xref: /openbmc/linux/drivers/net/dsa/mt7530.c (revision 9f99d983)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Mediatek MT7530 DSA Switch driver
4  * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
5  */
6 #include <linux/etherdevice.h>
7 #include <linux/if_bridge.h>
8 #include <linux/iopoll.h>
9 #include <linux/mdio.h>
10 #include <linux/mfd/syscon.h>
11 #include <linux/module.h>
12 #include <linux/netdevice.h>
13 #include <linux/of_irq.h>
14 #include <linux/of_mdio.h>
15 #include <linux/of_net.h>
16 #include <linux/of_platform.h>
17 #include <linux/phylink.h>
18 #include <linux/regmap.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/reset.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/gpio/driver.h>
23 #include <net/dsa.h>
24 
25 #include "mt7530.h"
26 
27 /* String, offset, and register size in bytes if different from 4 bytes */
28 static const struct mt7530_mib_desc mt7530_mib[] = {
29 	MIB_DESC(1, 0x00, "TxDrop"),
30 	MIB_DESC(1, 0x04, "TxCrcErr"),
31 	MIB_DESC(1, 0x08, "TxUnicast"),
32 	MIB_DESC(1, 0x0c, "TxMulticast"),
33 	MIB_DESC(1, 0x10, "TxBroadcast"),
34 	MIB_DESC(1, 0x14, "TxCollision"),
35 	MIB_DESC(1, 0x18, "TxSingleCollision"),
36 	MIB_DESC(1, 0x1c, "TxMultipleCollision"),
37 	MIB_DESC(1, 0x20, "TxDeferred"),
38 	MIB_DESC(1, 0x24, "TxLateCollision"),
39 	MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
40 	MIB_DESC(1, 0x2c, "TxPause"),
41 	MIB_DESC(1, 0x30, "TxPktSz64"),
42 	MIB_DESC(1, 0x34, "TxPktSz65To127"),
43 	MIB_DESC(1, 0x38, "TxPktSz128To255"),
44 	MIB_DESC(1, 0x3c, "TxPktSz256To511"),
45 	MIB_DESC(1, 0x40, "TxPktSz512To1023"),
46 	MIB_DESC(1, 0x44, "Tx1024ToMax"),
47 	MIB_DESC(2, 0x48, "TxBytes"),
48 	MIB_DESC(1, 0x60, "RxDrop"),
49 	MIB_DESC(1, 0x64, "RxFiltering"),
50 	MIB_DESC(1, 0x68, "RxUnicast"),
51 	MIB_DESC(1, 0x6c, "RxMulticast"),
52 	MIB_DESC(1, 0x70, "RxBroadcast"),
53 	MIB_DESC(1, 0x74, "RxAlignErr"),
54 	MIB_DESC(1, 0x78, "RxCrcErr"),
55 	MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
56 	MIB_DESC(1, 0x80, "RxFragErr"),
57 	MIB_DESC(1, 0x84, "RxOverSzErr"),
58 	MIB_DESC(1, 0x88, "RxJabberErr"),
59 	MIB_DESC(1, 0x8c, "RxPause"),
60 	MIB_DESC(1, 0x90, "RxPktSz64"),
61 	MIB_DESC(1, 0x94, "RxPktSz65To127"),
62 	MIB_DESC(1, 0x98, "RxPktSz128To255"),
63 	MIB_DESC(1, 0x9c, "RxPktSz256To511"),
64 	MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
65 	MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
66 	MIB_DESC(2, 0xa8, "RxBytes"),
67 	MIB_DESC(1, 0xb0, "RxCtrlDrop"),
68 	MIB_DESC(1, 0xb4, "RxIngressDrop"),
69 	MIB_DESC(1, 0xb8, "RxArlDrop"),
70 };
71 
72 /* Since phy_device has not yet been created and
73  * phy_{read,write}_mmd_indirect is not available, we provide our own
74  * core_{read,write}_mmd_indirect with core_{clear,write,set} wrappers
75  * to complete this function.
76  */
77 static int
78 core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
79 {
80 	struct mii_bus *bus = priv->bus;
81 	int value, ret;
82 
83 	/* Write the desired MMD Devad */
84 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
85 	if (ret < 0)
86 		goto err;
87 
88 	/* Write the desired MMD register address */
89 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
90 	if (ret < 0)
91 		goto err;
92 
93 	/* Select the Function : DATA with no post increment */
94 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
95 	if (ret < 0)
96 		goto err;
97 
98 	/* Read the content of the MMD's selected register */
99 	value = bus->read(bus, 0, MII_MMD_DATA);
100 
101 	return value;
102 err:
103 	dev_err(&bus->dev,  "failed to read mmd register\n");
104 
105 	return ret;
106 }
107 
108 static int
109 core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
110 			int devad, u32 data)
111 {
112 	struct mii_bus *bus = priv->bus;
113 	int ret;
114 
115 	/* Write the desired MMD Devad */
116 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
117 	if (ret < 0)
118 		goto err;
119 
120 	/* Write the desired MMD register address */
121 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
122 	if (ret < 0)
123 		goto err;
124 
125 	/* Select the Function : DATA with no post increment */
126 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
127 	if (ret < 0)
128 		goto err;
129 
130 	/* Write the data into MMD's selected register */
131 	ret = bus->write(bus, 0, MII_MMD_DATA, data);
132 err:
133 	if (ret < 0)
134 		dev_err(&bus->dev,
135 			"failed to write mmd register\n");
136 	return ret;
137 }
138 
139 static void
140 core_write(struct mt7530_priv *priv, u32 reg, u32 val)
141 {
142 	struct mii_bus *bus = priv->bus;
143 
144 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
145 
146 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
147 
148 	mutex_unlock(&bus->mdio_lock);
149 }
150 
151 static void
152 core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
153 {
154 	struct mii_bus *bus = priv->bus;
155 	u32 val;
156 
157 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
158 
159 	val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2);
160 	val &= ~mask;
161 	val |= set;
162 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
163 
164 	mutex_unlock(&bus->mdio_lock);
165 }
166 
167 static void
168 core_set(struct mt7530_priv *priv, u32 reg, u32 val)
169 {
170 	core_rmw(priv, reg, 0, val);
171 }
172 
173 static void
174 core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
175 {
176 	core_rmw(priv, reg, val, 0);
177 }
178 
179 static int
180 mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
181 {
182 	struct mii_bus *bus = priv->bus;
183 	u16 page, r, lo, hi;
184 	int ret;
185 
186 	page = (reg >> 6) & 0x3ff;
187 	r  = (reg >> 2) & 0xf;
188 	lo = val & 0xffff;
189 	hi = val >> 16;
190 
191 	/* MT7530 uses 31 as the pseudo port */
192 	ret = bus->write(bus, 0x1f, 0x1f, page);
193 	if (ret < 0)
194 		goto err;
195 
196 	ret = bus->write(bus, 0x1f, r,  lo);
197 	if (ret < 0)
198 		goto err;
199 
200 	ret = bus->write(bus, 0x1f, 0x10, hi);
201 err:
202 	if (ret < 0)
203 		dev_err(&bus->dev,
204 			"failed to write mt7530 register\n");
205 	return ret;
206 }
207 
208 static u32
209 mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
210 {
211 	struct mii_bus *bus = priv->bus;
212 	u16 page, r, lo, hi;
213 	int ret;
214 
215 	page = (reg >> 6) & 0x3ff;
216 	r = (reg >> 2) & 0xf;
217 
218 	/* MT7530 uses 31 as the pseudo port */
219 	ret = bus->write(bus, 0x1f, 0x1f, page);
220 	if (ret < 0) {
221 		dev_err(&bus->dev,
222 			"failed to read mt7530 register\n");
223 		return ret;
224 	}
225 
226 	lo = bus->read(bus, 0x1f, r);
227 	hi = bus->read(bus, 0x1f, 0x10);
228 
229 	return (hi << 16) | (lo & 0xffff);
230 }
231 
232 static void
233 mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
234 {
235 	struct mii_bus *bus = priv->bus;
236 
237 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
238 
239 	mt7530_mii_write(priv, reg, val);
240 
241 	mutex_unlock(&bus->mdio_lock);
242 }
243 
244 static u32
245 _mt7530_unlocked_read(struct mt7530_dummy_poll *p)
246 {
247 	return mt7530_mii_read(p->priv, p->reg);
248 }
249 
250 static u32
251 _mt7530_read(struct mt7530_dummy_poll *p)
252 {
253 	struct mii_bus		*bus = p->priv->bus;
254 	u32 val;
255 
256 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
257 
258 	val = mt7530_mii_read(p->priv, p->reg);
259 
260 	mutex_unlock(&bus->mdio_lock);
261 
262 	return val;
263 }
264 
265 static u32
266 mt7530_read(struct mt7530_priv *priv, u32 reg)
267 {
268 	struct mt7530_dummy_poll p;
269 
270 	INIT_MT7530_DUMMY_POLL(&p, priv, reg);
271 	return _mt7530_read(&p);
272 }
273 
274 static void
275 mt7530_rmw(struct mt7530_priv *priv, u32 reg,
276 	   u32 mask, u32 set)
277 {
278 	struct mii_bus *bus = priv->bus;
279 	u32 val;
280 
281 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
282 
283 	val = mt7530_mii_read(priv, reg);
284 	val &= ~mask;
285 	val |= set;
286 	mt7530_mii_write(priv, reg, val);
287 
288 	mutex_unlock(&bus->mdio_lock);
289 }
290 
291 static void
292 mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
293 {
294 	mt7530_rmw(priv, reg, 0, val);
295 }
296 
297 static void
298 mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
299 {
300 	mt7530_rmw(priv, reg, val, 0);
301 }
302 
303 static int
304 mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
305 {
306 	u32 val;
307 	int ret;
308 	struct mt7530_dummy_poll p;
309 
310 	/* Set the command operating upon the MAC address entries */
311 	val = ATC_BUSY | ATC_MAT(0) | cmd;
312 	mt7530_write(priv, MT7530_ATC, val);
313 
314 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
315 	ret = readx_poll_timeout(_mt7530_read, &p, val,
316 				 !(val & ATC_BUSY), 20, 20000);
317 	if (ret < 0) {
318 		dev_err(priv->dev, "reset timeout\n");
319 		return ret;
320 	}
321 
322 	/* Additional sanity for read command if the specified
323 	 * entry is invalid
324 	 */
325 	val = mt7530_read(priv, MT7530_ATC);
326 	if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
327 		return -EINVAL;
328 
329 	if (rsp)
330 		*rsp = val;
331 
332 	return 0;
333 }
334 
335 static void
336 mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
337 {
338 	u32 reg[3];
339 	int i;
340 
341 	/* Read from ARL table into an array */
342 	for (i = 0; i < 3; i++) {
343 		reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
344 
345 		dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
346 			__func__, __LINE__, i, reg[i]);
347 	}
348 
349 	fdb->vid = (reg[1] >> CVID) & CVID_MASK;
350 	fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
351 	fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
352 	fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
353 	fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
354 	fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
355 	fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
356 	fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
357 	fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
358 	fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
359 }
360 
361 static void
362 mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
363 		 u8 port_mask, const u8 *mac,
364 		 u8 aging, u8 type)
365 {
366 	u32 reg[3] = { 0 };
367 	int i;
368 
369 	reg[1] |= vid & CVID_MASK;
370 	reg[1] |= ATA2_IVL;
371 	reg[1] |= ATA2_FID(FID_BRIDGED);
372 	reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
373 	reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
374 	/* STATIC_ENT indicate that entry is static wouldn't
375 	 * be aged out and STATIC_EMP specified as erasing an
376 	 * entry
377 	 */
378 	reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
379 	reg[1] |= mac[5] << MAC_BYTE_5;
380 	reg[1] |= mac[4] << MAC_BYTE_4;
381 	reg[0] |= mac[3] << MAC_BYTE_3;
382 	reg[0] |= mac[2] << MAC_BYTE_2;
383 	reg[0] |= mac[1] << MAC_BYTE_1;
384 	reg[0] |= mac[0] << MAC_BYTE_0;
385 
386 	/* Write array into the ARL table */
387 	for (i = 0; i < 3; i++)
388 		mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
389 }
390 
391 /* Setup TX circuit including relevant PAD and driving */
392 static int
393 mt7530_pad_clk_setup(struct dsa_switch *ds, phy_interface_t interface)
394 {
395 	struct mt7530_priv *priv = ds->priv;
396 	u32 ncpo1, ssc_delta, trgint, i, xtal;
397 
398 	xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK;
399 
400 	if (xtal == HWTRAP_XTAL_20MHZ) {
401 		dev_err(priv->dev,
402 			"%s: MT7530 with a 20MHz XTAL is not supported!\n",
403 			__func__);
404 		return -EINVAL;
405 	}
406 
407 	switch (interface) {
408 	case PHY_INTERFACE_MODE_RGMII:
409 		trgint = 0;
410 		/* PLL frequency: 125MHz */
411 		ncpo1 = 0x0c80;
412 		break;
413 	case PHY_INTERFACE_MODE_TRGMII:
414 		trgint = 1;
415 		if (priv->id == ID_MT7621) {
416 			/* PLL frequency: 150MHz: 1.2GBit */
417 			if (xtal == HWTRAP_XTAL_40MHZ)
418 				ncpo1 = 0x0780;
419 			if (xtal == HWTRAP_XTAL_25MHZ)
420 				ncpo1 = 0x0a00;
421 		} else { /* PLL frequency: 250MHz: 2.0Gbit */
422 			if (xtal == HWTRAP_XTAL_40MHZ)
423 				ncpo1 = 0x0c80;
424 			if (xtal == HWTRAP_XTAL_25MHZ)
425 				ncpo1 = 0x1400;
426 		}
427 		break;
428 	default:
429 		dev_err(priv->dev, "xMII interface %d not supported\n",
430 			interface);
431 		return -EINVAL;
432 	}
433 
434 	if (xtal == HWTRAP_XTAL_25MHZ)
435 		ssc_delta = 0x57;
436 	else
437 		ssc_delta = 0x87;
438 
439 	mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
440 		   P6_INTF_MODE(trgint));
441 
442 	/* Lower Tx Driving for TRGMII path */
443 	for (i = 0 ; i < NUM_TRGMII_CTRL ; i++)
444 		mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
445 			     TD_DM_DRVP(8) | TD_DM_DRVN(8));
446 
447 	/* Disable MT7530 core and TRGMII Tx clocks */
448 	core_clear(priv, CORE_TRGMII_GSW_CLK_CG,
449 		   REG_GSWCK_EN | REG_TRGMIICK_EN);
450 
451 	/* Setup core clock for MT7530 */
452 	/* Disable PLL */
453 	core_write(priv, CORE_GSWPLL_GRP1, 0);
454 
455 	/* Set core clock into 500Mhz */
456 	core_write(priv, CORE_GSWPLL_GRP2,
457 		   RG_GSWPLL_POSDIV_500M(1) |
458 		   RG_GSWPLL_FBKDIV_500M(25));
459 
460 	/* Enable PLL */
461 	core_write(priv, CORE_GSWPLL_GRP1,
462 		   RG_GSWPLL_EN_PRE |
463 		   RG_GSWPLL_POSDIV_200M(2) |
464 		   RG_GSWPLL_FBKDIV_200M(32));
465 
466 	/* Setup the MT7530 TRGMII Tx Clock */
467 	core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
468 	core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
469 	core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
470 	core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
471 	core_write(priv, CORE_PLL_GROUP4,
472 		   RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN |
473 		   RG_SYSPLL_BIAS_LPF_EN);
474 	core_write(priv, CORE_PLL_GROUP2,
475 		   RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN |
476 		   RG_SYSPLL_POSDIV(1));
477 	core_write(priv, CORE_PLL_GROUP7,
478 		   RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) |
479 		   RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
480 
481 	/* Enable MT7530 core and TRGMII Tx clocks */
482 	core_set(priv, CORE_TRGMII_GSW_CLK_CG,
483 		 REG_GSWCK_EN | REG_TRGMIICK_EN);
484 
485 	if (!trgint)
486 		for (i = 0 ; i < NUM_TRGMII_CTRL; i++)
487 			mt7530_rmw(priv, MT7530_TRGMII_RD(i),
488 				   RD_TAP_MASK, RD_TAP(16));
489 	return 0;
490 }
491 
492 static bool mt7531_dual_sgmii_supported(struct mt7530_priv *priv)
493 {
494 	u32 val;
495 
496 	val = mt7530_read(priv, MT7531_TOP_SIG_SR);
497 
498 	return (val & PAD_DUAL_SGMII_EN) != 0;
499 }
500 
501 static int
502 mt7531_pad_setup(struct dsa_switch *ds, phy_interface_t interface)
503 {
504 	struct mt7530_priv *priv = ds->priv;
505 	u32 top_sig;
506 	u32 hwstrap;
507 	u32 xtal;
508 	u32 val;
509 
510 	if (mt7531_dual_sgmii_supported(priv))
511 		return 0;
512 
513 	val = mt7530_read(priv, MT7531_CREV);
514 	top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR);
515 	hwstrap = mt7530_read(priv, MT7531_HWTRAP);
516 	if ((val & CHIP_REV_M) > 0)
517 		xtal = (top_sig & PAD_MCM_SMI_EN) ? HWTRAP_XTAL_FSEL_40MHZ :
518 						    HWTRAP_XTAL_FSEL_25MHZ;
519 	else
520 		xtal = hwstrap & HWTRAP_XTAL_FSEL_MASK;
521 
522 	/* Step 1 : Disable MT7531 COREPLL */
523 	val = mt7530_read(priv, MT7531_PLLGP_EN);
524 	val &= ~EN_COREPLL;
525 	mt7530_write(priv, MT7531_PLLGP_EN, val);
526 
527 	/* Step 2: switch to XTAL output */
528 	val = mt7530_read(priv, MT7531_PLLGP_EN);
529 	val |= SW_CLKSW;
530 	mt7530_write(priv, MT7531_PLLGP_EN, val);
531 
532 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
533 	val &= ~RG_COREPLL_EN;
534 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
535 
536 	/* Step 3: disable PLLGP and enable program PLLGP */
537 	val = mt7530_read(priv, MT7531_PLLGP_EN);
538 	val |= SW_PLLGP;
539 	mt7530_write(priv, MT7531_PLLGP_EN, val);
540 
541 	/* Step 4: program COREPLL output frequency to 500MHz */
542 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
543 	val &= ~RG_COREPLL_POSDIV_M;
544 	val |= 2 << RG_COREPLL_POSDIV_S;
545 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
546 	usleep_range(25, 35);
547 
548 	switch (xtal) {
549 	case HWTRAP_XTAL_FSEL_25MHZ:
550 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
551 		val &= ~RG_COREPLL_SDM_PCW_M;
552 		val |= 0x140000 << RG_COREPLL_SDM_PCW_S;
553 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
554 		break;
555 	case HWTRAP_XTAL_FSEL_40MHZ:
556 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
557 		val &= ~RG_COREPLL_SDM_PCW_M;
558 		val |= 0x190000 << RG_COREPLL_SDM_PCW_S;
559 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
560 		break;
561 	}
562 
563 	/* Set feedback divide ratio update signal to high */
564 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
565 	val |= RG_COREPLL_SDM_PCW_CHG;
566 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
567 	/* Wait for at least 16 XTAL clocks */
568 	usleep_range(10, 20);
569 
570 	/* Step 5: set feedback divide ratio update signal to low */
571 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
572 	val &= ~RG_COREPLL_SDM_PCW_CHG;
573 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
574 
575 	/* Enable 325M clock for SGMII */
576 	mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000);
577 
578 	/* Enable 250SSC clock for RGMII */
579 	mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000);
580 
581 	/* Step 6: Enable MT7531 PLL */
582 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
583 	val |= RG_COREPLL_EN;
584 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
585 
586 	val = mt7530_read(priv, MT7531_PLLGP_EN);
587 	val |= EN_COREPLL;
588 	mt7530_write(priv, MT7531_PLLGP_EN, val);
589 	usleep_range(25, 35);
590 
591 	return 0;
592 }
593 
594 static void
595 mt7530_mib_reset(struct dsa_switch *ds)
596 {
597 	struct mt7530_priv *priv = ds->priv;
598 
599 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
600 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
601 }
602 
603 static int mt7530_phy_read(struct mt7530_priv *priv, int port, int regnum)
604 {
605 	return mdiobus_read_nested(priv->bus, port, regnum);
606 }
607 
608 static int mt7530_phy_write(struct mt7530_priv *priv, int port, int regnum,
609 			    u16 val)
610 {
611 	return mdiobus_write_nested(priv->bus, port, regnum, val);
612 }
613 
614 static int
615 mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad,
616 			int regnum)
617 {
618 	struct mii_bus *bus = priv->bus;
619 	struct mt7530_dummy_poll p;
620 	u32 reg, val;
621 	int ret;
622 
623 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
624 
625 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
626 
627 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
628 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
629 	if (ret < 0) {
630 		dev_err(priv->dev, "poll timeout\n");
631 		goto out;
632 	}
633 
634 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
635 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
636 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
637 
638 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
639 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
640 	if (ret < 0) {
641 		dev_err(priv->dev, "poll timeout\n");
642 		goto out;
643 	}
644 
645 	reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) |
646 	      MT7531_MDIO_DEV_ADDR(devad);
647 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
648 
649 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
650 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
651 	if (ret < 0) {
652 		dev_err(priv->dev, "poll timeout\n");
653 		goto out;
654 	}
655 
656 	ret = val & MT7531_MDIO_RW_DATA_MASK;
657 out:
658 	mutex_unlock(&bus->mdio_lock);
659 
660 	return ret;
661 }
662 
663 static int
664 mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad,
665 			 int regnum, u32 data)
666 {
667 	struct mii_bus *bus = priv->bus;
668 	struct mt7530_dummy_poll p;
669 	u32 val, reg;
670 	int ret;
671 
672 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
673 
674 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
675 
676 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
677 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
678 	if (ret < 0) {
679 		dev_err(priv->dev, "poll timeout\n");
680 		goto out;
681 	}
682 
683 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
684 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
685 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
686 
687 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
688 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
689 	if (ret < 0) {
690 		dev_err(priv->dev, "poll timeout\n");
691 		goto out;
692 	}
693 
694 	reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) |
695 	      MT7531_MDIO_DEV_ADDR(devad) | data;
696 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
697 
698 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
699 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
700 	if (ret < 0) {
701 		dev_err(priv->dev, "poll timeout\n");
702 		goto out;
703 	}
704 
705 out:
706 	mutex_unlock(&bus->mdio_lock);
707 
708 	return ret;
709 }
710 
711 static int
712 mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum)
713 {
714 	struct mii_bus *bus = priv->bus;
715 	struct mt7530_dummy_poll p;
716 	int ret;
717 	u32 val;
718 
719 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
720 
721 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
722 
723 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
724 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
725 	if (ret < 0) {
726 		dev_err(priv->dev, "poll timeout\n");
727 		goto out;
728 	}
729 
730 	val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) |
731 	      MT7531_MDIO_REG_ADDR(regnum);
732 
733 	mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST);
734 
735 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
736 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
737 	if (ret < 0) {
738 		dev_err(priv->dev, "poll timeout\n");
739 		goto out;
740 	}
741 
742 	ret = val & MT7531_MDIO_RW_DATA_MASK;
743 out:
744 	mutex_unlock(&bus->mdio_lock);
745 
746 	return ret;
747 }
748 
749 static int
750 mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum,
751 			 u16 data)
752 {
753 	struct mii_bus *bus = priv->bus;
754 	struct mt7530_dummy_poll p;
755 	int ret;
756 	u32 reg;
757 
758 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
759 
760 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
761 
762 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
763 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
764 	if (ret < 0) {
765 		dev_err(priv->dev, "poll timeout\n");
766 		goto out;
767 	}
768 
769 	reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) |
770 	      MT7531_MDIO_REG_ADDR(regnum) | data;
771 
772 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
773 
774 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
775 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
776 	if (ret < 0) {
777 		dev_err(priv->dev, "poll timeout\n");
778 		goto out;
779 	}
780 
781 out:
782 	mutex_unlock(&bus->mdio_lock);
783 
784 	return ret;
785 }
786 
787 static int
788 mt7531_ind_phy_read(struct mt7530_priv *priv, int port, int regnum)
789 {
790 	int devad;
791 	int ret;
792 
793 	if (regnum & MII_ADDR_C45) {
794 		devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f;
795 		ret = mt7531_ind_c45_phy_read(priv, port, devad,
796 					      regnum & MII_REGADDR_C45_MASK);
797 	} else {
798 		ret = mt7531_ind_c22_phy_read(priv, port, regnum);
799 	}
800 
801 	return ret;
802 }
803 
804 static int
805 mt7531_ind_phy_write(struct mt7530_priv *priv, int port, int regnum,
806 		     u16 data)
807 {
808 	int devad;
809 	int ret;
810 
811 	if (regnum & MII_ADDR_C45) {
812 		devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f;
813 		ret = mt7531_ind_c45_phy_write(priv, port, devad,
814 					       regnum & MII_REGADDR_C45_MASK,
815 					       data);
816 	} else {
817 		ret = mt7531_ind_c22_phy_write(priv, port, regnum, data);
818 	}
819 
820 	return ret;
821 }
822 
823 static int
824 mt753x_phy_read(struct mii_bus *bus, int port, int regnum)
825 {
826 	struct mt7530_priv *priv = bus->priv;
827 
828 	return priv->info->phy_read(priv, port, regnum);
829 }
830 
831 static int
832 mt753x_phy_write(struct mii_bus *bus, int port, int regnum, u16 val)
833 {
834 	struct mt7530_priv *priv = bus->priv;
835 
836 	return priv->info->phy_write(priv, port, regnum, val);
837 }
838 
839 static void
840 mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
841 		   uint8_t *data)
842 {
843 	int i;
844 
845 	if (stringset != ETH_SS_STATS)
846 		return;
847 
848 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
849 		strncpy(data + i * ETH_GSTRING_LEN, mt7530_mib[i].name,
850 			ETH_GSTRING_LEN);
851 }
852 
853 static void
854 mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
855 			 uint64_t *data)
856 {
857 	struct mt7530_priv *priv = ds->priv;
858 	const struct mt7530_mib_desc *mib;
859 	u32 reg, i;
860 	u64 hi;
861 
862 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
863 		mib = &mt7530_mib[i];
864 		reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
865 
866 		data[i] = mt7530_read(priv, reg);
867 		if (mib->size == 2) {
868 			hi = mt7530_read(priv, reg + 4);
869 			data[i] |= hi << 32;
870 		}
871 	}
872 }
873 
874 static int
875 mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
876 {
877 	if (sset != ETH_SS_STATS)
878 		return 0;
879 
880 	return ARRAY_SIZE(mt7530_mib);
881 }
882 
883 static int
884 mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
885 {
886 	struct mt7530_priv *priv = ds->priv;
887 	unsigned int secs = msecs / 1000;
888 	unsigned int tmp_age_count;
889 	unsigned int error = -1;
890 	unsigned int age_count;
891 	unsigned int age_unit;
892 
893 	/* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */
894 	if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1))
895 		return -ERANGE;
896 
897 	/* iterate through all possible age_count to find the closest pair */
898 	for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) {
899 		unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1;
900 
901 		if (tmp_age_unit <= AGE_UNIT_MAX) {
902 			unsigned int tmp_error = secs -
903 				(tmp_age_count + 1) * (tmp_age_unit + 1);
904 
905 			/* found a closer pair */
906 			if (error > tmp_error) {
907 				error = tmp_error;
908 				age_count = tmp_age_count;
909 				age_unit = tmp_age_unit;
910 			}
911 
912 			/* found the exact match, so break the loop */
913 			if (!error)
914 				break;
915 		}
916 	}
917 
918 	mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit));
919 
920 	return 0;
921 }
922 
923 static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface)
924 {
925 	struct mt7530_priv *priv = ds->priv;
926 	u8 tx_delay = 0;
927 	int val;
928 
929 	mutex_lock(&priv->reg_mutex);
930 
931 	val = mt7530_read(priv, MT7530_MHWTRAP);
932 
933 	val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS;
934 	val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL;
935 
936 	switch (priv->p5_intf_sel) {
937 	case P5_INTF_SEL_PHY_P0:
938 		/* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */
939 		val |= MHWTRAP_PHY0_SEL;
940 		fallthrough;
941 	case P5_INTF_SEL_PHY_P4:
942 		/* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */
943 		val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS;
944 
945 		/* Setup the MAC by default for the cpu port */
946 		mt7530_write(priv, MT7530_PMCR_P(5), 0x56300);
947 		break;
948 	case P5_INTF_SEL_GMAC5:
949 		/* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */
950 		val &= ~MHWTRAP_P5_DIS;
951 		break;
952 	case P5_DISABLED:
953 		interface = PHY_INTERFACE_MODE_NA;
954 		break;
955 	default:
956 		dev_err(ds->dev, "Unsupported p5_intf_sel %d\n",
957 			priv->p5_intf_sel);
958 		goto unlock_exit;
959 	}
960 
961 	/* Setup RGMII settings */
962 	if (phy_interface_mode_is_rgmii(interface)) {
963 		val |= MHWTRAP_P5_RGMII_MODE;
964 
965 		/* P5 RGMII RX Clock Control: delay setting for 1000M */
966 		mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN);
967 
968 		/* Don't set delay in DSA mode */
969 		if (!dsa_is_dsa_port(priv->ds, 5) &&
970 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID ||
971 		     interface == PHY_INTERFACE_MODE_RGMII_ID))
972 			tx_delay = 4; /* n * 0.5 ns */
973 
974 		/* P5 RGMII TX Clock Control: delay x */
975 		mt7530_write(priv, MT7530_P5RGMIITXCR,
976 			     CSR_RGMII_TXC_CFG(0x10 + tx_delay));
977 
978 		/* reduce P5 RGMII Tx driving, 8mA */
979 		mt7530_write(priv, MT7530_IO_DRV_CR,
980 			     P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1));
981 	}
982 
983 	mt7530_write(priv, MT7530_MHWTRAP, val);
984 
985 	dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n",
986 		val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface));
987 
988 	priv->p5_interface = interface;
989 
990 unlock_exit:
991 	mutex_unlock(&priv->reg_mutex);
992 }
993 
994 static int
995 mt753x_cpu_port_enable(struct dsa_switch *ds, int port)
996 {
997 	struct mt7530_priv *priv = ds->priv;
998 	int ret;
999 
1000 	/* Setup max capability of CPU port at first */
1001 	if (priv->info->cpu_port_config) {
1002 		ret = priv->info->cpu_port_config(ds, port);
1003 		if (ret)
1004 			return ret;
1005 	}
1006 
1007 	/* Enable Mediatek header mode on the cpu port */
1008 	mt7530_write(priv, MT7530_PVC_P(port),
1009 		     PORT_SPEC_TAG);
1010 
1011 	/* Disable flooding by default */
1012 	mt7530_rmw(priv, MT7530_MFC, BC_FFP_MASK | UNM_FFP_MASK | UNU_FFP_MASK,
1013 		   BC_FFP(BIT(port)) | UNM_FFP(BIT(port)) | UNU_FFP(BIT(port)));
1014 
1015 	/* Set CPU port number */
1016 	if (priv->id == ID_MT7621)
1017 		mt7530_rmw(priv, MT7530_MFC, CPU_MASK, CPU_EN | CPU_PORT(port));
1018 
1019 	/* CPU port gets connected to all user ports of
1020 	 * the switch.
1021 	 */
1022 	mt7530_write(priv, MT7530_PCR_P(port),
1023 		     PCR_MATRIX(dsa_user_ports(priv->ds)));
1024 
1025 	/* Set to fallback mode for independent VLAN learning */
1026 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1027 		   MT7530_PORT_FALLBACK_MODE);
1028 
1029 	return 0;
1030 }
1031 
1032 static int
1033 mt7530_port_enable(struct dsa_switch *ds, int port,
1034 		   struct phy_device *phy)
1035 {
1036 	struct mt7530_priv *priv = ds->priv;
1037 
1038 	mutex_lock(&priv->reg_mutex);
1039 
1040 	/* Allow the user port gets connected to the cpu port and also
1041 	 * restore the port matrix if the port is the member of a certain
1042 	 * bridge.
1043 	 */
1044 	priv->ports[port].pm |= PCR_MATRIX(BIT(MT7530_CPU_PORT));
1045 	priv->ports[port].enable = true;
1046 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1047 		   priv->ports[port].pm);
1048 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1049 
1050 	mutex_unlock(&priv->reg_mutex);
1051 
1052 	return 0;
1053 }
1054 
1055 static void
1056 mt7530_port_disable(struct dsa_switch *ds, int port)
1057 {
1058 	struct mt7530_priv *priv = ds->priv;
1059 
1060 	mutex_lock(&priv->reg_mutex);
1061 
1062 	/* Clear up all port matrix which could be restored in the next
1063 	 * enablement for the port.
1064 	 */
1065 	priv->ports[port].enable = false;
1066 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1067 		   PCR_MATRIX_CLR);
1068 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1069 
1070 	mutex_unlock(&priv->reg_mutex);
1071 }
1072 
1073 static int
1074 mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1075 {
1076 	struct mt7530_priv *priv = ds->priv;
1077 	struct mii_bus *bus = priv->bus;
1078 	int length;
1079 	u32 val;
1080 
1081 	/* When a new MTU is set, DSA always set the CPU port's MTU to the
1082 	 * largest MTU of the slave ports. Because the switch only has a global
1083 	 * RX length register, only allowing CPU port here is enough.
1084 	 */
1085 	if (!dsa_is_cpu_port(ds, port))
1086 		return 0;
1087 
1088 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
1089 
1090 	val = mt7530_mii_read(priv, MT7530_GMACCR);
1091 	val &= ~MAX_RX_PKT_LEN_MASK;
1092 
1093 	/* RX length also includes Ethernet header, MTK tag, and FCS length */
1094 	length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN;
1095 	if (length <= 1522) {
1096 		val |= MAX_RX_PKT_LEN_1522;
1097 	} else if (length <= 1536) {
1098 		val |= MAX_RX_PKT_LEN_1536;
1099 	} else if (length <= 1552) {
1100 		val |= MAX_RX_PKT_LEN_1552;
1101 	} else {
1102 		val &= ~MAX_RX_JUMBO_MASK;
1103 		val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024));
1104 		val |= MAX_RX_PKT_LEN_JUMBO;
1105 	}
1106 
1107 	mt7530_mii_write(priv, MT7530_GMACCR, val);
1108 
1109 	mutex_unlock(&bus->mdio_lock);
1110 
1111 	return 0;
1112 }
1113 
1114 static int
1115 mt7530_port_max_mtu(struct dsa_switch *ds, int port)
1116 {
1117 	return MT7530_MAX_MTU;
1118 }
1119 
1120 static void
1121 mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1122 {
1123 	struct mt7530_priv *priv = ds->priv;
1124 	u32 stp_state;
1125 
1126 	switch (state) {
1127 	case BR_STATE_DISABLED:
1128 		stp_state = MT7530_STP_DISABLED;
1129 		break;
1130 	case BR_STATE_BLOCKING:
1131 		stp_state = MT7530_STP_BLOCKING;
1132 		break;
1133 	case BR_STATE_LISTENING:
1134 		stp_state = MT7530_STP_LISTENING;
1135 		break;
1136 	case BR_STATE_LEARNING:
1137 		stp_state = MT7530_STP_LEARNING;
1138 		break;
1139 	case BR_STATE_FORWARDING:
1140 	default:
1141 		stp_state = MT7530_STP_FORWARDING;
1142 		break;
1143 	}
1144 
1145 	mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK(FID_BRIDGED),
1146 		   FID_PST(FID_BRIDGED, stp_state));
1147 }
1148 
1149 static int
1150 mt7530_port_pre_bridge_flags(struct dsa_switch *ds, int port,
1151 			     struct switchdev_brport_flags flags,
1152 			     struct netlink_ext_ack *extack)
1153 {
1154 	if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
1155 			   BR_BCAST_FLOOD))
1156 		return -EINVAL;
1157 
1158 	return 0;
1159 }
1160 
1161 static int
1162 mt7530_port_bridge_flags(struct dsa_switch *ds, int port,
1163 			 struct switchdev_brport_flags flags,
1164 			 struct netlink_ext_ack *extack)
1165 {
1166 	struct mt7530_priv *priv = ds->priv;
1167 
1168 	if (flags.mask & BR_LEARNING)
1169 		mt7530_rmw(priv, MT7530_PSC_P(port), SA_DIS,
1170 			   flags.val & BR_LEARNING ? 0 : SA_DIS);
1171 
1172 	if (flags.mask & BR_FLOOD)
1173 		mt7530_rmw(priv, MT7530_MFC, UNU_FFP(BIT(port)),
1174 			   flags.val & BR_FLOOD ? UNU_FFP(BIT(port)) : 0);
1175 
1176 	if (flags.mask & BR_MCAST_FLOOD)
1177 		mt7530_rmw(priv, MT7530_MFC, UNM_FFP(BIT(port)),
1178 			   flags.val & BR_MCAST_FLOOD ? UNM_FFP(BIT(port)) : 0);
1179 
1180 	if (flags.mask & BR_BCAST_FLOOD)
1181 		mt7530_rmw(priv, MT7530_MFC, BC_FFP(BIT(port)),
1182 			   flags.val & BR_BCAST_FLOOD ? BC_FFP(BIT(port)) : 0);
1183 
1184 	return 0;
1185 }
1186 
1187 static int
1188 mt7530_port_bridge_join(struct dsa_switch *ds, int port,
1189 			struct dsa_bridge bridge, bool *tx_fwd_offload)
1190 {
1191 	struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1192 	u32 port_bitmap = BIT(MT7530_CPU_PORT);
1193 	struct mt7530_priv *priv = ds->priv;
1194 
1195 	mutex_lock(&priv->reg_mutex);
1196 
1197 	dsa_switch_for_each_user_port(other_dp, ds) {
1198 		int other_port = other_dp->index;
1199 
1200 		if (dp == other_dp)
1201 			continue;
1202 
1203 		/* Add this port to the port matrix of the other ports in the
1204 		 * same bridge. If the port is disabled, port matrix is kept
1205 		 * and not being setup until the port becomes enabled.
1206 		 */
1207 		if (!dsa_port_offloads_bridge(other_dp, &bridge))
1208 			continue;
1209 
1210 		if (priv->ports[other_port].enable)
1211 			mt7530_set(priv, MT7530_PCR_P(other_port),
1212 				   PCR_MATRIX(BIT(port)));
1213 		priv->ports[other_port].pm |= PCR_MATRIX(BIT(port));
1214 
1215 		port_bitmap |= BIT(other_port);
1216 	}
1217 
1218 	/* Add the all other ports to this port matrix. */
1219 	if (priv->ports[port].enable)
1220 		mt7530_rmw(priv, MT7530_PCR_P(port),
1221 			   PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
1222 	priv->ports[port].pm |= PCR_MATRIX(port_bitmap);
1223 
1224 	/* Set to fallback mode for independent VLAN learning */
1225 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1226 		   MT7530_PORT_FALLBACK_MODE);
1227 
1228 	mutex_unlock(&priv->reg_mutex);
1229 
1230 	return 0;
1231 }
1232 
1233 static void
1234 mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
1235 {
1236 	struct mt7530_priv *priv = ds->priv;
1237 	bool all_user_ports_removed = true;
1238 	int i;
1239 
1240 	/* This is called after .port_bridge_leave when leaving a VLAN-aware
1241 	 * bridge. Don't set standalone ports to fallback mode.
1242 	 */
1243 	if (dsa_port_bridge_dev_get(dsa_to_port(ds, port)))
1244 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1245 			   MT7530_PORT_FALLBACK_MODE);
1246 
1247 	mt7530_rmw(priv, MT7530_PVC_P(port),
1248 		   VLAN_ATTR_MASK | PVC_EG_TAG_MASK | ACC_FRM_MASK,
1249 		   VLAN_ATTR(MT7530_VLAN_TRANSPARENT) |
1250 		   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT) |
1251 		   MT7530_VLAN_ACC_ALL);
1252 
1253 	/* Set PVID to 0 */
1254 	mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1255 		   G0_PORT_VID_DEF);
1256 
1257 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1258 		if (dsa_is_user_port(ds, i) &&
1259 		    dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
1260 			all_user_ports_removed = false;
1261 			break;
1262 		}
1263 	}
1264 
1265 	/* CPU port also does the same thing until all user ports belonging to
1266 	 * the CPU port get out of VLAN filtering mode.
1267 	 */
1268 	if (all_user_ports_removed) {
1269 		mt7530_write(priv, MT7530_PCR_P(MT7530_CPU_PORT),
1270 			     PCR_MATRIX(dsa_user_ports(priv->ds)));
1271 		mt7530_write(priv, MT7530_PVC_P(MT7530_CPU_PORT), PORT_SPEC_TAG
1272 			     | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1273 	}
1274 }
1275 
1276 static void
1277 mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
1278 {
1279 	struct mt7530_priv *priv = ds->priv;
1280 
1281 	/* Trapped into security mode allows packet forwarding through VLAN
1282 	 * table lookup.
1283 	 */
1284 	if (dsa_is_user_port(ds, port)) {
1285 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1286 			   MT7530_PORT_SECURITY_MODE);
1287 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1288 			   G0_PORT_VID(priv->ports[port].pvid));
1289 
1290 		/* Only accept tagged frames if PVID is not set */
1291 		if (!priv->ports[port].pvid)
1292 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1293 				   MT7530_VLAN_ACC_TAGGED);
1294 	}
1295 
1296 	/* Set the port as a user port which is to be able to recognize VID
1297 	 * from incoming packets before fetching entry within the VLAN table.
1298 	 */
1299 	mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
1300 		   VLAN_ATTR(MT7530_VLAN_USER) |
1301 		   PVC_EG_TAG(MT7530_VLAN_EG_DISABLED));
1302 }
1303 
1304 static void
1305 mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
1306 			 struct dsa_bridge bridge)
1307 {
1308 	struct dsa_port *dp = dsa_to_port(ds, port), *other_dp;
1309 	struct mt7530_priv *priv = ds->priv;
1310 
1311 	mutex_lock(&priv->reg_mutex);
1312 
1313 	dsa_switch_for_each_user_port(other_dp, ds) {
1314 		int other_port = other_dp->index;
1315 
1316 		if (dp == other_dp)
1317 			continue;
1318 
1319 		/* Remove this port from the port matrix of the other ports
1320 		 * in the same bridge. If the port is disabled, port matrix
1321 		 * is kept and not being setup until the port becomes enabled.
1322 		 */
1323 		if (!dsa_port_offloads_bridge(other_dp, &bridge))
1324 			continue;
1325 
1326 		if (priv->ports[other_port].enable)
1327 			mt7530_clear(priv, MT7530_PCR_P(other_port),
1328 				     PCR_MATRIX(BIT(port)));
1329 		priv->ports[other_port].pm &= ~PCR_MATRIX(BIT(port));
1330 	}
1331 
1332 	/* Set the cpu port to be the only one in the port matrix of
1333 	 * this port.
1334 	 */
1335 	if (priv->ports[port].enable)
1336 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1337 			   PCR_MATRIX(BIT(MT7530_CPU_PORT)));
1338 	priv->ports[port].pm = PCR_MATRIX(BIT(MT7530_CPU_PORT));
1339 
1340 	/* When a port is removed from the bridge, the port would be set up
1341 	 * back to the default as is at initial boot which is a VLAN-unaware
1342 	 * port.
1343 	 */
1344 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1345 		   MT7530_PORT_MATRIX_MODE);
1346 
1347 	mutex_unlock(&priv->reg_mutex);
1348 }
1349 
1350 static int
1351 mt7530_port_fdb_add(struct dsa_switch *ds, int port,
1352 		    const unsigned char *addr, u16 vid)
1353 {
1354 	struct mt7530_priv *priv = ds->priv;
1355 	int ret;
1356 	u8 port_mask = BIT(port);
1357 
1358 	mutex_lock(&priv->reg_mutex);
1359 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1360 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1361 	mutex_unlock(&priv->reg_mutex);
1362 
1363 	return ret;
1364 }
1365 
1366 static int
1367 mt7530_port_fdb_del(struct dsa_switch *ds, int port,
1368 		    const unsigned char *addr, u16 vid)
1369 {
1370 	struct mt7530_priv *priv = ds->priv;
1371 	int ret;
1372 	u8 port_mask = BIT(port);
1373 
1374 	mutex_lock(&priv->reg_mutex);
1375 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
1376 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1377 	mutex_unlock(&priv->reg_mutex);
1378 
1379 	return ret;
1380 }
1381 
1382 static int
1383 mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
1384 		     dsa_fdb_dump_cb_t *cb, void *data)
1385 {
1386 	struct mt7530_priv *priv = ds->priv;
1387 	struct mt7530_fdb _fdb = { 0 };
1388 	int cnt = MT7530_NUM_FDB_RECORDS;
1389 	int ret = 0;
1390 	u32 rsp = 0;
1391 
1392 	mutex_lock(&priv->reg_mutex);
1393 
1394 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
1395 	if (ret < 0)
1396 		goto err;
1397 
1398 	do {
1399 		if (rsp & ATC_SRCH_HIT) {
1400 			mt7530_fdb_read(priv, &_fdb);
1401 			if (_fdb.port_mask & BIT(port)) {
1402 				ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
1403 					 data);
1404 				if (ret < 0)
1405 					break;
1406 			}
1407 		}
1408 	} while (--cnt &&
1409 		 !(rsp & ATC_SRCH_END) &&
1410 		 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
1411 err:
1412 	mutex_unlock(&priv->reg_mutex);
1413 
1414 	return 0;
1415 }
1416 
1417 static int
1418 mt7530_port_mdb_add(struct dsa_switch *ds, int port,
1419 		    const struct switchdev_obj_port_mdb *mdb)
1420 {
1421 	struct mt7530_priv *priv = ds->priv;
1422 	const u8 *addr = mdb->addr;
1423 	u16 vid = mdb->vid;
1424 	u8 port_mask = 0;
1425 	int ret;
1426 
1427 	mutex_lock(&priv->reg_mutex);
1428 
1429 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1430 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1431 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1432 			    & PORT_MAP_MASK;
1433 
1434 	port_mask |= BIT(port);
1435 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1436 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1437 
1438 	mutex_unlock(&priv->reg_mutex);
1439 
1440 	return ret;
1441 }
1442 
1443 static int
1444 mt7530_port_mdb_del(struct dsa_switch *ds, int port,
1445 		    const struct switchdev_obj_port_mdb *mdb)
1446 {
1447 	struct mt7530_priv *priv = ds->priv;
1448 	const u8 *addr = mdb->addr;
1449 	u16 vid = mdb->vid;
1450 	u8 port_mask = 0;
1451 	int ret;
1452 
1453 	mutex_lock(&priv->reg_mutex);
1454 
1455 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1456 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1457 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1458 			    & PORT_MAP_MASK;
1459 
1460 	port_mask &= ~BIT(port);
1461 	mt7530_fdb_write(priv, vid, port_mask, addr, -1,
1462 			 port_mask ? STATIC_ENT : STATIC_EMP);
1463 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1464 
1465 	mutex_unlock(&priv->reg_mutex);
1466 
1467 	return ret;
1468 }
1469 
1470 static int
1471 mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
1472 {
1473 	struct mt7530_dummy_poll p;
1474 	u32 val;
1475 	int ret;
1476 
1477 	val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
1478 	mt7530_write(priv, MT7530_VTCR, val);
1479 
1480 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
1481 	ret = readx_poll_timeout(_mt7530_read, &p, val,
1482 				 !(val & VTCR_BUSY), 20, 20000);
1483 	if (ret < 0) {
1484 		dev_err(priv->dev, "poll timeout\n");
1485 		return ret;
1486 	}
1487 
1488 	val = mt7530_read(priv, MT7530_VTCR);
1489 	if (val & VTCR_INVALID) {
1490 		dev_err(priv->dev, "read VTCR invalid\n");
1491 		return -EINVAL;
1492 	}
1493 
1494 	return 0;
1495 }
1496 
1497 static int
1498 mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering,
1499 			   struct netlink_ext_ack *extack)
1500 {
1501 	if (vlan_filtering) {
1502 		/* The port is being kept as VLAN-unaware port when bridge is
1503 		 * set up with vlan_filtering not being set, Otherwise, the
1504 		 * port and the corresponding CPU port is required the setup
1505 		 * for becoming a VLAN-aware port.
1506 		 */
1507 		mt7530_port_set_vlan_aware(ds, port);
1508 		mt7530_port_set_vlan_aware(ds, MT7530_CPU_PORT);
1509 	} else {
1510 		mt7530_port_set_vlan_unaware(ds, port);
1511 	}
1512 
1513 	return 0;
1514 }
1515 
1516 static void
1517 mt7530_hw_vlan_add(struct mt7530_priv *priv,
1518 		   struct mt7530_hw_vlan_entry *entry)
1519 {
1520 	u8 new_members;
1521 	u32 val;
1522 
1523 	new_members = entry->old_members | BIT(entry->port) |
1524 		      BIT(MT7530_CPU_PORT);
1525 
1526 	/* Validate the entry with independent learning, create egress tag per
1527 	 * VLAN and joining the port as one of the port members.
1528 	 */
1529 	val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | FID(FID_BRIDGED) |
1530 	      VLAN_VALID;
1531 	mt7530_write(priv, MT7530_VAWD1, val);
1532 
1533 	/* Decide whether adding tag or not for those outgoing packets from the
1534 	 * port inside the VLAN.
1535 	 */
1536 	val = entry->untagged ? MT7530_VLAN_EGRESS_UNTAG :
1537 				MT7530_VLAN_EGRESS_TAG;
1538 	mt7530_rmw(priv, MT7530_VAWD2,
1539 		   ETAG_CTRL_P_MASK(entry->port),
1540 		   ETAG_CTRL_P(entry->port, val));
1541 
1542 	/* CPU port is always taken as a tagged port for serving more than one
1543 	 * VLANs across and also being applied with egress type stack mode for
1544 	 * that VLAN tags would be appended after hardware special tag used as
1545 	 * DSA tag.
1546 	 */
1547 	mt7530_rmw(priv, MT7530_VAWD2,
1548 		   ETAG_CTRL_P_MASK(MT7530_CPU_PORT),
1549 		   ETAG_CTRL_P(MT7530_CPU_PORT,
1550 			       MT7530_VLAN_EGRESS_STACK));
1551 }
1552 
1553 static void
1554 mt7530_hw_vlan_del(struct mt7530_priv *priv,
1555 		   struct mt7530_hw_vlan_entry *entry)
1556 {
1557 	u8 new_members;
1558 	u32 val;
1559 
1560 	new_members = entry->old_members & ~BIT(entry->port);
1561 
1562 	val = mt7530_read(priv, MT7530_VAWD1);
1563 	if (!(val & VLAN_VALID)) {
1564 		dev_err(priv->dev,
1565 			"Cannot be deleted due to invalid entry\n");
1566 		return;
1567 	}
1568 
1569 	/* If certain member apart from CPU port is still alive in the VLAN,
1570 	 * the entry would be kept valid. Otherwise, the entry is got to be
1571 	 * disabled.
1572 	 */
1573 	if (new_members && new_members != BIT(MT7530_CPU_PORT)) {
1574 		val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
1575 		      VLAN_VALID;
1576 		mt7530_write(priv, MT7530_VAWD1, val);
1577 	} else {
1578 		mt7530_write(priv, MT7530_VAWD1, 0);
1579 		mt7530_write(priv, MT7530_VAWD2, 0);
1580 	}
1581 }
1582 
1583 static void
1584 mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
1585 		      struct mt7530_hw_vlan_entry *entry,
1586 		      mt7530_vlan_op vlan_op)
1587 {
1588 	u32 val;
1589 
1590 	/* Fetch entry */
1591 	mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
1592 
1593 	val = mt7530_read(priv, MT7530_VAWD1);
1594 
1595 	entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
1596 
1597 	/* Manipulate entry */
1598 	vlan_op(priv, entry);
1599 
1600 	/* Flush result to hardware */
1601 	mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
1602 }
1603 
1604 static int
1605 mt7530_setup_vlan0(struct mt7530_priv *priv)
1606 {
1607 	u32 val;
1608 
1609 	/* Validate the entry with independent learning, keep the original
1610 	 * ingress tag attribute.
1611 	 */
1612 	val = IVL_MAC | EG_CON | PORT_MEM(MT7530_ALL_MEMBERS) | FID(FID_BRIDGED) |
1613 	      VLAN_VALID;
1614 	mt7530_write(priv, MT7530_VAWD1, val);
1615 
1616 	return mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, 0);
1617 }
1618 
1619 static int
1620 mt7530_port_vlan_add(struct dsa_switch *ds, int port,
1621 		     const struct switchdev_obj_port_vlan *vlan,
1622 		     struct netlink_ext_ack *extack)
1623 {
1624 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1625 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1626 	struct mt7530_hw_vlan_entry new_entry;
1627 	struct mt7530_priv *priv = ds->priv;
1628 
1629 	mutex_lock(&priv->reg_mutex);
1630 
1631 	mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
1632 	mt7530_hw_vlan_update(priv, vlan->vid, &new_entry, mt7530_hw_vlan_add);
1633 
1634 	if (pvid) {
1635 		priv->ports[port].pvid = vlan->vid;
1636 
1637 		/* Accept all frames if PVID is set */
1638 		mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1639 			   MT7530_VLAN_ACC_ALL);
1640 
1641 		/* Only configure PVID if VLAN filtering is enabled */
1642 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1643 			mt7530_rmw(priv, MT7530_PPBV1_P(port),
1644 				   G0_PORT_VID_MASK,
1645 				   G0_PORT_VID(vlan->vid));
1646 	} else if (vlan->vid && priv->ports[port].pvid == vlan->vid) {
1647 		/* This VLAN is overwritten without PVID, so unset it */
1648 		priv->ports[port].pvid = G0_PORT_VID_DEF;
1649 
1650 		/* Only accept tagged frames if the port is VLAN-aware */
1651 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1652 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1653 				   MT7530_VLAN_ACC_TAGGED);
1654 
1655 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1656 			   G0_PORT_VID_DEF);
1657 	}
1658 
1659 	mutex_unlock(&priv->reg_mutex);
1660 
1661 	return 0;
1662 }
1663 
1664 static int
1665 mt7530_port_vlan_del(struct dsa_switch *ds, int port,
1666 		     const struct switchdev_obj_port_vlan *vlan)
1667 {
1668 	struct mt7530_hw_vlan_entry target_entry;
1669 	struct mt7530_priv *priv = ds->priv;
1670 
1671 	mutex_lock(&priv->reg_mutex);
1672 
1673 	mt7530_hw_vlan_entry_init(&target_entry, port, 0);
1674 	mt7530_hw_vlan_update(priv, vlan->vid, &target_entry,
1675 			      mt7530_hw_vlan_del);
1676 
1677 	/* PVID is being restored to the default whenever the PVID port
1678 	 * is being removed from the VLAN.
1679 	 */
1680 	if (priv->ports[port].pvid == vlan->vid) {
1681 		priv->ports[port].pvid = G0_PORT_VID_DEF;
1682 
1683 		/* Only accept tagged frames if the port is VLAN-aware */
1684 		if (dsa_port_is_vlan_filtering(dsa_to_port(ds, port)))
1685 			mt7530_rmw(priv, MT7530_PVC_P(port), ACC_FRM_MASK,
1686 				   MT7530_VLAN_ACC_TAGGED);
1687 
1688 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1689 			   G0_PORT_VID_DEF);
1690 	}
1691 
1692 
1693 	mutex_unlock(&priv->reg_mutex);
1694 
1695 	return 0;
1696 }
1697 
1698 static int mt753x_mirror_port_get(unsigned int id, u32 val)
1699 {
1700 	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_GET(val) :
1701 				   MIRROR_PORT(val);
1702 }
1703 
1704 static int mt753x_mirror_port_set(unsigned int id, u32 val)
1705 {
1706 	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_SET(val) :
1707 				   MIRROR_PORT(val);
1708 }
1709 
1710 static int mt753x_port_mirror_add(struct dsa_switch *ds, int port,
1711 				  struct dsa_mall_mirror_tc_entry *mirror,
1712 				  bool ingress)
1713 {
1714 	struct mt7530_priv *priv = ds->priv;
1715 	int monitor_port;
1716 	u32 val;
1717 
1718 	/* Check for existent entry */
1719 	if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port))
1720 		return -EEXIST;
1721 
1722 	val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1723 
1724 	/* MT7530 only supports one monitor port */
1725 	monitor_port = mt753x_mirror_port_get(priv->id, val);
1726 	if (val & MT753X_MIRROR_EN(priv->id) &&
1727 	    monitor_port != mirror->to_local_port)
1728 		return -EEXIST;
1729 
1730 	val |= MT753X_MIRROR_EN(priv->id);
1731 	val &= ~MT753X_MIRROR_MASK(priv->id);
1732 	val |= mt753x_mirror_port_set(priv->id, mirror->to_local_port);
1733 	mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1734 
1735 	val = mt7530_read(priv, MT7530_PCR_P(port));
1736 	if (ingress) {
1737 		val |= PORT_RX_MIR;
1738 		priv->mirror_rx |= BIT(port);
1739 	} else {
1740 		val |= PORT_TX_MIR;
1741 		priv->mirror_tx |= BIT(port);
1742 	}
1743 	mt7530_write(priv, MT7530_PCR_P(port), val);
1744 
1745 	return 0;
1746 }
1747 
1748 static void mt753x_port_mirror_del(struct dsa_switch *ds, int port,
1749 				   struct dsa_mall_mirror_tc_entry *mirror)
1750 {
1751 	struct mt7530_priv *priv = ds->priv;
1752 	u32 val;
1753 
1754 	val = mt7530_read(priv, MT7530_PCR_P(port));
1755 	if (mirror->ingress) {
1756 		val &= ~PORT_RX_MIR;
1757 		priv->mirror_rx &= ~BIT(port);
1758 	} else {
1759 		val &= ~PORT_TX_MIR;
1760 		priv->mirror_tx &= ~BIT(port);
1761 	}
1762 	mt7530_write(priv, MT7530_PCR_P(port), val);
1763 
1764 	if (!priv->mirror_rx && !priv->mirror_tx) {
1765 		val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1766 		val &= ~MT753X_MIRROR_EN(priv->id);
1767 		mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1768 	}
1769 }
1770 
1771 static enum dsa_tag_protocol
1772 mtk_get_tag_protocol(struct dsa_switch *ds, int port,
1773 		     enum dsa_tag_protocol mp)
1774 {
1775 	return DSA_TAG_PROTO_MTK;
1776 }
1777 
1778 #ifdef CONFIG_GPIOLIB
1779 static inline u32
1780 mt7530_gpio_to_bit(unsigned int offset)
1781 {
1782 	/* Map GPIO offset to register bit
1783 	 * [ 2: 0]  port 0 LED 0..2 as GPIO 0..2
1784 	 * [ 6: 4]  port 1 LED 0..2 as GPIO 3..5
1785 	 * [10: 8]  port 2 LED 0..2 as GPIO 6..8
1786 	 * [14:12]  port 3 LED 0..2 as GPIO 9..11
1787 	 * [18:16]  port 4 LED 0..2 as GPIO 12..14
1788 	 */
1789 	return BIT(offset + offset / 3);
1790 }
1791 
1792 static int
1793 mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset)
1794 {
1795 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1796 	u32 bit = mt7530_gpio_to_bit(offset);
1797 
1798 	return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit);
1799 }
1800 
1801 static void
1802 mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
1803 {
1804 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1805 	u32 bit = mt7530_gpio_to_bit(offset);
1806 
1807 	if (value)
1808 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1809 	else
1810 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1811 }
1812 
1813 static int
1814 mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
1815 {
1816 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1817 	u32 bit = mt7530_gpio_to_bit(offset);
1818 
1819 	return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ?
1820 		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1821 }
1822 
1823 static int
1824 mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
1825 {
1826 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1827 	u32 bit = mt7530_gpio_to_bit(offset);
1828 
1829 	mt7530_clear(priv, MT7530_LED_GPIO_OE, bit);
1830 	mt7530_clear(priv, MT7530_LED_GPIO_DIR, bit);
1831 
1832 	return 0;
1833 }
1834 
1835 static int
1836 mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value)
1837 {
1838 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1839 	u32 bit = mt7530_gpio_to_bit(offset);
1840 
1841 	mt7530_set(priv, MT7530_LED_GPIO_DIR, bit);
1842 
1843 	if (value)
1844 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1845 	else
1846 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1847 
1848 	mt7530_set(priv, MT7530_LED_GPIO_OE, bit);
1849 
1850 	return 0;
1851 }
1852 
1853 static int
1854 mt7530_setup_gpio(struct mt7530_priv *priv)
1855 {
1856 	struct device *dev = priv->dev;
1857 	struct gpio_chip *gc;
1858 
1859 	gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL);
1860 	if (!gc)
1861 		return -ENOMEM;
1862 
1863 	mt7530_write(priv, MT7530_LED_GPIO_OE, 0);
1864 	mt7530_write(priv, MT7530_LED_GPIO_DIR, 0);
1865 	mt7530_write(priv, MT7530_LED_IO_MODE, 0);
1866 
1867 	gc->label = "mt7530";
1868 	gc->parent = dev;
1869 	gc->owner = THIS_MODULE;
1870 	gc->get_direction = mt7530_gpio_get_direction;
1871 	gc->direction_input = mt7530_gpio_direction_input;
1872 	gc->direction_output = mt7530_gpio_direction_output;
1873 	gc->get = mt7530_gpio_get;
1874 	gc->set = mt7530_gpio_set;
1875 	gc->base = -1;
1876 	gc->ngpio = 15;
1877 	gc->can_sleep = true;
1878 
1879 	return devm_gpiochip_add_data(dev, gc, priv);
1880 }
1881 #endif /* CONFIG_GPIOLIB */
1882 
1883 static irqreturn_t
1884 mt7530_irq_thread_fn(int irq, void *dev_id)
1885 {
1886 	struct mt7530_priv *priv = dev_id;
1887 	bool handled = false;
1888 	u32 val;
1889 	int p;
1890 
1891 	mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
1892 	val = mt7530_mii_read(priv, MT7530_SYS_INT_STS);
1893 	mt7530_mii_write(priv, MT7530_SYS_INT_STS, val);
1894 	mutex_unlock(&priv->bus->mdio_lock);
1895 
1896 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
1897 		if (BIT(p) & val) {
1898 			unsigned int irq;
1899 
1900 			irq = irq_find_mapping(priv->irq_domain, p);
1901 			handle_nested_irq(irq);
1902 			handled = true;
1903 		}
1904 	}
1905 
1906 	return IRQ_RETVAL(handled);
1907 }
1908 
1909 static void
1910 mt7530_irq_mask(struct irq_data *d)
1911 {
1912 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1913 
1914 	priv->irq_enable &= ~BIT(d->hwirq);
1915 }
1916 
1917 static void
1918 mt7530_irq_unmask(struct irq_data *d)
1919 {
1920 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1921 
1922 	priv->irq_enable |= BIT(d->hwirq);
1923 }
1924 
1925 static void
1926 mt7530_irq_bus_lock(struct irq_data *d)
1927 {
1928 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1929 
1930 	mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
1931 }
1932 
1933 static void
1934 mt7530_irq_bus_sync_unlock(struct irq_data *d)
1935 {
1936 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1937 
1938 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
1939 	mutex_unlock(&priv->bus->mdio_lock);
1940 }
1941 
1942 static struct irq_chip mt7530_irq_chip = {
1943 	.name = KBUILD_MODNAME,
1944 	.irq_mask = mt7530_irq_mask,
1945 	.irq_unmask = mt7530_irq_unmask,
1946 	.irq_bus_lock = mt7530_irq_bus_lock,
1947 	.irq_bus_sync_unlock = mt7530_irq_bus_sync_unlock,
1948 };
1949 
1950 static int
1951 mt7530_irq_map(struct irq_domain *domain, unsigned int irq,
1952 	       irq_hw_number_t hwirq)
1953 {
1954 	irq_set_chip_data(irq, domain->host_data);
1955 	irq_set_chip_and_handler(irq, &mt7530_irq_chip, handle_simple_irq);
1956 	irq_set_nested_thread(irq, true);
1957 	irq_set_noprobe(irq);
1958 
1959 	return 0;
1960 }
1961 
1962 static const struct irq_domain_ops mt7530_irq_domain_ops = {
1963 	.map = mt7530_irq_map,
1964 	.xlate = irq_domain_xlate_onecell,
1965 };
1966 
1967 static void
1968 mt7530_setup_mdio_irq(struct mt7530_priv *priv)
1969 {
1970 	struct dsa_switch *ds = priv->ds;
1971 	int p;
1972 
1973 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
1974 		if (BIT(p) & ds->phys_mii_mask) {
1975 			unsigned int irq;
1976 
1977 			irq = irq_create_mapping(priv->irq_domain, p);
1978 			ds->slave_mii_bus->irq[p] = irq;
1979 		}
1980 	}
1981 }
1982 
1983 static int
1984 mt7530_setup_irq(struct mt7530_priv *priv)
1985 {
1986 	struct device *dev = priv->dev;
1987 	struct device_node *np = dev->of_node;
1988 	int ret;
1989 
1990 	if (!of_property_read_bool(np, "interrupt-controller")) {
1991 		dev_info(dev, "no interrupt support\n");
1992 		return 0;
1993 	}
1994 
1995 	priv->irq = of_irq_get(np, 0);
1996 	if (priv->irq <= 0) {
1997 		dev_err(dev, "failed to get parent IRQ: %d\n", priv->irq);
1998 		return priv->irq ? : -EINVAL;
1999 	}
2000 
2001 	priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
2002 						 &mt7530_irq_domain_ops, priv);
2003 	if (!priv->irq_domain) {
2004 		dev_err(dev, "failed to create IRQ domain\n");
2005 		return -ENOMEM;
2006 	}
2007 
2008 	/* This register must be set for MT7530 to properly fire interrupts */
2009 	if (priv->id != ID_MT7531)
2010 		mt7530_set(priv, MT7530_TOP_SIG_CTRL, TOP_SIG_CTRL_NORMAL);
2011 
2012 	ret = request_threaded_irq(priv->irq, NULL, mt7530_irq_thread_fn,
2013 				   IRQF_ONESHOT, KBUILD_MODNAME, priv);
2014 	if (ret) {
2015 		irq_domain_remove(priv->irq_domain);
2016 		dev_err(dev, "failed to request IRQ: %d\n", ret);
2017 		return ret;
2018 	}
2019 
2020 	return 0;
2021 }
2022 
2023 static void
2024 mt7530_free_mdio_irq(struct mt7530_priv *priv)
2025 {
2026 	int p;
2027 
2028 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
2029 		if (BIT(p) & priv->ds->phys_mii_mask) {
2030 			unsigned int irq;
2031 
2032 			irq = irq_find_mapping(priv->irq_domain, p);
2033 			irq_dispose_mapping(irq);
2034 		}
2035 	}
2036 }
2037 
2038 static void
2039 mt7530_free_irq_common(struct mt7530_priv *priv)
2040 {
2041 	free_irq(priv->irq, priv);
2042 	irq_domain_remove(priv->irq_domain);
2043 }
2044 
2045 static void
2046 mt7530_free_irq(struct mt7530_priv *priv)
2047 {
2048 	mt7530_free_mdio_irq(priv);
2049 	mt7530_free_irq_common(priv);
2050 }
2051 
2052 static int
2053 mt7530_setup_mdio(struct mt7530_priv *priv)
2054 {
2055 	struct dsa_switch *ds = priv->ds;
2056 	struct device *dev = priv->dev;
2057 	struct mii_bus *bus;
2058 	static int idx;
2059 	int ret;
2060 
2061 	bus = devm_mdiobus_alloc(dev);
2062 	if (!bus)
2063 		return -ENOMEM;
2064 
2065 	ds->slave_mii_bus = bus;
2066 	bus->priv = priv;
2067 	bus->name = KBUILD_MODNAME "-mii";
2068 	snprintf(bus->id, MII_BUS_ID_SIZE, KBUILD_MODNAME "-%d", idx++);
2069 	bus->read = mt753x_phy_read;
2070 	bus->write = mt753x_phy_write;
2071 	bus->parent = dev;
2072 	bus->phy_mask = ~ds->phys_mii_mask;
2073 
2074 	if (priv->irq)
2075 		mt7530_setup_mdio_irq(priv);
2076 
2077 	ret = devm_mdiobus_register(dev, bus);
2078 	if (ret) {
2079 		dev_err(dev, "failed to register MDIO bus: %d\n", ret);
2080 		if (priv->irq)
2081 			mt7530_free_mdio_irq(priv);
2082 	}
2083 
2084 	return ret;
2085 }
2086 
2087 static int
2088 mt7530_setup(struct dsa_switch *ds)
2089 {
2090 	struct mt7530_priv *priv = ds->priv;
2091 	struct device_node *phy_node;
2092 	struct device_node *mac_np;
2093 	struct mt7530_dummy_poll p;
2094 	phy_interface_t interface;
2095 	struct device_node *dn;
2096 	u32 id, val;
2097 	int ret, i;
2098 
2099 	/* The parent node of master netdev which holds the common system
2100 	 * controller also is the container for two GMACs nodes representing
2101 	 * as two netdev instances.
2102 	 */
2103 	dn = dsa_to_port(ds, MT7530_CPU_PORT)->master->dev.of_node->parent;
2104 	ds->assisted_learning_on_cpu_port = true;
2105 	ds->mtu_enforcement_ingress = true;
2106 
2107 	if (priv->id == ID_MT7530) {
2108 		regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
2109 		ret = regulator_enable(priv->core_pwr);
2110 		if (ret < 0) {
2111 			dev_err(priv->dev,
2112 				"Failed to enable core power: %d\n", ret);
2113 			return ret;
2114 		}
2115 
2116 		regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
2117 		ret = regulator_enable(priv->io_pwr);
2118 		if (ret < 0) {
2119 			dev_err(priv->dev, "Failed to enable io pwr: %d\n",
2120 				ret);
2121 			return ret;
2122 		}
2123 	}
2124 
2125 	/* Reset whole chip through gpio pin or memory-mapped registers for
2126 	 * different type of hardware
2127 	 */
2128 	if (priv->mcm) {
2129 		reset_control_assert(priv->rstc);
2130 		usleep_range(1000, 1100);
2131 		reset_control_deassert(priv->rstc);
2132 	} else {
2133 		gpiod_set_value_cansleep(priv->reset, 0);
2134 		usleep_range(1000, 1100);
2135 		gpiod_set_value_cansleep(priv->reset, 1);
2136 	}
2137 
2138 	/* Waiting for MT7530 got to stable */
2139 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2140 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2141 				 20, 1000000);
2142 	if (ret < 0) {
2143 		dev_err(priv->dev, "reset timeout\n");
2144 		return ret;
2145 	}
2146 
2147 	id = mt7530_read(priv, MT7530_CREV);
2148 	id >>= CHIP_NAME_SHIFT;
2149 	if (id != MT7530_ID) {
2150 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2151 		return -ENODEV;
2152 	}
2153 
2154 	/* Reset the switch through internal reset */
2155 	mt7530_write(priv, MT7530_SYS_CTRL,
2156 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2157 		     SYS_CTRL_REG_RST);
2158 
2159 	/* Enable Port 6 only; P5 as GMAC5 which currently is not supported */
2160 	val = mt7530_read(priv, MT7530_MHWTRAP);
2161 	val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
2162 	val |= MHWTRAP_MANUAL;
2163 	mt7530_write(priv, MT7530_MHWTRAP, val);
2164 
2165 	priv->p6_interface = PHY_INTERFACE_MODE_NA;
2166 
2167 	/* Enable and reset MIB counters */
2168 	mt7530_mib_reset(ds);
2169 
2170 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2171 		/* Disable forwarding by default on all ports */
2172 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2173 			   PCR_MATRIX_CLR);
2174 
2175 		/* Disable learning by default on all ports */
2176 		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2177 
2178 		if (dsa_is_cpu_port(ds, i)) {
2179 			ret = mt753x_cpu_port_enable(ds, i);
2180 			if (ret)
2181 				return ret;
2182 		} else {
2183 			mt7530_port_disable(ds, i);
2184 
2185 			/* Set default PVID to 0 on all user ports */
2186 			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2187 				   G0_PORT_VID_DEF);
2188 		}
2189 		/* Enable consistent egress tag */
2190 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2191 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2192 	}
2193 
2194 	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2195 	ret = mt7530_setup_vlan0(priv);
2196 	if (ret)
2197 		return ret;
2198 
2199 	/* Setup port 5 */
2200 	priv->p5_intf_sel = P5_DISABLED;
2201 	interface = PHY_INTERFACE_MODE_NA;
2202 
2203 	if (!dsa_is_unused_port(ds, 5)) {
2204 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2205 		ret = of_get_phy_mode(dsa_to_port(ds, 5)->dn, &interface);
2206 		if (ret && ret != -ENODEV)
2207 			return ret;
2208 	} else {
2209 		/* Scan the ethernet nodes. look for GMAC1, lookup used phy */
2210 		for_each_child_of_node(dn, mac_np) {
2211 			if (!of_device_is_compatible(mac_np,
2212 						     "mediatek,eth-mac"))
2213 				continue;
2214 
2215 			ret = of_property_read_u32(mac_np, "reg", &id);
2216 			if (ret < 0 || id != 1)
2217 				continue;
2218 
2219 			phy_node = of_parse_phandle(mac_np, "phy-handle", 0);
2220 			if (!phy_node)
2221 				continue;
2222 
2223 			if (phy_node->parent == priv->dev->of_node->parent) {
2224 				ret = of_get_phy_mode(mac_np, &interface);
2225 				if (ret && ret != -ENODEV) {
2226 					of_node_put(mac_np);
2227 					return ret;
2228 				}
2229 				id = of_mdio_parse_addr(ds->dev, phy_node);
2230 				if (id == 0)
2231 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P0;
2232 				if (id == 4)
2233 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P4;
2234 			}
2235 			of_node_put(mac_np);
2236 			of_node_put(phy_node);
2237 			break;
2238 		}
2239 	}
2240 
2241 #ifdef CONFIG_GPIOLIB
2242 	if (of_property_read_bool(priv->dev->of_node, "gpio-controller")) {
2243 		ret = mt7530_setup_gpio(priv);
2244 		if (ret)
2245 			return ret;
2246 	}
2247 #endif /* CONFIG_GPIOLIB */
2248 
2249 	mt7530_setup_port5(ds, interface);
2250 
2251 	/* Flush the FDB table */
2252 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2253 	if (ret < 0)
2254 		return ret;
2255 
2256 	return 0;
2257 }
2258 
2259 static int
2260 mt7531_setup(struct dsa_switch *ds)
2261 {
2262 	struct mt7530_priv *priv = ds->priv;
2263 	struct mt7530_dummy_poll p;
2264 	u32 val, id;
2265 	int ret, i;
2266 
2267 	/* Reset whole chip through gpio pin or memory-mapped registers for
2268 	 * different type of hardware
2269 	 */
2270 	if (priv->mcm) {
2271 		reset_control_assert(priv->rstc);
2272 		usleep_range(1000, 1100);
2273 		reset_control_deassert(priv->rstc);
2274 	} else {
2275 		gpiod_set_value_cansleep(priv->reset, 0);
2276 		usleep_range(1000, 1100);
2277 		gpiod_set_value_cansleep(priv->reset, 1);
2278 	}
2279 
2280 	/* Waiting for MT7530 got to stable */
2281 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2282 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2283 				 20, 1000000);
2284 	if (ret < 0) {
2285 		dev_err(priv->dev, "reset timeout\n");
2286 		return ret;
2287 	}
2288 
2289 	id = mt7530_read(priv, MT7531_CREV);
2290 	id >>= CHIP_NAME_SHIFT;
2291 
2292 	if (id != MT7531_ID) {
2293 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2294 		return -ENODEV;
2295 	}
2296 
2297 	/* Reset the switch through internal reset */
2298 	mt7530_write(priv, MT7530_SYS_CTRL,
2299 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2300 		     SYS_CTRL_REG_RST);
2301 
2302 	if (mt7531_dual_sgmii_supported(priv)) {
2303 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5_SGMII;
2304 
2305 		/* Let ds->slave_mii_bus be able to access external phy. */
2306 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK,
2307 			   MT7531_EXT_P_MDC_11);
2308 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK,
2309 			   MT7531_EXT_P_MDIO_12);
2310 	} else {
2311 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2312 	}
2313 	dev_dbg(ds->dev, "P5 support %s interface\n",
2314 		p5_intf_modes(priv->p5_intf_sel));
2315 
2316 	mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK,
2317 		   MT7531_GPIO0_INTERRUPT);
2318 
2319 	/* Let phylink decide the interface later. */
2320 	priv->p5_interface = PHY_INTERFACE_MODE_NA;
2321 	priv->p6_interface = PHY_INTERFACE_MODE_NA;
2322 
2323 	/* Enable PHY core PLL, since phy_device has not yet been created
2324 	 * provided for phy_[read,write]_mmd_indirect is called, we provide
2325 	 * our own mt7531_ind_mmd_phy_[read,write] to complete this
2326 	 * function.
2327 	 */
2328 	val = mt7531_ind_c45_phy_read(priv, MT753X_CTRL_PHY_ADDR,
2329 				      MDIO_MMD_VEND2, CORE_PLL_GROUP4);
2330 	val |= MT7531_PHY_PLL_BYPASS_MODE;
2331 	val &= ~MT7531_PHY_PLL_OFF;
2332 	mt7531_ind_c45_phy_write(priv, MT753X_CTRL_PHY_ADDR, MDIO_MMD_VEND2,
2333 				 CORE_PLL_GROUP4, val);
2334 
2335 	/* BPDU to CPU port */
2336 	mt7530_rmw(priv, MT7531_CFC, MT7531_CPU_PMAP_MASK,
2337 		   BIT(MT7530_CPU_PORT));
2338 	mt7530_rmw(priv, MT753X_BPC, MT753X_BPDU_PORT_FW_MASK,
2339 		   MT753X_BPDU_CPU_ONLY);
2340 
2341 	/* Enable and reset MIB counters */
2342 	mt7530_mib_reset(ds);
2343 
2344 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2345 		/* Disable forwarding by default on all ports */
2346 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2347 			   PCR_MATRIX_CLR);
2348 
2349 		/* Disable learning by default on all ports */
2350 		mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2351 
2352 		mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR);
2353 
2354 		if (dsa_is_cpu_port(ds, i)) {
2355 			ret = mt753x_cpu_port_enable(ds, i);
2356 			if (ret)
2357 				return ret;
2358 		} else {
2359 			mt7530_port_disable(ds, i);
2360 
2361 			/* Set default PVID to 0 on all user ports */
2362 			mt7530_rmw(priv, MT7530_PPBV1_P(i), G0_PORT_VID_MASK,
2363 				   G0_PORT_VID_DEF);
2364 		}
2365 
2366 		/* Enable consistent egress tag */
2367 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2368 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2369 	}
2370 
2371 	/* Setup VLAN ID 0 for VLAN-unaware bridges */
2372 	ret = mt7530_setup_vlan0(priv);
2373 	if (ret)
2374 		return ret;
2375 
2376 	ds->assisted_learning_on_cpu_port = true;
2377 	ds->mtu_enforcement_ingress = true;
2378 
2379 	/* Flush the FDB table */
2380 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2381 	if (ret < 0)
2382 		return ret;
2383 
2384 	return 0;
2385 }
2386 
2387 static bool
2388 mt7530_phy_mode_supported(struct dsa_switch *ds, int port,
2389 			  const struct phylink_link_state *state)
2390 {
2391 	struct mt7530_priv *priv = ds->priv;
2392 
2393 	switch (port) {
2394 	case 0 ... 4: /* Internal phy */
2395 		if (state->interface != PHY_INTERFACE_MODE_GMII)
2396 			return false;
2397 		break;
2398 	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2399 		if (!phy_interface_mode_is_rgmii(state->interface) &&
2400 		    state->interface != PHY_INTERFACE_MODE_MII &&
2401 		    state->interface != PHY_INTERFACE_MODE_GMII)
2402 			return false;
2403 		break;
2404 	case 6: /* 1st cpu port */
2405 		if (state->interface != PHY_INTERFACE_MODE_RGMII &&
2406 		    state->interface != PHY_INTERFACE_MODE_TRGMII)
2407 			return false;
2408 		break;
2409 	default:
2410 		dev_err(priv->dev, "%s: unsupported port: %i\n", __func__,
2411 			port);
2412 		return false;
2413 	}
2414 
2415 	return true;
2416 }
2417 
2418 static bool mt7531_is_rgmii_port(struct mt7530_priv *priv, u32 port)
2419 {
2420 	return (port == 5) && (priv->p5_intf_sel != P5_INTF_SEL_GMAC5_SGMII);
2421 }
2422 
2423 static bool
2424 mt7531_phy_mode_supported(struct dsa_switch *ds, int port,
2425 			  const struct phylink_link_state *state)
2426 {
2427 	struct mt7530_priv *priv = ds->priv;
2428 
2429 	switch (port) {
2430 	case 0 ... 4: /* Internal phy */
2431 		if (state->interface != PHY_INTERFACE_MODE_GMII)
2432 			return false;
2433 		break;
2434 	case 5: /* 2nd cpu port supports either rgmii or sgmii/8023z */
2435 		if (mt7531_is_rgmii_port(priv, port))
2436 			return phy_interface_mode_is_rgmii(state->interface);
2437 		fallthrough;
2438 	case 6: /* 1st cpu port supports sgmii/8023z only */
2439 		if (state->interface != PHY_INTERFACE_MODE_SGMII &&
2440 		    !phy_interface_mode_is_8023z(state->interface))
2441 			return false;
2442 		break;
2443 	default:
2444 		dev_err(priv->dev, "%s: unsupported port: %i\n", __func__,
2445 			port);
2446 		return false;
2447 	}
2448 
2449 	return true;
2450 }
2451 
2452 static bool
2453 mt753x_phy_mode_supported(struct dsa_switch *ds, int port,
2454 			  const struct phylink_link_state *state)
2455 {
2456 	struct mt7530_priv *priv = ds->priv;
2457 
2458 	return priv->info->phy_mode_supported(ds, port, state);
2459 }
2460 
2461 static int
2462 mt753x_pad_setup(struct dsa_switch *ds, const struct phylink_link_state *state)
2463 {
2464 	struct mt7530_priv *priv = ds->priv;
2465 
2466 	return priv->info->pad_setup(ds, state->interface);
2467 }
2468 
2469 static int
2470 mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2471 		  phy_interface_t interface)
2472 {
2473 	struct mt7530_priv *priv = ds->priv;
2474 
2475 	/* Only need to setup port5. */
2476 	if (port != 5)
2477 		return 0;
2478 
2479 	mt7530_setup_port5(priv->ds, interface);
2480 
2481 	return 0;
2482 }
2483 
2484 static int mt7531_rgmii_setup(struct mt7530_priv *priv, u32 port,
2485 			      phy_interface_t interface,
2486 			      struct phy_device *phydev)
2487 {
2488 	u32 val;
2489 
2490 	if (!mt7531_is_rgmii_port(priv, port)) {
2491 		dev_err(priv->dev, "RGMII mode is not available for port %d\n",
2492 			port);
2493 		return -EINVAL;
2494 	}
2495 
2496 	val = mt7530_read(priv, MT7531_CLKGEN_CTRL);
2497 	val |= GP_CLK_EN;
2498 	val &= ~GP_MODE_MASK;
2499 	val |= GP_MODE(MT7531_GP_MODE_RGMII);
2500 	val &= ~CLK_SKEW_IN_MASK;
2501 	val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG);
2502 	val &= ~CLK_SKEW_OUT_MASK;
2503 	val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG);
2504 	val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY;
2505 
2506 	/* Do not adjust rgmii delay when vendor phy driver presents. */
2507 	if (!phydev || phy_driver_is_genphy(phydev)) {
2508 		val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY);
2509 		switch (interface) {
2510 		case PHY_INTERFACE_MODE_RGMII:
2511 			val |= TXCLK_NO_REVERSE;
2512 			val |= RXCLK_NO_DELAY;
2513 			break;
2514 		case PHY_INTERFACE_MODE_RGMII_RXID:
2515 			val |= TXCLK_NO_REVERSE;
2516 			break;
2517 		case PHY_INTERFACE_MODE_RGMII_TXID:
2518 			val |= RXCLK_NO_DELAY;
2519 			break;
2520 		case PHY_INTERFACE_MODE_RGMII_ID:
2521 			break;
2522 		default:
2523 			return -EINVAL;
2524 		}
2525 	}
2526 	mt7530_write(priv, MT7531_CLKGEN_CTRL, val);
2527 
2528 	return 0;
2529 }
2530 
2531 static void mt7531_sgmii_validate(struct mt7530_priv *priv, int port,
2532 				  unsigned long *supported)
2533 {
2534 	/* Port5 supports ethier RGMII or SGMII.
2535 	 * Port6 supports SGMII only.
2536 	 */
2537 	switch (port) {
2538 	case 5:
2539 		if (mt7531_is_rgmii_port(priv, port))
2540 			break;
2541 		fallthrough;
2542 	case 6:
2543 		phylink_set(supported, 1000baseX_Full);
2544 		phylink_set(supported, 2500baseX_Full);
2545 		phylink_set(supported, 2500baseT_Full);
2546 	}
2547 }
2548 
2549 static void
2550 mt7531_sgmii_link_up_force(struct dsa_switch *ds, int port,
2551 			   unsigned int mode, phy_interface_t interface,
2552 			   int speed, int duplex)
2553 {
2554 	struct mt7530_priv *priv = ds->priv;
2555 	unsigned int val;
2556 
2557 	/* For adjusting speed and duplex of SGMII force mode. */
2558 	if (interface != PHY_INTERFACE_MODE_SGMII ||
2559 	    phylink_autoneg_inband(mode))
2560 		return;
2561 
2562 	/* SGMII force mode setting */
2563 	val = mt7530_read(priv, MT7531_SGMII_MODE(port));
2564 	val &= ~MT7531_SGMII_IF_MODE_MASK;
2565 
2566 	switch (speed) {
2567 	case SPEED_10:
2568 		val |= MT7531_SGMII_FORCE_SPEED_10;
2569 		break;
2570 	case SPEED_100:
2571 		val |= MT7531_SGMII_FORCE_SPEED_100;
2572 		break;
2573 	case SPEED_1000:
2574 		val |= MT7531_SGMII_FORCE_SPEED_1000;
2575 		break;
2576 	}
2577 
2578 	/* MT7531 SGMII 1G force mode can only work in full duplex mode,
2579 	 * no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not.
2580 	 */
2581 	if ((speed == SPEED_10 || speed == SPEED_100) &&
2582 	    duplex != DUPLEX_FULL)
2583 		val |= MT7531_SGMII_FORCE_HALF_DUPLEX;
2584 
2585 	mt7530_write(priv, MT7531_SGMII_MODE(port), val);
2586 }
2587 
2588 static bool mt753x_is_mac_port(u32 port)
2589 {
2590 	return (port == 5 || port == 6);
2591 }
2592 
2593 static int mt7531_sgmii_setup_mode_force(struct mt7530_priv *priv, u32 port,
2594 					 phy_interface_t interface)
2595 {
2596 	u32 val;
2597 
2598 	if (!mt753x_is_mac_port(port))
2599 		return -EINVAL;
2600 
2601 	mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port),
2602 		   MT7531_SGMII_PHYA_PWD);
2603 
2604 	val = mt7530_read(priv, MT7531_PHYA_CTRL_SIGNAL3(port));
2605 	val &= ~MT7531_RG_TPHY_SPEED_MASK;
2606 	/* Setup 2.5 times faster clock for 2.5Gbps data speeds with 10B/8B
2607 	 * encoding.
2608 	 */
2609 	val |= (interface == PHY_INTERFACE_MODE_2500BASEX) ?
2610 		MT7531_RG_TPHY_SPEED_3_125G : MT7531_RG_TPHY_SPEED_1_25G;
2611 	mt7530_write(priv, MT7531_PHYA_CTRL_SIGNAL3(port), val);
2612 
2613 	mt7530_clear(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE);
2614 
2615 	/* MT7531 SGMII 1G and 2.5G force mode can only work in full duplex
2616 	 * mode, no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not.
2617 	 */
2618 	mt7530_rmw(priv, MT7531_SGMII_MODE(port),
2619 		   MT7531_SGMII_IF_MODE_MASK | MT7531_SGMII_REMOTE_FAULT_DIS,
2620 		   MT7531_SGMII_FORCE_SPEED_1000);
2621 
2622 	mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0);
2623 
2624 	return 0;
2625 }
2626 
2627 static int mt7531_sgmii_setup_mode_an(struct mt7530_priv *priv, int port,
2628 				      phy_interface_t interface)
2629 {
2630 	if (!mt753x_is_mac_port(port))
2631 		return -EINVAL;
2632 
2633 	mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port),
2634 		   MT7531_SGMII_PHYA_PWD);
2635 
2636 	mt7530_rmw(priv, MT7531_PHYA_CTRL_SIGNAL3(port),
2637 		   MT7531_RG_TPHY_SPEED_MASK, MT7531_RG_TPHY_SPEED_1_25G);
2638 
2639 	mt7530_set(priv, MT7531_SGMII_MODE(port),
2640 		   MT7531_SGMII_REMOTE_FAULT_DIS |
2641 		   MT7531_SGMII_SPEED_DUPLEX_AN);
2642 
2643 	mt7530_rmw(priv, MT7531_PCS_SPEED_ABILITY(port),
2644 		   MT7531_SGMII_TX_CONFIG_MASK, 1);
2645 
2646 	mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE);
2647 
2648 	mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_RESTART);
2649 
2650 	mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0);
2651 
2652 	return 0;
2653 }
2654 
2655 static void mt7531_sgmii_restart_an(struct dsa_switch *ds, int port)
2656 {
2657 	struct mt7530_priv *priv = ds->priv;
2658 	u32 val;
2659 
2660 	/* Only restart AN when AN is enabled */
2661 	val = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
2662 	if (val & MT7531_SGMII_AN_ENABLE) {
2663 		val |= MT7531_SGMII_AN_RESTART;
2664 		mt7530_write(priv, MT7531_PCS_CONTROL_1(port), val);
2665 	}
2666 }
2667 
2668 static int
2669 mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2670 		  phy_interface_t interface)
2671 {
2672 	struct mt7530_priv *priv = ds->priv;
2673 	struct phy_device *phydev;
2674 	struct dsa_port *dp;
2675 
2676 	if (!mt753x_is_mac_port(port)) {
2677 		dev_err(priv->dev, "port %d is not a MAC port\n", port);
2678 		return -EINVAL;
2679 	}
2680 
2681 	switch (interface) {
2682 	case PHY_INTERFACE_MODE_RGMII:
2683 	case PHY_INTERFACE_MODE_RGMII_ID:
2684 	case PHY_INTERFACE_MODE_RGMII_RXID:
2685 	case PHY_INTERFACE_MODE_RGMII_TXID:
2686 		dp = dsa_to_port(ds, port);
2687 		phydev = dp->slave->phydev;
2688 		return mt7531_rgmii_setup(priv, port, interface, phydev);
2689 	case PHY_INTERFACE_MODE_SGMII:
2690 		return mt7531_sgmii_setup_mode_an(priv, port, interface);
2691 	case PHY_INTERFACE_MODE_NA:
2692 	case PHY_INTERFACE_MODE_1000BASEX:
2693 	case PHY_INTERFACE_MODE_2500BASEX:
2694 		if (phylink_autoneg_inband(mode))
2695 			return -EINVAL;
2696 
2697 		return mt7531_sgmii_setup_mode_force(priv, port, interface);
2698 	default:
2699 		return -EINVAL;
2700 	}
2701 
2702 	return -EINVAL;
2703 }
2704 
2705 static int
2706 mt753x_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2707 		  const struct phylink_link_state *state)
2708 {
2709 	struct mt7530_priv *priv = ds->priv;
2710 
2711 	return priv->info->mac_port_config(ds, port, mode, state->interface);
2712 }
2713 
2714 static void
2715 mt753x_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2716 			  const struct phylink_link_state *state)
2717 {
2718 	struct mt7530_priv *priv = ds->priv;
2719 	u32 mcr_cur, mcr_new;
2720 
2721 	if (!mt753x_phy_mode_supported(ds, port, state))
2722 		goto unsupported;
2723 
2724 	switch (port) {
2725 	case 0 ... 4: /* Internal phy */
2726 		if (state->interface != PHY_INTERFACE_MODE_GMII)
2727 			goto unsupported;
2728 		break;
2729 	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2730 		if (priv->p5_interface == state->interface)
2731 			break;
2732 
2733 		if (mt753x_mac_config(ds, port, mode, state) < 0)
2734 			goto unsupported;
2735 
2736 		if (priv->p5_intf_sel != P5_DISABLED)
2737 			priv->p5_interface = state->interface;
2738 		break;
2739 	case 6: /* 1st cpu port */
2740 		if (priv->p6_interface == state->interface)
2741 			break;
2742 
2743 		mt753x_pad_setup(ds, state);
2744 
2745 		if (mt753x_mac_config(ds, port, mode, state) < 0)
2746 			goto unsupported;
2747 
2748 		priv->p6_interface = state->interface;
2749 		break;
2750 	default:
2751 unsupported:
2752 		dev_err(ds->dev, "%s: unsupported %s port: %i\n",
2753 			__func__, phy_modes(state->interface), port);
2754 		return;
2755 	}
2756 
2757 	if (phylink_autoneg_inband(mode) &&
2758 	    state->interface != PHY_INTERFACE_MODE_SGMII) {
2759 		dev_err(ds->dev, "%s: in-band negotiation unsupported\n",
2760 			__func__);
2761 		return;
2762 	}
2763 
2764 	mcr_cur = mt7530_read(priv, MT7530_PMCR_P(port));
2765 	mcr_new = mcr_cur;
2766 	mcr_new &= ~PMCR_LINK_SETTINGS_MASK;
2767 	mcr_new |= PMCR_IFG_XMIT(1) | PMCR_MAC_MODE | PMCR_BACKOFF_EN |
2768 		   PMCR_BACKPR_EN | PMCR_FORCE_MODE_ID(priv->id);
2769 
2770 	/* Are we connected to external phy */
2771 	if (port == 5 && dsa_is_user_port(ds, 5))
2772 		mcr_new |= PMCR_EXT_PHY;
2773 
2774 	if (mcr_new != mcr_cur)
2775 		mt7530_write(priv, MT7530_PMCR_P(port), mcr_new);
2776 }
2777 
2778 static void
2779 mt753x_phylink_mac_an_restart(struct dsa_switch *ds, int port)
2780 {
2781 	struct mt7530_priv *priv = ds->priv;
2782 
2783 	if (!priv->info->mac_pcs_an_restart)
2784 		return;
2785 
2786 	priv->info->mac_pcs_an_restart(ds, port);
2787 }
2788 
2789 static void mt753x_phylink_mac_link_down(struct dsa_switch *ds, int port,
2790 					 unsigned int mode,
2791 					 phy_interface_t interface)
2792 {
2793 	struct mt7530_priv *priv = ds->priv;
2794 
2795 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
2796 }
2797 
2798 static void mt753x_mac_pcs_link_up(struct dsa_switch *ds, int port,
2799 				   unsigned int mode, phy_interface_t interface,
2800 				   int speed, int duplex)
2801 {
2802 	struct mt7530_priv *priv = ds->priv;
2803 
2804 	if (!priv->info->mac_pcs_link_up)
2805 		return;
2806 
2807 	priv->info->mac_pcs_link_up(ds, port, mode, interface, speed, duplex);
2808 }
2809 
2810 static void mt753x_phylink_mac_link_up(struct dsa_switch *ds, int port,
2811 				       unsigned int mode,
2812 				       phy_interface_t interface,
2813 				       struct phy_device *phydev,
2814 				       int speed, int duplex,
2815 				       bool tx_pause, bool rx_pause)
2816 {
2817 	struct mt7530_priv *priv = ds->priv;
2818 	u32 mcr;
2819 
2820 	mt753x_mac_pcs_link_up(ds, port, mode, interface, speed, duplex);
2821 
2822 	mcr = PMCR_RX_EN | PMCR_TX_EN | PMCR_FORCE_LNK;
2823 
2824 	/* MT753x MAC works in 1G full duplex mode for all up-clocked
2825 	 * variants.
2826 	 */
2827 	if (interface == PHY_INTERFACE_MODE_TRGMII ||
2828 	    (phy_interface_mode_is_8023z(interface))) {
2829 		speed = SPEED_1000;
2830 		duplex = DUPLEX_FULL;
2831 	}
2832 
2833 	switch (speed) {
2834 	case SPEED_1000:
2835 		mcr |= PMCR_FORCE_SPEED_1000;
2836 		break;
2837 	case SPEED_100:
2838 		mcr |= PMCR_FORCE_SPEED_100;
2839 		break;
2840 	}
2841 	if (duplex == DUPLEX_FULL) {
2842 		mcr |= PMCR_FORCE_FDX;
2843 		if (tx_pause)
2844 			mcr |= PMCR_TX_FC_EN;
2845 		if (rx_pause)
2846 			mcr |= PMCR_RX_FC_EN;
2847 	}
2848 
2849 	if (mode == MLO_AN_PHY && phydev && phy_init_eee(phydev, 0) >= 0) {
2850 		switch (speed) {
2851 		case SPEED_1000:
2852 			mcr |= PMCR_FORCE_EEE1G;
2853 			break;
2854 		case SPEED_100:
2855 			mcr |= PMCR_FORCE_EEE100;
2856 			break;
2857 		}
2858 	}
2859 
2860 	mt7530_set(priv, MT7530_PMCR_P(port), mcr);
2861 }
2862 
2863 static int
2864 mt7531_cpu_port_config(struct dsa_switch *ds, int port)
2865 {
2866 	struct mt7530_priv *priv = ds->priv;
2867 	phy_interface_t interface;
2868 	int speed;
2869 	int ret;
2870 
2871 	switch (port) {
2872 	case 5:
2873 		if (mt7531_is_rgmii_port(priv, port))
2874 			interface = PHY_INTERFACE_MODE_RGMII;
2875 		else
2876 			interface = PHY_INTERFACE_MODE_2500BASEX;
2877 
2878 		priv->p5_interface = interface;
2879 		break;
2880 	case 6:
2881 		interface = PHY_INTERFACE_MODE_2500BASEX;
2882 
2883 		mt7531_pad_setup(ds, interface);
2884 
2885 		priv->p6_interface = interface;
2886 		break;
2887 	default:
2888 		return -EINVAL;
2889 	}
2890 
2891 	if (interface == PHY_INTERFACE_MODE_2500BASEX)
2892 		speed = SPEED_2500;
2893 	else
2894 		speed = SPEED_1000;
2895 
2896 	ret = mt7531_mac_config(ds, port, MLO_AN_FIXED, interface);
2897 	if (ret)
2898 		return ret;
2899 	mt7530_write(priv, MT7530_PMCR_P(port),
2900 		     PMCR_CPU_PORT_SETTING(priv->id));
2901 	mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED, interface, NULL,
2902 				   speed, DUPLEX_FULL, true, true);
2903 
2904 	return 0;
2905 }
2906 
2907 static void
2908 mt7530_mac_port_validate(struct dsa_switch *ds, int port,
2909 			 unsigned long *supported)
2910 {
2911 	if (port == 5)
2912 		phylink_set(supported, 1000baseX_Full);
2913 }
2914 
2915 static void mt7531_mac_port_validate(struct dsa_switch *ds, int port,
2916 				     unsigned long *supported)
2917 {
2918 	struct mt7530_priv *priv = ds->priv;
2919 
2920 	mt7531_sgmii_validate(priv, port, supported);
2921 }
2922 
2923 static void
2924 mt753x_phylink_validate(struct dsa_switch *ds, int port,
2925 			unsigned long *supported,
2926 			struct phylink_link_state *state)
2927 {
2928 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
2929 	struct mt7530_priv *priv = ds->priv;
2930 
2931 	if (state->interface != PHY_INTERFACE_MODE_NA &&
2932 	    !mt753x_phy_mode_supported(ds, port, state)) {
2933 		linkmode_zero(supported);
2934 		return;
2935 	}
2936 
2937 	phylink_set_port_modes(mask);
2938 
2939 	if (state->interface != PHY_INTERFACE_MODE_TRGMII ||
2940 	    !phy_interface_mode_is_8023z(state->interface)) {
2941 		phylink_set(mask, 10baseT_Half);
2942 		phylink_set(mask, 10baseT_Full);
2943 		phylink_set(mask, 100baseT_Half);
2944 		phylink_set(mask, 100baseT_Full);
2945 		phylink_set(mask, Autoneg);
2946 	}
2947 
2948 	/* This switch only supports 1G full-duplex. */
2949 	if (state->interface != PHY_INTERFACE_MODE_MII)
2950 		phylink_set(mask, 1000baseT_Full);
2951 
2952 	priv->info->mac_port_validate(ds, port, mask);
2953 
2954 	phylink_set(mask, Pause);
2955 	phylink_set(mask, Asym_Pause);
2956 
2957 	linkmode_and(supported, supported, mask);
2958 	linkmode_and(state->advertising, state->advertising, mask);
2959 
2960 	/* We can only operate at 2500BaseX or 1000BaseX.  If requested
2961 	 * to advertise both, only report advertising at 2500BaseX.
2962 	 */
2963 	phylink_helper_basex_speed(state);
2964 }
2965 
2966 static int
2967 mt7530_phylink_mac_link_state(struct dsa_switch *ds, int port,
2968 			      struct phylink_link_state *state)
2969 {
2970 	struct mt7530_priv *priv = ds->priv;
2971 	u32 pmsr;
2972 
2973 	if (port < 0 || port >= MT7530_NUM_PORTS)
2974 		return -EINVAL;
2975 
2976 	pmsr = mt7530_read(priv, MT7530_PMSR_P(port));
2977 
2978 	state->link = (pmsr & PMSR_LINK);
2979 	state->an_complete = state->link;
2980 	state->duplex = !!(pmsr & PMSR_DPX);
2981 
2982 	switch (pmsr & PMSR_SPEED_MASK) {
2983 	case PMSR_SPEED_10:
2984 		state->speed = SPEED_10;
2985 		break;
2986 	case PMSR_SPEED_100:
2987 		state->speed = SPEED_100;
2988 		break;
2989 	case PMSR_SPEED_1000:
2990 		state->speed = SPEED_1000;
2991 		break;
2992 	default:
2993 		state->speed = SPEED_UNKNOWN;
2994 		break;
2995 	}
2996 
2997 	state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX);
2998 	if (pmsr & PMSR_RX_FC)
2999 		state->pause |= MLO_PAUSE_RX;
3000 	if (pmsr & PMSR_TX_FC)
3001 		state->pause |= MLO_PAUSE_TX;
3002 
3003 	return 1;
3004 }
3005 
3006 static int
3007 mt7531_sgmii_pcs_get_state_an(struct mt7530_priv *priv, int port,
3008 			      struct phylink_link_state *state)
3009 {
3010 	u32 status, val;
3011 	u16 config_reg;
3012 
3013 	status = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
3014 	state->link = !!(status & MT7531_SGMII_LINK_STATUS);
3015 	if (state->interface == PHY_INTERFACE_MODE_SGMII &&
3016 	    (status & MT7531_SGMII_AN_ENABLE)) {
3017 		val = mt7530_read(priv, MT7531_PCS_SPEED_ABILITY(port));
3018 		config_reg = val >> 16;
3019 
3020 		switch (config_reg & LPA_SGMII_SPD_MASK) {
3021 		case LPA_SGMII_1000:
3022 			state->speed = SPEED_1000;
3023 			break;
3024 		case LPA_SGMII_100:
3025 			state->speed = SPEED_100;
3026 			break;
3027 		case LPA_SGMII_10:
3028 			state->speed = SPEED_10;
3029 			break;
3030 		default:
3031 			dev_err(priv->dev, "invalid sgmii PHY speed\n");
3032 			state->link = false;
3033 			return -EINVAL;
3034 		}
3035 
3036 		if (config_reg & LPA_SGMII_FULL_DUPLEX)
3037 			state->duplex = DUPLEX_FULL;
3038 		else
3039 			state->duplex = DUPLEX_HALF;
3040 	}
3041 
3042 	return 0;
3043 }
3044 
3045 static int
3046 mt7531_phylink_mac_link_state(struct dsa_switch *ds, int port,
3047 			      struct phylink_link_state *state)
3048 {
3049 	struct mt7530_priv *priv = ds->priv;
3050 
3051 	if (state->interface == PHY_INTERFACE_MODE_SGMII)
3052 		return mt7531_sgmii_pcs_get_state_an(priv, port, state);
3053 
3054 	return -EOPNOTSUPP;
3055 }
3056 
3057 static int
3058 mt753x_phylink_mac_link_state(struct dsa_switch *ds, int port,
3059 			      struct phylink_link_state *state)
3060 {
3061 	struct mt7530_priv *priv = ds->priv;
3062 
3063 	return priv->info->mac_port_get_state(ds, port, state);
3064 }
3065 
3066 static int
3067 mt753x_setup(struct dsa_switch *ds)
3068 {
3069 	struct mt7530_priv *priv = ds->priv;
3070 	int ret = priv->info->sw_setup(ds);
3071 
3072 	if (ret)
3073 		return ret;
3074 
3075 	ret = mt7530_setup_irq(priv);
3076 	if (ret)
3077 		return ret;
3078 
3079 	ret = mt7530_setup_mdio(priv);
3080 	if (ret && priv->irq)
3081 		mt7530_free_irq_common(priv);
3082 
3083 	return ret;
3084 }
3085 
3086 static int mt753x_get_mac_eee(struct dsa_switch *ds, int port,
3087 			      struct ethtool_eee *e)
3088 {
3089 	struct mt7530_priv *priv = ds->priv;
3090 	u32 eeecr = mt7530_read(priv, MT7530_PMEEECR_P(port));
3091 
3092 	e->tx_lpi_enabled = !(eeecr & LPI_MODE_EN);
3093 	e->tx_lpi_timer = GET_LPI_THRESH(eeecr);
3094 
3095 	return 0;
3096 }
3097 
3098 static int mt753x_set_mac_eee(struct dsa_switch *ds, int port,
3099 			      struct ethtool_eee *e)
3100 {
3101 	struct mt7530_priv *priv = ds->priv;
3102 	u32 set, mask = LPI_THRESH_MASK | LPI_MODE_EN;
3103 
3104 	if (e->tx_lpi_timer > 0xFFF)
3105 		return -EINVAL;
3106 
3107 	set = SET_LPI_THRESH(e->tx_lpi_timer);
3108 	if (!e->tx_lpi_enabled)
3109 		/* Force LPI Mode without a delay */
3110 		set |= LPI_MODE_EN;
3111 	mt7530_rmw(priv, MT7530_PMEEECR_P(port), mask, set);
3112 
3113 	return 0;
3114 }
3115 
3116 static const struct dsa_switch_ops mt7530_switch_ops = {
3117 	.get_tag_protocol	= mtk_get_tag_protocol,
3118 	.setup			= mt753x_setup,
3119 	.get_strings		= mt7530_get_strings,
3120 	.get_ethtool_stats	= mt7530_get_ethtool_stats,
3121 	.get_sset_count		= mt7530_get_sset_count,
3122 	.set_ageing_time	= mt7530_set_ageing_time,
3123 	.port_enable		= mt7530_port_enable,
3124 	.port_disable		= mt7530_port_disable,
3125 	.port_change_mtu	= mt7530_port_change_mtu,
3126 	.port_max_mtu		= mt7530_port_max_mtu,
3127 	.port_stp_state_set	= mt7530_stp_state_set,
3128 	.port_pre_bridge_flags	= mt7530_port_pre_bridge_flags,
3129 	.port_bridge_flags	= mt7530_port_bridge_flags,
3130 	.port_bridge_join	= mt7530_port_bridge_join,
3131 	.port_bridge_leave	= mt7530_port_bridge_leave,
3132 	.port_fdb_add		= mt7530_port_fdb_add,
3133 	.port_fdb_del		= mt7530_port_fdb_del,
3134 	.port_fdb_dump		= mt7530_port_fdb_dump,
3135 	.port_mdb_add		= mt7530_port_mdb_add,
3136 	.port_mdb_del		= mt7530_port_mdb_del,
3137 	.port_vlan_filtering	= mt7530_port_vlan_filtering,
3138 	.port_vlan_add		= mt7530_port_vlan_add,
3139 	.port_vlan_del		= mt7530_port_vlan_del,
3140 	.port_mirror_add	= mt753x_port_mirror_add,
3141 	.port_mirror_del	= mt753x_port_mirror_del,
3142 	.phylink_validate	= mt753x_phylink_validate,
3143 	.phylink_mac_link_state	= mt753x_phylink_mac_link_state,
3144 	.phylink_mac_config	= mt753x_phylink_mac_config,
3145 	.phylink_mac_an_restart	= mt753x_phylink_mac_an_restart,
3146 	.phylink_mac_link_down	= mt753x_phylink_mac_link_down,
3147 	.phylink_mac_link_up	= mt753x_phylink_mac_link_up,
3148 	.get_mac_eee		= mt753x_get_mac_eee,
3149 	.set_mac_eee		= mt753x_set_mac_eee,
3150 };
3151 
3152 static const struct mt753x_info mt753x_table[] = {
3153 	[ID_MT7621] = {
3154 		.id = ID_MT7621,
3155 		.sw_setup = mt7530_setup,
3156 		.phy_read = mt7530_phy_read,
3157 		.phy_write = mt7530_phy_write,
3158 		.pad_setup = mt7530_pad_clk_setup,
3159 		.phy_mode_supported = mt7530_phy_mode_supported,
3160 		.mac_port_validate = mt7530_mac_port_validate,
3161 		.mac_port_get_state = mt7530_phylink_mac_link_state,
3162 		.mac_port_config = mt7530_mac_config,
3163 	},
3164 	[ID_MT7530] = {
3165 		.id = ID_MT7530,
3166 		.sw_setup = mt7530_setup,
3167 		.phy_read = mt7530_phy_read,
3168 		.phy_write = mt7530_phy_write,
3169 		.pad_setup = mt7530_pad_clk_setup,
3170 		.phy_mode_supported = mt7530_phy_mode_supported,
3171 		.mac_port_validate = mt7530_mac_port_validate,
3172 		.mac_port_get_state = mt7530_phylink_mac_link_state,
3173 		.mac_port_config = mt7530_mac_config,
3174 	},
3175 	[ID_MT7531] = {
3176 		.id = ID_MT7531,
3177 		.sw_setup = mt7531_setup,
3178 		.phy_read = mt7531_ind_phy_read,
3179 		.phy_write = mt7531_ind_phy_write,
3180 		.pad_setup = mt7531_pad_setup,
3181 		.cpu_port_config = mt7531_cpu_port_config,
3182 		.phy_mode_supported = mt7531_phy_mode_supported,
3183 		.mac_port_validate = mt7531_mac_port_validate,
3184 		.mac_port_get_state = mt7531_phylink_mac_link_state,
3185 		.mac_port_config = mt7531_mac_config,
3186 		.mac_pcs_an_restart = mt7531_sgmii_restart_an,
3187 		.mac_pcs_link_up = mt7531_sgmii_link_up_force,
3188 	},
3189 };
3190 
3191 static const struct of_device_id mt7530_of_match[] = {
3192 	{ .compatible = "mediatek,mt7621", .data = &mt753x_table[ID_MT7621], },
3193 	{ .compatible = "mediatek,mt7530", .data = &mt753x_table[ID_MT7530], },
3194 	{ .compatible = "mediatek,mt7531", .data = &mt753x_table[ID_MT7531], },
3195 	{ /* sentinel */ },
3196 };
3197 MODULE_DEVICE_TABLE(of, mt7530_of_match);
3198 
3199 static int
3200 mt7530_probe(struct mdio_device *mdiodev)
3201 {
3202 	struct mt7530_priv *priv;
3203 	struct device_node *dn;
3204 
3205 	dn = mdiodev->dev.of_node;
3206 
3207 	priv = devm_kzalloc(&mdiodev->dev, sizeof(*priv), GFP_KERNEL);
3208 	if (!priv)
3209 		return -ENOMEM;
3210 
3211 	priv->ds = devm_kzalloc(&mdiodev->dev, sizeof(*priv->ds), GFP_KERNEL);
3212 	if (!priv->ds)
3213 		return -ENOMEM;
3214 
3215 	priv->ds->dev = &mdiodev->dev;
3216 	priv->ds->num_ports = MT7530_NUM_PORTS;
3217 
3218 	/* Use medatek,mcm property to distinguish hardware type that would
3219 	 * casues a little bit differences on power-on sequence.
3220 	 */
3221 	priv->mcm = of_property_read_bool(dn, "mediatek,mcm");
3222 	if (priv->mcm) {
3223 		dev_info(&mdiodev->dev, "MT7530 adapts as multi-chip module\n");
3224 
3225 		priv->rstc = devm_reset_control_get(&mdiodev->dev, "mcm");
3226 		if (IS_ERR(priv->rstc)) {
3227 			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
3228 			return PTR_ERR(priv->rstc);
3229 		}
3230 	}
3231 
3232 	/* Get the hardware identifier from the devicetree node.
3233 	 * We will need it for some of the clock and regulator setup.
3234 	 */
3235 	priv->info = of_device_get_match_data(&mdiodev->dev);
3236 	if (!priv->info)
3237 		return -EINVAL;
3238 
3239 	/* Sanity check if these required device operations are filled
3240 	 * properly.
3241 	 */
3242 	if (!priv->info->sw_setup || !priv->info->pad_setup ||
3243 	    !priv->info->phy_read || !priv->info->phy_write ||
3244 	    !priv->info->phy_mode_supported ||
3245 	    !priv->info->mac_port_validate ||
3246 	    !priv->info->mac_port_get_state || !priv->info->mac_port_config)
3247 		return -EINVAL;
3248 
3249 	priv->id = priv->info->id;
3250 
3251 	if (priv->id == ID_MT7530) {
3252 		priv->core_pwr = devm_regulator_get(&mdiodev->dev, "core");
3253 		if (IS_ERR(priv->core_pwr))
3254 			return PTR_ERR(priv->core_pwr);
3255 
3256 		priv->io_pwr = devm_regulator_get(&mdiodev->dev, "io");
3257 		if (IS_ERR(priv->io_pwr))
3258 			return PTR_ERR(priv->io_pwr);
3259 	}
3260 
3261 	/* Not MCM that indicates switch works as the remote standalone
3262 	 * integrated circuit so the GPIO pin would be used to complete
3263 	 * the reset, otherwise memory-mapped register accessing used
3264 	 * through syscon provides in the case of MCM.
3265 	 */
3266 	if (!priv->mcm) {
3267 		priv->reset = devm_gpiod_get_optional(&mdiodev->dev, "reset",
3268 						      GPIOD_OUT_LOW);
3269 		if (IS_ERR(priv->reset)) {
3270 			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
3271 			return PTR_ERR(priv->reset);
3272 		}
3273 	}
3274 
3275 	priv->bus = mdiodev->bus;
3276 	priv->dev = &mdiodev->dev;
3277 	priv->ds->priv = priv;
3278 	priv->ds->ops = &mt7530_switch_ops;
3279 	mutex_init(&priv->reg_mutex);
3280 	dev_set_drvdata(&mdiodev->dev, priv);
3281 
3282 	return dsa_register_switch(priv->ds);
3283 }
3284 
3285 static void
3286 mt7530_remove(struct mdio_device *mdiodev)
3287 {
3288 	struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev);
3289 	int ret = 0;
3290 
3291 	if (!priv)
3292 		return;
3293 
3294 	ret = regulator_disable(priv->core_pwr);
3295 	if (ret < 0)
3296 		dev_err(priv->dev,
3297 			"Failed to disable core power: %d\n", ret);
3298 
3299 	ret = regulator_disable(priv->io_pwr);
3300 	if (ret < 0)
3301 		dev_err(priv->dev, "Failed to disable io pwr: %d\n",
3302 			ret);
3303 
3304 	if (priv->irq)
3305 		mt7530_free_irq(priv);
3306 
3307 	dsa_unregister_switch(priv->ds);
3308 	mutex_destroy(&priv->reg_mutex);
3309 
3310 	dev_set_drvdata(&mdiodev->dev, NULL);
3311 }
3312 
3313 static void mt7530_shutdown(struct mdio_device *mdiodev)
3314 {
3315 	struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev);
3316 
3317 	if (!priv)
3318 		return;
3319 
3320 	dsa_switch_shutdown(priv->ds);
3321 
3322 	dev_set_drvdata(&mdiodev->dev, NULL);
3323 }
3324 
3325 static struct mdio_driver mt7530_mdio_driver = {
3326 	.probe  = mt7530_probe,
3327 	.remove = mt7530_remove,
3328 	.shutdown = mt7530_shutdown,
3329 	.mdiodrv.driver = {
3330 		.name = "mt7530",
3331 		.of_match_table = mt7530_of_match,
3332 	},
3333 };
3334 
3335 mdio_module_driver(mt7530_mdio_driver);
3336 
3337 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
3338 MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
3339 MODULE_LICENSE("GPL");
3340