1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Mediatek MT7530 DSA Switch driver 4 * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com> 5 */ 6 #include <linux/etherdevice.h> 7 #include <linux/if_bridge.h> 8 #include <linux/iopoll.h> 9 #include <linux/mdio.h> 10 #include <linux/mfd/syscon.h> 11 #include <linux/module.h> 12 #include <linux/netdevice.h> 13 #include <linux/of_mdio.h> 14 #include <linux/of_net.h> 15 #include <linux/of_platform.h> 16 #include <linux/phylink.h> 17 #include <linux/regmap.h> 18 #include <linux/regulator/consumer.h> 19 #include <linux/reset.h> 20 #include <linux/gpio/consumer.h> 21 #include <net/dsa.h> 22 23 #include "mt7530.h" 24 25 /* String, offset, and register size in bytes if different from 4 bytes */ 26 static const struct mt7530_mib_desc mt7530_mib[] = { 27 MIB_DESC(1, 0x00, "TxDrop"), 28 MIB_DESC(1, 0x04, "TxCrcErr"), 29 MIB_DESC(1, 0x08, "TxUnicast"), 30 MIB_DESC(1, 0x0c, "TxMulticast"), 31 MIB_DESC(1, 0x10, "TxBroadcast"), 32 MIB_DESC(1, 0x14, "TxCollision"), 33 MIB_DESC(1, 0x18, "TxSingleCollision"), 34 MIB_DESC(1, 0x1c, "TxMultipleCollision"), 35 MIB_DESC(1, 0x20, "TxDeferred"), 36 MIB_DESC(1, 0x24, "TxLateCollision"), 37 MIB_DESC(1, 0x28, "TxExcessiveCollistion"), 38 MIB_DESC(1, 0x2c, "TxPause"), 39 MIB_DESC(1, 0x30, "TxPktSz64"), 40 MIB_DESC(1, 0x34, "TxPktSz65To127"), 41 MIB_DESC(1, 0x38, "TxPktSz128To255"), 42 MIB_DESC(1, 0x3c, "TxPktSz256To511"), 43 MIB_DESC(1, 0x40, "TxPktSz512To1023"), 44 MIB_DESC(1, 0x44, "Tx1024ToMax"), 45 MIB_DESC(2, 0x48, "TxBytes"), 46 MIB_DESC(1, 0x60, "RxDrop"), 47 MIB_DESC(1, 0x64, "RxFiltering"), 48 MIB_DESC(1, 0x6c, "RxMulticast"), 49 MIB_DESC(1, 0x70, "RxBroadcast"), 50 MIB_DESC(1, 0x74, "RxAlignErr"), 51 MIB_DESC(1, 0x78, "RxCrcErr"), 52 MIB_DESC(1, 0x7c, "RxUnderSizeErr"), 53 MIB_DESC(1, 0x80, "RxFragErr"), 54 MIB_DESC(1, 0x84, "RxOverSzErr"), 55 MIB_DESC(1, 0x88, "RxJabberErr"), 56 MIB_DESC(1, 0x8c, "RxPause"), 57 MIB_DESC(1, 0x90, "RxPktSz64"), 58 MIB_DESC(1, 0x94, "RxPktSz65To127"), 59 MIB_DESC(1, 0x98, "RxPktSz128To255"), 60 MIB_DESC(1, 0x9c, "RxPktSz256To511"), 61 MIB_DESC(1, 0xa0, "RxPktSz512To1023"), 62 MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"), 63 MIB_DESC(2, 0xa8, "RxBytes"), 64 MIB_DESC(1, 0xb0, "RxCtrlDrop"), 65 MIB_DESC(1, 0xb4, "RxIngressDrop"), 66 MIB_DESC(1, 0xb8, "RxArlDrop"), 67 }; 68 69 static int 70 core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad) 71 { 72 struct mii_bus *bus = priv->bus; 73 int value, ret; 74 75 /* Write the desired MMD Devad */ 76 ret = bus->write(bus, 0, MII_MMD_CTRL, devad); 77 if (ret < 0) 78 goto err; 79 80 /* Write the desired MMD register address */ 81 ret = bus->write(bus, 0, MII_MMD_DATA, prtad); 82 if (ret < 0) 83 goto err; 84 85 /* Select the Function : DATA with no post increment */ 86 ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR)); 87 if (ret < 0) 88 goto err; 89 90 /* Read the content of the MMD's selected register */ 91 value = bus->read(bus, 0, MII_MMD_DATA); 92 93 return value; 94 err: 95 dev_err(&bus->dev, "failed to read mmd register\n"); 96 97 return ret; 98 } 99 100 static int 101 core_write_mmd_indirect(struct mt7530_priv *priv, int prtad, 102 int devad, u32 data) 103 { 104 struct mii_bus *bus = priv->bus; 105 int ret; 106 107 /* Write the desired MMD Devad */ 108 ret = bus->write(bus, 0, MII_MMD_CTRL, devad); 109 if (ret < 0) 110 goto err; 111 112 /* Write the desired MMD register address */ 113 ret = bus->write(bus, 0, MII_MMD_DATA, prtad); 114 if (ret < 0) 115 goto err; 116 117 /* Select the Function : DATA with no post increment */ 118 ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR)); 119 if (ret < 0) 120 goto err; 121 122 /* Write the data into MMD's selected register */ 123 ret = bus->write(bus, 0, MII_MMD_DATA, data); 124 err: 125 if (ret < 0) 126 dev_err(&bus->dev, 127 "failed to write mmd register\n"); 128 return ret; 129 } 130 131 static void 132 core_write(struct mt7530_priv *priv, u32 reg, u32 val) 133 { 134 struct mii_bus *bus = priv->bus; 135 136 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 137 138 core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val); 139 140 mutex_unlock(&bus->mdio_lock); 141 } 142 143 static void 144 core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set) 145 { 146 struct mii_bus *bus = priv->bus; 147 u32 val; 148 149 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 150 151 val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2); 152 val &= ~mask; 153 val |= set; 154 core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val); 155 156 mutex_unlock(&bus->mdio_lock); 157 } 158 159 static void 160 core_set(struct mt7530_priv *priv, u32 reg, u32 val) 161 { 162 core_rmw(priv, reg, 0, val); 163 } 164 165 static void 166 core_clear(struct mt7530_priv *priv, u32 reg, u32 val) 167 { 168 core_rmw(priv, reg, val, 0); 169 } 170 171 static int 172 mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val) 173 { 174 struct mii_bus *bus = priv->bus; 175 u16 page, r, lo, hi; 176 int ret; 177 178 page = (reg >> 6) & 0x3ff; 179 r = (reg >> 2) & 0xf; 180 lo = val & 0xffff; 181 hi = val >> 16; 182 183 /* MT7530 uses 31 as the pseudo port */ 184 ret = bus->write(bus, 0x1f, 0x1f, page); 185 if (ret < 0) 186 goto err; 187 188 ret = bus->write(bus, 0x1f, r, lo); 189 if (ret < 0) 190 goto err; 191 192 ret = bus->write(bus, 0x1f, 0x10, hi); 193 err: 194 if (ret < 0) 195 dev_err(&bus->dev, 196 "failed to write mt7530 register\n"); 197 return ret; 198 } 199 200 static u32 201 mt7530_mii_read(struct mt7530_priv *priv, u32 reg) 202 { 203 struct mii_bus *bus = priv->bus; 204 u16 page, r, lo, hi; 205 int ret; 206 207 page = (reg >> 6) & 0x3ff; 208 r = (reg >> 2) & 0xf; 209 210 /* MT7530 uses 31 as the pseudo port */ 211 ret = bus->write(bus, 0x1f, 0x1f, page); 212 if (ret < 0) { 213 dev_err(&bus->dev, 214 "failed to read mt7530 register\n"); 215 return ret; 216 } 217 218 lo = bus->read(bus, 0x1f, r); 219 hi = bus->read(bus, 0x1f, 0x10); 220 221 return (hi << 16) | (lo & 0xffff); 222 } 223 224 static void 225 mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val) 226 { 227 struct mii_bus *bus = priv->bus; 228 229 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 230 231 mt7530_mii_write(priv, reg, val); 232 233 mutex_unlock(&bus->mdio_lock); 234 } 235 236 static u32 237 _mt7530_read(struct mt7530_dummy_poll *p) 238 { 239 struct mii_bus *bus = p->priv->bus; 240 u32 val; 241 242 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 243 244 val = mt7530_mii_read(p->priv, p->reg); 245 246 mutex_unlock(&bus->mdio_lock); 247 248 return val; 249 } 250 251 static u32 252 mt7530_read(struct mt7530_priv *priv, u32 reg) 253 { 254 struct mt7530_dummy_poll p; 255 256 INIT_MT7530_DUMMY_POLL(&p, priv, reg); 257 return _mt7530_read(&p); 258 } 259 260 static void 261 mt7530_rmw(struct mt7530_priv *priv, u32 reg, 262 u32 mask, u32 set) 263 { 264 struct mii_bus *bus = priv->bus; 265 u32 val; 266 267 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 268 269 val = mt7530_mii_read(priv, reg); 270 val &= ~mask; 271 val |= set; 272 mt7530_mii_write(priv, reg, val); 273 274 mutex_unlock(&bus->mdio_lock); 275 } 276 277 static void 278 mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val) 279 { 280 mt7530_rmw(priv, reg, 0, val); 281 } 282 283 static void 284 mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val) 285 { 286 mt7530_rmw(priv, reg, val, 0); 287 } 288 289 static int 290 mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp) 291 { 292 u32 val; 293 int ret; 294 struct mt7530_dummy_poll p; 295 296 /* Set the command operating upon the MAC address entries */ 297 val = ATC_BUSY | ATC_MAT(0) | cmd; 298 mt7530_write(priv, MT7530_ATC, val); 299 300 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC); 301 ret = readx_poll_timeout(_mt7530_read, &p, val, 302 !(val & ATC_BUSY), 20, 20000); 303 if (ret < 0) { 304 dev_err(priv->dev, "reset timeout\n"); 305 return ret; 306 } 307 308 /* Additional sanity for read command if the specified 309 * entry is invalid 310 */ 311 val = mt7530_read(priv, MT7530_ATC); 312 if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID)) 313 return -EINVAL; 314 315 if (rsp) 316 *rsp = val; 317 318 return 0; 319 } 320 321 static void 322 mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb) 323 { 324 u32 reg[3]; 325 int i; 326 327 /* Read from ARL table into an array */ 328 for (i = 0; i < 3; i++) { 329 reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4)); 330 331 dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n", 332 __func__, __LINE__, i, reg[i]); 333 } 334 335 fdb->vid = (reg[1] >> CVID) & CVID_MASK; 336 fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK; 337 fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK; 338 fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK; 339 fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK; 340 fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK; 341 fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK; 342 fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK; 343 fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK; 344 fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT; 345 } 346 347 static void 348 mt7530_fdb_write(struct mt7530_priv *priv, u16 vid, 349 u8 port_mask, const u8 *mac, 350 u8 aging, u8 type) 351 { 352 u32 reg[3] = { 0 }; 353 int i; 354 355 reg[1] |= vid & CVID_MASK; 356 reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER; 357 reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP; 358 /* STATIC_ENT indicate that entry is static wouldn't 359 * be aged out and STATIC_EMP specified as erasing an 360 * entry 361 */ 362 reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS; 363 reg[1] |= mac[5] << MAC_BYTE_5; 364 reg[1] |= mac[4] << MAC_BYTE_4; 365 reg[0] |= mac[3] << MAC_BYTE_3; 366 reg[0] |= mac[2] << MAC_BYTE_2; 367 reg[0] |= mac[1] << MAC_BYTE_1; 368 reg[0] |= mac[0] << MAC_BYTE_0; 369 370 /* Write array into the ARL table */ 371 for (i = 0; i < 3; i++) 372 mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]); 373 } 374 375 static int 376 mt7530_pad_clk_setup(struct dsa_switch *ds, int mode) 377 { 378 struct mt7530_priv *priv = ds->priv; 379 u32 ncpo1, ssc_delta, trgint, i, xtal; 380 381 xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK; 382 383 if (xtal == HWTRAP_XTAL_20MHZ) { 384 dev_err(priv->dev, 385 "%s: MT7530 with a 20MHz XTAL is not supported!\n", 386 __func__); 387 return -EINVAL; 388 } 389 390 switch (mode) { 391 case PHY_INTERFACE_MODE_RGMII: 392 trgint = 0; 393 /* PLL frequency: 125MHz */ 394 ncpo1 = 0x0c80; 395 break; 396 case PHY_INTERFACE_MODE_TRGMII: 397 trgint = 1; 398 if (priv->id == ID_MT7621) { 399 /* PLL frequency: 150MHz: 1.2GBit */ 400 if (xtal == HWTRAP_XTAL_40MHZ) 401 ncpo1 = 0x0780; 402 if (xtal == HWTRAP_XTAL_25MHZ) 403 ncpo1 = 0x0a00; 404 } else { /* PLL frequency: 250MHz: 2.0Gbit */ 405 if (xtal == HWTRAP_XTAL_40MHZ) 406 ncpo1 = 0x0c80; 407 if (xtal == HWTRAP_XTAL_25MHZ) 408 ncpo1 = 0x1400; 409 } 410 break; 411 default: 412 dev_err(priv->dev, "xMII mode %d not supported\n", mode); 413 return -EINVAL; 414 } 415 416 if (xtal == HWTRAP_XTAL_25MHZ) 417 ssc_delta = 0x57; 418 else 419 ssc_delta = 0x87; 420 421 mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK, 422 P6_INTF_MODE(trgint)); 423 424 /* Lower Tx Driving for TRGMII path */ 425 for (i = 0 ; i < NUM_TRGMII_CTRL ; i++) 426 mt7530_write(priv, MT7530_TRGMII_TD_ODT(i), 427 TD_DM_DRVP(8) | TD_DM_DRVN(8)); 428 429 /* Setup core clock for MT7530 */ 430 if (!trgint) { 431 /* Disable MT7530 core clock */ 432 core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN); 433 434 /* Disable PLL, since phy_device has not yet been created 435 * provided for phy_[read,write]_mmd_indirect is called, we 436 * provide our own core_write_mmd_indirect to complete this 437 * function. 438 */ 439 core_write_mmd_indirect(priv, 440 CORE_GSWPLL_GRP1, 441 MDIO_MMD_VEND2, 442 0); 443 444 /* Set core clock into 500Mhz */ 445 core_write(priv, CORE_GSWPLL_GRP2, 446 RG_GSWPLL_POSDIV_500M(1) | 447 RG_GSWPLL_FBKDIV_500M(25)); 448 449 /* Enable PLL */ 450 core_write(priv, CORE_GSWPLL_GRP1, 451 RG_GSWPLL_EN_PRE | 452 RG_GSWPLL_POSDIV_200M(2) | 453 RG_GSWPLL_FBKDIV_200M(32)); 454 455 /* Enable MT7530 core clock */ 456 core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN); 457 } 458 459 /* Setup the MT7530 TRGMII Tx Clock */ 460 core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN); 461 core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1)); 462 core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0)); 463 core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta)); 464 core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta)); 465 core_write(priv, CORE_PLL_GROUP4, 466 RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN | 467 RG_SYSPLL_BIAS_LPF_EN); 468 core_write(priv, CORE_PLL_GROUP2, 469 RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN | 470 RG_SYSPLL_POSDIV(1)); 471 core_write(priv, CORE_PLL_GROUP7, 472 RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) | 473 RG_LCDDS_PWDB | RG_LCDDS_ISO_EN); 474 core_set(priv, CORE_TRGMII_GSW_CLK_CG, 475 REG_GSWCK_EN | REG_TRGMIICK_EN); 476 477 if (!trgint) 478 for (i = 0 ; i < NUM_TRGMII_CTRL; i++) 479 mt7530_rmw(priv, MT7530_TRGMII_RD(i), 480 RD_TAP_MASK, RD_TAP(16)); 481 return 0; 482 } 483 484 static void 485 mt7530_mib_reset(struct dsa_switch *ds) 486 { 487 struct mt7530_priv *priv = ds->priv; 488 489 mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH); 490 mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE); 491 } 492 493 static int mt7530_phy_read(struct dsa_switch *ds, int port, int regnum) 494 { 495 struct mt7530_priv *priv = ds->priv; 496 497 return mdiobus_read_nested(priv->bus, port, regnum); 498 } 499 500 static int mt7530_phy_write(struct dsa_switch *ds, int port, int regnum, 501 u16 val) 502 { 503 struct mt7530_priv *priv = ds->priv; 504 505 return mdiobus_write_nested(priv->bus, port, regnum, val); 506 } 507 508 static void 509 mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset, 510 uint8_t *data) 511 { 512 int i; 513 514 if (stringset != ETH_SS_STATS) 515 return; 516 517 for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) 518 strncpy(data + i * ETH_GSTRING_LEN, mt7530_mib[i].name, 519 ETH_GSTRING_LEN); 520 } 521 522 static void 523 mt7530_get_ethtool_stats(struct dsa_switch *ds, int port, 524 uint64_t *data) 525 { 526 struct mt7530_priv *priv = ds->priv; 527 const struct mt7530_mib_desc *mib; 528 u32 reg, i; 529 u64 hi; 530 531 for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) { 532 mib = &mt7530_mib[i]; 533 reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset; 534 535 data[i] = mt7530_read(priv, reg); 536 if (mib->size == 2) { 537 hi = mt7530_read(priv, reg + 4); 538 data[i] |= hi << 32; 539 } 540 } 541 } 542 543 static int 544 mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset) 545 { 546 if (sset != ETH_SS_STATS) 547 return 0; 548 549 return ARRAY_SIZE(mt7530_mib); 550 } 551 552 static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface) 553 { 554 struct mt7530_priv *priv = ds->priv; 555 u8 tx_delay = 0; 556 int val; 557 558 mutex_lock(&priv->reg_mutex); 559 560 val = mt7530_read(priv, MT7530_MHWTRAP); 561 562 val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS; 563 val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL; 564 565 switch (priv->p5_intf_sel) { 566 case P5_INTF_SEL_PHY_P0: 567 /* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */ 568 val |= MHWTRAP_PHY0_SEL; 569 fallthrough; 570 case P5_INTF_SEL_PHY_P4: 571 /* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */ 572 val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS; 573 574 /* Setup the MAC by default for the cpu port */ 575 mt7530_write(priv, MT7530_PMCR_P(5), 0x56300); 576 break; 577 case P5_INTF_SEL_GMAC5: 578 /* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */ 579 val &= ~MHWTRAP_P5_DIS; 580 break; 581 case P5_DISABLED: 582 interface = PHY_INTERFACE_MODE_NA; 583 break; 584 default: 585 dev_err(ds->dev, "Unsupported p5_intf_sel %d\n", 586 priv->p5_intf_sel); 587 goto unlock_exit; 588 } 589 590 /* Setup RGMII settings */ 591 if (phy_interface_mode_is_rgmii(interface)) { 592 val |= MHWTRAP_P5_RGMII_MODE; 593 594 /* P5 RGMII RX Clock Control: delay setting for 1000M */ 595 mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN); 596 597 /* Don't set delay in DSA mode */ 598 if (!dsa_is_dsa_port(priv->ds, 5) && 599 (interface == PHY_INTERFACE_MODE_RGMII_TXID || 600 interface == PHY_INTERFACE_MODE_RGMII_ID)) 601 tx_delay = 4; /* n * 0.5 ns */ 602 603 /* P5 RGMII TX Clock Control: delay x */ 604 mt7530_write(priv, MT7530_P5RGMIITXCR, 605 CSR_RGMII_TXC_CFG(0x10 + tx_delay)); 606 607 /* reduce P5 RGMII Tx driving, 8mA */ 608 mt7530_write(priv, MT7530_IO_DRV_CR, 609 P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1)); 610 } 611 612 mt7530_write(priv, MT7530_MHWTRAP, val); 613 614 dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n", 615 val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface)); 616 617 priv->p5_interface = interface; 618 619 unlock_exit: 620 mutex_unlock(&priv->reg_mutex); 621 } 622 623 static int 624 mt7530_cpu_port_enable(struct mt7530_priv *priv, 625 int port) 626 { 627 /* Enable Mediatek header mode on the cpu port */ 628 mt7530_write(priv, MT7530_PVC_P(port), 629 PORT_SPEC_TAG); 630 631 /* Unknown multicast frame forwarding to the cpu port */ 632 mt7530_rmw(priv, MT7530_MFC, UNM_FFP_MASK, UNM_FFP(BIT(port))); 633 634 /* Set CPU port number */ 635 if (priv->id == ID_MT7621) 636 mt7530_rmw(priv, MT7530_MFC, CPU_MASK, CPU_EN | CPU_PORT(port)); 637 638 /* CPU port gets connected to all user ports of 639 * the switch 640 */ 641 mt7530_write(priv, MT7530_PCR_P(port), 642 PCR_MATRIX(dsa_user_ports(priv->ds))); 643 644 return 0; 645 } 646 647 static int 648 mt7530_port_enable(struct dsa_switch *ds, int port, 649 struct phy_device *phy) 650 { 651 struct mt7530_priv *priv = ds->priv; 652 653 if (!dsa_is_user_port(ds, port)) 654 return 0; 655 656 mutex_lock(&priv->reg_mutex); 657 658 /* Allow the user port gets connected to the cpu port and also 659 * restore the port matrix if the port is the member of a certain 660 * bridge. 661 */ 662 priv->ports[port].pm |= PCR_MATRIX(BIT(MT7530_CPU_PORT)); 663 priv->ports[port].enable = true; 664 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK, 665 priv->ports[port].pm); 666 mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK); 667 668 mutex_unlock(&priv->reg_mutex); 669 670 return 0; 671 } 672 673 static void 674 mt7530_port_disable(struct dsa_switch *ds, int port) 675 { 676 struct mt7530_priv *priv = ds->priv; 677 678 if (!dsa_is_user_port(ds, port)) 679 return; 680 681 mutex_lock(&priv->reg_mutex); 682 683 /* Clear up all port matrix which could be restored in the next 684 * enablement for the port. 685 */ 686 priv->ports[port].enable = false; 687 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK, 688 PCR_MATRIX_CLR); 689 mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK); 690 691 mutex_unlock(&priv->reg_mutex); 692 } 693 694 static void 695 mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state) 696 { 697 struct mt7530_priv *priv = ds->priv; 698 u32 stp_state; 699 700 switch (state) { 701 case BR_STATE_DISABLED: 702 stp_state = MT7530_STP_DISABLED; 703 break; 704 case BR_STATE_BLOCKING: 705 stp_state = MT7530_STP_BLOCKING; 706 break; 707 case BR_STATE_LISTENING: 708 stp_state = MT7530_STP_LISTENING; 709 break; 710 case BR_STATE_LEARNING: 711 stp_state = MT7530_STP_LEARNING; 712 break; 713 case BR_STATE_FORWARDING: 714 default: 715 stp_state = MT7530_STP_FORWARDING; 716 break; 717 } 718 719 mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK, stp_state); 720 } 721 722 static int 723 mt7530_port_bridge_join(struct dsa_switch *ds, int port, 724 struct net_device *bridge) 725 { 726 struct mt7530_priv *priv = ds->priv; 727 u32 port_bitmap = BIT(MT7530_CPU_PORT); 728 int i; 729 730 mutex_lock(&priv->reg_mutex); 731 732 for (i = 0; i < MT7530_NUM_PORTS; i++) { 733 /* Add this port to the port matrix of the other ports in the 734 * same bridge. If the port is disabled, port matrix is kept 735 * and not being setup until the port becomes enabled. 736 */ 737 if (dsa_is_user_port(ds, i) && i != port) { 738 if (dsa_to_port(ds, i)->bridge_dev != bridge) 739 continue; 740 if (priv->ports[i].enable) 741 mt7530_set(priv, MT7530_PCR_P(i), 742 PCR_MATRIX(BIT(port))); 743 priv->ports[i].pm |= PCR_MATRIX(BIT(port)); 744 745 port_bitmap |= BIT(i); 746 } 747 } 748 749 /* Add the all other ports to this port matrix. */ 750 if (priv->ports[port].enable) 751 mt7530_rmw(priv, MT7530_PCR_P(port), 752 PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap)); 753 priv->ports[port].pm |= PCR_MATRIX(port_bitmap); 754 755 mutex_unlock(&priv->reg_mutex); 756 757 return 0; 758 } 759 760 static void 761 mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port) 762 { 763 struct mt7530_priv *priv = ds->priv; 764 bool all_user_ports_removed = true; 765 int i; 766 767 /* When a port is removed from the bridge, the port would be set up 768 * back to the default as is at initial boot which is a VLAN-unaware 769 * port. 770 */ 771 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK, 772 MT7530_PORT_MATRIX_MODE); 773 mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK | PVC_EG_TAG_MASK, 774 VLAN_ATTR(MT7530_VLAN_TRANSPARENT) | 775 PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT)); 776 777 for (i = 0; i < MT7530_NUM_PORTS; i++) { 778 if (dsa_is_user_port(ds, i) && 779 dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) { 780 all_user_ports_removed = false; 781 break; 782 } 783 } 784 785 /* CPU port also does the same thing until all user ports belonging to 786 * the CPU port get out of VLAN filtering mode. 787 */ 788 if (all_user_ports_removed) { 789 mt7530_write(priv, MT7530_PCR_P(MT7530_CPU_PORT), 790 PCR_MATRIX(dsa_user_ports(priv->ds))); 791 mt7530_write(priv, MT7530_PVC_P(MT7530_CPU_PORT), PORT_SPEC_TAG 792 | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT)); 793 } 794 } 795 796 static void 797 mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port) 798 { 799 struct mt7530_priv *priv = ds->priv; 800 801 /* The real fabric path would be decided on the membership in the 802 * entry of VLAN table. PCR_MATRIX set up here with ALL_MEMBERS 803 * means potential VLAN can be consisting of certain subset of all 804 * ports. 805 */ 806 mt7530_rmw(priv, MT7530_PCR_P(port), 807 PCR_MATRIX_MASK, PCR_MATRIX(MT7530_ALL_MEMBERS)); 808 809 /* Trapped into security mode allows packet forwarding through VLAN 810 * table lookup. CPU port is set to fallback mode to let untagged 811 * frames pass through. 812 */ 813 if (dsa_is_cpu_port(ds, port)) 814 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK, 815 MT7530_PORT_FALLBACK_MODE); 816 else 817 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK, 818 MT7530_PORT_SECURITY_MODE); 819 820 /* Set the port as a user port which is to be able to recognize VID 821 * from incoming packets before fetching entry within the VLAN table. 822 */ 823 mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK | PVC_EG_TAG_MASK, 824 VLAN_ATTR(MT7530_VLAN_USER) | 825 PVC_EG_TAG(MT7530_VLAN_EG_DISABLED)); 826 } 827 828 static void 829 mt7530_port_bridge_leave(struct dsa_switch *ds, int port, 830 struct net_device *bridge) 831 { 832 struct mt7530_priv *priv = ds->priv; 833 int i; 834 835 mutex_lock(&priv->reg_mutex); 836 837 for (i = 0; i < MT7530_NUM_PORTS; i++) { 838 /* Remove this port from the port matrix of the other ports 839 * in the same bridge. If the port is disabled, port matrix 840 * is kept and not being setup until the port becomes enabled. 841 * And the other port's port matrix cannot be broken when the 842 * other port is still a VLAN-aware port. 843 */ 844 if (dsa_is_user_port(ds, i) && i != port && 845 !dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) { 846 if (dsa_to_port(ds, i)->bridge_dev != bridge) 847 continue; 848 if (priv->ports[i].enable) 849 mt7530_clear(priv, MT7530_PCR_P(i), 850 PCR_MATRIX(BIT(port))); 851 priv->ports[i].pm &= ~PCR_MATRIX(BIT(port)); 852 } 853 } 854 855 /* Set the cpu port to be the only one in the port matrix of 856 * this port. 857 */ 858 if (priv->ports[port].enable) 859 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK, 860 PCR_MATRIX(BIT(MT7530_CPU_PORT))); 861 priv->ports[port].pm = PCR_MATRIX(BIT(MT7530_CPU_PORT)); 862 863 mutex_unlock(&priv->reg_mutex); 864 } 865 866 static int 867 mt7530_port_fdb_add(struct dsa_switch *ds, int port, 868 const unsigned char *addr, u16 vid) 869 { 870 struct mt7530_priv *priv = ds->priv; 871 int ret; 872 u8 port_mask = BIT(port); 873 874 mutex_lock(&priv->reg_mutex); 875 mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT); 876 ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL); 877 mutex_unlock(&priv->reg_mutex); 878 879 return ret; 880 } 881 882 static int 883 mt7530_port_fdb_del(struct dsa_switch *ds, int port, 884 const unsigned char *addr, u16 vid) 885 { 886 struct mt7530_priv *priv = ds->priv; 887 int ret; 888 u8 port_mask = BIT(port); 889 890 mutex_lock(&priv->reg_mutex); 891 mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP); 892 ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL); 893 mutex_unlock(&priv->reg_mutex); 894 895 return ret; 896 } 897 898 static int 899 mt7530_port_fdb_dump(struct dsa_switch *ds, int port, 900 dsa_fdb_dump_cb_t *cb, void *data) 901 { 902 struct mt7530_priv *priv = ds->priv; 903 struct mt7530_fdb _fdb = { 0 }; 904 int cnt = MT7530_NUM_FDB_RECORDS; 905 int ret = 0; 906 u32 rsp = 0; 907 908 mutex_lock(&priv->reg_mutex); 909 910 ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp); 911 if (ret < 0) 912 goto err; 913 914 do { 915 if (rsp & ATC_SRCH_HIT) { 916 mt7530_fdb_read(priv, &_fdb); 917 if (_fdb.port_mask & BIT(port)) { 918 ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp, 919 data); 920 if (ret < 0) 921 break; 922 } 923 } 924 } while (--cnt && 925 !(rsp & ATC_SRCH_END) && 926 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp)); 927 err: 928 mutex_unlock(&priv->reg_mutex); 929 930 return 0; 931 } 932 933 static int 934 mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid) 935 { 936 struct mt7530_dummy_poll p; 937 u32 val; 938 int ret; 939 940 val = VTCR_BUSY | VTCR_FUNC(cmd) | vid; 941 mt7530_write(priv, MT7530_VTCR, val); 942 943 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR); 944 ret = readx_poll_timeout(_mt7530_read, &p, val, 945 !(val & VTCR_BUSY), 20, 20000); 946 if (ret < 0) { 947 dev_err(priv->dev, "poll timeout\n"); 948 return ret; 949 } 950 951 val = mt7530_read(priv, MT7530_VTCR); 952 if (val & VTCR_INVALID) { 953 dev_err(priv->dev, "read VTCR invalid\n"); 954 return -EINVAL; 955 } 956 957 return 0; 958 } 959 960 static int 961 mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, 962 bool vlan_filtering) 963 { 964 if (vlan_filtering) { 965 /* The port is being kept as VLAN-unaware port when bridge is 966 * set up with vlan_filtering not being set, Otherwise, the 967 * port and the corresponding CPU port is required the setup 968 * for becoming a VLAN-aware port. 969 */ 970 mt7530_port_set_vlan_aware(ds, port); 971 mt7530_port_set_vlan_aware(ds, MT7530_CPU_PORT); 972 } else { 973 mt7530_port_set_vlan_unaware(ds, port); 974 } 975 976 return 0; 977 } 978 979 static int 980 mt7530_port_vlan_prepare(struct dsa_switch *ds, int port, 981 const struct switchdev_obj_port_vlan *vlan) 982 { 983 /* nothing needed */ 984 985 return 0; 986 } 987 988 static void 989 mt7530_hw_vlan_add(struct mt7530_priv *priv, 990 struct mt7530_hw_vlan_entry *entry) 991 { 992 u8 new_members; 993 u32 val; 994 995 new_members = entry->old_members | BIT(entry->port) | 996 BIT(MT7530_CPU_PORT); 997 998 /* Validate the entry with independent learning, create egress tag per 999 * VLAN and joining the port as one of the port members. 1000 */ 1001 val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | VLAN_VALID; 1002 mt7530_write(priv, MT7530_VAWD1, val); 1003 1004 /* Decide whether adding tag or not for those outgoing packets from the 1005 * port inside the VLAN. 1006 */ 1007 val = entry->untagged ? MT7530_VLAN_EGRESS_UNTAG : 1008 MT7530_VLAN_EGRESS_TAG; 1009 mt7530_rmw(priv, MT7530_VAWD2, 1010 ETAG_CTRL_P_MASK(entry->port), 1011 ETAG_CTRL_P(entry->port, val)); 1012 1013 /* CPU port is always taken as a tagged port for serving more than one 1014 * VLANs across and also being applied with egress type stack mode for 1015 * that VLAN tags would be appended after hardware special tag used as 1016 * DSA tag. 1017 */ 1018 mt7530_rmw(priv, MT7530_VAWD2, 1019 ETAG_CTRL_P_MASK(MT7530_CPU_PORT), 1020 ETAG_CTRL_P(MT7530_CPU_PORT, 1021 MT7530_VLAN_EGRESS_STACK)); 1022 } 1023 1024 static void 1025 mt7530_hw_vlan_del(struct mt7530_priv *priv, 1026 struct mt7530_hw_vlan_entry *entry) 1027 { 1028 u8 new_members; 1029 u32 val; 1030 1031 new_members = entry->old_members & ~BIT(entry->port); 1032 1033 val = mt7530_read(priv, MT7530_VAWD1); 1034 if (!(val & VLAN_VALID)) { 1035 dev_err(priv->dev, 1036 "Cannot be deleted due to invalid entry\n"); 1037 return; 1038 } 1039 1040 /* If certain member apart from CPU port is still alive in the VLAN, 1041 * the entry would be kept valid. Otherwise, the entry is got to be 1042 * disabled. 1043 */ 1044 if (new_members && new_members != BIT(MT7530_CPU_PORT)) { 1045 val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | 1046 VLAN_VALID; 1047 mt7530_write(priv, MT7530_VAWD1, val); 1048 } else { 1049 mt7530_write(priv, MT7530_VAWD1, 0); 1050 mt7530_write(priv, MT7530_VAWD2, 0); 1051 } 1052 } 1053 1054 static void 1055 mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid, 1056 struct mt7530_hw_vlan_entry *entry, 1057 mt7530_vlan_op vlan_op) 1058 { 1059 u32 val; 1060 1061 /* Fetch entry */ 1062 mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid); 1063 1064 val = mt7530_read(priv, MT7530_VAWD1); 1065 1066 entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK; 1067 1068 /* Manipulate entry */ 1069 vlan_op(priv, entry); 1070 1071 /* Flush result to hardware */ 1072 mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid); 1073 } 1074 1075 static void 1076 mt7530_port_vlan_add(struct dsa_switch *ds, int port, 1077 const struct switchdev_obj_port_vlan *vlan) 1078 { 1079 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED; 1080 bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID; 1081 struct mt7530_hw_vlan_entry new_entry; 1082 struct mt7530_priv *priv = ds->priv; 1083 u16 vid; 1084 1085 mutex_lock(&priv->reg_mutex); 1086 1087 for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) { 1088 mt7530_hw_vlan_entry_init(&new_entry, port, untagged); 1089 mt7530_hw_vlan_update(priv, vid, &new_entry, 1090 mt7530_hw_vlan_add); 1091 } 1092 1093 if (pvid) { 1094 mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, 1095 G0_PORT_VID(vlan->vid_end)); 1096 priv->ports[port].pvid = vlan->vid_end; 1097 } 1098 1099 mutex_unlock(&priv->reg_mutex); 1100 } 1101 1102 static int 1103 mt7530_port_vlan_del(struct dsa_switch *ds, int port, 1104 const struct switchdev_obj_port_vlan *vlan) 1105 { 1106 struct mt7530_hw_vlan_entry target_entry; 1107 struct mt7530_priv *priv = ds->priv; 1108 u16 vid, pvid; 1109 1110 mutex_lock(&priv->reg_mutex); 1111 1112 pvid = priv->ports[port].pvid; 1113 for (vid = vlan->vid_begin; vid <= vlan->vid_end; ++vid) { 1114 mt7530_hw_vlan_entry_init(&target_entry, port, 0); 1115 mt7530_hw_vlan_update(priv, vid, &target_entry, 1116 mt7530_hw_vlan_del); 1117 1118 /* PVID is being restored to the default whenever the PVID port 1119 * is being removed from the VLAN. 1120 */ 1121 if (pvid == vid) 1122 pvid = G0_PORT_VID_DEF; 1123 } 1124 1125 mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, pvid); 1126 priv->ports[port].pvid = pvid; 1127 1128 mutex_unlock(&priv->reg_mutex); 1129 1130 return 0; 1131 } 1132 1133 static int mt7530_port_mirror_add(struct dsa_switch *ds, int port, 1134 struct dsa_mall_mirror_tc_entry *mirror, 1135 bool ingress) 1136 { 1137 struct mt7530_priv *priv = ds->priv; 1138 u32 val; 1139 1140 /* Check for existent entry */ 1141 if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port)) 1142 return -EEXIST; 1143 1144 val = mt7530_read(priv, MT7530_MFC); 1145 1146 /* MT7530 only supports one monitor port */ 1147 if (val & MIRROR_EN && MIRROR_PORT(val) != mirror->to_local_port) 1148 return -EEXIST; 1149 1150 val |= MIRROR_EN; 1151 val &= ~MIRROR_MASK; 1152 val |= mirror->to_local_port; 1153 mt7530_write(priv, MT7530_MFC, val); 1154 1155 val = mt7530_read(priv, MT7530_PCR_P(port)); 1156 if (ingress) { 1157 val |= PORT_RX_MIR; 1158 priv->mirror_rx |= BIT(port); 1159 } else { 1160 val |= PORT_TX_MIR; 1161 priv->mirror_tx |= BIT(port); 1162 } 1163 mt7530_write(priv, MT7530_PCR_P(port), val); 1164 1165 return 0; 1166 } 1167 1168 static void mt7530_port_mirror_del(struct dsa_switch *ds, int port, 1169 struct dsa_mall_mirror_tc_entry *mirror) 1170 { 1171 struct mt7530_priv *priv = ds->priv; 1172 u32 val; 1173 1174 val = mt7530_read(priv, MT7530_PCR_P(port)); 1175 if (mirror->ingress) { 1176 val &= ~PORT_RX_MIR; 1177 priv->mirror_rx &= ~BIT(port); 1178 } else { 1179 val &= ~PORT_TX_MIR; 1180 priv->mirror_tx &= ~BIT(port); 1181 } 1182 mt7530_write(priv, MT7530_PCR_P(port), val); 1183 1184 if (!priv->mirror_rx && !priv->mirror_tx) { 1185 val = mt7530_read(priv, MT7530_MFC); 1186 val &= ~MIRROR_EN; 1187 mt7530_write(priv, MT7530_MFC, val); 1188 } 1189 } 1190 1191 static enum dsa_tag_protocol 1192 mtk_get_tag_protocol(struct dsa_switch *ds, int port, 1193 enum dsa_tag_protocol mp) 1194 { 1195 struct mt7530_priv *priv = ds->priv; 1196 1197 if (port != MT7530_CPU_PORT) { 1198 dev_warn(priv->dev, 1199 "port not matched with tagging CPU port\n"); 1200 return DSA_TAG_PROTO_NONE; 1201 } else { 1202 return DSA_TAG_PROTO_MTK; 1203 } 1204 } 1205 1206 static int 1207 mt7530_setup(struct dsa_switch *ds) 1208 { 1209 struct mt7530_priv *priv = ds->priv; 1210 struct device_node *phy_node; 1211 struct device_node *mac_np; 1212 struct mt7530_dummy_poll p; 1213 phy_interface_t interface; 1214 struct device_node *dn; 1215 u32 id, val; 1216 int ret, i; 1217 1218 /* The parent node of master netdev which holds the common system 1219 * controller also is the container for two GMACs nodes representing 1220 * as two netdev instances. 1221 */ 1222 dn = dsa_to_port(ds, MT7530_CPU_PORT)->master->dev.of_node->parent; 1223 ds->configure_vlan_while_not_filtering = true; 1224 1225 if (priv->id == ID_MT7530) { 1226 regulator_set_voltage(priv->core_pwr, 1000000, 1000000); 1227 ret = regulator_enable(priv->core_pwr); 1228 if (ret < 0) { 1229 dev_err(priv->dev, 1230 "Failed to enable core power: %d\n", ret); 1231 return ret; 1232 } 1233 1234 regulator_set_voltage(priv->io_pwr, 3300000, 3300000); 1235 ret = regulator_enable(priv->io_pwr); 1236 if (ret < 0) { 1237 dev_err(priv->dev, "Failed to enable io pwr: %d\n", 1238 ret); 1239 return ret; 1240 } 1241 } 1242 1243 /* Reset whole chip through gpio pin or memory-mapped registers for 1244 * different type of hardware 1245 */ 1246 if (priv->mcm) { 1247 reset_control_assert(priv->rstc); 1248 usleep_range(1000, 1100); 1249 reset_control_deassert(priv->rstc); 1250 } else { 1251 gpiod_set_value_cansleep(priv->reset, 0); 1252 usleep_range(1000, 1100); 1253 gpiod_set_value_cansleep(priv->reset, 1); 1254 } 1255 1256 /* Waiting for MT7530 got to stable */ 1257 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP); 1258 ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0, 1259 20, 1000000); 1260 if (ret < 0) { 1261 dev_err(priv->dev, "reset timeout\n"); 1262 return ret; 1263 } 1264 1265 id = mt7530_read(priv, MT7530_CREV); 1266 id >>= CHIP_NAME_SHIFT; 1267 if (id != MT7530_ID) { 1268 dev_err(priv->dev, "chip %x can't be supported\n", id); 1269 return -ENODEV; 1270 } 1271 1272 /* Reset the switch through internal reset */ 1273 mt7530_write(priv, MT7530_SYS_CTRL, 1274 SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST | 1275 SYS_CTRL_REG_RST); 1276 1277 /* Enable Port 6 only; P5 as GMAC5 which currently is not supported */ 1278 val = mt7530_read(priv, MT7530_MHWTRAP); 1279 val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS; 1280 val |= MHWTRAP_MANUAL; 1281 mt7530_write(priv, MT7530_MHWTRAP, val); 1282 1283 priv->p6_interface = PHY_INTERFACE_MODE_NA; 1284 1285 /* Enable and reset MIB counters */ 1286 mt7530_mib_reset(ds); 1287 1288 for (i = 0; i < MT7530_NUM_PORTS; i++) { 1289 /* Disable forwarding by default on all ports */ 1290 mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK, 1291 PCR_MATRIX_CLR); 1292 1293 if (dsa_is_cpu_port(ds, i)) 1294 mt7530_cpu_port_enable(priv, i); 1295 else 1296 mt7530_port_disable(ds, i); 1297 1298 /* Enable consistent egress tag */ 1299 mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK, 1300 PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT)); 1301 } 1302 1303 /* Setup port 5 */ 1304 priv->p5_intf_sel = P5_DISABLED; 1305 interface = PHY_INTERFACE_MODE_NA; 1306 1307 if (!dsa_is_unused_port(ds, 5)) { 1308 priv->p5_intf_sel = P5_INTF_SEL_GMAC5; 1309 ret = of_get_phy_mode(dsa_to_port(ds, 5)->dn, &interface); 1310 if (ret && ret != -ENODEV) 1311 return ret; 1312 } else { 1313 /* Scan the ethernet nodes. look for GMAC1, lookup used phy */ 1314 for_each_child_of_node(dn, mac_np) { 1315 if (!of_device_is_compatible(mac_np, 1316 "mediatek,eth-mac")) 1317 continue; 1318 1319 ret = of_property_read_u32(mac_np, "reg", &id); 1320 if (ret < 0 || id != 1) 1321 continue; 1322 1323 phy_node = of_parse_phandle(mac_np, "phy-handle", 0); 1324 if (!phy_node) 1325 continue; 1326 1327 if (phy_node->parent == priv->dev->of_node->parent) { 1328 ret = of_get_phy_mode(mac_np, &interface); 1329 if (ret && ret != -ENODEV) { 1330 of_node_put(mac_np); 1331 return ret; 1332 } 1333 id = of_mdio_parse_addr(ds->dev, phy_node); 1334 if (id == 0) 1335 priv->p5_intf_sel = P5_INTF_SEL_PHY_P0; 1336 if (id == 4) 1337 priv->p5_intf_sel = P5_INTF_SEL_PHY_P4; 1338 } 1339 of_node_put(mac_np); 1340 of_node_put(phy_node); 1341 break; 1342 } 1343 } 1344 1345 mt7530_setup_port5(ds, interface); 1346 1347 /* Flush the FDB table */ 1348 ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL); 1349 if (ret < 0) 1350 return ret; 1351 1352 return 0; 1353 } 1354 1355 static void mt7530_phylink_mac_config(struct dsa_switch *ds, int port, 1356 unsigned int mode, 1357 const struct phylink_link_state *state) 1358 { 1359 struct mt7530_priv *priv = ds->priv; 1360 u32 mcr_cur, mcr_new; 1361 1362 switch (port) { 1363 case 0: /* Internal phy */ 1364 case 1: 1365 case 2: 1366 case 3: 1367 case 4: 1368 if (state->interface != PHY_INTERFACE_MODE_GMII) 1369 return; 1370 break; 1371 case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */ 1372 if (priv->p5_interface == state->interface) 1373 break; 1374 if (!phy_interface_mode_is_rgmii(state->interface) && 1375 state->interface != PHY_INTERFACE_MODE_MII && 1376 state->interface != PHY_INTERFACE_MODE_GMII) 1377 return; 1378 1379 mt7530_setup_port5(ds, state->interface); 1380 break; 1381 case 6: /* 1st cpu port */ 1382 if (priv->p6_interface == state->interface) 1383 break; 1384 1385 if (state->interface != PHY_INTERFACE_MODE_RGMII && 1386 state->interface != PHY_INTERFACE_MODE_TRGMII) 1387 return; 1388 1389 /* Setup TX circuit incluing relevant PAD and driving */ 1390 mt7530_pad_clk_setup(ds, state->interface); 1391 1392 priv->p6_interface = state->interface; 1393 break; 1394 default: 1395 dev_err(ds->dev, "%s: unsupported port: %i\n", __func__, port); 1396 return; 1397 } 1398 1399 if (phylink_autoneg_inband(mode)) { 1400 dev_err(ds->dev, "%s: in-band negotiation unsupported\n", 1401 __func__); 1402 return; 1403 } 1404 1405 mcr_cur = mt7530_read(priv, MT7530_PMCR_P(port)); 1406 mcr_new = mcr_cur; 1407 mcr_new &= ~PMCR_LINK_SETTINGS_MASK; 1408 mcr_new |= PMCR_IFG_XMIT(1) | PMCR_MAC_MODE | PMCR_BACKOFF_EN | 1409 PMCR_BACKPR_EN | PMCR_FORCE_MODE; 1410 1411 /* Are we connected to external phy */ 1412 if (port == 5 && dsa_is_user_port(ds, 5)) 1413 mcr_new |= PMCR_EXT_PHY; 1414 1415 if (mcr_new != mcr_cur) 1416 mt7530_write(priv, MT7530_PMCR_P(port), mcr_new); 1417 } 1418 1419 static void mt7530_phylink_mac_link_down(struct dsa_switch *ds, int port, 1420 unsigned int mode, 1421 phy_interface_t interface) 1422 { 1423 struct mt7530_priv *priv = ds->priv; 1424 1425 mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK); 1426 } 1427 1428 static void mt7530_phylink_mac_link_up(struct dsa_switch *ds, int port, 1429 unsigned int mode, 1430 phy_interface_t interface, 1431 struct phy_device *phydev, 1432 int speed, int duplex, 1433 bool tx_pause, bool rx_pause) 1434 { 1435 struct mt7530_priv *priv = ds->priv; 1436 u32 mcr; 1437 1438 mcr = PMCR_RX_EN | PMCR_TX_EN | PMCR_FORCE_LNK; 1439 1440 switch (speed) { 1441 case SPEED_1000: 1442 mcr |= PMCR_FORCE_SPEED_1000; 1443 break; 1444 case SPEED_100: 1445 mcr |= PMCR_FORCE_SPEED_100; 1446 break; 1447 } 1448 if (duplex == DUPLEX_FULL) { 1449 mcr |= PMCR_FORCE_FDX; 1450 if (tx_pause) 1451 mcr |= PMCR_TX_FC_EN; 1452 if (rx_pause) 1453 mcr |= PMCR_RX_FC_EN; 1454 } 1455 1456 mt7530_set(priv, MT7530_PMCR_P(port), mcr); 1457 } 1458 1459 static void mt7530_phylink_validate(struct dsa_switch *ds, int port, 1460 unsigned long *supported, 1461 struct phylink_link_state *state) 1462 { 1463 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 1464 1465 switch (port) { 1466 case 0: /* Internal phy */ 1467 case 1: 1468 case 2: 1469 case 3: 1470 case 4: 1471 if (state->interface != PHY_INTERFACE_MODE_NA && 1472 state->interface != PHY_INTERFACE_MODE_GMII) 1473 goto unsupported; 1474 break; 1475 case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */ 1476 if (state->interface != PHY_INTERFACE_MODE_NA && 1477 !phy_interface_mode_is_rgmii(state->interface) && 1478 state->interface != PHY_INTERFACE_MODE_MII && 1479 state->interface != PHY_INTERFACE_MODE_GMII) 1480 goto unsupported; 1481 break; 1482 case 6: /* 1st cpu port */ 1483 if (state->interface != PHY_INTERFACE_MODE_NA && 1484 state->interface != PHY_INTERFACE_MODE_RGMII && 1485 state->interface != PHY_INTERFACE_MODE_TRGMII) 1486 goto unsupported; 1487 break; 1488 default: 1489 dev_err(ds->dev, "%s: unsupported port: %i\n", __func__, port); 1490 unsupported: 1491 linkmode_zero(supported); 1492 return; 1493 } 1494 1495 phylink_set_port_modes(mask); 1496 phylink_set(mask, Autoneg); 1497 1498 if (state->interface == PHY_INTERFACE_MODE_TRGMII) { 1499 phylink_set(mask, 1000baseT_Full); 1500 } else { 1501 phylink_set(mask, 10baseT_Half); 1502 phylink_set(mask, 10baseT_Full); 1503 phylink_set(mask, 100baseT_Half); 1504 phylink_set(mask, 100baseT_Full); 1505 1506 if (state->interface != PHY_INTERFACE_MODE_MII) { 1507 /* This switch only supports 1G full-duplex. */ 1508 phylink_set(mask, 1000baseT_Full); 1509 if (port == 5) 1510 phylink_set(mask, 1000baseX_Full); 1511 } 1512 } 1513 1514 phylink_set(mask, Pause); 1515 phylink_set(mask, Asym_Pause); 1516 1517 linkmode_and(supported, supported, mask); 1518 linkmode_and(state->advertising, state->advertising, mask); 1519 } 1520 1521 static int 1522 mt7530_phylink_mac_link_state(struct dsa_switch *ds, int port, 1523 struct phylink_link_state *state) 1524 { 1525 struct mt7530_priv *priv = ds->priv; 1526 u32 pmsr; 1527 1528 if (port < 0 || port >= MT7530_NUM_PORTS) 1529 return -EINVAL; 1530 1531 pmsr = mt7530_read(priv, MT7530_PMSR_P(port)); 1532 1533 state->link = (pmsr & PMSR_LINK); 1534 state->an_complete = state->link; 1535 state->duplex = !!(pmsr & PMSR_DPX); 1536 1537 switch (pmsr & PMSR_SPEED_MASK) { 1538 case PMSR_SPEED_10: 1539 state->speed = SPEED_10; 1540 break; 1541 case PMSR_SPEED_100: 1542 state->speed = SPEED_100; 1543 break; 1544 case PMSR_SPEED_1000: 1545 state->speed = SPEED_1000; 1546 break; 1547 default: 1548 state->speed = SPEED_UNKNOWN; 1549 break; 1550 } 1551 1552 state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX); 1553 if (pmsr & PMSR_RX_FC) 1554 state->pause |= MLO_PAUSE_RX; 1555 if (pmsr & PMSR_TX_FC) 1556 state->pause |= MLO_PAUSE_TX; 1557 1558 return 1; 1559 } 1560 1561 static const struct dsa_switch_ops mt7530_switch_ops = { 1562 .get_tag_protocol = mtk_get_tag_protocol, 1563 .setup = mt7530_setup, 1564 .get_strings = mt7530_get_strings, 1565 .phy_read = mt7530_phy_read, 1566 .phy_write = mt7530_phy_write, 1567 .get_ethtool_stats = mt7530_get_ethtool_stats, 1568 .get_sset_count = mt7530_get_sset_count, 1569 .port_enable = mt7530_port_enable, 1570 .port_disable = mt7530_port_disable, 1571 .port_stp_state_set = mt7530_stp_state_set, 1572 .port_bridge_join = mt7530_port_bridge_join, 1573 .port_bridge_leave = mt7530_port_bridge_leave, 1574 .port_fdb_add = mt7530_port_fdb_add, 1575 .port_fdb_del = mt7530_port_fdb_del, 1576 .port_fdb_dump = mt7530_port_fdb_dump, 1577 .port_vlan_filtering = mt7530_port_vlan_filtering, 1578 .port_vlan_prepare = mt7530_port_vlan_prepare, 1579 .port_vlan_add = mt7530_port_vlan_add, 1580 .port_vlan_del = mt7530_port_vlan_del, 1581 .port_mirror_add = mt7530_port_mirror_add, 1582 .port_mirror_del = mt7530_port_mirror_del, 1583 .phylink_validate = mt7530_phylink_validate, 1584 .phylink_mac_link_state = mt7530_phylink_mac_link_state, 1585 .phylink_mac_config = mt7530_phylink_mac_config, 1586 .phylink_mac_link_down = mt7530_phylink_mac_link_down, 1587 .phylink_mac_link_up = mt7530_phylink_mac_link_up, 1588 }; 1589 1590 static const struct of_device_id mt7530_of_match[] = { 1591 { .compatible = "mediatek,mt7621", .data = (void *)ID_MT7621, }, 1592 { .compatible = "mediatek,mt7530", .data = (void *)ID_MT7530, }, 1593 { /* sentinel */ }, 1594 }; 1595 MODULE_DEVICE_TABLE(of, mt7530_of_match); 1596 1597 static int 1598 mt7530_probe(struct mdio_device *mdiodev) 1599 { 1600 struct mt7530_priv *priv; 1601 struct device_node *dn; 1602 1603 dn = mdiodev->dev.of_node; 1604 1605 priv = devm_kzalloc(&mdiodev->dev, sizeof(*priv), GFP_KERNEL); 1606 if (!priv) 1607 return -ENOMEM; 1608 1609 priv->ds = devm_kzalloc(&mdiodev->dev, sizeof(*priv->ds), GFP_KERNEL); 1610 if (!priv->ds) 1611 return -ENOMEM; 1612 1613 priv->ds->dev = &mdiodev->dev; 1614 priv->ds->num_ports = DSA_MAX_PORTS; 1615 1616 /* Use medatek,mcm property to distinguish hardware type that would 1617 * casues a little bit differences on power-on sequence. 1618 */ 1619 priv->mcm = of_property_read_bool(dn, "mediatek,mcm"); 1620 if (priv->mcm) { 1621 dev_info(&mdiodev->dev, "MT7530 adapts as multi-chip module\n"); 1622 1623 priv->rstc = devm_reset_control_get(&mdiodev->dev, "mcm"); 1624 if (IS_ERR(priv->rstc)) { 1625 dev_err(&mdiodev->dev, "Couldn't get our reset line\n"); 1626 return PTR_ERR(priv->rstc); 1627 } 1628 } 1629 1630 /* Get the hardware identifier from the devicetree node. 1631 * We will need it for some of the clock and regulator setup. 1632 */ 1633 priv->id = (unsigned int)(unsigned long) 1634 of_device_get_match_data(&mdiodev->dev); 1635 1636 if (priv->id == ID_MT7530) { 1637 priv->core_pwr = devm_regulator_get(&mdiodev->dev, "core"); 1638 if (IS_ERR(priv->core_pwr)) 1639 return PTR_ERR(priv->core_pwr); 1640 1641 priv->io_pwr = devm_regulator_get(&mdiodev->dev, "io"); 1642 if (IS_ERR(priv->io_pwr)) 1643 return PTR_ERR(priv->io_pwr); 1644 } 1645 1646 /* Not MCM that indicates switch works as the remote standalone 1647 * integrated circuit so the GPIO pin would be used to complete 1648 * the reset, otherwise memory-mapped register accessing used 1649 * through syscon provides in the case of MCM. 1650 */ 1651 if (!priv->mcm) { 1652 priv->reset = devm_gpiod_get_optional(&mdiodev->dev, "reset", 1653 GPIOD_OUT_LOW); 1654 if (IS_ERR(priv->reset)) { 1655 dev_err(&mdiodev->dev, "Couldn't get our reset line\n"); 1656 return PTR_ERR(priv->reset); 1657 } 1658 } 1659 1660 priv->bus = mdiodev->bus; 1661 priv->dev = &mdiodev->dev; 1662 priv->ds->priv = priv; 1663 priv->ds->ops = &mt7530_switch_ops; 1664 mutex_init(&priv->reg_mutex); 1665 dev_set_drvdata(&mdiodev->dev, priv); 1666 1667 return dsa_register_switch(priv->ds); 1668 } 1669 1670 static void 1671 mt7530_remove(struct mdio_device *mdiodev) 1672 { 1673 struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev); 1674 int ret = 0; 1675 1676 ret = regulator_disable(priv->core_pwr); 1677 if (ret < 0) 1678 dev_err(priv->dev, 1679 "Failed to disable core power: %d\n", ret); 1680 1681 ret = regulator_disable(priv->io_pwr); 1682 if (ret < 0) 1683 dev_err(priv->dev, "Failed to disable io pwr: %d\n", 1684 ret); 1685 1686 dsa_unregister_switch(priv->ds); 1687 mutex_destroy(&priv->reg_mutex); 1688 } 1689 1690 static struct mdio_driver mt7530_mdio_driver = { 1691 .probe = mt7530_probe, 1692 .remove = mt7530_remove, 1693 .mdiodrv.driver = { 1694 .name = "mt7530", 1695 .of_match_table = mt7530_of_match, 1696 }, 1697 }; 1698 1699 mdio_module_driver(mt7530_mdio_driver); 1700 1701 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>"); 1702 MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch"); 1703 MODULE_LICENSE("GPL"); 1704