1 /* 2 * Mediatek MT7530 DSA Switch driver 3 * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com> 4 * 5 * This program is free software; you can redistribute it and/or modify 6 * it under the terms of the GNU General Public License version 2 as 7 * published by the Free Software Foundation. 8 * 9 * This program is distributed in the hope that it will be useful, 10 * but WITHOUT ANY WARRANTY; without even the implied warranty of 11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 12 * GNU General Public License for more details. 13 */ 14 #include <linux/etherdevice.h> 15 #include <linux/if_bridge.h> 16 #include <linux/iopoll.h> 17 #include <linux/mdio.h> 18 #include <linux/mfd/syscon.h> 19 #include <linux/module.h> 20 #include <linux/netdevice.h> 21 #include <linux/of_gpio.h> 22 #include <linux/of_mdio.h> 23 #include <linux/of_net.h> 24 #include <linux/of_platform.h> 25 #include <linux/phy.h> 26 #include <linux/regmap.h> 27 #include <linux/regulator/consumer.h> 28 #include <linux/reset.h> 29 #include <linux/gpio/consumer.h> 30 #include <net/dsa.h> 31 32 #include "mt7530.h" 33 34 /* String, offset, and register size in bytes if different from 4 bytes */ 35 static const struct mt7530_mib_desc mt7530_mib[] = { 36 MIB_DESC(1, 0x00, "TxDrop"), 37 MIB_DESC(1, 0x04, "TxCrcErr"), 38 MIB_DESC(1, 0x08, "TxUnicast"), 39 MIB_DESC(1, 0x0c, "TxMulticast"), 40 MIB_DESC(1, 0x10, "TxBroadcast"), 41 MIB_DESC(1, 0x14, "TxCollision"), 42 MIB_DESC(1, 0x18, "TxSingleCollision"), 43 MIB_DESC(1, 0x1c, "TxMultipleCollision"), 44 MIB_DESC(1, 0x20, "TxDeferred"), 45 MIB_DESC(1, 0x24, "TxLateCollision"), 46 MIB_DESC(1, 0x28, "TxExcessiveCollistion"), 47 MIB_DESC(1, 0x2c, "TxPause"), 48 MIB_DESC(1, 0x30, "TxPktSz64"), 49 MIB_DESC(1, 0x34, "TxPktSz65To127"), 50 MIB_DESC(1, 0x38, "TxPktSz128To255"), 51 MIB_DESC(1, 0x3c, "TxPktSz256To511"), 52 MIB_DESC(1, 0x40, "TxPktSz512To1023"), 53 MIB_DESC(1, 0x44, "Tx1024ToMax"), 54 MIB_DESC(2, 0x48, "TxBytes"), 55 MIB_DESC(1, 0x60, "RxDrop"), 56 MIB_DESC(1, 0x64, "RxFiltering"), 57 MIB_DESC(1, 0x6c, "RxMulticast"), 58 MIB_DESC(1, 0x70, "RxBroadcast"), 59 MIB_DESC(1, 0x74, "RxAlignErr"), 60 MIB_DESC(1, 0x78, "RxCrcErr"), 61 MIB_DESC(1, 0x7c, "RxUnderSizeErr"), 62 MIB_DESC(1, 0x80, "RxFragErr"), 63 MIB_DESC(1, 0x84, "RxOverSzErr"), 64 MIB_DESC(1, 0x88, "RxJabberErr"), 65 MIB_DESC(1, 0x8c, "RxPause"), 66 MIB_DESC(1, 0x90, "RxPktSz64"), 67 MIB_DESC(1, 0x94, "RxPktSz65To127"), 68 MIB_DESC(1, 0x98, "RxPktSz128To255"), 69 MIB_DESC(1, 0x9c, "RxPktSz256To511"), 70 MIB_DESC(1, 0xa0, "RxPktSz512To1023"), 71 MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"), 72 MIB_DESC(2, 0xa8, "RxBytes"), 73 MIB_DESC(1, 0xb0, "RxCtrlDrop"), 74 MIB_DESC(1, 0xb4, "RxIngressDrop"), 75 MIB_DESC(1, 0xb8, "RxArlDrop"), 76 }; 77 78 static int 79 mt7623_trgmii_write(struct mt7530_priv *priv, u32 reg, u32 val) 80 { 81 int ret; 82 83 ret = regmap_write(priv->ethernet, TRGMII_BASE(reg), val); 84 if (ret < 0) 85 dev_err(priv->dev, 86 "failed to priv write register\n"); 87 return ret; 88 } 89 90 static u32 91 mt7623_trgmii_read(struct mt7530_priv *priv, u32 reg) 92 { 93 int ret; 94 u32 val; 95 96 ret = regmap_read(priv->ethernet, TRGMII_BASE(reg), &val); 97 if (ret < 0) { 98 dev_err(priv->dev, 99 "failed to priv read register\n"); 100 return ret; 101 } 102 103 return val; 104 } 105 106 static void 107 mt7623_trgmii_rmw(struct mt7530_priv *priv, u32 reg, 108 u32 mask, u32 set) 109 { 110 u32 val; 111 112 val = mt7623_trgmii_read(priv, reg); 113 val &= ~mask; 114 val |= set; 115 mt7623_trgmii_write(priv, reg, val); 116 } 117 118 static void 119 mt7623_trgmii_set(struct mt7530_priv *priv, u32 reg, u32 val) 120 { 121 mt7623_trgmii_rmw(priv, reg, 0, val); 122 } 123 124 static void 125 mt7623_trgmii_clear(struct mt7530_priv *priv, u32 reg, u32 val) 126 { 127 mt7623_trgmii_rmw(priv, reg, val, 0); 128 } 129 130 static int 131 core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad) 132 { 133 struct mii_bus *bus = priv->bus; 134 int value, ret; 135 136 /* Write the desired MMD Devad */ 137 ret = bus->write(bus, 0, MII_MMD_CTRL, devad); 138 if (ret < 0) 139 goto err; 140 141 /* Write the desired MMD register address */ 142 ret = bus->write(bus, 0, MII_MMD_DATA, prtad); 143 if (ret < 0) 144 goto err; 145 146 /* Select the Function : DATA with no post increment */ 147 ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR)); 148 if (ret < 0) 149 goto err; 150 151 /* Read the content of the MMD's selected register */ 152 value = bus->read(bus, 0, MII_MMD_DATA); 153 154 return value; 155 err: 156 dev_err(&bus->dev, "failed to read mmd register\n"); 157 158 return ret; 159 } 160 161 static int 162 core_write_mmd_indirect(struct mt7530_priv *priv, int prtad, 163 int devad, u32 data) 164 { 165 struct mii_bus *bus = priv->bus; 166 int ret; 167 168 /* Write the desired MMD Devad */ 169 ret = bus->write(bus, 0, MII_MMD_CTRL, devad); 170 if (ret < 0) 171 goto err; 172 173 /* Write the desired MMD register address */ 174 ret = bus->write(bus, 0, MII_MMD_DATA, prtad); 175 if (ret < 0) 176 goto err; 177 178 /* Select the Function : DATA with no post increment */ 179 ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR)); 180 if (ret < 0) 181 goto err; 182 183 /* Write the data into MMD's selected register */ 184 ret = bus->write(bus, 0, MII_MMD_DATA, data); 185 err: 186 if (ret < 0) 187 dev_err(&bus->dev, 188 "failed to write mmd register\n"); 189 return ret; 190 } 191 192 static void 193 core_write(struct mt7530_priv *priv, u32 reg, u32 val) 194 { 195 struct mii_bus *bus = priv->bus; 196 197 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 198 199 core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val); 200 201 mutex_unlock(&bus->mdio_lock); 202 } 203 204 static void 205 core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set) 206 { 207 struct mii_bus *bus = priv->bus; 208 u32 val; 209 210 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 211 212 val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2); 213 val &= ~mask; 214 val |= set; 215 core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val); 216 217 mutex_unlock(&bus->mdio_lock); 218 } 219 220 static void 221 core_set(struct mt7530_priv *priv, u32 reg, u32 val) 222 { 223 core_rmw(priv, reg, 0, val); 224 } 225 226 static void 227 core_clear(struct mt7530_priv *priv, u32 reg, u32 val) 228 { 229 core_rmw(priv, reg, val, 0); 230 } 231 232 static int 233 mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val) 234 { 235 struct mii_bus *bus = priv->bus; 236 u16 page, r, lo, hi; 237 int ret; 238 239 page = (reg >> 6) & 0x3ff; 240 r = (reg >> 2) & 0xf; 241 lo = val & 0xffff; 242 hi = val >> 16; 243 244 /* MT7530 uses 31 as the pseudo port */ 245 ret = bus->write(bus, 0x1f, 0x1f, page); 246 if (ret < 0) 247 goto err; 248 249 ret = bus->write(bus, 0x1f, r, lo); 250 if (ret < 0) 251 goto err; 252 253 ret = bus->write(bus, 0x1f, 0x10, hi); 254 err: 255 if (ret < 0) 256 dev_err(&bus->dev, 257 "failed to write mt7530 register\n"); 258 return ret; 259 } 260 261 static u32 262 mt7530_mii_read(struct mt7530_priv *priv, u32 reg) 263 { 264 struct mii_bus *bus = priv->bus; 265 u16 page, r, lo, hi; 266 int ret; 267 268 page = (reg >> 6) & 0x3ff; 269 r = (reg >> 2) & 0xf; 270 271 /* MT7530 uses 31 as the pseudo port */ 272 ret = bus->write(bus, 0x1f, 0x1f, page); 273 if (ret < 0) { 274 dev_err(&bus->dev, 275 "failed to read mt7530 register\n"); 276 return ret; 277 } 278 279 lo = bus->read(bus, 0x1f, r); 280 hi = bus->read(bus, 0x1f, 0x10); 281 282 return (hi << 16) | (lo & 0xffff); 283 } 284 285 static void 286 mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val) 287 { 288 struct mii_bus *bus = priv->bus; 289 290 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 291 292 mt7530_mii_write(priv, reg, val); 293 294 mutex_unlock(&bus->mdio_lock); 295 } 296 297 static u32 298 _mt7530_read(struct mt7530_dummy_poll *p) 299 { 300 struct mii_bus *bus = p->priv->bus; 301 u32 val; 302 303 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 304 305 val = mt7530_mii_read(p->priv, p->reg); 306 307 mutex_unlock(&bus->mdio_lock); 308 309 return val; 310 } 311 312 static u32 313 mt7530_read(struct mt7530_priv *priv, u32 reg) 314 { 315 struct mt7530_dummy_poll p; 316 317 INIT_MT7530_DUMMY_POLL(&p, priv, reg); 318 return _mt7530_read(&p); 319 } 320 321 static void 322 mt7530_rmw(struct mt7530_priv *priv, u32 reg, 323 u32 mask, u32 set) 324 { 325 struct mii_bus *bus = priv->bus; 326 u32 val; 327 328 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 329 330 val = mt7530_mii_read(priv, reg); 331 val &= ~mask; 332 val |= set; 333 mt7530_mii_write(priv, reg, val); 334 335 mutex_unlock(&bus->mdio_lock); 336 } 337 338 static void 339 mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val) 340 { 341 mt7530_rmw(priv, reg, 0, val); 342 } 343 344 static void 345 mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val) 346 { 347 mt7530_rmw(priv, reg, val, 0); 348 } 349 350 static int 351 mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp) 352 { 353 u32 val; 354 int ret; 355 struct mt7530_dummy_poll p; 356 357 /* Set the command operating upon the MAC address entries */ 358 val = ATC_BUSY | ATC_MAT(0) | cmd; 359 mt7530_write(priv, MT7530_ATC, val); 360 361 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC); 362 ret = readx_poll_timeout(_mt7530_read, &p, val, 363 !(val & ATC_BUSY), 20, 20000); 364 if (ret < 0) { 365 dev_err(priv->dev, "reset timeout\n"); 366 return ret; 367 } 368 369 /* Additional sanity for read command if the specified 370 * entry is invalid 371 */ 372 val = mt7530_read(priv, MT7530_ATC); 373 if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID)) 374 return -EINVAL; 375 376 if (rsp) 377 *rsp = val; 378 379 return 0; 380 } 381 382 static void 383 mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb) 384 { 385 u32 reg[3]; 386 int i; 387 388 /* Read from ARL table into an array */ 389 for (i = 0; i < 3; i++) { 390 reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4)); 391 392 dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n", 393 __func__, __LINE__, i, reg[i]); 394 } 395 396 fdb->vid = (reg[1] >> CVID) & CVID_MASK; 397 fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK; 398 fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK; 399 fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK; 400 fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK; 401 fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK; 402 fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK; 403 fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK; 404 fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK; 405 fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT; 406 } 407 408 static void 409 mt7530_fdb_write(struct mt7530_priv *priv, u16 vid, 410 u8 port_mask, const u8 *mac, 411 u8 aging, u8 type) 412 { 413 u32 reg[3] = { 0 }; 414 int i; 415 416 reg[1] |= vid & CVID_MASK; 417 reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER; 418 reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP; 419 /* STATIC_ENT indicate that entry is static wouldn't 420 * be aged out and STATIC_EMP specified as erasing an 421 * entry 422 */ 423 reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS; 424 reg[1] |= mac[5] << MAC_BYTE_5; 425 reg[1] |= mac[4] << MAC_BYTE_4; 426 reg[0] |= mac[3] << MAC_BYTE_3; 427 reg[0] |= mac[2] << MAC_BYTE_2; 428 reg[0] |= mac[1] << MAC_BYTE_1; 429 reg[0] |= mac[0] << MAC_BYTE_0; 430 431 /* Write array into the ARL table */ 432 for (i = 0; i < 3; i++) 433 mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]); 434 } 435 436 static int 437 mt7530_pad_clk_setup(struct dsa_switch *ds, int mode) 438 { 439 struct mt7530_priv *priv = ds->priv; 440 u32 ncpo1, ssc_delta, trgint, i; 441 442 switch (mode) { 443 case PHY_INTERFACE_MODE_RGMII: 444 trgint = 0; 445 ncpo1 = 0x0c80; 446 ssc_delta = 0x87; 447 break; 448 case PHY_INTERFACE_MODE_TRGMII: 449 trgint = 1; 450 ncpo1 = 0x1400; 451 ssc_delta = 0x57; 452 break; 453 default: 454 dev_err(priv->dev, "xMII mode %d not supported\n", mode); 455 return -EINVAL; 456 } 457 458 mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK, 459 P6_INTF_MODE(trgint)); 460 461 /* Lower Tx Driving for TRGMII path */ 462 for (i = 0 ; i < NUM_TRGMII_CTRL ; i++) 463 mt7530_write(priv, MT7530_TRGMII_TD_ODT(i), 464 TD_DM_DRVP(8) | TD_DM_DRVN(8)); 465 466 /* Setup core clock for MT7530 */ 467 if (!trgint) { 468 /* Disable MT7530 core clock */ 469 core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN); 470 471 /* Disable PLL, since phy_device has not yet been created 472 * provided for phy_[read,write]_mmd_indirect is called, we 473 * provide our own core_write_mmd_indirect to complete this 474 * function. 475 */ 476 core_write_mmd_indirect(priv, 477 CORE_GSWPLL_GRP1, 478 MDIO_MMD_VEND2, 479 0); 480 481 /* Set core clock into 500Mhz */ 482 core_write(priv, CORE_GSWPLL_GRP2, 483 RG_GSWPLL_POSDIV_500M(1) | 484 RG_GSWPLL_FBKDIV_500M(25)); 485 486 /* Enable PLL */ 487 core_write(priv, CORE_GSWPLL_GRP1, 488 RG_GSWPLL_EN_PRE | 489 RG_GSWPLL_POSDIV_200M(2) | 490 RG_GSWPLL_FBKDIV_200M(32)); 491 492 /* Enable MT7530 core clock */ 493 core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN); 494 } 495 496 /* Setup the MT7530 TRGMII Tx Clock */ 497 core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN); 498 core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1)); 499 core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0)); 500 core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta)); 501 core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta)); 502 core_write(priv, CORE_PLL_GROUP4, 503 RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN | 504 RG_SYSPLL_BIAS_LPF_EN); 505 core_write(priv, CORE_PLL_GROUP2, 506 RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN | 507 RG_SYSPLL_POSDIV(1)); 508 core_write(priv, CORE_PLL_GROUP7, 509 RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) | 510 RG_LCDDS_PWDB | RG_LCDDS_ISO_EN); 511 core_set(priv, CORE_TRGMII_GSW_CLK_CG, 512 REG_GSWCK_EN | REG_TRGMIICK_EN); 513 514 if (!trgint) 515 for (i = 0 ; i < NUM_TRGMII_CTRL; i++) 516 mt7530_rmw(priv, MT7530_TRGMII_RD(i), 517 RD_TAP_MASK, RD_TAP(16)); 518 else 519 mt7623_trgmii_set(priv, GSW_INTF_MODE, INTF_MODE_TRGMII); 520 521 return 0; 522 } 523 524 static int 525 mt7623_pad_clk_setup(struct dsa_switch *ds) 526 { 527 struct mt7530_priv *priv = ds->priv; 528 int i; 529 530 for (i = 0 ; i < NUM_TRGMII_CTRL; i++) 531 mt7623_trgmii_write(priv, GSW_TRGMII_TD_ODT(i), 532 TD_DM_DRVP(8) | TD_DM_DRVN(8)); 533 534 mt7623_trgmii_set(priv, GSW_TRGMII_RCK_CTRL, RX_RST | RXC_DQSISEL); 535 mt7623_trgmii_clear(priv, GSW_TRGMII_RCK_CTRL, RX_RST); 536 537 return 0; 538 } 539 540 static void 541 mt7530_mib_reset(struct dsa_switch *ds) 542 { 543 struct mt7530_priv *priv = ds->priv; 544 545 mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH); 546 mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE); 547 } 548 549 static void 550 mt7530_port_set_status(struct mt7530_priv *priv, int port, int enable) 551 { 552 u32 mask = PMCR_TX_EN | PMCR_RX_EN; 553 554 if (enable) 555 mt7530_set(priv, MT7530_PMCR_P(port), mask); 556 else 557 mt7530_clear(priv, MT7530_PMCR_P(port), mask); 558 } 559 560 static int mt7530_phy_read(struct dsa_switch *ds, int port, int regnum) 561 { 562 struct mt7530_priv *priv = ds->priv; 563 564 return mdiobus_read_nested(priv->bus, port, regnum); 565 } 566 567 static int mt7530_phy_write(struct dsa_switch *ds, int port, int regnum, 568 u16 val) 569 { 570 struct mt7530_priv *priv = ds->priv; 571 572 return mdiobus_write_nested(priv->bus, port, regnum, val); 573 } 574 575 static void 576 mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset, 577 uint8_t *data) 578 { 579 int i; 580 581 if (stringset != ETH_SS_STATS) 582 return; 583 584 for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) 585 strncpy(data + i * ETH_GSTRING_LEN, mt7530_mib[i].name, 586 ETH_GSTRING_LEN); 587 } 588 589 static void 590 mt7530_get_ethtool_stats(struct dsa_switch *ds, int port, 591 uint64_t *data) 592 { 593 struct mt7530_priv *priv = ds->priv; 594 const struct mt7530_mib_desc *mib; 595 u32 reg, i; 596 u64 hi; 597 598 for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) { 599 mib = &mt7530_mib[i]; 600 reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset; 601 602 data[i] = mt7530_read(priv, reg); 603 if (mib->size == 2) { 604 hi = mt7530_read(priv, reg + 4); 605 data[i] |= hi << 32; 606 } 607 } 608 } 609 610 static int 611 mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset) 612 { 613 if (sset != ETH_SS_STATS) 614 return 0; 615 616 return ARRAY_SIZE(mt7530_mib); 617 } 618 619 static void mt7530_adjust_link(struct dsa_switch *ds, int port, 620 struct phy_device *phydev) 621 { 622 struct mt7530_priv *priv = ds->priv; 623 624 if (phy_is_pseudo_fixed_link(phydev)) { 625 dev_dbg(priv->dev, "phy-mode for master device = %x\n", 626 phydev->interface); 627 628 /* Setup TX circuit incluing relevant PAD and driving */ 629 mt7530_pad_clk_setup(ds, phydev->interface); 630 631 /* Setup RX circuit, relevant PAD and driving on the host 632 * which must be placed after the setup on the device side is 633 * all finished. 634 */ 635 mt7623_pad_clk_setup(ds); 636 } else { 637 u16 lcl_adv = 0, rmt_adv = 0; 638 u8 flowctrl; 639 u32 mcr = PMCR_USERP_LINK | PMCR_FORCE_MODE; 640 641 switch (phydev->speed) { 642 case SPEED_1000: 643 mcr |= PMCR_FORCE_SPEED_1000; 644 break; 645 case SPEED_100: 646 mcr |= PMCR_FORCE_SPEED_100; 647 break; 648 }; 649 650 if (phydev->link) 651 mcr |= PMCR_FORCE_LNK; 652 653 if (phydev->duplex) { 654 mcr |= PMCR_FORCE_FDX; 655 656 if (phydev->pause) 657 rmt_adv = LPA_PAUSE_CAP; 658 if (phydev->asym_pause) 659 rmt_adv |= LPA_PAUSE_ASYM; 660 661 lcl_adv = linkmode_adv_to_lcl_adv_t( 662 phydev->advertising); 663 flowctrl = mii_resolve_flowctrl_fdx(lcl_adv, rmt_adv); 664 665 if (flowctrl & FLOW_CTRL_TX) 666 mcr |= PMCR_TX_FC_EN; 667 if (flowctrl & FLOW_CTRL_RX) 668 mcr |= PMCR_RX_FC_EN; 669 } 670 mt7530_write(priv, MT7530_PMCR_P(port), mcr); 671 } 672 } 673 674 static int 675 mt7530_cpu_port_enable(struct mt7530_priv *priv, 676 int port) 677 { 678 /* Enable Mediatek header mode on the cpu port */ 679 mt7530_write(priv, MT7530_PVC_P(port), 680 PORT_SPEC_TAG); 681 682 /* Setup the MAC by default for the cpu port */ 683 mt7530_write(priv, MT7530_PMCR_P(port), PMCR_CPUP_LINK); 684 685 /* Disable auto learning on the cpu port */ 686 mt7530_set(priv, MT7530_PSC_P(port), SA_DIS); 687 688 /* Unknown unicast frame fordwarding to the cpu port */ 689 mt7530_set(priv, MT7530_MFC, UNU_FFP(BIT(port))); 690 691 /* CPU port gets connected to all user ports of 692 * the switch 693 */ 694 mt7530_write(priv, MT7530_PCR_P(port), 695 PCR_MATRIX(dsa_user_ports(priv->ds))); 696 697 return 0; 698 } 699 700 static int 701 mt7530_port_enable(struct dsa_switch *ds, int port, 702 struct phy_device *phy) 703 { 704 struct mt7530_priv *priv = ds->priv; 705 706 mutex_lock(&priv->reg_mutex); 707 708 /* Setup the MAC for the user port */ 709 mt7530_write(priv, MT7530_PMCR_P(port), PMCR_USERP_LINK); 710 711 /* Allow the user port gets connected to the cpu port and also 712 * restore the port matrix if the port is the member of a certain 713 * bridge. 714 */ 715 priv->ports[port].pm |= PCR_MATRIX(BIT(MT7530_CPU_PORT)); 716 priv->ports[port].enable = true; 717 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK, 718 priv->ports[port].pm); 719 mt7530_port_set_status(priv, port, 1); 720 721 mutex_unlock(&priv->reg_mutex); 722 723 return 0; 724 } 725 726 static void 727 mt7530_port_disable(struct dsa_switch *ds, int port, 728 struct phy_device *phy) 729 { 730 struct mt7530_priv *priv = ds->priv; 731 732 mutex_lock(&priv->reg_mutex); 733 734 /* Clear up all port matrix which could be restored in the next 735 * enablement for the port. 736 */ 737 priv->ports[port].enable = false; 738 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK, 739 PCR_MATRIX_CLR); 740 mt7530_port_set_status(priv, port, 0); 741 742 mutex_unlock(&priv->reg_mutex); 743 } 744 745 static void 746 mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state) 747 { 748 struct mt7530_priv *priv = ds->priv; 749 u32 stp_state; 750 751 switch (state) { 752 case BR_STATE_DISABLED: 753 stp_state = MT7530_STP_DISABLED; 754 break; 755 case BR_STATE_BLOCKING: 756 stp_state = MT7530_STP_BLOCKING; 757 break; 758 case BR_STATE_LISTENING: 759 stp_state = MT7530_STP_LISTENING; 760 break; 761 case BR_STATE_LEARNING: 762 stp_state = MT7530_STP_LEARNING; 763 break; 764 case BR_STATE_FORWARDING: 765 default: 766 stp_state = MT7530_STP_FORWARDING; 767 break; 768 } 769 770 mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK, stp_state); 771 } 772 773 static int 774 mt7530_port_bridge_join(struct dsa_switch *ds, int port, 775 struct net_device *bridge) 776 { 777 struct mt7530_priv *priv = ds->priv; 778 u32 port_bitmap = BIT(MT7530_CPU_PORT); 779 int i; 780 781 mutex_lock(&priv->reg_mutex); 782 783 for (i = 0; i < MT7530_NUM_PORTS; i++) { 784 /* Add this port to the port matrix of the other ports in the 785 * same bridge. If the port is disabled, port matrix is kept 786 * and not being setup until the port becomes enabled. 787 */ 788 if (dsa_is_user_port(ds, i) && i != port) { 789 if (dsa_to_port(ds, i)->bridge_dev != bridge) 790 continue; 791 if (priv->ports[i].enable) 792 mt7530_set(priv, MT7530_PCR_P(i), 793 PCR_MATRIX(BIT(port))); 794 priv->ports[i].pm |= PCR_MATRIX(BIT(port)); 795 796 port_bitmap |= BIT(i); 797 } 798 } 799 800 /* Add the all other ports to this port matrix. */ 801 if (priv->ports[port].enable) 802 mt7530_rmw(priv, MT7530_PCR_P(port), 803 PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap)); 804 priv->ports[port].pm |= PCR_MATRIX(port_bitmap); 805 806 mutex_unlock(&priv->reg_mutex); 807 808 return 0; 809 } 810 811 static void 812 mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port) 813 { 814 struct mt7530_priv *priv = ds->priv; 815 bool all_user_ports_removed = true; 816 int i; 817 818 /* When a port is removed from the bridge, the port would be set up 819 * back to the default as is at initial boot which is a VLAN-unaware 820 * port. 821 */ 822 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK, 823 MT7530_PORT_MATRIX_MODE); 824 mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK, 825 VLAN_ATTR(MT7530_VLAN_TRANSPARENT)); 826 827 priv->ports[port].vlan_filtering = false; 828 829 for (i = 0; i < MT7530_NUM_PORTS; i++) { 830 if (dsa_is_user_port(ds, i) && 831 priv->ports[i].vlan_filtering) { 832 all_user_ports_removed = false; 833 break; 834 } 835 } 836 837 /* CPU port also does the same thing until all user ports belonging to 838 * the CPU port get out of VLAN filtering mode. 839 */ 840 if (all_user_ports_removed) { 841 mt7530_write(priv, MT7530_PCR_P(MT7530_CPU_PORT), 842 PCR_MATRIX(dsa_user_ports(priv->ds))); 843 mt7530_write(priv, MT7530_PVC_P(MT7530_CPU_PORT), 844 PORT_SPEC_TAG); 845 } 846 } 847 848 static void 849 mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port) 850 { 851 struct mt7530_priv *priv = ds->priv; 852 853 /* The real fabric path would be decided on the membership in the 854 * entry of VLAN table. PCR_MATRIX set up here with ALL_MEMBERS 855 * means potential VLAN can be consisting of certain subset of all 856 * ports. 857 */ 858 mt7530_rmw(priv, MT7530_PCR_P(port), 859 PCR_MATRIX_MASK, PCR_MATRIX(MT7530_ALL_MEMBERS)); 860 861 /* Trapped into security mode allows packet forwarding through VLAN 862 * table lookup. 863 */ 864 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK, 865 MT7530_PORT_SECURITY_MODE); 866 867 /* Set the port as a user port which is to be able to recognize VID 868 * from incoming packets before fetching entry within the VLAN table. 869 */ 870 mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK, 871 VLAN_ATTR(MT7530_VLAN_USER)); 872 } 873 874 static void 875 mt7530_port_bridge_leave(struct dsa_switch *ds, int port, 876 struct net_device *bridge) 877 { 878 struct mt7530_priv *priv = ds->priv; 879 int i; 880 881 mutex_lock(&priv->reg_mutex); 882 883 for (i = 0; i < MT7530_NUM_PORTS; i++) { 884 /* Remove this port from the port matrix of the other ports 885 * in the same bridge. If the port is disabled, port matrix 886 * is kept and not being setup until the port becomes enabled. 887 * And the other port's port matrix cannot be broken when the 888 * other port is still a VLAN-aware port. 889 */ 890 if (!priv->ports[i].vlan_filtering && 891 dsa_is_user_port(ds, i) && i != port) { 892 if (dsa_to_port(ds, i)->bridge_dev != bridge) 893 continue; 894 if (priv->ports[i].enable) 895 mt7530_clear(priv, MT7530_PCR_P(i), 896 PCR_MATRIX(BIT(port))); 897 priv->ports[i].pm &= ~PCR_MATRIX(BIT(port)); 898 } 899 } 900 901 /* Set the cpu port to be the only one in the port matrix of 902 * this port. 903 */ 904 if (priv->ports[port].enable) 905 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK, 906 PCR_MATRIX(BIT(MT7530_CPU_PORT))); 907 priv->ports[port].pm = PCR_MATRIX(BIT(MT7530_CPU_PORT)); 908 909 mt7530_port_set_vlan_unaware(ds, port); 910 911 mutex_unlock(&priv->reg_mutex); 912 } 913 914 static int 915 mt7530_port_fdb_add(struct dsa_switch *ds, int port, 916 const unsigned char *addr, u16 vid) 917 { 918 struct mt7530_priv *priv = ds->priv; 919 int ret; 920 u8 port_mask = BIT(port); 921 922 mutex_lock(&priv->reg_mutex); 923 mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT); 924 ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL); 925 mutex_unlock(&priv->reg_mutex); 926 927 return ret; 928 } 929 930 static int 931 mt7530_port_fdb_del(struct dsa_switch *ds, int port, 932 const unsigned char *addr, u16 vid) 933 { 934 struct mt7530_priv *priv = ds->priv; 935 int ret; 936 u8 port_mask = BIT(port); 937 938 mutex_lock(&priv->reg_mutex); 939 mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP); 940 ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL); 941 mutex_unlock(&priv->reg_mutex); 942 943 return ret; 944 } 945 946 static int 947 mt7530_port_fdb_dump(struct dsa_switch *ds, int port, 948 dsa_fdb_dump_cb_t *cb, void *data) 949 { 950 struct mt7530_priv *priv = ds->priv; 951 struct mt7530_fdb _fdb = { 0 }; 952 int cnt = MT7530_NUM_FDB_RECORDS; 953 int ret = 0; 954 u32 rsp = 0; 955 956 mutex_lock(&priv->reg_mutex); 957 958 ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp); 959 if (ret < 0) 960 goto err; 961 962 do { 963 if (rsp & ATC_SRCH_HIT) { 964 mt7530_fdb_read(priv, &_fdb); 965 if (_fdb.port_mask & BIT(port)) { 966 ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp, 967 data); 968 if (ret < 0) 969 break; 970 } 971 } 972 } while (--cnt && 973 !(rsp & ATC_SRCH_END) && 974 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp)); 975 err: 976 mutex_unlock(&priv->reg_mutex); 977 978 return 0; 979 } 980 981 static int 982 mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid) 983 { 984 struct mt7530_dummy_poll p; 985 u32 val; 986 int ret; 987 988 val = VTCR_BUSY | VTCR_FUNC(cmd) | vid; 989 mt7530_write(priv, MT7530_VTCR, val); 990 991 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR); 992 ret = readx_poll_timeout(_mt7530_read, &p, val, 993 !(val & VTCR_BUSY), 20, 20000); 994 if (ret < 0) { 995 dev_err(priv->dev, "poll timeout\n"); 996 return ret; 997 } 998 999 val = mt7530_read(priv, MT7530_VTCR); 1000 if (val & VTCR_INVALID) { 1001 dev_err(priv->dev, "read VTCR invalid\n"); 1002 return -EINVAL; 1003 } 1004 1005 return 0; 1006 } 1007 1008 static int 1009 mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, 1010 bool vlan_filtering) 1011 { 1012 struct mt7530_priv *priv = ds->priv; 1013 1014 priv->ports[port].vlan_filtering = vlan_filtering; 1015 1016 if (vlan_filtering) { 1017 /* The port is being kept as VLAN-unaware port when bridge is 1018 * set up with vlan_filtering not being set, Otherwise, the 1019 * port and the corresponding CPU port is required the setup 1020 * for becoming a VLAN-aware port. 1021 */ 1022 mt7530_port_set_vlan_aware(ds, port); 1023 mt7530_port_set_vlan_aware(ds, MT7530_CPU_PORT); 1024 } 1025 1026 return 0; 1027 } 1028 1029 static int 1030 mt7530_port_vlan_prepare(struct dsa_switch *ds, int port, 1031 const struct switchdev_obj_port_vlan *vlan) 1032 { 1033 /* nothing needed */ 1034 1035 return 0; 1036 } 1037 1038 static void 1039 mt7530_hw_vlan_add(struct mt7530_priv *priv, 1040 struct mt7530_hw_vlan_entry *entry) 1041 { 1042 u8 new_members; 1043 u32 val; 1044 1045 new_members = entry->old_members | BIT(entry->port) | 1046 BIT(MT7530_CPU_PORT); 1047 1048 /* Validate the entry with independent learning, create egress tag per 1049 * VLAN and joining the port as one of the port members. 1050 */ 1051 val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | VLAN_VALID; 1052 mt7530_write(priv, MT7530_VAWD1, val); 1053 1054 /* Decide whether adding tag or not for those outgoing packets from the 1055 * port inside the VLAN. 1056 */ 1057 val = entry->untagged ? MT7530_VLAN_EGRESS_UNTAG : 1058 MT7530_VLAN_EGRESS_TAG; 1059 mt7530_rmw(priv, MT7530_VAWD2, 1060 ETAG_CTRL_P_MASK(entry->port), 1061 ETAG_CTRL_P(entry->port, val)); 1062 1063 /* CPU port is always taken as a tagged port for serving more than one 1064 * VLANs across and also being applied with egress type stack mode for 1065 * that VLAN tags would be appended after hardware special tag used as 1066 * DSA tag. 1067 */ 1068 mt7530_rmw(priv, MT7530_VAWD2, 1069 ETAG_CTRL_P_MASK(MT7530_CPU_PORT), 1070 ETAG_CTRL_P(MT7530_CPU_PORT, 1071 MT7530_VLAN_EGRESS_STACK)); 1072 } 1073 1074 static void 1075 mt7530_hw_vlan_del(struct mt7530_priv *priv, 1076 struct mt7530_hw_vlan_entry *entry) 1077 { 1078 u8 new_members; 1079 u32 val; 1080 1081 new_members = entry->old_members & ~BIT(entry->port); 1082 1083 val = mt7530_read(priv, MT7530_VAWD1); 1084 if (!(val & VLAN_VALID)) { 1085 dev_err(priv->dev, 1086 "Cannot be deleted due to invalid entry\n"); 1087 return; 1088 } 1089 1090 /* If certain member apart from CPU port is still alive in the VLAN, 1091 * the entry would be kept valid. Otherwise, the entry is got to be 1092 * disabled. 1093 */ 1094 if (new_members && new_members != BIT(MT7530_CPU_PORT)) { 1095 val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | 1096 VLAN_VALID; 1097 mt7530_write(priv, MT7530_VAWD1, val); 1098 } else { 1099 mt7530_write(priv, MT7530_VAWD1, 0); 1100 mt7530_write(priv, MT7530_VAWD2, 0); 1101 } 1102 } 1103 1104 static void 1105 mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid, 1106 struct mt7530_hw_vlan_entry *entry, 1107 mt7530_vlan_op vlan_op) 1108 { 1109 u32 val; 1110 1111 /* Fetch entry */ 1112 mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid); 1113 1114 val = mt7530_read(priv, MT7530_VAWD1); 1115 1116 entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK; 1117 1118 /* Manipulate entry */ 1119 vlan_op(priv, entry); 1120 1121 /* Flush result to hardware */ 1122 mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid); 1123 } 1124 1125 static void 1126 mt7530_port_vlan_add(struct dsa_switch *ds, int port, 1127 const struct switchdev_obj_port_vlan *vlan) 1128 { 1129 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED; 1130 bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID; 1131 struct mt7530_hw_vlan_entry new_entry; 1132 struct mt7530_priv *priv = ds->priv; 1133 u16 vid; 1134 1135 /* The port is kept as VLAN-unaware if bridge with vlan_filtering not 1136 * being set. 1137 */ 1138 if (!priv->ports[port].vlan_filtering) 1139 return; 1140 1141 mutex_lock(&priv->reg_mutex); 1142 1143 for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) { 1144 mt7530_hw_vlan_entry_init(&new_entry, port, untagged); 1145 mt7530_hw_vlan_update(priv, vid, &new_entry, 1146 mt7530_hw_vlan_add); 1147 } 1148 1149 if (pvid) { 1150 mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, 1151 G0_PORT_VID(vlan->vid_end)); 1152 priv->ports[port].pvid = vlan->vid_end; 1153 } 1154 1155 mutex_unlock(&priv->reg_mutex); 1156 } 1157 1158 static int 1159 mt7530_port_vlan_del(struct dsa_switch *ds, int port, 1160 const struct switchdev_obj_port_vlan *vlan) 1161 { 1162 struct mt7530_hw_vlan_entry target_entry; 1163 struct mt7530_priv *priv = ds->priv; 1164 u16 vid, pvid; 1165 1166 /* The port is kept as VLAN-unaware if bridge with vlan_filtering not 1167 * being set. 1168 */ 1169 if (!priv->ports[port].vlan_filtering) 1170 return 0; 1171 1172 mutex_lock(&priv->reg_mutex); 1173 1174 pvid = priv->ports[port].pvid; 1175 for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) { 1176 mt7530_hw_vlan_entry_init(&target_entry, port, 0); 1177 mt7530_hw_vlan_update(priv, vid, &target_entry, 1178 mt7530_hw_vlan_del); 1179 1180 /* PVID is being restored to the default whenever the PVID port 1181 * is being removed from the VLAN. 1182 */ 1183 if (pvid == vid) 1184 pvid = G0_PORT_VID_DEF; 1185 } 1186 1187 mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, pvid); 1188 priv->ports[port].pvid = pvid; 1189 1190 mutex_unlock(&priv->reg_mutex); 1191 1192 return 0; 1193 } 1194 1195 static enum dsa_tag_protocol 1196 mtk_get_tag_protocol(struct dsa_switch *ds, int port) 1197 { 1198 struct mt7530_priv *priv = ds->priv; 1199 1200 if (port != MT7530_CPU_PORT) { 1201 dev_warn(priv->dev, 1202 "port not matched with tagging CPU port\n"); 1203 return DSA_TAG_PROTO_NONE; 1204 } else { 1205 return DSA_TAG_PROTO_MTK; 1206 } 1207 } 1208 1209 static int 1210 mt7530_setup(struct dsa_switch *ds) 1211 { 1212 struct mt7530_priv *priv = ds->priv; 1213 int ret, i; 1214 u32 id, val; 1215 struct device_node *dn; 1216 struct mt7530_dummy_poll p; 1217 1218 /* The parent node of master netdev which holds the common system 1219 * controller also is the container for two GMACs nodes representing 1220 * as two netdev instances. 1221 */ 1222 dn = ds->ports[MT7530_CPU_PORT].master->dev.of_node->parent; 1223 priv->ethernet = syscon_node_to_regmap(dn); 1224 if (IS_ERR(priv->ethernet)) 1225 return PTR_ERR(priv->ethernet); 1226 1227 regulator_set_voltage(priv->core_pwr, 1000000, 1000000); 1228 ret = regulator_enable(priv->core_pwr); 1229 if (ret < 0) { 1230 dev_err(priv->dev, 1231 "Failed to enable core power: %d\n", ret); 1232 return ret; 1233 } 1234 1235 regulator_set_voltage(priv->io_pwr, 3300000, 3300000); 1236 ret = regulator_enable(priv->io_pwr); 1237 if (ret < 0) { 1238 dev_err(priv->dev, "Failed to enable io pwr: %d\n", 1239 ret); 1240 return ret; 1241 } 1242 1243 /* Reset whole chip through gpio pin or memory-mapped registers for 1244 * different type of hardware 1245 */ 1246 if (priv->mcm) { 1247 reset_control_assert(priv->rstc); 1248 usleep_range(1000, 1100); 1249 reset_control_deassert(priv->rstc); 1250 } else { 1251 gpiod_set_value_cansleep(priv->reset, 0); 1252 usleep_range(1000, 1100); 1253 gpiod_set_value_cansleep(priv->reset, 1); 1254 } 1255 1256 /* Waiting for MT7530 got to stable */ 1257 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP); 1258 ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0, 1259 20, 1000000); 1260 if (ret < 0) { 1261 dev_err(priv->dev, "reset timeout\n"); 1262 return ret; 1263 } 1264 1265 id = mt7530_read(priv, MT7530_CREV); 1266 id >>= CHIP_NAME_SHIFT; 1267 if (id != MT7530_ID) { 1268 dev_err(priv->dev, "chip %x can't be supported\n", id); 1269 return -ENODEV; 1270 } 1271 1272 /* Reset the switch through internal reset */ 1273 mt7530_write(priv, MT7530_SYS_CTRL, 1274 SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST | 1275 SYS_CTRL_REG_RST); 1276 1277 /* Enable Port 6 only; P5 as GMAC5 which currently is not supported */ 1278 val = mt7530_read(priv, MT7530_MHWTRAP); 1279 val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS; 1280 val |= MHWTRAP_MANUAL; 1281 mt7530_write(priv, MT7530_MHWTRAP, val); 1282 1283 /* Enable and reset MIB counters */ 1284 mt7530_mib_reset(ds); 1285 1286 mt7530_clear(priv, MT7530_MFC, UNU_FFP_MASK); 1287 1288 for (i = 0; i < MT7530_NUM_PORTS; i++) { 1289 /* Disable forwarding by default on all ports */ 1290 mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK, 1291 PCR_MATRIX_CLR); 1292 1293 if (dsa_is_cpu_port(ds, i)) 1294 mt7530_cpu_port_enable(priv, i); 1295 else 1296 mt7530_port_disable(ds, i, NULL); 1297 } 1298 1299 /* Flush the FDB table */ 1300 ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL); 1301 if (ret < 0) 1302 return ret; 1303 1304 return 0; 1305 } 1306 1307 static const struct dsa_switch_ops mt7530_switch_ops = { 1308 .get_tag_protocol = mtk_get_tag_protocol, 1309 .setup = mt7530_setup, 1310 .get_strings = mt7530_get_strings, 1311 .phy_read = mt7530_phy_read, 1312 .phy_write = mt7530_phy_write, 1313 .get_ethtool_stats = mt7530_get_ethtool_stats, 1314 .get_sset_count = mt7530_get_sset_count, 1315 .adjust_link = mt7530_adjust_link, 1316 .port_enable = mt7530_port_enable, 1317 .port_disable = mt7530_port_disable, 1318 .port_stp_state_set = mt7530_stp_state_set, 1319 .port_bridge_join = mt7530_port_bridge_join, 1320 .port_bridge_leave = mt7530_port_bridge_leave, 1321 .port_fdb_add = mt7530_port_fdb_add, 1322 .port_fdb_del = mt7530_port_fdb_del, 1323 .port_fdb_dump = mt7530_port_fdb_dump, 1324 .port_vlan_filtering = mt7530_port_vlan_filtering, 1325 .port_vlan_prepare = mt7530_port_vlan_prepare, 1326 .port_vlan_add = mt7530_port_vlan_add, 1327 .port_vlan_del = mt7530_port_vlan_del, 1328 }; 1329 1330 static int 1331 mt7530_probe(struct mdio_device *mdiodev) 1332 { 1333 struct mt7530_priv *priv; 1334 struct device_node *dn; 1335 1336 dn = mdiodev->dev.of_node; 1337 1338 priv = devm_kzalloc(&mdiodev->dev, sizeof(*priv), GFP_KERNEL); 1339 if (!priv) 1340 return -ENOMEM; 1341 1342 priv->ds = dsa_switch_alloc(&mdiodev->dev, DSA_MAX_PORTS); 1343 if (!priv->ds) 1344 return -ENOMEM; 1345 1346 /* Use medatek,mcm property to distinguish hardware type that would 1347 * casues a little bit differences on power-on sequence. 1348 */ 1349 priv->mcm = of_property_read_bool(dn, "mediatek,mcm"); 1350 if (priv->mcm) { 1351 dev_info(&mdiodev->dev, "MT7530 adapts as multi-chip module\n"); 1352 1353 priv->rstc = devm_reset_control_get(&mdiodev->dev, "mcm"); 1354 if (IS_ERR(priv->rstc)) { 1355 dev_err(&mdiodev->dev, "Couldn't get our reset line\n"); 1356 return PTR_ERR(priv->rstc); 1357 } 1358 } 1359 1360 priv->core_pwr = devm_regulator_get(&mdiodev->dev, "core"); 1361 if (IS_ERR(priv->core_pwr)) 1362 return PTR_ERR(priv->core_pwr); 1363 1364 priv->io_pwr = devm_regulator_get(&mdiodev->dev, "io"); 1365 if (IS_ERR(priv->io_pwr)) 1366 return PTR_ERR(priv->io_pwr); 1367 1368 /* Not MCM that indicates switch works as the remote standalone 1369 * integrated circuit so the GPIO pin would be used to complete 1370 * the reset, otherwise memory-mapped register accessing used 1371 * through syscon provides in the case of MCM. 1372 */ 1373 if (!priv->mcm) { 1374 priv->reset = devm_gpiod_get_optional(&mdiodev->dev, "reset", 1375 GPIOD_OUT_LOW); 1376 if (IS_ERR(priv->reset)) { 1377 dev_err(&mdiodev->dev, "Couldn't get our reset line\n"); 1378 return PTR_ERR(priv->reset); 1379 } 1380 } 1381 1382 priv->bus = mdiodev->bus; 1383 priv->dev = &mdiodev->dev; 1384 priv->ds->priv = priv; 1385 priv->ds->ops = &mt7530_switch_ops; 1386 mutex_init(&priv->reg_mutex); 1387 dev_set_drvdata(&mdiodev->dev, priv); 1388 1389 return dsa_register_switch(priv->ds); 1390 } 1391 1392 static void 1393 mt7530_remove(struct mdio_device *mdiodev) 1394 { 1395 struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev); 1396 int ret = 0; 1397 1398 ret = regulator_disable(priv->core_pwr); 1399 if (ret < 0) 1400 dev_err(priv->dev, 1401 "Failed to disable core power: %d\n", ret); 1402 1403 ret = regulator_disable(priv->io_pwr); 1404 if (ret < 0) 1405 dev_err(priv->dev, "Failed to disable io pwr: %d\n", 1406 ret); 1407 1408 dsa_unregister_switch(priv->ds); 1409 mutex_destroy(&priv->reg_mutex); 1410 } 1411 1412 static const struct of_device_id mt7530_of_match[] = { 1413 { .compatible = "mediatek,mt7530" }, 1414 { /* sentinel */ }, 1415 }; 1416 MODULE_DEVICE_TABLE(of, mt7530_of_match); 1417 1418 static struct mdio_driver mt7530_mdio_driver = { 1419 .probe = mt7530_probe, 1420 .remove = mt7530_remove, 1421 .mdiodrv.driver = { 1422 .name = "mt7530", 1423 .of_match_table = mt7530_of_match, 1424 }, 1425 }; 1426 1427 mdio_module_driver(mt7530_mdio_driver); 1428 1429 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>"); 1430 MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch"); 1431 MODULE_LICENSE("GPL"); 1432