xref: /openbmc/linux/drivers/net/dsa/mt7530.c (revision f32e5616)
1 /*
2  * Mediatek MT7530 DSA Switch driver
3  * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
4  *
5  * This program is free software; you can redistribute it and/or modify
6  * it under the terms of the GNU General Public License version 2 as
7  * published by the Free Software Foundation.
8  *
9  * This program is distributed in the hope that it will be useful,
10  * but WITHOUT ANY WARRANTY; without even the implied warranty of
11  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
12  * GNU General Public License for more details.
13  */
14 #include <linux/etherdevice.h>
15 #include <linux/if_bridge.h>
16 #include <linux/iopoll.h>
17 #include <linux/mdio.h>
18 #include <linux/mfd/syscon.h>
19 #include <linux/module.h>
20 #include <linux/netdevice.h>
21 #include <linux/of_gpio.h>
22 #include <linux/of_mdio.h>
23 #include <linux/of_net.h>
24 #include <linux/of_platform.h>
25 #include <linux/phy.h>
26 #include <linux/regmap.h>
27 #include <linux/regulator/consumer.h>
28 #include <linux/reset.h>
29 #include <linux/gpio/consumer.h>
30 #include <net/dsa.h>
31 
32 #include "mt7530.h"
33 
34 /* String, offset, and register size in bytes if different from 4 bytes */
35 static const struct mt7530_mib_desc mt7530_mib[] = {
36 	MIB_DESC(1, 0x00, "TxDrop"),
37 	MIB_DESC(1, 0x04, "TxCrcErr"),
38 	MIB_DESC(1, 0x08, "TxUnicast"),
39 	MIB_DESC(1, 0x0c, "TxMulticast"),
40 	MIB_DESC(1, 0x10, "TxBroadcast"),
41 	MIB_DESC(1, 0x14, "TxCollision"),
42 	MIB_DESC(1, 0x18, "TxSingleCollision"),
43 	MIB_DESC(1, 0x1c, "TxMultipleCollision"),
44 	MIB_DESC(1, 0x20, "TxDeferred"),
45 	MIB_DESC(1, 0x24, "TxLateCollision"),
46 	MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
47 	MIB_DESC(1, 0x2c, "TxPause"),
48 	MIB_DESC(1, 0x30, "TxPktSz64"),
49 	MIB_DESC(1, 0x34, "TxPktSz65To127"),
50 	MIB_DESC(1, 0x38, "TxPktSz128To255"),
51 	MIB_DESC(1, 0x3c, "TxPktSz256To511"),
52 	MIB_DESC(1, 0x40, "TxPktSz512To1023"),
53 	MIB_DESC(1, 0x44, "Tx1024ToMax"),
54 	MIB_DESC(2, 0x48, "TxBytes"),
55 	MIB_DESC(1, 0x60, "RxDrop"),
56 	MIB_DESC(1, 0x64, "RxFiltering"),
57 	MIB_DESC(1, 0x6c, "RxMulticast"),
58 	MIB_DESC(1, 0x70, "RxBroadcast"),
59 	MIB_DESC(1, 0x74, "RxAlignErr"),
60 	MIB_DESC(1, 0x78, "RxCrcErr"),
61 	MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
62 	MIB_DESC(1, 0x80, "RxFragErr"),
63 	MIB_DESC(1, 0x84, "RxOverSzErr"),
64 	MIB_DESC(1, 0x88, "RxJabberErr"),
65 	MIB_DESC(1, 0x8c, "RxPause"),
66 	MIB_DESC(1, 0x90, "RxPktSz64"),
67 	MIB_DESC(1, 0x94, "RxPktSz65To127"),
68 	MIB_DESC(1, 0x98, "RxPktSz128To255"),
69 	MIB_DESC(1, 0x9c, "RxPktSz256To511"),
70 	MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
71 	MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
72 	MIB_DESC(2, 0xa8, "RxBytes"),
73 	MIB_DESC(1, 0xb0, "RxCtrlDrop"),
74 	MIB_DESC(1, 0xb4, "RxIngressDrop"),
75 	MIB_DESC(1, 0xb8, "RxArlDrop"),
76 };
77 
78 static int
79 mt7623_trgmii_write(struct mt7530_priv *priv,  u32 reg, u32 val)
80 {
81 	int ret;
82 
83 	ret =  regmap_write(priv->ethernet, TRGMII_BASE(reg), val);
84 	if (ret < 0)
85 		dev_err(priv->dev,
86 			"failed to priv write register\n");
87 	return ret;
88 }
89 
90 static u32
91 mt7623_trgmii_read(struct mt7530_priv *priv, u32 reg)
92 {
93 	int ret;
94 	u32 val;
95 
96 	ret = regmap_read(priv->ethernet, TRGMII_BASE(reg), &val);
97 	if (ret < 0) {
98 		dev_err(priv->dev,
99 			"failed to priv read register\n");
100 		return ret;
101 	}
102 
103 	return val;
104 }
105 
106 static void
107 mt7623_trgmii_rmw(struct mt7530_priv *priv, u32 reg,
108 		  u32 mask, u32 set)
109 {
110 	u32 val;
111 
112 	val = mt7623_trgmii_read(priv, reg);
113 	val &= ~mask;
114 	val |= set;
115 	mt7623_trgmii_write(priv, reg, val);
116 }
117 
118 static void
119 mt7623_trgmii_set(struct mt7530_priv *priv, u32 reg, u32 val)
120 {
121 	mt7623_trgmii_rmw(priv, reg, 0, val);
122 }
123 
124 static void
125 mt7623_trgmii_clear(struct mt7530_priv *priv, u32 reg, u32 val)
126 {
127 	mt7623_trgmii_rmw(priv, reg, val, 0);
128 }
129 
130 static int
131 core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
132 {
133 	struct mii_bus *bus = priv->bus;
134 	int value, ret;
135 
136 	/* Write the desired MMD Devad */
137 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
138 	if (ret < 0)
139 		goto err;
140 
141 	/* Write the desired MMD register address */
142 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
143 	if (ret < 0)
144 		goto err;
145 
146 	/* Select the Function : DATA with no post increment */
147 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
148 	if (ret < 0)
149 		goto err;
150 
151 	/* Read the content of the MMD's selected register */
152 	value = bus->read(bus, 0, MII_MMD_DATA);
153 
154 	return value;
155 err:
156 	dev_err(&bus->dev,  "failed to read mmd register\n");
157 
158 	return ret;
159 }
160 
161 static int
162 core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
163 			int devad, u32 data)
164 {
165 	struct mii_bus *bus = priv->bus;
166 	int ret;
167 
168 	/* Write the desired MMD Devad */
169 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
170 	if (ret < 0)
171 		goto err;
172 
173 	/* Write the desired MMD register address */
174 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
175 	if (ret < 0)
176 		goto err;
177 
178 	/* Select the Function : DATA with no post increment */
179 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
180 	if (ret < 0)
181 		goto err;
182 
183 	/* Write the data into MMD's selected register */
184 	ret = bus->write(bus, 0, MII_MMD_DATA, data);
185 err:
186 	if (ret < 0)
187 		dev_err(&bus->dev,
188 			"failed to write mmd register\n");
189 	return ret;
190 }
191 
192 static void
193 core_write(struct mt7530_priv *priv, u32 reg, u32 val)
194 {
195 	struct mii_bus *bus = priv->bus;
196 
197 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
198 
199 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
200 
201 	mutex_unlock(&bus->mdio_lock);
202 }
203 
204 static void
205 core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
206 {
207 	struct mii_bus *bus = priv->bus;
208 	u32 val;
209 
210 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
211 
212 	val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2);
213 	val &= ~mask;
214 	val |= set;
215 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
216 
217 	mutex_unlock(&bus->mdio_lock);
218 }
219 
220 static void
221 core_set(struct mt7530_priv *priv, u32 reg, u32 val)
222 {
223 	core_rmw(priv, reg, 0, val);
224 }
225 
226 static void
227 core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
228 {
229 	core_rmw(priv, reg, val, 0);
230 }
231 
232 static int
233 mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
234 {
235 	struct mii_bus *bus = priv->bus;
236 	u16 page, r, lo, hi;
237 	int ret;
238 
239 	page = (reg >> 6) & 0x3ff;
240 	r  = (reg >> 2) & 0xf;
241 	lo = val & 0xffff;
242 	hi = val >> 16;
243 
244 	/* MT7530 uses 31 as the pseudo port */
245 	ret = bus->write(bus, 0x1f, 0x1f, page);
246 	if (ret < 0)
247 		goto err;
248 
249 	ret = bus->write(bus, 0x1f, r,  lo);
250 	if (ret < 0)
251 		goto err;
252 
253 	ret = bus->write(bus, 0x1f, 0x10, hi);
254 err:
255 	if (ret < 0)
256 		dev_err(&bus->dev,
257 			"failed to write mt7530 register\n");
258 	return ret;
259 }
260 
261 static u32
262 mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
263 {
264 	struct mii_bus *bus = priv->bus;
265 	u16 page, r, lo, hi;
266 	int ret;
267 
268 	page = (reg >> 6) & 0x3ff;
269 	r = (reg >> 2) & 0xf;
270 
271 	/* MT7530 uses 31 as the pseudo port */
272 	ret = bus->write(bus, 0x1f, 0x1f, page);
273 	if (ret < 0) {
274 		dev_err(&bus->dev,
275 			"failed to read mt7530 register\n");
276 		return ret;
277 	}
278 
279 	lo = bus->read(bus, 0x1f, r);
280 	hi = bus->read(bus, 0x1f, 0x10);
281 
282 	return (hi << 16) | (lo & 0xffff);
283 }
284 
285 static void
286 mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
287 {
288 	struct mii_bus *bus = priv->bus;
289 
290 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
291 
292 	mt7530_mii_write(priv, reg, val);
293 
294 	mutex_unlock(&bus->mdio_lock);
295 }
296 
297 static u32
298 _mt7530_read(struct mt7530_dummy_poll *p)
299 {
300 	struct mii_bus		*bus = p->priv->bus;
301 	u32 val;
302 
303 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
304 
305 	val = mt7530_mii_read(p->priv, p->reg);
306 
307 	mutex_unlock(&bus->mdio_lock);
308 
309 	return val;
310 }
311 
312 static u32
313 mt7530_read(struct mt7530_priv *priv, u32 reg)
314 {
315 	struct mt7530_dummy_poll p;
316 
317 	INIT_MT7530_DUMMY_POLL(&p, priv, reg);
318 	return _mt7530_read(&p);
319 }
320 
321 static void
322 mt7530_rmw(struct mt7530_priv *priv, u32 reg,
323 	   u32 mask, u32 set)
324 {
325 	struct mii_bus *bus = priv->bus;
326 	u32 val;
327 
328 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
329 
330 	val = mt7530_mii_read(priv, reg);
331 	val &= ~mask;
332 	val |= set;
333 	mt7530_mii_write(priv, reg, val);
334 
335 	mutex_unlock(&bus->mdio_lock);
336 }
337 
338 static void
339 mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
340 {
341 	mt7530_rmw(priv, reg, 0, val);
342 }
343 
344 static void
345 mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
346 {
347 	mt7530_rmw(priv, reg, val, 0);
348 }
349 
350 static int
351 mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
352 {
353 	u32 val;
354 	int ret;
355 	struct mt7530_dummy_poll p;
356 
357 	/* Set the command operating upon the MAC address entries */
358 	val = ATC_BUSY | ATC_MAT(0) | cmd;
359 	mt7530_write(priv, MT7530_ATC, val);
360 
361 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
362 	ret = readx_poll_timeout(_mt7530_read, &p, val,
363 				 !(val & ATC_BUSY), 20, 20000);
364 	if (ret < 0) {
365 		dev_err(priv->dev, "reset timeout\n");
366 		return ret;
367 	}
368 
369 	/* Additional sanity for read command if the specified
370 	 * entry is invalid
371 	 */
372 	val = mt7530_read(priv, MT7530_ATC);
373 	if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
374 		return -EINVAL;
375 
376 	if (rsp)
377 		*rsp = val;
378 
379 	return 0;
380 }
381 
382 static void
383 mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
384 {
385 	u32 reg[3];
386 	int i;
387 
388 	/* Read from ARL table into an array */
389 	for (i = 0; i < 3; i++) {
390 		reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
391 
392 		dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
393 			__func__, __LINE__, i, reg[i]);
394 	}
395 
396 	fdb->vid = (reg[1] >> CVID) & CVID_MASK;
397 	fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
398 	fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
399 	fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
400 	fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
401 	fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
402 	fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
403 	fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
404 	fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
405 	fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
406 }
407 
408 static void
409 mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
410 		 u8 port_mask, const u8 *mac,
411 		 u8 aging, u8 type)
412 {
413 	u32 reg[3] = { 0 };
414 	int i;
415 
416 	reg[1] |= vid & CVID_MASK;
417 	reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
418 	reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
419 	/* STATIC_ENT indicate that entry is static wouldn't
420 	 * be aged out and STATIC_EMP specified as erasing an
421 	 * entry
422 	 */
423 	reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
424 	reg[1] |= mac[5] << MAC_BYTE_5;
425 	reg[1] |= mac[4] << MAC_BYTE_4;
426 	reg[0] |= mac[3] << MAC_BYTE_3;
427 	reg[0] |= mac[2] << MAC_BYTE_2;
428 	reg[0] |= mac[1] << MAC_BYTE_1;
429 	reg[0] |= mac[0] << MAC_BYTE_0;
430 
431 	/* Write array into the ARL table */
432 	for (i = 0; i < 3; i++)
433 		mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
434 }
435 
436 static int
437 mt7530_pad_clk_setup(struct dsa_switch *ds, int mode)
438 {
439 	struct mt7530_priv *priv = ds->priv;
440 	u32 ncpo1, ssc_delta, trgint, i;
441 
442 	switch (mode) {
443 	case PHY_INTERFACE_MODE_RGMII:
444 		trgint = 0;
445 		ncpo1 = 0x0c80;
446 		ssc_delta = 0x87;
447 		break;
448 	case PHY_INTERFACE_MODE_TRGMII:
449 		trgint = 1;
450 		ncpo1 = 0x1400;
451 		ssc_delta = 0x57;
452 		break;
453 	default:
454 		dev_err(priv->dev, "xMII mode %d not supported\n", mode);
455 		return -EINVAL;
456 	}
457 
458 	mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
459 		   P6_INTF_MODE(trgint));
460 
461 	/* Lower Tx Driving for TRGMII path */
462 	for (i = 0 ; i < NUM_TRGMII_CTRL ; i++)
463 		mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
464 			     TD_DM_DRVP(8) | TD_DM_DRVN(8));
465 
466 	/* Setup core clock for MT7530 */
467 	if (!trgint) {
468 		/* Disable MT7530 core clock */
469 		core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
470 
471 		/* Disable PLL, since phy_device has not yet been created
472 		 * provided for phy_[read,write]_mmd_indirect is called, we
473 		 * provide our own core_write_mmd_indirect to complete this
474 		 * function.
475 		 */
476 		core_write_mmd_indirect(priv,
477 					CORE_GSWPLL_GRP1,
478 					MDIO_MMD_VEND2,
479 					0);
480 
481 		/* Set core clock into 500Mhz */
482 		core_write(priv, CORE_GSWPLL_GRP2,
483 			   RG_GSWPLL_POSDIV_500M(1) |
484 			   RG_GSWPLL_FBKDIV_500M(25));
485 
486 		/* Enable PLL */
487 		core_write(priv, CORE_GSWPLL_GRP1,
488 			   RG_GSWPLL_EN_PRE |
489 			   RG_GSWPLL_POSDIV_200M(2) |
490 			   RG_GSWPLL_FBKDIV_200M(32));
491 
492 		/* Enable MT7530 core clock */
493 		core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
494 	}
495 
496 	/* Setup the MT7530 TRGMII Tx Clock */
497 	core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
498 	core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
499 	core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
500 	core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
501 	core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
502 	core_write(priv, CORE_PLL_GROUP4,
503 		   RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN |
504 		   RG_SYSPLL_BIAS_LPF_EN);
505 	core_write(priv, CORE_PLL_GROUP2,
506 		   RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN |
507 		   RG_SYSPLL_POSDIV(1));
508 	core_write(priv, CORE_PLL_GROUP7,
509 		   RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) |
510 		   RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
511 	core_set(priv, CORE_TRGMII_GSW_CLK_CG,
512 		 REG_GSWCK_EN | REG_TRGMIICK_EN);
513 
514 	if (!trgint)
515 		for (i = 0 ; i < NUM_TRGMII_CTRL; i++)
516 			mt7530_rmw(priv, MT7530_TRGMII_RD(i),
517 				   RD_TAP_MASK, RD_TAP(16));
518 	else
519 		mt7623_trgmii_set(priv, GSW_INTF_MODE, INTF_MODE_TRGMII);
520 
521 	return 0;
522 }
523 
524 static int
525 mt7623_pad_clk_setup(struct dsa_switch *ds)
526 {
527 	struct mt7530_priv *priv = ds->priv;
528 	int i;
529 
530 	for (i = 0 ; i < NUM_TRGMII_CTRL; i++)
531 		mt7623_trgmii_write(priv, GSW_TRGMII_TD_ODT(i),
532 				    TD_DM_DRVP(8) | TD_DM_DRVN(8));
533 
534 	mt7623_trgmii_set(priv, GSW_TRGMII_RCK_CTRL, RX_RST | RXC_DQSISEL);
535 	mt7623_trgmii_clear(priv, GSW_TRGMII_RCK_CTRL, RX_RST);
536 
537 	return 0;
538 }
539 
540 static void
541 mt7530_mib_reset(struct dsa_switch *ds)
542 {
543 	struct mt7530_priv *priv = ds->priv;
544 
545 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
546 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
547 }
548 
549 static void
550 mt7530_port_set_status(struct mt7530_priv *priv, int port, int enable)
551 {
552 	u32 mask = PMCR_TX_EN | PMCR_RX_EN;
553 
554 	if (enable)
555 		mt7530_set(priv, MT7530_PMCR_P(port), mask);
556 	else
557 		mt7530_clear(priv, MT7530_PMCR_P(port), mask);
558 }
559 
560 static int mt7530_phy_read(struct dsa_switch *ds, int port, int regnum)
561 {
562 	struct mt7530_priv *priv = ds->priv;
563 
564 	return mdiobus_read_nested(priv->bus, port, regnum);
565 }
566 
567 static int mt7530_phy_write(struct dsa_switch *ds, int port, int regnum,
568 			    u16 val)
569 {
570 	struct mt7530_priv *priv = ds->priv;
571 
572 	return mdiobus_write_nested(priv->bus, port, regnum, val);
573 }
574 
575 static void
576 mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
577 		   uint8_t *data)
578 {
579 	int i;
580 
581 	if (stringset != ETH_SS_STATS)
582 		return;
583 
584 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
585 		strncpy(data + i * ETH_GSTRING_LEN, mt7530_mib[i].name,
586 			ETH_GSTRING_LEN);
587 }
588 
589 static void
590 mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
591 			 uint64_t *data)
592 {
593 	struct mt7530_priv *priv = ds->priv;
594 	const struct mt7530_mib_desc *mib;
595 	u32 reg, i;
596 	u64 hi;
597 
598 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
599 		mib = &mt7530_mib[i];
600 		reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
601 
602 		data[i] = mt7530_read(priv, reg);
603 		if (mib->size == 2) {
604 			hi = mt7530_read(priv, reg + 4);
605 			data[i] |= hi << 32;
606 		}
607 	}
608 }
609 
610 static int
611 mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
612 {
613 	if (sset != ETH_SS_STATS)
614 		return 0;
615 
616 	return ARRAY_SIZE(mt7530_mib);
617 }
618 
619 static void mt7530_adjust_link(struct dsa_switch *ds, int port,
620 			       struct phy_device *phydev)
621 {
622 	struct mt7530_priv *priv = ds->priv;
623 
624 	if (phy_is_pseudo_fixed_link(phydev)) {
625 		dev_dbg(priv->dev, "phy-mode for master device = %x\n",
626 			phydev->interface);
627 
628 		/* Setup TX circuit incluing relevant PAD and driving */
629 		mt7530_pad_clk_setup(ds, phydev->interface);
630 
631 		/* Setup RX circuit, relevant PAD and driving on the host
632 		 * which must be placed after the setup on the device side is
633 		 * all finished.
634 		 */
635 		mt7623_pad_clk_setup(ds);
636 	} else {
637 		u16 lcl_adv = 0, rmt_adv = 0;
638 		u8 flowctrl;
639 		u32 mcr = PMCR_USERP_LINK | PMCR_FORCE_MODE;
640 
641 		switch (phydev->speed) {
642 		case SPEED_1000:
643 			mcr |= PMCR_FORCE_SPEED_1000;
644 			break;
645 		case SPEED_100:
646 			mcr |= PMCR_FORCE_SPEED_100;
647 			break;
648 		};
649 
650 		if (phydev->link)
651 			mcr |= PMCR_FORCE_LNK;
652 
653 		if (phydev->duplex) {
654 			mcr |= PMCR_FORCE_FDX;
655 
656 			if (phydev->pause)
657 				rmt_adv = LPA_PAUSE_CAP;
658 			if (phydev->asym_pause)
659 				rmt_adv |= LPA_PAUSE_ASYM;
660 
661 			lcl_adv = linkmode_adv_to_lcl_adv_t(
662 				phydev->advertising);
663 			flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv);
664 
665 			if (flowctrl & FLOW_CTRL_TX)
666 				mcr |= PMCR_TX_FC_EN;
667 			if (flowctrl & FLOW_CTRL_RX)
668 				mcr |= PMCR_RX_FC_EN;
669 		}
670 		mt7530_write(priv, MT7530_PMCR_P(port), mcr);
671 	}
672 }
673 
674 static int
675 mt7530_cpu_port_enable(struct mt7530_priv *priv,
676 		       int port)
677 {
678 	/* Enable Mediatek header mode on the cpu port */
679 	mt7530_write(priv, MT7530_PVC_P(port),
680 		     PORT_SPEC_TAG);
681 
682 	/* Setup the MAC by default for the cpu port */
683 	mt7530_write(priv, MT7530_PMCR_P(port), PMCR_CPUP_LINK);
684 
685 	/* Disable auto learning on the cpu port */
686 	mt7530_set(priv, MT7530_PSC_P(port), SA_DIS);
687 
688 	/* Unknown unicast frame fordwarding to the cpu port */
689 	mt7530_set(priv, MT7530_MFC, UNU_FFP(BIT(port)));
690 
691 	/* CPU port gets connected to all user ports of
692 	 * the switch
693 	 */
694 	mt7530_write(priv, MT7530_PCR_P(port),
695 		     PCR_MATRIX(dsa_user_ports(priv->ds)));
696 
697 	return 0;
698 }
699 
700 static int
701 mt7530_port_enable(struct dsa_switch *ds, int port,
702 		   struct phy_device *phy)
703 {
704 	struct mt7530_priv *priv = ds->priv;
705 
706 	mutex_lock(&priv->reg_mutex);
707 
708 	/* Setup the MAC for the user port */
709 	mt7530_write(priv, MT7530_PMCR_P(port), PMCR_USERP_LINK);
710 
711 	/* Allow the user port gets connected to the cpu port and also
712 	 * restore the port matrix if the port is the member of a certain
713 	 * bridge.
714 	 */
715 	priv->ports[port].pm |= PCR_MATRIX(BIT(MT7530_CPU_PORT));
716 	priv->ports[port].enable = true;
717 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
718 		   priv->ports[port].pm);
719 	mt7530_port_set_status(priv, port, 1);
720 
721 	mutex_unlock(&priv->reg_mutex);
722 
723 	return 0;
724 }
725 
726 static void
727 mt7530_port_disable(struct dsa_switch *ds, int port,
728 		    struct phy_device *phy)
729 {
730 	struct mt7530_priv *priv = ds->priv;
731 
732 	mutex_lock(&priv->reg_mutex);
733 
734 	/* Clear up all port matrix which could be restored in the next
735 	 * enablement for the port.
736 	 */
737 	priv->ports[port].enable = false;
738 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
739 		   PCR_MATRIX_CLR);
740 	mt7530_port_set_status(priv, port, 0);
741 
742 	mutex_unlock(&priv->reg_mutex);
743 }
744 
745 static void
746 mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
747 {
748 	struct mt7530_priv *priv = ds->priv;
749 	u32 stp_state;
750 
751 	switch (state) {
752 	case BR_STATE_DISABLED:
753 		stp_state = MT7530_STP_DISABLED;
754 		break;
755 	case BR_STATE_BLOCKING:
756 		stp_state = MT7530_STP_BLOCKING;
757 		break;
758 	case BR_STATE_LISTENING:
759 		stp_state = MT7530_STP_LISTENING;
760 		break;
761 	case BR_STATE_LEARNING:
762 		stp_state = MT7530_STP_LEARNING;
763 		break;
764 	case BR_STATE_FORWARDING:
765 	default:
766 		stp_state = MT7530_STP_FORWARDING;
767 		break;
768 	}
769 
770 	mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK, stp_state);
771 }
772 
773 static int
774 mt7530_port_bridge_join(struct dsa_switch *ds, int port,
775 			struct net_device *bridge)
776 {
777 	struct mt7530_priv *priv = ds->priv;
778 	u32 port_bitmap = BIT(MT7530_CPU_PORT);
779 	int i;
780 
781 	mutex_lock(&priv->reg_mutex);
782 
783 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
784 		/* Add this port to the port matrix of the other ports in the
785 		 * same bridge. If the port is disabled, port matrix is kept
786 		 * and not being setup until the port becomes enabled.
787 		 */
788 		if (dsa_is_user_port(ds, i) && i != port) {
789 			if (dsa_to_port(ds, i)->bridge_dev != bridge)
790 				continue;
791 			if (priv->ports[i].enable)
792 				mt7530_set(priv, MT7530_PCR_P(i),
793 					   PCR_MATRIX(BIT(port)));
794 			priv->ports[i].pm |= PCR_MATRIX(BIT(port));
795 
796 			port_bitmap |= BIT(i);
797 		}
798 	}
799 
800 	/* Add the all other ports to this port matrix. */
801 	if (priv->ports[port].enable)
802 		mt7530_rmw(priv, MT7530_PCR_P(port),
803 			   PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
804 	priv->ports[port].pm |= PCR_MATRIX(port_bitmap);
805 
806 	mutex_unlock(&priv->reg_mutex);
807 
808 	return 0;
809 }
810 
811 static void
812 mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
813 {
814 	struct mt7530_priv *priv = ds->priv;
815 	bool all_user_ports_removed = true;
816 	int i;
817 
818 	/* When a port is removed from the bridge, the port would be set up
819 	 * back to the default as is at initial boot which is a VLAN-unaware
820 	 * port.
821 	 */
822 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
823 		   MT7530_PORT_MATRIX_MODE);
824 	mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK,
825 		   VLAN_ATTR(MT7530_VLAN_TRANSPARENT));
826 
827 	priv->ports[port].vlan_filtering = false;
828 
829 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
830 		if (dsa_is_user_port(ds, i) &&
831 		    priv->ports[i].vlan_filtering) {
832 			all_user_ports_removed = false;
833 			break;
834 		}
835 	}
836 
837 	/* CPU port also does the same thing until all user ports belonging to
838 	 * the CPU port get out of VLAN filtering mode.
839 	 */
840 	if (all_user_ports_removed) {
841 		mt7530_write(priv, MT7530_PCR_P(MT7530_CPU_PORT),
842 			     PCR_MATRIX(dsa_user_ports(priv->ds)));
843 		mt7530_write(priv, MT7530_PVC_P(MT7530_CPU_PORT),
844 			     PORT_SPEC_TAG);
845 	}
846 }
847 
848 static void
849 mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
850 {
851 	struct mt7530_priv *priv = ds->priv;
852 
853 	/* The real fabric path would be decided on the membership in the
854 	 * entry of VLAN table. PCR_MATRIX set up here with ALL_MEMBERS
855 	 * means potential VLAN can be consisting of certain subset of all
856 	 * ports.
857 	 */
858 	mt7530_rmw(priv, MT7530_PCR_P(port),
859 		   PCR_MATRIX_MASK, PCR_MATRIX(MT7530_ALL_MEMBERS));
860 
861 	/* Trapped into security mode allows packet forwarding through VLAN
862 	 * table lookup.
863 	 */
864 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
865 		   MT7530_PORT_SECURITY_MODE);
866 
867 	/* Set the port as a user port which is to be able to recognize VID
868 	 * from incoming packets before fetching entry within the VLAN table.
869 	 */
870 	mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK,
871 		   VLAN_ATTR(MT7530_VLAN_USER));
872 }
873 
874 static void
875 mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
876 			 struct net_device *bridge)
877 {
878 	struct mt7530_priv *priv = ds->priv;
879 	int i;
880 
881 	mutex_lock(&priv->reg_mutex);
882 
883 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
884 		/* Remove this port from the port matrix of the other ports
885 		 * in the same bridge. If the port is disabled, port matrix
886 		 * is kept and not being setup until the port becomes enabled.
887 		 * And the other port's port matrix cannot be broken when the
888 		 * other port is still a VLAN-aware port.
889 		 */
890 		if (!priv->ports[i].vlan_filtering &&
891 		    dsa_is_user_port(ds, i) && i != port) {
892 			if (dsa_to_port(ds, i)->bridge_dev != bridge)
893 				continue;
894 			if (priv->ports[i].enable)
895 				mt7530_clear(priv, MT7530_PCR_P(i),
896 					     PCR_MATRIX(BIT(port)));
897 			priv->ports[i].pm &= ~PCR_MATRIX(BIT(port));
898 		}
899 	}
900 
901 	/* Set the cpu port to be the only one in the port matrix of
902 	 * this port.
903 	 */
904 	if (priv->ports[port].enable)
905 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
906 			   PCR_MATRIX(BIT(MT7530_CPU_PORT)));
907 	priv->ports[port].pm = PCR_MATRIX(BIT(MT7530_CPU_PORT));
908 
909 	mt7530_port_set_vlan_unaware(ds, port);
910 
911 	mutex_unlock(&priv->reg_mutex);
912 }
913 
914 static int
915 mt7530_port_fdb_add(struct dsa_switch *ds, int port,
916 		    const unsigned char *addr, u16 vid)
917 {
918 	struct mt7530_priv *priv = ds->priv;
919 	int ret;
920 	u8 port_mask = BIT(port);
921 
922 	mutex_lock(&priv->reg_mutex);
923 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
924 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
925 	mutex_unlock(&priv->reg_mutex);
926 
927 	return ret;
928 }
929 
930 static int
931 mt7530_port_fdb_del(struct dsa_switch *ds, int port,
932 		    const unsigned char *addr, u16 vid)
933 {
934 	struct mt7530_priv *priv = ds->priv;
935 	int ret;
936 	u8 port_mask = BIT(port);
937 
938 	mutex_lock(&priv->reg_mutex);
939 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
940 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
941 	mutex_unlock(&priv->reg_mutex);
942 
943 	return ret;
944 }
945 
946 static int
947 mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
948 		     dsa_fdb_dump_cb_t *cb, void *data)
949 {
950 	struct mt7530_priv *priv = ds->priv;
951 	struct mt7530_fdb _fdb = { 0 };
952 	int cnt = MT7530_NUM_FDB_RECORDS;
953 	int ret = 0;
954 	u32 rsp = 0;
955 
956 	mutex_lock(&priv->reg_mutex);
957 
958 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
959 	if (ret < 0)
960 		goto err;
961 
962 	do {
963 		if (rsp & ATC_SRCH_HIT) {
964 			mt7530_fdb_read(priv, &_fdb);
965 			if (_fdb.port_mask & BIT(port)) {
966 				ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
967 					 data);
968 				if (ret < 0)
969 					break;
970 			}
971 		}
972 	} while (--cnt &&
973 		 !(rsp & ATC_SRCH_END) &&
974 		 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
975 err:
976 	mutex_unlock(&priv->reg_mutex);
977 
978 	return 0;
979 }
980 
981 static int
982 mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
983 {
984 	struct mt7530_dummy_poll p;
985 	u32 val;
986 	int ret;
987 
988 	val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
989 	mt7530_write(priv, MT7530_VTCR, val);
990 
991 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
992 	ret = readx_poll_timeout(_mt7530_read, &p, val,
993 				 !(val & VTCR_BUSY), 20, 20000);
994 	if (ret < 0) {
995 		dev_err(priv->dev, "poll timeout\n");
996 		return ret;
997 	}
998 
999 	val = mt7530_read(priv, MT7530_VTCR);
1000 	if (val & VTCR_INVALID) {
1001 		dev_err(priv->dev, "read VTCR invalid\n");
1002 		return -EINVAL;
1003 	}
1004 
1005 	return 0;
1006 }
1007 
1008 static int
1009 mt7530_port_vlan_filtering(struct dsa_switch *ds, int port,
1010 			   bool vlan_filtering)
1011 {
1012 	struct mt7530_priv *priv = ds->priv;
1013 
1014 	priv->ports[port].vlan_filtering = vlan_filtering;
1015 
1016 	if (vlan_filtering) {
1017 		/* The port is being kept as VLAN-unaware port when bridge is
1018 		 * set up with vlan_filtering not being set, Otherwise, the
1019 		 * port and the corresponding CPU port is required the setup
1020 		 * for becoming a VLAN-aware port.
1021 		 */
1022 		mt7530_port_set_vlan_aware(ds, port);
1023 		mt7530_port_set_vlan_aware(ds, MT7530_CPU_PORT);
1024 	}
1025 
1026 	return 0;
1027 }
1028 
1029 static int
1030 mt7530_port_vlan_prepare(struct dsa_switch *ds, int port,
1031 			 const struct switchdev_obj_port_vlan *vlan)
1032 {
1033 	/* nothing needed */
1034 
1035 	return 0;
1036 }
1037 
1038 static void
1039 mt7530_hw_vlan_add(struct mt7530_priv *priv,
1040 		   struct mt7530_hw_vlan_entry *entry)
1041 {
1042 	u8 new_members;
1043 	u32 val;
1044 
1045 	new_members = entry->old_members | BIT(entry->port) |
1046 		      BIT(MT7530_CPU_PORT);
1047 
1048 	/* Validate the entry with independent learning, create egress tag per
1049 	 * VLAN and joining the port as one of the port members.
1050 	 */
1051 	val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | VLAN_VALID;
1052 	mt7530_write(priv, MT7530_VAWD1, val);
1053 
1054 	/* Decide whether adding tag or not for those outgoing packets from the
1055 	 * port inside the VLAN.
1056 	 */
1057 	val = entry->untagged ? MT7530_VLAN_EGRESS_UNTAG :
1058 				MT7530_VLAN_EGRESS_TAG;
1059 	mt7530_rmw(priv, MT7530_VAWD2,
1060 		   ETAG_CTRL_P_MASK(entry->port),
1061 		   ETAG_CTRL_P(entry->port, val));
1062 
1063 	/* CPU port is always taken as a tagged port for serving more than one
1064 	 * VLANs across and also being applied with egress type stack mode for
1065 	 * that VLAN tags would be appended after hardware special tag used as
1066 	 * DSA tag.
1067 	 */
1068 	mt7530_rmw(priv, MT7530_VAWD2,
1069 		   ETAG_CTRL_P_MASK(MT7530_CPU_PORT),
1070 		   ETAG_CTRL_P(MT7530_CPU_PORT,
1071 			       MT7530_VLAN_EGRESS_STACK));
1072 }
1073 
1074 static void
1075 mt7530_hw_vlan_del(struct mt7530_priv *priv,
1076 		   struct mt7530_hw_vlan_entry *entry)
1077 {
1078 	u8 new_members;
1079 	u32 val;
1080 
1081 	new_members = entry->old_members & ~BIT(entry->port);
1082 
1083 	val = mt7530_read(priv, MT7530_VAWD1);
1084 	if (!(val & VLAN_VALID)) {
1085 		dev_err(priv->dev,
1086 			"Cannot be deleted due to invalid entry\n");
1087 		return;
1088 	}
1089 
1090 	/* If certain member apart from CPU port is still alive in the VLAN,
1091 	 * the entry would be kept valid. Otherwise, the entry is got to be
1092 	 * disabled.
1093 	 */
1094 	if (new_members && new_members != BIT(MT7530_CPU_PORT)) {
1095 		val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
1096 		      VLAN_VALID;
1097 		mt7530_write(priv, MT7530_VAWD1, val);
1098 	} else {
1099 		mt7530_write(priv, MT7530_VAWD1, 0);
1100 		mt7530_write(priv, MT7530_VAWD2, 0);
1101 	}
1102 }
1103 
1104 static void
1105 mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
1106 		      struct mt7530_hw_vlan_entry *entry,
1107 		      mt7530_vlan_op vlan_op)
1108 {
1109 	u32 val;
1110 
1111 	/* Fetch entry */
1112 	mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
1113 
1114 	val = mt7530_read(priv, MT7530_VAWD1);
1115 
1116 	entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
1117 
1118 	/* Manipulate entry */
1119 	vlan_op(priv, entry);
1120 
1121 	/* Flush result to hardware */
1122 	mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
1123 }
1124 
1125 static void
1126 mt7530_port_vlan_add(struct dsa_switch *ds, int port,
1127 		     const struct switchdev_obj_port_vlan *vlan)
1128 {
1129 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1130 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1131 	struct mt7530_hw_vlan_entry new_entry;
1132 	struct mt7530_priv *priv = ds->priv;
1133 	u16 vid;
1134 
1135 	/* The port is kept as VLAN-unaware if bridge with vlan_filtering not
1136 	 * being set.
1137 	 */
1138 	if (!priv->ports[port].vlan_filtering)
1139 		return;
1140 
1141 	mutex_lock(&priv->reg_mutex);
1142 
1143 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1144 		mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
1145 		mt7530_hw_vlan_update(priv, vid, &new_entry,
1146 				      mt7530_hw_vlan_add);
1147 	}
1148 
1149 	if (pvid) {
1150 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1151 			   G0_PORT_VID(vlan->vid_end));
1152 		priv->ports[port].pvid = vlan->vid_end;
1153 	}
1154 
1155 	mutex_unlock(&priv->reg_mutex);
1156 }
1157 
1158 static int
1159 mt7530_port_vlan_del(struct dsa_switch *ds, int port,
1160 		     const struct switchdev_obj_port_vlan *vlan)
1161 {
1162 	struct mt7530_hw_vlan_entry target_entry;
1163 	struct mt7530_priv *priv = ds->priv;
1164 	u16 vid, pvid;
1165 
1166 	/* The port is kept as VLAN-unaware if bridge with vlan_filtering not
1167 	 * being set.
1168 	 */
1169 	if (!priv->ports[port].vlan_filtering)
1170 		return 0;
1171 
1172 	mutex_lock(&priv->reg_mutex);
1173 
1174 	pvid = priv->ports[port].pvid;
1175 	for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) {
1176 		mt7530_hw_vlan_entry_init(&target_entry, port, 0);
1177 		mt7530_hw_vlan_update(priv, vid, &target_entry,
1178 				      mt7530_hw_vlan_del);
1179 
1180 		/* PVID is being restored to the default whenever the PVID port
1181 		 * is being removed from the VLAN.
1182 		 */
1183 		if (pvid == vid)
1184 			pvid = G0_PORT_VID_DEF;
1185 	}
1186 
1187 	mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, pvid);
1188 	priv->ports[port].pvid = pvid;
1189 
1190 	mutex_unlock(&priv->reg_mutex);
1191 
1192 	return 0;
1193 }
1194 
1195 static enum dsa_tag_protocol
1196 mtk_get_tag_protocol(struct dsa_switch *ds, int port)
1197 {
1198 	struct mt7530_priv *priv = ds->priv;
1199 
1200 	if (port != MT7530_CPU_PORT) {
1201 		dev_warn(priv->dev,
1202 			 "port not matched with tagging CPU port\n");
1203 		return DSA_TAG_PROTO_NONE;
1204 	} else {
1205 		return DSA_TAG_PROTO_MTK;
1206 	}
1207 }
1208 
1209 static int
1210 mt7530_setup(struct dsa_switch *ds)
1211 {
1212 	struct mt7530_priv *priv = ds->priv;
1213 	int ret, i;
1214 	u32 id, val;
1215 	struct device_node *dn;
1216 	struct mt7530_dummy_poll p;
1217 
1218 	/* The parent node of master netdev which holds the common system
1219 	 * controller also is the container for two GMACs nodes representing
1220 	 * as two netdev instances.
1221 	 */
1222 	dn = ds->ports[MT7530_CPU_PORT].master->dev.of_node->parent;
1223 	priv->ethernet = syscon_node_to_regmap(dn);
1224 	if (IS_ERR(priv->ethernet))
1225 		return PTR_ERR(priv->ethernet);
1226 
1227 	regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
1228 	ret = regulator_enable(priv->core_pwr);
1229 	if (ret < 0) {
1230 		dev_err(priv->dev,
1231 			"Failed to enable core power: %d\n", ret);
1232 		return ret;
1233 	}
1234 
1235 	regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
1236 	ret = regulator_enable(priv->io_pwr);
1237 	if (ret < 0) {
1238 		dev_err(priv->dev, "Failed to enable io pwr: %d\n",
1239 			ret);
1240 		return ret;
1241 	}
1242 
1243 	/* Reset whole chip through gpio pin or memory-mapped registers for
1244 	 * different type of hardware
1245 	 */
1246 	if (priv->mcm) {
1247 		reset_control_assert(priv->rstc);
1248 		usleep_range(1000, 1100);
1249 		reset_control_deassert(priv->rstc);
1250 	} else {
1251 		gpiod_set_value_cansleep(priv->reset, 0);
1252 		usleep_range(1000, 1100);
1253 		gpiod_set_value_cansleep(priv->reset, 1);
1254 	}
1255 
1256 	/* Waiting for MT7530 got to stable */
1257 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
1258 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
1259 				 20, 1000000);
1260 	if (ret < 0) {
1261 		dev_err(priv->dev, "reset timeout\n");
1262 		return ret;
1263 	}
1264 
1265 	id = mt7530_read(priv, MT7530_CREV);
1266 	id >>= CHIP_NAME_SHIFT;
1267 	if (id != MT7530_ID) {
1268 		dev_err(priv->dev, "chip %x can't be supported\n", id);
1269 		return -ENODEV;
1270 	}
1271 
1272 	/* Reset the switch through internal reset */
1273 	mt7530_write(priv, MT7530_SYS_CTRL,
1274 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
1275 		     SYS_CTRL_REG_RST);
1276 
1277 	/* Enable Port 6 only; P5 as GMAC5 which currently is not supported */
1278 	val = mt7530_read(priv, MT7530_MHWTRAP);
1279 	val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
1280 	val |= MHWTRAP_MANUAL;
1281 	mt7530_write(priv, MT7530_MHWTRAP, val);
1282 
1283 	/* Enable and reset MIB counters */
1284 	mt7530_mib_reset(ds);
1285 
1286 	mt7530_clear(priv, MT7530_MFC, UNU_FFP_MASK);
1287 
1288 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1289 		/* Disable forwarding by default on all ports */
1290 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
1291 			   PCR_MATRIX_CLR);
1292 
1293 		if (dsa_is_cpu_port(ds, i))
1294 			mt7530_cpu_port_enable(priv, i);
1295 		else
1296 			mt7530_port_disable(ds, i, NULL);
1297 	}
1298 
1299 	/* Flush the FDB table */
1300 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
1301 	if (ret < 0)
1302 		return ret;
1303 
1304 	return 0;
1305 }
1306 
1307 static const struct dsa_switch_ops mt7530_switch_ops = {
1308 	.get_tag_protocol	= mtk_get_tag_protocol,
1309 	.setup			= mt7530_setup,
1310 	.get_strings		= mt7530_get_strings,
1311 	.phy_read		= mt7530_phy_read,
1312 	.phy_write		= mt7530_phy_write,
1313 	.get_ethtool_stats	= mt7530_get_ethtool_stats,
1314 	.get_sset_count		= mt7530_get_sset_count,
1315 	.adjust_link		= mt7530_adjust_link,
1316 	.port_enable		= mt7530_port_enable,
1317 	.port_disable		= mt7530_port_disable,
1318 	.port_stp_state_set	= mt7530_stp_state_set,
1319 	.port_bridge_join	= mt7530_port_bridge_join,
1320 	.port_bridge_leave	= mt7530_port_bridge_leave,
1321 	.port_fdb_add		= mt7530_port_fdb_add,
1322 	.port_fdb_del		= mt7530_port_fdb_del,
1323 	.port_fdb_dump		= mt7530_port_fdb_dump,
1324 	.port_vlan_filtering	= mt7530_port_vlan_filtering,
1325 	.port_vlan_prepare	= mt7530_port_vlan_prepare,
1326 	.port_vlan_add		= mt7530_port_vlan_add,
1327 	.port_vlan_del		= mt7530_port_vlan_del,
1328 };
1329 
1330 static int
1331 mt7530_probe(struct mdio_device *mdiodev)
1332 {
1333 	struct mt7530_priv *priv;
1334 	struct device_node *dn;
1335 
1336 	dn = mdiodev->dev.of_node;
1337 
1338 	priv = devm_kzalloc(&mdiodev->dev, sizeof(*priv), GFP_KERNEL);
1339 	if (!priv)
1340 		return -ENOMEM;
1341 
1342 	priv->ds = dsa_switch_alloc(&mdiodev->dev, DSA_MAX_PORTS);
1343 	if (!priv->ds)
1344 		return -ENOMEM;
1345 
1346 	/* Use medatek,mcm property to distinguish hardware type that would
1347 	 * casues a little bit differences on power-on sequence.
1348 	 */
1349 	priv->mcm = of_property_read_bool(dn, "mediatek,mcm");
1350 	if (priv->mcm) {
1351 		dev_info(&mdiodev->dev, "MT7530 adapts as multi-chip module\n");
1352 
1353 		priv->rstc = devm_reset_control_get(&mdiodev->dev, "mcm");
1354 		if (IS_ERR(priv->rstc)) {
1355 			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
1356 			return PTR_ERR(priv->rstc);
1357 		}
1358 	}
1359 
1360 	priv->core_pwr = devm_regulator_get(&mdiodev->dev, "core");
1361 	if (IS_ERR(priv->core_pwr))
1362 		return PTR_ERR(priv->core_pwr);
1363 
1364 	priv->io_pwr = devm_regulator_get(&mdiodev->dev, "io");
1365 	if (IS_ERR(priv->io_pwr))
1366 		return PTR_ERR(priv->io_pwr);
1367 
1368 	/* Not MCM that indicates switch works as the remote standalone
1369 	 * integrated circuit so the GPIO pin would be used to complete
1370 	 * the reset, otherwise memory-mapped register accessing used
1371 	 * through syscon provides in the case of MCM.
1372 	 */
1373 	if (!priv->mcm) {
1374 		priv->reset = devm_gpiod_get_optional(&mdiodev->dev, "reset",
1375 						      GPIOD_OUT_LOW);
1376 		if (IS_ERR(priv->reset)) {
1377 			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
1378 			return PTR_ERR(priv->reset);
1379 		}
1380 	}
1381 
1382 	priv->bus = mdiodev->bus;
1383 	priv->dev = &mdiodev->dev;
1384 	priv->ds->priv = priv;
1385 	priv->ds->ops = &mt7530_switch_ops;
1386 	mutex_init(&priv->reg_mutex);
1387 	dev_set_drvdata(&mdiodev->dev, priv);
1388 
1389 	return dsa_register_switch(priv->ds);
1390 }
1391 
1392 static void
1393 mt7530_remove(struct mdio_device *mdiodev)
1394 {
1395 	struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev);
1396 	int ret = 0;
1397 
1398 	ret = regulator_disable(priv->core_pwr);
1399 	if (ret < 0)
1400 		dev_err(priv->dev,
1401 			"Failed to disable core power: %d\n", ret);
1402 
1403 	ret = regulator_disable(priv->io_pwr);
1404 	if (ret < 0)
1405 		dev_err(priv->dev, "Failed to disable io pwr: %d\n",
1406 			ret);
1407 
1408 	dsa_unregister_switch(priv->ds);
1409 	mutex_destroy(&priv->reg_mutex);
1410 }
1411 
1412 static const struct of_device_id mt7530_of_match[] = {
1413 	{ .compatible = "mediatek,mt7530" },
1414 	{ /* sentinel */ },
1415 };
1416 MODULE_DEVICE_TABLE(of, mt7530_of_match);
1417 
1418 static struct mdio_driver mt7530_mdio_driver = {
1419 	.probe  = mt7530_probe,
1420 	.remove = mt7530_remove,
1421 	.mdiodrv.driver = {
1422 		.name = "mt7530",
1423 		.of_match_table = mt7530_of_match,
1424 	},
1425 };
1426 
1427 mdio_module_driver(mt7530_mdio_driver);
1428 
1429 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
1430 MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
1431 MODULE_LICENSE("GPL");
1432