xref: /openbmc/linux/drivers/net/dsa/mt7530.c (revision b4e18b29)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Mediatek MT7530 DSA Switch driver
4  * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
5  */
6 #include <linux/etherdevice.h>
7 #include <linux/if_bridge.h>
8 #include <linux/iopoll.h>
9 #include <linux/mdio.h>
10 #include <linux/mfd/syscon.h>
11 #include <linux/module.h>
12 #include <linux/netdevice.h>
13 #include <linux/of_mdio.h>
14 #include <linux/of_net.h>
15 #include <linux/of_platform.h>
16 #include <linux/phylink.h>
17 #include <linux/regmap.h>
18 #include <linux/regulator/consumer.h>
19 #include <linux/reset.h>
20 #include <linux/gpio/consumer.h>
21 #include <linux/gpio/driver.h>
22 #include <net/dsa.h>
23 
24 #include "mt7530.h"
25 
26 /* String, offset, and register size in bytes if different from 4 bytes */
27 static const struct mt7530_mib_desc mt7530_mib[] = {
28 	MIB_DESC(1, 0x00, "TxDrop"),
29 	MIB_DESC(1, 0x04, "TxCrcErr"),
30 	MIB_DESC(1, 0x08, "TxUnicast"),
31 	MIB_DESC(1, 0x0c, "TxMulticast"),
32 	MIB_DESC(1, 0x10, "TxBroadcast"),
33 	MIB_DESC(1, 0x14, "TxCollision"),
34 	MIB_DESC(1, 0x18, "TxSingleCollision"),
35 	MIB_DESC(1, 0x1c, "TxMultipleCollision"),
36 	MIB_DESC(1, 0x20, "TxDeferred"),
37 	MIB_DESC(1, 0x24, "TxLateCollision"),
38 	MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
39 	MIB_DESC(1, 0x2c, "TxPause"),
40 	MIB_DESC(1, 0x30, "TxPktSz64"),
41 	MIB_DESC(1, 0x34, "TxPktSz65To127"),
42 	MIB_DESC(1, 0x38, "TxPktSz128To255"),
43 	MIB_DESC(1, 0x3c, "TxPktSz256To511"),
44 	MIB_DESC(1, 0x40, "TxPktSz512To1023"),
45 	MIB_DESC(1, 0x44, "Tx1024ToMax"),
46 	MIB_DESC(2, 0x48, "TxBytes"),
47 	MIB_DESC(1, 0x60, "RxDrop"),
48 	MIB_DESC(1, 0x64, "RxFiltering"),
49 	MIB_DESC(1, 0x6c, "RxMulticast"),
50 	MIB_DESC(1, 0x70, "RxBroadcast"),
51 	MIB_DESC(1, 0x74, "RxAlignErr"),
52 	MIB_DESC(1, 0x78, "RxCrcErr"),
53 	MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
54 	MIB_DESC(1, 0x80, "RxFragErr"),
55 	MIB_DESC(1, 0x84, "RxOverSzErr"),
56 	MIB_DESC(1, 0x88, "RxJabberErr"),
57 	MIB_DESC(1, 0x8c, "RxPause"),
58 	MIB_DESC(1, 0x90, "RxPktSz64"),
59 	MIB_DESC(1, 0x94, "RxPktSz65To127"),
60 	MIB_DESC(1, 0x98, "RxPktSz128To255"),
61 	MIB_DESC(1, 0x9c, "RxPktSz256To511"),
62 	MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
63 	MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
64 	MIB_DESC(2, 0xa8, "RxBytes"),
65 	MIB_DESC(1, 0xb0, "RxCtrlDrop"),
66 	MIB_DESC(1, 0xb4, "RxIngressDrop"),
67 	MIB_DESC(1, 0xb8, "RxArlDrop"),
68 };
69 
70 static int
71 core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
72 {
73 	struct mii_bus *bus = priv->bus;
74 	int value, ret;
75 
76 	/* Write the desired MMD Devad */
77 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
78 	if (ret < 0)
79 		goto err;
80 
81 	/* Write the desired MMD register address */
82 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
83 	if (ret < 0)
84 		goto err;
85 
86 	/* Select the Function : DATA with no post increment */
87 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
88 	if (ret < 0)
89 		goto err;
90 
91 	/* Read the content of the MMD's selected register */
92 	value = bus->read(bus, 0, MII_MMD_DATA);
93 
94 	return value;
95 err:
96 	dev_err(&bus->dev,  "failed to read mmd register\n");
97 
98 	return ret;
99 }
100 
101 static int
102 core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
103 			int devad, u32 data)
104 {
105 	struct mii_bus *bus = priv->bus;
106 	int ret;
107 
108 	/* Write the desired MMD Devad */
109 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
110 	if (ret < 0)
111 		goto err;
112 
113 	/* Write the desired MMD register address */
114 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
115 	if (ret < 0)
116 		goto err;
117 
118 	/* Select the Function : DATA with no post increment */
119 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
120 	if (ret < 0)
121 		goto err;
122 
123 	/* Write the data into MMD's selected register */
124 	ret = bus->write(bus, 0, MII_MMD_DATA, data);
125 err:
126 	if (ret < 0)
127 		dev_err(&bus->dev,
128 			"failed to write mmd register\n");
129 	return ret;
130 }
131 
132 static void
133 core_write(struct mt7530_priv *priv, u32 reg, u32 val)
134 {
135 	struct mii_bus *bus = priv->bus;
136 
137 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
138 
139 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
140 
141 	mutex_unlock(&bus->mdio_lock);
142 }
143 
144 static void
145 core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
146 {
147 	struct mii_bus *bus = priv->bus;
148 	u32 val;
149 
150 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
151 
152 	val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2);
153 	val &= ~mask;
154 	val |= set;
155 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
156 
157 	mutex_unlock(&bus->mdio_lock);
158 }
159 
160 static void
161 core_set(struct mt7530_priv *priv, u32 reg, u32 val)
162 {
163 	core_rmw(priv, reg, 0, val);
164 }
165 
166 static void
167 core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
168 {
169 	core_rmw(priv, reg, val, 0);
170 }
171 
172 static int
173 mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
174 {
175 	struct mii_bus *bus = priv->bus;
176 	u16 page, r, lo, hi;
177 	int ret;
178 
179 	page = (reg >> 6) & 0x3ff;
180 	r  = (reg >> 2) & 0xf;
181 	lo = val & 0xffff;
182 	hi = val >> 16;
183 
184 	/* MT7530 uses 31 as the pseudo port */
185 	ret = bus->write(bus, 0x1f, 0x1f, page);
186 	if (ret < 0)
187 		goto err;
188 
189 	ret = bus->write(bus, 0x1f, r,  lo);
190 	if (ret < 0)
191 		goto err;
192 
193 	ret = bus->write(bus, 0x1f, 0x10, hi);
194 err:
195 	if (ret < 0)
196 		dev_err(&bus->dev,
197 			"failed to write mt7530 register\n");
198 	return ret;
199 }
200 
201 static u32
202 mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
203 {
204 	struct mii_bus *bus = priv->bus;
205 	u16 page, r, lo, hi;
206 	int ret;
207 
208 	page = (reg >> 6) & 0x3ff;
209 	r = (reg >> 2) & 0xf;
210 
211 	/* MT7530 uses 31 as the pseudo port */
212 	ret = bus->write(bus, 0x1f, 0x1f, page);
213 	if (ret < 0) {
214 		dev_err(&bus->dev,
215 			"failed to read mt7530 register\n");
216 		return ret;
217 	}
218 
219 	lo = bus->read(bus, 0x1f, r);
220 	hi = bus->read(bus, 0x1f, 0x10);
221 
222 	return (hi << 16) | (lo & 0xffff);
223 }
224 
225 static void
226 mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
227 {
228 	struct mii_bus *bus = priv->bus;
229 
230 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
231 
232 	mt7530_mii_write(priv, reg, val);
233 
234 	mutex_unlock(&bus->mdio_lock);
235 }
236 
237 static u32
238 _mt7530_unlocked_read(struct mt7530_dummy_poll *p)
239 {
240 	return mt7530_mii_read(p->priv, p->reg);
241 }
242 
243 static u32
244 _mt7530_read(struct mt7530_dummy_poll *p)
245 {
246 	struct mii_bus		*bus = p->priv->bus;
247 	u32 val;
248 
249 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
250 
251 	val = mt7530_mii_read(p->priv, p->reg);
252 
253 	mutex_unlock(&bus->mdio_lock);
254 
255 	return val;
256 }
257 
258 static u32
259 mt7530_read(struct mt7530_priv *priv, u32 reg)
260 {
261 	struct mt7530_dummy_poll p;
262 
263 	INIT_MT7530_DUMMY_POLL(&p, priv, reg);
264 	return _mt7530_read(&p);
265 }
266 
267 static void
268 mt7530_rmw(struct mt7530_priv *priv, u32 reg,
269 	   u32 mask, u32 set)
270 {
271 	struct mii_bus *bus = priv->bus;
272 	u32 val;
273 
274 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
275 
276 	val = mt7530_mii_read(priv, reg);
277 	val &= ~mask;
278 	val |= set;
279 	mt7530_mii_write(priv, reg, val);
280 
281 	mutex_unlock(&bus->mdio_lock);
282 }
283 
284 static void
285 mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
286 {
287 	mt7530_rmw(priv, reg, 0, val);
288 }
289 
290 static void
291 mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
292 {
293 	mt7530_rmw(priv, reg, val, 0);
294 }
295 
296 static int
297 mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
298 {
299 	u32 val;
300 	int ret;
301 	struct mt7530_dummy_poll p;
302 
303 	/* Set the command operating upon the MAC address entries */
304 	val = ATC_BUSY | ATC_MAT(0) | cmd;
305 	mt7530_write(priv, MT7530_ATC, val);
306 
307 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
308 	ret = readx_poll_timeout(_mt7530_read, &p, val,
309 				 !(val & ATC_BUSY), 20, 20000);
310 	if (ret < 0) {
311 		dev_err(priv->dev, "reset timeout\n");
312 		return ret;
313 	}
314 
315 	/* Additional sanity for read command if the specified
316 	 * entry is invalid
317 	 */
318 	val = mt7530_read(priv, MT7530_ATC);
319 	if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
320 		return -EINVAL;
321 
322 	if (rsp)
323 		*rsp = val;
324 
325 	return 0;
326 }
327 
328 static void
329 mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
330 {
331 	u32 reg[3];
332 	int i;
333 
334 	/* Read from ARL table into an array */
335 	for (i = 0; i < 3; i++) {
336 		reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
337 
338 		dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
339 			__func__, __LINE__, i, reg[i]);
340 	}
341 
342 	fdb->vid = (reg[1] >> CVID) & CVID_MASK;
343 	fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
344 	fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
345 	fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
346 	fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
347 	fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
348 	fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
349 	fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
350 	fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
351 	fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
352 }
353 
354 static void
355 mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
356 		 u8 port_mask, const u8 *mac,
357 		 u8 aging, u8 type)
358 {
359 	u32 reg[3] = { 0 };
360 	int i;
361 
362 	reg[1] |= vid & CVID_MASK;
363 	reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
364 	reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
365 	/* STATIC_ENT indicate that entry is static wouldn't
366 	 * be aged out and STATIC_EMP specified as erasing an
367 	 * entry
368 	 */
369 	reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
370 	reg[1] |= mac[5] << MAC_BYTE_5;
371 	reg[1] |= mac[4] << MAC_BYTE_4;
372 	reg[0] |= mac[3] << MAC_BYTE_3;
373 	reg[0] |= mac[2] << MAC_BYTE_2;
374 	reg[0] |= mac[1] << MAC_BYTE_1;
375 	reg[0] |= mac[0] << MAC_BYTE_0;
376 
377 	/* Write array into the ARL table */
378 	for (i = 0; i < 3; i++)
379 		mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
380 }
381 
382 /* Setup TX circuit including relevant PAD and driving */
383 static int
384 mt7530_pad_clk_setup(struct dsa_switch *ds, phy_interface_t interface)
385 {
386 	struct mt7530_priv *priv = ds->priv;
387 	u32 ncpo1, ssc_delta, trgint, i, xtal;
388 
389 	xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK;
390 
391 	if (xtal == HWTRAP_XTAL_20MHZ) {
392 		dev_err(priv->dev,
393 			"%s: MT7530 with a 20MHz XTAL is not supported!\n",
394 			__func__);
395 		return -EINVAL;
396 	}
397 
398 	switch (interface) {
399 	case PHY_INTERFACE_MODE_RGMII:
400 		trgint = 0;
401 		/* PLL frequency: 125MHz */
402 		ncpo1 = 0x0c80;
403 		break;
404 	case PHY_INTERFACE_MODE_TRGMII:
405 		trgint = 1;
406 		if (priv->id == ID_MT7621) {
407 			/* PLL frequency: 150MHz: 1.2GBit */
408 			if (xtal == HWTRAP_XTAL_40MHZ)
409 				ncpo1 = 0x0780;
410 			if (xtal == HWTRAP_XTAL_25MHZ)
411 				ncpo1 = 0x0a00;
412 		} else { /* PLL frequency: 250MHz: 2.0Gbit */
413 			if (xtal == HWTRAP_XTAL_40MHZ)
414 				ncpo1 = 0x0c80;
415 			if (xtal == HWTRAP_XTAL_25MHZ)
416 				ncpo1 = 0x1400;
417 		}
418 		break;
419 	default:
420 		dev_err(priv->dev, "xMII interface %d not supported\n",
421 			interface);
422 		return -EINVAL;
423 	}
424 
425 	if (xtal == HWTRAP_XTAL_25MHZ)
426 		ssc_delta = 0x57;
427 	else
428 		ssc_delta = 0x87;
429 
430 	mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
431 		   P6_INTF_MODE(trgint));
432 
433 	/* Lower Tx Driving for TRGMII path */
434 	for (i = 0 ; i < NUM_TRGMII_CTRL ; i++)
435 		mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
436 			     TD_DM_DRVP(8) | TD_DM_DRVN(8));
437 
438 	/* Setup core clock for MT7530 */
439 	if (!trgint) {
440 		/* Disable MT7530 core clock */
441 		core_clear(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
442 
443 		/* Disable PLL, since phy_device has not yet been created
444 		 * provided for phy_[read,write]_mmd_indirect is called, we
445 		 * provide our own core_write_mmd_indirect to complete this
446 		 * function.
447 		 */
448 		core_write_mmd_indirect(priv,
449 					CORE_GSWPLL_GRP1,
450 					MDIO_MMD_VEND2,
451 					0);
452 
453 		/* Set core clock into 500Mhz */
454 		core_write(priv, CORE_GSWPLL_GRP2,
455 			   RG_GSWPLL_POSDIV_500M(1) |
456 			   RG_GSWPLL_FBKDIV_500M(25));
457 
458 		/* Enable PLL */
459 		core_write(priv, CORE_GSWPLL_GRP1,
460 			   RG_GSWPLL_EN_PRE |
461 			   RG_GSWPLL_POSDIV_200M(2) |
462 			   RG_GSWPLL_FBKDIV_200M(32));
463 
464 		/* Enable MT7530 core clock */
465 		core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
466 	}
467 
468 	/* Setup the MT7530 TRGMII Tx Clock */
469 	core_set(priv, CORE_TRGMII_GSW_CLK_CG, REG_GSWCK_EN);
470 	core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
471 	core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
472 	core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
473 	core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
474 	core_write(priv, CORE_PLL_GROUP4,
475 		   RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN |
476 		   RG_SYSPLL_BIAS_LPF_EN);
477 	core_write(priv, CORE_PLL_GROUP2,
478 		   RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN |
479 		   RG_SYSPLL_POSDIV(1));
480 	core_write(priv, CORE_PLL_GROUP7,
481 		   RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) |
482 		   RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
483 	core_set(priv, CORE_TRGMII_GSW_CLK_CG,
484 		 REG_GSWCK_EN | REG_TRGMIICK_EN);
485 
486 	if (!trgint)
487 		for (i = 0 ; i < NUM_TRGMII_CTRL; i++)
488 			mt7530_rmw(priv, MT7530_TRGMII_RD(i),
489 				   RD_TAP_MASK, RD_TAP(16));
490 	return 0;
491 }
492 
493 static bool mt7531_dual_sgmii_supported(struct mt7530_priv *priv)
494 {
495 	u32 val;
496 
497 	val = mt7530_read(priv, MT7531_TOP_SIG_SR);
498 
499 	return (val & PAD_DUAL_SGMII_EN) != 0;
500 }
501 
502 static int
503 mt7531_pad_setup(struct dsa_switch *ds, phy_interface_t interface)
504 {
505 	struct mt7530_priv *priv = ds->priv;
506 	u32 top_sig;
507 	u32 hwstrap;
508 	u32 xtal;
509 	u32 val;
510 
511 	if (mt7531_dual_sgmii_supported(priv))
512 		return 0;
513 
514 	val = mt7530_read(priv, MT7531_CREV);
515 	top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR);
516 	hwstrap = mt7530_read(priv, MT7531_HWTRAP);
517 	if ((val & CHIP_REV_M) > 0)
518 		xtal = (top_sig & PAD_MCM_SMI_EN) ? HWTRAP_XTAL_FSEL_40MHZ :
519 						    HWTRAP_XTAL_FSEL_25MHZ;
520 	else
521 		xtal = hwstrap & HWTRAP_XTAL_FSEL_MASK;
522 
523 	/* Step 1 : Disable MT7531 COREPLL */
524 	val = mt7530_read(priv, MT7531_PLLGP_EN);
525 	val &= ~EN_COREPLL;
526 	mt7530_write(priv, MT7531_PLLGP_EN, val);
527 
528 	/* Step 2: switch to XTAL output */
529 	val = mt7530_read(priv, MT7531_PLLGP_EN);
530 	val |= SW_CLKSW;
531 	mt7530_write(priv, MT7531_PLLGP_EN, val);
532 
533 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
534 	val &= ~RG_COREPLL_EN;
535 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
536 
537 	/* Step 3: disable PLLGP and enable program PLLGP */
538 	val = mt7530_read(priv, MT7531_PLLGP_EN);
539 	val |= SW_PLLGP;
540 	mt7530_write(priv, MT7531_PLLGP_EN, val);
541 
542 	/* Step 4: program COREPLL output frequency to 500MHz */
543 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
544 	val &= ~RG_COREPLL_POSDIV_M;
545 	val |= 2 << RG_COREPLL_POSDIV_S;
546 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
547 	usleep_range(25, 35);
548 
549 	switch (xtal) {
550 	case HWTRAP_XTAL_FSEL_25MHZ:
551 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
552 		val &= ~RG_COREPLL_SDM_PCW_M;
553 		val |= 0x140000 << RG_COREPLL_SDM_PCW_S;
554 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
555 		break;
556 	case HWTRAP_XTAL_FSEL_40MHZ:
557 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
558 		val &= ~RG_COREPLL_SDM_PCW_M;
559 		val |= 0x190000 << RG_COREPLL_SDM_PCW_S;
560 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
561 		break;
562 	}
563 
564 	/* Set feedback divide ratio update signal to high */
565 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
566 	val |= RG_COREPLL_SDM_PCW_CHG;
567 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
568 	/* Wait for at least 16 XTAL clocks */
569 	usleep_range(10, 20);
570 
571 	/* Step 5: set feedback divide ratio update signal to low */
572 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
573 	val &= ~RG_COREPLL_SDM_PCW_CHG;
574 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
575 
576 	/* Enable 325M clock for SGMII */
577 	mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000);
578 
579 	/* Enable 250SSC clock for RGMII */
580 	mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000);
581 
582 	/* Step 6: Enable MT7531 PLL */
583 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
584 	val |= RG_COREPLL_EN;
585 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
586 
587 	val = mt7530_read(priv, MT7531_PLLGP_EN);
588 	val |= EN_COREPLL;
589 	mt7530_write(priv, MT7531_PLLGP_EN, val);
590 	usleep_range(25, 35);
591 
592 	return 0;
593 }
594 
595 static void
596 mt7530_mib_reset(struct dsa_switch *ds)
597 {
598 	struct mt7530_priv *priv = ds->priv;
599 
600 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
601 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
602 }
603 
604 static int mt7530_phy_read(struct dsa_switch *ds, int port, int regnum)
605 {
606 	struct mt7530_priv *priv = ds->priv;
607 
608 	return mdiobus_read_nested(priv->bus, port, regnum);
609 }
610 
611 static int mt7530_phy_write(struct dsa_switch *ds, int port, int regnum,
612 			    u16 val)
613 {
614 	struct mt7530_priv *priv = ds->priv;
615 
616 	return mdiobus_write_nested(priv->bus, port, regnum, val);
617 }
618 
619 static int
620 mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad,
621 			int regnum)
622 {
623 	struct mii_bus *bus = priv->bus;
624 	struct mt7530_dummy_poll p;
625 	u32 reg, val;
626 	int ret;
627 
628 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
629 
630 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
631 
632 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
633 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
634 	if (ret < 0) {
635 		dev_err(priv->dev, "poll timeout\n");
636 		goto out;
637 	}
638 
639 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
640 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
641 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
642 
643 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
644 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
645 	if (ret < 0) {
646 		dev_err(priv->dev, "poll timeout\n");
647 		goto out;
648 	}
649 
650 	reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) |
651 	      MT7531_MDIO_DEV_ADDR(devad);
652 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
653 
654 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
655 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
656 	if (ret < 0) {
657 		dev_err(priv->dev, "poll timeout\n");
658 		goto out;
659 	}
660 
661 	ret = val & MT7531_MDIO_RW_DATA_MASK;
662 out:
663 	mutex_unlock(&bus->mdio_lock);
664 
665 	return ret;
666 }
667 
668 static int
669 mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad,
670 			 int regnum, u32 data)
671 {
672 	struct mii_bus *bus = priv->bus;
673 	struct mt7530_dummy_poll p;
674 	u32 val, reg;
675 	int ret;
676 
677 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
678 
679 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
680 
681 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
682 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
683 	if (ret < 0) {
684 		dev_err(priv->dev, "poll timeout\n");
685 		goto out;
686 	}
687 
688 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
689 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
690 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
691 
692 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
693 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
694 	if (ret < 0) {
695 		dev_err(priv->dev, "poll timeout\n");
696 		goto out;
697 	}
698 
699 	reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) |
700 	      MT7531_MDIO_DEV_ADDR(devad) | data;
701 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
702 
703 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
704 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
705 	if (ret < 0) {
706 		dev_err(priv->dev, "poll timeout\n");
707 		goto out;
708 	}
709 
710 out:
711 	mutex_unlock(&bus->mdio_lock);
712 
713 	return ret;
714 }
715 
716 static int
717 mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum)
718 {
719 	struct mii_bus *bus = priv->bus;
720 	struct mt7530_dummy_poll p;
721 	int ret;
722 	u32 val;
723 
724 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
725 
726 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
727 
728 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
729 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
730 	if (ret < 0) {
731 		dev_err(priv->dev, "poll timeout\n");
732 		goto out;
733 	}
734 
735 	val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) |
736 	      MT7531_MDIO_REG_ADDR(regnum);
737 
738 	mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST);
739 
740 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
741 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
742 	if (ret < 0) {
743 		dev_err(priv->dev, "poll timeout\n");
744 		goto out;
745 	}
746 
747 	ret = val & MT7531_MDIO_RW_DATA_MASK;
748 out:
749 	mutex_unlock(&bus->mdio_lock);
750 
751 	return ret;
752 }
753 
754 static int
755 mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum,
756 			 u16 data)
757 {
758 	struct mii_bus *bus = priv->bus;
759 	struct mt7530_dummy_poll p;
760 	int ret;
761 	u32 reg;
762 
763 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
764 
765 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
766 
767 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
768 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
769 	if (ret < 0) {
770 		dev_err(priv->dev, "poll timeout\n");
771 		goto out;
772 	}
773 
774 	reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) |
775 	      MT7531_MDIO_REG_ADDR(regnum) | data;
776 
777 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
778 
779 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
780 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
781 	if (ret < 0) {
782 		dev_err(priv->dev, "poll timeout\n");
783 		goto out;
784 	}
785 
786 out:
787 	mutex_unlock(&bus->mdio_lock);
788 
789 	return ret;
790 }
791 
792 static int
793 mt7531_ind_phy_read(struct dsa_switch *ds, int port, int regnum)
794 {
795 	struct mt7530_priv *priv = ds->priv;
796 	int devad;
797 	int ret;
798 
799 	if (regnum & MII_ADDR_C45) {
800 		devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f;
801 		ret = mt7531_ind_c45_phy_read(priv, port, devad,
802 					      regnum & MII_REGADDR_C45_MASK);
803 	} else {
804 		ret = mt7531_ind_c22_phy_read(priv, port, regnum);
805 	}
806 
807 	return ret;
808 }
809 
810 static int
811 mt7531_ind_phy_write(struct dsa_switch *ds, int port, int regnum,
812 		     u16 data)
813 {
814 	struct mt7530_priv *priv = ds->priv;
815 	int devad;
816 	int ret;
817 
818 	if (regnum & MII_ADDR_C45) {
819 		devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f;
820 		ret = mt7531_ind_c45_phy_write(priv, port, devad,
821 					       regnum & MII_REGADDR_C45_MASK,
822 					       data);
823 	} else {
824 		ret = mt7531_ind_c22_phy_write(priv, port, regnum, data);
825 	}
826 
827 	return ret;
828 }
829 
830 static void
831 mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
832 		   uint8_t *data)
833 {
834 	int i;
835 
836 	if (stringset != ETH_SS_STATS)
837 		return;
838 
839 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
840 		strncpy(data + i * ETH_GSTRING_LEN, mt7530_mib[i].name,
841 			ETH_GSTRING_LEN);
842 }
843 
844 static void
845 mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
846 			 uint64_t *data)
847 {
848 	struct mt7530_priv *priv = ds->priv;
849 	const struct mt7530_mib_desc *mib;
850 	u32 reg, i;
851 	u64 hi;
852 
853 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
854 		mib = &mt7530_mib[i];
855 		reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
856 
857 		data[i] = mt7530_read(priv, reg);
858 		if (mib->size == 2) {
859 			hi = mt7530_read(priv, reg + 4);
860 			data[i] |= hi << 32;
861 		}
862 	}
863 }
864 
865 static int
866 mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
867 {
868 	if (sset != ETH_SS_STATS)
869 		return 0;
870 
871 	return ARRAY_SIZE(mt7530_mib);
872 }
873 
874 static int
875 mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
876 {
877 	struct mt7530_priv *priv = ds->priv;
878 	unsigned int secs = msecs / 1000;
879 	unsigned int tmp_age_count;
880 	unsigned int error = -1;
881 	unsigned int age_count;
882 	unsigned int age_unit;
883 
884 	/* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */
885 	if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1))
886 		return -ERANGE;
887 
888 	/* iterate through all possible age_count to find the closest pair */
889 	for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) {
890 		unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1;
891 
892 		if (tmp_age_unit <= AGE_UNIT_MAX) {
893 			unsigned int tmp_error = secs -
894 				(tmp_age_count + 1) * (tmp_age_unit + 1);
895 
896 			/* found a closer pair */
897 			if (error > tmp_error) {
898 				error = tmp_error;
899 				age_count = tmp_age_count;
900 				age_unit = tmp_age_unit;
901 			}
902 
903 			/* found the exact match, so break the loop */
904 			if (!error)
905 				break;
906 		}
907 	}
908 
909 	mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit));
910 
911 	return 0;
912 }
913 
914 static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface)
915 {
916 	struct mt7530_priv *priv = ds->priv;
917 	u8 tx_delay = 0;
918 	int val;
919 
920 	mutex_lock(&priv->reg_mutex);
921 
922 	val = mt7530_read(priv, MT7530_MHWTRAP);
923 
924 	val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS;
925 	val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL;
926 
927 	switch (priv->p5_intf_sel) {
928 	case P5_INTF_SEL_PHY_P0:
929 		/* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */
930 		val |= MHWTRAP_PHY0_SEL;
931 		fallthrough;
932 	case P5_INTF_SEL_PHY_P4:
933 		/* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */
934 		val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS;
935 
936 		/* Setup the MAC by default for the cpu port */
937 		mt7530_write(priv, MT7530_PMCR_P(5), 0x56300);
938 		break;
939 	case P5_INTF_SEL_GMAC5:
940 		/* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */
941 		val &= ~MHWTRAP_P5_DIS;
942 		break;
943 	case P5_DISABLED:
944 		interface = PHY_INTERFACE_MODE_NA;
945 		break;
946 	default:
947 		dev_err(ds->dev, "Unsupported p5_intf_sel %d\n",
948 			priv->p5_intf_sel);
949 		goto unlock_exit;
950 	}
951 
952 	/* Setup RGMII settings */
953 	if (phy_interface_mode_is_rgmii(interface)) {
954 		val |= MHWTRAP_P5_RGMII_MODE;
955 
956 		/* P5 RGMII RX Clock Control: delay setting for 1000M */
957 		mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN);
958 
959 		/* Don't set delay in DSA mode */
960 		if (!dsa_is_dsa_port(priv->ds, 5) &&
961 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID ||
962 		     interface == PHY_INTERFACE_MODE_RGMII_ID))
963 			tx_delay = 4; /* n * 0.5 ns */
964 
965 		/* P5 RGMII TX Clock Control: delay x */
966 		mt7530_write(priv, MT7530_P5RGMIITXCR,
967 			     CSR_RGMII_TXC_CFG(0x10 + tx_delay));
968 
969 		/* reduce P5 RGMII Tx driving, 8mA */
970 		mt7530_write(priv, MT7530_IO_DRV_CR,
971 			     P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1));
972 	}
973 
974 	mt7530_write(priv, MT7530_MHWTRAP, val);
975 
976 	dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n",
977 		val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface));
978 
979 	priv->p5_interface = interface;
980 
981 unlock_exit:
982 	mutex_unlock(&priv->reg_mutex);
983 }
984 
985 static int
986 mt753x_cpu_port_enable(struct dsa_switch *ds, int port)
987 {
988 	struct mt7530_priv *priv = ds->priv;
989 	int ret;
990 
991 	/* Setup max capability of CPU port at first */
992 	if (priv->info->cpu_port_config) {
993 		ret = priv->info->cpu_port_config(ds, port);
994 		if (ret)
995 			return ret;
996 	}
997 
998 	/* Enable Mediatek header mode on the cpu port */
999 	mt7530_write(priv, MT7530_PVC_P(port),
1000 		     PORT_SPEC_TAG);
1001 
1002 	/* Unknown multicast frame forwarding to the cpu port */
1003 	mt7530_rmw(priv, MT7530_MFC, UNM_FFP_MASK, UNM_FFP(BIT(port)));
1004 
1005 	/* Set CPU port number */
1006 	if (priv->id == ID_MT7621)
1007 		mt7530_rmw(priv, MT7530_MFC, CPU_MASK, CPU_EN | CPU_PORT(port));
1008 
1009 	/* CPU port gets connected to all user ports of
1010 	 * the switch.
1011 	 */
1012 	mt7530_write(priv, MT7530_PCR_P(port),
1013 		     PCR_MATRIX(dsa_user_ports(priv->ds)));
1014 
1015 	return 0;
1016 }
1017 
1018 static int
1019 mt7530_port_enable(struct dsa_switch *ds, int port,
1020 		   struct phy_device *phy)
1021 {
1022 	struct mt7530_priv *priv = ds->priv;
1023 
1024 	if (!dsa_is_user_port(ds, port))
1025 		return 0;
1026 
1027 	mutex_lock(&priv->reg_mutex);
1028 
1029 	/* Allow the user port gets connected to the cpu port and also
1030 	 * restore the port matrix if the port is the member of a certain
1031 	 * bridge.
1032 	 */
1033 	priv->ports[port].pm |= PCR_MATRIX(BIT(MT7530_CPU_PORT));
1034 	priv->ports[port].enable = true;
1035 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1036 		   priv->ports[port].pm);
1037 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1038 
1039 	mutex_unlock(&priv->reg_mutex);
1040 
1041 	return 0;
1042 }
1043 
1044 static void
1045 mt7530_port_disable(struct dsa_switch *ds, int port)
1046 {
1047 	struct mt7530_priv *priv = ds->priv;
1048 
1049 	if (!dsa_is_user_port(ds, port))
1050 		return;
1051 
1052 	mutex_lock(&priv->reg_mutex);
1053 
1054 	/* Clear up all port matrix which could be restored in the next
1055 	 * enablement for the port.
1056 	 */
1057 	priv->ports[port].enable = false;
1058 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1059 		   PCR_MATRIX_CLR);
1060 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1061 
1062 	mutex_unlock(&priv->reg_mutex);
1063 }
1064 
1065 static int
1066 mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1067 {
1068 	struct mt7530_priv *priv = ds->priv;
1069 	struct mii_bus *bus = priv->bus;
1070 	int length;
1071 	u32 val;
1072 
1073 	/* When a new MTU is set, DSA always set the CPU port's MTU to the
1074 	 * largest MTU of the slave ports. Because the switch only has a global
1075 	 * RX length register, only allowing CPU port here is enough.
1076 	 */
1077 	if (!dsa_is_cpu_port(ds, port))
1078 		return 0;
1079 
1080 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
1081 
1082 	val = mt7530_mii_read(priv, MT7530_GMACCR);
1083 	val &= ~MAX_RX_PKT_LEN_MASK;
1084 
1085 	/* RX length also includes Ethernet header, MTK tag, and FCS length */
1086 	length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN;
1087 	if (length <= 1522) {
1088 		val |= MAX_RX_PKT_LEN_1522;
1089 	} else if (length <= 1536) {
1090 		val |= MAX_RX_PKT_LEN_1536;
1091 	} else if (length <= 1552) {
1092 		val |= MAX_RX_PKT_LEN_1552;
1093 	} else {
1094 		val &= ~MAX_RX_JUMBO_MASK;
1095 		val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024));
1096 		val |= MAX_RX_PKT_LEN_JUMBO;
1097 	}
1098 
1099 	mt7530_mii_write(priv, MT7530_GMACCR, val);
1100 
1101 	mutex_unlock(&bus->mdio_lock);
1102 
1103 	return 0;
1104 }
1105 
1106 static int
1107 mt7530_port_max_mtu(struct dsa_switch *ds, int port)
1108 {
1109 	return MT7530_MAX_MTU;
1110 }
1111 
1112 static void
1113 mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1114 {
1115 	struct mt7530_priv *priv = ds->priv;
1116 	u32 stp_state;
1117 
1118 	switch (state) {
1119 	case BR_STATE_DISABLED:
1120 		stp_state = MT7530_STP_DISABLED;
1121 		break;
1122 	case BR_STATE_BLOCKING:
1123 		stp_state = MT7530_STP_BLOCKING;
1124 		break;
1125 	case BR_STATE_LISTENING:
1126 		stp_state = MT7530_STP_LISTENING;
1127 		break;
1128 	case BR_STATE_LEARNING:
1129 		stp_state = MT7530_STP_LEARNING;
1130 		break;
1131 	case BR_STATE_FORWARDING:
1132 	default:
1133 		stp_state = MT7530_STP_FORWARDING;
1134 		break;
1135 	}
1136 
1137 	mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK, stp_state);
1138 }
1139 
1140 static int
1141 mt7530_port_bridge_join(struct dsa_switch *ds, int port,
1142 			struct net_device *bridge)
1143 {
1144 	struct mt7530_priv *priv = ds->priv;
1145 	u32 port_bitmap = BIT(MT7530_CPU_PORT);
1146 	int i;
1147 
1148 	mutex_lock(&priv->reg_mutex);
1149 
1150 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1151 		/* Add this port to the port matrix of the other ports in the
1152 		 * same bridge. If the port is disabled, port matrix is kept
1153 		 * and not being setup until the port becomes enabled.
1154 		 */
1155 		if (dsa_is_user_port(ds, i) && i != port) {
1156 			if (dsa_to_port(ds, i)->bridge_dev != bridge)
1157 				continue;
1158 			if (priv->ports[i].enable)
1159 				mt7530_set(priv, MT7530_PCR_P(i),
1160 					   PCR_MATRIX(BIT(port)));
1161 			priv->ports[i].pm |= PCR_MATRIX(BIT(port));
1162 
1163 			port_bitmap |= BIT(i);
1164 		}
1165 	}
1166 
1167 	/* Add the all other ports to this port matrix. */
1168 	if (priv->ports[port].enable)
1169 		mt7530_rmw(priv, MT7530_PCR_P(port),
1170 			   PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
1171 	priv->ports[port].pm |= PCR_MATRIX(port_bitmap);
1172 
1173 	mutex_unlock(&priv->reg_mutex);
1174 
1175 	return 0;
1176 }
1177 
1178 static void
1179 mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
1180 {
1181 	struct mt7530_priv *priv = ds->priv;
1182 	bool all_user_ports_removed = true;
1183 	int i;
1184 
1185 	/* When a port is removed from the bridge, the port would be set up
1186 	 * back to the default as is at initial boot which is a VLAN-unaware
1187 	 * port.
1188 	 */
1189 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1190 		   MT7530_PORT_MATRIX_MODE);
1191 	mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
1192 		   VLAN_ATTR(MT7530_VLAN_TRANSPARENT) |
1193 		   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1194 
1195 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1196 		if (dsa_is_user_port(ds, i) &&
1197 		    dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
1198 			all_user_ports_removed = false;
1199 			break;
1200 		}
1201 	}
1202 
1203 	/* CPU port also does the same thing until all user ports belonging to
1204 	 * the CPU port get out of VLAN filtering mode.
1205 	 */
1206 	if (all_user_ports_removed) {
1207 		mt7530_write(priv, MT7530_PCR_P(MT7530_CPU_PORT),
1208 			     PCR_MATRIX(dsa_user_ports(priv->ds)));
1209 		mt7530_write(priv, MT7530_PVC_P(MT7530_CPU_PORT), PORT_SPEC_TAG
1210 			     | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1211 	}
1212 }
1213 
1214 static void
1215 mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
1216 {
1217 	struct mt7530_priv *priv = ds->priv;
1218 
1219 	/* The real fabric path would be decided on the membership in the
1220 	 * entry of VLAN table. PCR_MATRIX set up here with ALL_MEMBERS
1221 	 * means potential VLAN can be consisting of certain subset of all
1222 	 * ports.
1223 	 */
1224 	mt7530_rmw(priv, MT7530_PCR_P(port),
1225 		   PCR_MATRIX_MASK, PCR_MATRIX(MT7530_ALL_MEMBERS));
1226 
1227 	/* Trapped into security mode allows packet forwarding through VLAN
1228 	 * table lookup. CPU port is set to fallback mode to let untagged
1229 	 * frames pass through.
1230 	 */
1231 	if (dsa_is_cpu_port(ds, port))
1232 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1233 			   MT7530_PORT_FALLBACK_MODE);
1234 	else
1235 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1236 			   MT7530_PORT_SECURITY_MODE);
1237 
1238 	/* Set the port as a user port which is to be able to recognize VID
1239 	 * from incoming packets before fetching entry within the VLAN table.
1240 	 */
1241 	mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
1242 		   VLAN_ATTR(MT7530_VLAN_USER) |
1243 		   PVC_EG_TAG(MT7530_VLAN_EG_DISABLED));
1244 }
1245 
1246 static void
1247 mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
1248 			 struct net_device *bridge)
1249 {
1250 	struct mt7530_priv *priv = ds->priv;
1251 	int i;
1252 
1253 	mutex_lock(&priv->reg_mutex);
1254 
1255 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1256 		/* Remove this port from the port matrix of the other ports
1257 		 * in the same bridge. If the port is disabled, port matrix
1258 		 * is kept and not being setup until the port becomes enabled.
1259 		 * And the other port's port matrix cannot be broken when the
1260 		 * other port is still a VLAN-aware port.
1261 		 */
1262 		if (dsa_is_user_port(ds, i) && i != port &&
1263 		   !dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
1264 			if (dsa_to_port(ds, i)->bridge_dev != bridge)
1265 				continue;
1266 			if (priv->ports[i].enable)
1267 				mt7530_clear(priv, MT7530_PCR_P(i),
1268 					     PCR_MATRIX(BIT(port)));
1269 			priv->ports[i].pm &= ~PCR_MATRIX(BIT(port));
1270 		}
1271 	}
1272 
1273 	/* Set the cpu port to be the only one in the port matrix of
1274 	 * this port.
1275 	 */
1276 	if (priv->ports[port].enable)
1277 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1278 			   PCR_MATRIX(BIT(MT7530_CPU_PORT)));
1279 	priv->ports[port].pm = PCR_MATRIX(BIT(MT7530_CPU_PORT));
1280 
1281 	mutex_unlock(&priv->reg_mutex);
1282 }
1283 
1284 static int
1285 mt7530_port_fdb_add(struct dsa_switch *ds, int port,
1286 		    const unsigned char *addr, u16 vid)
1287 {
1288 	struct mt7530_priv *priv = ds->priv;
1289 	int ret;
1290 	u8 port_mask = BIT(port);
1291 
1292 	mutex_lock(&priv->reg_mutex);
1293 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1294 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1295 	mutex_unlock(&priv->reg_mutex);
1296 
1297 	return ret;
1298 }
1299 
1300 static int
1301 mt7530_port_fdb_del(struct dsa_switch *ds, int port,
1302 		    const unsigned char *addr, u16 vid)
1303 {
1304 	struct mt7530_priv *priv = ds->priv;
1305 	int ret;
1306 	u8 port_mask = BIT(port);
1307 
1308 	mutex_lock(&priv->reg_mutex);
1309 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
1310 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1311 	mutex_unlock(&priv->reg_mutex);
1312 
1313 	return ret;
1314 }
1315 
1316 static int
1317 mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
1318 		     dsa_fdb_dump_cb_t *cb, void *data)
1319 {
1320 	struct mt7530_priv *priv = ds->priv;
1321 	struct mt7530_fdb _fdb = { 0 };
1322 	int cnt = MT7530_NUM_FDB_RECORDS;
1323 	int ret = 0;
1324 	u32 rsp = 0;
1325 
1326 	mutex_lock(&priv->reg_mutex);
1327 
1328 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
1329 	if (ret < 0)
1330 		goto err;
1331 
1332 	do {
1333 		if (rsp & ATC_SRCH_HIT) {
1334 			mt7530_fdb_read(priv, &_fdb);
1335 			if (_fdb.port_mask & BIT(port)) {
1336 				ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
1337 					 data);
1338 				if (ret < 0)
1339 					break;
1340 			}
1341 		}
1342 	} while (--cnt &&
1343 		 !(rsp & ATC_SRCH_END) &&
1344 		 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
1345 err:
1346 	mutex_unlock(&priv->reg_mutex);
1347 
1348 	return 0;
1349 }
1350 
1351 static int
1352 mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
1353 {
1354 	struct mt7530_dummy_poll p;
1355 	u32 val;
1356 	int ret;
1357 
1358 	val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
1359 	mt7530_write(priv, MT7530_VTCR, val);
1360 
1361 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
1362 	ret = readx_poll_timeout(_mt7530_read, &p, val,
1363 				 !(val & VTCR_BUSY), 20, 20000);
1364 	if (ret < 0) {
1365 		dev_err(priv->dev, "poll timeout\n");
1366 		return ret;
1367 	}
1368 
1369 	val = mt7530_read(priv, MT7530_VTCR);
1370 	if (val & VTCR_INVALID) {
1371 		dev_err(priv->dev, "read VTCR invalid\n");
1372 		return -EINVAL;
1373 	}
1374 
1375 	return 0;
1376 }
1377 
1378 static int
1379 mt7530_port_vlan_filtering(struct dsa_switch *ds, int port,
1380 			   bool vlan_filtering)
1381 {
1382 	if (vlan_filtering) {
1383 		/* The port is being kept as VLAN-unaware port when bridge is
1384 		 * set up with vlan_filtering not being set, Otherwise, the
1385 		 * port and the corresponding CPU port is required the setup
1386 		 * for becoming a VLAN-aware port.
1387 		 */
1388 		mt7530_port_set_vlan_aware(ds, port);
1389 		mt7530_port_set_vlan_aware(ds, MT7530_CPU_PORT);
1390 	} else {
1391 		mt7530_port_set_vlan_unaware(ds, port);
1392 	}
1393 
1394 	return 0;
1395 }
1396 
1397 static void
1398 mt7530_hw_vlan_add(struct mt7530_priv *priv,
1399 		   struct mt7530_hw_vlan_entry *entry)
1400 {
1401 	u8 new_members;
1402 	u32 val;
1403 
1404 	new_members = entry->old_members | BIT(entry->port) |
1405 		      BIT(MT7530_CPU_PORT);
1406 
1407 	/* Validate the entry with independent learning, create egress tag per
1408 	 * VLAN and joining the port as one of the port members.
1409 	 */
1410 	val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | VLAN_VALID;
1411 	mt7530_write(priv, MT7530_VAWD1, val);
1412 
1413 	/* Decide whether adding tag or not for those outgoing packets from the
1414 	 * port inside the VLAN.
1415 	 */
1416 	val = entry->untagged ? MT7530_VLAN_EGRESS_UNTAG :
1417 				MT7530_VLAN_EGRESS_TAG;
1418 	mt7530_rmw(priv, MT7530_VAWD2,
1419 		   ETAG_CTRL_P_MASK(entry->port),
1420 		   ETAG_CTRL_P(entry->port, val));
1421 
1422 	/* CPU port is always taken as a tagged port for serving more than one
1423 	 * VLANs across and also being applied with egress type stack mode for
1424 	 * that VLAN tags would be appended after hardware special tag used as
1425 	 * DSA tag.
1426 	 */
1427 	mt7530_rmw(priv, MT7530_VAWD2,
1428 		   ETAG_CTRL_P_MASK(MT7530_CPU_PORT),
1429 		   ETAG_CTRL_P(MT7530_CPU_PORT,
1430 			       MT7530_VLAN_EGRESS_STACK));
1431 }
1432 
1433 static void
1434 mt7530_hw_vlan_del(struct mt7530_priv *priv,
1435 		   struct mt7530_hw_vlan_entry *entry)
1436 {
1437 	u8 new_members;
1438 	u32 val;
1439 
1440 	new_members = entry->old_members & ~BIT(entry->port);
1441 
1442 	val = mt7530_read(priv, MT7530_VAWD1);
1443 	if (!(val & VLAN_VALID)) {
1444 		dev_err(priv->dev,
1445 			"Cannot be deleted due to invalid entry\n");
1446 		return;
1447 	}
1448 
1449 	/* If certain member apart from CPU port is still alive in the VLAN,
1450 	 * the entry would be kept valid. Otherwise, the entry is got to be
1451 	 * disabled.
1452 	 */
1453 	if (new_members && new_members != BIT(MT7530_CPU_PORT)) {
1454 		val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
1455 		      VLAN_VALID;
1456 		mt7530_write(priv, MT7530_VAWD1, val);
1457 	} else {
1458 		mt7530_write(priv, MT7530_VAWD1, 0);
1459 		mt7530_write(priv, MT7530_VAWD2, 0);
1460 	}
1461 }
1462 
1463 static void
1464 mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
1465 		      struct mt7530_hw_vlan_entry *entry,
1466 		      mt7530_vlan_op vlan_op)
1467 {
1468 	u32 val;
1469 
1470 	/* Fetch entry */
1471 	mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
1472 
1473 	val = mt7530_read(priv, MT7530_VAWD1);
1474 
1475 	entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
1476 
1477 	/* Manipulate entry */
1478 	vlan_op(priv, entry);
1479 
1480 	/* Flush result to hardware */
1481 	mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
1482 }
1483 
1484 static int
1485 mt7530_port_vlan_add(struct dsa_switch *ds, int port,
1486 		     const struct switchdev_obj_port_vlan *vlan)
1487 {
1488 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1489 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1490 	struct mt7530_hw_vlan_entry new_entry;
1491 	struct mt7530_priv *priv = ds->priv;
1492 
1493 	mutex_lock(&priv->reg_mutex);
1494 
1495 	mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
1496 	mt7530_hw_vlan_update(priv, vlan->vid, &new_entry, mt7530_hw_vlan_add);
1497 
1498 	if (pvid) {
1499 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1500 			   G0_PORT_VID(vlan->vid));
1501 		priv->ports[port].pvid = vlan->vid;
1502 	}
1503 
1504 	mutex_unlock(&priv->reg_mutex);
1505 
1506 	return 0;
1507 }
1508 
1509 static int
1510 mt7530_port_vlan_del(struct dsa_switch *ds, int port,
1511 		     const struct switchdev_obj_port_vlan *vlan)
1512 {
1513 	struct mt7530_hw_vlan_entry target_entry;
1514 	struct mt7530_priv *priv = ds->priv;
1515 	u16 pvid;
1516 
1517 	mutex_lock(&priv->reg_mutex);
1518 
1519 	pvid = priv->ports[port].pvid;
1520 	mt7530_hw_vlan_entry_init(&target_entry, port, 0);
1521 	mt7530_hw_vlan_update(priv, vlan->vid, &target_entry,
1522 			      mt7530_hw_vlan_del);
1523 
1524 	/* PVID is being restored to the default whenever the PVID port
1525 	 * is being removed from the VLAN.
1526 	 */
1527 	if (pvid == vlan->vid)
1528 		pvid = G0_PORT_VID_DEF;
1529 
1530 	mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, pvid);
1531 	priv->ports[port].pvid = pvid;
1532 
1533 	mutex_unlock(&priv->reg_mutex);
1534 
1535 	return 0;
1536 }
1537 
1538 static int mt753x_mirror_port_get(unsigned int id, u32 val)
1539 {
1540 	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_GET(val) :
1541 				   MIRROR_PORT(val);
1542 }
1543 
1544 static int mt753x_mirror_port_set(unsigned int id, u32 val)
1545 {
1546 	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_SET(val) :
1547 				   MIRROR_PORT(val);
1548 }
1549 
1550 static int mt753x_port_mirror_add(struct dsa_switch *ds, int port,
1551 				  struct dsa_mall_mirror_tc_entry *mirror,
1552 				  bool ingress)
1553 {
1554 	struct mt7530_priv *priv = ds->priv;
1555 	int monitor_port;
1556 	u32 val;
1557 
1558 	/* Check for existent entry */
1559 	if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port))
1560 		return -EEXIST;
1561 
1562 	val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1563 
1564 	/* MT7530 only supports one monitor port */
1565 	monitor_port = mt753x_mirror_port_get(priv->id, val);
1566 	if (val & MT753X_MIRROR_EN(priv->id) &&
1567 	    monitor_port != mirror->to_local_port)
1568 		return -EEXIST;
1569 
1570 	val |= MT753X_MIRROR_EN(priv->id);
1571 	val &= ~MT753X_MIRROR_MASK(priv->id);
1572 	val |= mt753x_mirror_port_set(priv->id, mirror->to_local_port);
1573 	mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1574 
1575 	val = mt7530_read(priv, MT7530_PCR_P(port));
1576 	if (ingress) {
1577 		val |= PORT_RX_MIR;
1578 		priv->mirror_rx |= BIT(port);
1579 	} else {
1580 		val |= PORT_TX_MIR;
1581 		priv->mirror_tx |= BIT(port);
1582 	}
1583 	mt7530_write(priv, MT7530_PCR_P(port), val);
1584 
1585 	return 0;
1586 }
1587 
1588 static void mt753x_port_mirror_del(struct dsa_switch *ds, int port,
1589 				   struct dsa_mall_mirror_tc_entry *mirror)
1590 {
1591 	struct mt7530_priv *priv = ds->priv;
1592 	u32 val;
1593 
1594 	val = mt7530_read(priv, MT7530_PCR_P(port));
1595 	if (mirror->ingress) {
1596 		val &= ~PORT_RX_MIR;
1597 		priv->mirror_rx &= ~BIT(port);
1598 	} else {
1599 		val &= ~PORT_TX_MIR;
1600 		priv->mirror_tx &= ~BIT(port);
1601 	}
1602 	mt7530_write(priv, MT7530_PCR_P(port), val);
1603 
1604 	if (!priv->mirror_rx && !priv->mirror_tx) {
1605 		val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1606 		val &= ~MT753X_MIRROR_EN(priv->id);
1607 		mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1608 	}
1609 }
1610 
1611 static enum dsa_tag_protocol
1612 mtk_get_tag_protocol(struct dsa_switch *ds, int port,
1613 		     enum dsa_tag_protocol mp)
1614 {
1615 	struct mt7530_priv *priv = ds->priv;
1616 
1617 	if (port != MT7530_CPU_PORT) {
1618 		dev_warn(priv->dev,
1619 			 "port not matched with tagging CPU port\n");
1620 		return DSA_TAG_PROTO_NONE;
1621 	} else {
1622 		return DSA_TAG_PROTO_MTK;
1623 	}
1624 }
1625 
1626 static inline u32
1627 mt7530_gpio_to_bit(unsigned int offset)
1628 {
1629 	/* Map GPIO offset to register bit
1630 	 * [ 2: 0]  port 0 LED 0..2 as GPIO 0..2
1631 	 * [ 6: 4]  port 1 LED 0..2 as GPIO 3..5
1632 	 * [10: 8]  port 2 LED 0..2 as GPIO 6..8
1633 	 * [14:12]  port 3 LED 0..2 as GPIO 9..11
1634 	 * [18:16]  port 4 LED 0..2 as GPIO 12..14
1635 	 */
1636 	return BIT(offset + offset / 3);
1637 }
1638 
1639 static int
1640 mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset)
1641 {
1642 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1643 	u32 bit = mt7530_gpio_to_bit(offset);
1644 
1645 	return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit);
1646 }
1647 
1648 static void
1649 mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
1650 {
1651 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1652 	u32 bit = mt7530_gpio_to_bit(offset);
1653 
1654 	if (value)
1655 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1656 	else
1657 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1658 }
1659 
1660 static int
1661 mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
1662 {
1663 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1664 	u32 bit = mt7530_gpio_to_bit(offset);
1665 
1666 	return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ?
1667 		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1668 }
1669 
1670 static int
1671 mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
1672 {
1673 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1674 	u32 bit = mt7530_gpio_to_bit(offset);
1675 
1676 	mt7530_clear(priv, MT7530_LED_GPIO_OE, bit);
1677 	mt7530_clear(priv, MT7530_LED_GPIO_DIR, bit);
1678 
1679 	return 0;
1680 }
1681 
1682 static int
1683 mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value)
1684 {
1685 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1686 	u32 bit = mt7530_gpio_to_bit(offset);
1687 
1688 	mt7530_set(priv, MT7530_LED_GPIO_DIR, bit);
1689 
1690 	if (value)
1691 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1692 	else
1693 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1694 
1695 	mt7530_set(priv, MT7530_LED_GPIO_OE, bit);
1696 
1697 	return 0;
1698 }
1699 
1700 static int
1701 mt7530_setup_gpio(struct mt7530_priv *priv)
1702 {
1703 	struct device *dev = priv->dev;
1704 	struct gpio_chip *gc;
1705 
1706 	gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL);
1707 	if (!gc)
1708 		return -ENOMEM;
1709 
1710 	mt7530_write(priv, MT7530_LED_GPIO_OE, 0);
1711 	mt7530_write(priv, MT7530_LED_GPIO_DIR, 0);
1712 	mt7530_write(priv, MT7530_LED_IO_MODE, 0);
1713 
1714 	gc->label = "mt7530";
1715 	gc->parent = dev;
1716 	gc->owner = THIS_MODULE;
1717 	gc->get_direction = mt7530_gpio_get_direction;
1718 	gc->direction_input = mt7530_gpio_direction_input;
1719 	gc->direction_output = mt7530_gpio_direction_output;
1720 	gc->get = mt7530_gpio_get;
1721 	gc->set = mt7530_gpio_set;
1722 	gc->base = -1;
1723 	gc->ngpio = 15;
1724 	gc->can_sleep = true;
1725 
1726 	return devm_gpiochip_add_data(dev, gc, priv);
1727 }
1728 
1729 static int
1730 mt7530_setup(struct dsa_switch *ds)
1731 {
1732 	struct mt7530_priv *priv = ds->priv;
1733 	struct device_node *phy_node;
1734 	struct device_node *mac_np;
1735 	struct mt7530_dummy_poll p;
1736 	phy_interface_t interface;
1737 	struct device_node *dn;
1738 	u32 id, val;
1739 	int ret, i;
1740 
1741 	/* The parent node of master netdev which holds the common system
1742 	 * controller also is the container for two GMACs nodes representing
1743 	 * as two netdev instances.
1744 	 */
1745 	dn = dsa_to_port(ds, MT7530_CPU_PORT)->master->dev.of_node->parent;
1746 	ds->mtu_enforcement_ingress = true;
1747 
1748 	if (priv->id == ID_MT7530) {
1749 		regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
1750 		ret = regulator_enable(priv->core_pwr);
1751 		if (ret < 0) {
1752 			dev_err(priv->dev,
1753 				"Failed to enable core power: %d\n", ret);
1754 			return ret;
1755 		}
1756 
1757 		regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
1758 		ret = regulator_enable(priv->io_pwr);
1759 		if (ret < 0) {
1760 			dev_err(priv->dev, "Failed to enable io pwr: %d\n",
1761 				ret);
1762 			return ret;
1763 		}
1764 	}
1765 
1766 	/* Reset whole chip through gpio pin or memory-mapped registers for
1767 	 * different type of hardware
1768 	 */
1769 	if (priv->mcm) {
1770 		reset_control_assert(priv->rstc);
1771 		usleep_range(1000, 1100);
1772 		reset_control_deassert(priv->rstc);
1773 	} else {
1774 		gpiod_set_value_cansleep(priv->reset, 0);
1775 		usleep_range(1000, 1100);
1776 		gpiod_set_value_cansleep(priv->reset, 1);
1777 	}
1778 
1779 	/* Waiting for MT7530 got to stable */
1780 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
1781 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
1782 				 20, 1000000);
1783 	if (ret < 0) {
1784 		dev_err(priv->dev, "reset timeout\n");
1785 		return ret;
1786 	}
1787 
1788 	id = mt7530_read(priv, MT7530_CREV);
1789 	id >>= CHIP_NAME_SHIFT;
1790 	if (id != MT7530_ID) {
1791 		dev_err(priv->dev, "chip %x can't be supported\n", id);
1792 		return -ENODEV;
1793 	}
1794 
1795 	/* Reset the switch through internal reset */
1796 	mt7530_write(priv, MT7530_SYS_CTRL,
1797 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
1798 		     SYS_CTRL_REG_RST);
1799 
1800 	/* Enable Port 6 only; P5 as GMAC5 which currently is not supported */
1801 	val = mt7530_read(priv, MT7530_MHWTRAP);
1802 	val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
1803 	val |= MHWTRAP_MANUAL;
1804 	mt7530_write(priv, MT7530_MHWTRAP, val);
1805 
1806 	priv->p6_interface = PHY_INTERFACE_MODE_NA;
1807 
1808 	/* Enable and reset MIB counters */
1809 	mt7530_mib_reset(ds);
1810 
1811 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1812 		/* Disable forwarding by default on all ports */
1813 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
1814 			   PCR_MATRIX_CLR);
1815 
1816 		if (dsa_is_cpu_port(ds, i)) {
1817 			ret = mt753x_cpu_port_enable(ds, i);
1818 			if (ret)
1819 				return ret;
1820 		} else
1821 			mt7530_port_disable(ds, i);
1822 
1823 		/* Enable consistent egress tag */
1824 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
1825 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1826 	}
1827 
1828 	/* Setup port 5 */
1829 	priv->p5_intf_sel = P5_DISABLED;
1830 	interface = PHY_INTERFACE_MODE_NA;
1831 
1832 	if (!dsa_is_unused_port(ds, 5)) {
1833 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
1834 		ret = of_get_phy_mode(dsa_to_port(ds, 5)->dn, &interface);
1835 		if (ret && ret != -ENODEV)
1836 			return ret;
1837 	} else {
1838 		/* Scan the ethernet nodes. look for GMAC1, lookup used phy */
1839 		for_each_child_of_node(dn, mac_np) {
1840 			if (!of_device_is_compatible(mac_np,
1841 						     "mediatek,eth-mac"))
1842 				continue;
1843 
1844 			ret = of_property_read_u32(mac_np, "reg", &id);
1845 			if (ret < 0 || id != 1)
1846 				continue;
1847 
1848 			phy_node = of_parse_phandle(mac_np, "phy-handle", 0);
1849 			if (!phy_node)
1850 				continue;
1851 
1852 			if (phy_node->parent == priv->dev->of_node->parent) {
1853 				ret = of_get_phy_mode(mac_np, &interface);
1854 				if (ret && ret != -ENODEV) {
1855 					of_node_put(mac_np);
1856 					return ret;
1857 				}
1858 				id = of_mdio_parse_addr(ds->dev, phy_node);
1859 				if (id == 0)
1860 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P0;
1861 				if (id == 4)
1862 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P4;
1863 			}
1864 			of_node_put(mac_np);
1865 			of_node_put(phy_node);
1866 			break;
1867 		}
1868 	}
1869 
1870 	if (of_property_read_bool(priv->dev->of_node, "gpio-controller")) {
1871 		ret = mt7530_setup_gpio(priv);
1872 		if (ret)
1873 			return ret;
1874 	}
1875 
1876 	mt7530_setup_port5(ds, interface);
1877 
1878 	/* Flush the FDB table */
1879 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
1880 	if (ret < 0)
1881 		return ret;
1882 
1883 	return 0;
1884 }
1885 
1886 static int
1887 mt7531_setup(struct dsa_switch *ds)
1888 {
1889 	struct mt7530_priv *priv = ds->priv;
1890 	struct mt7530_dummy_poll p;
1891 	u32 val, id;
1892 	int ret, i;
1893 
1894 	/* Reset whole chip through gpio pin or memory-mapped registers for
1895 	 * different type of hardware
1896 	 */
1897 	if (priv->mcm) {
1898 		reset_control_assert(priv->rstc);
1899 		usleep_range(1000, 1100);
1900 		reset_control_deassert(priv->rstc);
1901 	} else {
1902 		gpiod_set_value_cansleep(priv->reset, 0);
1903 		usleep_range(1000, 1100);
1904 		gpiod_set_value_cansleep(priv->reset, 1);
1905 	}
1906 
1907 	/* Waiting for MT7530 got to stable */
1908 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
1909 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
1910 				 20, 1000000);
1911 	if (ret < 0) {
1912 		dev_err(priv->dev, "reset timeout\n");
1913 		return ret;
1914 	}
1915 
1916 	id = mt7530_read(priv, MT7531_CREV);
1917 	id >>= CHIP_NAME_SHIFT;
1918 
1919 	if (id != MT7531_ID) {
1920 		dev_err(priv->dev, "chip %x can't be supported\n", id);
1921 		return -ENODEV;
1922 	}
1923 
1924 	/* Reset the switch through internal reset */
1925 	mt7530_write(priv, MT7530_SYS_CTRL,
1926 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
1927 		     SYS_CTRL_REG_RST);
1928 
1929 	if (mt7531_dual_sgmii_supported(priv)) {
1930 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5_SGMII;
1931 
1932 		/* Let ds->slave_mii_bus be able to access external phy. */
1933 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK,
1934 			   MT7531_EXT_P_MDC_11);
1935 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK,
1936 			   MT7531_EXT_P_MDIO_12);
1937 	} else {
1938 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
1939 	}
1940 	dev_dbg(ds->dev, "P5 support %s interface\n",
1941 		p5_intf_modes(priv->p5_intf_sel));
1942 
1943 	mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK,
1944 		   MT7531_GPIO0_INTERRUPT);
1945 
1946 	/* Let phylink decide the interface later. */
1947 	priv->p5_interface = PHY_INTERFACE_MODE_NA;
1948 	priv->p6_interface = PHY_INTERFACE_MODE_NA;
1949 
1950 	/* Enable PHY core PLL, since phy_device has not yet been created
1951 	 * provided for phy_[read,write]_mmd_indirect is called, we provide
1952 	 * our own mt7531_ind_mmd_phy_[read,write] to complete this
1953 	 * function.
1954 	 */
1955 	val = mt7531_ind_c45_phy_read(priv, MT753X_CTRL_PHY_ADDR,
1956 				      MDIO_MMD_VEND2, CORE_PLL_GROUP4);
1957 	val |= MT7531_PHY_PLL_BYPASS_MODE;
1958 	val &= ~MT7531_PHY_PLL_OFF;
1959 	mt7531_ind_c45_phy_write(priv, MT753X_CTRL_PHY_ADDR, MDIO_MMD_VEND2,
1960 				 CORE_PLL_GROUP4, val);
1961 
1962 	/* BPDU to CPU port */
1963 	mt7530_rmw(priv, MT7531_CFC, MT7531_CPU_PMAP_MASK,
1964 		   BIT(MT7530_CPU_PORT));
1965 	mt7530_rmw(priv, MT753X_BPC, MT753X_BPDU_PORT_FW_MASK,
1966 		   MT753X_BPDU_CPU_ONLY);
1967 
1968 	/* Enable and reset MIB counters */
1969 	mt7530_mib_reset(ds);
1970 
1971 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1972 		/* Disable forwarding by default on all ports */
1973 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
1974 			   PCR_MATRIX_CLR);
1975 
1976 		mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR);
1977 
1978 		if (dsa_is_cpu_port(ds, i)) {
1979 			ret = mt753x_cpu_port_enable(ds, i);
1980 			if (ret)
1981 				return ret;
1982 		} else
1983 			mt7530_port_disable(ds, i);
1984 
1985 		/* Enable consistent egress tag */
1986 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
1987 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1988 	}
1989 
1990 	ds->mtu_enforcement_ingress = true;
1991 
1992 	/* Flush the FDB table */
1993 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
1994 	if (ret < 0)
1995 		return ret;
1996 
1997 	return 0;
1998 }
1999 
2000 static bool
2001 mt7530_phy_mode_supported(struct dsa_switch *ds, int port,
2002 			  const struct phylink_link_state *state)
2003 {
2004 	struct mt7530_priv *priv = ds->priv;
2005 
2006 	switch (port) {
2007 	case 0 ... 4: /* Internal phy */
2008 		if (state->interface != PHY_INTERFACE_MODE_GMII)
2009 			return false;
2010 		break;
2011 	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2012 		if (!phy_interface_mode_is_rgmii(state->interface) &&
2013 		    state->interface != PHY_INTERFACE_MODE_MII &&
2014 		    state->interface != PHY_INTERFACE_MODE_GMII)
2015 			return false;
2016 		break;
2017 	case 6: /* 1st cpu port */
2018 		if (state->interface != PHY_INTERFACE_MODE_RGMII &&
2019 		    state->interface != PHY_INTERFACE_MODE_TRGMII)
2020 			return false;
2021 		break;
2022 	default:
2023 		dev_err(priv->dev, "%s: unsupported port: %i\n", __func__,
2024 			port);
2025 		return false;
2026 	}
2027 
2028 	return true;
2029 }
2030 
2031 static bool mt7531_is_rgmii_port(struct mt7530_priv *priv, u32 port)
2032 {
2033 	return (port == 5) && (priv->p5_intf_sel != P5_INTF_SEL_GMAC5_SGMII);
2034 }
2035 
2036 static bool
2037 mt7531_phy_mode_supported(struct dsa_switch *ds, int port,
2038 			  const struct phylink_link_state *state)
2039 {
2040 	struct mt7530_priv *priv = ds->priv;
2041 
2042 	switch (port) {
2043 	case 0 ... 4: /* Internal phy */
2044 		if (state->interface != PHY_INTERFACE_MODE_GMII)
2045 			return false;
2046 		break;
2047 	case 5: /* 2nd cpu port supports either rgmii or sgmii/8023z */
2048 		if (mt7531_is_rgmii_port(priv, port))
2049 			return phy_interface_mode_is_rgmii(state->interface);
2050 		fallthrough;
2051 	case 6: /* 1st cpu port supports sgmii/8023z only */
2052 		if (state->interface != PHY_INTERFACE_MODE_SGMII &&
2053 		    !phy_interface_mode_is_8023z(state->interface))
2054 			return false;
2055 		break;
2056 	default:
2057 		dev_err(priv->dev, "%s: unsupported port: %i\n", __func__,
2058 			port);
2059 		return false;
2060 	}
2061 
2062 	return true;
2063 }
2064 
2065 static bool
2066 mt753x_phy_mode_supported(struct dsa_switch *ds, int port,
2067 			  const struct phylink_link_state *state)
2068 {
2069 	struct mt7530_priv *priv = ds->priv;
2070 
2071 	return priv->info->phy_mode_supported(ds, port, state);
2072 }
2073 
2074 static int
2075 mt753x_pad_setup(struct dsa_switch *ds, const struct phylink_link_state *state)
2076 {
2077 	struct mt7530_priv *priv = ds->priv;
2078 
2079 	return priv->info->pad_setup(ds, state->interface);
2080 }
2081 
2082 static int
2083 mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2084 		  phy_interface_t interface)
2085 {
2086 	struct mt7530_priv *priv = ds->priv;
2087 
2088 	/* Only need to setup port5. */
2089 	if (port != 5)
2090 		return 0;
2091 
2092 	mt7530_setup_port5(priv->ds, interface);
2093 
2094 	return 0;
2095 }
2096 
2097 static int mt7531_rgmii_setup(struct mt7530_priv *priv, u32 port,
2098 			      phy_interface_t interface,
2099 			      struct phy_device *phydev)
2100 {
2101 	u32 val;
2102 
2103 	if (!mt7531_is_rgmii_port(priv, port)) {
2104 		dev_err(priv->dev, "RGMII mode is not available for port %d\n",
2105 			port);
2106 		return -EINVAL;
2107 	}
2108 
2109 	val = mt7530_read(priv, MT7531_CLKGEN_CTRL);
2110 	val |= GP_CLK_EN;
2111 	val &= ~GP_MODE_MASK;
2112 	val |= GP_MODE(MT7531_GP_MODE_RGMII);
2113 	val &= ~CLK_SKEW_IN_MASK;
2114 	val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG);
2115 	val &= ~CLK_SKEW_OUT_MASK;
2116 	val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG);
2117 	val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY;
2118 
2119 	/* Do not adjust rgmii delay when vendor phy driver presents. */
2120 	if (!phydev || phy_driver_is_genphy(phydev)) {
2121 		val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY);
2122 		switch (interface) {
2123 		case PHY_INTERFACE_MODE_RGMII:
2124 			val |= TXCLK_NO_REVERSE;
2125 			val |= RXCLK_NO_DELAY;
2126 			break;
2127 		case PHY_INTERFACE_MODE_RGMII_RXID:
2128 			val |= TXCLK_NO_REVERSE;
2129 			break;
2130 		case PHY_INTERFACE_MODE_RGMII_TXID:
2131 			val |= RXCLK_NO_DELAY;
2132 			break;
2133 		case PHY_INTERFACE_MODE_RGMII_ID:
2134 			break;
2135 		default:
2136 			return -EINVAL;
2137 		}
2138 	}
2139 	mt7530_write(priv, MT7531_CLKGEN_CTRL, val);
2140 
2141 	return 0;
2142 }
2143 
2144 static void mt7531_sgmii_validate(struct mt7530_priv *priv, int port,
2145 				  unsigned long *supported)
2146 {
2147 	/* Port5 supports ethier RGMII or SGMII.
2148 	 * Port6 supports SGMII only.
2149 	 */
2150 	switch (port) {
2151 	case 5:
2152 		if (mt7531_is_rgmii_port(priv, port))
2153 			break;
2154 		fallthrough;
2155 	case 6:
2156 		phylink_set(supported, 1000baseX_Full);
2157 		phylink_set(supported, 2500baseX_Full);
2158 		phylink_set(supported, 2500baseT_Full);
2159 	}
2160 }
2161 
2162 static void
2163 mt7531_sgmii_link_up_force(struct dsa_switch *ds, int port,
2164 			   unsigned int mode, phy_interface_t interface,
2165 			   int speed, int duplex)
2166 {
2167 	struct mt7530_priv *priv = ds->priv;
2168 	unsigned int val;
2169 
2170 	/* For adjusting speed and duplex of SGMII force mode. */
2171 	if (interface != PHY_INTERFACE_MODE_SGMII ||
2172 	    phylink_autoneg_inband(mode))
2173 		return;
2174 
2175 	/* SGMII force mode setting */
2176 	val = mt7530_read(priv, MT7531_SGMII_MODE(port));
2177 	val &= ~MT7531_SGMII_IF_MODE_MASK;
2178 
2179 	switch (speed) {
2180 	case SPEED_10:
2181 		val |= MT7531_SGMII_FORCE_SPEED_10;
2182 		break;
2183 	case SPEED_100:
2184 		val |= MT7531_SGMII_FORCE_SPEED_100;
2185 		break;
2186 	case SPEED_1000:
2187 		val |= MT7531_SGMII_FORCE_SPEED_1000;
2188 		break;
2189 	}
2190 
2191 	/* MT7531 SGMII 1G force mode can only work in full duplex mode,
2192 	 * no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not.
2193 	 */
2194 	if ((speed == SPEED_10 || speed == SPEED_100) &&
2195 	    duplex != DUPLEX_FULL)
2196 		val |= MT7531_SGMII_FORCE_HALF_DUPLEX;
2197 
2198 	mt7530_write(priv, MT7531_SGMII_MODE(port), val);
2199 }
2200 
2201 static bool mt753x_is_mac_port(u32 port)
2202 {
2203 	return (port == 5 || port == 6);
2204 }
2205 
2206 static int mt7531_sgmii_setup_mode_force(struct mt7530_priv *priv, u32 port,
2207 					 phy_interface_t interface)
2208 {
2209 	u32 val;
2210 
2211 	if (!mt753x_is_mac_port(port))
2212 		return -EINVAL;
2213 
2214 	mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port),
2215 		   MT7531_SGMII_PHYA_PWD);
2216 
2217 	val = mt7530_read(priv, MT7531_PHYA_CTRL_SIGNAL3(port));
2218 	val &= ~MT7531_RG_TPHY_SPEED_MASK;
2219 	/* Setup 2.5 times faster clock for 2.5Gbps data speeds with 10B/8B
2220 	 * encoding.
2221 	 */
2222 	val |= (interface == PHY_INTERFACE_MODE_2500BASEX) ?
2223 		MT7531_RG_TPHY_SPEED_3_125G : MT7531_RG_TPHY_SPEED_1_25G;
2224 	mt7530_write(priv, MT7531_PHYA_CTRL_SIGNAL3(port), val);
2225 
2226 	mt7530_clear(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE);
2227 
2228 	/* MT7531 SGMII 1G and 2.5G force mode can only work in full duplex
2229 	 * mode, no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not.
2230 	 */
2231 	mt7530_rmw(priv, MT7531_SGMII_MODE(port),
2232 		   MT7531_SGMII_IF_MODE_MASK | MT7531_SGMII_REMOTE_FAULT_DIS,
2233 		   MT7531_SGMII_FORCE_SPEED_1000);
2234 
2235 	mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0);
2236 
2237 	return 0;
2238 }
2239 
2240 static int mt7531_sgmii_setup_mode_an(struct mt7530_priv *priv, int port,
2241 				      phy_interface_t interface)
2242 {
2243 	if (!mt753x_is_mac_port(port))
2244 		return -EINVAL;
2245 
2246 	mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port),
2247 		   MT7531_SGMII_PHYA_PWD);
2248 
2249 	mt7530_rmw(priv, MT7531_PHYA_CTRL_SIGNAL3(port),
2250 		   MT7531_RG_TPHY_SPEED_MASK, MT7531_RG_TPHY_SPEED_1_25G);
2251 
2252 	mt7530_set(priv, MT7531_SGMII_MODE(port),
2253 		   MT7531_SGMII_REMOTE_FAULT_DIS |
2254 		   MT7531_SGMII_SPEED_DUPLEX_AN);
2255 
2256 	mt7530_rmw(priv, MT7531_PCS_SPEED_ABILITY(port),
2257 		   MT7531_SGMII_TX_CONFIG_MASK, 1);
2258 
2259 	mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE);
2260 
2261 	mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_RESTART);
2262 
2263 	mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0);
2264 
2265 	return 0;
2266 }
2267 
2268 static void mt7531_sgmii_restart_an(struct dsa_switch *ds, int port)
2269 {
2270 	struct mt7530_priv *priv = ds->priv;
2271 	u32 val;
2272 
2273 	/* Only restart AN when AN is enabled */
2274 	val = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
2275 	if (val & MT7531_SGMII_AN_ENABLE) {
2276 		val |= MT7531_SGMII_AN_RESTART;
2277 		mt7530_write(priv, MT7531_PCS_CONTROL_1(port), val);
2278 	}
2279 }
2280 
2281 static int
2282 mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2283 		  phy_interface_t interface)
2284 {
2285 	struct mt7530_priv *priv = ds->priv;
2286 	struct phy_device *phydev;
2287 	struct dsa_port *dp;
2288 
2289 	if (!mt753x_is_mac_port(port)) {
2290 		dev_err(priv->dev, "port %d is not a MAC port\n", port);
2291 		return -EINVAL;
2292 	}
2293 
2294 	switch (interface) {
2295 	case PHY_INTERFACE_MODE_RGMII:
2296 	case PHY_INTERFACE_MODE_RGMII_ID:
2297 	case PHY_INTERFACE_MODE_RGMII_RXID:
2298 	case PHY_INTERFACE_MODE_RGMII_TXID:
2299 		dp = dsa_to_port(ds, port);
2300 		phydev = dp->slave->phydev;
2301 		return mt7531_rgmii_setup(priv, port, interface, phydev);
2302 	case PHY_INTERFACE_MODE_SGMII:
2303 		return mt7531_sgmii_setup_mode_an(priv, port, interface);
2304 	case PHY_INTERFACE_MODE_NA:
2305 	case PHY_INTERFACE_MODE_1000BASEX:
2306 	case PHY_INTERFACE_MODE_2500BASEX:
2307 		if (phylink_autoneg_inband(mode))
2308 			return -EINVAL;
2309 
2310 		return mt7531_sgmii_setup_mode_force(priv, port, interface);
2311 	default:
2312 		return -EINVAL;
2313 	}
2314 
2315 	return -EINVAL;
2316 }
2317 
2318 static int
2319 mt753x_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2320 		  const struct phylink_link_state *state)
2321 {
2322 	struct mt7530_priv *priv = ds->priv;
2323 
2324 	return priv->info->mac_port_config(ds, port, mode, state->interface);
2325 }
2326 
2327 static void
2328 mt753x_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2329 			  const struct phylink_link_state *state)
2330 {
2331 	struct mt7530_priv *priv = ds->priv;
2332 	u32 mcr_cur, mcr_new;
2333 
2334 	if (!mt753x_phy_mode_supported(ds, port, state))
2335 		goto unsupported;
2336 
2337 	switch (port) {
2338 	case 0 ... 4: /* Internal phy */
2339 		if (state->interface != PHY_INTERFACE_MODE_GMII)
2340 			goto unsupported;
2341 		break;
2342 	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2343 		if (priv->p5_interface == state->interface)
2344 			break;
2345 
2346 		if (mt753x_mac_config(ds, port, mode, state) < 0)
2347 			goto unsupported;
2348 
2349 		if (priv->p5_intf_sel != P5_DISABLED)
2350 			priv->p5_interface = state->interface;
2351 		break;
2352 	case 6: /* 1st cpu port */
2353 		if (priv->p6_interface == state->interface)
2354 			break;
2355 
2356 		mt753x_pad_setup(ds, state);
2357 
2358 		if (mt753x_mac_config(ds, port, mode, state) < 0)
2359 			goto unsupported;
2360 
2361 		priv->p6_interface = state->interface;
2362 		break;
2363 	default:
2364 unsupported:
2365 		dev_err(ds->dev, "%s: unsupported %s port: %i\n",
2366 			__func__, phy_modes(state->interface), port);
2367 		return;
2368 	}
2369 
2370 	if (phylink_autoneg_inband(mode) &&
2371 	    state->interface != PHY_INTERFACE_MODE_SGMII) {
2372 		dev_err(ds->dev, "%s: in-band negotiation unsupported\n",
2373 			__func__);
2374 		return;
2375 	}
2376 
2377 	mcr_cur = mt7530_read(priv, MT7530_PMCR_P(port));
2378 	mcr_new = mcr_cur;
2379 	mcr_new &= ~PMCR_LINK_SETTINGS_MASK;
2380 	mcr_new |= PMCR_IFG_XMIT(1) | PMCR_MAC_MODE | PMCR_BACKOFF_EN |
2381 		   PMCR_BACKPR_EN | PMCR_FORCE_MODE_ID(priv->id);
2382 
2383 	/* Are we connected to external phy */
2384 	if (port == 5 && dsa_is_user_port(ds, 5))
2385 		mcr_new |= PMCR_EXT_PHY;
2386 
2387 	if (mcr_new != mcr_cur)
2388 		mt7530_write(priv, MT7530_PMCR_P(port), mcr_new);
2389 }
2390 
2391 static void
2392 mt753x_phylink_mac_an_restart(struct dsa_switch *ds, int port)
2393 {
2394 	struct mt7530_priv *priv = ds->priv;
2395 
2396 	if (!priv->info->mac_pcs_an_restart)
2397 		return;
2398 
2399 	priv->info->mac_pcs_an_restart(ds, port);
2400 }
2401 
2402 static void mt753x_phylink_mac_link_down(struct dsa_switch *ds, int port,
2403 					 unsigned int mode,
2404 					 phy_interface_t interface)
2405 {
2406 	struct mt7530_priv *priv = ds->priv;
2407 
2408 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
2409 }
2410 
2411 static void mt753x_mac_pcs_link_up(struct dsa_switch *ds, int port,
2412 				   unsigned int mode, phy_interface_t interface,
2413 				   int speed, int duplex)
2414 {
2415 	struct mt7530_priv *priv = ds->priv;
2416 
2417 	if (!priv->info->mac_pcs_link_up)
2418 		return;
2419 
2420 	priv->info->mac_pcs_link_up(ds, port, mode, interface, speed, duplex);
2421 }
2422 
2423 static void mt753x_phylink_mac_link_up(struct dsa_switch *ds, int port,
2424 				       unsigned int mode,
2425 				       phy_interface_t interface,
2426 				       struct phy_device *phydev,
2427 				       int speed, int duplex,
2428 				       bool tx_pause, bool rx_pause)
2429 {
2430 	struct mt7530_priv *priv = ds->priv;
2431 	u32 mcr;
2432 
2433 	mt753x_mac_pcs_link_up(ds, port, mode, interface, speed, duplex);
2434 
2435 	mcr = PMCR_RX_EN | PMCR_TX_EN | PMCR_FORCE_LNK;
2436 
2437 	/* MT753x MAC works in 1G full duplex mode for all up-clocked
2438 	 * variants.
2439 	 */
2440 	if (interface == PHY_INTERFACE_MODE_TRGMII ||
2441 	    (phy_interface_mode_is_8023z(interface))) {
2442 		speed = SPEED_1000;
2443 		duplex = DUPLEX_FULL;
2444 	}
2445 
2446 	switch (speed) {
2447 	case SPEED_1000:
2448 		mcr |= PMCR_FORCE_SPEED_1000;
2449 		break;
2450 	case SPEED_100:
2451 		mcr |= PMCR_FORCE_SPEED_100;
2452 		break;
2453 	}
2454 	if (duplex == DUPLEX_FULL) {
2455 		mcr |= PMCR_FORCE_FDX;
2456 		if (tx_pause)
2457 			mcr |= PMCR_TX_FC_EN;
2458 		if (rx_pause)
2459 			mcr |= PMCR_RX_FC_EN;
2460 	}
2461 
2462 	mt7530_set(priv, MT7530_PMCR_P(port), mcr);
2463 }
2464 
2465 static int
2466 mt7531_cpu_port_config(struct dsa_switch *ds, int port)
2467 {
2468 	struct mt7530_priv *priv = ds->priv;
2469 	phy_interface_t interface;
2470 	int speed;
2471 	int ret;
2472 
2473 	switch (port) {
2474 	case 5:
2475 		if (mt7531_is_rgmii_port(priv, port))
2476 			interface = PHY_INTERFACE_MODE_RGMII;
2477 		else
2478 			interface = PHY_INTERFACE_MODE_2500BASEX;
2479 
2480 		priv->p5_interface = interface;
2481 		break;
2482 	case 6:
2483 		interface = PHY_INTERFACE_MODE_2500BASEX;
2484 
2485 		mt7531_pad_setup(ds, interface);
2486 
2487 		priv->p6_interface = interface;
2488 		break;
2489 	default:
2490 		return -EINVAL;
2491 	}
2492 
2493 	if (interface == PHY_INTERFACE_MODE_2500BASEX)
2494 		speed = SPEED_2500;
2495 	else
2496 		speed = SPEED_1000;
2497 
2498 	ret = mt7531_mac_config(ds, port, MLO_AN_FIXED, interface);
2499 	if (ret)
2500 		return ret;
2501 	mt7530_write(priv, MT7530_PMCR_P(port),
2502 		     PMCR_CPU_PORT_SETTING(priv->id));
2503 	mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED, interface, NULL,
2504 				   speed, DUPLEX_FULL, true, true);
2505 
2506 	return 0;
2507 }
2508 
2509 static void
2510 mt7530_mac_port_validate(struct dsa_switch *ds, int port,
2511 			 unsigned long *supported)
2512 {
2513 	if (port == 5)
2514 		phylink_set(supported, 1000baseX_Full);
2515 }
2516 
2517 static void mt7531_mac_port_validate(struct dsa_switch *ds, int port,
2518 				     unsigned long *supported)
2519 {
2520 	struct mt7530_priv *priv = ds->priv;
2521 
2522 	mt7531_sgmii_validate(priv, port, supported);
2523 }
2524 
2525 static void
2526 mt753x_phylink_validate(struct dsa_switch *ds, int port,
2527 			unsigned long *supported,
2528 			struct phylink_link_state *state)
2529 {
2530 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
2531 	struct mt7530_priv *priv = ds->priv;
2532 
2533 	if (state->interface != PHY_INTERFACE_MODE_NA &&
2534 	    !mt753x_phy_mode_supported(ds, port, state)) {
2535 		linkmode_zero(supported);
2536 		return;
2537 	}
2538 
2539 	phylink_set_port_modes(mask);
2540 
2541 	if (state->interface != PHY_INTERFACE_MODE_TRGMII ||
2542 	    !phy_interface_mode_is_8023z(state->interface)) {
2543 		phylink_set(mask, 10baseT_Half);
2544 		phylink_set(mask, 10baseT_Full);
2545 		phylink_set(mask, 100baseT_Half);
2546 		phylink_set(mask, 100baseT_Full);
2547 		phylink_set(mask, Autoneg);
2548 	}
2549 
2550 	/* This switch only supports 1G full-duplex. */
2551 	if (state->interface != PHY_INTERFACE_MODE_MII)
2552 		phylink_set(mask, 1000baseT_Full);
2553 
2554 	priv->info->mac_port_validate(ds, port, mask);
2555 
2556 	phylink_set(mask, Pause);
2557 	phylink_set(mask, Asym_Pause);
2558 
2559 	linkmode_and(supported, supported, mask);
2560 	linkmode_and(state->advertising, state->advertising, mask);
2561 
2562 	/* We can only operate at 2500BaseX or 1000BaseX.  If requested
2563 	 * to advertise both, only report advertising at 2500BaseX.
2564 	 */
2565 	phylink_helper_basex_speed(state);
2566 }
2567 
2568 static int
2569 mt7530_phylink_mac_link_state(struct dsa_switch *ds, int port,
2570 			      struct phylink_link_state *state)
2571 {
2572 	struct mt7530_priv *priv = ds->priv;
2573 	u32 pmsr;
2574 
2575 	if (port < 0 || port >= MT7530_NUM_PORTS)
2576 		return -EINVAL;
2577 
2578 	pmsr = mt7530_read(priv, MT7530_PMSR_P(port));
2579 
2580 	state->link = (pmsr & PMSR_LINK);
2581 	state->an_complete = state->link;
2582 	state->duplex = !!(pmsr & PMSR_DPX);
2583 
2584 	switch (pmsr & PMSR_SPEED_MASK) {
2585 	case PMSR_SPEED_10:
2586 		state->speed = SPEED_10;
2587 		break;
2588 	case PMSR_SPEED_100:
2589 		state->speed = SPEED_100;
2590 		break;
2591 	case PMSR_SPEED_1000:
2592 		state->speed = SPEED_1000;
2593 		break;
2594 	default:
2595 		state->speed = SPEED_UNKNOWN;
2596 		break;
2597 	}
2598 
2599 	state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX);
2600 	if (pmsr & PMSR_RX_FC)
2601 		state->pause |= MLO_PAUSE_RX;
2602 	if (pmsr & PMSR_TX_FC)
2603 		state->pause |= MLO_PAUSE_TX;
2604 
2605 	return 1;
2606 }
2607 
2608 static int
2609 mt7531_sgmii_pcs_get_state_an(struct mt7530_priv *priv, int port,
2610 			      struct phylink_link_state *state)
2611 {
2612 	u32 status, val;
2613 	u16 config_reg;
2614 
2615 	status = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
2616 	state->link = !!(status & MT7531_SGMII_LINK_STATUS);
2617 	if (state->interface == PHY_INTERFACE_MODE_SGMII &&
2618 	    (status & MT7531_SGMII_AN_ENABLE)) {
2619 		val = mt7530_read(priv, MT7531_PCS_SPEED_ABILITY(port));
2620 		config_reg = val >> 16;
2621 
2622 		switch (config_reg & LPA_SGMII_SPD_MASK) {
2623 		case LPA_SGMII_1000:
2624 			state->speed = SPEED_1000;
2625 			break;
2626 		case LPA_SGMII_100:
2627 			state->speed = SPEED_100;
2628 			break;
2629 		case LPA_SGMII_10:
2630 			state->speed = SPEED_10;
2631 			break;
2632 		default:
2633 			dev_err(priv->dev, "invalid sgmii PHY speed\n");
2634 			state->link = false;
2635 			return -EINVAL;
2636 		}
2637 
2638 		if (config_reg & LPA_SGMII_FULL_DUPLEX)
2639 			state->duplex = DUPLEX_FULL;
2640 		else
2641 			state->duplex = DUPLEX_HALF;
2642 	}
2643 
2644 	return 0;
2645 }
2646 
2647 static int
2648 mt7531_phylink_mac_link_state(struct dsa_switch *ds, int port,
2649 			      struct phylink_link_state *state)
2650 {
2651 	struct mt7530_priv *priv = ds->priv;
2652 
2653 	if (state->interface == PHY_INTERFACE_MODE_SGMII)
2654 		return mt7531_sgmii_pcs_get_state_an(priv, port, state);
2655 
2656 	return -EOPNOTSUPP;
2657 }
2658 
2659 static int
2660 mt753x_phylink_mac_link_state(struct dsa_switch *ds, int port,
2661 			      struct phylink_link_state *state)
2662 {
2663 	struct mt7530_priv *priv = ds->priv;
2664 
2665 	return priv->info->mac_port_get_state(ds, port, state);
2666 }
2667 
2668 static int
2669 mt753x_setup(struct dsa_switch *ds)
2670 {
2671 	struct mt7530_priv *priv = ds->priv;
2672 
2673 	return priv->info->sw_setup(ds);
2674 }
2675 
2676 static int
2677 mt753x_phy_read(struct dsa_switch *ds, int port, int regnum)
2678 {
2679 	struct mt7530_priv *priv = ds->priv;
2680 
2681 	return priv->info->phy_read(ds, port, regnum);
2682 }
2683 
2684 static int
2685 mt753x_phy_write(struct dsa_switch *ds, int port, int regnum, u16 val)
2686 {
2687 	struct mt7530_priv *priv = ds->priv;
2688 
2689 	return priv->info->phy_write(ds, port, regnum, val);
2690 }
2691 
2692 static const struct dsa_switch_ops mt7530_switch_ops = {
2693 	.get_tag_protocol	= mtk_get_tag_protocol,
2694 	.setup			= mt753x_setup,
2695 	.get_strings		= mt7530_get_strings,
2696 	.phy_read		= mt753x_phy_read,
2697 	.phy_write		= mt753x_phy_write,
2698 	.get_ethtool_stats	= mt7530_get_ethtool_stats,
2699 	.get_sset_count		= mt7530_get_sset_count,
2700 	.set_ageing_time	= mt7530_set_ageing_time,
2701 	.port_enable		= mt7530_port_enable,
2702 	.port_disable		= mt7530_port_disable,
2703 	.port_change_mtu	= mt7530_port_change_mtu,
2704 	.port_max_mtu		= mt7530_port_max_mtu,
2705 	.port_stp_state_set	= mt7530_stp_state_set,
2706 	.port_bridge_join	= mt7530_port_bridge_join,
2707 	.port_bridge_leave	= mt7530_port_bridge_leave,
2708 	.port_fdb_add		= mt7530_port_fdb_add,
2709 	.port_fdb_del		= mt7530_port_fdb_del,
2710 	.port_fdb_dump		= mt7530_port_fdb_dump,
2711 	.port_vlan_filtering	= mt7530_port_vlan_filtering,
2712 	.port_vlan_add		= mt7530_port_vlan_add,
2713 	.port_vlan_del		= mt7530_port_vlan_del,
2714 	.port_mirror_add	= mt753x_port_mirror_add,
2715 	.port_mirror_del	= mt753x_port_mirror_del,
2716 	.phylink_validate	= mt753x_phylink_validate,
2717 	.phylink_mac_link_state	= mt753x_phylink_mac_link_state,
2718 	.phylink_mac_config	= mt753x_phylink_mac_config,
2719 	.phylink_mac_an_restart	= mt753x_phylink_mac_an_restart,
2720 	.phylink_mac_link_down	= mt753x_phylink_mac_link_down,
2721 	.phylink_mac_link_up	= mt753x_phylink_mac_link_up,
2722 };
2723 
2724 static const struct mt753x_info mt753x_table[] = {
2725 	[ID_MT7621] = {
2726 		.id = ID_MT7621,
2727 		.sw_setup = mt7530_setup,
2728 		.phy_read = mt7530_phy_read,
2729 		.phy_write = mt7530_phy_write,
2730 		.pad_setup = mt7530_pad_clk_setup,
2731 		.phy_mode_supported = mt7530_phy_mode_supported,
2732 		.mac_port_validate = mt7530_mac_port_validate,
2733 		.mac_port_get_state = mt7530_phylink_mac_link_state,
2734 		.mac_port_config = mt7530_mac_config,
2735 	},
2736 	[ID_MT7530] = {
2737 		.id = ID_MT7530,
2738 		.sw_setup = mt7530_setup,
2739 		.phy_read = mt7530_phy_read,
2740 		.phy_write = mt7530_phy_write,
2741 		.pad_setup = mt7530_pad_clk_setup,
2742 		.phy_mode_supported = mt7530_phy_mode_supported,
2743 		.mac_port_validate = mt7530_mac_port_validate,
2744 		.mac_port_get_state = mt7530_phylink_mac_link_state,
2745 		.mac_port_config = mt7530_mac_config,
2746 	},
2747 	[ID_MT7531] = {
2748 		.id = ID_MT7531,
2749 		.sw_setup = mt7531_setup,
2750 		.phy_read = mt7531_ind_phy_read,
2751 		.phy_write = mt7531_ind_phy_write,
2752 		.pad_setup = mt7531_pad_setup,
2753 		.cpu_port_config = mt7531_cpu_port_config,
2754 		.phy_mode_supported = mt7531_phy_mode_supported,
2755 		.mac_port_validate = mt7531_mac_port_validate,
2756 		.mac_port_get_state = mt7531_phylink_mac_link_state,
2757 		.mac_port_config = mt7531_mac_config,
2758 		.mac_pcs_an_restart = mt7531_sgmii_restart_an,
2759 		.mac_pcs_link_up = mt7531_sgmii_link_up_force,
2760 	},
2761 };
2762 
2763 static const struct of_device_id mt7530_of_match[] = {
2764 	{ .compatible = "mediatek,mt7621", .data = &mt753x_table[ID_MT7621], },
2765 	{ .compatible = "mediatek,mt7530", .data = &mt753x_table[ID_MT7530], },
2766 	{ .compatible = "mediatek,mt7531", .data = &mt753x_table[ID_MT7531], },
2767 	{ /* sentinel */ },
2768 };
2769 MODULE_DEVICE_TABLE(of, mt7530_of_match);
2770 
2771 static int
2772 mt7530_probe(struct mdio_device *mdiodev)
2773 {
2774 	struct mt7530_priv *priv;
2775 	struct device_node *dn;
2776 
2777 	dn = mdiodev->dev.of_node;
2778 
2779 	priv = devm_kzalloc(&mdiodev->dev, sizeof(*priv), GFP_KERNEL);
2780 	if (!priv)
2781 		return -ENOMEM;
2782 
2783 	priv->ds = devm_kzalloc(&mdiodev->dev, sizeof(*priv->ds), GFP_KERNEL);
2784 	if (!priv->ds)
2785 		return -ENOMEM;
2786 
2787 	priv->ds->dev = &mdiodev->dev;
2788 	priv->ds->num_ports = DSA_MAX_PORTS;
2789 
2790 	/* Use medatek,mcm property to distinguish hardware type that would
2791 	 * casues a little bit differences on power-on sequence.
2792 	 */
2793 	priv->mcm = of_property_read_bool(dn, "mediatek,mcm");
2794 	if (priv->mcm) {
2795 		dev_info(&mdiodev->dev, "MT7530 adapts as multi-chip module\n");
2796 
2797 		priv->rstc = devm_reset_control_get(&mdiodev->dev, "mcm");
2798 		if (IS_ERR(priv->rstc)) {
2799 			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
2800 			return PTR_ERR(priv->rstc);
2801 		}
2802 	}
2803 
2804 	/* Get the hardware identifier from the devicetree node.
2805 	 * We will need it for some of the clock and regulator setup.
2806 	 */
2807 	priv->info = of_device_get_match_data(&mdiodev->dev);
2808 	if (!priv->info)
2809 		return -EINVAL;
2810 
2811 	/* Sanity check if these required device operations are filled
2812 	 * properly.
2813 	 */
2814 	if (!priv->info->sw_setup || !priv->info->pad_setup ||
2815 	    !priv->info->phy_read || !priv->info->phy_write ||
2816 	    !priv->info->phy_mode_supported ||
2817 	    !priv->info->mac_port_validate ||
2818 	    !priv->info->mac_port_get_state || !priv->info->mac_port_config)
2819 		return -EINVAL;
2820 
2821 	priv->id = priv->info->id;
2822 
2823 	if (priv->id == ID_MT7530) {
2824 		priv->core_pwr = devm_regulator_get(&mdiodev->dev, "core");
2825 		if (IS_ERR(priv->core_pwr))
2826 			return PTR_ERR(priv->core_pwr);
2827 
2828 		priv->io_pwr = devm_regulator_get(&mdiodev->dev, "io");
2829 		if (IS_ERR(priv->io_pwr))
2830 			return PTR_ERR(priv->io_pwr);
2831 	}
2832 
2833 	/* Not MCM that indicates switch works as the remote standalone
2834 	 * integrated circuit so the GPIO pin would be used to complete
2835 	 * the reset, otherwise memory-mapped register accessing used
2836 	 * through syscon provides in the case of MCM.
2837 	 */
2838 	if (!priv->mcm) {
2839 		priv->reset = devm_gpiod_get_optional(&mdiodev->dev, "reset",
2840 						      GPIOD_OUT_LOW);
2841 		if (IS_ERR(priv->reset)) {
2842 			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
2843 			return PTR_ERR(priv->reset);
2844 		}
2845 	}
2846 
2847 	priv->bus = mdiodev->bus;
2848 	priv->dev = &mdiodev->dev;
2849 	priv->ds->priv = priv;
2850 	priv->ds->ops = &mt7530_switch_ops;
2851 	mutex_init(&priv->reg_mutex);
2852 	dev_set_drvdata(&mdiodev->dev, priv);
2853 
2854 	return dsa_register_switch(priv->ds);
2855 }
2856 
2857 static void
2858 mt7530_remove(struct mdio_device *mdiodev)
2859 {
2860 	struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev);
2861 	int ret = 0;
2862 
2863 	ret = regulator_disable(priv->core_pwr);
2864 	if (ret < 0)
2865 		dev_err(priv->dev,
2866 			"Failed to disable core power: %d\n", ret);
2867 
2868 	ret = regulator_disable(priv->io_pwr);
2869 	if (ret < 0)
2870 		dev_err(priv->dev, "Failed to disable io pwr: %d\n",
2871 			ret);
2872 
2873 	dsa_unregister_switch(priv->ds);
2874 	mutex_destroy(&priv->reg_mutex);
2875 }
2876 
2877 static struct mdio_driver mt7530_mdio_driver = {
2878 	.probe  = mt7530_probe,
2879 	.remove = mt7530_remove,
2880 	.mdiodrv.driver = {
2881 		.name = "mt7530",
2882 		.of_match_table = mt7530_of_match,
2883 	},
2884 };
2885 
2886 mdio_module_driver(mt7530_mdio_driver);
2887 
2888 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
2889 MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
2890 MODULE_LICENSE("GPL");
2891