xref: /openbmc/linux/drivers/net/dsa/mt7530.c (revision c832da79)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Mediatek MT7530 DSA Switch driver
4  * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
5  */
6 #include <linux/etherdevice.h>
7 #include <linux/if_bridge.h>
8 #include <linux/iopoll.h>
9 #include <linux/mdio.h>
10 #include <linux/mfd/syscon.h>
11 #include <linux/module.h>
12 #include <linux/netdevice.h>
13 #include <linux/of_irq.h>
14 #include <linux/of_mdio.h>
15 #include <linux/of_net.h>
16 #include <linux/of_platform.h>
17 #include <linux/phylink.h>
18 #include <linux/regmap.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/reset.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/gpio/driver.h>
23 #include <net/dsa.h>
24 
25 #include "mt7530.h"
26 
27 static struct mt753x_pcs *pcs_to_mt753x_pcs(struct phylink_pcs *pcs)
28 {
29 	return container_of(pcs, struct mt753x_pcs, pcs);
30 }
31 
32 /* String, offset, and register size in bytes if different from 4 bytes */
33 static const struct mt7530_mib_desc mt7530_mib[] = {
34 	MIB_DESC(1, 0x00, "TxDrop"),
35 	MIB_DESC(1, 0x04, "TxCrcErr"),
36 	MIB_DESC(1, 0x08, "TxUnicast"),
37 	MIB_DESC(1, 0x0c, "TxMulticast"),
38 	MIB_DESC(1, 0x10, "TxBroadcast"),
39 	MIB_DESC(1, 0x14, "TxCollision"),
40 	MIB_DESC(1, 0x18, "TxSingleCollision"),
41 	MIB_DESC(1, 0x1c, "TxMultipleCollision"),
42 	MIB_DESC(1, 0x20, "TxDeferred"),
43 	MIB_DESC(1, 0x24, "TxLateCollision"),
44 	MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
45 	MIB_DESC(1, 0x2c, "TxPause"),
46 	MIB_DESC(1, 0x30, "TxPktSz64"),
47 	MIB_DESC(1, 0x34, "TxPktSz65To127"),
48 	MIB_DESC(1, 0x38, "TxPktSz128To255"),
49 	MIB_DESC(1, 0x3c, "TxPktSz256To511"),
50 	MIB_DESC(1, 0x40, "TxPktSz512To1023"),
51 	MIB_DESC(1, 0x44, "Tx1024ToMax"),
52 	MIB_DESC(2, 0x48, "TxBytes"),
53 	MIB_DESC(1, 0x60, "RxDrop"),
54 	MIB_DESC(1, 0x64, "RxFiltering"),
55 	MIB_DESC(1, 0x68, "RxUnicast"),
56 	MIB_DESC(1, 0x6c, "RxMulticast"),
57 	MIB_DESC(1, 0x70, "RxBroadcast"),
58 	MIB_DESC(1, 0x74, "RxAlignErr"),
59 	MIB_DESC(1, 0x78, "RxCrcErr"),
60 	MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
61 	MIB_DESC(1, 0x80, "RxFragErr"),
62 	MIB_DESC(1, 0x84, "RxOverSzErr"),
63 	MIB_DESC(1, 0x88, "RxJabberErr"),
64 	MIB_DESC(1, 0x8c, "RxPause"),
65 	MIB_DESC(1, 0x90, "RxPktSz64"),
66 	MIB_DESC(1, 0x94, "RxPktSz65To127"),
67 	MIB_DESC(1, 0x98, "RxPktSz128To255"),
68 	MIB_DESC(1, 0x9c, "RxPktSz256To511"),
69 	MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
70 	MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
71 	MIB_DESC(2, 0xa8, "RxBytes"),
72 	MIB_DESC(1, 0xb0, "RxCtrlDrop"),
73 	MIB_DESC(1, 0xb4, "RxIngressDrop"),
74 	MIB_DESC(1, 0xb8, "RxArlDrop"),
75 };
76 
77 /* Since phy_device has not yet been created and
78  * phy_{read,write}_mmd_indirect is not available, we provide our own
79  * core_{read,write}_mmd_indirect with core_{clear,write,set} wrappers
80  * to complete this function.
81  */
82 static int
83 core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
84 {
85 	struct mii_bus *bus = priv->bus;
86 	int value, ret;
87 
88 	/* Write the desired MMD Devad */
89 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
90 	if (ret < 0)
91 		goto err;
92 
93 	/* Write the desired MMD register address */
94 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
95 	if (ret < 0)
96 		goto err;
97 
98 	/* Select the Function : DATA with no post increment */
99 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
100 	if (ret < 0)
101 		goto err;
102 
103 	/* Read the content of the MMD's selected register */
104 	value = bus->read(bus, 0, MII_MMD_DATA);
105 
106 	return value;
107 err:
108 	dev_err(&bus->dev,  "failed to read mmd register\n");
109 
110 	return ret;
111 }
112 
113 static int
114 core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
115 			int devad, u32 data)
116 {
117 	struct mii_bus *bus = priv->bus;
118 	int ret;
119 
120 	/* Write the desired MMD Devad */
121 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
122 	if (ret < 0)
123 		goto err;
124 
125 	/* Write the desired MMD register address */
126 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
127 	if (ret < 0)
128 		goto err;
129 
130 	/* Select the Function : DATA with no post increment */
131 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
132 	if (ret < 0)
133 		goto err;
134 
135 	/* Write the data into MMD's selected register */
136 	ret = bus->write(bus, 0, MII_MMD_DATA, data);
137 err:
138 	if (ret < 0)
139 		dev_err(&bus->dev,
140 			"failed to write mmd register\n");
141 	return ret;
142 }
143 
144 static void
145 core_write(struct mt7530_priv *priv, u32 reg, u32 val)
146 {
147 	struct mii_bus *bus = priv->bus;
148 
149 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
150 
151 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
152 
153 	mutex_unlock(&bus->mdio_lock);
154 }
155 
156 static void
157 core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
158 {
159 	struct mii_bus *bus = priv->bus;
160 	u32 val;
161 
162 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
163 
164 	val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2);
165 	val &= ~mask;
166 	val |= set;
167 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
168 
169 	mutex_unlock(&bus->mdio_lock);
170 }
171 
172 static void
173 core_set(struct mt7530_priv *priv, u32 reg, u32 val)
174 {
175 	core_rmw(priv, reg, 0, val);
176 }
177 
178 static void
179 core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
180 {
181 	core_rmw(priv, reg, val, 0);
182 }
183 
184 static int
185 mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
186 {
187 	struct mii_bus *bus = priv->bus;
188 	u16 page, r, lo, hi;
189 	int ret;
190 
191 	page = (reg >> 6) & 0x3ff;
192 	r  = (reg >> 2) & 0xf;
193 	lo = val & 0xffff;
194 	hi = val >> 16;
195 
196 	/* MT7530 uses 31 as the pseudo port */
197 	ret = bus->write(bus, 0x1f, 0x1f, page);
198 	if (ret < 0)
199 		goto err;
200 
201 	ret = bus->write(bus, 0x1f, r,  lo);
202 	if (ret < 0)
203 		goto err;
204 
205 	ret = bus->write(bus, 0x1f, 0x10, hi);
206 err:
207 	if (ret < 0)
208 		dev_err(&bus->dev,
209 			"failed to write mt7530 register\n");
210 	return ret;
211 }
212 
213 static u32
214 mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
215 {
216 	struct mii_bus *bus = priv->bus;
217 	u16 page, r, lo, hi;
218 	int ret;
219 
220 	page = (reg >> 6) & 0x3ff;
221 	r = (reg >> 2) & 0xf;
222 
223 	/* MT7530 uses 31 as the pseudo port */
224 	ret = bus->write(bus, 0x1f, 0x1f, page);
225 	if (ret < 0) {
226 		dev_err(&bus->dev,
227 			"failed to read mt7530 register\n");
228 		return ret;
229 	}
230 
231 	lo = bus->read(bus, 0x1f, r);
232 	hi = bus->read(bus, 0x1f, 0x10);
233 
234 	return (hi << 16) | (lo & 0xffff);
235 }
236 
237 static void
238 mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
239 {
240 	struct mii_bus *bus = priv->bus;
241 
242 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
243 
244 	mt7530_mii_write(priv, reg, val);
245 
246 	mutex_unlock(&bus->mdio_lock);
247 }
248 
249 static u32
250 _mt7530_unlocked_read(struct mt7530_dummy_poll *p)
251 {
252 	return mt7530_mii_read(p->priv, p->reg);
253 }
254 
255 static u32
256 _mt7530_read(struct mt7530_dummy_poll *p)
257 {
258 	struct mii_bus		*bus = p->priv->bus;
259 	u32 val;
260 
261 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
262 
263 	val = mt7530_mii_read(p->priv, p->reg);
264 
265 	mutex_unlock(&bus->mdio_lock);
266 
267 	return val;
268 }
269 
270 static u32
271 mt7530_read(struct mt7530_priv *priv, u32 reg)
272 {
273 	struct mt7530_dummy_poll p;
274 
275 	INIT_MT7530_DUMMY_POLL(&p, priv, reg);
276 	return _mt7530_read(&p);
277 }
278 
279 static void
280 mt7530_rmw(struct mt7530_priv *priv, u32 reg,
281 	   u32 mask, u32 set)
282 {
283 	struct mii_bus *bus = priv->bus;
284 	u32 val;
285 
286 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
287 
288 	val = mt7530_mii_read(priv, reg);
289 	val &= ~mask;
290 	val |= set;
291 	mt7530_mii_write(priv, reg, val);
292 
293 	mutex_unlock(&bus->mdio_lock);
294 }
295 
296 static void
297 mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
298 {
299 	mt7530_rmw(priv, reg, 0, val);
300 }
301 
302 static void
303 mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
304 {
305 	mt7530_rmw(priv, reg, val, 0);
306 }
307 
308 static int
309 mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
310 {
311 	u32 val;
312 	int ret;
313 	struct mt7530_dummy_poll p;
314 
315 	/* Set the command operating upon the MAC address entries */
316 	val = ATC_BUSY | ATC_MAT(0) | cmd;
317 	mt7530_write(priv, MT7530_ATC, val);
318 
319 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
320 	ret = readx_poll_timeout(_mt7530_read, &p, val,
321 				 !(val & ATC_BUSY), 20, 20000);
322 	if (ret < 0) {
323 		dev_err(priv->dev, "reset timeout\n");
324 		return ret;
325 	}
326 
327 	/* Additional sanity for read command if the specified
328 	 * entry is invalid
329 	 */
330 	val = mt7530_read(priv, MT7530_ATC);
331 	if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
332 		return -EINVAL;
333 
334 	if (rsp)
335 		*rsp = val;
336 
337 	return 0;
338 }
339 
340 static void
341 mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
342 {
343 	u32 reg[3];
344 	int i;
345 
346 	/* Read from ARL table into an array */
347 	for (i = 0; i < 3; i++) {
348 		reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
349 
350 		dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
351 			__func__, __LINE__, i, reg[i]);
352 	}
353 
354 	fdb->vid = (reg[1] >> CVID) & CVID_MASK;
355 	fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
356 	fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
357 	fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
358 	fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
359 	fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
360 	fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
361 	fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
362 	fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
363 	fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
364 }
365 
366 static void
367 mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
368 		 u8 port_mask, const u8 *mac,
369 		 u8 aging, u8 type)
370 {
371 	u32 reg[3] = { 0 };
372 	int i;
373 
374 	reg[1] |= vid & CVID_MASK;
375 	reg[1] |= ATA2_IVL;
376 	reg[1] |= ATA2_FID(FID_BRIDGED);
377 	reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
378 	reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
379 	/* STATIC_ENT indicate that entry is static wouldn't
380 	 * be aged out and STATIC_EMP specified as erasing an
381 	 * entry
382 	 */
383 	reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
384 	reg[1] |= mac[5] << MAC_BYTE_5;
385 	reg[1] |= mac[4] << MAC_BYTE_4;
386 	reg[0] |= mac[3] << MAC_BYTE_3;
387 	reg[0] |= mac[2] << MAC_BYTE_2;
388 	reg[0] |= mac[1] << MAC_BYTE_1;
389 	reg[0] |= mac[0] << MAC_BYTE_0;
390 
391 	/* Write array into the ARL table */
392 	for (i = 0; i < 3; i++)
393 		mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
394 }
395 
396 /* Setup TX circuit including relevant PAD and driving */
397 static int
398 mt7530_pad_clk_setup(struct dsa_switch *ds, phy_interface_t interface)
399 {
400 	struct mt7530_priv *priv = ds->priv;
401 	u32 ncpo1, ssc_delta, trgint, i, xtal;
402 
403 	xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK;
404 
405 	if (xtal == HWTRAP_XTAL_20MHZ) {
406 		dev_err(priv->dev,
407 			"%s: MT7530 with a 20MHz XTAL is not supported!\n",
408 			__func__);
409 		return -EINVAL;
410 	}
411 
412 	switch (interface) {
413 	case PHY_INTERFACE_MODE_RGMII:
414 		trgint = 0;
415 		/* PLL frequency: 125MHz */
416 		ncpo1 = 0x0c80;
417 		break;
418 	case PHY_INTERFACE_MODE_TRGMII:
419 		trgint = 1;
420 		if (priv->id == ID_MT7621) {
421 			/* PLL frequency: 150MHz: 1.2GBit */
422 			if (xtal == HWTRAP_XTAL_40MHZ)
423 				ncpo1 = 0x0780;
424 			if (xtal == HWTRAP_XTAL_25MHZ)
425 				ncpo1 = 0x0a00;
426 		} else { /* PLL frequency: 250MHz: 2.0Gbit */
427 			if (xtal == HWTRAP_XTAL_40MHZ)
428 				ncpo1 = 0x0c80;
429 			if (xtal == HWTRAP_XTAL_25MHZ)
430 				ncpo1 = 0x1400;
431 		}
432 		break;
433 	default:
434 		dev_err(priv->dev, "xMII interface %d not supported\n",
435 			interface);
436 		return -EINVAL;
437 	}
438 
439 	if (xtal == HWTRAP_XTAL_25MHZ)
440 		ssc_delta = 0x57;
441 	else
442 		ssc_delta = 0x87;
443 
444 	mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
445 		   P6_INTF_MODE(trgint));
446 
447 	/* Lower Tx Driving for TRGMII path */
448 	for (i = 0 ; i < NUM_TRGMII_CTRL ; i++)
449 		mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
450 			     TD_DM_DRVP(8) | TD_DM_DRVN(8));
451 
452 	/* Disable MT7530 core and TRGMII Tx clocks */
453 	core_clear(priv, CORE_TRGMII_GSW_CLK_CG,
454 		   REG_GSWCK_EN | REG_TRGMIICK_EN);
455 
456 	/* Setup core clock for MT7530 */
457 	/* Disable PLL */
458 	core_write(priv, CORE_GSWPLL_GRP1, 0);
459 
460 	/* Set core clock into 500Mhz */
461 	core_write(priv, CORE_GSWPLL_GRP2,
462 		   RG_GSWPLL_POSDIV_500M(1) |
463 		   RG_GSWPLL_FBKDIV_500M(25));
464 
465 	/* Enable PLL */
466 	core_write(priv, CORE_GSWPLL_GRP1,
467 		   RG_GSWPLL_EN_PRE |
468 		   RG_GSWPLL_POSDIV_200M(2) |
469 		   RG_GSWPLL_FBKDIV_200M(32));
470 
471 	/* Setup the MT7530 TRGMII Tx Clock */
472 	core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
473 	core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
474 	core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
475 	core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
476 	core_write(priv, CORE_PLL_GROUP4,
477 		   RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN |
478 		   RG_SYSPLL_BIAS_LPF_EN);
479 	core_write(priv, CORE_PLL_GROUP2,
480 		   RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN |
481 		   RG_SYSPLL_POSDIV(1));
482 	core_write(priv, CORE_PLL_GROUP7,
483 		   RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) |
484 		   RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
485 
486 	/* Enable MT7530 core and TRGMII Tx clocks */
487 	core_set(priv, CORE_TRGMII_GSW_CLK_CG,
488 		 REG_GSWCK_EN | REG_TRGMIICK_EN);
489 
490 	if (!trgint)
491 		for (i = 0 ; i < NUM_TRGMII_CTRL; i++)
492 			mt7530_rmw(priv, MT7530_TRGMII_RD(i),
493 				   RD_TAP_MASK, RD_TAP(16));
494 	return 0;
495 }
496 
497 static bool mt7531_dual_sgmii_supported(struct mt7530_priv *priv)
498 {
499 	u32 val;
500 
501 	val = mt7530_read(priv, MT7531_TOP_SIG_SR);
502 
503 	return (val & PAD_DUAL_SGMII_EN) != 0;
504 }
505 
506 static int
507 mt7531_pad_setup(struct dsa_switch *ds, phy_interface_t interface)
508 {
509 	struct mt7530_priv *priv = ds->priv;
510 	u32 top_sig;
511 	u32 hwstrap;
512 	u32 xtal;
513 	u32 val;
514 
515 	if (mt7531_dual_sgmii_supported(priv))
516 		return 0;
517 
518 	val = mt7530_read(priv, MT7531_CREV);
519 	top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR);
520 	hwstrap = mt7530_read(priv, MT7531_HWTRAP);
521 	if ((val & CHIP_REV_M) > 0)
522 		xtal = (top_sig & PAD_MCM_SMI_EN) ? HWTRAP_XTAL_FSEL_40MHZ :
523 						    HWTRAP_XTAL_FSEL_25MHZ;
524 	else
525 		xtal = hwstrap & HWTRAP_XTAL_FSEL_MASK;
526 
527 	/* Step 1 : Disable MT7531 COREPLL */
528 	val = mt7530_read(priv, MT7531_PLLGP_EN);
529 	val &= ~EN_COREPLL;
530 	mt7530_write(priv, MT7531_PLLGP_EN, val);
531 
532 	/* Step 2: switch to XTAL output */
533 	val = mt7530_read(priv, MT7531_PLLGP_EN);
534 	val |= SW_CLKSW;
535 	mt7530_write(priv, MT7531_PLLGP_EN, val);
536 
537 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
538 	val &= ~RG_COREPLL_EN;
539 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
540 
541 	/* Step 3: disable PLLGP and enable program PLLGP */
542 	val = mt7530_read(priv, MT7531_PLLGP_EN);
543 	val |= SW_PLLGP;
544 	mt7530_write(priv, MT7531_PLLGP_EN, val);
545 
546 	/* Step 4: program COREPLL output frequency to 500MHz */
547 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
548 	val &= ~RG_COREPLL_POSDIV_M;
549 	val |= 2 << RG_COREPLL_POSDIV_S;
550 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
551 	usleep_range(25, 35);
552 
553 	switch (xtal) {
554 	case HWTRAP_XTAL_FSEL_25MHZ:
555 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
556 		val &= ~RG_COREPLL_SDM_PCW_M;
557 		val |= 0x140000 << RG_COREPLL_SDM_PCW_S;
558 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
559 		break;
560 	case HWTRAP_XTAL_FSEL_40MHZ:
561 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
562 		val &= ~RG_COREPLL_SDM_PCW_M;
563 		val |= 0x190000 << RG_COREPLL_SDM_PCW_S;
564 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
565 		break;
566 	}
567 
568 	/* Set feedback divide ratio update signal to high */
569 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
570 	val |= RG_COREPLL_SDM_PCW_CHG;
571 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
572 	/* Wait for at least 16 XTAL clocks */
573 	usleep_range(10, 20);
574 
575 	/* Step 5: set feedback divide ratio update signal to low */
576 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
577 	val &= ~RG_COREPLL_SDM_PCW_CHG;
578 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
579 
580 	/* Enable 325M clock for SGMII */
581 	mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000);
582 
583 	/* Enable 250SSC clock for RGMII */
584 	mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000);
585 
586 	/* Step 6: Enable MT7531 PLL */
587 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
588 	val |= RG_COREPLL_EN;
589 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
590 
591 	val = mt7530_read(priv, MT7531_PLLGP_EN);
592 	val |= EN_COREPLL;
593 	mt7530_write(priv, MT7531_PLLGP_EN, val);
594 	usleep_range(25, 35);
595 
596 	return 0;
597 }
598 
599 static void
600 mt7530_mib_reset(struct dsa_switch *ds)
601 {
602 	struct mt7530_priv *priv = ds->priv;
603 
604 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
605 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
606 }
607 
608 static int mt7530_phy_read(struct mt7530_priv *priv, int port, int regnum)
609 {
610 	return mdiobus_read_nested(priv->bus, port, regnum);
611 }
612 
613 static int mt7530_phy_write(struct mt7530_priv *priv, int port, int regnum,
614 			    u16 val)
615 {
616 	return mdiobus_write_nested(priv->bus, port, regnum, val);
617 }
618 
619 static int
620 mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad,
621 			int regnum)
622 {
623 	struct mii_bus *bus = priv->bus;
624 	struct mt7530_dummy_poll p;
625 	u32 reg, val;
626 	int ret;
627 
628 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
629 
630 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
631 
632 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
633 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
634 	if (ret < 0) {
635 		dev_err(priv->dev, "poll timeout\n");
636 		goto out;
637 	}
638 
639 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
640 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
641 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
642 
643 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
644 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
645 	if (ret < 0) {
646 		dev_err(priv->dev, "poll timeout\n");
647 		goto out;
648 	}
649 
650 	reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) |
651 	      MT7531_MDIO_DEV_ADDR(devad);
652 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
653 
654 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
655 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
656 	if (ret < 0) {
657 		dev_err(priv->dev, "poll timeout\n");
658 		goto out;
659 	}
660 
661 	ret = val & MT7531_MDIO_RW_DATA_MASK;
662 out:
663 	mutex_unlock(&bus->mdio_lock);
664 
665 	return ret;
666 }
667 
668 static int
669 mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad,
670 			 int regnum, u32 data)
671 {
672 	struct mii_bus *bus = priv->bus;
673 	struct mt7530_dummy_poll p;
674 	u32 val, reg;
675 	int ret;
676 
677 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
678 
679 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
680 
681 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
682 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
683 	if (ret < 0) {
684 		dev_err(priv->dev, "poll timeout\n");
685 		goto out;
686 	}
687 
688 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
689 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
690 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
691 
692 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
693 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
694 	if (ret < 0) {
695 		dev_err(priv->dev, "poll timeout\n");
696 		goto out;
697 	}
698 
699 	reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) |
700 	      MT7531_MDIO_DEV_ADDR(devad) | data;
701 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
702 
703 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
704 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
705 	if (ret < 0) {
706 		dev_err(priv->dev, "poll timeout\n");
707 		goto out;
708 	}
709 
710 out:
711 	mutex_unlock(&bus->mdio_lock);
712 
713 	return ret;
714 }
715 
716 static int
717 mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum)
718 {
719 	struct mii_bus *bus = priv->bus;
720 	struct mt7530_dummy_poll p;
721 	int ret;
722 	u32 val;
723 
724 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
725 
726 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
727 
728 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
729 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
730 	if (ret < 0) {
731 		dev_err(priv->dev, "poll timeout\n");
732 		goto out;
733 	}
734 
735 	val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) |
736 	      MT7531_MDIO_REG_ADDR(regnum);
737 
738 	mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST);
739 
740 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
741 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
742 	if (ret < 0) {
743 		dev_err(priv->dev, "poll timeout\n");
744 		goto out;
745 	}
746 
747 	ret = val & MT7531_MDIO_RW_DATA_MASK;
748 out:
749 	mutex_unlock(&bus->mdio_lock);
750 
751 	return ret;
752 }
753 
754 static int
755 mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum,
756 			 u16 data)
757 {
758 	struct mii_bus *bus = priv->bus;
759 	struct mt7530_dummy_poll p;
760 	int ret;
761 	u32 reg;
762 
763 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
764 
765 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
766 
767 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
768 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
769 	if (ret < 0) {
770 		dev_err(priv->dev, "poll timeout\n");
771 		goto out;
772 	}
773 
774 	reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) |
775 	      MT7531_MDIO_REG_ADDR(regnum) | data;
776 
777 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
778 
779 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
780 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
781 	if (ret < 0) {
782 		dev_err(priv->dev, "poll timeout\n");
783 		goto out;
784 	}
785 
786 out:
787 	mutex_unlock(&bus->mdio_lock);
788 
789 	return ret;
790 }
791 
792 static int
793 mt7531_ind_phy_read(struct mt7530_priv *priv, int port, int regnum)
794 {
795 	int devad;
796 	int ret;
797 
798 	if (regnum & MII_ADDR_C45) {
799 		devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f;
800 		ret = mt7531_ind_c45_phy_read(priv, port, devad,
801 					      regnum & MII_REGADDR_C45_MASK);
802 	} else {
803 		ret = mt7531_ind_c22_phy_read(priv, port, regnum);
804 	}
805 
806 	return ret;
807 }
808 
809 static int
810 mt7531_ind_phy_write(struct mt7530_priv *priv, int port, int regnum,
811 		     u16 data)
812 {
813 	int devad;
814 	int ret;
815 
816 	if (regnum & MII_ADDR_C45) {
817 		devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f;
818 		ret = mt7531_ind_c45_phy_write(priv, port, devad,
819 					       regnum & MII_REGADDR_C45_MASK,
820 					       data);
821 	} else {
822 		ret = mt7531_ind_c22_phy_write(priv, port, regnum, data);
823 	}
824 
825 	return ret;
826 }
827 
828 static int
829 mt753x_phy_read(struct mii_bus *bus, int port, int regnum)
830 {
831 	struct mt7530_priv *priv = bus->priv;
832 
833 	return priv->info->phy_read(priv, port, regnum);
834 }
835 
836 static int
837 mt753x_phy_write(struct mii_bus *bus, int port, int regnum, u16 val)
838 {
839 	struct mt7530_priv *priv = bus->priv;
840 
841 	return priv->info->phy_write(priv, port, regnum, val);
842 }
843 
844 static void
845 mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
846 		   uint8_t *data)
847 {
848 	int i;
849 
850 	if (stringset != ETH_SS_STATS)
851 		return;
852 
853 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
854 		strncpy(data + i * ETH_GSTRING_LEN, mt7530_mib[i].name,
855 			ETH_GSTRING_LEN);
856 }
857 
858 static void
859 mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
860 			 uint64_t *data)
861 {
862 	struct mt7530_priv *priv = ds->priv;
863 	const struct mt7530_mib_desc *mib;
864 	u32 reg, i;
865 	u64 hi;
866 
867 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
868 		mib = &mt7530_mib[i];
869 		reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
870 
871 		data[i] = mt7530_read(priv, reg);
872 		if (mib->size == 2) {
873 			hi = mt7530_read(priv, reg + 4);
874 			data[i] |= hi << 32;
875 		}
876 	}
877 }
878 
879 static int
880 mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
881 {
882 	if (sset != ETH_SS_STATS)
883 		return 0;
884 
885 	return ARRAY_SIZE(mt7530_mib);
886 }
887 
888 static int
889 mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
890 {
891 	struct mt7530_priv *priv = ds->priv;
892 	unsigned int secs = msecs / 1000;
893 	unsigned int tmp_age_count;
894 	unsigned int error = -1;
895 	unsigned int age_count;
896 	unsigned int age_unit;
897 
898 	/* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */
899 	if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1))
900 		return -ERANGE;
901 
902 	/* iterate through all possible age_count to find the closest pair */
903 	for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) {
904 		unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1;
905 
906 		if (tmp_age_unit <= AGE_UNIT_MAX) {
907 			unsigned int tmp_error = secs -
908 				(tmp_age_count + 1) * (tmp_age_unit + 1);
909 
910 			/* found a closer pair */
911 			if (error > tmp_error) {
912 				error = tmp_error;
913 				age_count = tmp_age_count;
914 				age_unit = tmp_age_unit;
915 			}
916 
917 			/* found the exact match, so break the loop */
918 			if (!error)
919 				break;
920 		}
921 	}
922 
923 	mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit));
924 
925 	return 0;
926 }
927 
928 static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface)
929 {
930 	struct mt7530_priv *priv = ds->priv;
931 	u8 tx_delay = 0;
932 	int val;
933 
934 	mutex_lock(&priv->reg_mutex);
935 
936 	val = mt7530_read(priv, MT7530_MHWTRAP);
937 
938 	val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS;
939 	val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL;
940 
941 	switch (priv->p5_intf_sel) {
942 	case P5_INTF_SEL_PHY_P0:
943 		/* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */
944 		val |= MHWTRAP_PHY0_SEL;
945 		fallthrough;
946 	case P5_INTF_SEL_PHY_P4:
947 		/* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */
948 		val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS;
949 
950 		/* Setup the MAC by default for the cpu port */
951 		mt7530_write(priv, MT7530_PMCR_P(5), 0x56300);
952 		break;
953 	case P5_INTF_SEL_GMAC5:
954 		/* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */
955 		val &= ~MHWTRAP_P5_DIS;
956 		break;
957 	case P5_DISABLED:
958 		interface = PHY_INTERFACE_MODE_NA;
959 		break;
960 	default:
961 		dev_err(ds->dev, "Unsupported p5_intf_sel %d\n",
962 			priv->p5_intf_sel);
963 		goto unlock_exit;
964 	}
965 
966 	/* Setup RGMII settings */
967 	if (phy_interface_mode_is_rgmii(interface)) {
968 		val |= MHWTRAP_P5_RGMII_MODE;
969 
970 		/* P5 RGMII RX Clock Control: delay setting for 1000M */
971 		mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN);
972 
973 		/* Don't set delay in DSA mode */
974 		if (!dsa_is_dsa_port(priv->ds, 5) &&
975 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID ||
976 		     interface == PHY_INTERFACE_MODE_RGMII_ID))
977 			tx_delay = 4; /* n * 0.5 ns */
978 
979 		/* P5 RGMII TX Clock Control: delay x */
980 		mt7530_write(priv, MT7530_P5RGMIITXCR,
981 			     CSR_RGMII_TXC_CFG(0x10 + tx_delay));
982 
983 		/* reduce P5 RGMII Tx driving, 8mA */
984 		mt7530_write(priv, MT7530_IO_DRV_CR,
985 			     P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1));
986 	}
987 
988 	mt7530_write(priv, MT7530_MHWTRAP, val);
989 
990 	dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n",
991 		val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface));
992 
993 	priv->p5_interface = interface;
994 
995 unlock_exit:
996 	mutex_unlock(&priv->reg_mutex);
997 }
998 
999 static int
1000 mt753x_cpu_port_enable(struct dsa_switch *ds, int port)
1001 {
1002 	struct mt7530_priv *priv = ds->priv;
1003 	int ret;
1004 
1005 	/* Setup max capability of CPU port at first */
1006 	if (priv->info->cpu_port_config) {
1007 		ret = priv->info->cpu_port_config(ds, port);
1008 		if (ret)
1009 			return ret;
1010 	}
1011 
1012 	/* Enable Mediatek header mode on the cpu port */
1013 	mt7530_write(priv, MT7530_PVC_P(port),
1014 		     PORT_SPEC_TAG);
1015 
1016 	/* Disable flooding by default */
1017 	mt7530_rmw(priv, MT7530_MFC, BC_FFP_MASK | UNM_FFP_MASK | UNU_FFP_MASK,
1018 		   BC_FFP(BIT(port)) | UNM_FFP(BIT(port)) | UNU_FFP(BIT(port)));
1019 
1020 	/* Set CPU port number */
1021 	if (priv->id == ID_MT7621)
1022 		mt7530_rmw(priv, MT7530_MFC, CPU_MASK, CPU_EN | CPU_PORT(port));
1023 
1024 	/* CPU port gets connected to all user ports of
1025 	 * the switch.
1026 	 */
1027 	mt7530_write(priv, MT7530_PCR_P(port),
1028 		     PCR_MATRIX(dsa_user_ports(priv->ds)));
1029 
1030 	/* Set to fallback mode for independent VLAN learning */
1031 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1032 		   MT7530_PORT_FALLBACK_MODE);
1033 
1034 	return 0;
1035 }
1036 
1037 static int
1038 mt7530_port_enable(struct dsa_switch *ds, int port,
1039 		   struct phy_device *phy)
1040 {
1041 	struct dsa_port *dp = dsa_to_port(ds, port);
1042 	struct mt7530_priv *priv = ds->priv;
1043 
1044 	mutex_lock(&priv->reg_mutex);
1045 
1046 	/* Allow the user port gets connected to the cpu port and also
1047 	 * restore the port matrix if the port is the member of a certain
1048 	 * bridge.
1049 	 */
1050 	if (dsa_port_is_user(dp)) {
1051 		struct dsa_port *cpu_dp = dp->cpu_dp;
1052 
1053 		priv->ports[port].pm |= PCR_MATRIX(BIT(cpu_dp->index));
1054 	}
1055 	priv->ports[port].enable = true;
1056 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1057 		   priv->ports[port].pm);
1058 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1059 
1060 	mutex_unlock(&priv->reg_mutex);
1061 
1062 	return 0;
1063 }
1064 
1065 static void
1066 mt7530_port_disable(struct dsa_switch *ds, int port)
1067 {
1068 	struct mt7530_priv *priv = ds->priv;
1069 
1070 	mutex_lock(&priv->reg_mutex);
1071 
1072 	/* Clear up all port matrix which could be restored in the next
1073 	 * enablement for the port.
1074 	 */
1075 	priv->ports[port].enable = false;
1076 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1077 		   PCR_MATRIX_CLR);
1078 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1079 
1080 	mutex_unlock(&priv->reg_mutex);
1081 }
1082 
1083 static int
1084 mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1085 {
1086 	struct mt7530_priv *priv = ds->priv;
1087 	struct mii_bus *bus = priv->bus;
1088 	int length;
1089 	u32 val;
1090 
1091 	/* When a new MTU is set, DSA always set the CPU port's MTU to the
1092 	 * largest MTU of the slave ports. Because the switch only has a global
1093 	 * RX length register, only allowing CPU port here is enough.
1094 	 */
1095 	if (!dsa_is_cpu_port(ds, port))
1096 		return 0;
1097 
1098 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
1099 
1100 	val = mt7530_mii_read(priv, MT7530_GMACCR);
1101 	val &= ~MAX_RX_PKT_LEN_MASK;
1102 
1103 	/* RX length also includes Ethernet header, MTK tag, and FCS length */
1104 	length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN;
1105 	if (length <= 1522) {
1106 		val |= MAX_RX_PKT_LEN_1522;
1107 	} else if (length <= 1536) {
1108 		val |= MAX_RX_PKT_LEN_1536;
1109 	} else if (length <= 1552) {
1110 		val |= MAX_RX_PKT_LEN_1552;
1111 	} else {
1112 		val &= ~MAX_RX_JUMBO_MASK;
1113 		val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024));
1114 		val |= MAX_RX_PKT_LEN_JUMBO;
1115 	}
1116 
1117 	mt7530_mii_write(priv, MT7530_GMACCR, val);
1118 
1119 	mutex_unlock(&bus->mdio_lock);
1120 
1121 	return 0;
1122 }
1123 
1124 static int
1125 mt7530_port_max_mtu(struct dsa_switch *ds, int port)
1126 {
1127 	return MT7530_MAX_MTU;
1128 }
1129 
1130 static void
1131 mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1132 {
1133 	struct mt7530_priv *priv = ds->priv;
1134 	u32 stp_state;
1135 
1136 	switch (state) {
1137 	case BR_STATE_DISABLED:
1138 		stp_state = MT7530_STP_DISABLED;
1139 		break;
1140 	case BR_STATE_BLOCKING:
1141 		stp_state = MT7530_STP_BLOCKING;
1142 		break;
1143 	case BR_STATE_LISTENING:
1144 		stp_state = MT7530_STP_LISTENING;
1145 		break;
1146 	case BR_STATE_LEARNING:
1147 		stp_state = MT7530_STP_LEARNING;
1148 		break;
1149 	case BR_STATE_FORWARDING:
1150 	default:
1151 		stp_state = MT7530_STP_FORWARDING;
1152 		break;
1153 	}
1154 
1155 	mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK(FID_BRIDGED),
1156 		   FID_PST(FID_BRIDGED, stp_state));
1157 }
1158 
1159 static int
1160 mt7530_port_pre_bridge_flags(struct dsa_switch *ds, int port,
1161 			     struct switchdev_brport_flags flags,
1162 			     struct netlink_ext_ack *extack)
1163 {
1164 	if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
1165 			   BR_BCAST_FLOOD))
1166 		return -EINVAL;
1167 
1168 	return 0;
1169 }
1170 
1171 static int
1172 mt7530_port_bridge_flags(struct dsa_switch *ds, int port,
1173 			 struct switchdev_brport_flags flags,
1174 			 struct netlink_ext_ack *extack)
1175 {
1176 	struct mt7530_priv *priv = ds->priv;
1177 
1178 	if (flags.mask & BR_LEARNING)
1179 		mt7530_rmw(priv, MT7530_PSC_P(port), SA_DIS,
1180 			   flags.val & BR_LEARNING ? 0 : SA_DIS);
1181 
1182 	if (flags.mask & BR_FLOOD)
1183 		mt7530_rmw(priv, MT7530_MFC, UNU_FFP(BIT(port)),
1184 			   flags.val & BR_FLOOD ? UNU_FFP(BIT(port)) : 0);
1185 
1186 	if (flags.mask & BR_MCAST_FLOOD)
1187 		mt7530_rmw(priv, MT7530_MFC, UNM_FFP(BIT(port)),
1188 			   flags.val & BR_MCAST_FLOOD ? UNM_FFP(BIT(port)) : 0);
1189 
1190 	if (flags.mask & BR_BCAST_FLOOD)
1191 		mt7530_rmw(priv, MT7530_MFC, BC_FFP(BIT(port)),
1192 			   flags.val & BR_BCAST_FLOOD ? BC_FFP(BIT(port)) : 0);
1193 
1194 	return 0;
1195 }
1196 
1197 static int
1198 mt7530_port_bridge_join(struct dsa_switch *ds, int port,
1199 			struct dsa_bridge bridge, bool *tx_fwd_offload,
1200 			struct netlink_ext_ack *extack)
1201 {
1202 	struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1203 	struct dsa_port *cpu_dp = dp->cpu_dp;
1204 	u32 port_bitmap = BIT(cpu_dp->index);
1205 	struct mt7530_priv *priv = ds->priv;
1206 
1207 	mutex_lock(&priv->reg_mutex);
1208 
1209 	dsa_switch_for_each_user_port(other_dp, ds) {
1210 		int other_port = other_dp->index;
1211 
1212 		if (dp == other_dp)
1213 			continue;
1214 
1215 		/* Add this port to the port matrix of the other ports in the
1216 		 * same bridge. If the port is disabled, port matrix is kept
1217 		 * and not being setup until the port becomes enabled.
1218 		 */
1219 		if (!dsa_port_offloads_bridge(other_dp, &bridge))
1220 			continue;
1221 
1222 		if (priv->ports[other_port].enable)
1223 			mt7530_set(priv, MT7530_PCR_P(other_port),
1224 				   PCR_MATRIX(BIT(port)));
1225 		priv->ports[other_port].pm |= PCR_MATRIX(BIT(port));
1226 
1227 		port_bitmap |= BIT(other_port);
1228 	}
1229 
1230 	/* Add the all other ports to this port matrix. */
1231 	if (priv->ports[port].enable)
1232 		mt7530_rmw(priv, MT7530_PCR_P(port),
1233 			   PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
1234 	priv->ports[port].pm |= PCR_MATRIX(port_bitmap);
1235 
1236 	/* Set to fallback mode for independent VLAN learning */
1237 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1238 		   MT7530_PORT_FALLBACK_MODE);
1239 
1240 	mutex_unlock(&priv->reg_mutex);
1241 
1242 	return 0;
1243 }
1244 
1245 static void
1246 mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
1247 {
1248 	struct mt7530_priv *priv = ds->priv;
1249 	bool all_user_ports_removed = true;
1250 	int i;
1251 
1252 	/* This is called after .port_bridge_leave when leaving a VLAN-aware
1253 	 * bridge. Don't set standalone ports to fallback mode.
1254 	 */
1255 	if (dsa_port_bridge_dev_get(dsa_to_port(ds, port)))
1256 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1257 			   MT7530_PORT_FALLBACK_MODE);
1258 
1259 	mt7530_rmw(priv, MT7530_PVC_P(port),
1260 		   VLAN_ATTR_MASK | PVC_EG_TAG_MASK | ACC_FRM_MASK,
1261 		   VLAN_ATTR(MT7530_VLAN_TRANSPARENT) |
1262 		   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT) |
1263 		   MT7530_VLAN_ACC_ALL);
1264 
1265 	/* Set PVID to 0 */
1266 	mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1267 		   G0_PORT_VID_DEF);
1268 
1269 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1270 		if (dsa_is_user_port(ds, i) &&
1271 		    dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
1272 			all_user_ports_removed = false;
1273 			break;
1274 		}
1275 	}
1276 
1277 	/* CPU port also does the same thing until all user ports belonging to
1278 	 * the CPU port get out of VLAN filtering mode.
1279 	 */
1280 	if (all_user_ports_removed) {
1281 		struct dsa_port *dp = dsa_to_port(ds, port);
1282 		struct dsa_port *cpu_dp = dp->cpu_dp;
1283 
1284 		mt7530_write(priv, MT7530_PCR_P(cpu_dp->index),
1285 			     PCR_MATRIX(dsa_user_ports(priv->ds)));
1286 		mt7530_write(priv, MT7530_PVC_P(cpu_dp->index), PORT_SPEC_TAG
1287 			     | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1288 	}
1289 }
1290 
1291 static void
1292 mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
1293 {
1294 	struct mt7530_priv *priv = ds->priv;
1295 
1296 	/* Trapped into security mode allows packet forwarding through VLAN
1297 	 * table lookup.
1298 	 */
1299 	if (dsa_is_user_port(ds, port)) {
1300 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1301 			   MT7530_PORT_SECURITY_MODE);
1302 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1303 			   G0_PORT_VID(priv->ports[port].pvid));
1304 
1305 		/* Only accept tagged frames if PVID is not set */
1306 		if (!priv->ports[port].pvid)
1307 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1308 				   MT7530_VLAN_ACC_TAGGED);
1309 	}
1310 
1311 	/* Set the port as a user port which is to be able to recognize VID
1312 	 * from incoming packets before fetching entry within the VLAN table.
1313 	 */
1314 	mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
1315 		   VLAN_ATTR(MT7530_VLAN_USER) |
1316 		   PVC_EG_TAG(MT7530_VLAN_EG_DISABLED));
1317 }
1318 
1319 static void
1320 mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
1321 			 struct dsa_bridge bridge)
1322 {
1323 	struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1324 	struct dsa_port *cpu_dp = dp->cpu_dp;
1325 	struct mt7530_priv *priv = ds->priv;
1326 
1327 	mutex_lock(&priv->reg_mutex);
1328 
1329 	dsa_switch_for_each_user_port(other_dp, ds) {
1330 		int other_port = other_dp->index;
1331 
1332 		if (dp == other_dp)
1333 			continue;
1334 
1335 		/* Remove this port from the port matrix of the other ports
1336 		 * in the same bridge. If the port is disabled, port matrix
1337 		 * is kept and not being setup until the port becomes enabled.
1338 		 */
1339 		if (!dsa_port_offloads_bridge(other_dp, &bridge))
1340 			continue;
1341 
1342 		if (priv->ports[other_port].enable)
1343 			mt7530_clear(priv, MT7530_PCR_P(other_port),
1344 				     PCR_MATRIX(BIT(port)));
1345 		priv->ports[other_port].pm &= ~PCR_MATRIX(BIT(port));
1346 	}
1347 
1348 	/* Set the cpu port to be the only one in the port matrix of
1349 	 * this port.
1350 	 */
1351 	if (priv->ports[port].enable)
1352 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1353 			   PCR_MATRIX(BIT(cpu_dp->index)));
1354 	priv->ports[port].pm = PCR_MATRIX(BIT(cpu_dp->index));
1355 
1356 	/* When a port is removed from the bridge, the port would be set up
1357 	 * back to the default as is at initial boot which is a VLAN-unaware
1358 	 * port.
1359 	 */
1360 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1361 		   MT7530_PORT_MATRIX_MODE);
1362 
1363 	mutex_unlock(&priv->reg_mutex);
1364 }
1365 
1366 static int
1367 mt7530_port_fdb_add(struct dsa_switch *ds, int port,
1368 		    const unsigned char *addr, u16 vid,
1369 		    struct dsa_db db)
1370 {
1371 	struct mt7530_priv *priv = ds->priv;
1372 	int ret;
1373 	u8 port_mask = BIT(port);
1374 
1375 	mutex_lock(&priv->reg_mutex);
1376 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1377 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1378 	mutex_unlock(&priv->reg_mutex);
1379 
1380 	return ret;
1381 }
1382 
1383 static int
1384 mt7530_port_fdb_del(struct dsa_switch *ds, int port,
1385 		    const unsigned char *addr, u16 vid,
1386 		    struct dsa_db db)
1387 {
1388 	struct mt7530_priv *priv = ds->priv;
1389 	int ret;
1390 	u8 port_mask = BIT(port);
1391 
1392 	mutex_lock(&priv->reg_mutex);
1393 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
1394 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1395 	mutex_unlock(&priv->reg_mutex);
1396 
1397 	return ret;
1398 }
1399 
1400 static int
1401 mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
1402 		     dsa_fdb_dump_cb_t *cb, void *data)
1403 {
1404 	struct mt7530_priv *priv = ds->priv;
1405 	struct mt7530_fdb _fdb = { 0 };
1406 	int cnt = MT7530_NUM_FDB_RECORDS;
1407 	int ret = 0;
1408 	u32 rsp = 0;
1409 
1410 	mutex_lock(&priv->reg_mutex);
1411 
1412 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
1413 	if (ret < 0)
1414 		goto err;
1415 
1416 	do {
1417 		if (rsp & ATC_SRCH_HIT) {
1418 			mt7530_fdb_read(priv, &_fdb);
1419 			if (_fdb.port_mask & BIT(port)) {
1420 				ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
1421 					 data);
1422 				if (ret < 0)
1423 					break;
1424 			}
1425 		}
1426 	} while (--cnt &&
1427 		 !(rsp & ATC_SRCH_END) &&
1428 		 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
1429 err:
1430 	mutex_unlock(&priv->reg_mutex);
1431 
1432 	return 0;
1433 }
1434 
1435 static int
1436 mt7530_port_mdb_add(struct dsa_switch *ds, int port,
1437 		    const struct switchdev_obj_port_mdb *mdb,
1438 		    struct dsa_db db)
1439 {
1440 	struct mt7530_priv *priv = ds->priv;
1441 	const u8 *addr = mdb->addr;
1442 	u16 vid = mdb->vid;
1443 	u8 port_mask = 0;
1444 	int ret;
1445 
1446 	mutex_lock(&priv->reg_mutex);
1447 
1448 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1449 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1450 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1451 			    & PORT_MAP_MASK;
1452 
1453 	port_mask |= BIT(port);
1454 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1455 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1456 
1457 	mutex_unlock(&priv->reg_mutex);
1458 
1459 	return ret;
1460 }
1461 
1462 static int
1463 mt7530_port_mdb_del(struct dsa_switch *ds, int port,
1464 		    const struct switchdev_obj_port_mdb *mdb,
1465 		    struct dsa_db db)
1466 {
1467 	struct mt7530_priv *priv = ds->priv;
1468 	const u8 *addr = mdb->addr;
1469 	u16 vid = mdb->vid;
1470 	u8 port_mask = 0;
1471 	int ret;
1472 
1473 	mutex_lock(&priv->reg_mutex);
1474 
1475 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1476 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1477 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1478 			    & PORT_MAP_MASK;
1479 
1480 	port_mask &= ~BIT(port);
1481 	mt7530_fdb_write(priv, vid, port_mask, addr, -1,
1482 			 port_mask ? STATIC_ENT : STATIC_EMP);
1483 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1484 
1485 	mutex_unlock(&priv->reg_mutex);
1486 
1487 	return ret;
1488 }
1489 
1490 static int
1491 mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
1492 {
1493 	struct mt7530_dummy_poll p;
1494 	u32 val;
1495 	int ret;
1496 
1497 	val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
1498 	mt7530_write(priv, MT7530_VTCR, val);
1499 
1500 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
1501 	ret = readx_poll_timeout(_mt7530_read, &p, val,
1502 				 !(val & VTCR_BUSY), 20, 20000);
1503 	if (ret < 0) {
1504 		dev_err(priv->dev, "poll timeout\n");
1505 		return ret;
1506 	}
1507 
1508 	val = mt7530_read(priv, MT7530_VTCR);
1509 	if (val & VTCR_INVALID) {
1510 		dev_err(priv->dev, "read VTCR invalid\n");
1511 		return -EINVAL;
1512 	}
1513 
1514 	return 0;
1515 }
1516 
1517 static int
1518 mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering,
1519 			   struct netlink_ext_ack *extack)
1520 {
1521 	struct dsa_port *dp = dsa_to_port(ds, port);
1522 	struct dsa_port *cpu_dp = dp->cpu_dp;
1523 
1524 	if (vlan_filtering) {
1525 		/* The port is being kept as VLAN-unaware port when bridge is
1526 		 * set up with vlan_filtering not being set, Otherwise, the
1527 		 * port and the corresponding CPU port is required the setup
1528 		 * for becoming a VLAN-aware port.
1529 		 */
1530 		mt7530_port_set_vlan_aware(ds, port);
1531 		mt7530_port_set_vlan_aware(ds, cpu_dp->index);
1532 	} else {
1533 		mt7530_port_set_vlan_unaware(ds, port);
1534 	}
1535 
1536 	return 0;
1537 }
1538 
1539 static void
1540 mt7530_hw_vlan_add(struct mt7530_priv *priv,
1541 		   struct mt7530_hw_vlan_entry *entry)
1542 {
1543 	struct dsa_port *dp = dsa_to_port(priv->ds, entry->port);
1544 	u8 new_members;
1545 	u32 val;
1546 
1547 	new_members = entry->old_members | BIT(entry->port);
1548 
1549 	/* Validate the entry with independent learning, create egress tag per
1550 	 * VLAN and joining the port as one of the port members.
1551 	 */
1552 	val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | FID(FID_BRIDGED) |
1553 	      VLAN_VALID;
1554 	mt7530_write(priv, MT7530_VAWD1, val);
1555 
1556 	/* Decide whether adding tag or not for those outgoing packets from the
1557 	 * port inside the VLAN.
1558 	 * CPU port is always taken as a tagged port for serving more than one
1559 	 * VLANs across and also being applied with egress type stack mode for
1560 	 * that VLAN tags would be appended after hardware special tag used as
1561 	 * DSA tag.
1562 	 */
1563 	if (dsa_port_is_cpu(dp))
1564 		val = MT7530_VLAN_EGRESS_STACK;
1565 	else if (entry->untagged)
1566 		val = MT7530_VLAN_EGRESS_UNTAG;
1567 	else
1568 		val = MT7530_VLAN_EGRESS_TAG;
1569 	mt7530_rmw(priv, MT7530_VAWD2,
1570 		   ETAG_CTRL_P_MASK(entry->port),
1571 		   ETAG_CTRL_P(entry->port, val));
1572 }
1573 
1574 static void
1575 mt7530_hw_vlan_del(struct mt7530_priv *priv,
1576 		   struct mt7530_hw_vlan_entry *entry)
1577 {
1578 	u8 new_members;
1579 	u32 val;
1580 
1581 	new_members = entry->old_members & ~BIT(entry->port);
1582 
1583 	val = mt7530_read(priv, MT7530_VAWD1);
1584 	if (!(val & VLAN_VALID)) {
1585 		dev_err(priv->dev,
1586 			"Cannot be deleted due to invalid entry\n");
1587 		return;
1588 	}
1589 
1590 	if (new_members) {
1591 		val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
1592 		      VLAN_VALID;
1593 		mt7530_write(priv, MT7530_VAWD1, val);
1594 	} else {
1595 		mt7530_write(priv, MT7530_VAWD1, 0);
1596 		mt7530_write(priv, MT7530_VAWD2, 0);
1597 	}
1598 }
1599 
1600 static void
1601 mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
1602 		      struct mt7530_hw_vlan_entry *entry,
1603 		      mt7530_vlan_op vlan_op)
1604 {
1605 	u32 val;
1606 
1607 	/* Fetch entry */
1608 	mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
1609 
1610 	val = mt7530_read(priv, MT7530_VAWD1);
1611 
1612 	entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
1613 
1614 	/* Manipulate entry */
1615 	vlan_op(priv, entry);
1616 
1617 	/* Flush result to hardware */
1618 	mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
1619 }
1620 
1621 static int
1622 mt7530_setup_vlan0(struct mt7530_priv *priv)
1623 {
1624 	u32 val;
1625 
1626 	/* Validate the entry with independent learning, keep the original
1627 	 * ingress tag attribute.
1628 	 */
1629 	val = IVL_MAC | EG_CON | PORT_MEM(MT7530_ALL_MEMBERS) | FID(FID_BRIDGED) |
1630 	      VLAN_VALID;
1631 	mt7530_write(priv, MT7530_VAWD1, val);
1632 
1633 	return mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, 0);
1634 }
1635 
1636 static int
1637 mt7530_port_vlan_add(struct dsa_switch *ds, int port,
1638 		     const struct switchdev_obj_port_vlan *vlan,
1639 		     struct netlink_ext_ack *extack)
1640 {
1641 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1642 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1643 	struct mt7530_hw_vlan_entry new_entry;
1644 	struct mt7530_priv *priv = ds->priv;
1645 
1646 	mutex_lock(&priv->reg_mutex);
1647 
1648 	mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
1649 	mt7530_hw_vlan_update(priv, vlan->vid, &new_entry, mt7530_hw_vlan_add);
1650 
1651 	if (pvid) {
1652 		priv->ports[port].pvid = vlan->vid;
1653 
1654 		/* Accept all frames if PVID is set */
1655 		mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1656 			   MT7530_VLAN_ACC_ALL);
1657 
1658 		/* Only configure PVID if VLAN filtering is enabled */
1659 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1660 			mt7530_rmw(priv, MT7530_PPBV1_P(port),
1661 				   G0_PORT_VID_MASK,
1662 				   G0_PORT_VID(vlan->vid));
1663 	} else if (vlan->vid && priv->ports[port].pvid == vlan->vid) {
1664 		/* This VLAN is overwritten without PVID, so unset it */
1665 		priv->ports[port].pvid = G0_PORT_VID_DEF;
1666 
1667 		/* Only accept tagged frames if the port is VLAN-aware */
1668 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1669 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1670 				   MT7530_VLAN_ACC_TAGGED);
1671 
1672 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1673 			   G0_PORT_VID_DEF);
1674 	}
1675 
1676 	mutex_unlock(&priv->reg_mutex);
1677 
1678 	return 0;
1679 }
1680 
1681 static int
1682 mt7530_port_vlan_del(struct dsa_switch *ds, int port,
1683 		     const struct switchdev_obj_port_vlan *vlan)
1684 {
1685 	struct mt7530_hw_vlan_entry target_entry;
1686 	struct mt7530_priv *priv = ds->priv;
1687 
1688 	mutex_lock(&priv->reg_mutex);
1689 
1690 	mt7530_hw_vlan_entry_init(&target_entry, port, 0);
1691 	mt7530_hw_vlan_update(priv, vlan->vid, &target_entry,
1692 			      mt7530_hw_vlan_del);
1693 
1694 	/* PVID is being restored to the default whenever the PVID port
1695 	 * is being removed from the VLAN.
1696 	 */
1697 	if (priv->ports[port].pvid == vlan->vid) {
1698 		priv->ports[port].pvid = G0_PORT_VID_DEF;
1699 
1700 		/* Only accept tagged frames if the port is VLAN-aware */
1701 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1702 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1703 				   MT7530_VLAN_ACC_TAGGED);
1704 
1705 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1706 			   G0_PORT_VID_DEF);
1707 	}
1708 
1709 
1710 	mutex_unlock(&priv->reg_mutex);
1711 
1712 	return 0;
1713 }
1714 
1715 static int mt753x_mirror_port_get(unsigned int id, u32 val)
1716 {
1717 	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_GET(val) :
1718 				   MIRROR_PORT(val);
1719 }
1720 
1721 static int mt753x_mirror_port_set(unsigned int id, u32 val)
1722 {
1723 	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_SET(val) :
1724 				   MIRROR_PORT(val);
1725 }
1726 
1727 static int mt753x_port_mirror_add(struct dsa_switch *ds, int port,
1728 				  struct dsa_mall_mirror_tc_entry *mirror,
1729 				  bool ingress, struct netlink_ext_ack *extack)
1730 {
1731 	struct mt7530_priv *priv = ds->priv;
1732 	int monitor_port;
1733 	u32 val;
1734 
1735 	/* Check for existent entry */
1736 	if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port))
1737 		return -EEXIST;
1738 
1739 	val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1740 
1741 	/* MT7530 only supports one monitor port */
1742 	monitor_port = mt753x_mirror_port_get(priv->id, val);
1743 	if (val & MT753X_MIRROR_EN(priv->id) &&
1744 	    monitor_port != mirror->to_local_port)
1745 		return -EEXIST;
1746 
1747 	val |= MT753X_MIRROR_EN(priv->id);
1748 	val &= ~MT753X_MIRROR_MASK(priv->id);
1749 	val |= mt753x_mirror_port_set(priv->id, mirror->to_local_port);
1750 	mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1751 
1752 	val = mt7530_read(priv, MT7530_PCR_P(port));
1753 	if (ingress) {
1754 		val |= PORT_RX_MIR;
1755 		priv->mirror_rx |= BIT(port);
1756 	} else {
1757 		val |= PORT_TX_MIR;
1758 		priv->mirror_tx |= BIT(port);
1759 	}
1760 	mt7530_write(priv, MT7530_PCR_P(port), val);
1761 
1762 	return 0;
1763 }
1764 
1765 static void mt753x_port_mirror_del(struct dsa_switch *ds, int port,
1766 				   struct dsa_mall_mirror_tc_entry *mirror)
1767 {
1768 	struct mt7530_priv *priv = ds->priv;
1769 	u32 val;
1770 
1771 	val = mt7530_read(priv, MT7530_PCR_P(port));
1772 	if (mirror->ingress) {
1773 		val &= ~PORT_RX_MIR;
1774 		priv->mirror_rx &= ~BIT(port);
1775 	} else {
1776 		val &= ~PORT_TX_MIR;
1777 		priv->mirror_tx &= ~BIT(port);
1778 	}
1779 	mt7530_write(priv, MT7530_PCR_P(port), val);
1780 
1781 	if (!priv->mirror_rx && !priv->mirror_tx) {
1782 		val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1783 		val &= ~MT753X_MIRROR_EN(priv->id);
1784 		mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1785 	}
1786 }
1787 
1788 static enum dsa_tag_protocol
1789 mtk_get_tag_protocol(struct dsa_switch *ds, int port,
1790 		     enum dsa_tag_protocol mp)
1791 {
1792 	return DSA_TAG_PROTO_MTK;
1793 }
1794 
1795 #ifdef CONFIG_GPIOLIB
1796 static inline u32
1797 mt7530_gpio_to_bit(unsigned int offset)
1798 {
1799 	/* Map GPIO offset to register bit
1800 	 * [ 2: 0]  port 0 LED 0..2 as GPIO 0..2
1801 	 * [ 6: 4]  port 1 LED 0..2 as GPIO 3..5
1802 	 * [10: 8]  port 2 LED 0..2 as GPIO 6..8
1803 	 * [14:12]  port 3 LED 0..2 as GPIO 9..11
1804 	 * [18:16]  port 4 LED 0..2 as GPIO 12..14
1805 	 */
1806 	return BIT(offset + offset / 3);
1807 }
1808 
1809 static int
1810 mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset)
1811 {
1812 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1813 	u32 bit = mt7530_gpio_to_bit(offset);
1814 
1815 	return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit);
1816 }
1817 
1818 static void
1819 mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
1820 {
1821 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1822 	u32 bit = mt7530_gpio_to_bit(offset);
1823 
1824 	if (value)
1825 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1826 	else
1827 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1828 }
1829 
1830 static int
1831 mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
1832 {
1833 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1834 	u32 bit = mt7530_gpio_to_bit(offset);
1835 
1836 	return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ?
1837 		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1838 }
1839 
1840 static int
1841 mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
1842 {
1843 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1844 	u32 bit = mt7530_gpio_to_bit(offset);
1845 
1846 	mt7530_clear(priv, MT7530_LED_GPIO_OE, bit);
1847 	mt7530_clear(priv, MT7530_LED_GPIO_DIR, bit);
1848 
1849 	return 0;
1850 }
1851 
1852 static int
1853 mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value)
1854 {
1855 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1856 	u32 bit = mt7530_gpio_to_bit(offset);
1857 
1858 	mt7530_set(priv, MT7530_LED_GPIO_DIR, bit);
1859 
1860 	if (value)
1861 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1862 	else
1863 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1864 
1865 	mt7530_set(priv, MT7530_LED_GPIO_OE, bit);
1866 
1867 	return 0;
1868 }
1869 
1870 static int
1871 mt7530_setup_gpio(struct mt7530_priv *priv)
1872 {
1873 	struct device *dev = priv->dev;
1874 	struct gpio_chip *gc;
1875 
1876 	gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL);
1877 	if (!gc)
1878 		return -ENOMEM;
1879 
1880 	mt7530_write(priv, MT7530_LED_GPIO_OE, 0);
1881 	mt7530_write(priv, MT7530_LED_GPIO_DIR, 0);
1882 	mt7530_write(priv, MT7530_LED_IO_MODE, 0);
1883 
1884 	gc->label = "mt7530";
1885 	gc->parent = dev;
1886 	gc->owner = THIS_MODULE;
1887 	gc->get_direction = mt7530_gpio_get_direction;
1888 	gc->direction_input = mt7530_gpio_direction_input;
1889 	gc->direction_output = mt7530_gpio_direction_output;
1890 	gc->get = mt7530_gpio_get;
1891 	gc->set = mt7530_gpio_set;
1892 	gc->base = -1;
1893 	gc->ngpio = 15;
1894 	gc->can_sleep = true;
1895 
1896 	return devm_gpiochip_add_data(dev, gc, priv);
1897 }
1898 #endif /* CONFIG_GPIOLIB */
1899 
1900 static irqreturn_t
1901 mt7530_irq_thread_fn(int irq, void *dev_id)
1902 {
1903 	struct mt7530_priv *priv = dev_id;
1904 	bool handled = false;
1905 	u32 val;
1906 	int p;
1907 
1908 	mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
1909 	val = mt7530_mii_read(priv, MT7530_SYS_INT_STS);
1910 	mt7530_mii_write(priv, MT7530_SYS_INT_STS, val);
1911 	mutex_unlock(&priv->bus->mdio_lock);
1912 
1913 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
1914 		if (BIT(p) & val) {
1915 			unsigned int irq;
1916 
1917 			irq = irq_find_mapping(priv->irq_domain, p);
1918 			handle_nested_irq(irq);
1919 			handled = true;
1920 		}
1921 	}
1922 
1923 	return IRQ_RETVAL(handled);
1924 }
1925 
1926 static void
1927 mt7530_irq_mask(struct irq_data *d)
1928 {
1929 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1930 
1931 	priv->irq_enable &= ~BIT(d->hwirq);
1932 }
1933 
1934 static void
1935 mt7530_irq_unmask(struct irq_data *d)
1936 {
1937 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1938 
1939 	priv->irq_enable |= BIT(d->hwirq);
1940 }
1941 
1942 static void
1943 mt7530_irq_bus_lock(struct irq_data *d)
1944 {
1945 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1946 
1947 	mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
1948 }
1949 
1950 static void
1951 mt7530_irq_bus_sync_unlock(struct irq_data *d)
1952 {
1953 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1954 
1955 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
1956 	mutex_unlock(&priv->bus->mdio_lock);
1957 }
1958 
1959 static struct irq_chip mt7530_irq_chip = {
1960 	.name = KBUILD_MODNAME,
1961 	.irq_mask = mt7530_irq_mask,
1962 	.irq_unmask = mt7530_irq_unmask,
1963 	.irq_bus_lock = mt7530_irq_bus_lock,
1964 	.irq_bus_sync_unlock = mt7530_irq_bus_sync_unlock,
1965 };
1966 
1967 static int
1968 mt7530_irq_map(struct irq_domain *domain, unsigned int irq,
1969 	       irq_hw_number_t hwirq)
1970 {
1971 	irq_set_chip_data(irq, domain->host_data);
1972 	irq_set_chip_and_handler(irq, &mt7530_irq_chip, handle_simple_irq);
1973 	irq_set_nested_thread(irq, true);
1974 	irq_set_noprobe(irq);
1975 
1976 	return 0;
1977 }
1978 
1979 static const struct irq_domain_ops mt7530_irq_domain_ops = {
1980 	.map = mt7530_irq_map,
1981 	.xlate = irq_domain_xlate_onecell,
1982 };
1983 
1984 static void
1985 mt7530_setup_mdio_irq(struct mt7530_priv *priv)
1986 {
1987 	struct dsa_switch *ds = priv->ds;
1988 	int p;
1989 
1990 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
1991 		if (BIT(p) & ds->phys_mii_mask) {
1992 			unsigned int irq;
1993 
1994 			irq = irq_create_mapping(priv->irq_domain, p);
1995 			ds->slave_mii_bus->irq[p] = irq;
1996 		}
1997 	}
1998 }
1999 
2000 static int
2001 mt7530_setup_irq(struct mt7530_priv *priv)
2002 {
2003 	struct device *dev = priv->dev;
2004 	struct device_node *np = dev->of_node;
2005 	int ret;
2006 
2007 	if (!of_property_read_bool(np, "interrupt-controller")) {
2008 		dev_info(dev, "no interrupt support\n");
2009 		return 0;
2010 	}
2011 
2012 	priv->irq = of_irq_get(np, 0);
2013 	if (priv->irq <= 0) {
2014 		dev_err(dev, "failed to get parent IRQ: %d\n", priv->irq);
2015 		return priv->irq ? : -EINVAL;
2016 	}
2017 
2018 	priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2019 						 &mt7530_irq_domain_ops, priv);
2020 	if (!priv->irq_domain) {
2021 		dev_err(dev, "failed to create IRQ domain\n");
2022 		return -ENOMEM;
2023 	}
2024 
2025 	/* This register must be set for MT7530 to properly fire interrupts */
2026 	if (priv->id != ID_MT7531)
2027 		mt7530_set(priv, MT7530_TOP_SIG_CTRL, TOP_SIG_CTRL_NORMAL);
2028 
2029 	ret = request_threaded_irq(priv->irq, NULL, mt7530_irq_thread_fn,
2030 				   IRQF_ONESHOT, KBUILD_MODNAME, priv);
2031 	if (ret) {
2032 		irq_domain_remove(priv->irq_domain);
2033 		dev_err(dev, "failed to request IRQ: %d\n", ret);
2034 		return ret;
2035 	}
2036 
2037 	return 0;
2038 }
2039 
2040 static void
2041 mt7530_free_mdio_irq(struct mt7530_priv *priv)
2042 {
2043 	int p;
2044 
2045 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2046 		if (BIT(p) & priv->ds->phys_mii_mask) {
2047 			unsigned int irq;
2048 
2049 			irq = irq_find_mapping(priv->irq_domain, p);
2050 			irq_dispose_mapping(irq);
2051 		}
2052 	}
2053 }
2054 
2055 static void
2056 mt7530_free_irq_common(struct mt7530_priv *priv)
2057 {
2058 	free_irq(priv->irq, priv);
2059 	irq_domain_remove(priv->irq_domain);
2060 }
2061 
2062 static void
2063 mt7530_free_irq(struct mt7530_priv *priv)
2064 {
2065 	mt7530_free_mdio_irq(priv);
2066 	mt7530_free_irq_common(priv);
2067 }
2068 
2069 static int
2070 mt7530_setup_mdio(struct mt7530_priv *priv)
2071 {
2072 	struct dsa_switch *ds = priv->ds;
2073 	struct device *dev = priv->dev;
2074 	struct mii_bus *bus;
2075 	static int idx;
2076 	int ret;
2077 
2078 	bus = devm_mdiobus_alloc(dev);
2079 	if (!bus)
2080 		return -ENOMEM;
2081 
2082 	ds->slave_mii_bus = bus;
2083 	bus->priv = priv;
2084 	bus->name = KBUILD_MODNAME "-mii";
2085 	snprintf(bus->id, MII_BUS_ID_SIZE, KBUILD_MODNAME "-%d", idx++);
2086 	bus->read = mt753x_phy_read;
2087 	bus->write = mt753x_phy_write;
2088 	bus->parent = dev;
2089 	bus->phy_mask = ~ds->phys_mii_mask;
2090 
2091 	if (priv->irq)
2092 		mt7530_setup_mdio_irq(priv);
2093 
2094 	ret = devm_mdiobus_register(dev, bus);
2095 	if (ret) {
2096 		dev_err(dev, "failed to register MDIO bus: %d\n", ret);
2097 		if (priv->irq)
2098 			mt7530_free_mdio_irq(priv);
2099 	}
2100 
2101 	return ret;
2102 }
2103 
2104 static int
2105 mt7530_setup(struct dsa_switch *ds)
2106 {
2107 	struct mt7530_priv *priv = ds->priv;
2108 	struct device_node *dn = NULL;
2109 	struct device_node *phy_node;
2110 	struct device_node *mac_np;
2111 	struct mt7530_dummy_poll p;
2112 	phy_interface_t interface;
2113 	struct dsa_port *cpu_dp;
2114 	u32 id, val;
2115 	int ret, i;
2116 
2117 	/* The parent node of master netdev which holds the common system
2118 	 * controller also is the container for two GMACs nodes representing
2119 	 * as two netdev instances.
2120 	 */
2121 	dsa_switch_for_each_cpu_port(cpu_dp, ds) {
2122 		dn = cpu_dp->master->dev.of_node->parent;
2123 		/* It doesn't matter which CPU port is found first,
2124 		 * their masters should share the same parent OF node
2125 		 */
2126 		break;
2127 	}
2128 
2129 	if (!dn) {
2130 		dev_err(ds->dev, "parent OF node of DSA master not found");
2131 		return -EINVAL;
2132 	}
2133 
2134 	ds->assisted_learning_on_cpu_port = true;
2135 	ds->mtu_enforcement_ingress = true;
2136 
2137 	if (priv->id == ID_MT7530) {
2138 		regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
2139 		ret = regulator_enable(priv->core_pwr);
2140 		if (ret < 0) {
2141 			dev_err(priv->dev,
2142 				"Failed to enable core power: %d\n", ret);
2143 			return ret;
2144 		}
2145 
2146 		regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
2147 		ret = regulator_enable(priv->io_pwr);
2148 		if (ret < 0) {
2149 			dev_err(priv->dev, "Failed to enable io pwr: %d\n",
2150 				ret);
2151 			return ret;
2152 		}
2153 	}
2154 
2155 	/* Reset whole chip through gpio pin or memory-mapped registers for
2156 	 * different type of hardware
2157 	 */
2158 	if (priv->mcm) {
2159 		reset_control_assert(priv->rstc);
2160 		usleep_range(1000, 1100);
2161 		reset_control_deassert(priv->rstc);
2162 	} else {
2163 		gpiod_set_value_cansleep(priv->reset, 0);
2164 		usleep_range(1000, 1100);
2165 		gpiod_set_value_cansleep(priv->reset, 1);
2166 	}
2167 
2168 	/* Waiting for MT7530 got to stable */
2169 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2170 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2171 				 20, 1000000);
2172 	if (ret < 0) {
2173 		dev_err(priv->dev, "reset timeout\n");
2174 		return ret;
2175 	}
2176 
2177 	id = mt7530_read(priv, MT7530_CREV);
2178 	id >>= CHIP_NAME_SHIFT;
2179 	if (id != MT7530_ID) {
2180 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2181 		return -ENODEV;
2182 	}
2183 
2184 	/* Reset the switch through internal reset */
2185 	mt7530_write(priv, MT7530_SYS_CTRL,
2186 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2187 		     SYS_CTRL_REG_RST);
2188 
2189 	/* Enable Port 6 only; P5 as GMAC5 which currently is not supported */
2190 	val = mt7530_read(priv, MT7530_MHWTRAP);
2191 	val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
2192 	val |= MHWTRAP_MANUAL;
2193 	mt7530_write(priv, MT7530_MHWTRAP, val);
2194 
2195 	priv->p6_interface = PHY_INTERFACE_MODE_NA;
2196 
2197 	/* Enable and reset MIB counters */
2198 	mt7530_mib_reset(ds);
2199 
2200 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2201 		/* Disable forwarding by default on all ports */
2202 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2203 			   PCR_MATRIX_CLR);
2204 
2205 		/* Disable learning by default on all ports */
2206 		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2207 
2208 		if (dsa_is_cpu_port(ds, i)) {
2209 			ret = mt753x_cpu_port_enable(ds, i);
2210 			if (ret)
2211 				return ret;
2212 		} else {
2213 			mt7530_port_disable(ds, i);
2214 
2215 			/* Set default PVID to 0 on all user ports */
2216 			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2217 				   G0_PORT_VID_DEF);
2218 		}
2219 		/* Enable consistent egress tag */
2220 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2221 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2222 	}
2223 
2224 	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2225 	ret = mt7530_setup_vlan0(priv);
2226 	if (ret)
2227 		return ret;
2228 
2229 	/* Setup port 5 */
2230 	priv->p5_intf_sel = P5_DISABLED;
2231 	interface = PHY_INTERFACE_MODE_NA;
2232 
2233 	if (!dsa_is_unused_port(ds, 5)) {
2234 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2235 		ret = of_get_phy_mode(dsa_to_port(ds, 5)->dn, &interface);
2236 		if (ret && ret != -ENODEV)
2237 			return ret;
2238 	} else {
2239 		/* Scan the ethernet nodes. look for GMAC1, lookup used phy */
2240 		for_each_child_of_node(dn, mac_np) {
2241 			if (!of_device_is_compatible(mac_np,
2242 						     "mediatek,eth-mac"))
2243 				continue;
2244 
2245 			ret = of_property_read_u32(mac_np, "reg", &id);
2246 			if (ret < 0 || id != 1)
2247 				continue;
2248 
2249 			phy_node = of_parse_phandle(mac_np, "phy-handle", 0);
2250 			if (!phy_node)
2251 				continue;
2252 
2253 			if (phy_node->parent == priv->dev->of_node->parent) {
2254 				ret = of_get_phy_mode(mac_np, &interface);
2255 				if (ret && ret != -ENODEV) {
2256 					of_node_put(mac_np);
2257 					of_node_put(phy_node);
2258 					return ret;
2259 				}
2260 				id = of_mdio_parse_addr(ds->dev, phy_node);
2261 				if (id == 0)
2262 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P0;
2263 				if (id == 4)
2264 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P4;
2265 			}
2266 			of_node_put(mac_np);
2267 			of_node_put(phy_node);
2268 			break;
2269 		}
2270 	}
2271 
2272 #ifdef CONFIG_GPIOLIB
2273 	if (of_property_read_bool(priv->dev->of_node, "gpio-controller")) {
2274 		ret = mt7530_setup_gpio(priv);
2275 		if (ret)
2276 			return ret;
2277 	}
2278 #endif /* CONFIG_GPIOLIB */
2279 
2280 	mt7530_setup_port5(ds, interface);
2281 
2282 	/* Flush the FDB table */
2283 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2284 	if (ret < 0)
2285 		return ret;
2286 
2287 	return 0;
2288 }
2289 
2290 static int
2291 mt7531_setup(struct dsa_switch *ds)
2292 {
2293 	struct mt7530_priv *priv = ds->priv;
2294 	struct mt7530_dummy_poll p;
2295 	struct dsa_port *cpu_dp;
2296 	u32 val, id;
2297 	int ret, i;
2298 
2299 	/* Reset whole chip through gpio pin or memory-mapped registers for
2300 	 * different type of hardware
2301 	 */
2302 	if (priv->mcm) {
2303 		reset_control_assert(priv->rstc);
2304 		usleep_range(1000, 1100);
2305 		reset_control_deassert(priv->rstc);
2306 	} else {
2307 		gpiod_set_value_cansleep(priv->reset, 0);
2308 		usleep_range(1000, 1100);
2309 		gpiod_set_value_cansleep(priv->reset, 1);
2310 	}
2311 
2312 	/* Waiting for MT7530 got to stable */
2313 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2314 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2315 				 20, 1000000);
2316 	if (ret < 0) {
2317 		dev_err(priv->dev, "reset timeout\n");
2318 		return ret;
2319 	}
2320 
2321 	id = mt7530_read(priv, MT7531_CREV);
2322 	id >>= CHIP_NAME_SHIFT;
2323 
2324 	if (id != MT7531_ID) {
2325 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2326 		return -ENODEV;
2327 	}
2328 
2329 	/* Reset the switch through internal reset */
2330 	mt7530_write(priv, MT7530_SYS_CTRL,
2331 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2332 		     SYS_CTRL_REG_RST);
2333 
2334 	if (mt7531_dual_sgmii_supported(priv)) {
2335 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5_SGMII;
2336 
2337 		/* Let ds->slave_mii_bus be able to access external phy. */
2338 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK,
2339 			   MT7531_EXT_P_MDC_11);
2340 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK,
2341 			   MT7531_EXT_P_MDIO_12);
2342 	} else {
2343 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2344 	}
2345 	dev_dbg(ds->dev, "P5 support %s interface\n",
2346 		p5_intf_modes(priv->p5_intf_sel));
2347 
2348 	mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK,
2349 		   MT7531_GPIO0_INTERRUPT);
2350 
2351 	/* Let phylink decide the interface later. */
2352 	priv->p5_interface = PHY_INTERFACE_MODE_NA;
2353 	priv->p6_interface = PHY_INTERFACE_MODE_NA;
2354 
2355 	/* Enable PHY core PLL, since phy_device has not yet been created
2356 	 * provided for phy_[read,write]_mmd_indirect is called, we provide
2357 	 * our own mt7531_ind_mmd_phy_[read,write] to complete this
2358 	 * function.
2359 	 */
2360 	val = mt7531_ind_c45_phy_read(priv, MT753X_CTRL_PHY_ADDR,
2361 				      MDIO_MMD_VEND2, CORE_PLL_GROUP4);
2362 	val |= MT7531_PHY_PLL_BYPASS_MODE;
2363 	val &= ~MT7531_PHY_PLL_OFF;
2364 	mt7531_ind_c45_phy_write(priv, MT753X_CTRL_PHY_ADDR, MDIO_MMD_VEND2,
2365 				 CORE_PLL_GROUP4, val);
2366 
2367 	/* BPDU to CPU port */
2368 	dsa_switch_for_each_cpu_port(cpu_dp, ds) {
2369 		mt7530_rmw(priv, MT7531_CFC, MT7531_CPU_PMAP_MASK,
2370 			   BIT(cpu_dp->index));
2371 		break;
2372 	}
2373 	mt7530_rmw(priv, MT753X_BPC, MT753X_BPDU_PORT_FW_MASK,
2374 		   MT753X_BPDU_CPU_ONLY);
2375 
2376 	/* Enable and reset MIB counters */
2377 	mt7530_mib_reset(ds);
2378 
2379 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2380 		/* Disable forwarding by default on all ports */
2381 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2382 			   PCR_MATRIX_CLR);
2383 
2384 		/* Disable learning by default on all ports */
2385 		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2386 
2387 		mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR);
2388 
2389 		if (dsa_is_cpu_port(ds, i)) {
2390 			ret = mt753x_cpu_port_enable(ds, i);
2391 			if (ret)
2392 				return ret;
2393 		} else {
2394 			mt7530_port_disable(ds, i);
2395 
2396 			/* Set default PVID to 0 on all user ports */
2397 			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2398 				   G0_PORT_VID_DEF);
2399 		}
2400 
2401 		/* Enable consistent egress tag */
2402 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2403 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2404 	}
2405 
2406 	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2407 	ret = mt7530_setup_vlan0(priv);
2408 	if (ret)
2409 		return ret;
2410 
2411 	ds->assisted_learning_on_cpu_port = true;
2412 	ds->mtu_enforcement_ingress = true;
2413 
2414 	/* Flush the FDB table */
2415 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2416 	if (ret < 0)
2417 		return ret;
2418 
2419 	return 0;
2420 }
2421 
2422 static void mt7530_mac_port_get_caps(struct dsa_switch *ds, int port,
2423 				     struct phylink_config *config)
2424 {
2425 	switch (port) {
2426 	case 0 ... 4: /* Internal phy */
2427 		__set_bit(PHY_INTERFACE_MODE_GMII,
2428 			  config->supported_interfaces);
2429 		break;
2430 
2431 	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2432 		phy_interface_set_rgmii(config->supported_interfaces);
2433 		__set_bit(PHY_INTERFACE_MODE_MII,
2434 			  config->supported_interfaces);
2435 		__set_bit(PHY_INTERFACE_MODE_GMII,
2436 			  config->supported_interfaces);
2437 		break;
2438 
2439 	case 6: /* 1st cpu port */
2440 		__set_bit(PHY_INTERFACE_MODE_RGMII,
2441 			  config->supported_interfaces);
2442 		__set_bit(PHY_INTERFACE_MODE_TRGMII,
2443 			  config->supported_interfaces);
2444 		break;
2445 	}
2446 }
2447 
2448 static bool mt7531_is_rgmii_port(struct mt7530_priv *priv, u32 port)
2449 {
2450 	return (port == 5) && (priv->p5_intf_sel != P5_INTF_SEL_GMAC5_SGMII);
2451 }
2452 
2453 static void mt7531_mac_port_get_caps(struct dsa_switch *ds, int port,
2454 				     struct phylink_config *config)
2455 {
2456 	struct mt7530_priv *priv = ds->priv;
2457 
2458 	switch (port) {
2459 	case 0 ... 4: /* Internal phy */
2460 		__set_bit(PHY_INTERFACE_MODE_GMII,
2461 			  config->supported_interfaces);
2462 		break;
2463 
2464 	case 5: /* 2nd cpu port supports either rgmii or sgmii/8023z */
2465 		if (mt7531_is_rgmii_port(priv, port)) {
2466 			phy_interface_set_rgmii(config->supported_interfaces);
2467 			break;
2468 		}
2469 		fallthrough;
2470 
2471 	case 6: /* 1st cpu port supports sgmii/8023z only */
2472 		__set_bit(PHY_INTERFACE_MODE_SGMII,
2473 			  config->supported_interfaces);
2474 		__set_bit(PHY_INTERFACE_MODE_1000BASEX,
2475 			  config->supported_interfaces);
2476 		__set_bit(PHY_INTERFACE_MODE_2500BASEX,
2477 			  config->supported_interfaces);
2478 
2479 		config->mac_capabilities |= MAC_2500FD;
2480 		break;
2481 	}
2482 }
2483 
2484 static int
2485 mt753x_pad_setup(struct dsa_switch *ds, const struct phylink_link_state *state)
2486 {
2487 	struct mt7530_priv *priv = ds->priv;
2488 
2489 	return priv->info->pad_setup(ds, state->interface);
2490 }
2491 
2492 static int
2493 mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2494 		  phy_interface_t interface)
2495 {
2496 	struct mt7530_priv *priv = ds->priv;
2497 
2498 	/* Only need to setup port5. */
2499 	if (port != 5)
2500 		return 0;
2501 
2502 	mt7530_setup_port5(priv->ds, interface);
2503 
2504 	return 0;
2505 }
2506 
2507 static int mt7531_rgmii_setup(struct mt7530_priv *priv, u32 port,
2508 			      phy_interface_t interface,
2509 			      struct phy_device *phydev)
2510 {
2511 	u32 val;
2512 
2513 	if (!mt7531_is_rgmii_port(priv, port)) {
2514 		dev_err(priv->dev, "RGMII mode is not available for port %d\n",
2515 			port);
2516 		return -EINVAL;
2517 	}
2518 
2519 	val = mt7530_read(priv, MT7531_CLKGEN_CTRL);
2520 	val |= GP_CLK_EN;
2521 	val &= ~GP_MODE_MASK;
2522 	val |= GP_MODE(MT7531_GP_MODE_RGMII);
2523 	val &= ~CLK_SKEW_IN_MASK;
2524 	val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG);
2525 	val &= ~CLK_SKEW_OUT_MASK;
2526 	val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG);
2527 	val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY;
2528 
2529 	/* Do not adjust rgmii delay when vendor phy driver presents. */
2530 	if (!phydev || phy_driver_is_genphy(phydev)) {
2531 		val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY);
2532 		switch (interface) {
2533 		case PHY_INTERFACE_MODE_RGMII:
2534 			val |= TXCLK_NO_REVERSE;
2535 			val |= RXCLK_NO_DELAY;
2536 			break;
2537 		case PHY_INTERFACE_MODE_RGMII_RXID:
2538 			val |= TXCLK_NO_REVERSE;
2539 			break;
2540 		case PHY_INTERFACE_MODE_RGMII_TXID:
2541 			val |= RXCLK_NO_DELAY;
2542 			break;
2543 		case PHY_INTERFACE_MODE_RGMII_ID:
2544 			break;
2545 		default:
2546 			return -EINVAL;
2547 		}
2548 	}
2549 	mt7530_write(priv, MT7531_CLKGEN_CTRL, val);
2550 
2551 	return 0;
2552 }
2553 
2554 static void mt7531_pcs_link_up(struct phylink_pcs *pcs, unsigned int mode,
2555 			       phy_interface_t interface, int speed, int duplex)
2556 {
2557 	struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
2558 	int port = pcs_to_mt753x_pcs(pcs)->port;
2559 	unsigned int val;
2560 
2561 	/* For adjusting speed and duplex of SGMII force mode. */
2562 	if (interface != PHY_INTERFACE_MODE_SGMII ||
2563 	    phylink_autoneg_inband(mode))
2564 		return;
2565 
2566 	/* SGMII force mode setting */
2567 	val = mt7530_read(priv, MT7531_SGMII_MODE(port));
2568 	val &= ~MT7531_SGMII_IF_MODE_MASK;
2569 
2570 	switch (speed) {
2571 	case SPEED_10:
2572 		val |= MT7531_SGMII_FORCE_SPEED_10;
2573 		break;
2574 	case SPEED_100:
2575 		val |= MT7531_SGMII_FORCE_SPEED_100;
2576 		break;
2577 	case SPEED_1000:
2578 		val |= MT7531_SGMII_FORCE_SPEED_1000;
2579 		break;
2580 	}
2581 
2582 	/* MT7531 SGMII 1G force mode can only work in full duplex mode,
2583 	 * no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not.
2584 	 *
2585 	 * The speed check is unnecessary as the MAC capabilities apply
2586 	 * this restriction. --rmk
2587 	 */
2588 	if ((speed == SPEED_10 || speed == SPEED_100) &&
2589 	    duplex != DUPLEX_FULL)
2590 		val |= MT7531_SGMII_FORCE_HALF_DUPLEX;
2591 
2592 	mt7530_write(priv, MT7531_SGMII_MODE(port), val);
2593 }
2594 
2595 static bool mt753x_is_mac_port(u32 port)
2596 {
2597 	return (port == 5 || port == 6);
2598 }
2599 
2600 static int mt7531_sgmii_setup_mode_force(struct mt7530_priv *priv, u32 port,
2601 					 phy_interface_t interface)
2602 {
2603 	u32 val;
2604 
2605 	if (!mt753x_is_mac_port(port))
2606 		return -EINVAL;
2607 
2608 	mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port),
2609 		   MT7531_SGMII_PHYA_PWD);
2610 
2611 	val = mt7530_read(priv, MT7531_PHYA_CTRL_SIGNAL3(port));
2612 	val &= ~MT7531_RG_TPHY_SPEED_MASK;
2613 	/* Setup 2.5 times faster clock for 2.5Gbps data speeds with 10B/8B
2614 	 * encoding.
2615 	 */
2616 	val |= (interface == PHY_INTERFACE_MODE_2500BASEX) ?
2617 		MT7531_RG_TPHY_SPEED_3_125G : MT7531_RG_TPHY_SPEED_1_25G;
2618 	mt7530_write(priv, MT7531_PHYA_CTRL_SIGNAL3(port), val);
2619 
2620 	mt7530_clear(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE);
2621 
2622 	/* MT7531 SGMII 1G and 2.5G force mode can only work in full duplex
2623 	 * mode, no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not.
2624 	 */
2625 	mt7530_rmw(priv, MT7531_SGMII_MODE(port),
2626 		   MT7531_SGMII_IF_MODE_MASK | MT7531_SGMII_REMOTE_FAULT_DIS,
2627 		   MT7531_SGMII_FORCE_SPEED_1000);
2628 
2629 	mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0);
2630 
2631 	return 0;
2632 }
2633 
2634 static int mt7531_sgmii_setup_mode_an(struct mt7530_priv *priv, int port,
2635 				      phy_interface_t interface)
2636 {
2637 	if (!mt753x_is_mac_port(port))
2638 		return -EINVAL;
2639 
2640 	mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port),
2641 		   MT7531_SGMII_PHYA_PWD);
2642 
2643 	mt7530_rmw(priv, MT7531_PHYA_CTRL_SIGNAL3(port),
2644 		   MT7531_RG_TPHY_SPEED_MASK, MT7531_RG_TPHY_SPEED_1_25G);
2645 
2646 	mt7530_set(priv, MT7531_SGMII_MODE(port),
2647 		   MT7531_SGMII_REMOTE_FAULT_DIS |
2648 		   MT7531_SGMII_SPEED_DUPLEX_AN);
2649 
2650 	mt7530_rmw(priv, MT7531_PCS_SPEED_ABILITY(port),
2651 		   MT7531_SGMII_TX_CONFIG_MASK, 1);
2652 
2653 	mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE);
2654 
2655 	mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_RESTART);
2656 
2657 	mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0);
2658 
2659 	return 0;
2660 }
2661 
2662 static void mt7531_pcs_an_restart(struct phylink_pcs *pcs)
2663 {
2664 	struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
2665 	int port = pcs_to_mt753x_pcs(pcs)->port;
2666 	u32 val;
2667 
2668 	/* Only restart AN when AN is enabled */
2669 	val = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
2670 	if (val & MT7531_SGMII_AN_ENABLE) {
2671 		val |= MT7531_SGMII_AN_RESTART;
2672 		mt7530_write(priv, MT7531_PCS_CONTROL_1(port), val);
2673 	}
2674 }
2675 
2676 static int
2677 mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2678 		  phy_interface_t interface)
2679 {
2680 	struct mt7530_priv *priv = ds->priv;
2681 	struct phy_device *phydev;
2682 	struct dsa_port *dp;
2683 
2684 	if (!mt753x_is_mac_port(port)) {
2685 		dev_err(priv->dev, "port %d is not a MAC port\n", port);
2686 		return -EINVAL;
2687 	}
2688 
2689 	switch (interface) {
2690 	case PHY_INTERFACE_MODE_RGMII:
2691 	case PHY_INTERFACE_MODE_RGMII_ID:
2692 	case PHY_INTERFACE_MODE_RGMII_RXID:
2693 	case PHY_INTERFACE_MODE_RGMII_TXID:
2694 		dp = dsa_to_port(ds, port);
2695 		phydev = dp->slave->phydev;
2696 		return mt7531_rgmii_setup(priv, port, interface, phydev);
2697 	case PHY_INTERFACE_MODE_SGMII:
2698 		return mt7531_sgmii_setup_mode_an(priv, port, interface);
2699 	case PHY_INTERFACE_MODE_NA:
2700 	case PHY_INTERFACE_MODE_1000BASEX:
2701 	case PHY_INTERFACE_MODE_2500BASEX:
2702 		if (phylink_autoneg_inband(mode))
2703 			return -EINVAL;
2704 
2705 		return mt7531_sgmii_setup_mode_force(priv, port, interface);
2706 	default:
2707 		return -EINVAL;
2708 	}
2709 
2710 	return -EINVAL;
2711 }
2712 
2713 static int
2714 mt753x_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2715 		  const struct phylink_link_state *state)
2716 {
2717 	struct mt7530_priv *priv = ds->priv;
2718 
2719 	return priv->info->mac_port_config(ds, port, mode, state->interface);
2720 }
2721 
2722 static struct phylink_pcs *
2723 mt753x_phylink_mac_select_pcs(struct dsa_switch *ds, int port,
2724 			      phy_interface_t interface)
2725 {
2726 	struct mt7530_priv *priv = ds->priv;
2727 
2728 	switch (interface) {
2729 	case PHY_INTERFACE_MODE_TRGMII:
2730 	case PHY_INTERFACE_MODE_SGMII:
2731 	case PHY_INTERFACE_MODE_1000BASEX:
2732 	case PHY_INTERFACE_MODE_2500BASEX:
2733 		return &priv->pcs[port].pcs;
2734 
2735 	default:
2736 		return NULL;
2737 	}
2738 }
2739 
2740 static void
2741 mt753x_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2742 			  const struct phylink_link_state *state)
2743 {
2744 	struct mt7530_priv *priv = ds->priv;
2745 	u32 mcr_cur, mcr_new;
2746 
2747 	switch (port) {
2748 	case 0 ... 4: /* Internal phy */
2749 		if (state->interface != PHY_INTERFACE_MODE_GMII)
2750 			goto unsupported;
2751 		break;
2752 	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2753 		if (priv->p5_interface == state->interface)
2754 			break;
2755 
2756 		if (mt753x_mac_config(ds, port, mode, state) < 0)
2757 			goto unsupported;
2758 
2759 		if (priv->p5_intf_sel != P5_DISABLED)
2760 			priv->p5_interface = state->interface;
2761 		break;
2762 	case 6: /* 1st cpu port */
2763 		if (priv->p6_interface == state->interface)
2764 			break;
2765 
2766 		mt753x_pad_setup(ds, state);
2767 
2768 		if (mt753x_mac_config(ds, port, mode, state) < 0)
2769 			goto unsupported;
2770 
2771 		priv->p6_interface = state->interface;
2772 		break;
2773 	default:
2774 unsupported:
2775 		dev_err(ds->dev, "%s: unsupported %s port: %i\n",
2776 			__func__, phy_modes(state->interface), port);
2777 		return;
2778 	}
2779 
2780 	if (phylink_autoneg_inband(mode) &&
2781 	    state->interface != PHY_INTERFACE_MODE_SGMII) {
2782 		dev_err(ds->dev, "%s: in-band negotiation unsupported\n",
2783 			__func__);
2784 		return;
2785 	}
2786 
2787 	mcr_cur = mt7530_read(priv, MT7530_PMCR_P(port));
2788 	mcr_new = mcr_cur;
2789 	mcr_new &= ~PMCR_LINK_SETTINGS_MASK;
2790 	mcr_new |= PMCR_IFG_XMIT(1) | PMCR_MAC_MODE | PMCR_BACKOFF_EN |
2791 		   PMCR_BACKPR_EN | PMCR_FORCE_MODE_ID(priv->id);
2792 
2793 	/* Are we connected to external phy */
2794 	if (port == 5 && dsa_is_user_port(ds, 5))
2795 		mcr_new |= PMCR_EXT_PHY;
2796 
2797 	if (mcr_new != mcr_cur)
2798 		mt7530_write(priv, MT7530_PMCR_P(port), mcr_new);
2799 }
2800 
2801 static void mt753x_phylink_mac_link_down(struct dsa_switch *ds, int port,
2802 					 unsigned int mode,
2803 					 phy_interface_t interface)
2804 {
2805 	struct mt7530_priv *priv = ds->priv;
2806 
2807 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
2808 }
2809 
2810 static void mt753x_phylink_pcs_link_up(struct phylink_pcs *pcs,
2811 				       unsigned int mode,
2812 				       phy_interface_t interface,
2813 				       int speed, int duplex)
2814 {
2815 	if (pcs->ops->pcs_link_up)
2816 		pcs->ops->pcs_link_up(pcs, mode, interface, speed, duplex);
2817 }
2818 
2819 static void mt753x_phylink_mac_link_up(struct dsa_switch *ds, int port,
2820 				       unsigned int mode,
2821 				       phy_interface_t interface,
2822 				       struct phy_device *phydev,
2823 				       int speed, int duplex,
2824 				       bool tx_pause, bool rx_pause)
2825 {
2826 	struct mt7530_priv *priv = ds->priv;
2827 	u32 mcr;
2828 
2829 	mcr = PMCR_RX_EN | PMCR_TX_EN | PMCR_FORCE_LNK;
2830 
2831 	/* MT753x MAC works in 1G full duplex mode for all up-clocked
2832 	 * variants.
2833 	 */
2834 	if (interface == PHY_INTERFACE_MODE_TRGMII ||
2835 	    (phy_interface_mode_is_8023z(interface))) {
2836 		speed = SPEED_1000;
2837 		duplex = DUPLEX_FULL;
2838 	}
2839 
2840 	switch (speed) {
2841 	case SPEED_1000:
2842 		mcr |= PMCR_FORCE_SPEED_1000;
2843 		break;
2844 	case SPEED_100:
2845 		mcr |= PMCR_FORCE_SPEED_100;
2846 		break;
2847 	}
2848 	if (duplex == DUPLEX_FULL) {
2849 		mcr |= PMCR_FORCE_FDX;
2850 		if (tx_pause)
2851 			mcr |= PMCR_TX_FC_EN;
2852 		if (rx_pause)
2853 			mcr |= PMCR_RX_FC_EN;
2854 	}
2855 
2856 	if (mode == MLO_AN_PHY && phydev && phy_init_eee(phydev, false) >= 0) {
2857 		switch (speed) {
2858 		case SPEED_1000:
2859 			mcr |= PMCR_FORCE_EEE1G;
2860 			break;
2861 		case SPEED_100:
2862 			mcr |= PMCR_FORCE_EEE100;
2863 			break;
2864 		}
2865 	}
2866 
2867 	mt7530_set(priv, MT7530_PMCR_P(port), mcr);
2868 }
2869 
2870 static int
2871 mt7531_cpu_port_config(struct dsa_switch *ds, int port)
2872 {
2873 	struct mt7530_priv *priv = ds->priv;
2874 	phy_interface_t interface;
2875 	int speed;
2876 	int ret;
2877 
2878 	switch (port) {
2879 	case 5:
2880 		if (mt7531_is_rgmii_port(priv, port))
2881 			interface = PHY_INTERFACE_MODE_RGMII;
2882 		else
2883 			interface = PHY_INTERFACE_MODE_2500BASEX;
2884 
2885 		priv->p5_interface = interface;
2886 		break;
2887 	case 6:
2888 		interface = PHY_INTERFACE_MODE_2500BASEX;
2889 
2890 		mt7531_pad_setup(ds, interface);
2891 
2892 		priv->p6_interface = interface;
2893 		break;
2894 	default:
2895 		return -EINVAL;
2896 	}
2897 
2898 	if (interface == PHY_INTERFACE_MODE_2500BASEX)
2899 		speed = SPEED_2500;
2900 	else
2901 		speed = SPEED_1000;
2902 
2903 	ret = mt7531_mac_config(ds, port, MLO_AN_FIXED, interface);
2904 	if (ret)
2905 		return ret;
2906 	mt7530_write(priv, MT7530_PMCR_P(port),
2907 		     PMCR_CPU_PORT_SETTING(priv->id));
2908 	mt753x_phylink_pcs_link_up(&priv->pcs[port].pcs, MLO_AN_FIXED,
2909 				   interface, speed, DUPLEX_FULL);
2910 	mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED, interface, NULL,
2911 				   speed, DUPLEX_FULL, true, true);
2912 
2913 	return 0;
2914 }
2915 
2916 static void mt753x_phylink_get_caps(struct dsa_switch *ds, int port,
2917 				    struct phylink_config *config)
2918 {
2919 	struct mt7530_priv *priv = ds->priv;
2920 
2921 	/* This switch only supports full-duplex at 1Gbps */
2922 	config->mac_capabilities = MAC_ASYM_PAUSE | MAC_SYM_PAUSE |
2923 				   MAC_10 | MAC_100 | MAC_1000FD;
2924 
2925 	/* This driver does not make use of the speed, duplex, pause or the
2926 	 * advertisement in its mac_config, so it is safe to mark this driver
2927 	 * as non-legacy.
2928 	 */
2929 	config->legacy_pre_march2020 = false;
2930 
2931 	priv->info->mac_port_get_caps(ds, port, config);
2932 }
2933 
2934 static int mt753x_pcs_validate(struct phylink_pcs *pcs,
2935 			       unsigned long *supported,
2936 			       const struct phylink_link_state *state)
2937 {
2938 	/* Autonegotiation is not supported in TRGMII nor 802.3z modes */
2939 	if (state->interface == PHY_INTERFACE_MODE_TRGMII ||
2940 	    phy_interface_mode_is_8023z(state->interface))
2941 		phylink_clear(supported, Autoneg);
2942 
2943 	return 0;
2944 }
2945 
2946 static void mt7530_pcs_get_state(struct phylink_pcs *pcs,
2947 				 struct phylink_link_state *state)
2948 {
2949 	struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
2950 	int port = pcs_to_mt753x_pcs(pcs)->port;
2951 	u32 pmsr;
2952 
2953 	pmsr = mt7530_read(priv, MT7530_PMSR_P(port));
2954 
2955 	state->link = (pmsr & PMSR_LINK);
2956 	state->an_complete = state->link;
2957 	state->duplex = !!(pmsr & PMSR_DPX);
2958 
2959 	switch (pmsr & PMSR_SPEED_MASK) {
2960 	case PMSR_SPEED_10:
2961 		state->speed = SPEED_10;
2962 		break;
2963 	case PMSR_SPEED_100:
2964 		state->speed = SPEED_100;
2965 		break;
2966 	case PMSR_SPEED_1000:
2967 		state->speed = SPEED_1000;
2968 		break;
2969 	default:
2970 		state->speed = SPEED_UNKNOWN;
2971 		break;
2972 	}
2973 
2974 	state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX);
2975 	if (pmsr & PMSR_RX_FC)
2976 		state->pause |= MLO_PAUSE_RX;
2977 	if (pmsr & PMSR_TX_FC)
2978 		state->pause |= MLO_PAUSE_TX;
2979 }
2980 
2981 static int
2982 mt7531_sgmii_pcs_get_state_an(struct mt7530_priv *priv, int port,
2983 			      struct phylink_link_state *state)
2984 {
2985 	u32 status, val;
2986 	u16 config_reg;
2987 
2988 	status = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
2989 	state->link = !!(status & MT7531_SGMII_LINK_STATUS);
2990 	if (state->interface == PHY_INTERFACE_MODE_SGMII &&
2991 	    (status & MT7531_SGMII_AN_ENABLE)) {
2992 		val = mt7530_read(priv, MT7531_PCS_SPEED_ABILITY(port));
2993 		config_reg = val >> 16;
2994 
2995 		switch (config_reg & LPA_SGMII_SPD_MASK) {
2996 		case LPA_SGMII_1000:
2997 			state->speed = SPEED_1000;
2998 			break;
2999 		case LPA_SGMII_100:
3000 			state->speed = SPEED_100;
3001 			break;
3002 		case LPA_SGMII_10:
3003 			state->speed = SPEED_10;
3004 			break;
3005 		default:
3006 			dev_err(priv->dev, "invalid sgmii PHY speed\n");
3007 			state->link = false;
3008 			return -EINVAL;
3009 		}
3010 
3011 		if (config_reg & LPA_SGMII_FULL_DUPLEX)
3012 			state->duplex = DUPLEX_FULL;
3013 		else
3014 			state->duplex = DUPLEX_HALF;
3015 	}
3016 
3017 	return 0;
3018 }
3019 
3020 static void mt7531_pcs_get_state(struct phylink_pcs *pcs,
3021 				 struct phylink_link_state *state)
3022 {
3023 	struct mt7530_priv *priv = pcs_to_mt753x_pcs(pcs)->priv;
3024 	int port = pcs_to_mt753x_pcs(pcs)->port;
3025 
3026 	if (state->interface == PHY_INTERFACE_MODE_SGMII)
3027 		mt7531_sgmii_pcs_get_state_an(priv, port, state);
3028 	else
3029 		state->link = false;
3030 }
3031 
3032 static int mt753x_pcs_config(struct phylink_pcs *pcs, unsigned int mode,
3033 			     phy_interface_t interface,
3034 			     const unsigned long *advertising,
3035 			     bool permit_pause_to_mac)
3036 {
3037 	return 0;
3038 }
3039 
3040 static void mt7530_pcs_an_restart(struct phylink_pcs *pcs)
3041 {
3042 }
3043 
3044 static const struct phylink_pcs_ops mt7530_pcs_ops = {
3045 	.pcs_validate = mt753x_pcs_validate,
3046 	.pcs_get_state = mt7530_pcs_get_state,
3047 	.pcs_config = mt753x_pcs_config,
3048 	.pcs_an_restart = mt7530_pcs_an_restart,
3049 };
3050 
3051 static const struct phylink_pcs_ops mt7531_pcs_ops = {
3052 	.pcs_validate = mt753x_pcs_validate,
3053 	.pcs_get_state = mt7531_pcs_get_state,
3054 	.pcs_config = mt753x_pcs_config,
3055 	.pcs_an_restart = mt7531_pcs_an_restart,
3056 	.pcs_link_up = mt7531_pcs_link_up,
3057 };
3058 
3059 static int
3060 mt753x_setup(struct dsa_switch *ds)
3061 {
3062 	struct mt7530_priv *priv = ds->priv;
3063 	int i, ret;
3064 
3065 	/* Initialise the PCS devices */
3066 	for (i = 0; i < priv->ds->num_ports; i++) {
3067 		priv->pcs[i].pcs.ops = priv->info->pcs_ops;
3068 		priv->pcs[i].priv = priv;
3069 		priv->pcs[i].port = i;
3070 	}
3071 
3072 	ret = priv->info->sw_setup(ds);
3073 	if (ret)
3074 		return ret;
3075 
3076 	ret = mt7530_setup_irq(priv);
3077 	if (ret)
3078 		return ret;
3079 
3080 	ret = mt7530_setup_mdio(priv);
3081 	if (ret && priv->irq)
3082 		mt7530_free_irq_common(priv);
3083 
3084 	return ret;
3085 }
3086 
3087 static int mt753x_get_mac_eee(struct dsa_switch *ds, int port,
3088 			      struct ethtool_eee *e)
3089 {
3090 	struct mt7530_priv *priv = ds->priv;
3091 	u32 eeecr = mt7530_read(priv, MT7530_PMEEECR_P(port));
3092 
3093 	e->tx_lpi_enabled = !(eeecr & LPI_MODE_EN);
3094 	e->tx_lpi_timer = GET_LPI_THRESH(eeecr);
3095 
3096 	return 0;
3097 }
3098 
3099 static int mt753x_set_mac_eee(struct dsa_switch *ds, int port,
3100 			      struct ethtool_eee *e)
3101 {
3102 	struct mt7530_priv *priv = ds->priv;
3103 	u32 set, mask = LPI_THRESH_MASK | LPI_MODE_EN;
3104 
3105 	if (e->tx_lpi_timer > 0xFFF)
3106 		return -EINVAL;
3107 
3108 	set = SET_LPI_THRESH(e->tx_lpi_timer);
3109 	if (!e->tx_lpi_enabled)
3110 		/* Force LPI Mode without a delay */
3111 		set |= LPI_MODE_EN;
3112 	mt7530_rmw(priv, MT7530_PMEEECR_P(port), mask, set);
3113 
3114 	return 0;
3115 }
3116 
3117 static const struct dsa_switch_ops mt7530_switch_ops = {
3118 	.get_tag_protocol	= mtk_get_tag_protocol,
3119 	.setup			= mt753x_setup,
3120 	.get_strings		= mt7530_get_strings,
3121 	.get_ethtool_stats	= mt7530_get_ethtool_stats,
3122 	.get_sset_count		= mt7530_get_sset_count,
3123 	.set_ageing_time	= mt7530_set_ageing_time,
3124 	.port_enable		= mt7530_port_enable,
3125 	.port_disable		= mt7530_port_disable,
3126 	.port_change_mtu	= mt7530_port_change_mtu,
3127 	.port_max_mtu		= mt7530_port_max_mtu,
3128 	.port_stp_state_set	= mt7530_stp_state_set,
3129 	.port_pre_bridge_flags	= mt7530_port_pre_bridge_flags,
3130 	.port_bridge_flags	= mt7530_port_bridge_flags,
3131 	.port_bridge_join	= mt7530_port_bridge_join,
3132 	.port_bridge_leave	= mt7530_port_bridge_leave,
3133 	.port_fdb_add		= mt7530_port_fdb_add,
3134 	.port_fdb_del		= mt7530_port_fdb_del,
3135 	.port_fdb_dump		= mt7530_port_fdb_dump,
3136 	.port_mdb_add		= mt7530_port_mdb_add,
3137 	.port_mdb_del		= mt7530_port_mdb_del,
3138 	.port_vlan_filtering	= mt7530_port_vlan_filtering,
3139 	.port_vlan_add		= mt7530_port_vlan_add,
3140 	.port_vlan_del		= mt7530_port_vlan_del,
3141 	.port_mirror_add	= mt753x_port_mirror_add,
3142 	.port_mirror_del	= mt753x_port_mirror_del,
3143 	.phylink_get_caps	= mt753x_phylink_get_caps,
3144 	.phylink_mac_select_pcs	= mt753x_phylink_mac_select_pcs,
3145 	.phylink_mac_config	= mt753x_phylink_mac_config,
3146 	.phylink_mac_link_down	= mt753x_phylink_mac_link_down,
3147 	.phylink_mac_link_up	= mt753x_phylink_mac_link_up,
3148 	.get_mac_eee		= mt753x_get_mac_eee,
3149 	.set_mac_eee		= mt753x_set_mac_eee,
3150 };
3151 
3152 static const struct mt753x_info mt753x_table[] = {
3153 	[ID_MT7621] = {
3154 		.id = ID_MT7621,
3155 		.pcs_ops = &mt7530_pcs_ops,
3156 		.sw_setup = mt7530_setup,
3157 		.phy_read = mt7530_phy_read,
3158 		.phy_write = mt7530_phy_write,
3159 		.pad_setup = mt7530_pad_clk_setup,
3160 		.mac_port_get_caps = mt7530_mac_port_get_caps,
3161 		.mac_port_config = mt7530_mac_config,
3162 	},
3163 	[ID_MT7530] = {
3164 		.id = ID_MT7530,
3165 		.pcs_ops = &mt7530_pcs_ops,
3166 		.sw_setup = mt7530_setup,
3167 		.phy_read = mt7530_phy_read,
3168 		.phy_write = mt7530_phy_write,
3169 		.pad_setup = mt7530_pad_clk_setup,
3170 		.mac_port_get_caps = mt7530_mac_port_get_caps,
3171 		.mac_port_config = mt7530_mac_config,
3172 	},
3173 	[ID_MT7531] = {
3174 		.id = ID_MT7531,
3175 		.pcs_ops = &mt7531_pcs_ops,
3176 		.sw_setup = mt7531_setup,
3177 		.phy_read = mt7531_ind_phy_read,
3178 		.phy_write = mt7531_ind_phy_write,
3179 		.pad_setup = mt7531_pad_setup,
3180 		.cpu_port_config = mt7531_cpu_port_config,
3181 		.mac_port_get_caps = mt7531_mac_port_get_caps,
3182 		.mac_port_config = mt7531_mac_config,
3183 	},
3184 };
3185 
3186 static const struct of_device_id mt7530_of_match[] = {
3187 	{ .compatible = "mediatek,mt7621", .data = &mt753x_table[ID_MT7621], },
3188 	{ .compatible = "mediatek,mt7530", .data = &mt753x_table[ID_MT7530], },
3189 	{ .compatible = "mediatek,mt7531", .data = &mt753x_table[ID_MT7531], },
3190 	{ /* sentinel */ },
3191 };
3192 MODULE_DEVICE_TABLE(of, mt7530_of_match);
3193 
3194 static int
3195 mt7530_probe(struct mdio_device *mdiodev)
3196 {
3197 	struct mt7530_priv *priv;
3198 	struct device_node *dn;
3199 
3200 	dn = mdiodev->dev.of_node;
3201 
3202 	priv = devm_kzalloc(&mdiodev->dev, sizeof(*priv), GFP_KERNEL);
3203 	if (!priv)
3204 		return -ENOMEM;
3205 
3206 	priv->ds = devm_kzalloc(&mdiodev->dev, sizeof(*priv->ds), GFP_KERNEL);
3207 	if (!priv->ds)
3208 		return -ENOMEM;
3209 
3210 	priv->ds->dev = &mdiodev->dev;
3211 	priv->ds->num_ports = MT7530_NUM_PORTS;
3212 
3213 	/* Use medatek,mcm property to distinguish hardware type that would
3214 	 * casues a little bit differences on power-on sequence.
3215 	 */
3216 	priv->mcm = of_property_read_bool(dn, "mediatek,mcm");
3217 	if (priv->mcm) {
3218 		dev_info(&mdiodev->dev, "MT7530 adapts as multi-chip module\n");
3219 
3220 		priv->rstc = devm_reset_control_get(&mdiodev->dev, "mcm");
3221 		if (IS_ERR(priv->rstc)) {
3222 			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
3223 			return PTR_ERR(priv->rstc);
3224 		}
3225 	}
3226 
3227 	/* Get the hardware identifier from the devicetree node.
3228 	 * We will need it for some of the clock and regulator setup.
3229 	 */
3230 	priv->info = of_device_get_match_data(&mdiodev->dev);
3231 	if (!priv->info)
3232 		return -EINVAL;
3233 
3234 	/* Sanity check if these required device operations are filled
3235 	 * properly.
3236 	 */
3237 	if (!priv->info->sw_setup || !priv->info->pad_setup ||
3238 	    !priv->info->phy_read || !priv->info->phy_write ||
3239 	    !priv->info->mac_port_get_caps ||
3240 	    !priv->info->mac_port_config)
3241 		return -EINVAL;
3242 
3243 	priv->id = priv->info->id;
3244 
3245 	if (priv->id == ID_MT7530) {
3246 		priv->core_pwr = devm_regulator_get(&mdiodev->dev, "core");
3247 		if (IS_ERR(priv->core_pwr))
3248 			return PTR_ERR(priv->core_pwr);
3249 
3250 		priv->io_pwr = devm_regulator_get(&mdiodev->dev, "io");
3251 		if (IS_ERR(priv->io_pwr))
3252 			return PTR_ERR(priv->io_pwr);
3253 	}
3254 
3255 	/* Not MCM that indicates switch works as the remote standalone
3256 	 * integrated circuit so the GPIO pin would be used to complete
3257 	 * the reset, otherwise memory-mapped register accessing used
3258 	 * through syscon provides in the case of MCM.
3259 	 */
3260 	if (!priv->mcm) {
3261 		priv->reset = devm_gpiod_get_optional(&mdiodev->dev, "reset",
3262 						      GPIOD_OUT_LOW);
3263 		if (IS_ERR(priv->reset)) {
3264 			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
3265 			return PTR_ERR(priv->reset);
3266 		}
3267 	}
3268 
3269 	priv->bus = mdiodev->bus;
3270 	priv->dev = &mdiodev->dev;
3271 	priv->ds->priv = priv;
3272 	priv->ds->ops = &mt7530_switch_ops;
3273 	mutex_init(&priv->reg_mutex);
3274 	dev_set_drvdata(&mdiodev->dev, priv);
3275 
3276 	return dsa_register_switch(priv->ds);
3277 }
3278 
3279 static void
3280 mt7530_remove(struct mdio_device *mdiodev)
3281 {
3282 	struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev);
3283 	int ret = 0;
3284 
3285 	if (!priv)
3286 		return;
3287 
3288 	ret = regulator_disable(priv->core_pwr);
3289 	if (ret < 0)
3290 		dev_err(priv->dev,
3291 			"Failed to disable core power: %d\n", ret);
3292 
3293 	ret = regulator_disable(priv->io_pwr);
3294 	if (ret < 0)
3295 		dev_err(priv->dev, "Failed to disable io pwr: %d\n",
3296 			ret);
3297 
3298 	if (priv->irq)
3299 		mt7530_free_irq(priv);
3300 
3301 	dsa_unregister_switch(priv->ds);
3302 	mutex_destroy(&priv->reg_mutex);
3303 
3304 	dev_set_drvdata(&mdiodev->dev, NULL);
3305 }
3306 
3307 static void mt7530_shutdown(struct mdio_device *mdiodev)
3308 {
3309 	struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev);
3310 
3311 	if (!priv)
3312 		return;
3313 
3314 	dsa_switch_shutdown(priv->ds);
3315 
3316 	dev_set_drvdata(&mdiodev->dev, NULL);
3317 }
3318 
3319 static struct mdio_driver mt7530_mdio_driver = {
3320 	.probe  = mt7530_probe,
3321 	.remove = mt7530_remove,
3322 	.shutdown = mt7530_shutdown,
3323 	.mdiodrv.driver = {
3324 		.name = "mt7530",
3325 		.of_match_table = mt7530_of_match,
3326 	},
3327 };
3328 
3329 mdio_module_driver(mt7530_mdio_driver);
3330 
3331 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
3332 MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
3333 MODULE_LICENSE("GPL");
3334