mt7530_priv *priv = ds->priv;
1091 
1092 	mutex_lock(&priv->reg_mutex);
1093 
1094 	/* Clear up all port matrix which could be restored in the next
1095 	 * enablement for the port.
1096 	 */
1097 	priv->ports[port].enable = false;
1098 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1099 		   PCR_MATRIX_CLR);
1100 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1101 
1102 	mutex_unlock(&priv->reg_mutex);
1103 }
1104 
1105 static int
1106 mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1107 {
1108 	struct mt7530_priv *priv = ds->priv;
1109 	int length;
1110 	u32 val;
1111 
1112 	/* When a new MTU is set, DSA always set the CPU port's MTU to the
1113 	 * largest MTU of the slave ports. Because the switch only has a global
1114 	 * RX length register, only allowing CPU port here is enough.
1115 	 */
1116 	if (!dsa_is_cpu_port(ds, port))
1117 		return 0;
1118 
1119 	mt7530_mutex_lock(priv);
1120 
1121 	val = mt7530_mii_read(priv, MT7530_GMACCR);
1122 	val &= ~MAX_RX_PKT_LEN_MASK;
1123 
1124 	/* RX length also includes Ethernet header, MTK tag, and FCS length */
1125 	length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN;
1126 	if (length <= 1522) {
1127 		val |= MAX_RX_PKT_LEN_1522;
1128 	} else if (length <= 1536) {
1129 		val |= MAX_RX_PKT_LEN_1536;
1130 	} else if (length <= 1552) {
1131 		val |= MAX_RX_PKT_LEN_1552;
1132 	} else {
1133 		val &= ~MAX_RX_JUMBO_MASK;
1134 		val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024));
1135 		val |= MAX_RX_PKT_LEN_JUMBO;
1136 	}
1137 
1138 	mt7530_mii_write(priv, MT7530_GMACCR, val);
1139 
1140 	mt7530_mutex_unlock(priv);
1141 
1142 	return 0;
1143 }
1144 
1145 static int
1146 mt7530_port_max_mtu(struct dsa_switch *ds, int port)
1147 {
1148 	return MT7530_MAX_MTU;
1149 }
1150 
1151 static void
1152 mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1153 {
1154 	struct mt7530_priv *priv = ds->priv;
1155 	u32 stp_state;
1156 
1157 	switch (state) {
1158 	case BR_STATE_DISABLED:
1159 		stp_state = MT7530_STP_DISABLED;
1160 		break;
1161 	case BR_STATE_BLOCKING:
1162 		stp_state = MT7530_STP_BLOCKING;
1163 		break;
1164 	case BR_STATE_LISTENING:
1165 		stp_state = MT7530_STP_LISTENING;
1166 		break;
1167 	case BR_STATE_LEARNING:
1168 		stp_state = MT7530_STP_LEARNING;
1169 		break;
1170 	case BR_STATE_FORWARDING:
1171 	default:
1172 		stp_state = MT7530_STP_FORWARDING;
1173 		break;
1174 	}
1175 
1176 	mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK(FID_BRIDGED),
1177 		   FID_PST(FID_BRIDGED, stp_state));
1178 }
1179 
1180 static int
1181 mt7530_port_pre_bridge_flags(struct dsa_switch *ds, int port,
1182 			     struct switchdev_brport_flags flags,
1183 			     struct netlink_ext_ack *extack)
1184 {
1185 	if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
1186 			   BR_BCAST_FLOOD))
1187 		return -EINVAL;
1188 
1189 	return 0;
1190 }
1191 
1192 static int
1193 mt7530_port_bridge_flags(struct dsa_switch *ds, int port,
1194 			 struct switchdev_brport_flags flags,
1195 			 struct netlink_ext_ack *extack)
1196 {
1197 	struct mt7530_priv *priv = ds->priv;
1198 
1199 	if (flags.mask & BR_LEARNING)
1200 		mt7530_rmw(priv, MT7530_PSC_P(port), SA_DIS,
1201 			   flags.val & BR_LEARNING ? 0 : SA_DIS);
1202 
1203 	if (flags.mask & BR_FLOOD)
1204 		mt7530_rmw(priv, MT7530_MFC, UNU_FFP(BIT(port)),
1205 			   flags.val & BR_FLOOD ? UNU_FFP(BIT(port)) : 0);
1206 
1207 	if (flags.mask & BR_MCAST_FLOOD)
1208 		mt7530_rmw(priv, MT7530_MFC, UNM_FFP(BIT(port)),
1209 			   flags.val & BR_MCAST_FLOOD ? UNM_FFP(BIT(port)) : 0);
1210 
1211 	if (flags.mask & BR_BCAST_FLOOD)
1212 		mt7530_rmw(priv, MT7530_MFC, BC_FFP(BIT(port)),
1213 			   flags.val & BR_BCAST_FLOOD ? BC_FFP(BIT(port)) : 0);
1214 
1215 	return 0;
1216 }
1217 
1218 static int
1219 mt7530_port_bridge_join(struct dsa_switch *ds, int port,
1220 			struct dsa_bridge bridge, bool *tx_fwd_offload,
1221 			struct netlink_ext_ack *extack)
1222 {
1223 	struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1224 	struct dsa_port *cpu_dp = dp->cpu_dp;
1225 	u32 port_bitmap = BIT(cpu_dp->index);
1226 	struct mt7530_priv *priv = ds->priv;
1227 
1228 	mutex_lock(&priv->reg_mutex);
1229 
1230 	dsa_switch_for_each_user_port(other_dp, ds) {
1231 		int other_port = other_dp->index;
1232 
1233 		if (dp == other_dp)
1234 			continue;
1235 
1236 		/* Add this port to the port matrix of the other ports in the
1237 		 * same bridge. If the port is disabled, port matrix is kept
1238 		 * and not being setup until the port becomes enabled.
1239 		 */
1240 		if (!dsa_port_offloads_bridge(other_dp, &bridge))
1241 			continue;
1242 
1243 		if (priv->ports[other_port].enable)
1244 			mt7530_set(priv, MT7530_PCR_P(other_port),
1245 				   PCR_MATRIX(BIT(port)));
1246 		priv->ports[other_port].pm |= PCR_MATRIX(BIT(port));
1247 
1248 		port_bitmap |= BIT(other_port);
1249 	}
1250 
1251 	/* Add the all other ports to this port matrix. */
1252 	if (priv->ports[port].enable)
1253 		mt7530_rmw(priv, MT7530_PCR_P(port),
1254 			   PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
1255 	priv->ports[port].pm |= PCR_MATRIX(port_bitmap);
1256 
1257 	/* Set to fallback mode for independent VLAN learning */
1258 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1259 		   MT7530_PORT_FALLBACK_MODE);
1260 
1261 	mutex_unlock(&priv->reg_mutex);
1262 
1263 	return 0;
1264 }
1265 
1266 static void
1267 mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
1268 {
1269 	struct mt7530_priv *priv = ds->priv;
1270 	bool all_user_ports_removed = true;
1271 	int i;
1272 
1273 	/* This is called after .port_bridge_leave when leaving a VLAN-aware
1274 	 * bridge. Don't set standalone ports to fallback mode.
1275 	 */
1276 	if (dsa_port_bridge_dev_get(dsa_to_port(ds, port)))
1277 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1278 			   MT7530_PORT_FALLBACK_MODE);
1279 
1280 	mt7530_rmw(priv, MT7530_PVC_P(port),
1281 		   VLAN_ATTR_MASK | PVC_EG_TAG_MASK | ACC_FRM_MASK,
1282 		   VLAN_ATTR(MT7530_VLAN_TRANSPARENT) |
1283 		   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT) |
1284 		   MT7530_VLAN_ACC_ALL);
1285 
1286 	/* Set PVID to 0 */
1287 	mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1288 		   G0_PORT_VID_DEF);
1289 
1290 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1291 		if (dsa_is_user_port(ds, i) &&
1292 		    dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
1293 			all_user_ports_removed = false;
1294 			break;
1295 		}
1296 	}
1297 
1298 	/* CPU port also does the same thing until all user ports belonging to
1299 	 * the CPU port get out of VLAN filtering mode.
1300 	 */
1301 	if (all_user_ports_removed) {
1302 		struct dsa_port *dp = dsa_to_port(ds, port);
1303 		struct dsa_port *cpu_dp = dp->cpu_dp;
1304 
1305 		mt7530_write(priv, MT7530_PCR_P(cpu_dp->index),
1306 			     PCR_MATRIX(dsa_user_ports(priv->ds)));
1307 		mt7530_write(priv, MT7530_PVC_P(cpu_dp->index), PORT_SPEC_TAG
1308 			     | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1309 	}
1310 }
1311 
1312 static void
1313 mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
1314 {
1315 	struct mt7530_priv *priv = ds->priv;
1316 
1317 	/* Trapped into security mode allows packet forwarding through VLAN
1318 	 * table lookup.
1319 	 */
1320 	if (dsa_is_user_port(ds, port)) {
1321 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1322 			   MT7530_PORT_SECURITY_MODE);
1323 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1324 			   G0_PORT_VID(priv->ports[port].pvid));
1325 
1326 		/* Only accept tagged frames if PVID is not set */
1327 		if (!priv->ports[port].pvid)
1328 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1329 				   MT7530_VLAN_ACC_TAGGED);
1330 
1331 		/* Set the port as a user port which is to be able to recognize
1332 		 * VID from incoming packets before fetching entry within the
1333 		 * VLAN table.
1334 		 */
1335 		mt7530_rmw(priv, MT7530_PVC_P(port),
1336 			   VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
1337 			   VLAN_ATTR(MT7530_VLAN_USER) |
1338 			   PVC_EG_TAG(MT7530_VLAN_EG_DISABLED));
1339 	} else {
1340 		/* Also set CPU ports to the "user" VLAN port attribute, to
1341 		 * allow VLAN classification, but keep the EG_TAG attribute as
1342 		 * "consistent" (i.o.w. don't change its value) for packets
1343 		 * received by the switch from the CPU, so that tagged packets
1344 		 * are forwarded to user ports as tagged, and untagged as
1345 		 * untagged.
1346 		 */
1347 		mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK,
1348 			   VLAN_ATTR(MT7530_VLAN_USER));
1349 	}
1350 }
1351 
1352 static void
1353 mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
1354 			 struct dsa_bridge bridge)
1355 {
1356 	struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1357 	struct dsa_port *cpu_dp = dp->cpu_dp;
1358 	struct mt7530_priv *priv = ds->priv;
1359 
1360 	mutex_lock(&priv->reg_mutex);
1361 
1362 	dsa_switch_for_each_user_port(other_dp, ds) {
1363 		int other_port = other_dp->index;
1364 
1365 		if (dp == other_dp)
1366 			continue;
1367 
1368 		/* Remove this port from the port matrix of the other ports
1369 		 * in the same bridge. If the port is disabled, port matrix
1370 		 * is kept and not being setup until the port becomes enabled.
1371 		 */
1372 		if (!dsa_port_offloads_bridge(other_dp, &bridge))
1373 			continue;
1374 
1375 		if (priv->ports[other_port].enable)
1376 			mt7530_clear(priv, MT7530_PCR_P(other_port),
1377 				     PCR_MATRIX(BIT(port)));
1378 		priv->ports[other_port].pm &= ~PCR_MATRIX(BIT(port));
1379 	}
1380 
1381 	/* Set the cpu port to be the only one in the port matrix of
1382 	 * this port.
1383 	 */
1384 	if (priv->ports[port].enable)
1385 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1386 			   PCR_MATRIX(BIT(cpu_dp->index)));
1387 	priv->ports[port].pm = PCR_MATRIX(BIT(cpu_dp->index));
1388 
1389 	/* When a port is removed from the bridge, the port would be set up
1390 	 * back to the default as is at initial boot which is a VLAN-unaware
1391 	 * port.
1392 	 */
1393 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1394 		   MT7530_PORT_MATRIX_MODE);
1395 
1396 	mutex_unlock(&priv->reg_mutex);
1397 }
1398 
1399 static int
1400 mt7530_port_fdb_add(struct dsa_switch *ds, int port,
1401 		    const unsigned char *addr, u16 vid,
1402 		    struct dsa_db db)
1403 {
1404 	struct mt7530_priv *priv = ds->priv;
1405 	int ret;
1406 	u8 port_mask = BIT(port);
1407 
1408 	mutex_lock(&priv->reg_mutex);
1409 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1410 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1411 	mutex_unlock(&priv->reg_mutex);
1412 
1413 	return ret;
1414 }
1415 
1416 static int
1417 mt7530_port_fdb_del(struct dsa_switch *ds, int port,
1418 		    const unsigned char *addr, u16 vid,
1419 		    struct dsa_db db)
1420 {
1421 	struct mt7530_priv *priv = ds->priv;
1422 	int ret;
1423 	u8 port_mask = BIT(port);
1424 
1425 	mutex_lock(&priv->reg_mutex);
1426 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
1427 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1428 	mutex_unlock(&priv->reg_mutex);
1429 
1430 	return ret;
1431 }
1432 
1433 static int
1434 mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
1435 		     dsa_fdb_dump_cb_t *cb, void *data)
1436 {
1437 	struct mt7530_priv *priv = ds->priv;
1438 	struct mt7530_fdb _fdb = { 0 };
1439 	int cnt = MT7530_NUM_FDB_RECORDS;
1440 	int ret = 0;
1441 	u32 rsp = 0;
1442 
1443 	mutex_lock(&priv->reg_mutex);
1444 
1445 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
1446 	if (ret < 0)
1447 		goto err;
1448 
1449 	do {
1450 		if (rsp & ATC_SRCH_HIT) {
1451 			mt7530_fdb_read(priv, &_fdb);
1452 			if (_fdb.port_mask & BIT(port)) {
1453 				ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
1454 					 data);
1455 				if (ret < 0)
1456 					break;
1457 			}
1458 		}
1459 	} while (--cnt &&
1460 		 !(rsp & ATC_SRCH_END) &&
1461 		 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
1462 err:
1463 	mutex_unlock(&priv->reg_mutex);
1464 
1465 	return 0;
1466 }
1467 
1468 static int
1469 mt7530_port_mdb_add(struct dsa_switch *ds, int port,
1470 		    const struct switchdev_obj_port_mdb *mdb,
1471 		    struct dsa_db db)
1472 {
1473 	struct mt7530_priv *priv = ds->priv;
1474 	const u8 *addr = mdb->addr;
1475 	u16 vid = mdb->vid;
1476 	u8 port_mask = 0;
1477 	int ret;
1478 
1479 	mutex_lock(&priv->reg_mutex);
1480 
1481 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1482 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1483 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1484 			    & PORT_MAP_MASK;
1485 
1486 	port_mask |= BIT(port);
1487 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1488 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1489 
1490 	mutex_unlock(&priv->reg_mutex);
1491 
1492 	return ret;
1493 }
1494 
1495 static int
1496 mt7530_port_mdb_del(struct dsa_switch *ds, int port,
1497 		    const struct switchdev_obj_port_mdb *mdb,
1498 		    struct dsa_db db)
1499 {
1500 	struct mt7530_priv *priv = ds->priv;
1501 	const u8 *addr = mdb->addr;
1502 	u16 vid = mdb->vid;
1503 	u8 port_mask = 0;
1504 	int ret;
1505 
1506 	mutex_lock(&priv->reg_mutex);
1507 
1508 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1509 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1510 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1511 			    & PORT_MAP_MASK;
1512 
1513 	port_mask &= ~BIT(port);
1514 	mt7530_fdb_write(priv, vid, port_mask, addr, -1,
1515 			 port_mask ? STATIC_ENT : STATIC_EMP);
1516 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1517 
1518 	mutex_unlock(&priv->reg_mutex);
1519 
1520 	return ret;
1521 }
1522 
1523 static int
1524 mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
1525 {
1526 	struct mt7530_dummy_poll p;
1527 	u32 val;
1528 	int ret;
1529 
1530 	val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
1531 	mt7530_write(priv, MT7530_VTCR, val);
1532 
1533 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
1534 	ret = readx_poll_timeout(_mt7530_read, &p, val,
1535 				 !(val & VTCR_BUSY), 20, 20000);
1536 	if (ret < 0) {
1537 		dev_err(priv->dev, "poll timeout\n");
1538 		return ret;
1539 	}
1540 
1541 	val = mt7530_read(priv, MT7530_VTCR);
1542 	if (val & VTCR_INVALID) {
1543 		dev_err(priv->dev, "read VTCR invalid\n");
1544 		return -EINVAL;
1545 	}
1546 
1547 	return 0;
1548 }
1549 
1550 static int
1551 mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering,
1552 			   struct netlink_ext_ack *extack)
1553 {
1554 	struct dsa_port *dp = dsa_to_port(ds, port);
1555 	struct dsa_port *cpu_dp = dp->cpu_dp;
1556 
1557 	if (vlan_filtering) {
1558 		/* The port is being kept as VLAN-unaware port when bridge is
1559 		 * set up with vlan_filtering not being set, Otherwise, the
1560 		 * port and the corresponding CPU port is required the setup
1561 		 * for becoming a VLAN-aware port.
1562 		 */
1563 		mt7530_port_set_vlan_aware(ds, port);
1564 		mt7530_port_set_vlan_aware(ds, cpu_dp->index);
1565 	} else {
1566 		mt7530_port_set_vlan_unaware(ds, port);
1567 	}
1568 
1569 	return 0;
1570 }
1571 
1572 static void
1573 mt7530_hw_vlan_add(struct mt7530_priv *priv,
1574 		   struct mt7530_hw_vlan_entry *entry)
1575 {
1576 	struct dsa_port *dp = dsa_to_port(priv->ds, entry->port);
1577 	u8 new_members;
1578 	u32 val;
1579 
1580 	new_members = entry->old_members | BIT(entry->port);
1581 
1582 	/* Validate the entry with independent learning, create egress tag per
1583 	 * VLAN and joining the port as one of the port members.
1584 	 */
1585 	val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | FID(FID_BRIDGED) |
1586 	      VLAN_VALID;
1587 	mt7530_write(priv, MT7530_VAWD1, val);
1588 
1589 	/* Decide whether adding tag or not for those outgoing packets from the
1590 	 * port inside the VLAN.
1591 	 * CPU port is always taken as a tagged port for serving more than one
1592 	 * VLANs across and also being applied with egress type stack mode for
1593 	 * that VLAN tags would be appended after hardware special tag used as
1594 	 * DSA tag.
1595 	 */
1596 	if (dsa_port_is_cpu(dp))
1597 		val = MT7530_VLAN_EGRESS_STACK;
1598 	else if (entry->untagged)
1599 		val = MT7530_VLAN_EGRESS_UNTAG;
1600 	else
1601 		val = MT7530_VLAN_EGRESS_TAG;
1602 	mt7530_rmw(priv, MT7530_VAWD2,
1603 		   ETAG_CTRL_P_MASK(entry->port),
1604 		   ETAG_CTRL_P(entry->port, val));
1605 }
1606 
1607 static void
1608 mt7530_hw_vlan_del(struct mt7530_priv *priv,
1609 		   struct mt7530_hw_vlan_entry *entry)
1610 {
1611 	u8 new_members;
1612 	u32 val;
1613 
1614 	new_members = entry->old_members & ~BIT(entry->port);
1615 
1616 	val = mt7530_read(priv, MT7530_VAWD1);
1617 	if (!(val & VLAN_VALID)) {
1618 		dev_err(priv->dev,
1619 			"Cannot be deleted due to invalid entry\n");
1620 		return;
1621 	}
1622 
1623 	if (new_members) {
1624 		val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
1625 		      VLAN_VALID;
1626 		mt7530_write(priv, MT7530_VAWD1, val);
1627 	} else {
1628 		mt7530_write(priv, MT7530_VAWD1, 0);
1629 		mt7530_write(priv, MT7530_VAWD2, 0);
1630 	}
1631 }
1632 
1633 static void
1634 mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
1635 		      struct mt7530_hw_vlan_entry *entry,
1636 		      mt7530_vlan_op vlan_op)
1637 {
1638 	u32 val;
1639 
1640 	/* Fetch entry */
1641 	mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
1642 
1643 	val = mt7530_read(priv, MT7530_VAWD1);
1644 
1645 	entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
1646 
1647 	/* Manipulate entry */
1648 	vlan_op(priv, entry);
1649 
1650 	/* Flush result to hardware */
1651 	mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
1652 }
1653 
1654 static int
1655 mt7530_setup_vlan0(struct mt7530_priv *priv)
1656 {
1657 	u32 val;
1658 
1659 	/* Validate the entry with independent learning, keep the original
1660 	 * ingress tag attribute.
1661 	 */
1662 	val = IVL_MAC | EG_CON | PORT_MEM(MT7530_ALL_MEMBERS) | FID(FID_BRIDGED) |
1663 	      VLAN_VALID;
1664 	mt7530_write(priv, MT7530_VAWD1, val);
1665 
1666 	return mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, 0);
1667 }
1668 
1669 static int
1670 mt7530_port_vlan_add(struct dsa_switch *ds, int port,
1671 		     const struct switchdev_obj_port_vlan *vlan,
1672 		     struct netlink_ext_ack *extack)
1673 {
1674 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1675 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1676 	struct mt7530_hw_vlan_entry new_entry;
1677 	struct mt7530_priv *priv = ds->priv;
1678 
1679 	mutex_lock(&priv->reg_mutex);
1680 
1681 	mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
1682 	mt7530_hw_vlan_update(priv, vlan->vid, &new_entry, mt7530_hw_vlan_add);
1683 
1684 	if (pvid) {
1685 		priv->ports[port].pvid = vlan->vid;
1686 
1687 		/* Accept all frames if PVID is set */
1688 		mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1689 			   MT7530_VLAN_ACC_ALL);
1690 
1691 		/* Only configure PVID if VLAN filtering is enabled */
1692 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1693 			mt7530_rmw(priv, MT7530_PPBV1_P(port),
1694 				   G0_PORT_VID_MASK,
1695 				   G0_PORT_VID(vlan->vid));
1696 	} else if (vlan->vid && priv->ports[port].pvid == vlan->vid) {
1697 		/* This VLAN is overwritten without PVID, so unset it */
1698 		priv->ports[port].pvid = G0_PORT_VID_DEF;
1699 
1700 		/* Only accept tagged frames if the port is VLAN-aware */
1701 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1702 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1703 				   MT7530_VLAN_ACC_TAGGED);
1704 
1705 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1706 			   G0_PORT_VID_DEF);
1707 	}
1708 
1709 	mutex_unlock(&priv->reg_mutex);
1710 
1711 	return 0;
1712 }
1713 
1714 static int
1715 mt7530_port_vlan_del(struct dsa_switch *ds, int port,
1716 		     const struct switchdev_obj_port_vlan *vlan)
1717 {
1718 	struct mt7530_hw_vlan_entry target_entry;
1719 	struct mt7530_priv *priv = ds->priv;
1720 
1721 	mutex_lock(&priv->reg_mutex);
1722 
1723 	mt7530_hw_vlan_entry_init(&target_entry, port, 0);
1724 	mt7530_hw_vlan_update(priv, vlan->vid, &target_entry,
1725 			      mt7530_hw_vlan_del);
1726 
1727 	/* PVID is being restored to the default whenever the PVID port
1728 	 * is being removed from the VLAN.
1729 	 */
1730 	if (priv->ports[port].pvid == vlan->vid) {
1731 		priv->ports[port].pvid = G0_PORT_VID_DEF;
1732 
1733 		/* Only accept tagged frames if the port is VLAN-aware */
1734 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1735 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1736 				   MT7530_VLAN_ACC_TAGGED);
1737 
1738 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1739 			   G0_PORT_VID_DEF);
1740 	}
1741 
1742 
1743 	mutex_unlock(&priv->reg_mutex);
1744 
1745 	return 0;
1746 }
1747 
1748 static int mt753x_mirror_port_get(unsigned int id, u32 val)
1749 {
1750 	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_GET(val) :
1751 				   MIRROR_PORT(val);
1752 }
1753 
1754 static int mt753x_mirror_port_set(unsigned int id, u32 val)
1755 {
1756 	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_SET(val) :
1757 				   MIRROR_PORT(val);
1758 }
1759 
1760 static int mt753x_port_mirror_add(struct dsa_switch *ds, int port,
1761 				  struct dsa_mall_mirror_tc_entry *mirror,
1762 				  bool ingress, struct netlink_ext_ack *extack)
1763 {
1764 	struct mt7530_priv *priv = ds->priv;
1765 	int monitor_port;
1766 	u32 val;
1767 
1768 	/* Check for existent entry */
1769 	if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port))
1770 		return -EEXIST;
1771 
1772 	val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1773 
1774 	/* MT7530 only supports one monitor port */
1775 	monitor_port = mt753x_mirror_port_get(priv->id, val);
1776 	if (val & MT753X_MIRROR_EN(priv->id) &&
1777 	    monitor_port != mirror->to_local_port)
1778 		return -EEXIST;
1779 
1780 	val |= MT753X_MIRROR_EN(priv->id);
1781 	val &= ~MT753X_MIRROR_MASK(priv->id);
1782 	val |= mt753x_mirror_port_set(priv->id, mirror->to_local_port);
1783 	mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1784 
1785 	val = mt7530_read(priv, MT7530_PCR_P(port));
1786 	if (ingress) {
1787 		val |= PORT_RX_MIR;
1788 		priv->mirror_rx |= BIT(port);
1789 	} else {
1790 		val |= PORT_TX_MIR;
1791 		priv->mirror_tx |= BIT(port);
1792 	}
1793 	mt7530_write(priv, MT7530_PCR_P(port), val);
1794 
1795 	return 0;
1796 }
1797 
1798 static void mt753x_port_mirror_del(struct dsa_switch *ds, int port,
1799 				   struct dsa_mall_mirror_tc_entry *mirror)
1800 {
1801 	struct mt7530_priv *priv = ds->priv;
1802 	u32 val;
1803 
1804 	val = mt7530_read(priv, MT7530_PCR_P(port));
1805 	if (mirror->ingress) {
1806 		val &= ~PORT_RX_MIR;
1807 		priv->mirror_rx &= ~BIT(port);
1808 	} else {
1809 		val &= ~PORT_TX_MIR;
1810 		priv->mirror_tx &= ~BIT(port);
1811 	}
1812 	mt7530_write(priv, MT7530_PCR_P(port), val);
1813 
1814 	if (!priv->mirror_rx && !priv->mirror_tx) {
1815 		val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1816 		val &= ~MT753X_MIRROR_EN(priv->id);
1817 		mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1818 	}
1819 }
1820 
1821 static enum dsa_tag_protocol
1822 mtk_get_tag_protocol(struct dsa_switch *ds, int port,
1823 		     enum dsa_tag_protocol mp)
1824 {
1825 	return DSA_TAG_PROTO_MTK;
1826 }
1827 
1828 #ifdef CONFIG_GPIOLIB
1829 static inline u32
1830 mt7530_gpio_to_bit(unsigned int offset)
1831 {
1832 	/* Map GPIO offset to register bit
1833 	 * [ 2: 0]  port 0 LED 0..2 as GPIO 0..2
1834 	 * [ 6: 4]  port 1 LED 0..2 as GPIO 3..5
1835 	 * [10: 8]  port 2 LED 0..2 as GPIO 6..8
1836 	 * [14:12]  port 3 LED 0..2 as GPIO 9..11
1837 	 * [18:16]  port 4 LED 0..2 as GPIO 12..14
1838 	 */
1839 	return BIT(offset + offset / 3);
1840 }
1841 
1842 static int
1843 mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset)
1844 {
1845 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1846 	u32 bit = mt7530_gpio_to_bit(offset);
1847 
1848 	return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit);
1849 }
1850 
1851 static void
1852 mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
1853 {
1854 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1855 	u32 bit = mt7530_gpio_to_bit(offset);
1856 
1857 	if (value)
1858 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1859 	else
1860 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1861 }
1862 
1863 static int
1864 mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
1865 {
1866 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1867 	u32 bit = mt7530_gpio_to_bit(offset);
1868 
1869 	return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ?
1870 		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1871 }
1872 
1873 static int
1874 mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
1875 {
1876 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1877 	u32 bit = mt7530_gpio_to_bit(offset);
1878 
1879 	mt7530_clear(priv, MT7530_LED_GPIO_OE, bit);
1880 	mt7530_clear(priv, MT7530_LED_GPIO_DIR, bit);
1881 
1882 	return 0;
1883 }
1884 
1885 static int
1886 mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value)
1887 {
1888 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1889 	u32 bit = mt7530_gpio_to_bit(offset);
1890 
1891 	mt7530_set(priv, MT7530_LED_GPIO_DIR, bit);
1892 
1893 	if (value)
1894 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1895 	else
1896 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1897 
1898 	mt7530_set(priv, MT7530_LED_GPIO_OE, bit);
1899 
1900 	return 0;
1901 }
1902 
1903 static int
1904 mt7530_setup_gpio(struct mt7530_priv *priv)
1905 {
1906 	struct device *dev = priv->dev;
1907 	struct gpio_chip *gc;
1908 
1909 	gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL);
1910 	if (!gc)
1911 		return -ENOMEM;
1912 
1913 	mt7530_write(priv, MT7530_LED_GPIO_OE, 0);
1914 	mt7530_write(priv, MT7530_LED_GPIO_DIR, 0);
1915 	mt7530_write(priv, MT7530_LED_IO_MODE, 0);
1916 
1917 	gc->label = "mt7530";
1918 	gc->parent = dev;
1919 	gc->owner = THIS_MODULE;
1920 	gc->get_direction = mt7530_gpio_get_direction;
1921 	gc->direction_input = mt7530_gpio_direction_input;
1922 	gc->direction_output = mt7530_gpio_direction_output;
1923 	gc->get = mt7530_gpio_get;
1924 	gc->set = mt7530_gpio_set;
1925 	gc->base = -1;
1926 	gc->ngpio = 15;
1927 	gc->can_sleep = true;
1928 
1929 	return devm_gpiochip_add_data(dev, gc, priv);
1930 }
1931 #endif /* CONFIG_GPIOLIB */
1932 
1933 static irqreturn_t
1934 mt7530_irq_thread_fn(int irq, void *dev_id)
1935 {
1936 	struct mt7530_priv *priv = dev_id;
1937 	bool handled = false;
1938 	u32 val;
1939 	int p;
1940 
1941 	mt7530_mutex_lock(priv);
1942 	val = mt7530_mii_read(priv, MT7530_SYS_INT_STS);
1943 	mt7530_mii_write(priv, MT7530_SYS_INT_STS, val);
1944 	mt7530_mutex_unlock(priv);
1945 
1946 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
1947 		if (BIT(p) & val) {
1948 			unsigned int irq;
1949 
1950 			irq = irq_find_mapping(priv->irq_domain, p);
1951 			handle_nested_irq(irq);
1952 			handled = true;
1953 		}
1954 	}
1955 
1956 	return IRQ_RETVAL(handled);
1957 }
1958 
1959 static void
1960 mt7530_irq_mask(struct irq_data *d)
1961 {
1962 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1963 
1964 	priv->irq_enable &= ~BIT(d->hwirq);
1965 }
1966 
1967 static void
1968 mt7530_irq_unmask(struct irq_data *d)
1969 {
1970 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1971 
1972 	priv->irq_enable |= BIT(d->hwirq);
1973 }
1974 
1975 static void
1976 mt7530_irq_bus_lock(struct irq_data *d)
1977 {
1978 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1979 
1980 	mt7530_mutex_lock(priv);
1981 }
1982 
1983 static void
1984 mt7530_irq_bus_sync_unlock(struct irq_data *d)
1985 {
1986 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1987 
1988 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
1989 	mt7530_mutex_unlock(priv);
1990 }
1991 
1992 static struct irq_chip mt7530_irq_chip = {
1993 	.name = KBUILD_MODNAME,
1994 	.irq_mask = mt7530_irq_mask,
1995 	.irq_unmask = mt7530_irq_unmask,
1996 	.irq_bus_lock = mt7530_irq_bus_lock,
1997 	.irq_bus_sync_unlock = mt7530_irq_bus_sync_unlock,
1998 };
1999 
2000 static int
2001 mt7530_irq_map(struct irq_domain *domain, unsigned int irq,
2002 	       irq_hw_number_t hwirq)
2003 {
2004 	irq_set_chip_data(irq, domain->host_data);
2005 	irq_set_chip_and_handler(irq, &mt7530_irq_chip, handle_simple_irq);
2006 	irq_set_nested_thread(irq, true);
2007 	irq_set_noprobe(irq);
2008 
2009 	return 0;
2010 }
2011 
2012 static const struct irq_domain_ops mt7530_irq_domain_ops = {
2013 	.map = mt7530_irq_map,
2014 	.xlate = irq_domain_xlate_onecell,
2015 };
2016 
2017 static void
2018 mt7988_irq_mask(struct irq_data *d)
2019 {
2020 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2021 
2022 	priv->irq_enable &= ~BIT(d->hwirq);
2023 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
2024 }
2025 
2026 static void
2027 mt7988_irq_unmask(struct irq_data *d)
2028 {
2029 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
2030 
2031 	priv->irq_enable |= BIT(d->hwirq);
2032 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
2033 }
2034 
2035 static struct irq_chip mt7988_irq_chip = {
2036 	.name = KBUILD_MODNAME,
2037 	.irq_mask = mt7988_irq_mask,
2038 	.irq_unmask = mt7988_irq_unmask,
2039 };
2040 
2041 static int
2042 mt7988_irq_map(struct irq_domain *domain, unsigned int irq,
2043 	       irq_hw_number_t hwirq)
2044 {
2045 	irq_set_chip_data(irq, domain->host_data);
2046 	irq_set_chip_and_handler(irq, &mt7988_irq_chip, handle_simple_irq);
2047 	irq_set_nested_thread(irq, true);
2048 	irq_set_noprobe(irq);
2049 
2050 	return 0;
2051 }
2052 
2053 static const struct irq_domain_ops mt7988_irq_domain_ops = {
2054 	.map = mt7988_irq_map,
2055 	.xlate = irq_domain_xlate_onecell,
2056 };
2057 
2058 static void
2059 mt7530_setup_mdio_irq(struct mt7530_priv *priv)
2060 {
2061 	struct dsa_switch *ds = priv->ds;
2062 	int p;
2063 
2064 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2065 		if (BIT(p) & ds->phys_mii_mask) {
2066 			unsigned int irq;
2067 
2068 			irq = irq_create_mapping(priv->irq_domain, p);
2069 			ds->slave_mii_bus->irq[p] = irq;
2070 		}
2071 	}
2072 }
2073 
2074 static int
2075 mt7530_setup_irq(struct mt7530_priv *priv)
2076 {
2077 	struct device *dev = priv->dev;
2078 	struct device_node *np = dev->of_node;
2079 	int ret;
2080 
2081 	if (!of_property_read_bool(np, "interrupt-controller")) {
2082 		dev_info(dev, "no interrupt support\n");
2083 		return 0;
2084 	}
2085 
2086 	priv->irq = of_irq_get(np, 0);
2087 	if (priv->irq <= 0) {
2088 		dev_err(dev, "failed to get parent IRQ: %d\n", priv->irq);
2089 		return priv->irq ? : -EINVAL;
2090 	}
2091 
2092 	if (priv->id == ID_MT7988)
2093 		priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2094 							 &mt7988_irq_domain_ops,
2095 							 priv);
2096 	else
2097 		priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2098 							 &mt7530_irq_domain_ops,
2099 							 priv);
2100 
2101 	if (!priv->irq_domain) {
2102 		dev_err(dev, "failed to create IRQ domain\n");
2103 		return -ENOMEM;
2104 	}
2105 
2106 	/* This register must be set for MT7530 to properly fire interrupts */
2107 	if (priv->id != ID_MT7531)
2108 		mt7530_set(priv, MT7530_TOP_SIG_CTRL, TOP_SIG_CTRL_NORMAL);
2109 
2110 	ret = request_threaded_irq(priv->irq, NULL, mt7530_irq_thread_fn,
2111 				   IRQF_ONESHOT, KBUILD_MODNAME, priv);
2112 	if (ret) {
2113 		irq_domain_remove(priv->irq_domain);
2114 		dev_err(dev, "failed to request IRQ: %d\n", ret);
2115 		return ret;
2116 	}
2117 
2118 	return 0;
2119 }
2120 
2121 static void
2122 mt7530_free_mdio_irq(struct mt7530_priv *priv)
2123 {
2124 	int p;
2125 
2126 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2127 		if (BIT(p) & priv->ds->phys_mii_mask) {
2128 			unsigned int irq;
2129 
2130 			irq = irq_find_mapping(priv->irq_domain, p);
2131 			irq_dispose_mapping(irq);
2132 		}
2133 	}
2134 }
2135 
2136 static void
2137 mt7530_free_irq_common(struct mt7530_priv *priv)
2138 {
2139 	free_irq(priv->irq, priv);
2140 	irq_domain_remove(priv->irq_domain);
2141 }
2142 
2143 static void
2144 mt7530_free_irq(struct mt7530_priv *priv)
2145 {
2146 	mt7530_free_mdio_irq(priv);
2147 	mt7530_free_irq_common(priv);
2148 }
2149 
2150 static int
2151 mt7530_setup_mdio(struct mt7530_priv *priv)
2152 {
2153 	struct dsa_switch *ds = priv->ds;
2154 	struct device *dev = priv->dev;
2155 	struct mii_bus *bus;
2156 	static int idx;
2157 	int ret;
2158 
2159 	bus = devm_mdiobus_alloc(dev);
2160 	if (!bus)
2161 		return -ENOMEM;
2162 
2163 	ds->slave_mii_bus = bus;
2164 	bus->priv = priv;
2165 	bus->name = KBUILD_MODNAME "-mii";
2166 	snprintf(bus->id, MII_BUS_ID_SIZE, KBUILD_MODNAME "-%d", idx++);
2167 	bus->read = mt753x_phy_read_c22;
2168 	bus->write = mt753x_phy_write_c22;
2169 	bus->read_c45 = mt753x_phy_read_c45;
2170 	bus->write_c45 = mt753x_phy_write_c45;
2171 	bus->parent = dev;
2172 	bus->phy_mask = ~ds->phys_mii_mask;
2173 
2174 	if (priv->irq)
2175 		mt7530_setup_mdio_irq(priv);
2176 
2177 	ret = devm_mdiobus_register(dev, bus);
2178 	if (ret) {
2179 		dev_err(dev, "failed to register MDIO bus: %d\n", ret);
2180 		if (priv->irq)
2181 			mt7530_free_mdio_irq(priv);
2182 	}
2183 
2184 	return ret;
2185 }
2186 
2187 static int
2188 mt7530_setup(struct dsa_switch *ds)
2189 {
2190 	struct mt7530_priv *priv = ds->priv;
2191 	struct device_node *dn = NULL;
2192 	struct device_node *phy_node;
2193 	struct device_node *mac_np;
2194 	struct mt7530_dummy_poll p;
2195 	phy_interface_t interface;
2196 	struct dsa_port *cpu_dp;
2197 	u32 id, val;
2198 	int ret, i;
2199 
2200 	/* The parent node of master netdev which holds the common system
2201 	 * controller also is the container for two GMACs nodes representing
2202 	 * as two netdev instances.
2203 	 */
2204 	dsa_switch_for_each_cpu_port(cpu_dp, ds) {
2205 		dn = cpu_dp->master->dev.of_node->parent;
2206 		/* It doesn't matter which CPU port is found first,
2207 		 * their masters should share the same parent OF node
2208 		 */
2209 		break;
2210 	}
2211 
2212 	if (!dn) {
2213 		dev_err(ds->dev, "parent OF node of DSA master not found");
2214 		return -EINVAL;
2215 	}
2216 
2217 	ds->assisted_learning_on_cpu_port = true;
2218 	ds->mtu_enforcement_ingress = true;
2219 
2220 	if (priv->id == ID_MT7530) {
2221 		regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
2222 		ret = regulator_enable(priv->core_pwr);
2223 		if (ret < 0) {
2224 			dev_err(priv->dev,
2225 				"Failed to enable core power: %d\n", ret);
2226 			return ret;
2227 		}
2228 
2229 		regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
2230 		ret = regulator_enable(priv->io_pwr);
2231 		if (ret < 0) {
2232 			dev_err(priv->dev, "Failed to enable io pwr: %d\n",
2233 				ret);
2234 			return ret;
2235 		}
2236 	}
2237 
2238 	/* Reset whole chip through gpio pin or memory-mapped registers for
2239 	 * different type of hardware
2240 	 */
2241 	if (priv->mcm) {
2242 		reset_control_assert(priv->rstc);
2243 		usleep_range(1000, 1100);
2244 		reset_control_deassert(priv->rstc);
2245 	} else {
2246 		gpiod_set_value_cansleep(priv->reset, 0);
2247 		usleep_range(1000, 1100);
2248 		gpiod_set_value_cansleep(priv->reset, 1);
2249 	}
2250 
2251 	/* Waiting for MT7530 got to stable */
2252 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2253 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2254 				 20, 1000000);
2255 	if (ret < 0) {
2256 		dev_err(priv->dev, "reset timeout\n");
2257 		return ret;
2258 	}
2259 
2260 	id = mt7530_read(priv, MT7530_CREV);
2261 	id >>= CHIP_NAME_SHIFT;
2262 	if (id != MT7530_ID) {
2263 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2264 		return -ENODEV;
2265 	}
2266 
2267 	/* Reset the switch through internal reset */
2268 	mt7530_write(priv, MT7530_SYS_CTRL,
2269 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2270 		     SYS_CTRL_REG_RST);
2271 
2272 	mt7530_pll_setup(priv);
2273 
2274 	/* Lower Tx driving for TRGMII path */
2275 	for (i = 0; i < NUM_TRGMII_CTRL; i++)
2276 		mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
2277 			     TD_DM_DRVP(8) | TD_DM_DRVN(8));
2278 
2279 	for (i = 0; i < NUM_TRGMII_CTRL; i++)
2280 		mt7530_rmw(priv, MT7530_TRGMII_RD(i),
2281 			   RD_TAP_MASK, RD_TAP(16));
2282 
2283 	/* Enable port 6 */
2284 	val = mt7530_read(priv, MT7530_MHWTRAP);
2285 	val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
2286 	val |= MHWTRAP_MANUAL;
2287 	mt7530_write(priv, MT7530_MHWTRAP, val);
2288 
2289 	priv->p6_interface = PHY_INTERFACE_MODE_NA;
2290 
2291 	mt753x_trap_frames(priv);
2292 
2293 	/* Enable and reset MIB counters */
2294 	mt7530_mib_reset(ds);
2295 
2296 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2297 		/* Disable forwarding by default on all ports */
2298 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2299 			   PCR_MATRIX_CLR);
2300 
2301 		/* Disable learning by default on all ports */
2302 		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2303 
2304 		if (dsa_is_cpu_port(ds, i)) {
2305 			ret = mt753x_cpu_port_enable(ds, i);
2306 			if (ret)
2307 				return ret;
2308 		} else {
2309 			mt7530_port_disable(ds, i);
2310 
2311 			/* Set default PVID to 0 on all user ports */
2312 			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2313 				   G0_PORT_VID_DEF);
2314 		}
2315 		/* Enable consistent egress tag */
2316 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2317 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2318 	}
2319 
2320 	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2321 	ret = mt7530_setup_vlan0(priv);
2322 	if (ret)
2323 		return ret;
2324 
2325 	/* Setup port 5 */
2326 	priv->p5_intf_sel = P5_DISABLED;
2327 	interface = PHY_INTERFACE_MODE_NA;
2328 
2329 	if (!dsa_is_unused_port(ds, 5)) {
2330 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2331 		ret = of_get_phy_mode(dsa_to_port(ds, 5)->dn, &interface);
2332 		if (ret && ret != -ENODEV)
2333 			return ret;
2334 	} else {
2335 		/* Scan the ethernet nodes. look for GMAC1, lookup used phy */
2336 		for_each_child_of_node(dn, mac_np) {
2337 			if (!of_device_is_compatible(mac_np,
2338 						     "mediatek,eth-mac"))
2339 				continue;
2340 
2341 			ret = of_property_read_u32(mac_np, "reg", &id);
2342 			if (ret < 0 || id != 1)
2343 				continue;
2344 
2345 			phy_node = of_parse_phandle(mac_np, "phy-handle", 0);
2346 			if (!phy_node)
2347 				continue;
2348 
2349 			if (phy_node->parent == priv->dev->of_node->parent) {
2350 				ret = of_get_phy_mode(mac_np, &interface);
2351 				if (ret && ret != -ENODEV) {
2352 					of_node_put(mac_np);
2353 					of_node_put(phy_node);
2354 					return ret;
2355 				}
2356 				id = of_mdio_parse_addr(ds->dev, phy_node);
2357 				if (id == 0)
2358 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P0;
2359 				if (id == 4)
2360 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P4;
2361 			}
2362 			of_node_put(mac_np);
2363 			of_node_put(phy_node);
2364 			break;
2365 		}
2366 	}
2367 
2368 #ifdef CONFIG_GPIOLIB
2369 	if (of_property_read_bool(priv->dev->of_node, "gpio-controller")) {
2370 		ret = mt7530_setup_gpio(priv);
2371 		if (ret)
2372 			return ret;
2373 	}
2374 #endif /* CONFIG_GPIOLIB */
2375 
2376 	mt7530_setup_port5(ds, interface);
2377 
2378 	/* Flush the FDB table */
2379 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2380 	if (ret < 0)
2381 		return ret;
2382 
2383 	return 0;
2384 }
2385 
2386 static int
2387 mt7531_setup_common(struct dsa_switch *ds)
2388 {
2389 	struct mt7530_priv *priv = ds->priv;
2390 	int ret, i;
2391 
2392 	mt753x_trap_frames(priv);
2393 
2394 	/* Enable and reset MIB counters */
2395 	mt7530_mib_reset(ds);
2396 
2397 	/* Disable flooding on all ports */
2398 	mt7530_clear(priv, MT7530_MFC, BC_FFP_MASK | UNM_FFP_MASK |
2399 		     UNU_FFP_MASK);
2400 
2401 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2402 		/* Disable forwarding by default on all ports */
2403 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2404 			   PCR_MATRIX_CLR);
2405 
2406 		/* Disable learning by default on all ports */
2407 		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2408 
2409 		mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR);
2410 
2411 		if (dsa_is_cpu_port(ds, i)) {
2412 			ret = mt753x_cpu_port_enable(ds, i);
2413 			if (ret)
2414 				return ret;
2415 		} else {
2416 			mt7530_port_disable(ds, i);
2417 
2418 			/* Set default PVID to 0 on all user ports */
2419 			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2420 				   G0_PORT_VID_DEF);
2421 		}
2422 
2423 		/* Enable consistent egress tag */
2424 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2425 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2426 	}
2427 
2428 	/* Flush the FDB table */
2429 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2430 	if (ret < 0)
2431 		return ret;
2432 
2433 	return 0;
2434 }
2435 
2436 static int
2437 mt7531_setup(struct dsa_switch *ds)
2438 {
2439 	struct mt7530_priv *priv = ds->priv;
2440 	struct mt7530_dummy_poll p;
2441 	u32 val, id;
2442 	int ret, i;
2443 
2444 	/* Reset whole chip through gpio pin or memory-mapped registers for
2445 	 * different type of hardware
2446 	 */
2447 	if (priv->mcm) {
2448 		reset_control_assert(priv->rstc);
2449 		usleep_range(1000, 1100);
2450 		reset_control_deassert(priv->rstc);
2451 	} else {
2452 		gpiod_set_value_cansleep(priv->reset, 0);
2453 		usleep_range(1000, 1100);
2454 		gpiod_set_value_cansleep(priv->reset, 1);
2455 	}
2456 
2457 	/* Waiting for MT7530 got to stable */
2458 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2459 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2460 				 20, 1000000);
2461 	if (ret < 0) {
2462 		dev_err(priv->dev, "reset timeout\n");
2463 		return ret;
2464 	}
2465 
2466 	id = mt7530_read(priv, MT7531_CREV);
2467 	id >>= CHIP_NAME_SHIFT;
2468 
2469 	if (id != MT7531_ID) {
2470 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2471 		return -ENODEV;
2472 	}
2473 
2474 	/* all MACs must be forced link-down before sw reset */
2475 	for (i = 0; i < MT7530_NUM_PORTS; i++)
2476 		mt7530_write(priv, MT7530_PMCR_P(i), MT7531_FORCE_LNK);
2477 
2478 	/* Reset the switch through internal reset */
2479 	mt7530_write(priv, MT7530_SYS_CTRL,
2480 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2481 		     SYS_CTRL_REG_RST);
2482 
2483 	mt7531_pll_setup(priv);
2484 
2485 	if (mt7531_dual_sgmii_supported(priv)) {
2486 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5_SGMII;
2487 
2488 		/* Let ds->slave_mii_bus be able to access external phy. */
2489 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK,
2490 			   MT7531_EXT_P_MDC_11);
2491 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK,
2492 			   MT7531_EXT_P_MDIO_12);
2493 	} else {
2494 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2495 	}
2496 	dev_dbg(ds->dev, "P5 support %s interface\n",
2497 		p5_intf_modes(priv->p5_intf_sel));
2498 
2499 	mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK,
2500 		   MT7531_GPIO0_INTERRUPT);
2501 
2502 	/* Let phylink decide the interface later. */
2503 	priv->p5_interface = PHY_INTERFACE_MODE_NA;
2504 	priv->p6_interface = PHY_INTERFACE_MODE_NA;
2505 
2506 	/* Enable PHY core PLL, since phy_device has not yet been created
2507 	 * provided for phy_[read,write]_mmd_indirect is called, we provide
2508 	 * our own mt7531_ind_mmd_phy_[read,write] to complete this
2509 	 * function.
2510 	 */
2511 	val = mt7531_ind_c45_phy_read(priv, MT753X_CTRL_PHY_ADDR,
2512 				      MDIO_MMD_VEND2, CORE_PLL_GROUP4);
2513 	val |= MT7531_PHY_PLL_BYPASS_MODE;
2514 	val &= ~MT7531_PHY_PLL_OFF;
2515 	mt7531_ind_c45_phy_write(priv, MT753X_CTRL_PHY_ADDR, MDIO_MMD_VEND2,
2516 				 CORE_PLL_GROUP4, val);
2517 
2518 	mt7531_setup_common(ds);
2519 
2520 	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2521 	ret = mt7530_setup_vlan0(priv);
2522 	if (ret)
2523 		return ret;
2524 
2525 	ds->assisted_learning_on_cpu_port = true;
2526 	ds->mtu_enforcement_ingress = true;
2527 
2528 	return 0;
2529 }
2530 
2531 static void mt7530_mac_port_get_caps(struct dsa_switch *ds, int port,
2532 				     struct phylink_config *config)
2533 {
2534 	switch (port) {
2535 	case 0 ... 4: /* Internal phy */
2536 		__set_bit(PHY_INTERFACE_MODE_GMII,
2537 			  config->supported_interfaces);
2538 		break;
2539 
2540 	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2541 		phy_interface_set_rgmii(config->supported_interfaces);
2542 		__set_bit(PHY_INTERFACE_MODE_MII,
2543 			  config->supported_interfaces);
2544 		__set_bit(PHY_INTERFACE_MODE_GMII,
2545 			  config->supported_interfaces);
2546 		break;
2547 
2548 	case 6: /* 1st cpu port */
2549 		__set_bit(PHY_INTERFACE_MODE_RGMII,
2550 			  config->supported_interfaces);
2551 		__set_bit(PHY_INTERFACE_MODE_TRGMII,
2552 			  config->supported_interfaces);
2553 		break;
2554 	}
2555 }
2556 
2557 static bool mt7531_is_rgmii_port(struct mt7530_priv *priv, u32 port)
2558 {
2559 	return (port == 5) && (priv->p5_intf_sel != P5_INTF_SEL_GMAC5_SGMII);
2560 }
2561 
2562 static void mt7531_mac_port_get_caps(struct dsa_switch *ds, int port,
2563 				     struct phylink_config *config)
2564 {
2565 	struct mt7530_priv *priv = ds->priv;
2566 
2567 	switch (port) {
2568 	case 0 ... 4: /* Internal phy */
2569 		__set_bit(PHY_INTERFACE_MODE_GMII,
2570 			  config->supported_interfaces);
2571 		break;
2572 
2573 	case 5: /* 2nd cpu port supports either rgmii or sgmii/8023z */
2574 		if (mt7531_is_rgmii_port(priv, port)) {
2575 			phy_interface_set_rgmii(config->supported_interfaces);
2576 			break;
2577 		}
2578 		fallthrough;
2579 
2580 	case 6: /* 1st cpu port supports sgmii/8023z only */
2581 		__set_bit(PHY_INTERFACE_MODE_SGMII,
2582 			  config->supported_interfaces);
2583 		__set_bit(PHY_INTERFACE_MODE_1000BASEX,
2584 			  config->supported_interfaces);
2585 		__set_bit(PHY_INTERFACE_MODE_2500BASEX,
2586 			  config->supported_interfaces);
2587 
2588 		config->mac_capabilities |= MAC_2500FD;
2589 		break;
2590 	}
2591 }
2592 
2593 static void mt7988_mac_port_get_caps(struct dsa_switch *ds, int port,
2594 				     struct phylink_config *config)
2595 {
2596 	phy_interface_zero(config->supported_interfaces);
2597 
2598 	switch (port) {
2599 	case 0 ... 4: /* Internal phy */
2600 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
2601 			  config->supported_interfaces);
2602 		break;
2603 
2604 	case 6:
2605 		__set_bit(PHY_INTERFACE_MODE_INTERNAL,
2606 			  config->supported_interfaces);
2607 		config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
2608 					   MAC_10000FD;
2609 	}
2610 }
2611 
2612 static int
2613 mt753x_pad_setup(struct dsa_switch *ds, const struct phylink_link_state *state)
2614 {
2615 	struct mt7530_priv *priv = ds->priv;
2616 
2617 	return priv->info->pad_setup(ds, state->interface);
2618 }
2619 
2620 static int
2621 mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2622 		  phy_interface_t interface)
2623 {
2624 	struct mt7530_priv *priv = ds->priv;
2625 
2626 	/* Only need to setup port5. */
2627 	if (port != 5)
2628 		return 0;
2629 
2630 	mt7530_setup_port5(priv->ds, interface);
2631 
2632 	return 0;
2633 }
2634 
2635 static int mt7531_rgmii_setup(struct mt7530_priv *priv, u32 port,
2636 			      phy_interface_t interface,
2637 			      struct phy_device *phydev)
2638 {
2639 	u32 val;
2640 
2641 	if (!mt7531_is_rgmii_port(priv, port)) {
2642 		dev_err(priv->dev, "RGMII mode is not available for port %d\n",
2643 			port);
2644 		return -EINVAL;
2645 	}
2646 
2647 	val = mt7530_read(priv, MT7531_CLKGEN_CTRL);
2648 	val |= GP_CLK_EN;
2649 	val &= ~GP_MODE_MASK;
2650 	val |= GP_MODE(MT7531_GP_MODE_RGMII);
2651 	val &= ~CLK_SKEW_IN_MASK;
2652 	val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG);
2653 	val &= ~CLK_SKEW_OUT_MASK;
2654 	val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG);
2655 	val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY;
2656 
2657 	/* Do not adjust rgmii delay when vendor phy driver presents. */
2658 	if (!phydev || phy_driver_is_genphy(phydev)) {
2659 		val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY);
2660 		switch (interface) {
2661 		case PHY_INTERFACE_MODE_RGMII:
2662 			val |= TXCLK_NO_REVERSE;
2663 			val |= RXCLK_NO_DELAY;
2664 			break;
2665 		case PHY_INTERFACE_MODE_RGMII_RXID:
2666 			val |= TXCLK_NO_REVERSE;
2667 			break;
2668 		case PHY_INTERFACE_MODE_RGMII_TXID:
2669 			val |= RXCLK_NO_DELAY;
2670 			break;
2671 		case PHY_INTERFACE_MODE_RGMII_ID:
2672 			break;
2673 		default:
2674 			return -EINVAL;
2675 		}
2676 	}
2677 	mt7530_write(priv, MT7531_CLKGEN_CTRL, val);
2678 
2679 	return 0;
2680 }
2681 
2682 static bool mt753x_is_mac_port(u32 port)
2683 {
2684 	return (port == 5 || port == 6);
2685 }
2686 
2687 static int
2688 mt7988_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2689 		  phy_interface_t interface)
2690 {
2691 	if (dsa_is_cpu_port(ds, port) &&
2692 	    interface == PHY_INTERFACE_MODE_INTERNAL)
2693 		return 0;
2694 
2695 	return -EINVAL;
2696 }
2697 
2698 static int
2699 mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2700 		  phy_interface_t interface)
2701 {
2702 	struct mt7530_priv *priv = ds->priv;
2703 	struct phy_device *phydev;
2704 	struct dsa_port *dp;
2705 
2706 	if (!mt753x_is_mac_port(port)) {
2707 		dev_err(priv->dev, "port %d is not a MAC port\n", port);
2708 		return -EINVAL;
2709 	}
2710 
2711 	switch (interface) {
2712 	case PHY_INTERFACE_MODE_RGMII:
2713 	case PHY_INTERFACE_MODE_RGMII_ID:
2714 	case PHY_INTERFACE_MODE_RGMII_RXID:
2715 	case PHY_INTERFACE_MODE_RGMII_TXID:
2716 		dp = dsa_to_port(ds, port);
2717 		phydev = dp->slave->phydev;
2718 		return mt7531_rgmii_setup(priv, port, interface, phydev);
2719 	case PHY_INTERFACE_MODE_SGMII:
2720 	case PHY_INTERFACE_MODE_NA:
2721 	case PHY_INTERFACE_MODE_1000BASEX:
2722 	case PHY_INTERFACE_MODE_2500BASEX:
2723 		/* handled in SGMII PCS driver */
2724 		return 0;
2725 	default:
2726 		return -EINVAL;
2727 	}
2728 
2729 	return -EINVAL;
2730 }
2731 
2732 static int
2733 mt753x_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2734 		  const struct phylink_link_state *state)
2735 {
2736 	struct mt7530_priv *priv = ds->priv;
2737 
2738 	return priv->info->mac_port_config(ds, port, mode, state->interface);
2739 }
2740 
2741 static struct phylink_pcs *
2742 mt753x_phylink_mac_select_pcs(struct dsa_switch *ds, int port,
2743 			      phy_interface_t interface)
2744 {
2745 	struct mt7530_priv *priv = ds->priv;
2746 
2747 	switch (interface) {
2748 	case PHY_INTERFACE_MODE_TRGMII:
2749 		return &priv->pcs[port].pcs;
2750 	case PHY_INTERFACE_MODE_SGMII:
2751 	case PHY_INTERFACE_MODE_1000BASEX:
2752 	case PHY_INTERFACE_MODE_2500BASEX:
2753 		return priv->ports[port].sgmii_pcs;
2754 	default:
2755 		return NULL;
2756 	}
2757 }
2758 
2759 static void
2760 mt753x_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2761 			  const struct phylink_link_state *state)
2762 {
2763 	struct mt7530_priv *priv = ds->priv;
2764 	u32 mcr_cur, mcr_new;
2765 
2766 	switch (port) {
2767 	case 0 ... 4: /* Internal phy */
2768 		if (state->interface != PHY_INTERFACE_MODE_GMII &&
2769 		    state->interface != PHY_INTERFACE_MODE_INTERNAL)
2770 			goto unsupported;
2771 		break;
2772 	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2773 		if (priv->p5_interface == state->interface)
2774 			break;
2775 
2776 		if (mt753x_mac_config(ds, port, mode, state) < 0)
2777 			goto unsupported;
2778 
2779 		if (priv->p5_intf_sel != P5_DISABLED)
2780 			priv->p5_interface = state->interface;
2781 		break;
2782 	case 6: /* 1st cpu port */
2783 		if (priv->p6_interface == state->interface)
2784 			break;
2785 
2786 		mt753x_pad_setup(ds, state);
2787 
2788 		if (mt753x_mac_config(ds, port, mode, state) < 0)
2789 			goto unsupported;
2790 
2791 		priv->p6_interface = state->interface;
2792 		break;
2793 	default:
2794 unsupported:
2795 		dev_err(ds->dev, "%s: unsupported %s port: %i\n",
2796 			__func__, phy_modes(state->interface), port);
2797 		return;
2798 	}
2799 
2800 	mcr_cur = mt7530_read(priv, MT7530_PMCR_P(port));
2801 	mcr_new = mcr_cur;
2802 	mcr_new &= ~PMCR_LINK_SETTINGS_MASK;
2803 	mcr_new |= PMCR_IFG_XMIT(1) | PMCR_MAC_MODE | PMCR_BACKOFF_EN |
2804 		   PMCR_BACKPR_EN | PMCR_FORCE_MODE_ID(priv->id);
2805 
2806 	/* Are we connected to external phy */
2807 	if (port == 5 && dsa_is_user_port(ds, 5))
2808 		mcr_new |= PMCR_EXT_PHY;
2809 
2810 	if (mcr_new != mcr_cur)
2811 		mt7530_write(priv, MT7530_PMCR_P(port), mcr_new);
2812 }
2813 
2814 static void mt753x_phylink_mac_link_down(struct dsa_switch *ds, int port,
2815 					 unsigned int mode,
2816 					 phy_interface_t interface)
2817 {
2818 	struct mt7530_priv *priv = ds->priv;
2819 
2820 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
2821 }
2822 
2823 static void mt753x_phylink_pcs_link_up(struct phylink_pcs *pcs,
2824 				       unsigned int mode,
2825 				       phy_interface_t interface,
2826 				       int speed, int duplex)
2827 {
2828 	if (pcs->ops->pcs_link_up)
2829 		pcs->ops->pcs_link_up(pcs, mode, interface, speed, duplex);
2830 }
2831 
2832 static void mt753x_phylink_mac_link_up(struct dsa_switch *ds, int port,
2833 				       unsigned int mode,
2834 				       phy_interface_t interface,
2835 				       struct phy_device *phydev,
2836 				       int speed, int duplex,
2837 				       bool tx_pause, bool rx_pause)
2838 {
2839 	struct mt7530_priv *priv = ds->priv;
2840 	u32 mcr;
2841 
2842 	mcr = PMCR_RX_EN | PMCR_TX_EN | PMCR_FORCE_LNK;
2843 
2844 	/* MT753x MAC works in 1G full duplex mode for all up-clocked
2845 	 * variants.
2846 	 */
2847 	if (interface == PHY_INTERFACE_MODE_INTERNAL ||
2848 	    interface == PHY_INTERFACE_MODE_TRGMII ||
2849 	    (phy_interface_mode_is_8023z(interface))) {
2850 		speed = SPEED_1000;
2851 		duplex = DUPLEX_FULL;
2852 	}
2853 
2854 	switch (speed) {
2855 	case SPEED_1000:
2856 		mcr |= PMCR_FORCE_SPEED_1000;
2857 		break;
2858 	case SPEED_100:
2859 		mcr |= PMCR_FORCE_SPEED_100;
2860 		break;
2861 	}
2862 	if (duplex == DUPLEX_FULL) {
2863 		mcr |= PMCR_FORCE_FDX;
2864 		if (tx_pause)
2865 			mcr |= PMCR_TX_FC_EN;
2866 		if (rx_pause)
2867 			mcr |= PMCR_RX_FC_EN;
2868 	}
2869 
2870 	if (mode == MLO_AN_PHY && phydev && phy_init_eee(phydev, false) >= 0) {
2871 		switch (speed) {
2872 		case SPEED_1000:
2873 			mcr |= PMCR_FORCE_EEE1G;
2874 			break;
2875 		case SPEED_100:
2876 			mcr |= PMCR_FORCE_EEE100;
2877 			break;
2878 		}
2879 	}
2880 
2881 	mt7530_set(priv, MT7530_PMCR_P(port), mcr);
2882 }
2883 
2884 static int
2885 mt7531_cpu_port_config(struct dsa_switch *ds, int port)
2886 {
2887 	struct mt7530_priv *priv = ds->priv;
2888 	phy_interface_t interface;
2889 	int speed;
2890 	int ret;
2891 
2892 	switch (port) {
2893 	case 5:
2894 		if (mt7531_is_rgmii_port(priv, port))
2895 			interface = PHY_INTERFACE_MODE_RGMII;
2896 		else
2897 			interface = PHY_INTERFACE_MODE_2500BASEX;
2898 
2899 		priv->p5_interface = interface;
2900 		break;
2901 	case 6:
2902 		interface = PHY_INTERFACE_MODE_2500BASEX;
2903 
2904 		priv->p6_interface = interface;
2905 		break;
2906 	default:
2907 		return -EINVAL;
2908 	}
2909 
2910 	if (interface == PHY_INTERFACE_MODE_2500BASEX)
2911 		speed = SPEED_2500;
2912 	else
2913 		speed = SPEED_1000;
2914 
2915 	ret = mt7531_mac_config(ds, port, MLO_AN_FIXED, interface);
2916 	if (ret)
2917 		return ret;
2918 	mt7530_write(priv, MT7530_PMCR_P(port),
2919 		     PMCR_CPU_PORT_SETTING(priv->id));
2920 	mt753x_phylink_pcs_link_up(&priv->pcs[port].pcs, MLO_AN_FIXED,
2921 				   interface, speed, DUPLEX_FULL);
2922 	mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED, interface, NULL,
2923 				   speed, DUPLEX_FULL, true, true);
2924 
2925 	return 0;
2926 }
2927 
2928 static int
2929 mt7988_cpu_port_config(struct dsa_switch *ds, int port)
2930 {
2931 	struct mt7530_priv *priv = ds->priv;
2932 
2933 	mt7530_write(priv, MT7530_PMCR_P(port),
2934 		     PMCR_CPU_PORT_SETTING(priv->id));
2935 
2936 	mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED,
2937 				   PHY_INTERFACE_MODE_INTERNAL, NULL,
2938 				   SPEED_10000, DUPLEX_FULL, true, true);
2939 
2940 	return 0;
2941 }
2942 
2943 static void mt753x_phylink_get_caps(struct dsa_switch *ds, int port,
2944 				    struct phylink_config *config)
2945 {
2946 	struct mt7530_priv *priv = ds->priv;
2947 
2948 	/* This switch only supports full-duplex at 1Gbps */
2949 	config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
2950 				   MAC_10 | MAC_100 | MAC_1000FD;
2951 
2952 	/* This driver does not make use of the speed, duplex, pause or the
2953 	 * advertisement in its mac_config, so it is safe to mark this driver
2954 	 * as non-legacy.
2955 	 */
2956 	config->legacy_pre_march2020 = false;
2957 
2958 	priv->info->mac_port_get_caps(ds, port, config);
2959 }
2960 
2961 static int mt753x_pcs_validate(struct phylink_pcs *pcs,
2962 			       unsigned long *supported,
2963 			       const struct phylink_link_state *state)
2964 {
2965 	/* Autonegotiation is not supported in TRGMII nor 802.3z modes */
2966 	if (state->interface == PHY_INTERFACE_MODE_TRGMII ||
2967 	    phy_interface_mode_is_8023z(state->interface))
2968 		phylink_clear(supported, Autoneg);
2969 
2970 	return 0;
2971 }
2972 
2973 static void mt7530_pcs_get_state(struct phylink_pcs *pcs,
2974 				 struct phylink_link_state *state)
2975 {
2976 	struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
2977 	int port = pcs_to_mt753x_pcs(pcs)->port;
2978 	u32 pmsr;
2979 
2980 	pmsr = mt7530_read(priv, MT7530_PMSR_P(port));
2981 
2982 	state->link = (pmsr & PMSR_LINK);
2983 	state->an_complete = state->link;
2984 	state->duplex = !!(pmsr & PMSR_DPX);
2985 
2986 	switch (pmsr & PMSR_SPEED_MASK) {
2987 	case PMSR_SPEED_10:
2988 		state->speed = SPEED_10;
2989 		break;
2990 	case PMSR_SPEED_100:
2991 		state->speed = SPEED_100;
2992 		break;
2993 	case PMSR_SPEED_1000:
2994 		state->speed = SPEED_1000;
2995 		break;
2996 	default:
2997 		state->speed = SPEED_UNKNOWN;
2998 		break;
2999 	}
3000 
3001 	state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX);
3002 	if (pmsr & PMSR_RX_FC)
3003 		state->pause |= MLO_PAUSE_RX;
3004 	if (pmsr & PMSR_TX_FC)
3005 		state->pause |= MLO_PAUSE_TX;
3006 }
3007 
3008 static int mt753x_pcs_config(struct phylink_pcs *pcs, unsigned int neg_mode,
3009 			     phy_interface_t interface,
3010 			     const unsigned long *advertising,
3011 			     bool permit_pause_to_mac)
3012 {
3013 	return 0;
3014 }
3015 
3016 static void mt7530_pcs_an_restart(struct phylink_pcs *pcs)
3017 {
3018 }
3019 
3020 static const struct phylink_pcs_ops mt7530_pcs_ops = {
3021 	.pcs_validate = mt753x_pcs_validate,
3022 	.pcs_get_state = mt7530_pcs_get_state,
3023 	.pcs_config = mt753x_pcs_config,
3024 	.pcs_an_restart = mt7530_pcs_an_restart,
3025 };
3026 
3027 static int
3028 mt753x_setup(struct dsa_switch *ds)
3029 {
3030 	struct mt7530_priv *priv = ds->priv;
3031 	int i, ret;
3032 
3033 	/* Initialise the PCS devices */
3034 	for (i = 0; i < priv->ds->num_ports; i++) {
3035 		priv->pcs[i].pcs.ops = priv->info->pcs_ops;
3036 		priv->pcs[i].pcs.neg_mode = true;
3037 		priv->pcs[i].priv = priv;
3038 		priv->pcs[i].port = i;
3039 	}
3040 
3041 	ret = priv->info->sw_setup(ds);
3042 	if (ret)
3043 		return ret;
3044 
3045 	ret = mt7530_setup_irq(priv);
3046 	if (ret)
3047 		return ret;
3048 
3049 	ret = mt7530_setup_mdio(priv);
3050 	if (ret && priv->irq)
3051 		mt7530_free_irq_common(priv);
3052 
3053 	if (priv->create_sgmii) {
3054 		ret = priv->create_sgmii(priv, mt7531_dual_sgmii_supported(priv));
3055 		if (ret && priv->irq)
3056 			mt7530_free_irq(priv);
3057 	}
3058 
3059 	return ret;
3060 }
3061 
3062 static int mt753x_get_mac_eee(struct dsa_switch *ds, int port,
3063 			      struct ethtool_eee *e)
3064 {
3065 	struct mt7530_priv *priv = ds->priv;
3066 	u32 eeecr = mt7530_read(priv, MT7530_PMEEECR_P(port));
3067 
3068 	e->tx_lpi_enabled = !(eeecr & LPI_MODE_EN);
3069 	e->tx_lpi_timer = GET_LPI_THRESH(eeecr);
3070 
3071 	return 0;
3072 }
3073 
3074 static int mt753x_set_mac_eee(struct dsa_switch *ds, int port,
3075 			      struct ethtool_eee *e)
3076 {
3077 	struct mt7530_priv *priv = ds->priv;
3078 	u32 set, mask = LPI_THRESH_MASK | LPI_MODE_EN;
3079 
3080 	if (e->tx_lpi_timer > 0xFFF)
3081 		return -EINVAL;
3082 
3083 	set = SET_LPI_THRESH(e->tx_lpi_timer);
3084 	if (!e->tx_lpi_enabled)
3085 		/* Force LPI Mode without a delay */
3086 		set |= LPI_MODE_EN;
3087 	mt7530_rmw(priv, MT7530_PMEEECR_P(port), mask, set);
3088 
3089 	return 0;
3090 }
3091 
3092 static int mt7988_pad_setup(struct dsa_switch *ds, phy_interface_t interface)
3093 {
3094 	return 0;
3095 }
3096 
3097 static int mt7988_setup(struct dsa_switch *ds)
3098 {
3099 	struct mt7530_priv *priv = ds->priv;
3100 
3101 	/* Reset the switch */
3102 	reset_control_assert(priv->rstc);
3103 	usleep_range(20, 50);
3104 	reset_control_deassert(priv->rstc);
3105 	usleep_range(20, 50);
3106 
3107 	/* Reset the switch PHYs */
3108 	mt7530_write(priv, MT7530_SYS_CTRL, SYS_CTRL_PHY_RST);
3109 
3110 	return mt7531_setup_common(ds);
3111 }
3112 
3113 const struct dsa_switch_ops mt7530_switch_ops = {
3114 	.get_tag_protocol	= mtk_get_tag_protocol,
3115 	.setup			= mt753x_setup,
3116 	.preferred_default_local_cpu_port = mt753x_preferred_default_local_cpu_port,
3117 	.get_strings		= mt7530_get_strings,
3118 	.get_ethtool_stats	= mt7530_get_ethtool_stats,
3119 	.get_sset_count		= mt7530_get_sset_count,
3120 	.set_ageing_time	= mt7530_set_ageing_time,
3121 	.port_enable		= mt7530_port_enable,
3122 	.port_disable		= mt7530_port_disable,
3123 	.port_change_mtu	= mt7530_port_change_mtu,
3124 	.port_max_mtu		= mt7530_port_max_mtu,
3125 	.port_stp_state_set	= mt7530_stp_state_set,
3126 	.port_pre_bridge_flags	= mt7530_port_pre_bridge_flags,
3127 	.port_bridge_flags	= mt7530_port_bridge_flags,
3128 	.port_bridge_join	= mt7530_port_bridge_join,
3129 	.port_bridge_leave	= mt7530_port_bridge_leave,
3130 	.port_fdb_add		= mt7530_port_fdb_add,
3131 	.port_fdb_del		= mt7530_port_fdb_del,
3132 	.port_fdb_dump		= mt7530_port_fdb_dump,
3133 	.port_mdb_add		= mt7530_port_mdb_add,
3134 	.port_mdb_del		= mt7530_port_mdb_del,
3135 	.port_vlan_filtering	= mt7530_port_vlan_filtering,
3136 	.port_vlan_add		= mt7530_port_vlan_add,
3137 	.port_vlan_del		= mt7530_port_vlan_del,
3138 	.port_mirror_add	= mt753x_port_mirror_add,
3139 	.port_mirror_del	= mt753x_port_mirror_del,
3140 	.phylink_get_caps	= mt753x_phylink_get_caps,
3141 	.phylink_mac_select_pcs	= mt753x_phylink_mac_select_pcs,
3142 	.phylink_mac_config	= mt753x_phylink_mac_config,
3143 	.phylink_mac_link_down	= mt753x_phylink_mac_link_down,
3144 	.phylink_mac_link_up	= mt753x_phylink_mac_link_up,
3145 	.get_mac_eee		= mt753x_get_mac_eee,
3146 	.set_mac_eee		= mt753x_set_mac_eee,
3147 };
3148 EXPORT_SYMBOL_GPL(mt7530_switch_ops);
3149 
3150 const struct mt753x_info mt753x_table[] = {
3151 	[ID_MT7621] = {
3152 		.id = ID_MT7621,
3153 		.pcs_ops = &mt7530_pcs_ops,
3154 		.sw_setup = mt7530_setup,
3155 		.phy_read_c22 = mt7530_phy_read_c22,
3156 		.phy_write_c22 = mt7530_phy_write_c22,
3157 		.phy_read_c45 = mt7530_phy_read_c45,
3158 		.phy_write_c45 = mt7530_phy_write_c45,
3159 		.pad_setup = mt7530_pad_clk_setup,
3160 		.mac_port_get_caps = mt7530_mac_port_get_caps,
3161 		.mac_port_config = mt7530_mac_config,
3162 	},
3163 	[ID_MT7530] = {
3164 		.id = ID_MT7530,
3165 		.pcs_ops = &mt7530_pcs_ops,
3166 		.sw_setup = mt7530_setup,
3167 		.phy_read_c22 = mt7530_phy_read_c22,
3168 		.phy_write_c22 = mt7530_phy_write_c22,
3169 		.phy_read_c45 = mt7530_phy_read_c45,
3170 		.phy_write_c45 = mt7530_phy_write_c45,
3171 		.pad_setup = mt7530_pad_clk_setup,
3172 		.mac_port_get_caps = mt7530_mac_port_get_caps,
3173 		.mac_port_config = mt7530_mac_config,
3174 	},
3175 	[ID_MT7531] = {
3176 		.id = ID_MT7531,
3177 		.pcs_ops = &mt7530_pcs_ops,
3178 		.sw_setup = mt7531_setup,
3179 		.phy_read_c22 = mt7531_ind_c22_phy_read,
3180 		.phy_write_c22 = mt7531_ind_c22_phy_write,
3181 		.phy_read_c45 = mt7531_ind_c45_phy_read,
3182 		.phy_write_c45 = mt7531_ind_c45_phy_write,
3183 		.pad_setup = mt7531_pad_setup,
3184 		.cpu_port_config = mt7531_cpu_port_config,
3185 		.mac_port_get_caps = mt7531_mac_port_get_caps,
3186 		.mac_port_config = mt7531_mac_config,
3187 	},
3188 	[ID_MT7988] = {
3189 		.id = ID_MT7988,
3190 		.pcs_ops = &mt7530_pcs_ops,
3191 		.sw_setup = mt7988_setup,
3192 		.phy_read_c22 = mt7531_ind_c22_phy_read,
3193 		.phy_write_c22 = mt7531_ind_c22_phy_write,
3194 		.phy_read_c45 = mt7531_ind_c45_phy_read,
3195 		.phy_write_c45 = mt7531_ind_c45_phy_write,
3196 		.pad_setup = mt7988_pad_setup,
3197 		.cpu_port_config = mt7988_cpu_port_config,
3198 		.mac_port_get_caps = mt7988_mac_port_get_caps,
3199 		.mac_port_config = mt7988_mac_config,
3200 	},
3201 };
3202 EXPORT_SYMBOL_GPL(mt753x_table);
3203 
3204 int
3205 mt7530_probe_common(struct mt7530_priv *priv)
3206 {
3207 	struct device *dev = priv->dev;
3208 
3209 	priv->ds = devm_kzalloc(dev, sizeof(*priv->ds), GFP_KERNEL);
3210 	if (!priv->ds)
3211 		return -ENOMEM;
3212 
3213 	priv->ds->dev = dev;
3214 	priv->ds->num_ports = MT7530_NUM_PORTS;
3215 
3216 	/* Get the hardware identifier from the devicetree node.
3217 	 * We will need it for some of the clock and regulator setup.
3218 	 */
3219 	priv->info = of_device_get_match_data(dev);
3220 	if (!priv->info)
3221 		return -EINVAL;
3222 
3223 	/* Sanity check if these required device operations are filled
3224 	 * properly.
3225 	 */
3226 	if (!priv->info->sw_setup || !priv->info->pad_setup ||
3227 	    !priv->info->phy_read_c22 || !priv->info->phy_write_c22 ||
3228 	    !priv->info->mac_port_get_caps ||
3229 	    !priv->info->mac_port_config)
3230 		return -EINVAL;
3231 
3232 	priv->id = priv->info->id;
3233 	priv->dev = dev;
3234 	priv->ds->priv = priv;
3235 	priv->ds->ops = &mt7530_switch_ops;
3236 	mutex_init(&priv->reg_mutex);
3237 	dev_set_drvdata(dev, priv);
3238 
3239 	return 0;
3240 }
3241 EXPORT_SYMBOL_GPL(mt7530_probe_common);
3242 
3243 void
3244 mt7530_remove_common(struct mt7530_priv *priv)
3245 {
3246 	if (priv->irq)
3247 		mt7530_free_irq(priv);
3248 
3249 	dsa_unregister_switch(priv->ds);
3250 
3251 	mutex_destroy(&priv->reg_mutex);
3252 }
3253 EXPORT_SYMBOL_GPL(mt7530_remove_common);
3254 
3255 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
3256 MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
3257 MODULE_LICENSE("GPL");
3258