xref: /openbmc/linux/drivers/net/dsa/mt7530.c (revision bcda5fd3)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Mediatek MT7530 DSA Switch driver
4  * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
5  */
6 #include <linux/etherdevice.h>
7 #include <linux/if_bridge.h>
8 #include <linux/iopoll.h>
9 #include <linux/mdio.h>
10 #include <linux/mfd/syscon.h>
11 #include <linux/module.h>
12 #include <linux/netdevice.h>
13 #include <linux/of_irq.h>
14 #include <linux/of_mdio.h>
15 #include <linux/of_net.h>
16 #include <linux/of_platform.h>
17 #include <linux/phylink.h>
18 #include <linux/regmap.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/reset.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/gpio/driver.h>
23 #include <net/dsa.h>
24 
25 #include "mt7530.h"
26 
27 /* String, offset, and register size in bytes if different from 4 bytes */
28 static const struct mt7530_mib_desc mt7530_mib[] = {
29 	MIB_DESC(1, 0x00, "TxDrop"),
30 	MIB_DESC(1, 0x04, "TxCrcErr"),
31 	MIB_DESC(1, 0x08, "TxUnicast"),
32 	MIB_DESC(1, 0x0c, "TxMulticast"),
33 	MIB_DESC(1, 0x10, "TxBroadcast"),
34 	MIB_DESC(1, 0x14, "TxCollision"),
35 	MIB_DESC(1, 0x18, "TxSingleCollision"),
36 	MIB_DESC(1, 0x1c, "TxMultipleCollision"),
37 	MIB_DESC(1, 0x20, "TxDeferred"),
38 	MIB_DESC(1, 0x24, "TxLateCollision"),
39 	MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
40 	MIB_DESC(1, 0x2c, "TxPause"),
41 	MIB_DESC(1, 0x30, "TxPktSz64"),
42 	MIB_DESC(1, 0x34, "TxPktSz65To127"),
43 	MIB_DESC(1, 0x38, "TxPktSz128To255"),
44 	MIB_DESC(1, 0x3c, "TxPktSz256To511"),
45 	MIB_DESC(1, 0x40, "TxPktSz512To1023"),
46 	MIB_DESC(1, 0x44, "Tx1024ToMax"),
47 	MIB_DESC(2, 0x48, "TxBytes"),
48 	MIB_DESC(1, 0x60, "RxDrop"),
49 	MIB_DESC(1, 0x64, "RxFiltering"),
50 	MIB_DESC(1, 0x68, "RxUnicast"),
51 	MIB_DESC(1, 0x6c, "RxMulticast"),
52 	MIB_DESC(1, 0x70, "RxBroadcast"),
53 	MIB_DESC(1, 0x74, "RxAlignErr"),
54 	MIB_DESC(1, 0x78, "RxCrcErr"),
55 	MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
56 	MIB_DESC(1, 0x80, "RxFragErr"),
57 	MIB_DESC(1, 0x84, "RxOverSzErr"),
58 	MIB_DESC(1, 0x88, "RxJabberErr"),
59 	MIB_DESC(1, 0x8c, "RxPause"),
60 	MIB_DESC(1, 0x90, "RxPktSz64"),
61 	MIB_DESC(1, 0x94, "RxPktSz65To127"),
62 	MIB_DESC(1, 0x98, "RxPktSz128To255"),
63 	MIB_DESC(1, 0x9c, "RxPktSz256To511"),
64 	MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
65 	MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
66 	MIB_DESC(2, 0xa8, "RxBytes"),
67 	MIB_DESC(1, 0xb0, "RxCtrlDrop"),
68 	MIB_DESC(1, 0xb4, "RxIngressDrop"),
69 	MIB_DESC(1, 0xb8, "RxArlDrop"),
70 };
71 
72 /* Since phy_device has not yet been created and
73  * phy_{read,write}_mmd_indirect is not available, we provide our own
74  * core_{read,write}_mmd_indirect with core_{clear,write,set} wrappers
75  * to complete this function.
76  */
77 static int
78 core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
79 {
80 	struct mii_bus *bus = priv->bus;
81 	int value, ret;
82 
83 	/* Write the desired MMD Devad */
84 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
85 	if (ret < 0)
86 		goto err;
87 
88 	/* Write the desired MMD register address */
89 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
90 	if (ret < 0)
91 		goto err;
92 
93 	/* Select the Function : DATA with no post increment */
94 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
95 	if (ret < 0)
96 		goto err;
97 
98 	/* Read the content of the MMD's selected register */
99 	value = bus->read(bus, 0, MII_MMD_DATA);
100 
101 	return value;
102 err:
103 	dev_err(&bus->dev,  "failed to read mmd register\n");
104 
105 	return ret;
106 }
107 
108 static int
109 core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
110 			int devad, u32 data)
111 {
112 	struct mii_bus *bus = priv->bus;
113 	int ret;
114 
115 	/* Write the desired MMD Devad */
116 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
117 	if (ret < 0)
118 		goto err;
119 
120 	/* Write the desired MMD register address */
121 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
122 	if (ret < 0)
123 		goto err;
124 
125 	/* Select the Function : DATA with no post increment */
126 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
127 	if (ret < 0)
128 		goto err;
129 
130 	/* Write the data into MMD's selected register */
131 	ret = bus->write(bus, 0, MII_MMD_DATA, data);
132 err:
133 	if (ret < 0)
134 		dev_err(&bus->dev,
135 			"failed to write mmd register\n");
136 	return ret;
137 }
138 
139 static void
140 core_write(struct mt7530_priv *priv, u32 reg, u32 val)
141 {
142 	struct mii_bus *bus = priv->bus;
143 
144 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
145 
146 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
147 
148 	mutex_unlock(&bus->mdio_lock);
149 }
150 
151 static void
152 core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
153 {
154 	struct mii_bus *bus = priv->bus;
155 	u32 val;
156 
157 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
158 
159 	val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2);
160 	val &= ~mask;
161 	val |= set;
162 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
163 
164 	mutex_unlock(&bus->mdio_lock);
165 }
166 
167 static void
168 core_set(struct mt7530_priv *priv, u32 reg, u32 val)
169 {
170 	core_rmw(priv, reg, 0, val);
171 }
172 
173 static void
174 core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
175 {
176 	core_rmw(priv, reg, val, 0);
177 }
178 
179 static int
180 mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
181 {
182 	struct mii_bus *bus = priv->bus;
183 	u16 page, r, lo, hi;
184 	int ret;
185 
186 	page = (reg >> 6) & 0x3ff;
187 	r  = (reg >> 2) & 0xf;
188 	lo = val & 0xffff;
189 	hi = val >> 16;
190 
191 	/* MT7530 uses 31 as the pseudo port */
192 	ret = bus->write(bus, 0x1f, 0x1f, page);
193 	if (ret < 0)
194 		goto err;
195 
196 	ret = bus->write(bus, 0x1f, r,  lo);
197 	if (ret < 0)
198 		goto err;
199 
200 	ret = bus->write(bus, 0x1f, 0x10, hi);
201 err:
202 	if (ret < 0)
203 		dev_err(&bus->dev,
204 			"failed to write mt7530 register\n");
205 	return ret;
206 }
207 
208 static u32
209 mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
210 {
211 	struct mii_bus *bus = priv->bus;
212 	u16 page, r, lo, hi;
213 	int ret;
214 
215 	page = (reg >> 6) & 0x3ff;
216 	r = (reg >> 2) & 0xf;
217 
218 	/* MT7530 uses 31 as the pseudo port */
219 	ret = bus->write(bus, 0x1f, 0x1f, page);
220 	if (ret < 0) {
221 		dev_err(&bus->dev,
222 			"failed to read mt7530 register\n");
223 		return ret;
224 	}
225 
226 	lo = bus->read(bus, 0x1f, r);
227 	hi = bus->read(bus, 0x1f, 0x10);
228 
229 	return (hi << 16) | (lo & 0xffff);
230 }
231 
232 static void
233 mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
234 {
235 	struct mii_bus *bus = priv->bus;
236 
237 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
238 
239 	mt7530_mii_write(priv, reg, val);
240 
241 	mutex_unlock(&bus->mdio_lock);
242 }
243 
244 static u32
245 _mt7530_unlocked_read(struct mt7530_dummy_poll *p)
246 {
247 	return mt7530_mii_read(p->priv, p->reg);
248 }
249 
250 static u32
251 _mt7530_read(struct mt7530_dummy_poll *p)
252 {
253 	struct mii_bus		*bus = p->priv->bus;
254 	u32 val;
255 
256 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
257 
258 	val = mt7530_mii_read(p->priv, p->reg);
259 
260 	mutex_unlock(&bus->mdio_lock);
261 
262 	return val;
263 }
264 
265 static u32
266 mt7530_read(struct mt7530_priv *priv, u32 reg)
267 {
268 	struct mt7530_dummy_poll p;
269 
270 	INIT_MT7530_DUMMY_POLL(&p, priv, reg);
271 	return _mt7530_read(&p);
272 }
273 
274 static void
275 mt7530_rmw(struct mt7530_priv *priv, u32 reg,
276 	   u32 mask, u32 set)
277 {
278 	struct mii_bus *bus = priv->bus;
279 	u32 val;
280 
281 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
282 
283 	val = mt7530_mii_read(priv, reg);
284 	val &= ~mask;
285 	val |= set;
286 	mt7530_mii_write(priv, reg, val);
287 
288 	mutex_unlock(&bus->mdio_lock);
289 }
290 
291 static void
292 mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
293 {
294 	mt7530_rmw(priv, reg, 0, val);
295 }
296 
297 static void
298 mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
299 {
300 	mt7530_rmw(priv, reg, val, 0);
301 }
302 
303 static int
304 mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
305 {
306 	u32 val;
307 	int ret;
308 	struct mt7530_dummy_poll p;
309 
310 	/* Set the command operating upon the MAC address entries */
311 	val = ATC_BUSY | ATC_MAT(0) | cmd;
312 	mt7530_write(priv, MT7530_ATC, val);
313 
314 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
315 	ret = readx_poll_timeout(_mt7530_read, &p, val,
316 				 !(val & ATC_BUSY), 20, 20000);
317 	if (ret < 0) {
318 		dev_err(priv->dev, "reset timeout\n");
319 		return ret;
320 	}
321 
322 	/* Additional sanity for read command if the specified
323 	 * entry is invalid
324 	 */
325 	val = mt7530_read(priv, MT7530_ATC);
326 	if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
327 		return -EINVAL;
328 
329 	if (rsp)
330 		*rsp = val;
331 
332 	return 0;
333 }
334 
335 static void
336 mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
337 {
338 	u32 reg[3];
339 	int i;
340 
341 	/* Read from ARL table into an array */
342 	for (i = 0; i < 3; i++) {
343 		reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
344 
345 		dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
346 			__func__, __LINE__, i, reg[i]);
347 	}
348 
349 	fdb->vid = (reg[1] >> CVID) & CVID_MASK;
350 	fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
351 	fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
352 	fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
353 	fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
354 	fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
355 	fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
356 	fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
357 	fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
358 	fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
359 }
360 
361 static void
362 mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
363 		 u8 port_mask, const u8 *mac,
364 		 u8 aging, u8 type)
365 {
366 	u32 reg[3] = { 0 };
367 	int i;
368 
369 	reg[1] |= vid & CVID_MASK;
370 	if (vid > 1)
371 		reg[1] |= ATA2_IVL;
372 	reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
373 	reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
374 	/* STATIC_ENT indicate that entry is static wouldn't
375 	 * be aged out and STATIC_EMP specified as erasing an
376 	 * entry
377 	 */
378 	reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
379 	reg[1] |= mac[5] << MAC_BYTE_5;
380 	reg[1] |= mac[4] << MAC_BYTE_4;
381 	reg[0] |= mac[3] << MAC_BYTE_3;
382 	reg[0] |= mac[2] << MAC_BYTE_2;
383 	reg[0] |= mac[1] << MAC_BYTE_1;
384 	reg[0] |= mac[0] << MAC_BYTE_0;
385 
386 	/* Write array into the ARL table */
387 	for (i = 0; i < 3; i++)
388 		mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
389 }
390 
391 /* Setup TX circuit including relevant PAD and driving */
392 static int
393 mt7530_pad_clk_setup(struct dsa_switch *ds, phy_interface_t interface)
394 {
395 	struct mt7530_priv *priv = ds->priv;
396 	u32 ncpo1, ssc_delta, trgint, i, xtal;
397 
398 	xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK;
399 
400 	if (xtal == HWTRAP_XTAL_20MHZ) {
401 		dev_err(priv->dev,
402 			"%s: MT7530 with a 20MHz XTAL is not supported!\n",
403 			__func__);
404 		return -EINVAL;
405 	}
406 
407 	switch (interface) {
408 	case PHY_INTERFACE_MODE_RGMII:
409 		trgint = 0;
410 		/* PLL frequency: 125MHz */
411 		ncpo1 = 0x0c80;
412 		break;
413 	case PHY_INTERFACE_MODE_TRGMII:
414 		trgint = 1;
415 		if (priv->id == ID_MT7621) {
416 			/* PLL frequency: 150MHz: 1.2GBit */
417 			if (xtal == HWTRAP_XTAL_40MHZ)
418 				ncpo1 = 0x0780;
419 			if (xtal == HWTRAP_XTAL_25MHZ)
420 				ncpo1 = 0x0a00;
421 		} else { /* PLL frequency: 250MHz: 2.0Gbit */
422 			if (xtal == HWTRAP_XTAL_40MHZ)
423 				ncpo1 = 0x0c80;
424 			if (xtal == HWTRAP_XTAL_25MHZ)
425 				ncpo1 = 0x1400;
426 		}
427 		break;
428 	default:
429 		dev_err(priv->dev, "xMII interface %d not supported\n",
430 			interface);
431 		return -EINVAL;
432 	}
433 
434 	if (xtal == HWTRAP_XTAL_25MHZ)
435 		ssc_delta = 0x57;
436 	else
437 		ssc_delta = 0x87;
438 
439 	mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
440 		   P6_INTF_MODE(trgint));
441 
442 	/* Lower Tx Driving for TRGMII path */
443 	for (i = 0 ; i < NUM_TRGMII_CTRL ; i++)
444 		mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
445 			     TD_DM_DRVP(8) | TD_DM_DRVN(8));
446 
447 	/* Disable MT7530 core and TRGMII Tx clocks */
448 	core_clear(priv, CORE_TRGMII_GSW_CLK_CG,
449 		   REG_GSWCK_EN | REG_TRGMIICK_EN);
450 
451 	/* Setup core clock for MT7530 */
452 	/* Disable PLL */
453 	core_write(priv, CORE_GSWPLL_GRP1, 0);
454 
455 	/* Set core clock into 500Mhz */
456 	core_write(priv, CORE_GSWPLL_GRP2,
457 		   RG_GSWPLL_POSDIV_500M(1) |
458 		   RG_GSWPLL_FBKDIV_500M(25));
459 
460 	/* Enable PLL */
461 	core_write(priv, CORE_GSWPLL_GRP1,
462 		   RG_GSWPLL_EN_PRE |
463 		   RG_GSWPLL_POSDIV_200M(2) |
464 		   RG_GSWPLL_FBKDIV_200M(32));
465 
466 	/* Setup the MT7530 TRGMII Tx Clock */
467 	core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
468 	core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
469 	core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
470 	core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
471 	core_write(priv, CORE_PLL_GROUP4,
472 		   RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN |
473 		   RG_SYSPLL_BIAS_LPF_EN);
474 	core_write(priv, CORE_PLL_GROUP2,
475 		   RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN |
476 		   RG_SYSPLL_POSDIV(1));
477 	core_write(priv, CORE_PLL_GROUP7,
478 		   RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) |
479 		   RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
480 
481 	/* Enable MT7530 core and TRGMII Tx clocks */
482 	core_set(priv, CORE_TRGMII_GSW_CLK_CG,
483 		 REG_GSWCK_EN | REG_TRGMIICK_EN);
484 
485 	if (!trgint)
486 		for (i = 0 ; i < NUM_TRGMII_CTRL; i++)
487 			mt7530_rmw(priv, MT7530_TRGMII_RD(i),
488 				   RD_TAP_MASK, RD_TAP(16));
489 	return 0;
490 }
491 
492 static bool mt7531_dual_sgmii_supported(struct mt7530_priv *priv)
493 {
494 	u32 val;
495 
496 	val = mt7530_read(priv, MT7531_TOP_SIG_SR);
497 
498 	return (val & PAD_DUAL_SGMII_EN) != 0;
499 }
500 
501 static int
502 mt7531_pad_setup(struct dsa_switch *ds, phy_interface_t interface)
503 {
504 	struct mt7530_priv *priv = ds->priv;
505 	u32 top_sig;
506 	u32 hwstrap;
507 	u32 xtal;
508 	u32 val;
509 
510 	if (mt7531_dual_sgmii_supported(priv))
511 		return 0;
512 
513 	val = mt7530_read(priv, MT7531_CREV);
514 	top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR);
515 	hwstrap = mt7530_read(priv, MT7531_HWTRAP);
516 	if ((val & CHIP_REV_M) > 0)
517 		xtal = (top_sig & PAD_MCM_SMI_EN) ? HWTRAP_XTAL_FSEL_40MHZ :
518 						    HWTRAP_XTAL_FSEL_25MHZ;
519 	else
520 		xtal = hwstrap & HWTRAP_XTAL_FSEL_MASK;
521 
522 	/* Step 1 : Disable MT7531 COREPLL */
523 	val = mt7530_read(priv, MT7531_PLLGP_EN);
524 	val &= ~EN_COREPLL;
525 	mt7530_write(priv, MT7531_PLLGP_EN, val);
526 
527 	/* Step 2: switch to XTAL output */
528 	val = mt7530_read(priv, MT7531_PLLGP_EN);
529 	val |= SW_CLKSW;
530 	mt7530_write(priv, MT7531_PLLGP_EN, val);
531 
532 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
533 	val &= ~RG_COREPLL_EN;
534 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
535 
536 	/* Step 3: disable PLLGP and enable program PLLGP */
537 	val = mt7530_read(priv, MT7531_PLLGP_EN);
538 	val |= SW_PLLGP;
539 	mt7530_write(priv, MT7531_PLLGP_EN, val);
540 
541 	/* Step 4: program COREPLL output frequency to 500MHz */
542 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
543 	val &= ~RG_COREPLL_POSDIV_M;
544 	val |= 2 << RG_COREPLL_POSDIV_S;
545 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
546 	usleep_range(25, 35);
547 
548 	switch (xtal) {
549 	case HWTRAP_XTAL_FSEL_25MHZ:
550 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
551 		val &= ~RG_COREPLL_SDM_PCW_M;
552 		val |= 0x140000 << RG_COREPLL_SDM_PCW_S;
553 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
554 		break;
555 	case HWTRAP_XTAL_FSEL_40MHZ:
556 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
557 		val &= ~RG_COREPLL_SDM_PCW_M;
558 		val |= 0x190000 << RG_COREPLL_SDM_PCW_S;
559 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
560 		break;
561 	}
562 
563 	/* Set feedback divide ratio update signal to high */
564 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
565 	val |= RG_COREPLL_SDM_PCW_CHG;
566 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
567 	/* Wait for at least 16 XTAL clocks */
568 	usleep_range(10, 20);
569 
570 	/* Step 5: set feedback divide ratio update signal to low */
571 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
572 	val &= ~RG_COREPLL_SDM_PCW_CHG;
573 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
574 
575 	/* Enable 325M clock for SGMII */
576 	mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000);
577 
578 	/* Enable 250SSC clock for RGMII */
579 	mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000);
580 
581 	/* Step 6: Enable MT7531 PLL */
582 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
583 	val |= RG_COREPLL_EN;
584 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
585 
586 	val = mt7530_read(priv, MT7531_PLLGP_EN);
587 	val |= EN_COREPLL;
588 	mt7530_write(priv, MT7531_PLLGP_EN, val);
589 	usleep_range(25, 35);
590 
591 	return 0;
592 }
593 
594 static void
595 mt7530_mib_reset(struct dsa_switch *ds)
596 {
597 	struct mt7530_priv *priv = ds->priv;
598 
599 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
600 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
601 }
602 
603 static int mt7530_phy_read(struct mt7530_priv *priv, int port, int regnum)
604 {
605 	return mdiobus_read_nested(priv->bus, port, regnum);
606 }
607 
608 static int mt7530_phy_write(struct mt7530_priv *priv, int port, int regnum,
609 			    u16 val)
610 {
611 	return mdiobus_write_nested(priv->bus, port, regnum, val);
612 }
613 
614 static int
615 mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad,
616 			int regnum)
617 {
618 	struct mii_bus *bus = priv->bus;
619 	struct mt7530_dummy_poll p;
620 	u32 reg, val;
621 	int ret;
622 
623 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
624 
625 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
626 
627 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
628 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
629 	if (ret < 0) {
630 		dev_err(priv->dev, "poll timeout\n");
631 		goto out;
632 	}
633 
634 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
635 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
636 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
637 
638 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
639 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
640 	if (ret < 0) {
641 		dev_err(priv->dev, "poll timeout\n");
642 		goto out;
643 	}
644 
645 	reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) |
646 	      MT7531_MDIO_DEV_ADDR(devad);
647 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
648 
649 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
650 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
651 	if (ret < 0) {
652 		dev_err(priv->dev, "poll timeout\n");
653 		goto out;
654 	}
655 
656 	ret = val & MT7531_MDIO_RW_DATA_MASK;
657 out:
658 	mutex_unlock(&bus->mdio_lock);
659 
660 	return ret;
661 }
662 
663 static int
664 mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad,
665 			 int regnum, u32 data)
666 {
667 	struct mii_bus *bus = priv->bus;
668 	struct mt7530_dummy_poll p;
669 	u32 val, reg;
670 	int ret;
671 
672 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
673 
674 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
675 
676 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
677 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
678 	if (ret < 0) {
679 		dev_err(priv->dev, "poll timeout\n");
680 		goto out;
681 	}
682 
683 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
684 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
685 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
686 
687 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
688 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
689 	if (ret < 0) {
690 		dev_err(priv->dev, "poll timeout\n");
691 		goto out;
692 	}
693 
694 	reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) |
695 	      MT7531_MDIO_DEV_ADDR(devad) | data;
696 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
697 
698 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
699 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
700 	if (ret < 0) {
701 		dev_err(priv->dev, "poll timeout\n");
702 		goto out;
703 	}
704 
705 out:
706 	mutex_unlock(&bus->mdio_lock);
707 
708 	return ret;
709 }
710 
711 static int
712 mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum)
713 {
714 	struct mii_bus *bus = priv->bus;
715 	struct mt7530_dummy_poll p;
716 	int ret;
717 	u32 val;
718 
719 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
720 
721 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
722 
723 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
724 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
725 	if (ret < 0) {
726 		dev_err(priv->dev, "poll timeout\n");
727 		goto out;
728 	}
729 
730 	val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) |
731 	      MT7531_MDIO_REG_ADDR(regnum);
732 
733 	mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST);
734 
735 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
736 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
737 	if (ret < 0) {
738 		dev_err(priv->dev, "poll timeout\n");
739 		goto out;
740 	}
741 
742 	ret = val & MT7531_MDIO_RW_DATA_MASK;
743 out:
744 	mutex_unlock(&bus->mdio_lock);
745 
746 	return ret;
747 }
748 
749 static int
750 mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum,
751 			 u16 data)
752 {
753 	struct mii_bus *bus = priv->bus;
754 	struct mt7530_dummy_poll p;
755 	int ret;
756 	u32 reg;
757 
758 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
759 
760 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
761 
762 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
763 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
764 	if (ret < 0) {
765 		dev_err(priv->dev, "poll timeout\n");
766 		goto out;
767 	}
768 
769 	reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) |
770 	      MT7531_MDIO_REG_ADDR(regnum) | data;
771 
772 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
773 
774 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
775 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
776 	if (ret < 0) {
777 		dev_err(priv->dev, "poll timeout\n");
778 		goto out;
779 	}
780 
781 out:
782 	mutex_unlock(&bus->mdio_lock);
783 
784 	return ret;
785 }
786 
787 static int
788 mt7531_ind_phy_read(struct mt7530_priv *priv, int port, int regnum)
789 {
790 	int devad;
791 	int ret;
792 
793 	if (regnum & MII_ADDR_C45) {
794 		devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f;
795 		ret = mt7531_ind_c45_phy_read(priv, port, devad,
796 					      regnum & MII_REGADDR_C45_MASK);
797 	} else {
798 		ret = mt7531_ind_c22_phy_read(priv, port, regnum);
799 	}
800 
801 	return ret;
802 }
803 
804 static int
805 mt7531_ind_phy_write(struct mt7530_priv *priv, int port, int regnum,
806 		     u16 data)
807 {
808 	int devad;
809 	int ret;
810 
811 	if (regnum & MII_ADDR_C45) {
812 		devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f;
813 		ret = mt7531_ind_c45_phy_write(priv, port, devad,
814 					       regnum & MII_REGADDR_C45_MASK,
815 					       data);
816 	} else {
817 		ret = mt7531_ind_c22_phy_write(priv, port, regnum, data);
818 	}
819 
820 	return ret;
821 }
822 
823 static int
824 mt753x_phy_read(struct mii_bus *bus, int port, int regnum)
825 {
826 	struct mt7530_priv *priv = bus->priv;
827 
828 	return priv->info->phy_read(priv, port, regnum);
829 }
830 
831 static int
832 mt753x_phy_write(struct mii_bus *bus, int port, int regnum, u16 val)
833 {
834 	struct mt7530_priv *priv = bus->priv;
835 
836 	return priv->info->phy_write(priv, port, regnum, val);
837 }
838 
839 static void
840 mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
841 		   uint8_t *data)
842 {
843 	int i;
844 
845 	if (stringset != ETH_SS_STATS)
846 		return;
847 
848 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
849 		strncpy(data + i * ETH_GSTRING_LEN, mt7530_mib[i].name,
850 			ETH_GSTRING_LEN);
851 }
852 
853 static void
854 mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
855 			 uint64_t *data)
856 {
857 	struct mt7530_priv *priv = ds->priv;
858 	const struct mt7530_mib_desc *mib;
859 	u32 reg, i;
860 	u64 hi;
861 
862 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
863 		mib = &mt7530_mib[i];
864 		reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
865 
866 		data[i] = mt7530_read(priv, reg);
867 		if (mib->size == 2) {
868 			hi = mt7530_read(priv, reg + 4);
869 			data[i] |= hi << 32;
870 		}
871 	}
872 }
873 
874 static int
875 mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
876 {
877 	if (sset != ETH_SS_STATS)
878 		return 0;
879 
880 	return ARRAY_SIZE(mt7530_mib);
881 }
882 
883 static int
884 mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
885 {
886 	struct mt7530_priv *priv = ds->priv;
887 	unsigned int secs = msecs / 1000;
888 	unsigned int tmp_age_count;
889 	unsigned int error = -1;
890 	unsigned int age_count;
891 	unsigned int age_unit;
892 
893 	/* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */
894 	if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1))
895 		return -ERANGE;
896 
897 	/* iterate through all possible age_count to find the closest pair */
898 	for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) {
899 		unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1;
900 
901 		if (tmp_age_unit <= AGE_UNIT_MAX) {
902 			unsigned int tmp_error = secs -
903 				(tmp_age_count + 1) * (tmp_age_unit + 1);
904 
905 			/* found a closer pair */
906 			if (error > tmp_error) {
907 				error = tmp_error;
908 				age_count = tmp_age_count;
909 				age_unit = tmp_age_unit;
910 			}
911 
912 			/* found the exact match, so break the loop */
913 			if (!error)
914 				break;
915 		}
916 	}
917 
918 	mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit));
919 
920 	return 0;
921 }
922 
923 static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface)
924 {
925 	struct mt7530_priv *priv = ds->priv;
926 	u8 tx_delay = 0;
927 	int val;
928 
929 	mutex_lock(&priv->reg_mutex);
930 
931 	val = mt7530_read(priv, MT7530_MHWTRAP);
932 
933 	val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS;
934 	val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL;
935 
936 	switch (priv->p5_intf_sel) {
937 	case P5_INTF_SEL_PHY_P0:
938 		/* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */
939 		val |= MHWTRAP_PHY0_SEL;
940 		fallthrough;
941 	case P5_INTF_SEL_PHY_P4:
942 		/* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */
943 		val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS;
944 
945 		/* Setup the MAC by default for the cpu port */
946 		mt7530_write(priv, MT7530_PMCR_P(5), 0x56300);
947 		break;
948 	case P5_INTF_SEL_GMAC5:
949 		/* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */
950 		val &= ~MHWTRAP_P5_DIS;
951 		break;
952 	case P5_DISABLED:
953 		interface = PHY_INTERFACE_MODE_NA;
954 		break;
955 	default:
956 		dev_err(ds->dev, "Unsupported p5_intf_sel %d\n",
957 			priv->p5_intf_sel);
958 		goto unlock_exit;
959 	}
960 
961 	/* Setup RGMII settings */
962 	if (phy_interface_mode_is_rgmii(interface)) {
963 		val |= MHWTRAP_P5_RGMII_MODE;
964 
965 		/* P5 RGMII RX Clock Control: delay setting for 1000M */
966 		mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN);
967 
968 		/* Don't set delay in DSA mode */
969 		if (!dsa_is_dsa_port(priv->ds, 5) &&
970 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID ||
971 		     interface == PHY_INTERFACE_MODE_RGMII_ID))
972 			tx_delay = 4; /* n * 0.5 ns */
973 
974 		/* P5 RGMII TX Clock Control: delay x */
975 		mt7530_write(priv, MT7530_P5RGMIITXCR,
976 			     CSR_RGMII_TXC_CFG(0x10 + tx_delay));
977 
978 		/* reduce P5 RGMII Tx driving, 8mA */
979 		mt7530_write(priv, MT7530_IO_DRV_CR,
980 			     P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1));
981 	}
982 
983 	mt7530_write(priv, MT7530_MHWTRAP, val);
984 
985 	dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n",
986 		val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface));
987 
988 	priv->p5_interface = interface;
989 
990 unlock_exit:
991 	mutex_unlock(&priv->reg_mutex);
992 }
993 
994 static int
995 mt753x_cpu_port_enable(struct dsa_switch *ds, int port)
996 {
997 	struct mt7530_priv *priv = ds->priv;
998 	int ret;
999 
1000 	/* Setup max capability of CPU port at first */
1001 	if (priv->info->cpu_port_config) {
1002 		ret = priv->info->cpu_port_config(ds, port);
1003 		if (ret)
1004 			return ret;
1005 	}
1006 
1007 	/* Enable Mediatek header mode on the cpu port */
1008 	mt7530_write(priv, MT7530_PVC_P(port),
1009 		     PORT_SPEC_TAG);
1010 
1011 	/* Disable flooding by default */
1012 	mt7530_rmw(priv, MT7530_MFC, BC_FFP_MASK | UNM_FFP_MASK | UNU_FFP_MASK,
1013 		   BC_FFP(BIT(port)) | UNM_FFP(BIT(port)) | UNU_FFP(BIT(port)));
1014 
1015 	/* Set CPU port number */
1016 	if (priv->id == ID_MT7621)
1017 		mt7530_rmw(priv, MT7530_MFC, CPU_MASK, CPU_EN | CPU_PORT(port));
1018 
1019 	/* CPU port gets connected to all user ports of
1020 	 * the switch.
1021 	 */
1022 	mt7530_write(priv, MT7530_PCR_P(port),
1023 		     PCR_MATRIX(dsa_user_ports(priv->ds)));
1024 
1025 	return 0;
1026 }
1027 
1028 static int
1029 mt7530_port_enable(struct dsa_switch *ds, int port,
1030 		   struct phy_device *phy)
1031 {
1032 	struct mt7530_priv *priv = ds->priv;
1033 
1034 	if (!dsa_is_user_port(ds, port))
1035 		return 0;
1036 
1037 	mutex_lock(&priv->reg_mutex);
1038 
1039 	/* Allow the user port gets connected to the cpu port and also
1040 	 * restore the port matrix if the port is the member of a certain
1041 	 * bridge.
1042 	 */
1043 	priv->ports[port].pm |= PCR_MATRIX(BIT(MT7530_CPU_PORT));
1044 	priv->ports[port].enable = true;
1045 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1046 		   priv->ports[port].pm);
1047 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1048 
1049 	mutex_unlock(&priv->reg_mutex);
1050 
1051 	return 0;
1052 }
1053 
1054 static void
1055 mt7530_port_disable(struct dsa_switch *ds, int port)
1056 {
1057 	struct mt7530_priv *priv = ds->priv;
1058 
1059 	if (!dsa_is_user_port(ds, port))
1060 		return;
1061 
1062 	mutex_lock(&priv->reg_mutex);
1063 
1064 	/* Clear up all port matrix which could be restored in the next
1065 	 * enablement for the port.
1066 	 */
1067 	priv->ports[port].enable = false;
1068 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1069 		   PCR_MATRIX_CLR);
1070 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1071 
1072 	mutex_unlock(&priv->reg_mutex);
1073 }
1074 
1075 static int
1076 mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1077 {
1078 	struct mt7530_priv *priv = ds->priv;
1079 	struct mii_bus *bus = priv->bus;
1080 	int length;
1081 	u32 val;
1082 
1083 	/* When a new MTU is set, DSA always set the CPU port's MTU to the
1084 	 * largest MTU of the slave ports. Because the switch only has a global
1085 	 * RX length register, only allowing CPU port here is enough.
1086 	 */
1087 	if (!dsa_is_cpu_port(ds, port))
1088 		return 0;
1089 
1090 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
1091 
1092 	val = mt7530_mii_read(priv, MT7530_GMACCR);
1093 	val &= ~MAX_RX_PKT_LEN_MASK;
1094 
1095 	/* RX length also includes Ethernet header, MTK tag, and FCS length */
1096 	length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN;
1097 	if (length <= 1522) {
1098 		val |= MAX_RX_PKT_LEN_1522;
1099 	} else if (length <= 1536) {
1100 		val |= MAX_RX_PKT_LEN_1536;
1101 	} else if (length <= 1552) {
1102 		val |= MAX_RX_PKT_LEN_1552;
1103 	} else {
1104 		val &= ~MAX_RX_JUMBO_MASK;
1105 		val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024));
1106 		val |= MAX_RX_PKT_LEN_JUMBO;
1107 	}
1108 
1109 	mt7530_mii_write(priv, MT7530_GMACCR, val);
1110 
1111 	mutex_unlock(&bus->mdio_lock);
1112 
1113 	return 0;
1114 }
1115 
1116 static int
1117 mt7530_port_max_mtu(struct dsa_switch *ds, int port)
1118 {
1119 	return MT7530_MAX_MTU;
1120 }
1121 
1122 static void
1123 mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1124 {
1125 	struct mt7530_priv *priv = ds->priv;
1126 	u32 stp_state;
1127 
1128 	switch (state) {
1129 	case BR_STATE_DISABLED:
1130 		stp_state = MT7530_STP_DISABLED;
1131 		break;
1132 	case BR_STATE_BLOCKING:
1133 		stp_state = MT7530_STP_BLOCKING;
1134 		break;
1135 	case BR_STATE_LISTENING:
1136 		stp_state = MT7530_STP_LISTENING;
1137 		break;
1138 	case BR_STATE_LEARNING:
1139 		stp_state = MT7530_STP_LEARNING;
1140 		break;
1141 	case BR_STATE_FORWARDING:
1142 	default:
1143 		stp_state = MT7530_STP_FORWARDING;
1144 		break;
1145 	}
1146 
1147 	mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK, stp_state);
1148 }
1149 
1150 static int
1151 mt7530_port_pre_bridge_flags(struct dsa_switch *ds, int port,
1152 			     struct switchdev_brport_flags flags,
1153 			     struct netlink_ext_ack *extack)
1154 {
1155 	if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
1156 			   BR_BCAST_FLOOD))
1157 		return -EINVAL;
1158 
1159 	return 0;
1160 }
1161 
1162 static int
1163 mt7530_port_bridge_flags(struct dsa_switch *ds, int port,
1164 			 struct switchdev_brport_flags flags,
1165 			 struct netlink_ext_ack *extack)
1166 {
1167 	struct mt7530_priv *priv = ds->priv;
1168 
1169 	if (flags.mask & BR_LEARNING)
1170 		mt7530_rmw(priv, MT7530_PSC_P(port), SA_DIS,
1171 			   flags.val & BR_LEARNING ? 0 : SA_DIS);
1172 
1173 	if (flags.mask & BR_FLOOD)
1174 		mt7530_rmw(priv, MT7530_MFC, UNU_FFP(BIT(port)),
1175 			   flags.val & BR_FLOOD ? UNU_FFP(BIT(port)) : 0);
1176 
1177 	if (flags.mask & BR_MCAST_FLOOD)
1178 		mt7530_rmw(priv, MT7530_MFC, UNM_FFP(BIT(port)),
1179 			   flags.val & BR_MCAST_FLOOD ? UNM_FFP(BIT(port)) : 0);
1180 
1181 	if (flags.mask & BR_BCAST_FLOOD)
1182 		mt7530_rmw(priv, MT7530_MFC, BC_FFP(BIT(port)),
1183 			   flags.val & BR_BCAST_FLOOD ? BC_FFP(BIT(port)) : 0);
1184 
1185 	return 0;
1186 }
1187 
1188 static int
1189 mt7530_port_set_mrouter(struct dsa_switch *ds, int port, bool mrouter,
1190 			struct netlink_ext_ack *extack)
1191 {
1192 	struct mt7530_priv *priv = ds->priv;
1193 
1194 	mt7530_rmw(priv, MT7530_MFC, UNM_FFP(BIT(port)),
1195 		   mrouter ? UNM_FFP(BIT(port)) : 0);
1196 
1197 	return 0;
1198 }
1199 
1200 static int
1201 mt7530_port_bridge_join(struct dsa_switch *ds, int port,
1202 			struct net_device *bridge)
1203 {
1204 	struct mt7530_priv *priv = ds->priv;
1205 	u32 port_bitmap = BIT(MT7530_CPU_PORT);
1206 	int i;
1207 
1208 	mutex_lock(&priv->reg_mutex);
1209 
1210 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1211 		/* Add this port to the port matrix of the other ports in the
1212 		 * same bridge. If the port is disabled, port matrix is kept
1213 		 * and not being setup until the port becomes enabled.
1214 		 */
1215 		if (dsa_is_user_port(ds, i) && i != port) {
1216 			if (dsa_to_port(ds, i)->bridge_dev != bridge)
1217 				continue;
1218 			if (priv->ports[i].enable)
1219 				mt7530_set(priv, MT7530_PCR_P(i),
1220 					   PCR_MATRIX(BIT(port)));
1221 			priv->ports[i].pm |= PCR_MATRIX(BIT(port));
1222 
1223 			port_bitmap |= BIT(i);
1224 		}
1225 	}
1226 
1227 	/* Add the all other ports to this port matrix. */
1228 	if (priv->ports[port].enable)
1229 		mt7530_rmw(priv, MT7530_PCR_P(port),
1230 			   PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
1231 	priv->ports[port].pm |= PCR_MATRIX(port_bitmap);
1232 
1233 	mutex_unlock(&priv->reg_mutex);
1234 
1235 	return 0;
1236 }
1237 
1238 static void
1239 mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
1240 {
1241 	struct mt7530_priv *priv = ds->priv;
1242 	bool all_user_ports_removed = true;
1243 	int i;
1244 
1245 	/* When a port is removed from the bridge, the port would be set up
1246 	 * back to the default as is at initial boot which is a VLAN-unaware
1247 	 * port.
1248 	 */
1249 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1250 		   MT7530_PORT_MATRIX_MODE);
1251 	mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
1252 		   VLAN_ATTR(MT7530_VLAN_TRANSPARENT) |
1253 		   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1254 
1255 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1256 		if (dsa_is_user_port(ds, i) &&
1257 		    dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
1258 			all_user_ports_removed = false;
1259 			break;
1260 		}
1261 	}
1262 
1263 	/* CPU port also does the same thing until all user ports belonging to
1264 	 * the CPU port get out of VLAN filtering mode.
1265 	 */
1266 	if (all_user_ports_removed) {
1267 		mt7530_write(priv, MT7530_PCR_P(MT7530_CPU_PORT),
1268 			     PCR_MATRIX(dsa_user_ports(priv->ds)));
1269 		mt7530_write(priv, MT7530_PVC_P(MT7530_CPU_PORT), PORT_SPEC_TAG
1270 			     | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1271 	}
1272 }
1273 
1274 static void
1275 mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
1276 {
1277 	struct mt7530_priv *priv = ds->priv;
1278 
1279 	/* Trapped into security mode allows packet forwarding through VLAN
1280 	 * table lookup. CPU port is set to fallback mode to let untagged
1281 	 * frames pass through.
1282 	 */
1283 	if (dsa_is_cpu_port(ds, port))
1284 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1285 			   MT7530_PORT_FALLBACK_MODE);
1286 	else
1287 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1288 			   MT7530_PORT_SECURITY_MODE);
1289 
1290 	/* Set the port as a user port which is to be able to recognize VID
1291 	 * from incoming packets before fetching entry within the VLAN table.
1292 	 */
1293 	mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
1294 		   VLAN_ATTR(MT7530_VLAN_USER) |
1295 		   PVC_EG_TAG(MT7530_VLAN_EG_DISABLED));
1296 }
1297 
1298 static void
1299 mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
1300 			 struct net_device *bridge)
1301 {
1302 	struct mt7530_priv *priv = ds->priv;
1303 	int i;
1304 
1305 	mutex_lock(&priv->reg_mutex);
1306 
1307 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1308 		/* Remove this port from the port matrix of the other ports
1309 		 * in the same bridge. If the port is disabled, port matrix
1310 		 * is kept and not being setup until the port becomes enabled.
1311 		 * And the other port's port matrix cannot be broken when the
1312 		 * other port is still a VLAN-aware port.
1313 		 */
1314 		if (dsa_is_user_port(ds, i) && i != port &&
1315 		   !dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
1316 			if (dsa_to_port(ds, i)->bridge_dev != bridge)
1317 				continue;
1318 			if (priv->ports[i].enable)
1319 				mt7530_clear(priv, MT7530_PCR_P(i),
1320 					     PCR_MATRIX(BIT(port)));
1321 			priv->ports[i].pm &= ~PCR_MATRIX(BIT(port));
1322 		}
1323 	}
1324 
1325 	/* Set the cpu port to be the only one in the port matrix of
1326 	 * this port.
1327 	 */
1328 	if (priv->ports[port].enable)
1329 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1330 			   PCR_MATRIX(BIT(MT7530_CPU_PORT)));
1331 	priv->ports[port].pm = PCR_MATRIX(BIT(MT7530_CPU_PORT));
1332 
1333 	mutex_unlock(&priv->reg_mutex);
1334 }
1335 
1336 static int
1337 mt7530_port_fdb_add(struct dsa_switch *ds, int port,
1338 		    const unsigned char *addr, u16 vid)
1339 {
1340 	struct mt7530_priv *priv = ds->priv;
1341 	int ret;
1342 	u8 port_mask = BIT(port);
1343 
1344 	mutex_lock(&priv->reg_mutex);
1345 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1346 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1347 	mutex_unlock(&priv->reg_mutex);
1348 
1349 	return ret;
1350 }
1351 
1352 static int
1353 mt7530_port_fdb_del(struct dsa_switch *ds, int port,
1354 		    const unsigned char *addr, u16 vid)
1355 {
1356 	struct mt7530_priv *priv = ds->priv;
1357 	int ret;
1358 	u8 port_mask = BIT(port);
1359 
1360 	mutex_lock(&priv->reg_mutex);
1361 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
1362 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1363 	mutex_unlock(&priv->reg_mutex);
1364 
1365 	return ret;
1366 }
1367 
1368 static int
1369 mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
1370 		     dsa_fdb_dump_cb_t *cb, void *data)
1371 {
1372 	struct mt7530_priv *priv = ds->priv;
1373 	struct mt7530_fdb _fdb = { 0 };
1374 	int cnt = MT7530_NUM_FDB_RECORDS;
1375 	int ret = 0;
1376 	u32 rsp = 0;
1377 
1378 	mutex_lock(&priv->reg_mutex);
1379 
1380 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
1381 	if (ret < 0)
1382 		goto err;
1383 
1384 	do {
1385 		if (rsp & ATC_SRCH_HIT) {
1386 			mt7530_fdb_read(priv, &_fdb);
1387 			if (_fdb.port_mask & BIT(port)) {
1388 				ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
1389 					 data);
1390 				if (ret < 0)
1391 					break;
1392 			}
1393 		}
1394 	} while (--cnt &&
1395 		 !(rsp & ATC_SRCH_END) &&
1396 		 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
1397 err:
1398 	mutex_unlock(&priv->reg_mutex);
1399 
1400 	return 0;
1401 }
1402 
1403 static int
1404 mt7530_port_mdb_add(struct dsa_switch *ds, int port,
1405 		    const struct switchdev_obj_port_mdb *mdb)
1406 {
1407 	struct mt7530_priv *priv = ds->priv;
1408 	const u8 *addr = mdb->addr;
1409 	u16 vid = mdb->vid;
1410 	u8 port_mask = 0;
1411 	int ret;
1412 
1413 	mutex_lock(&priv->reg_mutex);
1414 
1415 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1416 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1417 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1418 			    & PORT_MAP_MASK;
1419 
1420 	port_mask |= BIT(port);
1421 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1422 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1423 
1424 	mutex_unlock(&priv->reg_mutex);
1425 
1426 	return ret;
1427 }
1428 
1429 static int
1430 mt7530_port_mdb_del(struct dsa_switch *ds, int port,
1431 		    const struct switchdev_obj_port_mdb *mdb)
1432 {
1433 	struct mt7530_priv *priv = ds->priv;
1434 	const u8 *addr = mdb->addr;
1435 	u16 vid = mdb->vid;
1436 	u8 port_mask = 0;
1437 	int ret;
1438 
1439 	mutex_lock(&priv->reg_mutex);
1440 
1441 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1442 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1443 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1444 			    & PORT_MAP_MASK;
1445 
1446 	port_mask &= ~BIT(port);
1447 	mt7530_fdb_write(priv, vid, port_mask, addr, -1,
1448 			 port_mask ? STATIC_ENT : STATIC_EMP);
1449 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1450 
1451 	mutex_unlock(&priv->reg_mutex);
1452 
1453 	return ret;
1454 }
1455 
1456 static int
1457 mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
1458 {
1459 	struct mt7530_dummy_poll p;
1460 	u32 val;
1461 	int ret;
1462 
1463 	val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
1464 	mt7530_write(priv, MT7530_VTCR, val);
1465 
1466 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
1467 	ret = readx_poll_timeout(_mt7530_read, &p, val,
1468 				 !(val & VTCR_BUSY), 20, 20000);
1469 	if (ret < 0) {
1470 		dev_err(priv->dev, "poll timeout\n");
1471 		return ret;
1472 	}
1473 
1474 	val = mt7530_read(priv, MT7530_VTCR);
1475 	if (val & VTCR_INVALID) {
1476 		dev_err(priv->dev, "read VTCR invalid\n");
1477 		return -EINVAL;
1478 	}
1479 
1480 	return 0;
1481 }
1482 
1483 static int
1484 mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering,
1485 			   struct netlink_ext_ack *extack)
1486 {
1487 	if (vlan_filtering) {
1488 		/* The port is being kept as VLAN-unaware port when bridge is
1489 		 * set up with vlan_filtering not being set, Otherwise, the
1490 		 * port and the corresponding CPU port is required the setup
1491 		 * for becoming a VLAN-aware port.
1492 		 */
1493 		mt7530_port_set_vlan_aware(ds, port);
1494 		mt7530_port_set_vlan_aware(ds, MT7530_CPU_PORT);
1495 	} else {
1496 		mt7530_port_set_vlan_unaware(ds, port);
1497 	}
1498 
1499 	return 0;
1500 }
1501 
1502 static void
1503 mt7530_hw_vlan_add(struct mt7530_priv *priv,
1504 		   struct mt7530_hw_vlan_entry *entry)
1505 {
1506 	u8 new_members;
1507 	u32 val;
1508 
1509 	new_members = entry->old_members | BIT(entry->port) |
1510 		      BIT(MT7530_CPU_PORT);
1511 
1512 	/* Validate the entry with independent learning, create egress tag per
1513 	 * VLAN and joining the port as one of the port members.
1514 	 */
1515 	val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | VLAN_VALID;
1516 	mt7530_write(priv, MT7530_VAWD1, val);
1517 
1518 	/* Decide whether adding tag or not for those outgoing packets from the
1519 	 * port inside the VLAN.
1520 	 */
1521 	val = entry->untagged ? MT7530_VLAN_EGRESS_UNTAG :
1522 				MT7530_VLAN_EGRESS_TAG;
1523 	mt7530_rmw(priv, MT7530_VAWD2,
1524 		   ETAG_CTRL_P_MASK(entry->port),
1525 		   ETAG_CTRL_P(entry->port, val));
1526 
1527 	/* CPU port is always taken as a tagged port for serving more than one
1528 	 * VLANs across and also being applied with egress type stack mode for
1529 	 * that VLAN tags would be appended after hardware special tag used as
1530 	 * DSA tag.
1531 	 */
1532 	mt7530_rmw(priv, MT7530_VAWD2,
1533 		   ETAG_CTRL_P_MASK(MT7530_CPU_PORT),
1534 		   ETAG_CTRL_P(MT7530_CPU_PORT,
1535 			       MT7530_VLAN_EGRESS_STACK));
1536 }
1537 
1538 static void
1539 mt7530_hw_vlan_del(struct mt7530_priv *priv,
1540 		   struct mt7530_hw_vlan_entry *entry)
1541 {
1542 	u8 new_members;
1543 	u32 val;
1544 
1545 	new_members = entry->old_members & ~BIT(entry->port);
1546 
1547 	val = mt7530_read(priv, MT7530_VAWD1);
1548 	if (!(val & VLAN_VALID)) {
1549 		dev_err(priv->dev,
1550 			"Cannot be deleted due to invalid entry\n");
1551 		return;
1552 	}
1553 
1554 	/* If certain member apart from CPU port is still alive in the VLAN,
1555 	 * the entry would be kept valid. Otherwise, the entry is got to be
1556 	 * disabled.
1557 	 */
1558 	if (new_members && new_members != BIT(MT7530_CPU_PORT)) {
1559 		val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
1560 		      VLAN_VALID;
1561 		mt7530_write(priv, MT7530_VAWD1, val);
1562 	} else {
1563 		mt7530_write(priv, MT7530_VAWD1, 0);
1564 		mt7530_write(priv, MT7530_VAWD2, 0);
1565 	}
1566 }
1567 
1568 static void
1569 mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
1570 		      struct mt7530_hw_vlan_entry *entry,
1571 		      mt7530_vlan_op vlan_op)
1572 {
1573 	u32 val;
1574 
1575 	/* Fetch entry */
1576 	mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
1577 
1578 	val = mt7530_read(priv, MT7530_VAWD1);
1579 
1580 	entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
1581 
1582 	/* Manipulate entry */
1583 	vlan_op(priv, entry);
1584 
1585 	/* Flush result to hardware */
1586 	mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
1587 }
1588 
1589 static int
1590 mt7530_port_vlan_add(struct dsa_switch *ds, int port,
1591 		     const struct switchdev_obj_port_vlan *vlan,
1592 		     struct netlink_ext_ack *extack)
1593 {
1594 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1595 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1596 	struct mt7530_hw_vlan_entry new_entry;
1597 	struct mt7530_priv *priv = ds->priv;
1598 
1599 	mutex_lock(&priv->reg_mutex);
1600 
1601 	mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
1602 	mt7530_hw_vlan_update(priv, vlan->vid, &new_entry, mt7530_hw_vlan_add);
1603 
1604 	if (pvid) {
1605 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1606 			   G0_PORT_VID(vlan->vid));
1607 		priv->ports[port].pvid = vlan->vid;
1608 	}
1609 
1610 	mutex_unlock(&priv->reg_mutex);
1611 
1612 	return 0;
1613 }
1614 
1615 static int
1616 mt7530_port_vlan_del(struct dsa_switch *ds, int port,
1617 		     const struct switchdev_obj_port_vlan *vlan)
1618 {
1619 	struct mt7530_hw_vlan_entry target_entry;
1620 	struct mt7530_priv *priv = ds->priv;
1621 	u16 pvid;
1622 
1623 	mutex_lock(&priv->reg_mutex);
1624 
1625 	pvid = priv->ports[port].pvid;
1626 	mt7530_hw_vlan_entry_init(&target_entry, port, 0);
1627 	mt7530_hw_vlan_update(priv, vlan->vid, &target_entry,
1628 			      mt7530_hw_vlan_del);
1629 
1630 	/* PVID is being restored to the default whenever the PVID port
1631 	 * is being removed from the VLAN.
1632 	 */
1633 	if (pvid == vlan->vid)
1634 		pvid = G0_PORT_VID_DEF;
1635 
1636 	mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, pvid);
1637 	priv->ports[port].pvid = pvid;
1638 
1639 	mutex_unlock(&priv->reg_mutex);
1640 
1641 	return 0;
1642 }
1643 
1644 static int mt753x_mirror_port_get(unsigned int id, u32 val)
1645 {
1646 	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_GET(val) :
1647 				   MIRROR_PORT(val);
1648 }
1649 
1650 static int mt753x_mirror_port_set(unsigned int id, u32 val)
1651 {
1652 	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_SET(val) :
1653 				   MIRROR_PORT(val);
1654 }
1655 
1656 static int mt753x_port_mirror_add(struct dsa_switch *ds, int port,
1657 				  struct dsa_mall_mirror_tc_entry *mirror,
1658 				  bool ingress)
1659 {
1660 	struct mt7530_priv *priv = ds->priv;
1661 	int monitor_port;
1662 	u32 val;
1663 
1664 	/* Check for existent entry */
1665 	if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port))
1666 		return -EEXIST;
1667 
1668 	val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1669 
1670 	/* MT7530 only supports one monitor port */
1671 	monitor_port = mt753x_mirror_port_get(priv->id, val);
1672 	if (val & MT753X_MIRROR_EN(priv->id) &&
1673 	    monitor_port != mirror->to_local_port)
1674 		return -EEXIST;
1675 
1676 	val |= MT753X_MIRROR_EN(priv->id);
1677 	val &= ~MT753X_MIRROR_MASK(priv->id);
1678 	val |= mt753x_mirror_port_set(priv->id, mirror->to_local_port);
1679 	mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1680 
1681 	val = mt7530_read(priv, MT7530_PCR_P(port));
1682 	if (ingress) {
1683 		val |= PORT_RX_MIR;
1684 		priv->mirror_rx |= BIT(port);
1685 	} else {
1686 		val |= PORT_TX_MIR;
1687 		priv->mirror_tx |= BIT(port);
1688 	}
1689 	mt7530_write(priv, MT7530_PCR_P(port), val);
1690 
1691 	return 0;
1692 }
1693 
1694 static void mt753x_port_mirror_del(struct dsa_switch *ds, int port,
1695 				   struct dsa_mall_mirror_tc_entry *mirror)
1696 {
1697 	struct mt7530_priv *priv = ds->priv;
1698 	u32 val;
1699 
1700 	val = mt7530_read(priv, MT7530_PCR_P(port));
1701 	if (mirror->ingress) {
1702 		val &= ~PORT_RX_MIR;
1703 		priv->mirror_rx &= ~BIT(port);
1704 	} else {
1705 		val &= ~PORT_TX_MIR;
1706 		priv->mirror_tx &= ~BIT(port);
1707 	}
1708 	mt7530_write(priv, MT7530_PCR_P(port), val);
1709 
1710 	if (!priv->mirror_rx && !priv->mirror_tx) {
1711 		val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1712 		val &= ~MT753X_MIRROR_EN(priv->id);
1713 		mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1714 	}
1715 }
1716 
1717 static enum dsa_tag_protocol
1718 mtk_get_tag_protocol(struct dsa_switch *ds, int port,
1719 		     enum dsa_tag_protocol mp)
1720 {
1721 	struct mt7530_priv *priv = ds->priv;
1722 
1723 	if (port != MT7530_CPU_PORT) {
1724 		dev_warn(priv->dev,
1725 			 "port not matched with tagging CPU port\n");
1726 		return DSA_TAG_PROTO_NONE;
1727 	} else {
1728 		return DSA_TAG_PROTO_MTK;
1729 	}
1730 }
1731 
1732 #ifdef CONFIG_GPIOLIB
1733 static inline u32
1734 mt7530_gpio_to_bit(unsigned int offset)
1735 {
1736 	/* Map GPIO offset to register bit
1737 	 * [ 2: 0]  port 0 LED 0..2 as GPIO 0..2
1738 	 * [ 6: 4]  port 1 LED 0..2 as GPIO 3..5
1739 	 * [10: 8]  port 2 LED 0..2 as GPIO 6..8
1740 	 * [14:12]  port 3 LED 0..2 as GPIO 9..11
1741 	 * [18:16]  port 4 LED 0..2 as GPIO 12..14
1742 	 */
1743 	return BIT(offset + offset / 3);
1744 }
1745 
1746 static int
1747 mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset)
1748 {
1749 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1750 	u32 bit = mt7530_gpio_to_bit(offset);
1751 
1752 	return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit);
1753 }
1754 
1755 static void
1756 mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
1757 {
1758 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1759 	u32 bit = mt7530_gpio_to_bit(offset);
1760 
1761 	if (value)
1762 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1763 	else
1764 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1765 }
1766 
1767 static int
1768 mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
1769 {
1770 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1771 	u32 bit = mt7530_gpio_to_bit(offset);
1772 
1773 	return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ?
1774 		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1775 }
1776 
1777 static int
1778 mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
1779 {
1780 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1781 	u32 bit = mt7530_gpio_to_bit(offset);
1782 
1783 	mt7530_clear(priv, MT7530_LED_GPIO_OE, bit);
1784 	mt7530_clear(priv, MT7530_LED_GPIO_DIR, bit);
1785 
1786 	return 0;
1787 }
1788 
1789 static int
1790 mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value)
1791 {
1792 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1793 	u32 bit = mt7530_gpio_to_bit(offset);
1794 
1795 	mt7530_set(priv, MT7530_LED_GPIO_DIR, bit);
1796 
1797 	if (value)
1798 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1799 	else
1800 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1801 
1802 	mt7530_set(priv, MT7530_LED_GPIO_OE, bit);
1803 
1804 	return 0;
1805 }
1806 
1807 static int
1808 mt7530_setup_gpio(struct mt7530_priv *priv)
1809 {
1810 	struct device *dev = priv->dev;
1811 	struct gpio_chip *gc;
1812 
1813 	gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL);
1814 	if (!gc)
1815 		return -ENOMEM;
1816 
1817 	mt7530_write(priv, MT7530_LED_GPIO_OE, 0);
1818 	mt7530_write(priv, MT7530_LED_GPIO_DIR, 0);
1819 	mt7530_write(priv, MT7530_LED_IO_MODE, 0);
1820 
1821 	gc->label = "mt7530";
1822 	gc->parent = dev;
1823 	gc->owner = THIS_MODULE;
1824 	gc->get_direction = mt7530_gpio_get_direction;
1825 	gc->direction_input = mt7530_gpio_direction_input;
1826 	gc->direction_output = mt7530_gpio_direction_output;
1827 	gc->get = mt7530_gpio_get;
1828 	gc->set = mt7530_gpio_set;
1829 	gc->base = -1;
1830 	gc->ngpio = 15;
1831 	gc->can_sleep = true;
1832 
1833 	return devm_gpiochip_add_data(dev, gc, priv);
1834 }
1835 #endif /* CONFIG_GPIOLIB */
1836 
1837 static irqreturn_t
1838 mt7530_irq_thread_fn(int irq, void *dev_id)
1839 {
1840 	struct mt7530_priv *priv = dev_id;
1841 	bool handled = false;
1842 	u32 val;
1843 	int p;
1844 
1845 	mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
1846 	val = mt7530_mii_read(priv, MT7530_SYS_INT_STS);
1847 	mt7530_mii_write(priv, MT7530_SYS_INT_STS, val);
1848 	mutex_unlock(&priv->bus->mdio_lock);
1849 
1850 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
1851 		if (BIT(p) & val) {
1852 			unsigned int irq;
1853 
1854 			irq = irq_find_mapping(priv->irq_domain, p);
1855 			handle_nested_irq(irq);
1856 			handled = true;
1857 		}
1858 	}
1859 
1860 	return IRQ_RETVAL(handled);
1861 }
1862 
1863 static void
1864 mt7530_irq_mask(struct irq_data *d)
1865 {
1866 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1867 
1868 	priv->irq_enable &= ~BIT(d->hwirq);
1869 }
1870 
1871 static void
1872 mt7530_irq_unmask(struct irq_data *d)
1873 {
1874 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1875 
1876 	priv->irq_enable |= BIT(d->hwirq);
1877 }
1878 
1879 static void
1880 mt7530_irq_bus_lock(struct irq_data *d)
1881 {
1882 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1883 
1884 	mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
1885 }
1886 
1887 static void
1888 mt7530_irq_bus_sync_unlock(struct irq_data *d)
1889 {
1890 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1891 
1892 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
1893 	mutex_unlock(&priv->bus->mdio_lock);
1894 }
1895 
1896 static struct irq_chip mt7530_irq_chip = {
1897 	.name = KBUILD_MODNAME,
1898 	.irq_mask = mt7530_irq_mask,
1899 	.irq_unmask = mt7530_irq_unmask,
1900 	.irq_bus_lock = mt7530_irq_bus_lock,
1901 	.irq_bus_sync_unlock = mt7530_irq_bus_sync_unlock,
1902 };
1903 
1904 static int
1905 mt7530_irq_map(struct irq_domain *domain, unsigned int irq,
1906 	       irq_hw_number_t hwirq)
1907 {
1908 	irq_set_chip_data(irq, domain->host_data);
1909 	irq_set_chip_and_handler(irq, &mt7530_irq_chip, handle_simple_irq);
1910 	irq_set_nested_thread(irq, true);
1911 	irq_set_noprobe(irq);
1912 
1913 	return 0;
1914 }
1915 
1916 static const struct irq_domain_ops mt7530_irq_domain_ops = {
1917 	.map = mt7530_irq_map,
1918 	.xlate = irq_domain_xlate_onecell,
1919 };
1920 
1921 static void
1922 mt7530_setup_mdio_irq(struct mt7530_priv *priv)
1923 {
1924 	struct dsa_switch *ds = priv->ds;
1925 	int p;
1926 
1927 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
1928 		if (BIT(p) & ds->phys_mii_mask) {
1929 			unsigned int irq;
1930 
1931 			irq = irq_create_mapping(priv->irq_domain, p);
1932 			ds->slave_mii_bus->irq[p] = irq;
1933 		}
1934 	}
1935 }
1936 
1937 static int
1938 mt7530_setup_irq(struct mt7530_priv *priv)
1939 {
1940 	struct device *dev = priv->dev;
1941 	struct device_node *np = dev->of_node;
1942 	int ret;
1943 
1944 	if (!of_property_read_bool(np, "interrupt-controller")) {
1945 		dev_info(dev, "no interrupt support\n");
1946 		return 0;
1947 	}
1948 
1949 	priv->irq = of_irq_get(np, 0);
1950 	if (priv->irq <= 0) {
1951 		dev_err(dev, "failed to get parent IRQ: %d\n", priv->irq);
1952 		return priv->irq ? : -EINVAL;
1953 	}
1954 
1955 	priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
1956 						 &mt7530_irq_domain_ops, priv);
1957 	if (!priv->irq_domain) {
1958 		dev_err(dev, "failed to create IRQ domain\n");
1959 		return -ENOMEM;
1960 	}
1961 
1962 	/* This register must be set for MT7530 to properly fire interrupts */
1963 	if (priv->id != ID_MT7531)
1964 		mt7530_set(priv, MT7530_TOP_SIG_CTRL, TOP_SIG_CTRL_NORMAL);
1965 
1966 	ret = request_threaded_irq(priv->irq, NULL, mt7530_irq_thread_fn,
1967 				   IRQF_ONESHOT, KBUILD_MODNAME, priv);
1968 	if (ret) {
1969 		irq_domain_remove(priv->irq_domain);
1970 		dev_err(dev, "failed to request IRQ: %d\n", ret);
1971 		return ret;
1972 	}
1973 
1974 	return 0;
1975 }
1976 
1977 static void
1978 mt7530_free_mdio_irq(struct mt7530_priv *priv)
1979 {
1980 	int p;
1981 
1982 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
1983 		if (BIT(p) & priv->ds->phys_mii_mask) {
1984 			unsigned int irq;
1985 
1986 			irq = irq_find_mapping(priv->irq_domain, p);
1987 			irq_dispose_mapping(irq);
1988 		}
1989 	}
1990 }
1991 
1992 static void
1993 mt7530_free_irq_common(struct mt7530_priv *priv)
1994 {
1995 	free_irq(priv->irq, priv);
1996 	irq_domain_remove(priv->irq_domain);
1997 }
1998 
1999 static void
2000 mt7530_free_irq(struct mt7530_priv *priv)
2001 {
2002 	mt7530_free_mdio_irq(priv);
2003 	mt7530_free_irq_common(priv);
2004 }
2005 
2006 static int
2007 mt7530_setup_mdio(struct mt7530_priv *priv)
2008 {
2009 	struct dsa_switch *ds = priv->ds;
2010 	struct device *dev = priv->dev;
2011 	struct mii_bus *bus;
2012 	static int idx;
2013 	int ret;
2014 
2015 	bus = devm_mdiobus_alloc(dev);
2016 	if (!bus)
2017 		return -ENOMEM;
2018 
2019 	ds->slave_mii_bus = bus;
2020 	bus->priv = priv;
2021 	bus->name = KBUILD_MODNAME "-mii";
2022 	snprintf(bus->id, MII_BUS_ID_SIZE, KBUILD_MODNAME "-%d", idx++);
2023 	bus->read = mt753x_phy_read;
2024 	bus->write = mt753x_phy_write;
2025 	bus->parent = dev;
2026 	bus->phy_mask = ~ds->phys_mii_mask;
2027 
2028 	if (priv->irq)
2029 		mt7530_setup_mdio_irq(priv);
2030 
2031 	ret = mdiobus_register(bus);
2032 	if (ret) {
2033 		dev_err(dev, "failed to register MDIO bus: %d\n", ret);
2034 		if (priv->irq)
2035 			mt7530_free_mdio_irq(priv);
2036 	}
2037 
2038 	return ret;
2039 }
2040 
2041 static int
2042 mt7530_setup(struct dsa_switch *ds)
2043 {
2044 	struct mt7530_priv *priv = ds->priv;
2045 	struct device_node *phy_node;
2046 	struct device_node *mac_np;
2047 	struct mt7530_dummy_poll p;
2048 	phy_interface_t interface;
2049 	struct device_node *dn;
2050 	u32 id, val;
2051 	int ret, i;
2052 
2053 	/* The parent node of master netdev which holds the common system
2054 	 * controller also is the container for two GMACs nodes representing
2055 	 * as two netdev instances.
2056 	 */
2057 	dn = dsa_to_port(ds, MT7530_CPU_PORT)->master->dev.of_node->parent;
2058 	ds->mtu_enforcement_ingress = true;
2059 
2060 	if (priv->id == ID_MT7530) {
2061 		regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
2062 		ret = regulator_enable(priv->core_pwr);
2063 		if (ret < 0) {
2064 			dev_err(priv->dev,
2065 				"Failed to enable core power: %d\n", ret);
2066 			return ret;
2067 		}
2068 
2069 		regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
2070 		ret = regulator_enable(priv->io_pwr);
2071 		if (ret < 0) {
2072 			dev_err(priv->dev, "Failed to enable io pwr: %d\n",
2073 				ret);
2074 			return ret;
2075 		}
2076 	}
2077 
2078 	/* Reset whole chip through gpio pin or memory-mapped registers for
2079 	 * different type of hardware
2080 	 */
2081 	if (priv->mcm) {
2082 		reset_control_assert(priv->rstc);
2083 		usleep_range(1000, 1100);
2084 		reset_control_deassert(priv->rstc);
2085 	} else {
2086 		gpiod_set_value_cansleep(priv->reset, 0);
2087 		usleep_range(1000, 1100);
2088 		gpiod_set_value_cansleep(priv->reset, 1);
2089 	}
2090 
2091 	/* Waiting for MT7530 got to stable */
2092 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2093 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2094 				 20, 1000000);
2095 	if (ret < 0) {
2096 		dev_err(priv->dev, "reset timeout\n");
2097 		return ret;
2098 	}
2099 
2100 	id = mt7530_read(priv, MT7530_CREV);
2101 	id >>= CHIP_NAME_SHIFT;
2102 	if (id != MT7530_ID) {
2103 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2104 		return -ENODEV;
2105 	}
2106 
2107 	/* Reset the switch through internal reset */
2108 	mt7530_write(priv, MT7530_SYS_CTRL,
2109 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2110 		     SYS_CTRL_REG_RST);
2111 
2112 	/* Enable Port 6 only; P5 as GMAC5 which currently is not supported */
2113 	val = mt7530_read(priv, MT7530_MHWTRAP);
2114 	val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
2115 	val |= MHWTRAP_MANUAL;
2116 	mt7530_write(priv, MT7530_MHWTRAP, val);
2117 
2118 	priv->p6_interface = PHY_INTERFACE_MODE_NA;
2119 
2120 	/* Enable and reset MIB counters */
2121 	mt7530_mib_reset(ds);
2122 
2123 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2124 		/* Disable forwarding by default on all ports */
2125 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2126 			   PCR_MATRIX_CLR);
2127 
2128 		if (dsa_is_cpu_port(ds, i)) {
2129 			ret = mt753x_cpu_port_enable(ds, i);
2130 			if (ret)
2131 				return ret;
2132 		} else {
2133 			mt7530_port_disable(ds, i);
2134 
2135 			/* Disable learning by default on all user ports */
2136 			mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2137 		}
2138 		/* Enable consistent egress tag */
2139 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2140 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2141 	}
2142 
2143 	/* Setup port 5 */
2144 	priv->p5_intf_sel = P5_DISABLED;
2145 	interface = PHY_INTERFACE_MODE_NA;
2146 
2147 	if (!dsa_is_unused_port(ds, 5)) {
2148 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2149 		ret = of_get_phy_mode(dsa_to_port(ds, 5)->dn, &interface);
2150 		if (ret && ret != -ENODEV)
2151 			return ret;
2152 	} else {
2153 		/* Scan the ethernet nodes. look for GMAC1, lookup used phy */
2154 		for_each_child_of_node(dn, mac_np) {
2155 			if (!of_device_is_compatible(mac_np,
2156 						     "mediatek,eth-mac"))
2157 				continue;
2158 
2159 			ret = of_property_read_u32(mac_np, "reg", &id);
2160 			if (ret < 0 || id != 1)
2161 				continue;
2162 
2163 			phy_node = of_parse_phandle(mac_np, "phy-handle", 0);
2164 			if (!phy_node)
2165 				continue;
2166 
2167 			if (phy_node->parent == priv->dev->of_node->parent) {
2168 				ret = of_get_phy_mode(mac_np, &interface);
2169 				if (ret && ret != -ENODEV) {
2170 					of_node_put(mac_np);
2171 					return ret;
2172 				}
2173 				id = of_mdio_parse_addr(ds->dev, phy_node);
2174 				if (id == 0)
2175 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P0;
2176 				if (id == 4)
2177 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P4;
2178 			}
2179 			of_node_put(mac_np);
2180 			of_node_put(phy_node);
2181 			break;
2182 		}
2183 	}
2184 
2185 #ifdef CONFIG_GPIOLIB
2186 	if (of_property_read_bool(priv->dev->of_node, "gpio-controller")) {
2187 		ret = mt7530_setup_gpio(priv);
2188 		if (ret)
2189 			return ret;
2190 	}
2191 #endif /* CONFIG_GPIOLIB */
2192 
2193 	mt7530_setup_port5(ds, interface);
2194 
2195 	/* Flush the FDB table */
2196 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2197 	if (ret < 0)
2198 		return ret;
2199 
2200 	return 0;
2201 }
2202 
2203 static int
2204 mt7531_setup(struct dsa_switch *ds)
2205 {
2206 	struct mt7530_priv *priv = ds->priv;
2207 	struct mt7530_dummy_poll p;
2208 	u32 val, id;
2209 	int ret, i;
2210 
2211 	/* Reset whole chip through gpio pin or memory-mapped registers for
2212 	 * different type of hardware
2213 	 */
2214 	if (priv->mcm) {
2215 		reset_control_assert(priv->rstc);
2216 		usleep_range(1000, 1100);
2217 		reset_control_deassert(priv->rstc);
2218 	} else {
2219 		gpiod_set_value_cansleep(priv->reset, 0);
2220 		usleep_range(1000, 1100);
2221 		gpiod_set_value_cansleep(priv->reset, 1);
2222 	}
2223 
2224 	/* Waiting for MT7530 got to stable */
2225 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2226 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2227 				 20, 1000000);
2228 	if (ret < 0) {
2229 		dev_err(priv->dev, "reset timeout\n");
2230 		return ret;
2231 	}
2232 
2233 	id = mt7530_read(priv, MT7531_CREV);
2234 	id >>= CHIP_NAME_SHIFT;
2235 
2236 	if (id != MT7531_ID) {
2237 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2238 		return -ENODEV;
2239 	}
2240 
2241 	/* Reset the switch through internal reset */
2242 	mt7530_write(priv, MT7530_SYS_CTRL,
2243 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2244 		     SYS_CTRL_REG_RST);
2245 
2246 	if (mt7531_dual_sgmii_supported(priv)) {
2247 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5_SGMII;
2248 
2249 		/* Let ds->slave_mii_bus be able to access external phy. */
2250 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK,
2251 			   MT7531_EXT_P_MDC_11);
2252 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK,
2253 			   MT7531_EXT_P_MDIO_12);
2254 	} else {
2255 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2256 	}
2257 	dev_dbg(ds->dev, "P5 support %s interface\n",
2258 		p5_intf_modes(priv->p5_intf_sel));
2259 
2260 	mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK,
2261 		   MT7531_GPIO0_INTERRUPT);
2262 
2263 	/* Let phylink decide the interface later. */
2264 	priv->p5_interface = PHY_INTERFACE_MODE_NA;
2265 	priv->p6_interface = PHY_INTERFACE_MODE_NA;
2266 
2267 	/* Enable PHY core PLL, since phy_device has not yet been created
2268 	 * provided for phy_[read,write]_mmd_indirect is called, we provide
2269 	 * our own mt7531_ind_mmd_phy_[read,write] to complete this
2270 	 * function.
2271 	 */
2272 	val = mt7531_ind_c45_phy_read(priv, MT753X_CTRL_PHY_ADDR,
2273 				      MDIO_MMD_VEND2, CORE_PLL_GROUP4);
2274 	val |= MT7531_PHY_PLL_BYPASS_MODE;
2275 	val &= ~MT7531_PHY_PLL_OFF;
2276 	mt7531_ind_c45_phy_write(priv, MT753X_CTRL_PHY_ADDR, MDIO_MMD_VEND2,
2277 				 CORE_PLL_GROUP4, val);
2278 
2279 	/* BPDU to CPU port */
2280 	mt7530_rmw(priv, MT7531_CFC, MT7531_CPU_PMAP_MASK,
2281 		   BIT(MT7530_CPU_PORT));
2282 	mt7530_rmw(priv, MT753X_BPC, MT753X_BPDU_PORT_FW_MASK,
2283 		   MT753X_BPDU_CPU_ONLY);
2284 
2285 	/* Enable and reset MIB counters */
2286 	mt7530_mib_reset(ds);
2287 
2288 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2289 		/* Disable forwarding by default on all ports */
2290 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2291 			   PCR_MATRIX_CLR);
2292 
2293 		mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR);
2294 
2295 		if (dsa_is_cpu_port(ds, i)) {
2296 			ret = mt753x_cpu_port_enable(ds, i);
2297 			if (ret)
2298 				return ret;
2299 		} else {
2300 			mt7530_port_disable(ds, i);
2301 
2302 			/* Disable learning by default on all user ports */
2303 			mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2304 		}
2305 
2306 		/* Enable consistent egress tag */
2307 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2308 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2309 	}
2310 
2311 	ds->mtu_enforcement_ingress = true;
2312 
2313 	/* Flush the FDB table */
2314 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2315 	if (ret < 0)
2316 		return ret;
2317 
2318 	return 0;
2319 }
2320 
2321 static bool
2322 mt7530_phy_mode_supported(struct dsa_switch *ds, int port,
2323 			  const struct phylink_link_state *state)
2324 {
2325 	struct mt7530_priv *priv = ds->priv;
2326 
2327 	switch (port) {
2328 	case 0 ... 4: /* Internal phy */
2329 		if (state->interface != PHY_INTERFACE_MODE_GMII)
2330 			return false;
2331 		break;
2332 	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2333 		if (!phy_interface_mode_is_rgmii(state->interface) &&
2334 		    state->interface != PHY_INTERFACE_MODE_MII &&
2335 		    state->interface != PHY_INTERFACE_MODE_GMII)
2336 			return false;
2337 		break;
2338 	case 6: /* 1st cpu port */
2339 		if (state->interface != PHY_INTERFACE_MODE_RGMII &&
2340 		    state->interface != PHY_INTERFACE_MODE_TRGMII)
2341 			return false;
2342 		break;
2343 	default:
2344 		dev_err(priv->dev, "%s: unsupported port: %i\n", __func__,
2345 			port);
2346 		return false;
2347 	}
2348 
2349 	return true;
2350 }
2351 
2352 static bool mt7531_is_rgmii_port(struct mt7530_priv *priv, u32 port)
2353 {
2354 	return (port == 5) && (priv->p5_intf_sel != P5_INTF_SEL_GMAC5_SGMII);
2355 }
2356 
2357 static bool
2358 mt7531_phy_mode_supported(struct dsa_switch *ds, int port,
2359 			  const struct phylink_link_state *state)
2360 {
2361 	struct mt7530_priv *priv = ds->priv;
2362 
2363 	switch (port) {
2364 	case 0 ... 4: /* Internal phy */
2365 		if (state->interface != PHY_INTERFACE_MODE_GMII)
2366 			return false;
2367 		break;
2368 	case 5: /* 2nd cpu port supports either rgmii or sgmii/8023z */
2369 		if (mt7531_is_rgmii_port(priv, port))
2370 			return phy_interface_mode_is_rgmii(state->interface);
2371 		fallthrough;
2372 	case 6: /* 1st cpu port supports sgmii/8023z only */
2373 		if (state->interface != PHY_INTERFACE_MODE_SGMII &&
2374 		    !phy_interface_mode_is_8023z(state->interface))
2375 			return false;
2376 		break;
2377 	default:
2378 		dev_err(priv->dev, "%s: unsupported port: %i\n", __func__,
2379 			port);
2380 		return false;
2381 	}
2382 
2383 	return true;
2384 }
2385 
2386 static bool
2387 mt753x_phy_mode_supported(struct dsa_switch *ds, int port,
2388 			  const struct phylink_link_state *state)
2389 {
2390 	struct mt7530_priv *priv = ds->priv;
2391 
2392 	return priv->info->phy_mode_supported(ds, port, state);
2393 }
2394 
2395 static int
2396 mt753x_pad_setup(struct dsa_switch *ds, const struct phylink_link_state *state)
2397 {
2398 	struct mt7530_priv *priv = ds->priv;
2399 
2400 	return priv->info->pad_setup(ds, state->interface);
2401 }
2402 
2403 static int
2404 mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2405 		  phy_interface_t interface)
2406 {
2407 	struct mt7530_priv *priv = ds->priv;
2408 
2409 	/* Only need to setup port5. */
2410 	if (port != 5)
2411 		return 0;
2412 
2413 	mt7530_setup_port5(priv->ds, interface);
2414 
2415 	return 0;
2416 }
2417 
2418 static int mt7531_rgmii_setup(struct mt7530_priv *priv, u32 port,
2419 			      phy_interface_t interface,
2420 			      struct phy_device *phydev)
2421 {
2422 	u32 val;
2423 
2424 	if (!mt7531_is_rgmii_port(priv, port)) {
2425 		dev_err(priv->dev, "RGMII mode is not available for port %d\n",
2426 			port);
2427 		return -EINVAL;
2428 	}
2429 
2430 	val = mt7530_read(priv, MT7531_CLKGEN_CTRL);
2431 	val |= GP_CLK_EN;
2432 	val &= ~GP_MODE_MASK;
2433 	val |= GP_MODE(MT7531_GP_MODE_RGMII);
2434 	val &= ~CLK_SKEW_IN_MASK;
2435 	val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG);
2436 	val &= ~CLK_SKEW_OUT_MASK;
2437 	val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG);
2438 	val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY;
2439 
2440 	/* Do not adjust rgmii delay when vendor phy driver presents. */
2441 	if (!phydev || phy_driver_is_genphy(phydev)) {
2442 		val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY);
2443 		switch (interface) {
2444 		case PHY_INTERFACE_MODE_RGMII:
2445 			val |= TXCLK_NO_REVERSE;
2446 			val |= RXCLK_NO_DELAY;
2447 			break;
2448 		case PHY_INTERFACE_MODE_RGMII_RXID:
2449 			val |= TXCLK_NO_REVERSE;
2450 			break;
2451 		case PHY_INTERFACE_MODE_RGMII_TXID:
2452 			val |= RXCLK_NO_DELAY;
2453 			break;
2454 		case PHY_INTERFACE_MODE_RGMII_ID:
2455 			break;
2456 		default:
2457 			return -EINVAL;
2458 		}
2459 	}
2460 	mt7530_write(priv, MT7531_CLKGEN_CTRL, val);
2461 
2462 	return 0;
2463 }
2464 
2465 static void mt7531_sgmii_validate(struct mt7530_priv *priv, int port,
2466 				  unsigned long *supported)
2467 {
2468 	/* Port5 supports ethier RGMII or SGMII.
2469 	 * Port6 supports SGMII only.
2470 	 */
2471 	switch (port) {
2472 	case 5:
2473 		if (mt7531_is_rgmii_port(priv, port))
2474 			break;
2475 		fallthrough;
2476 	case 6:
2477 		phylink_set(supported, 1000baseX_Full);
2478 		phylink_set(supported, 2500baseX_Full);
2479 		phylink_set(supported, 2500baseT_Full);
2480 	}
2481 }
2482 
2483 static void
2484 mt7531_sgmii_link_up_force(struct dsa_switch *ds, int port,
2485 			   unsigned int mode, phy_interface_t interface,
2486 			   int speed, int duplex)
2487 {
2488 	struct mt7530_priv *priv = ds->priv;
2489 	unsigned int val;
2490 
2491 	/* For adjusting speed and duplex of SGMII force mode. */
2492 	if (interface != PHY_INTERFACE_MODE_SGMII ||
2493 	    phylink_autoneg_inband(mode))
2494 		return;
2495 
2496 	/* SGMII force mode setting */
2497 	val = mt7530_read(priv, MT7531_SGMII_MODE(port));
2498 	val &= ~MT7531_SGMII_IF_MODE_MASK;
2499 
2500 	switch (speed) {
2501 	case SPEED_10:
2502 		val |= MT7531_SGMII_FORCE_SPEED_10;
2503 		break;
2504 	case SPEED_100:
2505 		val |= MT7531_SGMII_FORCE_SPEED_100;
2506 		break;
2507 	case SPEED_1000:
2508 		val |= MT7531_SGMII_FORCE_SPEED_1000;
2509 		break;
2510 	}
2511 
2512 	/* MT7531 SGMII 1G force mode can only work in full duplex mode,
2513 	 * no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not.
2514 	 */
2515 	if ((speed == SPEED_10 || speed == SPEED_100) &&
2516 	    duplex != DUPLEX_FULL)
2517 		val |= MT7531_SGMII_FORCE_HALF_DUPLEX;
2518 
2519 	mt7530_write(priv, MT7531_SGMII_MODE(port), val);
2520 }
2521 
2522 static bool mt753x_is_mac_port(u32 port)
2523 {
2524 	return (port == 5 || port == 6);
2525 }
2526 
2527 static int mt7531_sgmii_setup_mode_force(struct mt7530_priv *priv, u32 port,
2528 					 phy_interface_t interface)
2529 {
2530 	u32 val;
2531 
2532 	if (!mt753x_is_mac_port(port))
2533 		return -EINVAL;
2534 
2535 	mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port),
2536 		   MT7531_SGMII_PHYA_PWD);
2537 
2538 	val = mt7530_read(priv, MT7531_PHYA_CTRL_SIGNAL3(port));
2539 	val &= ~MT7531_RG_TPHY_SPEED_MASK;
2540 	/* Setup 2.5 times faster clock for 2.5Gbps data speeds with 10B/8B
2541 	 * encoding.
2542 	 */
2543 	val |= (interface == PHY_INTERFACE_MODE_2500BASEX) ?
2544 		MT7531_RG_TPHY_SPEED_3_125G : MT7531_RG_TPHY_SPEED_1_25G;
2545 	mt7530_write(priv, MT7531_PHYA_CTRL_SIGNAL3(port), val);
2546 
2547 	mt7530_clear(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE);
2548 
2549 	/* MT7531 SGMII 1G and 2.5G force mode can only work in full duplex
2550 	 * mode, no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not.
2551 	 */
2552 	mt7530_rmw(priv, MT7531_SGMII_MODE(port),
2553 		   MT7531_SGMII_IF_MODE_MASK | MT7531_SGMII_REMOTE_FAULT_DIS,
2554 		   MT7531_SGMII_FORCE_SPEED_1000);
2555 
2556 	mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0);
2557 
2558 	return 0;
2559 }
2560 
2561 static int mt7531_sgmii_setup_mode_an(struct mt7530_priv *priv, int port,
2562 				      phy_interface_t interface)
2563 {
2564 	if (!mt753x_is_mac_port(port))
2565 		return -EINVAL;
2566 
2567 	mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port),
2568 		   MT7531_SGMII_PHYA_PWD);
2569 
2570 	mt7530_rmw(priv, MT7531_PHYA_CTRL_SIGNAL3(port),
2571 		   MT7531_RG_TPHY_SPEED_MASK, MT7531_RG_TPHY_SPEED_1_25G);
2572 
2573 	mt7530_set(priv, MT7531_SGMII_MODE(port),
2574 		   MT7531_SGMII_REMOTE_FAULT_DIS |
2575 		   MT7531_SGMII_SPEED_DUPLEX_AN);
2576 
2577 	mt7530_rmw(priv, MT7531_PCS_SPEED_ABILITY(port),
2578 		   MT7531_SGMII_TX_CONFIG_MASK, 1);
2579 
2580 	mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE);
2581 
2582 	mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_RESTART);
2583 
2584 	mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0);
2585 
2586 	return 0;
2587 }
2588 
2589 static void mt7531_sgmii_restart_an(struct dsa_switch *ds, int port)
2590 {
2591 	struct mt7530_priv *priv = ds->priv;
2592 	u32 val;
2593 
2594 	/* Only restart AN when AN is enabled */
2595 	val = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
2596 	if (val & MT7531_SGMII_AN_ENABLE) {
2597 		val |= MT7531_SGMII_AN_RESTART;
2598 		mt7530_write(priv, MT7531_PCS_CONTROL_1(port), val);
2599 	}
2600 }
2601 
2602 static int
2603 mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2604 		  phy_interface_t interface)
2605 {
2606 	struct mt7530_priv *priv = ds->priv;
2607 	struct phy_device *phydev;
2608 	struct dsa_port *dp;
2609 
2610 	if (!mt753x_is_mac_port(port)) {
2611 		dev_err(priv->dev, "port %d is not a MAC port\n", port);
2612 		return -EINVAL;
2613 	}
2614 
2615 	switch (interface) {
2616 	case PHY_INTERFACE_MODE_RGMII:
2617 	case PHY_INTERFACE_MODE_RGMII_ID:
2618 	case PHY_INTERFACE_MODE_RGMII_RXID:
2619 	case PHY_INTERFACE_MODE_RGMII_TXID:
2620 		dp = dsa_to_port(ds, port);
2621 		phydev = dp->slave->phydev;
2622 		return mt7531_rgmii_setup(priv, port, interface, phydev);
2623 	case PHY_INTERFACE_MODE_SGMII:
2624 		return mt7531_sgmii_setup_mode_an(priv, port, interface);
2625 	case PHY_INTERFACE_MODE_NA:
2626 	case PHY_INTERFACE_MODE_1000BASEX:
2627 	case PHY_INTERFACE_MODE_2500BASEX:
2628 		if (phylink_autoneg_inband(mode))
2629 			return -EINVAL;
2630 
2631 		return mt7531_sgmii_setup_mode_force(priv, port, interface);
2632 	default:
2633 		return -EINVAL;
2634 	}
2635 
2636 	return -EINVAL;
2637 }
2638 
2639 static int
2640 mt753x_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2641 		  const struct phylink_link_state *state)
2642 {
2643 	struct mt7530_priv *priv = ds->priv;
2644 
2645 	return priv->info->mac_port_config(ds, port, mode, state->interface);
2646 }
2647 
2648 static void
2649 mt753x_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2650 			  const struct phylink_link_state *state)
2651 {
2652 	struct mt7530_priv *priv = ds->priv;
2653 	u32 mcr_cur, mcr_new;
2654 
2655 	if (!mt753x_phy_mode_supported(ds, port, state))
2656 		goto unsupported;
2657 
2658 	switch (port) {
2659 	case 0 ... 4: /* Internal phy */
2660 		if (state->interface != PHY_INTERFACE_MODE_GMII)
2661 			goto unsupported;
2662 		break;
2663 	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2664 		if (priv->p5_interface == state->interface)
2665 			break;
2666 
2667 		if (mt753x_mac_config(ds, port, mode, state) < 0)
2668 			goto unsupported;
2669 
2670 		if (priv->p5_intf_sel != P5_DISABLED)
2671 			priv->p5_interface = state->interface;
2672 		break;
2673 	case 6: /* 1st cpu port */
2674 		if (priv->p6_interface == state->interface)
2675 			break;
2676 
2677 		mt753x_pad_setup(ds, state);
2678 
2679 		if (mt753x_mac_config(ds, port, mode, state) < 0)
2680 			goto unsupported;
2681 
2682 		priv->p6_interface = state->interface;
2683 		break;
2684 	default:
2685 unsupported:
2686 		dev_err(ds->dev, "%s: unsupported %s port: %i\n",
2687 			__func__, phy_modes(state->interface), port);
2688 		return;
2689 	}
2690 
2691 	if (phylink_autoneg_inband(mode) &&
2692 	    state->interface != PHY_INTERFACE_MODE_SGMII) {
2693 		dev_err(ds->dev, "%s: in-band negotiation unsupported\n",
2694 			__func__);
2695 		return;
2696 	}
2697 
2698 	mcr_cur = mt7530_read(priv, MT7530_PMCR_P(port));
2699 	mcr_new = mcr_cur;
2700 	mcr_new &= ~PMCR_LINK_SETTINGS_MASK;
2701 	mcr_new |= PMCR_IFG_XMIT(1) | PMCR_MAC_MODE | PMCR_BACKOFF_EN |
2702 		   PMCR_BACKPR_EN | PMCR_FORCE_MODE_ID(priv->id);
2703 
2704 	/* Are we connected to external phy */
2705 	if (port == 5 && dsa_is_user_port(ds, 5))
2706 		mcr_new |= PMCR_EXT_PHY;
2707 
2708 	if (mcr_new != mcr_cur)
2709 		mt7530_write(priv, MT7530_PMCR_P(port), mcr_new);
2710 }
2711 
2712 static void
2713 mt753x_phylink_mac_an_restart(struct dsa_switch *ds, int port)
2714 {
2715 	struct mt7530_priv *priv = ds->priv;
2716 
2717 	if (!priv->info->mac_pcs_an_restart)
2718 		return;
2719 
2720 	priv->info->mac_pcs_an_restart(ds, port);
2721 }
2722 
2723 static void mt753x_phylink_mac_link_down(struct dsa_switch *ds, int port,
2724 					 unsigned int mode,
2725 					 phy_interface_t interface)
2726 {
2727 	struct mt7530_priv *priv = ds->priv;
2728 
2729 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
2730 }
2731 
2732 static void mt753x_mac_pcs_link_up(struct dsa_switch *ds, int port,
2733 				   unsigned int mode, phy_interface_t interface,
2734 				   int speed, int duplex)
2735 {
2736 	struct mt7530_priv *priv = ds->priv;
2737 
2738 	if (!priv->info->mac_pcs_link_up)
2739 		return;
2740 
2741 	priv->info->mac_pcs_link_up(ds, port, mode, interface, speed, duplex);
2742 }
2743 
2744 static void mt753x_phylink_mac_link_up(struct dsa_switch *ds, int port,
2745 				       unsigned int mode,
2746 				       phy_interface_t interface,
2747 				       struct phy_device *phydev,
2748 				       int speed, int duplex,
2749 				       bool tx_pause, bool rx_pause)
2750 {
2751 	struct mt7530_priv *priv = ds->priv;
2752 	u32 mcr;
2753 
2754 	mt753x_mac_pcs_link_up(ds, port, mode, interface, speed, duplex);
2755 
2756 	mcr = PMCR_RX_EN | PMCR_TX_EN | PMCR_FORCE_LNK;
2757 
2758 	/* MT753x MAC works in 1G full duplex mode for all up-clocked
2759 	 * variants.
2760 	 */
2761 	if (interface == PHY_INTERFACE_MODE_TRGMII ||
2762 	    (phy_interface_mode_is_8023z(interface))) {
2763 		speed = SPEED_1000;
2764 		duplex = DUPLEX_FULL;
2765 	}
2766 
2767 	switch (speed) {
2768 	case SPEED_1000:
2769 		mcr |= PMCR_FORCE_SPEED_1000;
2770 		break;
2771 	case SPEED_100:
2772 		mcr |= PMCR_FORCE_SPEED_100;
2773 		break;
2774 	}
2775 	if (duplex == DUPLEX_FULL) {
2776 		mcr |= PMCR_FORCE_FDX;
2777 		if (tx_pause)
2778 			mcr |= PMCR_TX_FC_EN;
2779 		if (rx_pause)
2780 			mcr |= PMCR_RX_FC_EN;
2781 	}
2782 
2783 	if (mode == MLO_AN_PHY && phydev && phy_init_eee(phydev, 0) >= 0) {
2784 		switch (speed) {
2785 		case SPEED_1000:
2786 			mcr |= PMCR_FORCE_EEE1G;
2787 			break;
2788 		case SPEED_100:
2789 			mcr |= PMCR_FORCE_EEE100;
2790 			break;
2791 		}
2792 	}
2793 
2794 	mt7530_set(priv, MT7530_PMCR_P(port), mcr);
2795 }
2796 
2797 static int
2798 mt7531_cpu_port_config(struct dsa_switch *ds, int port)
2799 {
2800 	struct mt7530_priv *priv = ds->priv;
2801 	phy_interface_t interface;
2802 	int speed;
2803 	int ret;
2804 
2805 	switch (port) {
2806 	case 5:
2807 		if (mt7531_is_rgmii_port(priv, port))
2808 			interface = PHY_INTERFACE_MODE_RGMII;
2809 		else
2810 			interface = PHY_INTERFACE_MODE_2500BASEX;
2811 
2812 		priv->p5_interface = interface;
2813 		break;
2814 	case 6:
2815 		interface = PHY_INTERFACE_MODE_2500BASEX;
2816 
2817 		mt7531_pad_setup(ds, interface);
2818 
2819 		priv->p6_interface = interface;
2820 		break;
2821 	default:
2822 		return -EINVAL;
2823 	}
2824 
2825 	if (interface == PHY_INTERFACE_MODE_2500BASEX)
2826 		speed = SPEED_2500;
2827 	else
2828 		speed = SPEED_1000;
2829 
2830 	ret = mt7531_mac_config(ds, port, MLO_AN_FIXED, interface);
2831 	if (ret)
2832 		return ret;
2833 	mt7530_write(priv, MT7530_PMCR_P(port),
2834 		     PMCR_CPU_PORT_SETTING(priv->id));
2835 	mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED, interface, NULL,
2836 				   speed, DUPLEX_FULL, true, true);
2837 
2838 	return 0;
2839 }
2840 
2841 static void
2842 mt7530_mac_port_validate(struct dsa_switch *ds, int port,
2843 			 unsigned long *supported)
2844 {
2845 	if (port == 5)
2846 		phylink_set(supported, 1000baseX_Full);
2847 }
2848 
2849 static void mt7531_mac_port_validate(struct dsa_switch *ds, int port,
2850 				     unsigned long *supported)
2851 {
2852 	struct mt7530_priv *priv = ds->priv;
2853 
2854 	mt7531_sgmii_validate(priv, port, supported);
2855 }
2856 
2857 static void
2858 mt753x_phylink_validate(struct dsa_switch *ds, int port,
2859 			unsigned long *supported,
2860 			struct phylink_link_state *state)
2861 {
2862 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
2863 	struct mt7530_priv *priv = ds->priv;
2864 
2865 	if (state->interface != PHY_INTERFACE_MODE_NA &&
2866 	    !mt753x_phy_mode_supported(ds, port, state)) {
2867 		linkmode_zero(supported);
2868 		return;
2869 	}
2870 
2871 	phylink_set_port_modes(mask);
2872 
2873 	if (state->interface != PHY_INTERFACE_MODE_TRGMII ||
2874 	    !phy_interface_mode_is_8023z(state->interface)) {
2875 		phylink_set(mask, 10baseT_Half);
2876 		phylink_set(mask, 10baseT_Full);
2877 		phylink_set(mask, 100baseT_Half);
2878 		phylink_set(mask, 100baseT_Full);
2879 		phylink_set(mask, Autoneg);
2880 	}
2881 
2882 	/* This switch only supports 1G full-duplex. */
2883 	if (state->interface != PHY_INTERFACE_MODE_MII)
2884 		phylink_set(mask, 1000baseT_Full);
2885 
2886 	priv->info->mac_port_validate(ds, port, mask);
2887 
2888 	phylink_set(mask, Pause);
2889 	phylink_set(mask, Asym_Pause);
2890 
2891 	linkmode_and(supported, supported, mask);
2892 	linkmode_and(state->advertising, state->advertising, mask);
2893 
2894 	/* We can only operate at 2500BaseX or 1000BaseX.  If requested
2895 	 * to advertise both, only report advertising at 2500BaseX.
2896 	 */
2897 	phylink_helper_basex_speed(state);
2898 }
2899 
2900 static int
2901 mt7530_phylink_mac_link_state(struct dsa_switch *ds, int port,
2902 			      struct phylink_link_state *state)
2903 {
2904 	struct mt7530_priv *priv = ds->priv;
2905 	u32 pmsr;
2906 
2907 	if (port < 0 || port >= MT7530_NUM_PORTS)
2908 		return -EINVAL;
2909 
2910 	pmsr = mt7530_read(priv, MT7530_PMSR_P(port));
2911 
2912 	state->link = (pmsr & PMSR_LINK);
2913 	state->an_complete = state->link;
2914 	state->duplex = !!(pmsr & PMSR_DPX);
2915 
2916 	switch (pmsr & PMSR_SPEED_MASK) {
2917 	case PMSR_SPEED_10:
2918 		state->speed = SPEED_10;
2919 		break;
2920 	case PMSR_SPEED_100:
2921 		state->speed = SPEED_100;
2922 		break;
2923 	case PMSR_SPEED_1000:
2924 		state->speed = SPEED_1000;
2925 		break;
2926 	default:
2927 		state->speed = SPEED_UNKNOWN;
2928 		break;
2929 	}
2930 
2931 	state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX);
2932 	if (pmsr & PMSR_RX_FC)
2933 		state->pause |= MLO_PAUSE_RX;
2934 	if (pmsr & PMSR_TX_FC)
2935 		state->pause |= MLO_PAUSE_TX;
2936 
2937 	return 1;
2938 }
2939 
2940 static int
2941 mt7531_sgmii_pcs_get_state_an(struct mt7530_priv *priv, int port,
2942 			      struct phylink_link_state *state)
2943 {
2944 	u32 status, val;
2945 	u16 config_reg;
2946 
2947 	status = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
2948 	state->link = !!(status & MT7531_SGMII_LINK_STATUS);
2949 	if (state->interface == PHY_INTERFACE_MODE_SGMII &&
2950 	    (status & MT7531_SGMII_AN_ENABLE)) {
2951 		val = mt7530_read(priv, MT7531_PCS_SPEED_ABILITY(port));
2952 		config_reg = val >> 16;
2953 
2954 		switch (config_reg & LPA_SGMII_SPD_MASK) {
2955 		case LPA_SGMII_1000:
2956 			state->speed = SPEED_1000;
2957 			break;
2958 		case LPA_SGMII_100:
2959 			state->speed = SPEED_100;
2960 			break;
2961 		case LPA_SGMII_10:
2962 			state->speed = SPEED_10;
2963 			break;
2964 		default:
2965 			dev_err(priv->dev, "invalid sgmii PHY speed\n");
2966 			state->link = false;
2967 			return -EINVAL;
2968 		}
2969 
2970 		if (config_reg & LPA_SGMII_FULL_DUPLEX)
2971 			state->duplex = DUPLEX_FULL;
2972 		else
2973 			state->duplex = DUPLEX_HALF;
2974 	}
2975 
2976 	return 0;
2977 }
2978 
2979 static int
2980 mt7531_phylink_mac_link_state(struct dsa_switch *ds, int port,
2981 			      struct phylink_link_state *state)
2982 {
2983 	struct mt7530_priv *priv = ds->priv;
2984 
2985 	if (state->interface == PHY_INTERFACE_MODE_SGMII)
2986 		return mt7531_sgmii_pcs_get_state_an(priv, port, state);
2987 
2988 	return -EOPNOTSUPP;
2989 }
2990 
2991 static int
2992 mt753x_phylink_mac_link_state(struct dsa_switch *ds, int port,
2993 			      struct phylink_link_state *state)
2994 {
2995 	struct mt7530_priv *priv = ds->priv;
2996 
2997 	return priv->info->mac_port_get_state(ds, port, state);
2998 }
2999 
3000 static int
3001 mt753x_setup(struct dsa_switch *ds)
3002 {
3003 	struct mt7530_priv *priv = ds->priv;
3004 	int ret = priv->info->sw_setup(ds);
3005 
3006 	if (ret)
3007 		return ret;
3008 
3009 	ret = mt7530_setup_irq(priv);
3010 	if (ret)
3011 		return ret;
3012 
3013 	ret = mt7530_setup_mdio(priv);
3014 	if (ret && priv->irq)
3015 		mt7530_free_irq_common(priv);
3016 
3017 	return ret;
3018 }
3019 
3020 static int mt753x_get_mac_eee(struct dsa_switch *ds, int port,
3021 			      struct ethtool_eee *e)
3022 {
3023 	struct mt7530_priv *priv = ds->priv;
3024 	u32 eeecr = mt7530_read(priv, MT7530_PMEEECR_P(port));
3025 
3026 	e->tx_lpi_enabled = !(eeecr & LPI_MODE_EN);
3027 	e->tx_lpi_timer = GET_LPI_THRESH(eeecr);
3028 
3029 	return 0;
3030 }
3031 
3032 static int mt753x_set_mac_eee(struct dsa_switch *ds, int port,
3033 			      struct ethtool_eee *e)
3034 {
3035 	struct mt7530_priv *priv = ds->priv;
3036 	u32 set, mask = LPI_THRESH_MASK | LPI_MODE_EN;
3037 
3038 	if (e->tx_lpi_timer > 0xFFF)
3039 		return -EINVAL;
3040 
3041 	set = SET_LPI_THRESH(e->tx_lpi_timer);
3042 	if (!e->tx_lpi_enabled)
3043 		/* Force LPI Mode without a delay */
3044 		set |= LPI_MODE_EN;
3045 	mt7530_rmw(priv, MT7530_PMEEECR_P(port), mask, set);
3046 
3047 	return 0;
3048 }
3049 
3050 static const struct dsa_switch_ops mt7530_switch_ops = {
3051 	.get_tag_protocol	= mtk_get_tag_protocol,
3052 	.setup			= mt753x_setup,
3053 	.get_strings		= mt7530_get_strings,
3054 	.get_ethtool_stats	= mt7530_get_ethtool_stats,
3055 	.get_sset_count		= mt7530_get_sset_count,
3056 	.set_ageing_time	= mt7530_set_ageing_time,
3057 	.port_enable		= mt7530_port_enable,
3058 	.port_disable		= mt7530_port_disable,
3059 	.port_change_mtu	= mt7530_port_change_mtu,
3060 	.port_max_mtu		= mt7530_port_max_mtu,
3061 	.port_stp_state_set	= mt7530_stp_state_set,
3062 	.port_pre_bridge_flags	= mt7530_port_pre_bridge_flags,
3063 	.port_bridge_flags	= mt7530_port_bridge_flags,
3064 	.port_set_mrouter	= mt7530_port_set_mrouter,
3065 	.port_bridge_join	= mt7530_port_bridge_join,
3066 	.port_bridge_leave	= mt7530_port_bridge_leave,
3067 	.port_fdb_add		= mt7530_port_fdb_add,
3068 	.port_fdb_del		= mt7530_port_fdb_del,
3069 	.port_fdb_dump		= mt7530_port_fdb_dump,
3070 	.port_mdb_add		= mt7530_port_mdb_add,
3071 	.port_mdb_del		= mt7530_port_mdb_del,
3072 	.port_vlan_filtering	= mt7530_port_vlan_filtering,
3073 	.port_vlan_add		= mt7530_port_vlan_add,
3074 	.port_vlan_del		= mt7530_port_vlan_del,
3075 	.port_mirror_add	= mt753x_port_mirror_add,
3076 	.port_mirror_del	= mt753x_port_mirror_del,
3077 	.phylink_validate	= mt753x_phylink_validate,
3078 	.phylink_mac_link_state	= mt753x_phylink_mac_link_state,
3079 	.phylink_mac_config	= mt753x_phylink_mac_config,
3080 	.phylink_mac_an_restart	= mt753x_phylink_mac_an_restart,
3081 	.phylink_mac_link_down	= mt753x_phylink_mac_link_down,
3082 	.phylink_mac_link_up	= mt753x_phylink_mac_link_up,
3083 	.get_mac_eee		= mt753x_get_mac_eee,
3084 	.set_mac_eee		= mt753x_set_mac_eee,
3085 };
3086 
3087 static const struct mt753x_info mt753x_table[] = {
3088 	[ID_MT7621] = {
3089 		.id = ID_MT7621,
3090 		.sw_setup = mt7530_setup,
3091 		.phy_read = mt7530_phy_read,
3092 		.phy_write = mt7530_phy_write,
3093 		.pad_setup = mt7530_pad_clk_setup,
3094 		.phy_mode_supported = mt7530_phy_mode_supported,
3095 		.mac_port_validate = mt7530_mac_port_validate,
3096 		.mac_port_get_state = mt7530_phylink_mac_link_state,
3097 		.mac_port_config = mt7530_mac_config,
3098 	},
3099 	[ID_MT7530] = {
3100 		.id = ID_MT7530,
3101 		.sw_setup = mt7530_setup,
3102 		.phy_read = mt7530_phy_read,
3103 		.phy_write = mt7530_phy_write,
3104 		.pad_setup = mt7530_pad_clk_setup,
3105 		.phy_mode_supported = mt7530_phy_mode_supported,
3106 		.mac_port_validate = mt7530_mac_port_validate,
3107 		.mac_port_get_state = mt7530_phylink_mac_link_state,
3108 		.mac_port_config = mt7530_mac_config,
3109 	},
3110 	[ID_MT7531] = {
3111 		.id = ID_MT7531,
3112 		.sw_setup = mt7531_setup,
3113 		.phy_read = mt7531_ind_phy_read,
3114 		.phy_write = mt7531_ind_phy_write,
3115 		.pad_setup = mt7531_pad_setup,
3116 		.cpu_port_config = mt7531_cpu_port_config,
3117 		.phy_mode_supported = mt7531_phy_mode_supported,
3118 		.mac_port_validate = mt7531_mac_port_validate,
3119 		.mac_port_get_state = mt7531_phylink_mac_link_state,
3120 		.mac_port_config = mt7531_mac_config,
3121 		.mac_pcs_an_restart = mt7531_sgmii_restart_an,
3122 		.mac_pcs_link_up = mt7531_sgmii_link_up_force,
3123 	},
3124 };
3125 
3126 static const struct of_device_id mt7530_of_match[] = {
3127 	{ .compatible = "mediatek,mt7621", .data = &mt753x_table[ID_MT7621], },
3128 	{ .compatible = "mediatek,mt7530", .data = &mt753x_table[ID_MT7530], },
3129 	{ .compatible = "mediatek,mt7531", .data = &mt753x_table[ID_MT7531], },
3130 	{ /* sentinel */ },
3131 };
3132 MODULE_DEVICE_TABLE(of, mt7530_of_match);
3133 
3134 static int
3135 mt7530_probe(struct mdio_device *mdiodev)
3136 {
3137 	struct mt7530_priv *priv;
3138 	struct device_node *dn;
3139 
3140 	dn = mdiodev->dev.of_node;
3141 
3142 	priv = devm_kzalloc(&mdiodev->dev, sizeof(*priv), GFP_KERNEL);
3143 	if (!priv)
3144 		return -ENOMEM;
3145 
3146 	priv->ds = devm_kzalloc(&mdiodev->dev, sizeof(*priv->ds), GFP_KERNEL);
3147 	if (!priv->ds)
3148 		return -ENOMEM;
3149 
3150 	priv->ds->dev = &mdiodev->dev;
3151 	priv->ds->num_ports = DSA_MAX_PORTS;
3152 
3153 	/* Use medatek,mcm property to distinguish hardware type that would
3154 	 * casues a little bit differences on power-on sequence.
3155 	 */
3156 	priv->mcm = of_property_read_bool(dn, "mediatek,mcm");
3157 	if (priv->mcm) {
3158 		dev_info(&mdiodev->dev, "MT7530 adapts as multi-chip module\n");
3159 
3160 		priv->rstc = devm_reset_control_get(&mdiodev->dev, "mcm");
3161 		if (IS_ERR(priv->rstc)) {
3162 			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
3163 			return PTR_ERR(priv->rstc);
3164 		}
3165 	}
3166 
3167 	/* Get the hardware identifier from the devicetree node.
3168 	 * We will need it for some of the clock and regulator setup.
3169 	 */
3170 	priv->info = of_device_get_match_data(&mdiodev->dev);
3171 	if (!priv->info)
3172 		return -EINVAL;
3173 
3174 	/* Sanity check if these required device operations are filled
3175 	 * properly.
3176 	 */
3177 	if (!priv->info->sw_setup || !priv->info->pad_setup ||
3178 	    !priv->info->phy_read || !priv->info->phy_write ||
3179 	    !priv->info->phy_mode_supported ||
3180 	    !priv->info->mac_port_validate ||
3181 	    !priv->info->mac_port_get_state || !priv->info->mac_port_config)
3182 		return -EINVAL;
3183 
3184 	priv->id = priv->info->id;
3185 
3186 	if (priv->id == ID_MT7530) {
3187 		priv->core_pwr = devm_regulator_get(&mdiodev->dev, "core");
3188 		if (IS_ERR(priv->core_pwr))
3189 			return PTR_ERR(priv->core_pwr);
3190 
3191 		priv->io_pwr = devm_regulator_get(&mdiodev->dev, "io");
3192 		if (IS_ERR(priv->io_pwr))
3193 			return PTR_ERR(priv->io_pwr);
3194 	}
3195 
3196 	/* Not MCM that indicates switch works as the remote standalone
3197 	 * integrated circuit so the GPIO pin would be used to complete
3198 	 * the reset, otherwise memory-mapped register accessing used
3199 	 * through syscon provides in the case of MCM.
3200 	 */
3201 	if (!priv->mcm) {
3202 		priv->reset = devm_gpiod_get_optional(&mdiodev->dev, "reset",
3203 						      GPIOD_OUT_LOW);
3204 		if (IS_ERR(priv->reset)) {
3205 			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
3206 			return PTR_ERR(priv->reset);
3207 		}
3208 	}
3209 
3210 	priv->bus = mdiodev->bus;
3211 	priv->dev = &mdiodev->dev;
3212 	priv->ds->priv = priv;
3213 	priv->ds->ops = &mt7530_switch_ops;
3214 	mutex_init(&priv->reg_mutex);
3215 	dev_set_drvdata(&mdiodev->dev, priv);
3216 
3217 	return dsa_register_switch(priv->ds);
3218 }
3219 
3220 static void
3221 mt7530_remove(struct mdio_device *mdiodev)
3222 {
3223 	struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev);
3224 	int ret = 0;
3225 
3226 	ret = regulator_disable(priv->core_pwr);
3227 	if (ret < 0)
3228 		dev_err(priv->dev,
3229 			"Failed to disable core power: %d\n", ret);
3230 
3231 	ret = regulator_disable(priv->io_pwr);
3232 	if (ret < 0)
3233 		dev_err(priv->dev, "Failed to disable io pwr: %d\n",
3234 			ret);
3235 
3236 	if (priv->irq)
3237 		mt7530_free_irq(priv);
3238 
3239 	dsa_unregister_switch(priv->ds);
3240 	mutex_destroy(&priv->reg_mutex);
3241 }
3242 
3243 static struct mdio_driver mt7530_mdio_driver = {
3244 	.probe  = mt7530_probe,
3245 	.remove = mt7530_remove,
3246 	.mdiodrv.driver = {
3247 		.name = "mt7530",
3248 		.of_match_table = mt7530_of_match,
3249 	},
3250 };
3251 
3252 mdio_module_driver(mt7530_mdio_driver);
3253 
3254 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
3255 MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
3256 MODULE_LICENSE("GPL");
3257