1 // SPDX-License-Identifier: GPL-2.0-only 2 /* 3 * Mediatek MT7530 DSA Switch driver 4 * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com> 5 */ 6 #include <linux/etherdevice.h> 7 #include <linux/if_bridge.h> 8 #include <linux/iopoll.h> 9 #include <linux/mdio.h> 10 #include <linux/mfd/syscon.h> 11 #include <linux/module.h> 12 #include <linux/netdevice.h> 13 #include <linux/of_mdio.h> 14 #include <linux/of_net.h> 15 #include <linux/of_platform.h> 16 #include <linux/phylink.h> 17 #include <linux/regmap.h> 18 #include <linux/regulator/consumer.h> 19 #include <linux/reset.h> 20 #include <linux/gpio/consumer.h> 21 #include <linux/gpio/driver.h> 22 #include <net/dsa.h> 23 24 #include "mt7530.h" 25 26 /* String, offset, and register size in bytes if different from 4 bytes */ 27 static const struct mt7530_mib_desc mt7530_mib[] = { 28 MIB_DESC(1, 0x00, "TxDrop"), 29 MIB_DESC(1, 0x04, "TxCrcErr"), 30 MIB_DESC(1, 0x08, "TxUnicast"), 31 MIB_DESC(1, 0x0c, "TxMulticast"), 32 MIB_DESC(1, 0x10, "TxBroadcast"), 33 MIB_DESC(1, 0x14, "TxCollision"), 34 MIB_DESC(1, 0x18, "TxSingleCollision"), 35 MIB_DESC(1, 0x1c, "TxMultipleCollision"), 36 MIB_DESC(1, 0x20, "TxDeferred"), 37 MIB_DESC(1, 0x24, "TxLateCollision"), 38 MIB_DESC(1, 0x28, "TxExcessiveCollistion"), 39 MIB_DESC(1, 0x2c, "TxPause"), 40 MIB_DESC(1, 0x30, "TxPktSz64"), 41 MIB_DESC(1, 0x34, "TxPktSz65To127"), 42 MIB_DESC(1, 0x38, "TxPktSz128To255"), 43 MIB_DESC(1, 0x3c, "TxPktSz256To511"), 44 MIB_DESC(1, 0x40, "TxPktSz512To1023"), 45 MIB_DESC(1, 0x44, "Tx1024ToMax"), 46 MIB_DESC(2, 0x48, "TxBytes"), 47 MIB_DESC(1, 0x60, "RxDrop"), 48 MIB_DESC(1, 0x64, "RxFiltering"), 49 MIB_DESC(1, 0x6c, "RxMulticast"), 50 MIB_DESC(1, 0x70, "RxBroadcast"), 51 MIB_DESC(1, 0x74, "RxAlignErr"), 52 MIB_DESC(1, 0x78, "RxCrcErr"), 53 MIB_DESC(1, 0x7c, "RxUnderSizeErr"), 54 MIB_DESC(1, 0x80, "RxFragErr"), 55 MIB_DESC(1, 0x84, "RxOverSzErr"), 56 MIB_DESC(1, 0x88, "RxJabberErr"), 57 MIB_DESC(1, 0x8c, "RxPause"), 58 MIB_DESC(1, 0x90, "RxPktSz64"), 59 MIB_DESC(1, 0x94, "RxPktSz65To127"), 60 MIB_DESC(1, 0x98, "RxPktSz128To255"), 61 MIB_DESC(1, 0x9c, "RxPktSz256To511"), 62 MIB_DESC(1, 0xa0, "RxPktSz512To1023"), 63 MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"), 64 MIB_DESC(2, 0xa8, "RxBytes"), 65 MIB_DESC(1, 0xb0, "RxCtrlDrop"), 66 MIB_DESC(1, 0xb4, "RxIngressDrop"), 67 MIB_DESC(1, 0xb8, "RxArlDrop"), 68 }; 69 70 static int 71 core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad) 72 { 73 struct mii_bus *bus = priv->bus; 74 int value, ret; 75 76 /* Write the desired MMD Devad */ 77 ret = bus->write(bus, 0, MII_MMD_CTRL, devad); 78 if (ret < 0) 79 goto err; 80 81 /* Write the desired MMD register address */ 82 ret = bus->write(bus, 0, MII_MMD_DATA, prtad); 83 if (ret < 0) 84 goto err; 85 86 /* Select the Function : DATA with no post increment */ 87 ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR)); 88 if (ret < 0) 89 goto err; 90 91 /* Read the content of the MMD's selected register */ 92 value = bus->read(bus, 0, MII_MMD_DATA); 93 94 return value; 95 err: 96 dev_err(&bus->dev, "failed to read mmd register\n"); 97 98 return ret; 99 } 100 101 static int 102 core_write_mmd_indirect(struct mt7530_priv *priv, int prtad, 103 int devad, u32 data) 104 { 105 struct mii_bus *bus = priv->bus; 106 int ret; 107 108 /* Write the desired MMD Devad */ 109 ret = bus->write(bus, 0, MII_MMD_CTRL, devad); 110 if (ret < 0) 111 goto err; 112 113 /* Write the desired MMD register address */ 114 ret = bus->write(bus, 0, MII_MMD_DATA, prtad); 115 if (ret < 0) 116 goto err; 117 118 /* Select the Function : DATA with no post increment */ 119 ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR)); 120 if (ret < 0) 121 goto err; 122 123 /* Write the data into MMD's selected register */ 124 ret = bus->write(bus, 0, MII_MMD_DATA, data); 125 err: 126 if (ret < 0) 127 dev_err(&bus->dev, 128 "failed to write mmd register\n"); 129 return ret; 130 } 131 132 static void 133 core_write(struct mt7530_priv *priv, u32 reg, u32 val) 134 { 135 struct mii_bus *bus = priv->bus; 136 137 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 138 139 core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val); 140 141 mutex_unlock(&bus->mdio_lock); 142 } 143 144 static void 145 core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set) 146 { 147 struct mii_bus *bus = priv->bus; 148 u32 val; 149 150 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 151 152 val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2); 153 val &= ~mask; 154 val |= set; 155 core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val); 156 157 mutex_unlock(&bus->mdio_lock); 158 } 159 160 static void 161 core_set(struct mt7530_priv *priv, u32 reg, u32 val) 162 { 163 core_rmw(priv, reg, 0, val); 164 } 165 166 static void 167 core_clear(struct mt7530_priv *priv, u32 reg, u32 val) 168 { 169 core_rmw(priv, reg, val, 0); 170 } 171 172 static int 173 mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val) 174 { 175 struct mii_bus *bus = priv->bus; 176 u16 page, r, lo, hi; 177 int ret; 178 179 page = (reg >> 6) & 0x3ff; 180 r = (reg >> 2) & 0xf; 181 lo = val & 0xffff; 182 hi = val >> 16; 183 184 /* MT7530 uses 31 as the pseudo port */ 185 ret = bus->write(bus, 0x1f, 0x1f, page); 186 if (ret < 0) 187 goto err; 188 189 ret = bus->write(bus, 0x1f, r, lo); 190 if (ret < 0) 191 goto err; 192 193 ret = bus->write(bus, 0x1f, 0x10, hi); 194 err: 195 if (ret < 0) 196 dev_err(&bus->dev, 197 "failed to write mt7530 register\n"); 198 return ret; 199 } 200 201 static u32 202 mt7530_mii_read(struct mt7530_priv *priv, u32 reg) 203 { 204 struct mii_bus *bus = priv->bus; 205 u16 page, r, lo, hi; 206 int ret; 207 208 page = (reg >> 6) & 0x3ff; 209 r = (reg >> 2) & 0xf; 210 211 /* MT7530 uses 31 as the pseudo port */ 212 ret = bus->write(bus, 0x1f, 0x1f, page); 213 if (ret < 0) { 214 dev_err(&bus->dev, 215 "failed to read mt7530 register\n"); 216 return ret; 217 } 218 219 lo = bus->read(bus, 0x1f, r); 220 hi = bus->read(bus, 0x1f, 0x10); 221 222 return (hi << 16) | (lo & 0xffff); 223 } 224 225 static void 226 mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val) 227 { 228 struct mii_bus *bus = priv->bus; 229 230 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 231 232 mt7530_mii_write(priv, reg, val); 233 234 mutex_unlock(&bus->mdio_lock); 235 } 236 237 static u32 238 _mt7530_unlocked_read(struct mt7530_dummy_poll *p) 239 { 240 return mt7530_mii_read(p->priv, p->reg); 241 } 242 243 static u32 244 _mt7530_read(struct mt7530_dummy_poll *p) 245 { 246 struct mii_bus *bus = p->priv->bus; 247 u32 val; 248 249 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 250 251 val = mt7530_mii_read(p->priv, p->reg); 252 253 mutex_unlock(&bus->mdio_lock); 254 255 return val; 256 } 257 258 static u32 259 mt7530_read(struct mt7530_priv *priv, u32 reg) 260 { 261 struct mt7530_dummy_poll p; 262 263 INIT_MT7530_DUMMY_POLL(&p, priv, reg); 264 return _mt7530_read(&p); 265 } 266 267 static void 268 mt7530_rmw(struct mt7530_priv *priv, u32 reg, 269 u32 mask, u32 set) 270 { 271 struct mii_bus *bus = priv->bus; 272 u32 val; 273 274 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 275 276 val = mt7530_mii_read(priv, reg); 277 val &= ~mask; 278 val |= set; 279 mt7530_mii_write(priv, reg, val); 280 281 mutex_unlock(&bus->mdio_lock); 282 } 283 284 static void 285 mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val) 286 { 287 mt7530_rmw(priv, reg, 0, val); 288 } 289 290 static void 291 mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val) 292 { 293 mt7530_rmw(priv, reg, val, 0); 294 } 295 296 static int 297 mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp) 298 { 299 u32 val; 300 int ret; 301 struct mt7530_dummy_poll p; 302 303 /* Set the command operating upon the MAC address entries */ 304 val = ATC_BUSY | ATC_MAT(0) | cmd; 305 mt7530_write(priv, MT7530_ATC, val); 306 307 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC); 308 ret = readx_poll_timeout(_mt7530_read, &p, val, 309 !(val & ATC_BUSY), 20, 20000); 310 if (ret < 0) { 311 dev_err(priv->dev, "reset timeout\n"); 312 return ret; 313 } 314 315 /* Additional sanity for read command if the specified 316 * entry is invalid 317 */ 318 val = mt7530_read(priv, MT7530_ATC); 319 if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID)) 320 return -EINVAL; 321 322 if (rsp) 323 *rsp = val; 324 325 return 0; 326 } 327 328 static void 329 mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb) 330 { 331 u32 reg[3]; 332 int i; 333 334 /* Read from ARL table into an array */ 335 for (i = 0; i < 3; i++) { 336 reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4)); 337 338 dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n", 339 __func__, __LINE__, i, reg[i]); 340 } 341 342 fdb->vid = (reg[1] >> CVID) & CVID_MASK; 343 fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK; 344 fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK; 345 fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK; 346 fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK; 347 fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK; 348 fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK; 349 fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK; 350 fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK; 351 fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT; 352 } 353 354 static void 355 mt7530_fdb_write(struct mt7530_priv *priv, u16 vid, 356 u8 port_mask, const u8 *mac, 357 u8 aging, u8 type) 358 { 359 u32 reg[3] = { 0 }; 360 int i; 361 362 reg[1] |= vid & CVID_MASK; 363 reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER; 364 reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP; 365 /* STATIC_ENT indicate that entry is static wouldn't 366 * be aged out and STATIC_EMP specified as erasing an 367 * entry 368 */ 369 reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS; 370 reg[1] |= mac[5] << MAC_BYTE_5; 371 reg[1] |= mac[4] << MAC_BYTE_4; 372 reg[0] |= mac[3] << MAC_BYTE_3; 373 reg[0] |= mac[2] << MAC_BYTE_2; 374 reg[0] |= mac[1] << MAC_BYTE_1; 375 reg[0] |= mac[0] << MAC_BYTE_0; 376 377 /* Write array into the ARL table */ 378 for (i = 0; i < 3; i++) 379 mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]); 380 } 381 382 /* Setup TX circuit including relevant PAD and driving */ 383 static int 384 mt7530_pad_clk_setup(struct dsa_switch *ds, phy_interface_t interface) 385 { 386 struct mt7530_priv *priv = ds->priv; 387 u32 ncpo1, ssc_delta, trgint, i, xtal; 388 389 xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK; 390 391 if (xtal == HWTRAP_XTAL_20MHZ) { 392 dev_err(priv->dev, 393 "%s: MT7530 with a 20MHz XTAL is not supported!\n", 394 __func__); 395 return -EINVAL; 396 } 397 398 switch (interface) { 399 case PHY_INTERFACE_MODE_RGMII: 400 trgint = 0; 401 /* PLL frequency: 125MHz */ 402 ncpo1 = 0x0c80; 403 break; 404 case PHY_INTERFACE_MODE_TRGMII: 405 trgint = 1; 406 if (priv->id == ID_MT7621) { 407 /* PLL frequency: 150MHz: 1.2GBit */ 408 if (xtal == HWTRAP_XTAL_40MHZ) 409 ncpo1 = 0x0780; 410 if (xtal == HWTRAP_XTAL_25MHZ) 411 ncpo1 = 0x0a00; 412 } else { /* PLL frequency: 250MHz: 2.0Gbit */ 413 if (xtal == HWTRAP_XTAL_40MHZ) 414 ncpo1 = 0x0c80; 415 if (xtal == HWTRAP_XTAL_25MHZ) 416 ncpo1 = 0x1400; 417 } 418 break; 419 default: 420 dev_err(priv->dev, "xMII interface %d not supported\n", 421 interface); 422 return -EINVAL; 423 } 424 425 if (xtal == HWTRAP_XTAL_25MHZ) 426 ssc_delta = 0x57; 427 else 428 ssc_delta = 0x87; 429 430 mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK, 431 P6_INTF_MODE(trgint)); 432 433 /* Lower Tx Driving for TRGMII path */ 434 for (i = 0 ; i < NUM_TRGMII_CTRL ; i++) 435 mt7530_write(priv, MT7530_TRGMII_TD_ODT(i), 436 TD_DM_DRVP(8) | TD_DM_DRVN(8)); 437 438 /* Setup core clock for MT7530 */ 439 if (!trgint) { 440 /* Disable MT7530 core clock */ 441 core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN); 442 443 /* Disable PLL, since phy_device has not yet been created 444 * provided for phy_[read,write]_mmd_indirect is called, we 445 * provide our own core_write_mmd_indirect to complete this 446 * function. 447 */ 448 core_write_mmd_indirect(priv, 449 CORE_GSWPLL_GRP1, 450 MDIO_MMD_VEND2, 451 0); 452 453 /* Set core clock into 500Mhz */ 454 core_write(priv, CORE_GSWPLL_GRP2, 455 RG_GSWPLL_POSDIV_500M(1) | 456 RG_GSWPLL_FBKDIV_500M(25)); 457 458 /* Enable PLL */ 459 core_write(priv, CORE_GSWPLL_GRP1, 460 RG_GSWPLL_EN_PRE | 461 RG_GSWPLL_POSDIV_200M(2) | 462 RG_GSWPLL_FBKDIV_200M(32)); 463 464 /* Enable MT7530 core clock */ 465 core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN); 466 } 467 468 /* Setup the MT7530 TRGMII Tx Clock */ 469 core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN); 470 core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1)); 471 core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0)); 472 core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta)); 473 core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta)); 474 core_write(priv, CORE_PLL_GROUP4, 475 RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN | 476 RG_SYSPLL_BIAS_LPF_EN); 477 core_write(priv, CORE_PLL_GROUP2, 478 RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN | 479 RG_SYSPLL_POSDIV(1)); 480 core_write(priv, CORE_PLL_GROUP7, 481 RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) | 482 RG_LCDDS_PWDB | RG_LCDDS_ISO_EN); 483 core_set(priv, CORE_TRGMII_GSW_CLK_CG, 484 REG_GSWCK_EN | REG_TRGMIICK_EN); 485 486 if (!trgint) 487 for (i = 0 ; i < NUM_TRGMII_CTRL; i++) 488 mt7530_rmw(priv, MT7530_TRGMII_RD(i), 489 RD_TAP_MASK, RD_TAP(16)); 490 return 0; 491 } 492 493 static bool mt7531_dual_sgmii_supported(struct mt7530_priv *priv) 494 { 495 u32 val; 496 497 val = mt7530_read(priv, MT7531_TOP_SIG_SR); 498 499 return (val & PAD_DUAL_SGMII_EN) != 0; 500 } 501 502 static int 503 mt7531_pad_setup(struct dsa_switch *ds, phy_interface_t interface) 504 { 505 struct mt7530_priv *priv = ds->priv; 506 u32 top_sig; 507 u32 hwstrap; 508 u32 xtal; 509 u32 val; 510 511 if (mt7531_dual_sgmii_supported(priv)) 512 return 0; 513 514 val = mt7530_read(priv, MT7531_CREV); 515 top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR); 516 hwstrap = mt7530_read(priv, MT7531_HWTRAP); 517 if ((val & CHIP_REV_M) > 0) 518 xtal = (top_sig & PAD_MCM_SMI_EN) ? HWTRAP_XTAL_FSEL_40MHZ : 519 HWTRAP_XTAL_FSEL_25MHZ; 520 else 521 xtal = hwstrap & HWTRAP_XTAL_FSEL_MASK; 522 523 /* Step 1 : Disable MT7531 COREPLL */ 524 val = mt7530_read(priv, MT7531_PLLGP_EN); 525 val &= ~EN_COREPLL; 526 mt7530_write(priv, MT7531_PLLGP_EN, val); 527 528 /* Step 2: switch to XTAL output */ 529 val = mt7530_read(priv, MT7531_PLLGP_EN); 530 val |= SW_CLKSW; 531 mt7530_write(priv, MT7531_PLLGP_EN, val); 532 533 val = mt7530_read(priv, MT7531_PLLGP_CR0); 534 val &= ~RG_COREPLL_EN; 535 mt7530_write(priv, MT7531_PLLGP_CR0, val); 536 537 /* Step 3: disable PLLGP and enable program PLLGP */ 538 val = mt7530_read(priv, MT7531_PLLGP_EN); 539 val |= SW_PLLGP; 540 mt7530_write(priv, MT7531_PLLGP_EN, val); 541 542 /* Step 4: program COREPLL output frequency to 500MHz */ 543 val = mt7530_read(priv, MT7531_PLLGP_CR0); 544 val &= ~RG_COREPLL_POSDIV_M; 545 val |= 2 << RG_COREPLL_POSDIV_S; 546 mt7530_write(priv, MT7531_PLLGP_CR0, val); 547 usleep_range(25, 35); 548 549 switch (xtal) { 550 case HWTRAP_XTAL_FSEL_25MHZ: 551 val = mt7530_read(priv, MT7531_PLLGP_CR0); 552 val &= ~RG_COREPLL_SDM_PCW_M; 553 val |= 0x140000 << RG_COREPLL_SDM_PCW_S; 554 mt7530_write(priv, MT7531_PLLGP_CR0, val); 555 break; 556 case HWTRAP_XTAL_FSEL_40MHZ: 557 val = mt7530_read(priv, MT7531_PLLGP_CR0); 558 val &= ~RG_COREPLL_SDM_PCW_M; 559 val |= 0x190000 << RG_COREPLL_SDM_PCW_S; 560 mt7530_write(priv, MT7531_PLLGP_CR0, val); 561 break; 562 } 563 564 /* Set feedback divide ratio update signal to high */ 565 val = mt7530_read(priv, MT7531_PLLGP_CR0); 566 val |= RG_COREPLL_SDM_PCW_CHG; 567 mt7530_write(priv, MT7531_PLLGP_CR0, val); 568 /* Wait for at least 16 XTAL clocks */ 569 usleep_range(10, 20); 570 571 /* Step 5: set feedback divide ratio update signal to low */ 572 val = mt7530_read(priv, MT7531_PLLGP_CR0); 573 val &= ~RG_COREPLL_SDM_PCW_CHG; 574 mt7530_write(priv, MT7531_PLLGP_CR0, val); 575 576 /* Enable 325M clock for SGMII */ 577 mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000); 578 579 /* Enable 250SSC clock for RGMII */ 580 mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000); 581 582 /* Step 6: Enable MT7531 PLL */ 583 val = mt7530_read(priv, MT7531_PLLGP_CR0); 584 val |= RG_COREPLL_EN; 585 mt7530_write(priv, MT7531_PLLGP_CR0, val); 586 587 val = mt7530_read(priv, MT7531_PLLGP_EN); 588 val |= EN_COREPLL; 589 mt7530_write(priv, MT7531_PLLGP_EN, val); 590 usleep_range(25, 35); 591 592 return 0; 593 } 594 595 static void 596 mt7530_mib_reset(struct dsa_switch *ds) 597 { 598 struct mt7530_priv *priv = ds->priv; 599 600 mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH); 601 mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE); 602 } 603 604 static int mt7530_phy_read(struct dsa_switch *ds, int port, int regnum) 605 { 606 struct mt7530_priv *priv = ds->priv; 607 608 return mdiobus_read_nested(priv->bus, port, regnum); 609 } 610 611 static int mt7530_phy_write(struct dsa_switch *ds, int port, int regnum, 612 u16 val) 613 { 614 struct mt7530_priv *priv = ds->priv; 615 616 return mdiobus_write_nested(priv->bus, port, regnum, val); 617 } 618 619 static int 620 mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad, 621 int regnum) 622 { 623 struct mii_bus *bus = priv->bus; 624 struct mt7530_dummy_poll p; 625 u32 reg, val; 626 int ret; 627 628 INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC); 629 630 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 631 632 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, 633 !(val & MT7531_PHY_ACS_ST), 20, 100000); 634 if (ret < 0) { 635 dev_err(priv->dev, "poll timeout\n"); 636 goto out; 637 } 638 639 reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) | 640 MT7531_MDIO_DEV_ADDR(devad) | regnum; 641 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST); 642 643 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, 644 !(val & MT7531_PHY_ACS_ST), 20, 100000); 645 if (ret < 0) { 646 dev_err(priv->dev, "poll timeout\n"); 647 goto out; 648 } 649 650 reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) | 651 MT7531_MDIO_DEV_ADDR(devad); 652 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST); 653 654 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, 655 !(val & MT7531_PHY_ACS_ST), 20, 100000); 656 if (ret < 0) { 657 dev_err(priv->dev, "poll timeout\n"); 658 goto out; 659 } 660 661 ret = val & MT7531_MDIO_RW_DATA_MASK; 662 out: 663 mutex_unlock(&bus->mdio_lock); 664 665 return ret; 666 } 667 668 static int 669 mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad, 670 int regnum, u32 data) 671 { 672 struct mii_bus *bus = priv->bus; 673 struct mt7530_dummy_poll p; 674 u32 val, reg; 675 int ret; 676 677 INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC); 678 679 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 680 681 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, 682 !(val & MT7531_PHY_ACS_ST), 20, 100000); 683 if (ret < 0) { 684 dev_err(priv->dev, "poll timeout\n"); 685 goto out; 686 } 687 688 reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) | 689 MT7531_MDIO_DEV_ADDR(devad) | regnum; 690 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST); 691 692 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, 693 !(val & MT7531_PHY_ACS_ST), 20, 100000); 694 if (ret < 0) { 695 dev_err(priv->dev, "poll timeout\n"); 696 goto out; 697 } 698 699 reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) | 700 MT7531_MDIO_DEV_ADDR(devad) | data; 701 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST); 702 703 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, 704 !(val & MT7531_PHY_ACS_ST), 20, 100000); 705 if (ret < 0) { 706 dev_err(priv->dev, "poll timeout\n"); 707 goto out; 708 } 709 710 out: 711 mutex_unlock(&bus->mdio_lock); 712 713 return ret; 714 } 715 716 static int 717 mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum) 718 { 719 struct mii_bus *bus = priv->bus; 720 struct mt7530_dummy_poll p; 721 int ret; 722 u32 val; 723 724 INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC); 725 726 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 727 728 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, 729 !(val & MT7531_PHY_ACS_ST), 20, 100000); 730 if (ret < 0) { 731 dev_err(priv->dev, "poll timeout\n"); 732 goto out; 733 } 734 735 val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) | 736 MT7531_MDIO_REG_ADDR(regnum); 737 738 mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST); 739 740 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val, 741 !(val & MT7531_PHY_ACS_ST), 20, 100000); 742 if (ret < 0) { 743 dev_err(priv->dev, "poll timeout\n"); 744 goto out; 745 } 746 747 ret = val & MT7531_MDIO_RW_DATA_MASK; 748 out: 749 mutex_unlock(&bus->mdio_lock); 750 751 return ret; 752 } 753 754 static int 755 mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum, 756 u16 data) 757 { 758 struct mii_bus *bus = priv->bus; 759 struct mt7530_dummy_poll p; 760 int ret; 761 u32 reg; 762 763 INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC); 764 765 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 766 767 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg, 768 !(reg & MT7531_PHY_ACS_ST), 20, 100000); 769 if (ret < 0) { 770 dev_err(priv->dev, "poll timeout\n"); 771 goto out; 772 } 773 774 reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) | 775 MT7531_MDIO_REG_ADDR(regnum) | data; 776 777 mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST); 778 779 ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg, 780 !(reg & MT7531_PHY_ACS_ST), 20, 100000); 781 if (ret < 0) { 782 dev_err(priv->dev, "poll timeout\n"); 783 goto out; 784 } 785 786 out: 787 mutex_unlock(&bus->mdio_lock); 788 789 return ret; 790 } 791 792 static int 793 mt7531_ind_phy_read(struct dsa_switch *ds, int port, int regnum) 794 { 795 struct mt7530_priv *priv = ds->priv; 796 int devad; 797 int ret; 798 799 if (regnum & MII_ADDR_C45) { 800 devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f; 801 ret = mt7531_ind_c45_phy_read(priv, port, devad, 802 regnum & MII_REGADDR_C45_MASK); 803 } else { 804 ret = mt7531_ind_c22_phy_read(priv, port, regnum); 805 } 806 807 return ret; 808 } 809 810 static int 811 mt7531_ind_phy_write(struct dsa_switch *ds, int port, int regnum, 812 u16 data) 813 { 814 struct mt7530_priv *priv = ds->priv; 815 int devad; 816 int ret; 817 818 if (regnum & MII_ADDR_C45) { 819 devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f; 820 ret = mt7531_ind_c45_phy_write(priv, port, devad, 821 regnum & MII_REGADDR_C45_MASK, 822 data); 823 } else { 824 ret = mt7531_ind_c22_phy_write(priv, port, regnum, data); 825 } 826 827 return ret; 828 } 829 830 static void 831 mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset, 832 uint8_t *data) 833 { 834 int i; 835 836 if (stringset != ETH_SS_STATS) 837 return; 838 839 for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) 840 strncpy(data + i * ETH_GSTRING_LEN, mt7530_mib[i].name, 841 ETH_GSTRING_LEN); 842 } 843 844 static void 845 mt7530_get_ethtool_stats(struct dsa_switch *ds, int port, 846 uint64_t *data) 847 { 848 struct mt7530_priv *priv = ds->priv; 849 const struct mt7530_mib_desc *mib; 850 u32 reg, i; 851 u64 hi; 852 853 for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) { 854 mib = &mt7530_mib[i]; 855 reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset; 856 857 data[i] = mt7530_read(priv, reg); 858 if (mib->size == 2) { 859 hi = mt7530_read(priv, reg + 4); 860 data[i] |= hi << 32; 861 } 862 } 863 } 864 865 static int 866 mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset) 867 { 868 if (sset != ETH_SS_STATS) 869 return 0; 870 871 return ARRAY_SIZE(mt7530_mib); 872 } 873 874 static int 875 mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs) 876 { 877 struct mt7530_priv *priv = ds->priv; 878 unsigned int secs = msecs / 1000; 879 unsigned int tmp_age_count; 880 unsigned int error = -1; 881 unsigned int age_count; 882 unsigned int age_unit; 883 884 /* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */ 885 if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1)) 886 return -ERANGE; 887 888 /* iterate through all possible age_count to find the closest pair */ 889 for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) { 890 unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1; 891 892 if (tmp_age_unit <= AGE_UNIT_MAX) { 893 unsigned int tmp_error = secs - 894 (tmp_age_count + 1) * (tmp_age_unit + 1); 895 896 /* found a closer pair */ 897 if (error > tmp_error) { 898 error = tmp_error; 899 age_count = tmp_age_count; 900 age_unit = tmp_age_unit; 901 } 902 903 /* found the exact match, so break the loop */ 904 if (!error) 905 break; 906 } 907 } 908 909 mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit)); 910 911 return 0; 912 } 913 914 static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface) 915 { 916 struct mt7530_priv *priv = ds->priv; 917 u8 tx_delay = 0; 918 int val; 919 920 mutex_lock(&priv->reg_mutex); 921 922 val = mt7530_read(priv, MT7530_MHWTRAP); 923 924 val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS; 925 val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL; 926 927 switch (priv->p5_intf_sel) { 928 case P5_INTF_SEL_PHY_P0: 929 /* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */ 930 val |= MHWTRAP_PHY0_SEL; 931 fallthrough; 932 case P5_INTF_SEL_PHY_P4: 933 /* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */ 934 val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS; 935 936 /* Setup the MAC by default for the cpu port */ 937 mt7530_write(priv, MT7530_PMCR_P(5), 0x56300); 938 break; 939 case P5_INTF_SEL_GMAC5: 940 /* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */ 941 val &= ~MHWTRAP_P5_DIS; 942 break; 943 case P5_DISABLED: 944 interface = PHY_INTERFACE_MODE_NA; 945 break; 946 default: 947 dev_err(ds->dev, "Unsupported p5_intf_sel %d\n", 948 priv->p5_intf_sel); 949 goto unlock_exit; 950 } 951 952 /* Setup RGMII settings */ 953 if (phy_interface_mode_is_rgmii(interface)) { 954 val |= MHWTRAP_P5_RGMII_MODE; 955 956 /* P5 RGMII RX Clock Control: delay setting for 1000M */ 957 mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN); 958 959 /* Don't set delay in DSA mode */ 960 if (!dsa_is_dsa_port(priv->ds, 5) && 961 (interface == PHY_INTERFACE_MODE_RGMII_TXID || 962 interface == PHY_INTERFACE_MODE_RGMII_ID)) 963 tx_delay = 4; /* n * 0.5 ns */ 964 965 /* P5 RGMII TX Clock Control: delay x */ 966 mt7530_write(priv, MT7530_P5RGMIITXCR, 967 CSR_RGMII_TXC_CFG(0x10 + tx_delay)); 968 969 /* reduce P5 RGMII Tx driving, 8mA */ 970 mt7530_write(priv, MT7530_IO_DRV_CR, 971 P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1)); 972 } 973 974 mt7530_write(priv, MT7530_MHWTRAP, val); 975 976 dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n", 977 val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface)); 978 979 priv->p5_interface = interface; 980 981 unlock_exit: 982 mutex_unlock(&priv->reg_mutex); 983 } 984 985 static int 986 mt753x_cpu_port_enable(struct dsa_switch *ds, int port) 987 { 988 struct mt7530_priv *priv = ds->priv; 989 int ret; 990 991 /* Setup max capability of CPU port at first */ 992 if (priv->info->cpu_port_config) { 993 ret = priv->info->cpu_port_config(ds, port); 994 if (ret) 995 return ret; 996 } 997 998 /* Enable Mediatek header mode on the cpu port */ 999 mt7530_write(priv, MT7530_PVC_P(port), 1000 PORT_SPEC_TAG); 1001 1002 /* Unknown multicast frame forwarding to the cpu port */ 1003 mt7530_rmw(priv, MT7530_MFC, UNM_FFP_MASK, UNM_FFP(BIT(port))); 1004 1005 /* Set CPU port number */ 1006 if (priv->id == ID_MT7621) 1007 mt7530_rmw(priv, MT7530_MFC, CPU_MASK, CPU_EN | CPU_PORT(port)); 1008 1009 /* CPU port gets connected to all user ports of 1010 * the switch. 1011 */ 1012 mt7530_write(priv, MT7530_PCR_P(port), 1013 PCR_MATRIX(dsa_user_ports(priv->ds))); 1014 1015 return 0; 1016 } 1017 1018 static int 1019 mt7530_port_enable(struct dsa_switch *ds, int port, 1020 struct phy_device *phy) 1021 { 1022 struct mt7530_priv *priv = ds->priv; 1023 1024 if (!dsa_is_user_port(ds, port)) 1025 return 0; 1026 1027 mutex_lock(&priv->reg_mutex); 1028 1029 /* Allow the user port gets connected to the cpu port and also 1030 * restore the port matrix if the port is the member of a certain 1031 * bridge. 1032 */ 1033 priv->ports[port].pm |= PCR_MATRIX(BIT(MT7530_CPU_PORT)); 1034 priv->ports[port].enable = true; 1035 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK, 1036 priv->ports[port].pm); 1037 mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK); 1038 1039 mutex_unlock(&priv->reg_mutex); 1040 1041 return 0; 1042 } 1043 1044 static void 1045 mt7530_port_disable(struct dsa_switch *ds, int port) 1046 { 1047 struct mt7530_priv *priv = ds->priv; 1048 1049 if (!dsa_is_user_port(ds, port)) 1050 return; 1051 1052 mutex_lock(&priv->reg_mutex); 1053 1054 /* Clear up all port matrix which could be restored in the next 1055 * enablement for the port. 1056 */ 1057 priv->ports[port].enable = false; 1058 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK, 1059 PCR_MATRIX_CLR); 1060 mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK); 1061 1062 mutex_unlock(&priv->reg_mutex); 1063 } 1064 1065 static int 1066 mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu) 1067 { 1068 struct mt7530_priv *priv = ds->priv; 1069 struct mii_bus *bus = priv->bus; 1070 int length; 1071 u32 val; 1072 1073 /* When a new MTU is set, DSA always set the CPU port's MTU to the 1074 * largest MTU of the slave ports. Because the switch only has a global 1075 * RX length register, only allowing CPU port here is enough. 1076 */ 1077 if (!dsa_is_cpu_port(ds, port)) 1078 return 0; 1079 1080 mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED); 1081 1082 val = mt7530_mii_read(priv, MT7530_GMACCR); 1083 val &= ~MAX_RX_PKT_LEN_MASK; 1084 1085 /* RX length also includes Ethernet header, MTK tag, and FCS length */ 1086 length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN; 1087 if (length <= 1522) { 1088 val |= MAX_RX_PKT_LEN_1522; 1089 } else if (length <= 1536) { 1090 val |= MAX_RX_PKT_LEN_1536; 1091 } else if (length <= 1552) { 1092 val |= MAX_RX_PKT_LEN_1552; 1093 } else { 1094 val &= ~MAX_RX_JUMBO_MASK; 1095 val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024)); 1096 val |= MAX_RX_PKT_LEN_JUMBO; 1097 } 1098 1099 mt7530_mii_write(priv, MT7530_GMACCR, val); 1100 1101 mutex_unlock(&bus->mdio_lock); 1102 1103 return 0; 1104 } 1105 1106 static int 1107 mt7530_port_max_mtu(struct dsa_switch *ds, int port) 1108 { 1109 return MT7530_MAX_MTU; 1110 } 1111 1112 static void 1113 mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state) 1114 { 1115 struct mt7530_priv *priv = ds->priv; 1116 u32 stp_state; 1117 1118 switch (state) { 1119 case BR_STATE_DISABLED: 1120 stp_state = MT7530_STP_DISABLED; 1121 break; 1122 case BR_STATE_BLOCKING: 1123 stp_state = MT7530_STP_BLOCKING; 1124 break; 1125 case BR_STATE_LISTENING: 1126 stp_state = MT7530_STP_LISTENING; 1127 break; 1128 case BR_STATE_LEARNING: 1129 stp_state = MT7530_STP_LEARNING; 1130 break; 1131 case BR_STATE_FORWARDING: 1132 default: 1133 stp_state = MT7530_STP_FORWARDING; 1134 break; 1135 } 1136 1137 mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK, stp_state); 1138 } 1139 1140 static int 1141 mt7530_port_bridge_join(struct dsa_switch *ds, int port, 1142 struct net_device *bridge) 1143 { 1144 struct mt7530_priv *priv = ds->priv; 1145 u32 port_bitmap = BIT(MT7530_CPU_PORT); 1146 int i; 1147 1148 mutex_lock(&priv->reg_mutex); 1149 1150 for (i = 0; i < MT7530_NUM_PORTS; i++) { 1151 /* Add this port to the port matrix of the other ports in the 1152 * same bridge. If the port is disabled, port matrix is kept 1153 * and not being setup until the port becomes enabled. 1154 */ 1155 if (dsa_is_user_port(ds, i) && i != port) { 1156 if (dsa_to_port(ds, i)->bridge_dev != bridge) 1157 continue; 1158 if (priv->ports[i].enable) 1159 mt7530_set(priv, MT7530_PCR_P(i), 1160 PCR_MATRIX(BIT(port))); 1161 priv->ports[i].pm |= PCR_MATRIX(BIT(port)); 1162 1163 port_bitmap |= BIT(i); 1164 } 1165 } 1166 1167 /* Add the all other ports to this port matrix. */ 1168 if (priv->ports[port].enable) 1169 mt7530_rmw(priv, MT7530_PCR_P(port), 1170 PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap)); 1171 priv->ports[port].pm |= PCR_MATRIX(port_bitmap); 1172 1173 mutex_unlock(&priv->reg_mutex); 1174 1175 return 0; 1176 } 1177 1178 static void 1179 mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port) 1180 { 1181 struct mt7530_priv *priv = ds->priv; 1182 bool all_user_ports_removed = true; 1183 int i; 1184 1185 /* When a port is removed from the bridge, the port would be set up 1186 * back to the default as is at initial boot which is a VLAN-unaware 1187 * port. 1188 */ 1189 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK, 1190 MT7530_PORT_MATRIX_MODE); 1191 mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK | PVC_EG_TAG_MASK, 1192 VLAN_ATTR(MT7530_VLAN_TRANSPARENT) | 1193 PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT)); 1194 1195 for (i = 0; i < MT7530_NUM_PORTS; i++) { 1196 if (dsa_is_user_port(ds, i) && 1197 dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) { 1198 all_user_ports_removed = false; 1199 break; 1200 } 1201 } 1202 1203 /* CPU port also does the same thing until all user ports belonging to 1204 * the CPU port get out of VLAN filtering mode. 1205 */ 1206 if (all_user_ports_removed) { 1207 mt7530_write(priv, MT7530_PCR_P(MT7530_CPU_PORT), 1208 PCR_MATRIX(dsa_user_ports(priv->ds))); 1209 mt7530_write(priv, MT7530_PVC_P(MT7530_CPU_PORT), PORT_SPEC_TAG 1210 | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT)); 1211 } 1212 } 1213 1214 static void 1215 mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port) 1216 { 1217 struct mt7530_priv *priv = ds->priv; 1218 1219 /* The real fabric path would be decided on the membership in the 1220 * entry of VLAN table. PCR_MATRIX set up here with ALL_MEMBERS 1221 * means potential VLAN can be consisting of certain subset of all 1222 * ports. 1223 */ 1224 mt7530_rmw(priv, MT7530_PCR_P(port), 1225 PCR_MATRIX_MASK, PCR_MATRIX(MT7530_ALL_MEMBERS)); 1226 1227 /* Trapped into security mode allows packet forwarding through VLAN 1228 * table lookup. CPU port is set to fallback mode to let untagged 1229 * frames pass through. 1230 */ 1231 if (dsa_is_cpu_port(ds, port)) 1232 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK, 1233 MT7530_PORT_FALLBACK_MODE); 1234 else 1235 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK, 1236 MT7530_PORT_SECURITY_MODE); 1237 1238 /* Set the port as a user port which is to be able to recognize VID 1239 * from incoming packets before fetching entry within the VLAN table. 1240 */ 1241 mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK | PVC_EG_TAG_MASK, 1242 VLAN_ATTR(MT7530_VLAN_USER) | 1243 PVC_EG_TAG(MT7530_VLAN_EG_DISABLED)); 1244 } 1245 1246 static void 1247 mt7530_port_bridge_leave(struct dsa_switch *ds, int port, 1248 struct net_device *bridge) 1249 { 1250 struct mt7530_priv *priv = ds->priv; 1251 int i; 1252 1253 mutex_lock(&priv->reg_mutex); 1254 1255 for (i = 0; i < MT7530_NUM_PORTS; i++) { 1256 /* Remove this port from the port matrix of the other ports 1257 * in the same bridge. If the port is disabled, port matrix 1258 * is kept and not being setup until the port becomes enabled. 1259 * And the other port's port matrix cannot be broken when the 1260 * other port is still a VLAN-aware port. 1261 */ 1262 if (dsa_is_user_port(ds, i) && i != port && 1263 !dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) { 1264 if (dsa_to_port(ds, i)->bridge_dev != bridge) 1265 continue; 1266 if (priv->ports[i].enable) 1267 mt7530_clear(priv, MT7530_PCR_P(i), 1268 PCR_MATRIX(BIT(port))); 1269 priv->ports[i].pm &= ~PCR_MATRIX(BIT(port)); 1270 } 1271 } 1272 1273 /* Set the cpu port to be the only one in the port matrix of 1274 * this port. 1275 */ 1276 if (priv->ports[port].enable) 1277 mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK, 1278 PCR_MATRIX(BIT(MT7530_CPU_PORT))); 1279 priv->ports[port].pm = PCR_MATRIX(BIT(MT7530_CPU_PORT)); 1280 1281 mutex_unlock(&priv->reg_mutex); 1282 } 1283 1284 static int 1285 mt7530_port_fdb_add(struct dsa_switch *ds, int port, 1286 const unsigned char *addr, u16 vid) 1287 { 1288 struct mt7530_priv *priv = ds->priv; 1289 int ret; 1290 u8 port_mask = BIT(port); 1291 1292 mutex_lock(&priv->reg_mutex); 1293 mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT); 1294 ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL); 1295 mutex_unlock(&priv->reg_mutex); 1296 1297 return ret; 1298 } 1299 1300 static int 1301 mt7530_port_fdb_del(struct dsa_switch *ds, int port, 1302 const unsigned char *addr, u16 vid) 1303 { 1304 struct mt7530_priv *priv = ds->priv; 1305 int ret; 1306 u8 port_mask = BIT(port); 1307 1308 mutex_lock(&priv->reg_mutex); 1309 mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP); 1310 ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL); 1311 mutex_unlock(&priv->reg_mutex); 1312 1313 return ret; 1314 } 1315 1316 static int 1317 mt7530_port_fdb_dump(struct dsa_switch *ds, int port, 1318 dsa_fdb_dump_cb_t *cb, void *data) 1319 { 1320 struct mt7530_priv *priv = ds->priv; 1321 struct mt7530_fdb _fdb = { 0 }; 1322 int cnt = MT7530_NUM_FDB_RECORDS; 1323 int ret = 0; 1324 u32 rsp = 0; 1325 1326 mutex_lock(&priv->reg_mutex); 1327 1328 ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp); 1329 if (ret < 0) 1330 goto err; 1331 1332 do { 1333 if (rsp & ATC_SRCH_HIT) { 1334 mt7530_fdb_read(priv, &_fdb); 1335 if (_fdb.port_mask & BIT(port)) { 1336 ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp, 1337 data); 1338 if (ret < 0) 1339 break; 1340 } 1341 } 1342 } while (--cnt && 1343 !(rsp & ATC_SRCH_END) && 1344 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp)); 1345 err: 1346 mutex_unlock(&priv->reg_mutex); 1347 1348 return 0; 1349 } 1350 1351 static int 1352 mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid) 1353 { 1354 struct mt7530_dummy_poll p; 1355 u32 val; 1356 int ret; 1357 1358 val = VTCR_BUSY | VTCR_FUNC(cmd) | vid; 1359 mt7530_write(priv, MT7530_VTCR, val); 1360 1361 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR); 1362 ret = readx_poll_timeout(_mt7530_read, &p, val, 1363 !(val & VTCR_BUSY), 20, 20000); 1364 if (ret < 0) { 1365 dev_err(priv->dev, "poll timeout\n"); 1366 return ret; 1367 } 1368 1369 val = mt7530_read(priv, MT7530_VTCR); 1370 if (val & VTCR_INVALID) { 1371 dev_err(priv->dev, "read VTCR invalid\n"); 1372 return -EINVAL; 1373 } 1374 1375 return 0; 1376 } 1377 1378 static int 1379 mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering, 1380 struct netlink_ext_ack *extack) 1381 { 1382 if (vlan_filtering) { 1383 /* The port is being kept as VLAN-unaware port when bridge is 1384 * set up with vlan_filtering not being set, Otherwise, the 1385 * port and the corresponding CPU port is required the setup 1386 * for becoming a VLAN-aware port. 1387 */ 1388 mt7530_port_set_vlan_aware(ds, port); 1389 mt7530_port_set_vlan_aware(ds, MT7530_CPU_PORT); 1390 } else { 1391 mt7530_port_set_vlan_unaware(ds, port); 1392 } 1393 1394 return 0; 1395 } 1396 1397 static void 1398 mt7530_hw_vlan_add(struct mt7530_priv *priv, 1399 struct mt7530_hw_vlan_entry *entry) 1400 { 1401 u8 new_members; 1402 u32 val; 1403 1404 new_members = entry->old_members | BIT(entry->port) | 1405 BIT(MT7530_CPU_PORT); 1406 1407 /* Validate the entry with independent learning, create egress tag per 1408 * VLAN and joining the port as one of the port members. 1409 */ 1410 val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | VLAN_VALID; 1411 mt7530_write(priv, MT7530_VAWD1, val); 1412 1413 /* Decide whether adding tag or not for those outgoing packets from the 1414 * port inside the VLAN. 1415 */ 1416 val = entry->untagged ? MT7530_VLAN_EGRESS_UNTAG : 1417 MT7530_VLAN_EGRESS_TAG; 1418 mt7530_rmw(priv, MT7530_VAWD2, 1419 ETAG_CTRL_P_MASK(entry->port), 1420 ETAG_CTRL_P(entry->port, val)); 1421 1422 /* CPU port is always taken as a tagged port for serving more than one 1423 * VLANs across and also being applied with egress type stack mode for 1424 * that VLAN tags would be appended after hardware special tag used as 1425 * DSA tag. 1426 */ 1427 mt7530_rmw(priv, MT7530_VAWD2, 1428 ETAG_CTRL_P_MASK(MT7530_CPU_PORT), 1429 ETAG_CTRL_P(MT7530_CPU_PORT, 1430 MT7530_VLAN_EGRESS_STACK)); 1431 } 1432 1433 static void 1434 mt7530_hw_vlan_del(struct mt7530_priv *priv, 1435 struct mt7530_hw_vlan_entry *entry) 1436 { 1437 u8 new_members; 1438 u32 val; 1439 1440 new_members = entry->old_members & ~BIT(entry->port); 1441 1442 val = mt7530_read(priv, MT7530_VAWD1); 1443 if (!(val & VLAN_VALID)) { 1444 dev_err(priv->dev, 1445 "Cannot be deleted due to invalid entry\n"); 1446 return; 1447 } 1448 1449 /* If certain member apart from CPU port is still alive in the VLAN, 1450 * the entry would be kept valid. Otherwise, the entry is got to be 1451 * disabled. 1452 */ 1453 if (new_members && new_members != BIT(MT7530_CPU_PORT)) { 1454 val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | 1455 VLAN_VALID; 1456 mt7530_write(priv, MT7530_VAWD1, val); 1457 } else { 1458 mt7530_write(priv, MT7530_VAWD1, 0); 1459 mt7530_write(priv, MT7530_VAWD2, 0); 1460 } 1461 } 1462 1463 static void 1464 mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid, 1465 struct mt7530_hw_vlan_entry *entry, 1466 mt7530_vlan_op vlan_op) 1467 { 1468 u32 val; 1469 1470 /* Fetch entry */ 1471 mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid); 1472 1473 val = mt7530_read(priv, MT7530_VAWD1); 1474 1475 entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK; 1476 1477 /* Manipulate entry */ 1478 vlan_op(priv, entry); 1479 1480 /* Flush result to hardware */ 1481 mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid); 1482 } 1483 1484 static int 1485 mt7530_port_vlan_add(struct dsa_switch *ds, int port, 1486 const struct switchdev_obj_port_vlan *vlan, 1487 struct netlink_ext_ack *extack) 1488 { 1489 bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED; 1490 bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID; 1491 struct mt7530_hw_vlan_entry new_entry; 1492 struct mt7530_priv *priv = ds->priv; 1493 1494 mutex_lock(&priv->reg_mutex); 1495 1496 mt7530_hw_vlan_entry_init(&new_entry, port, untagged); 1497 mt7530_hw_vlan_update(priv, vlan->vid, &new_entry, mt7530_hw_vlan_add); 1498 1499 if (pvid) { 1500 mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, 1501 G0_PORT_VID(vlan->vid)); 1502 priv->ports[port].pvid = vlan->vid; 1503 } 1504 1505 mutex_unlock(&priv->reg_mutex); 1506 1507 return 0; 1508 } 1509 1510 static int 1511 mt7530_port_vlan_del(struct dsa_switch *ds, int port, 1512 const struct switchdev_obj_port_vlan *vlan) 1513 { 1514 struct mt7530_hw_vlan_entry target_entry; 1515 struct mt7530_priv *priv = ds->priv; 1516 u16 pvid; 1517 1518 mutex_lock(&priv->reg_mutex); 1519 1520 pvid = priv->ports[port].pvid; 1521 mt7530_hw_vlan_entry_init(&target_entry, port, 0); 1522 mt7530_hw_vlan_update(priv, vlan->vid, &target_entry, 1523 mt7530_hw_vlan_del); 1524 1525 /* PVID is being restored to the default whenever the PVID port 1526 * is being removed from the VLAN. 1527 */ 1528 if (pvid == vlan->vid) 1529 pvid = G0_PORT_VID_DEF; 1530 1531 mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, pvid); 1532 priv->ports[port].pvid = pvid; 1533 1534 mutex_unlock(&priv->reg_mutex); 1535 1536 return 0; 1537 } 1538 1539 static int mt753x_mirror_port_get(unsigned int id, u32 val) 1540 { 1541 return (id == ID_MT7531) ? MT7531_MIRROR_PORT_GET(val) : 1542 MIRROR_PORT(val); 1543 } 1544 1545 static int mt753x_mirror_port_set(unsigned int id, u32 val) 1546 { 1547 return (id == ID_MT7531) ? MT7531_MIRROR_PORT_SET(val) : 1548 MIRROR_PORT(val); 1549 } 1550 1551 static int mt753x_port_mirror_add(struct dsa_switch *ds, int port, 1552 struct dsa_mall_mirror_tc_entry *mirror, 1553 bool ingress) 1554 { 1555 struct mt7530_priv *priv = ds->priv; 1556 int monitor_port; 1557 u32 val; 1558 1559 /* Check for existent entry */ 1560 if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port)) 1561 return -EEXIST; 1562 1563 val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id)); 1564 1565 /* MT7530 only supports one monitor port */ 1566 monitor_port = mt753x_mirror_port_get(priv->id, val); 1567 if (val & MT753X_MIRROR_EN(priv->id) && 1568 monitor_port != mirror->to_local_port) 1569 return -EEXIST; 1570 1571 val |= MT753X_MIRROR_EN(priv->id); 1572 val &= ~MT753X_MIRROR_MASK(priv->id); 1573 val |= mt753x_mirror_port_set(priv->id, mirror->to_local_port); 1574 mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val); 1575 1576 val = mt7530_read(priv, MT7530_PCR_P(port)); 1577 if (ingress) { 1578 val |= PORT_RX_MIR; 1579 priv->mirror_rx |= BIT(port); 1580 } else { 1581 val |= PORT_TX_MIR; 1582 priv->mirror_tx |= BIT(port); 1583 } 1584 mt7530_write(priv, MT7530_PCR_P(port), val); 1585 1586 return 0; 1587 } 1588 1589 static void mt753x_port_mirror_del(struct dsa_switch *ds, int port, 1590 struct dsa_mall_mirror_tc_entry *mirror) 1591 { 1592 struct mt7530_priv *priv = ds->priv; 1593 u32 val; 1594 1595 val = mt7530_read(priv, MT7530_PCR_P(port)); 1596 if (mirror->ingress) { 1597 val &= ~PORT_RX_MIR; 1598 priv->mirror_rx &= ~BIT(port); 1599 } else { 1600 val &= ~PORT_TX_MIR; 1601 priv->mirror_tx &= ~BIT(port); 1602 } 1603 mt7530_write(priv, MT7530_PCR_P(port), val); 1604 1605 if (!priv->mirror_rx && !priv->mirror_tx) { 1606 val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id)); 1607 val &= ~MT753X_MIRROR_EN(priv->id); 1608 mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val); 1609 } 1610 } 1611 1612 static enum dsa_tag_protocol 1613 mtk_get_tag_protocol(struct dsa_switch *ds, int port, 1614 enum dsa_tag_protocol mp) 1615 { 1616 struct mt7530_priv *priv = ds->priv; 1617 1618 if (port != MT7530_CPU_PORT) { 1619 dev_warn(priv->dev, 1620 "port not matched with tagging CPU port\n"); 1621 return DSA_TAG_PROTO_NONE; 1622 } else { 1623 return DSA_TAG_PROTO_MTK; 1624 } 1625 } 1626 1627 #ifdef CONFIG_GPIOLIB 1628 static inline u32 1629 mt7530_gpio_to_bit(unsigned int offset) 1630 { 1631 /* Map GPIO offset to register bit 1632 * [ 2: 0] port 0 LED 0..2 as GPIO 0..2 1633 * [ 6: 4] port 1 LED 0..2 as GPIO 3..5 1634 * [10: 8] port 2 LED 0..2 as GPIO 6..8 1635 * [14:12] port 3 LED 0..2 as GPIO 9..11 1636 * [18:16] port 4 LED 0..2 as GPIO 12..14 1637 */ 1638 return BIT(offset + offset / 3); 1639 } 1640 1641 static int 1642 mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset) 1643 { 1644 struct mt7530_priv *priv = gpiochip_get_data(gc); 1645 u32 bit = mt7530_gpio_to_bit(offset); 1646 1647 return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit); 1648 } 1649 1650 static void 1651 mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value) 1652 { 1653 struct mt7530_priv *priv = gpiochip_get_data(gc); 1654 u32 bit = mt7530_gpio_to_bit(offset); 1655 1656 if (value) 1657 mt7530_set(priv, MT7530_LED_GPIO_DATA, bit); 1658 else 1659 mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit); 1660 } 1661 1662 static int 1663 mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset) 1664 { 1665 struct mt7530_priv *priv = gpiochip_get_data(gc); 1666 u32 bit = mt7530_gpio_to_bit(offset); 1667 1668 return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ? 1669 GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN; 1670 } 1671 1672 static int 1673 mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset) 1674 { 1675 struct mt7530_priv *priv = gpiochip_get_data(gc); 1676 u32 bit = mt7530_gpio_to_bit(offset); 1677 1678 mt7530_clear(priv, MT7530_LED_GPIO_OE, bit); 1679 mt7530_clear(priv, MT7530_LED_GPIO_DIR, bit); 1680 1681 return 0; 1682 } 1683 1684 static int 1685 mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value) 1686 { 1687 struct mt7530_priv *priv = gpiochip_get_data(gc); 1688 u32 bit = mt7530_gpio_to_bit(offset); 1689 1690 mt7530_set(priv, MT7530_LED_GPIO_DIR, bit); 1691 1692 if (value) 1693 mt7530_set(priv, MT7530_LED_GPIO_DATA, bit); 1694 else 1695 mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit); 1696 1697 mt7530_set(priv, MT7530_LED_GPIO_OE, bit); 1698 1699 return 0; 1700 } 1701 1702 static int 1703 mt7530_setup_gpio(struct mt7530_priv *priv) 1704 { 1705 struct device *dev = priv->dev; 1706 struct gpio_chip *gc; 1707 1708 gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL); 1709 if (!gc) 1710 return -ENOMEM; 1711 1712 mt7530_write(priv, MT7530_LED_GPIO_OE, 0); 1713 mt7530_write(priv, MT7530_LED_GPIO_DIR, 0); 1714 mt7530_write(priv, MT7530_LED_IO_MODE, 0); 1715 1716 gc->label = "mt7530"; 1717 gc->parent = dev; 1718 gc->owner = THIS_MODULE; 1719 gc->get_direction = mt7530_gpio_get_direction; 1720 gc->direction_input = mt7530_gpio_direction_input; 1721 gc->direction_output = mt7530_gpio_direction_output; 1722 gc->get = mt7530_gpio_get; 1723 gc->set = mt7530_gpio_set; 1724 gc->base = -1; 1725 gc->ngpio = 15; 1726 gc->can_sleep = true; 1727 1728 return devm_gpiochip_add_data(dev, gc, priv); 1729 } 1730 #endif /* CONFIG_GPIOLIB */ 1731 1732 static int 1733 mt7530_setup(struct dsa_switch *ds) 1734 { 1735 struct mt7530_priv *priv = ds->priv; 1736 struct device_node *phy_node; 1737 struct device_node *mac_np; 1738 struct mt7530_dummy_poll p; 1739 phy_interface_t interface; 1740 struct device_node *dn; 1741 u32 id, val; 1742 int ret, i; 1743 1744 /* The parent node of master netdev which holds the common system 1745 * controller also is the container for two GMACs nodes representing 1746 * as two netdev instances. 1747 */ 1748 dn = dsa_to_port(ds, MT7530_CPU_PORT)->master->dev.of_node->parent; 1749 ds->mtu_enforcement_ingress = true; 1750 1751 if (priv->id == ID_MT7530) { 1752 regulator_set_voltage(priv->core_pwr, 1000000, 1000000); 1753 ret = regulator_enable(priv->core_pwr); 1754 if (ret < 0) { 1755 dev_err(priv->dev, 1756 "Failed to enable core power: %d\n", ret); 1757 return ret; 1758 } 1759 1760 regulator_set_voltage(priv->io_pwr, 3300000, 3300000); 1761 ret = regulator_enable(priv->io_pwr); 1762 if (ret < 0) { 1763 dev_err(priv->dev, "Failed to enable io pwr: %d\n", 1764 ret); 1765 return ret; 1766 } 1767 } 1768 1769 /* Reset whole chip through gpio pin or memory-mapped registers for 1770 * different type of hardware 1771 */ 1772 if (priv->mcm) { 1773 reset_control_assert(priv->rstc); 1774 usleep_range(1000, 1100); 1775 reset_control_deassert(priv->rstc); 1776 } else { 1777 gpiod_set_value_cansleep(priv->reset, 0); 1778 usleep_range(1000, 1100); 1779 gpiod_set_value_cansleep(priv->reset, 1); 1780 } 1781 1782 /* Waiting for MT7530 got to stable */ 1783 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP); 1784 ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0, 1785 20, 1000000); 1786 if (ret < 0) { 1787 dev_err(priv->dev, "reset timeout\n"); 1788 return ret; 1789 } 1790 1791 id = mt7530_read(priv, MT7530_CREV); 1792 id >>= CHIP_NAME_SHIFT; 1793 if (id != MT7530_ID) { 1794 dev_err(priv->dev, "chip %x can't be supported\n", id); 1795 return -ENODEV; 1796 } 1797 1798 /* Reset the switch through internal reset */ 1799 mt7530_write(priv, MT7530_SYS_CTRL, 1800 SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST | 1801 SYS_CTRL_REG_RST); 1802 1803 /* Enable Port 6 only; P5 as GMAC5 which currently is not supported */ 1804 val = mt7530_read(priv, MT7530_MHWTRAP); 1805 val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS; 1806 val |= MHWTRAP_MANUAL; 1807 mt7530_write(priv, MT7530_MHWTRAP, val); 1808 1809 priv->p6_interface = PHY_INTERFACE_MODE_NA; 1810 1811 /* Enable and reset MIB counters */ 1812 mt7530_mib_reset(ds); 1813 1814 for (i = 0; i < MT7530_NUM_PORTS; i++) { 1815 /* Disable forwarding by default on all ports */ 1816 mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK, 1817 PCR_MATRIX_CLR); 1818 1819 if (dsa_is_cpu_port(ds, i)) { 1820 ret = mt753x_cpu_port_enable(ds, i); 1821 if (ret) 1822 return ret; 1823 } else 1824 mt7530_port_disable(ds, i); 1825 1826 /* Enable consistent egress tag */ 1827 mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK, 1828 PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT)); 1829 } 1830 1831 /* Setup port 5 */ 1832 priv->p5_intf_sel = P5_DISABLED; 1833 interface = PHY_INTERFACE_MODE_NA; 1834 1835 if (!dsa_is_unused_port(ds, 5)) { 1836 priv->p5_intf_sel = P5_INTF_SEL_GMAC5; 1837 ret = of_get_phy_mode(dsa_to_port(ds, 5)->dn, &interface); 1838 if (ret && ret != -ENODEV) 1839 return ret; 1840 } else { 1841 /* Scan the ethernet nodes. look for GMAC1, lookup used phy */ 1842 for_each_child_of_node(dn, mac_np) { 1843 if (!of_device_is_compatible(mac_np, 1844 "mediatek,eth-mac")) 1845 continue; 1846 1847 ret = of_property_read_u32(mac_np, "reg", &id); 1848 if (ret < 0 || id != 1) 1849 continue; 1850 1851 phy_node = of_parse_phandle(mac_np, "phy-handle", 0); 1852 if (!phy_node) 1853 continue; 1854 1855 if (phy_node->parent == priv->dev->of_node->parent) { 1856 ret = of_get_phy_mode(mac_np, &interface); 1857 if (ret && ret != -ENODEV) { 1858 of_node_put(mac_np); 1859 return ret; 1860 } 1861 id = of_mdio_parse_addr(ds->dev, phy_node); 1862 if (id == 0) 1863 priv->p5_intf_sel = P5_INTF_SEL_PHY_P0; 1864 if (id == 4) 1865 priv->p5_intf_sel = P5_INTF_SEL_PHY_P4; 1866 } 1867 of_node_put(mac_np); 1868 of_node_put(phy_node); 1869 break; 1870 } 1871 } 1872 1873 #ifdef CONFIG_GPIOLIB 1874 if (of_property_read_bool(priv->dev->of_node, "gpio-controller")) { 1875 ret = mt7530_setup_gpio(priv); 1876 if (ret) 1877 return ret; 1878 } 1879 #endif /* CONFIG_GPIOLIB */ 1880 1881 mt7530_setup_port5(ds, interface); 1882 1883 /* Flush the FDB table */ 1884 ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL); 1885 if (ret < 0) 1886 return ret; 1887 1888 return 0; 1889 } 1890 1891 static int 1892 mt7531_setup(struct dsa_switch *ds) 1893 { 1894 struct mt7530_priv *priv = ds->priv; 1895 struct mt7530_dummy_poll p; 1896 u32 val, id; 1897 int ret, i; 1898 1899 /* Reset whole chip through gpio pin or memory-mapped registers for 1900 * different type of hardware 1901 */ 1902 if (priv->mcm) { 1903 reset_control_assert(priv->rstc); 1904 usleep_range(1000, 1100); 1905 reset_control_deassert(priv->rstc); 1906 } else { 1907 gpiod_set_value_cansleep(priv->reset, 0); 1908 usleep_range(1000, 1100); 1909 gpiod_set_value_cansleep(priv->reset, 1); 1910 } 1911 1912 /* Waiting for MT7530 got to stable */ 1913 INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP); 1914 ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0, 1915 20, 1000000); 1916 if (ret < 0) { 1917 dev_err(priv->dev, "reset timeout\n"); 1918 return ret; 1919 } 1920 1921 id = mt7530_read(priv, MT7531_CREV); 1922 id >>= CHIP_NAME_SHIFT; 1923 1924 if (id != MT7531_ID) { 1925 dev_err(priv->dev, "chip %x can't be supported\n", id); 1926 return -ENODEV; 1927 } 1928 1929 /* Reset the switch through internal reset */ 1930 mt7530_write(priv, MT7530_SYS_CTRL, 1931 SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST | 1932 SYS_CTRL_REG_RST); 1933 1934 if (mt7531_dual_sgmii_supported(priv)) { 1935 priv->p5_intf_sel = P5_INTF_SEL_GMAC5_SGMII; 1936 1937 /* Let ds->slave_mii_bus be able to access external phy. */ 1938 mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK, 1939 MT7531_EXT_P_MDC_11); 1940 mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK, 1941 MT7531_EXT_P_MDIO_12); 1942 } else { 1943 priv->p5_intf_sel = P5_INTF_SEL_GMAC5; 1944 } 1945 dev_dbg(ds->dev, "P5 support %s interface\n", 1946 p5_intf_modes(priv->p5_intf_sel)); 1947 1948 mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK, 1949 MT7531_GPIO0_INTERRUPT); 1950 1951 /* Let phylink decide the interface later. */ 1952 priv->p5_interface = PHY_INTERFACE_MODE_NA; 1953 priv->p6_interface = PHY_INTERFACE_MODE_NA; 1954 1955 /* Enable PHY core PLL, since phy_device has not yet been created 1956 * provided for phy_[read,write]_mmd_indirect is called, we provide 1957 * our own mt7531_ind_mmd_phy_[read,write] to complete this 1958 * function. 1959 */ 1960 val = mt7531_ind_c45_phy_read(priv, MT753X_CTRL_PHY_ADDR, 1961 MDIO_MMD_VEND2, CORE_PLL_GROUP4); 1962 val |= MT7531_PHY_PLL_BYPASS_MODE; 1963 val &= ~MT7531_PHY_PLL_OFF; 1964 mt7531_ind_c45_phy_write(priv, MT753X_CTRL_PHY_ADDR, MDIO_MMD_VEND2, 1965 CORE_PLL_GROUP4, val); 1966 1967 /* BPDU to CPU port */ 1968 mt7530_rmw(priv, MT7531_CFC, MT7531_CPU_PMAP_MASK, 1969 BIT(MT7530_CPU_PORT)); 1970 mt7530_rmw(priv, MT753X_BPC, MT753X_BPDU_PORT_FW_MASK, 1971 MT753X_BPDU_CPU_ONLY); 1972 1973 /* Enable and reset MIB counters */ 1974 mt7530_mib_reset(ds); 1975 1976 for (i = 0; i < MT7530_NUM_PORTS; i++) { 1977 /* Disable forwarding by default on all ports */ 1978 mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK, 1979 PCR_MATRIX_CLR); 1980 1981 mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR); 1982 1983 if (dsa_is_cpu_port(ds, i)) { 1984 ret = mt753x_cpu_port_enable(ds, i); 1985 if (ret) 1986 return ret; 1987 } else 1988 mt7530_port_disable(ds, i); 1989 1990 /* Enable consistent egress tag */ 1991 mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK, 1992 PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT)); 1993 } 1994 1995 ds->mtu_enforcement_ingress = true; 1996 1997 /* Flush the FDB table */ 1998 ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL); 1999 if (ret < 0) 2000 return ret; 2001 2002 return 0; 2003 } 2004 2005 static bool 2006 mt7530_phy_mode_supported(struct dsa_switch *ds, int port, 2007 const struct phylink_link_state *state) 2008 { 2009 struct mt7530_priv *priv = ds->priv; 2010 2011 switch (port) { 2012 case 0 ... 4: /* Internal phy */ 2013 if (state->interface != PHY_INTERFACE_MODE_GMII) 2014 return false; 2015 break; 2016 case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */ 2017 if (!phy_interface_mode_is_rgmii(state->interface) && 2018 state->interface != PHY_INTERFACE_MODE_MII && 2019 state->interface != PHY_INTERFACE_MODE_GMII) 2020 return false; 2021 break; 2022 case 6: /* 1st cpu port */ 2023 if (state->interface != PHY_INTERFACE_MODE_RGMII && 2024 state->interface != PHY_INTERFACE_MODE_TRGMII) 2025 return false; 2026 break; 2027 default: 2028 dev_err(priv->dev, "%s: unsupported port: %i\n", __func__, 2029 port); 2030 return false; 2031 } 2032 2033 return true; 2034 } 2035 2036 static bool mt7531_is_rgmii_port(struct mt7530_priv *priv, u32 port) 2037 { 2038 return (port == 5) && (priv->p5_intf_sel != P5_INTF_SEL_GMAC5_SGMII); 2039 } 2040 2041 static bool 2042 mt7531_phy_mode_supported(struct dsa_switch *ds, int port, 2043 const struct phylink_link_state *state) 2044 { 2045 struct mt7530_priv *priv = ds->priv; 2046 2047 switch (port) { 2048 case 0 ... 4: /* Internal phy */ 2049 if (state->interface != PHY_INTERFACE_MODE_GMII) 2050 return false; 2051 break; 2052 case 5: /* 2nd cpu port supports either rgmii or sgmii/8023z */ 2053 if (mt7531_is_rgmii_port(priv, port)) 2054 return phy_interface_mode_is_rgmii(state->interface); 2055 fallthrough; 2056 case 6: /* 1st cpu port supports sgmii/8023z only */ 2057 if (state->interface != PHY_INTERFACE_MODE_SGMII && 2058 !phy_interface_mode_is_8023z(state->interface)) 2059 return false; 2060 break; 2061 default: 2062 dev_err(priv->dev, "%s: unsupported port: %i\n", __func__, 2063 port); 2064 return false; 2065 } 2066 2067 return true; 2068 } 2069 2070 static bool 2071 mt753x_phy_mode_supported(struct dsa_switch *ds, int port, 2072 const struct phylink_link_state *state) 2073 { 2074 struct mt7530_priv *priv = ds->priv; 2075 2076 return priv->info->phy_mode_supported(ds, port, state); 2077 } 2078 2079 static int 2080 mt753x_pad_setup(struct dsa_switch *ds, const struct phylink_link_state *state) 2081 { 2082 struct mt7530_priv *priv = ds->priv; 2083 2084 return priv->info->pad_setup(ds, state->interface); 2085 } 2086 2087 static int 2088 mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode, 2089 phy_interface_t interface) 2090 { 2091 struct mt7530_priv *priv = ds->priv; 2092 2093 /* Only need to setup port5. */ 2094 if (port != 5) 2095 return 0; 2096 2097 mt7530_setup_port5(priv->ds, interface); 2098 2099 return 0; 2100 } 2101 2102 static int mt7531_rgmii_setup(struct mt7530_priv *priv, u32 port, 2103 phy_interface_t interface, 2104 struct phy_device *phydev) 2105 { 2106 u32 val; 2107 2108 if (!mt7531_is_rgmii_port(priv, port)) { 2109 dev_err(priv->dev, "RGMII mode is not available for port %d\n", 2110 port); 2111 return -EINVAL; 2112 } 2113 2114 val = mt7530_read(priv, MT7531_CLKGEN_CTRL); 2115 val |= GP_CLK_EN; 2116 val &= ~GP_MODE_MASK; 2117 val |= GP_MODE(MT7531_GP_MODE_RGMII); 2118 val &= ~CLK_SKEW_IN_MASK; 2119 val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG); 2120 val &= ~CLK_SKEW_OUT_MASK; 2121 val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG); 2122 val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY; 2123 2124 /* Do not adjust rgmii delay when vendor phy driver presents. */ 2125 if (!phydev || phy_driver_is_genphy(phydev)) { 2126 val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY); 2127 switch (interface) { 2128 case PHY_INTERFACE_MODE_RGMII: 2129 val |= TXCLK_NO_REVERSE; 2130 val |= RXCLK_NO_DELAY; 2131 break; 2132 case PHY_INTERFACE_MODE_RGMII_RXID: 2133 val |= TXCLK_NO_REVERSE; 2134 break; 2135 case PHY_INTERFACE_MODE_RGMII_TXID: 2136 val |= RXCLK_NO_DELAY; 2137 break; 2138 case PHY_INTERFACE_MODE_RGMII_ID: 2139 break; 2140 default: 2141 return -EINVAL; 2142 } 2143 } 2144 mt7530_write(priv, MT7531_CLKGEN_CTRL, val); 2145 2146 return 0; 2147 } 2148 2149 static void mt7531_sgmii_validate(struct mt7530_priv *priv, int port, 2150 unsigned long *supported) 2151 { 2152 /* Port5 supports ethier RGMII or SGMII. 2153 * Port6 supports SGMII only. 2154 */ 2155 switch (port) { 2156 case 5: 2157 if (mt7531_is_rgmii_port(priv, port)) 2158 break; 2159 fallthrough; 2160 case 6: 2161 phylink_set(supported, 1000baseX_Full); 2162 phylink_set(supported, 2500baseX_Full); 2163 phylink_set(supported, 2500baseT_Full); 2164 } 2165 } 2166 2167 static void 2168 mt7531_sgmii_link_up_force(struct dsa_switch *ds, int port, 2169 unsigned int mode, phy_interface_t interface, 2170 int speed, int duplex) 2171 { 2172 struct mt7530_priv *priv = ds->priv; 2173 unsigned int val; 2174 2175 /* For adjusting speed and duplex of SGMII force mode. */ 2176 if (interface != PHY_INTERFACE_MODE_SGMII || 2177 phylink_autoneg_inband(mode)) 2178 return; 2179 2180 /* SGMII force mode setting */ 2181 val = mt7530_read(priv, MT7531_SGMII_MODE(port)); 2182 val &= ~MT7531_SGMII_IF_MODE_MASK; 2183 2184 switch (speed) { 2185 case SPEED_10: 2186 val |= MT7531_SGMII_FORCE_SPEED_10; 2187 break; 2188 case SPEED_100: 2189 val |= MT7531_SGMII_FORCE_SPEED_100; 2190 break; 2191 case SPEED_1000: 2192 val |= MT7531_SGMII_FORCE_SPEED_1000; 2193 break; 2194 } 2195 2196 /* MT7531 SGMII 1G force mode can only work in full duplex mode, 2197 * no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not. 2198 */ 2199 if ((speed == SPEED_10 || speed == SPEED_100) && 2200 duplex != DUPLEX_FULL) 2201 val |= MT7531_SGMII_FORCE_HALF_DUPLEX; 2202 2203 mt7530_write(priv, MT7531_SGMII_MODE(port), val); 2204 } 2205 2206 static bool mt753x_is_mac_port(u32 port) 2207 { 2208 return (port == 5 || port == 6); 2209 } 2210 2211 static int mt7531_sgmii_setup_mode_force(struct mt7530_priv *priv, u32 port, 2212 phy_interface_t interface) 2213 { 2214 u32 val; 2215 2216 if (!mt753x_is_mac_port(port)) 2217 return -EINVAL; 2218 2219 mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 2220 MT7531_SGMII_PHYA_PWD); 2221 2222 val = mt7530_read(priv, MT7531_PHYA_CTRL_SIGNAL3(port)); 2223 val &= ~MT7531_RG_TPHY_SPEED_MASK; 2224 /* Setup 2.5 times faster clock for 2.5Gbps data speeds with 10B/8B 2225 * encoding. 2226 */ 2227 val |= (interface == PHY_INTERFACE_MODE_2500BASEX) ? 2228 MT7531_RG_TPHY_SPEED_3_125G : MT7531_RG_TPHY_SPEED_1_25G; 2229 mt7530_write(priv, MT7531_PHYA_CTRL_SIGNAL3(port), val); 2230 2231 mt7530_clear(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE); 2232 2233 /* MT7531 SGMII 1G and 2.5G force mode can only work in full duplex 2234 * mode, no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not. 2235 */ 2236 mt7530_rmw(priv, MT7531_SGMII_MODE(port), 2237 MT7531_SGMII_IF_MODE_MASK | MT7531_SGMII_REMOTE_FAULT_DIS, 2238 MT7531_SGMII_FORCE_SPEED_1000); 2239 2240 mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0); 2241 2242 return 0; 2243 } 2244 2245 static int mt7531_sgmii_setup_mode_an(struct mt7530_priv *priv, int port, 2246 phy_interface_t interface) 2247 { 2248 if (!mt753x_is_mac_port(port)) 2249 return -EINVAL; 2250 2251 mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 2252 MT7531_SGMII_PHYA_PWD); 2253 2254 mt7530_rmw(priv, MT7531_PHYA_CTRL_SIGNAL3(port), 2255 MT7531_RG_TPHY_SPEED_MASK, MT7531_RG_TPHY_SPEED_1_25G); 2256 2257 mt7530_set(priv, MT7531_SGMII_MODE(port), 2258 MT7531_SGMII_REMOTE_FAULT_DIS | 2259 MT7531_SGMII_SPEED_DUPLEX_AN); 2260 2261 mt7530_rmw(priv, MT7531_PCS_SPEED_ABILITY(port), 2262 MT7531_SGMII_TX_CONFIG_MASK, 1); 2263 2264 mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE); 2265 2266 mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_RESTART); 2267 2268 mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0); 2269 2270 return 0; 2271 } 2272 2273 static void mt7531_sgmii_restart_an(struct dsa_switch *ds, int port) 2274 { 2275 struct mt7530_priv *priv = ds->priv; 2276 u32 val; 2277 2278 /* Only restart AN when AN is enabled */ 2279 val = mt7530_read(priv, MT7531_PCS_CONTROL_1(port)); 2280 if (val & MT7531_SGMII_AN_ENABLE) { 2281 val |= MT7531_SGMII_AN_RESTART; 2282 mt7530_write(priv, MT7531_PCS_CONTROL_1(port), val); 2283 } 2284 } 2285 2286 static int 2287 mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode, 2288 phy_interface_t interface) 2289 { 2290 struct mt7530_priv *priv = ds->priv; 2291 struct phy_device *phydev; 2292 struct dsa_port *dp; 2293 2294 if (!mt753x_is_mac_port(port)) { 2295 dev_err(priv->dev, "port %d is not a MAC port\n", port); 2296 return -EINVAL; 2297 } 2298 2299 switch (interface) { 2300 case PHY_INTERFACE_MODE_RGMII: 2301 case PHY_INTERFACE_MODE_RGMII_ID: 2302 case PHY_INTERFACE_MODE_RGMII_RXID: 2303 case PHY_INTERFACE_MODE_RGMII_TXID: 2304 dp = dsa_to_port(ds, port); 2305 phydev = dp->slave->phydev; 2306 return mt7531_rgmii_setup(priv, port, interface, phydev); 2307 case PHY_INTERFACE_MODE_SGMII: 2308 return mt7531_sgmii_setup_mode_an(priv, port, interface); 2309 case PHY_INTERFACE_MODE_NA: 2310 case PHY_INTERFACE_MODE_1000BASEX: 2311 case PHY_INTERFACE_MODE_2500BASEX: 2312 if (phylink_autoneg_inband(mode)) 2313 return -EINVAL; 2314 2315 return mt7531_sgmii_setup_mode_force(priv, port, interface); 2316 default: 2317 return -EINVAL; 2318 } 2319 2320 return -EINVAL; 2321 } 2322 2323 static int 2324 mt753x_mac_config(struct dsa_switch *ds, int port, unsigned int mode, 2325 const struct phylink_link_state *state) 2326 { 2327 struct mt7530_priv *priv = ds->priv; 2328 2329 return priv->info->mac_port_config(ds, port, mode, state->interface); 2330 } 2331 2332 static void 2333 mt753x_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode, 2334 const struct phylink_link_state *state) 2335 { 2336 struct mt7530_priv *priv = ds->priv; 2337 u32 mcr_cur, mcr_new; 2338 2339 if (!mt753x_phy_mode_supported(ds, port, state)) 2340 goto unsupported; 2341 2342 switch (port) { 2343 case 0 ... 4: /* Internal phy */ 2344 if (state->interface != PHY_INTERFACE_MODE_GMII) 2345 goto unsupported; 2346 break; 2347 case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */ 2348 if (priv->p5_interface == state->interface) 2349 break; 2350 2351 if (mt753x_mac_config(ds, port, mode, state) < 0) 2352 goto unsupported; 2353 2354 if (priv->p5_intf_sel != P5_DISABLED) 2355 priv->p5_interface = state->interface; 2356 break; 2357 case 6: /* 1st cpu port */ 2358 if (priv->p6_interface == state->interface) 2359 break; 2360 2361 mt753x_pad_setup(ds, state); 2362 2363 if (mt753x_mac_config(ds, port, mode, state) < 0) 2364 goto unsupported; 2365 2366 priv->p6_interface = state->interface; 2367 break; 2368 default: 2369 unsupported: 2370 dev_err(ds->dev, "%s: unsupported %s port: %i\n", 2371 __func__, phy_modes(state->interface), port); 2372 return; 2373 } 2374 2375 if (phylink_autoneg_inband(mode) && 2376 state->interface != PHY_INTERFACE_MODE_SGMII) { 2377 dev_err(ds->dev, "%s: in-band negotiation unsupported\n", 2378 __func__); 2379 return; 2380 } 2381 2382 mcr_cur = mt7530_read(priv, MT7530_PMCR_P(port)); 2383 mcr_new = mcr_cur; 2384 mcr_new &= ~PMCR_LINK_SETTINGS_MASK; 2385 mcr_new |= PMCR_IFG_XMIT(1) | PMCR_MAC_MODE | PMCR_BACKOFF_EN | 2386 PMCR_BACKPR_EN | PMCR_FORCE_MODE_ID(priv->id); 2387 2388 /* Are we connected to external phy */ 2389 if (port == 5 && dsa_is_user_port(ds, 5)) 2390 mcr_new |= PMCR_EXT_PHY; 2391 2392 if (mcr_new != mcr_cur) 2393 mt7530_write(priv, MT7530_PMCR_P(port), mcr_new); 2394 } 2395 2396 static void 2397 mt753x_phylink_mac_an_restart(struct dsa_switch *ds, int port) 2398 { 2399 struct mt7530_priv *priv = ds->priv; 2400 2401 if (!priv->info->mac_pcs_an_restart) 2402 return; 2403 2404 priv->info->mac_pcs_an_restart(ds, port); 2405 } 2406 2407 static void mt753x_phylink_mac_link_down(struct dsa_switch *ds, int port, 2408 unsigned int mode, 2409 phy_interface_t interface) 2410 { 2411 struct mt7530_priv *priv = ds->priv; 2412 2413 mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK); 2414 } 2415 2416 static void mt753x_mac_pcs_link_up(struct dsa_switch *ds, int port, 2417 unsigned int mode, phy_interface_t interface, 2418 int speed, int duplex) 2419 { 2420 struct mt7530_priv *priv = ds->priv; 2421 2422 if (!priv->info->mac_pcs_link_up) 2423 return; 2424 2425 priv->info->mac_pcs_link_up(ds, port, mode, interface, speed, duplex); 2426 } 2427 2428 static void mt753x_phylink_mac_link_up(struct dsa_switch *ds, int port, 2429 unsigned int mode, 2430 phy_interface_t interface, 2431 struct phy_device *phydev, 2432 int speed, int duplex, 2433 bool tx_pause, bool rx_pause) 2434 { 2435 struct mt7530_priv *priv = ds->priv; 2436 u32 mcr; 2437 2438 mt753x_mac_pcs_link_up(ds, port, mode, interface, speed, duplex); 2439 2440 mcr = PMCR_RX_EN | PMCR_TX_EN | PMCR_FORCE_LNK; 2441 2442 /* MT753x MAC works in 1G full duplex mode for all up-clocked 2443 * variants. 2444 */ 2445 if (interface == PHY_INTERFACE_MODE_TRGMII || 2446 (phy_interface_mode_is_8023z(interface))) { 2447 speed = SPEED_1000; 2448 duplex = DUPLEX_FULL; 2449 } 2450 2451 switch (speed) { 2452 case SPEED_1000: 2453 mcr |= PMCR_FORCE_SPEED_1000; 2454 break; 2455 case SPEED_100: 2456 mcr |= PMCR_FORCE_SPEED_100; 2457 break; 2458 } 2459 if (duplex == DUPLEX_FULL) { 2460 mcr |= PMCR_FORCE_FDX; 2461 if (tx_pause) 2462 mcr |= PMCR_TX_FC_EN; 2463 if (rx_pause) 2464 mcr |= PMCR_RX_FC_EN; 2465 } 2466 2467 mt7530_set(priv, MT7530_PMCR_P(port), mcr); 2468 } 2469 2470 static int 2471 mt7531_cpu_port_config(struct dsa_switch *ds, int port) 2472 { 2473 struct mt7530_priv *priv = ds->priv; 2474 phy_interface_t interface; 2475 int speed; 2476 int ret; 2477 2478 switch (port) { 2479 case 5: 2480 if (mt7531_is_rgmii_port(priv, port)) 2481 interface = PHY_INTERFACE_MODE_RGMII; 2482 else 2483 interface = PHY_INTERFACE_MODE_2500BASEX; 2484 2485 priv->p5_interface = interface; 2486 break; 2487 case 6: 2488 interface = PHY_INTERFACE_MODE_2500BASEX; 2489 2490 mt7531_pad_setup(ds, interface); 2491 2492 priv->p6_interface = interface; 2493 break; 2494 default: 2495 return -EINVAL; 2496 } 2497 2498 if (interface == PHY_INTERFACE_MODE_2500BASEX) 2499 speed = SPEED_2500; 2500 else 2501 speed = SPEED_1000; 2502 2503 ret = mt7531_mac_config(ds, port, MLO_AN_FIXED, interface); 2504 if (ret) 2505 return ret; 2506 mt7530_write(priv, MT7530_PMCR_P(port), 2507 PMCR_CPU_PORT_SETTING(priv->id)); 2508 mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED, interface, NULL, 2509 speed, DUPLEX_FULL, true, true); 2510 2511 return 0; 2512 } 2513 2514 static void 2515 mt7530_mac_port_validate(struct dsa_switch *ds, int port, 2516 unsigned long *supported) 2517 { 2518 if (port == 5) 2519 phylink_set(supported, 1000baseX_Full); 2520 } 2521 2522 static void mt7531_mac_port_validate(struct dsa_switch *ds, int port, 2523 unsigned long *supported) 2524 { 2525 struct mt7530_priv *priv = ds->priv; 2526 2527 mt7531_sgmii_validate(priv, port, supported); 2528 } 2529 2530 static void 2531 mt753x_phylink_validate(struct dsa_switch *ds, int port, 2532 unsigned long *supported, 2533 struct phylink_link_state *state) 2534 { 2535 __ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, }; 2536 struct mt7530_priv *priv = ds->priv; 2537 2538 if (state->interface != PHY_INTERFACE_MODE_NA && 2539 !mt753x_phy_mode_supported(ds, port, state)) { 2540 linkmode_zero(supported); 2541 return; 2542 } 2543 2544 phylink_set_port_modes(mask); 2545 2546 if (state->interface != PHY_INTERFACE_MODE_TRGMII || 2547 !phy_interface_mode_is_8023z(state->interface)) { 2548 phylink_set(mask, 10baseT_Half); 2549 phylink_set(mask, 10baseT_Full); 2550 phylink_set(mask, 100baseT_Half); 2551 phylink_set(mask, 100baseT_Full); 2552 phylink_set(mask, Autoneg); 2553 } 2554 2555 /* This switch only supports 1G full-duplex. */ 2556 if (state->interface != PHY_INTERFACE_MODE_MII) 2557 phylink_set(mask, 1000baseT_Full); 2558 2559 priv->info->mac_port_validate(ds, port, mask); 2560 2561 phylink_set(mask, Pause); 2562 phylink_set(mask, Asym_Pause); 2563 2564 linkmode_and(supported, supported, mask); 2565 linkmode_and(state->advertising, state->advertising, mask); 2566 2567 /* We can only operate at 2500BaseX or 1000BaseX. If requested 2568 * to advertise both, only report advertising at 2500BaseX. 2569 */ 2570 phylink_helper_basex_speed(state); 2571 } 2572 2573 static int 2574 mt7530_phylink_mac_link_state(struct dsa_switch *ds, int port, 2575 struct phylink_link_state *state) 2576 { 2577 struct mt7530_priv *priv = ds->priv; 2578 u32 pmsr; 2579 2580 if (port < 0 || port >= MT7530_NUM_PORTS) 2581 return -EINVAL; 2582 2583 pmsr = mt7530_read(priv, MT7530_PMSR_P(port)); 2584 2585 state->link = (pmsr & PMSR_LINK); 2586 state->an_complete = state->link; 2587 state->duplex = !!(pmsr & PMSR_DPX); 2588 2589 switch (pmsr & PMSR_SPEED_MASK) { 2590 case PMSR_SPEED_10: 2591 state->speed = SPEED_10; 2592 break; 2593 case PMSR_SPEED_100: 2594 state->speed = SPEED_100; 2595 break; 2596 case PMSR_SPEED_1000: 2597 state->speed = SPEED_1000; 2598 break; 2599 default: 2600 state->speed = SPEED_UNKNOWN; 2601 break; 2602 } 2603 2604 state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX); 2605 if (pmsr & PMSR_RX_FC) 2606 state->pause |= MLO_PAUSE_RX; 2607 if (pmsr & PMSR_TX_FC) 2608 state->pause |= MLO_PAUSE_TX; 2609 2610 return 1; 2611 } 2612 2613 static int 2614 mt7531_sgmii_pcs_get_state_an(struct mt7530_priv *priv, int port, 2615 struct phylink_link_state *state) 2616 { 2617 u32 status, val; 2618 u16 config_reg; 2619 2620 status = mt7530_read(priv, MT7531_PCS_CONTROL_1(port)); 2621 state->link = !!(status & MT7531_SGMII_LINK_STATUS); 2622 if (state->interface == PHY_INTERFACE_MODE_SGMII && 2623 (status & MT7531_SGMII_AN_ENABLE)) { 2624 val = mt7530_read(priv, MT7531_PCS_SPEED_ABILITY(port)); 2625 config_reg = val >> 16; 2626 2627 switch (config_reg & LPA_SGMII_SPD_MASK) { 2628 case LPA_SGMII_1000: 2629 state->speed = SPEED_1000; 2630 break; 2631 case LPA_SGMII_100: 2632 state->speed = SPEED_100; 2633 break; 2634 case LPA_SGMII_10: 2635 state->speed = SPEED_10; 2636 break; 2637 default: 2638 dev_err(priv->dev, "invalid sgmii PHY speed\n"); 2639 state->link = false; 2640 return -EINVAL; 2641 } 2642 2643 if (config_reg & LPA_SGMII_FULL_DUPLEX) 2644 state->duplex = DUPLEX_FULL; 2645 else 2646 state->duplex = DUPLEX_HALF; 2647 } 2648 2649 return 0; 2650 } 2651 2652 static int 2653 mt7531_phylink_mac_link_state(struct dsa_switch *ds, int port, 2654 struct phylink_link_state *state) 2655 { 2656 struct mt7530_priv *priv = ds->priv; 2657 2658 if (state->interface == PHY_INTERFACE_MODE_SGMII) 2659 return mt7531_sgmii_pcs_get_state_an(priv, port, state); 2660 2661 return -EOPNOTSUPP; 2662 } 2663 2664 static int 2665 mt753x_phylink_mac_link_state(struct dsa_switch *ds, int port, 2666 struct phylink_link_state *state) 2667 { 2668 struct mt7530_priv *priv = ds->priv; 2669 2670 return priv->info->mac_port_get_state(ds, port, state); 2671 } 2672 2673 static int 2674 mt753x_setup(struct dsa_switch *ds) 2675 { 2676 struct mt7530_priv *priv = ds->priv; 2677 2678 return priv->info->sw_setup(ds); 2679 } 2680 2681 static int 2682 mt753x_phy_read(struct dsa_switch *ds, int port, int regnum) 2683 { 2684 struct mt7530_priv *priv = ds->priv; 2685 2686 return priv->info->phy_read(ds, port, regnum); 2687 } 2688 2689 static int 2690 mt753x_phy_write(struct dsa_switch *ds, int port, int regnum, u16 val) 2691 { 2692 struct mt7530_priv *priv = ds->priv; 2693 2694 return priv->info->phy_write(ds, port, regnum, val); 2695 } 2696 2697 static const struct dsa_switch_ops mt7530_switch_ops = { 2698 .get_tag_protocol = mtk_get_tag_protocol, 2699 .setup = mt753x_setup, 2700 .get_strings = mt7530_get_strings, 2701 .phy_read = mt753x_phy_read, 2702 .phy_write = mt753x_phy_write, 2703 .get_ethtool_stats = mt7530_get_ethtool_stats, 2704 .get_sset_count = mt7530_get_sset_count, 2705 .set_ageing_time = mt7530_set_ageing_time, 2706 .port_enable = mt7530_port_enable, 2707 .port_disable = mt7530_port_disable, 2708 .port_change_mtu = mt7530_port_change_mtu, 2709 .port_max_mtu = mt7530_port_max_mtu, 2710 .port_stp_state_set = mt7530_stp_state_set, 2711 .port_bridge_join = mt7530_port_bridge_join, 2712 .port_bridge_leave = mt7530_port_bridge_leave, 2713 .port_fdb_add = mt7530_port_fdb_add, 2714 .port_fdb_del = mt7530_port_fdb_del, 2715 .port_fdb_dump = mt7530_port_fdb_dump, 2716 .port_vlan_filtering = mt7530_port_vlan_filtering, 2717 .port_vlan_add = mt7530_port_vlan_add, 2718 .port_vlan_del = mt7530_port_vlan_del, 2719 .port_mirror_add = mt753x_port_mirror_add, 2720 .port_mirror_del = mt753x_port_mirror_del, 2721 .phylink_validate = mt753x_phylink_validate, 2722 .phylink_mac_link_state = mt753x_phylink_mac_link_state, 2723 .phylink_mac_config = mt753x_phylink_mac_config, 2724 .phylink_mac_an_restart = mt753x_phylink_mac_an_restart, 2725 .phylink_mac_link_down = mt753x_phylink_mac_link_down, 2726 .phylink_mac_link_up = mt753x_phylink_mac_link_up, 2727 }; 2728 2729 static const struct mt753x_info mt753x_table[] = { 2730 [ID_MT7621] = { 2731 .id = ID_MT7621, 2732 .sw_setup = mt7530_setup, 2733 .phy_read = mt7530_phy_read, 2734 .phy_write = mt7530_phy_write, 2735 .pad_setup = mt7530_pad_clk_setup, 2736 .phy_mode_supported = mt7530_phy_mode_supported, 2737 .mac_port_validate = mt7530_mac_port_validate, 2738 .mac_port_get_state = mt7530_phylink_mac_link_state, 2739 .mac_port_config = mt7530_mac_config, 2740 }, 2741 [ID_MT7530] = { 2742 .id = ID_MT7530, 2743 .sw_setup = mt7530_setup, 2744 .phy_read = mt7530_phy_read, 2745 .phy_write = mt7530_phy_write, 2746 .pad_setup = mt7530_pad_clk_setup, 2747 .phy_mode_supported = mt7530_phy_mode_supported, 2748 .mac_port_validate = mt7530_mac_port_validate, 2749 .mac_port_get_state = mt7530_phylink_mac_link_state, 2750 .mac_port_config = mt7530_mac_config, 2751 }, 2752 [ID_MT7531] = { 2753 .id = ID_MT7531, 2754 .sw_setup = mt7531_setup, 2755 .phy_read = mt7531_ind_phy_read, 2756 .phy_write = mt7531_ind_phy_write, 2757 .pad_setup = mt7531_pad_setup, 2758 .cpu_port_config = mt7531_cpu_port_config, 2759 .phy_mode_supported = mt7531_phy_mode_supported, 2760 .mac_port_validate = mt7531_mac_port_validate, 2761 .mac_port_get_state = mt7531_phylink_mac_link_state, 2762 .mac_port_config = mt7531_mac_config, 2763 .mac_pcs_an_restart = mt7531_sgmii_restart_an, 2764 .mac_pcs_link_up = mt7531_sgmii_link_up_force, 2765 }, 2766 }; 2767 2768 static const struct of_device_id mt7530_of_match[] = { 2769 { .compatible = "mediatek,mt7621", .data = &mt753x_table[ID_MT7621], }, 2770 { .compatible = "mediatek,mt7530", .data = &mt753x_table[ID_MT7530], }, 2771 { .compatible = "mediatek,mt7531", .data = &mt753x_table[ID_MT7531], }, 2772 { /* sentinel */ }, 2773 }; 2774 MODULE_DEVICE_TABLE(of, mt7530_of_match); 2775 2776 static int 2777 mt7530_probe(struct mdio_device *mdiodev) 2778 { 2779 struct mt7530_priv *priv; 2780 struct device_node *dn; 2781 2782 dn = mdiodev->dev.of_node; 2783 2784 priv = devm_kzalloc(&mdiodev->dev, sizeof(*priv), GFP_KERNEL); 2785 if (!priv) 2786 return -ENOMEM; 2787 2788 priv->ds = devm_kzalloc(&mdiodev->dev, sizeof(*priv->ds), GFP_KERNEL); 2789 if (!priv->ds) 2790 return -ENOMEM; 2791 2792 priv->ds->dev = &mdiodev->dev; 2793 priv->ds->num_ports = DSA_MAX_PORTS; 2794 2795 /* Use medatek,mcm property to distinguish hardware type that would 2796 * casues a little bit differences on power-on sequence. 2797 */ 2798 priv->mcm = of_property_read_bool(dn, "mediatek,mcm"); 2799 if (priv->mcm) { 2800 dev_info(&mdiodev->dev, "MT7530 adapts as multi-chip module\n"); 2801 2802 priv->rstc = devm_reset_control_get(&mdiodev->dev, "mcm"); 2803 if (IS_ERR(priv->rstc)) { 2804 dev_err(&mdiodev->dev, "Couldn't get our reset line\n"); 2805 return PTR_ERR(priv->rstc); 2806 } 2807 } 2808 2809 /* Get the hardware identifier from the devicetree node. 2810 * We will need it for some of the clock and regulator setup. 2811 */ 2812 priv->info = of_device_get_match_data(&mdiodev->dev); 2813 if (!priv->info) 2814 return -EINVAL; 2815 2816 /* Sanity check if these required device operations are filled 2817 * properly. 2818 */ 2819 if (!priv->info->sw_setup || !priv->info->pad_setup || 2820 !priv->info->phy_read || !priv->info->phy_write || 2821 !priv->info->phy_mode_supported || 2822 !priv->info->mac_port_validate || 2823 !priv->info->mac_port_get_state || !priv->info->mac_port_config) 2824 return -EINVAL; 2825 2826 priv->id = priv->info->id; 2827 2828 if (priv->id == ID_MT7530) { 2829 priv->core_pwr = devm_regulator_get(&mdiodev->dev, "core"); 2830 if (IS_ERR(priv->core_pwr)) 2831 return PTR_ERR(priv->core_pwr); 2832 2833 priv->io_pwr = devm_regulator_get(&mdiodev->dev, "io"); 2834 if (IS_ERR(priv->io_pwr)) 2835 return PTR_ERR(priv->io_pwr); 2836 } 2837 2838 /* Not MCM that indicates switch works as the remote standalone 2839 * integrated circuit so the GPIO pin would be used to complete 2840 * the reset, otherwise memory-mapped register accessing used 2841 * through syscon provides in the case of MCM. 2842 */ 2843 if (!priv->mcm) { 2844 priv->reset = devm_gpiod_get_optional(&mdiodev->dev, "reset", 2845 GPIOD_OUT_LOW); 2846 if (IS_ERR(priv->reset)) { 2847 dev_err(&mdiodev->dev, "Couldn't get our reset line\n"); 2848 return PTR_ERR(priv->reset); 2849 } 2850 } 2851 2852 priv->bus = mdiodev->bus; 2853 priv->dev = &mdiodev->dev; 2854 priv->ds->priv = priv; 2855 priv->ds->ops = &mt7530_switch_ops; 2856 mutex_init(&priv->reg_mutex); 2857 dev_set_drvdata(&mdiodev->dev, priv); 2858 2859 return dsa_register_switch(priv->ds); 2860 } 2861 2862 static void 2863 mt7530_remove(struct mdio_device *mdiodev) 2864 { 2865 struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev); 2866 int ret = 0; 2867 2868 ret = regulator_disable(priv->core_pwr); 2869 if (ret < 0) 2870 dev_err(priv->dev, 2871 "Failed to disable core power: %d\n", ret); 2872 2873 ret = regulator_disable(priv->io_pwr); 2874 if (ret < 0) 2875 dev_err(priv->dev, "Failed to disable io pwr: %d\n", 2876 ret); 2877 2878 dsa_unregister_switch(priv->ds); 2879 mutex_destroy(&priv->reg_mutex); 2880 } 2881 2882 static struct mdio_driver mt7530_mdio_driver = { 2883 .probe = mt7530_probe, 2884 .remove = mt7530_remove, 2885 .mdiodrv.driver = { 2886 .name = "mt7530", 2887 .of_match_table = mt7530_of_match, 2888 }, 2889 }; 2890 2891 mdio_module_driver(mt7530_mdio_driver); 2892 2893 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>"); 2894 MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch"); 2895 MODULE_LICENSE("GPL"); 2896