xref: /openbmc/linux/drivers/net/dsa/mt7530.c (revision 9659281c)
1 // SPDX-License-Identifier: GPL-2.0-only
2 /*
3  * Mediatek MT7530 DSA Switch driver
4  * Copyright (C) 2017 Sean Wang <sean.wang@mediatek.com>
5  */
6 #include <linux/etherdevice.h>
7 #include <linux/if_bridge.h>
8 #include <linux/iopoll.h>
9 #include <linux/mdio.h>
10 #include <linux/mfd/syscon.h>
11 #include <linux/module.h>
12 #include <linux/netdevice.h>
13 #include <linux/of_irq.h>
14 #include <linux/of_mdio.h>
15 #include <linux/of_net.h>
16 #include <linux/of_platform.h>
17 #include <linux/phylink.h>
18 #include <linux/regmap.h>
19 #include <linux/regulator/consumer.h>
20 #include <linux/reset.h>
21 #include <linux/gpio/consumer.h>
22 #include <linux/gpio/driver.h>
23 #include <net/dsa.h>
24 
25 #include "mt7530.h"
26 
27 /* String, offset, and register size in bytes if different from 4 bytes */
28 static const struct mt7530_mib_desc mt7530_mib[] = {
29 	MIB_DESC(1, 0x00, "TxDrop"),
30 	MIB_DESC(1, 0x04, "TxCrcErr"),
31 	MIB_DESC(1, 0x08, "TxUnicast"),
32 	MIB_DESC(1, 0x0c, "TxMulticast"),
33 	MIB_DESC(1, 0x10, "TxBroadcast"),
34 	MIB_DESC(1, 0x14, "TxCollision"),
35 	MIB_DESC(1, 0x18, "TxSingleCollision"),
36 	MIB_DESC(1, 0x1c, "TxMultipleCollision"),
37 	MIB_DESC(1, 0x20, "TxDeferred"),
38 	MIB_DESC(1, 0x24, "TxLateCollision"),
39 	MIB_DESC(1, 0x28, "TxExcessiveCollistion"),
40 	MIB_DESC(1, 0x2c, "TxPause"),
41 	MIB_DESC(1, 0x30, "TxPktSz64"),
42 	MIB_DESC(1, 0x34, "TxPktSz65To127"),
43 	MIB_DESC(1, 0x38, "TxPktSz128To255"),
44 	MIB_DESC(1, 0x3c, "TxPktSz256To511"),
45 	MIB_DESC(1, 0x40, "TxPktSz512To1023"),
46 	MIB_DESC(1, 0x44, "Tx1024ToMax"),
47 	MIB_DESC(2, 0x48, "TxBytes"),
48 	MIB_DESC(1, 0x60, "RxDrop"),
49 	MIB_DESC(1, 0x64, "RxFiltering"),
50 	MIB_DESC(1, 0x6c, "RxMulticast"),
51 	MIB_DESC(1, 0x70, "RxBroadcast"),
52 	MIB_DESC(1, 0x74, "RxAlignErr"),
53 	MIB_DESC(1, 0x78, "RxCrcErr"),
54 	MIB_DESC(1, 0x7c, "RxUnderSizeErr"),
55 	MIB_DESC(1, 0x80, "RxFragErr"),
56 	MIB_DESC(1, 0x84, "RxOverSzErr"),
57 	MIB_DESC(1, 0x88, "RxJabberErr"),
58 	MIB_DESC(1, 0x8c, "RxPause"),
59 	MIB_DESC(1, 0x90, "RxPktSz64"),
60 	MIB_DESC(1, 0x94, "RxPktSz65To127"),
61 	MIB_DESC(1, 0x98, "RxPktSz128To255"),
62 	MIB_DESC(1, 0x9c, "RxPktSz256To511"),
63 	MIB_DESC(1, 0xa0, "RxPktSz512To1023"),
64 	MIB_DESC(1, 0xa4, "RxPktSz1024ToMax"),
65 	MIB_DESC(2, 0xa8, "RxBytes"),
66 	MIB_DESC(1, 0xb0, "RxCtrlDrop"),
67 	MIB_DESC(1, 0xb4, "RxIngressDrop"),
68 	MIB_DESC(1, 0xb8, "RxArlDrop"),
69 };
70 
71 /* Since phy_device has not yet been created and
72  * phy_{read,write}_mmd_indirect is not available, we provide our own
73  * core_{read,write}_mmd_indirect with core_{clear,write,set} wrappers
74  * to complete this function.
75  */
76 static int
77 core_read_mmd_indirect(struct mt7530_priv *priv, int prtad, int devad)
78 {
79 	struct mii_bus *bus = priv->bus;
80 	int value, ret;
81 
82 	/* Write the desired MMD Devad */
83 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
84 	if (ret < 0)
85 		goto err;
86 
87 	/* Write the desired MMD register address */
88 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
89 	if (ret < 0)
90 		goto err;
91 
92 	/* Select the Function : DATA with no post increment */
93 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
94 	if (ret < 0)
95 		goto err;
96 
97 	/* Read the content of the MMD's selected register */
98 	value = bus->read(bus, 0, MII_MMD_DATA);
99 
100 	return value;
101 err:
102 	dev_err(&bus->dev,  "failed to read mmd register\n");
103 
104 	return ret;
105 }
106 
107 static int
108 core_write_mmd_indirect(struct mt7530_priv *priv, int prtad,
109 			int devad, u32 data)
110 {
111 	struct mii_bus *bus = priv->bus;
112 	int ret;
113 
114 	/* Write the desired MMD Devad */
115 	ret = bus->write(bus, 0, MII_MMD_CTRL, devad);
116 	if (ret < 0)
117 		goto err;
118 
119 	/* Write the desired MMD register address */
120 	ret = bus->write(bus, 0, MII_MMD_DATA, prtad);
121 	if (ret < 0)
122 		goto err;
123 
124 	/* Select the Function : DATA with no post increment */
125 	ret = bus->write(bus, 0, MII_MMD_CTRL, (devad | MII_MMD_CTRL_NOINCR));
126 	if (ret < 0)
127 		goto err;
128 
129 	/* Write the data into MMD's selected register */
130 	ret = bus->write(bus, 0, MII_MMD_DATA, data);
131 err:
132 	if (ret < 0)
133 		dev_err(&bus->dev,
134 			"failed to write mmd register\n");
135 	return ret;
136 }
137 
138 static void
139 core_write(struct mt7530_priv *priv, u32 reg, u32 val)
140 {
141 	struct mii_bus *bus = priv->bus;
142 
143 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
144 
145 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
146 
147 	mutex_unlock(&bus->mdio_lock);
148 }
149 
150 static void
151 core_rmw(struct mt7530_priv *priv, u32 reg, u32 mask, u32 set)
152 {
153 	struct mii_bus *bus = priv->bus;
154 	u32 val;
155 
156 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
157 
158 	val = core_read_mmd_indirect(priv, reg, MDIO_MMD_VEND2);
159 	val &= ~mask;
160 	val |= set;
161 	core_write_mmd_indirect(priv, reg, MDIO_MMD_VEND2, val);
162 
163 	mutex_unlock(&bus->mdio_lock);
164 }
165 
166 static void
167 core_set(struct mt7530_priv *priv, u32 reg, u32 val)
168 {
169 	core_rmw(priv, reg, 0, val);
170 }
171 
172 static void
173 core_clear(struct mt7530_priv *priv, u32 reg, u32 val)
174 {
175 	core_rmw(priv, reg, val, 0);
176 }
177 
178 static int
179 mt7530_mii_write(struct mt7530_priv *priv, u32 reg, u32 val)
180 {
181 	struct mii_bus *bus = priv->bus;
182 	u16 page, r, lo, hi;
183 	int ret;
184 
185 	page = (reg >> 6) & 0x3ff;
186 	r  = (reg >> 2) & 0xf;
187 	lo = val & 0xffff;
188 	hi = val >> 16;
189 
190 	/* MT7530 uses 31 as the pseudo port */
191 	ret = bus->write(bus, 0x1f, 0x1f, page);
192 	if (ret < 0)
193 		goto err;
194 
195 	ret = bus->write(bus, 0x1f, r,  lo);
196 	if (ret < 0)
197 		goto err;
198 
199 	ret = bus->write(bus, 0x1f, 0x10, hi);
200 err:
201 	if (ret < 0)
202 		dev_err(&bus->dev,
203 			"failed to write mt7530 register\n");
204 	return ret;
205 }
206 
207 static u32
208 mt7530_mii_read(struct mt7530_priv *priv, u32 reg)
209 {
210 	struct mii_bus *bus = priv->bus;
211 	u16 page, r, lo, hi;
212 	int ret;
213 
214 	page = (reg >> 6) & 0x3ff;
215 	r = (reg >> 2) & 0xf;
216 
217 	/* MT7530 uses 31 as the pseudo port */
218 	ret = bus->write(bus, 0x1f, 0x1f, page);
219 	if (ret < 0) {
220 		dev_err(&bus->dev,
221 			"failed to read mt7530 register\n");
222 		return ret;
223 	}
224 
225 	lo = bus->read(bus, 0x1f, r);
226 	hi = bus->read(bus, 0x1f, 0x10);
227 
228 	return (hi << 16) | (lo & 0xffff);
229 }
230 
231 static void
232 mt7530_write(struct mt7530_priv *priv, u32 reg, u32 val)
233 {
234 	struct mii_bus *bus = priv->bus;
235 
236 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
237 
238 	mt7530_mii_write(priv, reg, val);
239 
240 	mutex_unlock(&bus->mdio_lock);
241 }
242 
243 static u32
244 _mt7530_unlocked_read(struct mt7530_dummy_poll *p)
245 {
246 	return mt7530_mii_read(p->priv, p->reg);
247 }
248 
249 static u32
250 _mt7530_read(struct mt7530_dummy_poll *p)
251 {
252 	struct mii_bus		*bus = p->priv->bus;
253 	u32 val;
254 
255 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
256 
257 	val = mt7530_mii_read(p->priv, p->reg);
258 
259 	mutex_unlock(&bus->mdio_lock);
260 
261 	return val;
262 }
263 
264 static u32
265 mt7530_read(struct mt7530_priv *priv, u32 reg)
266 {
267 	struct mt7530_dummy_poll p;
268 
269 	INIT_MT7530_DUMMY_POLL(&p, priv, reg);
270 	return _mt7530_read(&p);
271 }
272 
273 static void
274 mt7530_rmw(struct mt7530_priv *priv, u32 reg,
275 	   u32 mask, u32 set)
276 {
277 	struct mii_bus *bus = priv->bus;
278 	u32 val;
279 
280 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
281 
282 	val = mt7530_mii_read(priv, reg);
283 	val &= ~mask;
284 	val |= set;
285 	mt7530_mii_write(priv, reg, val);
286 
287 	mutex_unlock(&bus->mdio_lock);
288 }
289 
290 static void
291 mt7530_set(struct mt7530_priv *priv, u32 reg, u32 val)
292 {
293 	mt7530_rmw(priv, reg, 0, val);
294 }
295 
296 static void
297 mt7530_clear(struct mt7530_priv *priv, u32 reg, u32 val)
298 {
299 	mt7530_rmw(priv, reg, val, 0);
300 }
301 
302 static int
303 mt7530_fdb_cmd(struct mt7530_priv *priv, enum mt7530_fdb_cmd cmd, u32 *rsp)
304 {
305 	u32 val;
306 	int ret;
307 	struct mt7530_dummy_poll p;
308 
309 	/* Set the command operating upon the MAC address entries */
310 	val = ATC_BUSY | ATC_MAT(0) | cmd;
311 	mt7530_write(priv, MT7530_ATC, val);
312 
313 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_ATC);
314 	ret = readx_poll_timeout(_mt7530_read, &p, val,
315 				 !(val & ATC_BUSY), 20, 20000);
316 	if (ret < 0) {
317 		dev_err(priv->dev, "reset timeout\n");
318 		return ret;
319 	}
320 
321 	/* Additional sanity for read command if the specified
322 	 * entry is invalid
323 	 */
324 	val = mt7530_read(priv, MT7530_ATC);
325 	if ((cmd == MT7530_FDB_READ) && (val & ATC_INVALID))
326 		return -EINVAL;
327 
328 	if (rsp)
329 		*rsp = val;
330 
331 	return 0;
332 }
333 
334 static void
335 mt7530_fdb_read(struct mt7530_priv *priv, struct mt7530_fdb *fdb)
336 {
337 	u32 reg[3];
338 	int i;
339 
340 	/* Read from ARL table into an array */
341 	for (i = 0; i < 3; i++) {
342 		reg[i] = mt7530_read(priv, MT7530_TSRA1 + (i * 4));
343 
344 		dev_dbg(priv->dev, "%s(%d) reg[%d]=0x%x\n",
345 			__func__, __LINE__, i, reg[i]);
346 	}
347 
348 	fdb->vid = (reg[1] >> CVID) & CVID_MASK;
349 	fdb->aging = (reg[2] >> AGE_TIMER) & AGE_TIMER_MASK;
350 	fdb->port_mask = (reg[2] >> PORT_MAP) & PORT_MAP_MASK;
351 	fdb->mac[0] = (reg[0] >> MAC_BYTE_0) & MAC_BYTE_MASK;
352 	fdb->mac[1] = (reg[0] >> MAC_BYTE_1) & MAC_BYTE_MASK;
353 	fdb->mac[2] = (reg[0] >> MAC_BYTE_2) & MAC_BYTE_MASK;
354 	fdb->mac[3] = (reg[0] >> MAC_BYTE_3) & MAC_BYTE_MASK;
355 	fdb->mac[4] = (reg[1] >> MAC_BYTE_4) & MAC_BYTE_MASK;
356 	fdb->mac[5] = (reg[1] >> MAC_BYTE_5) & MAC_BYTE_MASK;
357 	fdb->noarp = ((reg[2] >> ENT_STATUS) & ENT_STATUS_MASK) == STATIC_ENT;
358 }
359 
360 static void
361 mt7530_fdb_write(struct mt7530_priv *priv, u16 vid,
362 		 u8 port_mask, const u8 *mac,
363 		 u8 aging, u8 type)
364 {
365 	u32 reg[3] = { 0 };
366 	int i;
367 
368 	reg[1] |= vid & CVID_MASK;
369 	if (vid > 1)
370 		reg[1] |= ATA2_IVL;
371 	reg[2] |= (aging & AGE_TIMER_MASK) << AGE_TIMER;
372 	reg[2] |= (port_mask & PORT_MAP_MASK) << PORT_MAP;
373 	/* STATIC_ENT indicate that entry is static wouldn't
374 	 * be aged out and STATIC_EMP specified as erasing an
375 	 * entry
376 	 */
377 	reg[2] |= (type & ENT_STATUS_MASK) << ENT_STATUS;
378 	reg[1] |= mac[5] << MAC_BYTE_5;
379 	reg[1] |= mac[4] << MAC_BYTE_4;
380 	reg[0] |= mac[3] << MAC_BYTE_3;
381 	reg[0] |= mac[2] << MAC_BYTE_2;
382 	reg[0] |= mac[1] << MAC_BYTE_1;
383 	reg[0] |= mac[0] << MAC_BYTE_0;
384 
385 	/* Write array into the ARL table */
386 	for (i = 0; i < 3; i++)
387 		mt7530_write(priv, MT7530_ATA1 + (i * 4), reg[i]);
388 }
389 
390 /* Setup TX circuit including relevant PAD and driving */
391 static int
392 mt7530_pad_clk_setup(struct dsa_switch *ds, phy_interface_t interface)
393 {
394 	struct mt7530_priv *priv = ds->priv;
395 	u32 ncpo1, ssc_delta, trgint, i, xtal;
396 
397 	xtal = mt7530_read(priv, MT7530_MHWTRAP) & HWTRAP_XTAL_MASK;
398 
399 	if (xtal == HWTRAP_XTAL_20MHZ) {
400 		dev_err(priv->dev,
401 			"%s: MT7530 with a 20MHz XTAL is not supported!\n",
402 			__func__);
403 		return -EINVAL;
404 	}
405 
406 	switch (interface) {
407 	case PHY_INTERFACE_MODE_RGMII:
408 		trgint = 0;
409 		/* PLL frequency: 125MHz */
410 		ncpo1 = 0x0c80;
411 		break;
412 	case PHY_INTERFACE_MODE_TRGMII:
413 		trgint = 1;
414 		if (priv->id == ID_MT7621) {
415 			/* PLL frequency: 150MHz: 1.2GBit */
416 			if (xtal == HWTRAP_XTAL_40MHZ)
417 				ncpo1 = 0x0780;
418 			if (xtal == HWTRAP_XTAL_25MHZ)
419 				ncpo1 = 0x0a00;
420 		} else { /* PLL frequency: 250MHz: 2.0Gbit */
421 			if (xtal == HWTRAP_XTAL_40MHZ)
422 				ncpo1 = 0x0c80;
423 			if (xtal == HWTRAP_XTAL_25MHZ)
424 				ncpo1 = 0x1400;
425 		}
426 		break;
427 	default:
428 		dev_err(priv->dev, "xMII interface %d not supported\n",
429 			interface);
430 		return -EINVAL;
431 	}
432 
433 	if (xtal == HWTRAP_XTAL_25MHZ)
434 		ssc_delta = 0x57;
435 	else
436 		ssc_delta = 0x87;
437 
438 	mt7530_rmw(priv, MT7530_P6ECR, P6_INTF_MODE_MASK,
439 		   P6_INTF_MODE(trgint));
440 
441 	/* Lower Tx Driving for TRGMII path */
442 	for (i = 0 ; i < NUM_TRGMII_CTRL ; i++)
443 		mt7530_write(priv, MT7530_TRGMII_TD_ODT(i),
444 			     TD_DM_DRVP(8) | TD_DM_DRVN(8));
445 
446 	/* Disable MT7530 core and TRGMII Tx clocks */
447 	core_clear(priv, CORE_TRGMII_GSW_CLK_CG,
448 		   REG_GSWCK_EN | REG_TRGMIICK_EN);
449 
450 	/* Setup core clock for MT7530 */
451 	/* Disable PLL */
452 	core_write(priv, CORE_GSWPLL_GRP1, 0);
453 
454 	/* Set core clock into 500Mhz */
455 	core_write(priv, CORE_GSWPLL_GRP2,
456 		   RG_GSWPLL_POSDIV_500M(1) |
457 		   RG_GSWPLL_FBKDIV_500M(25));
458 
459 	/* Enable PLL */
460 	core_write(priv, CORE_GSWPLL_GRP1,
461 		   RG_GSWPLL_EN_PRE |
462 		   RG_GSWPLL_POSDIV_200M(2) |
463 		   RG_GSWPLL_FBKDIV_200M(32));
464 
465 	/* Setup the MT7530 TRGMII Tx Clock */
466 	core_write(priv, CORE_PLL_GROUP5, RG_LCDDS_PCW_NCPO1(ncpo1));
467 	core_write(priv, CORE_PLL_GROUP6, RG_LCDDS_PCW_NCPO0(0));
468 	core_write(priv, CORE_PLL_GROUP10, RG_LCDDS_SSC_DELTA(ssc_delta));
469 	core_write(priv, CORE_PLL_GROUP11, RG_LCDDS_SSC_DELTA1(ssc_delta));
470 	core_write(priv, CORE_PLL_GROUP4,
471 		   RG_SYSPLL_DDSFBK_EN | RG_SYSPLL_BIAS_EN |
472 		   RG_SYSPLL_BIAS_LPF_EN);
473 	core_write(priv, CORE_PLL_GROUP2,
474 		   RG_SYSPLL_EN_NORMAL | RG_SYSPLL_VODEN |
475 		   RG_SYSPLL_POSDIV(1));
476 	core_write(priv, CORE_PLL_GROUP7,
477 		   RG_LCDDS_PCW_NCPO_CHG | RG_LCCDS_C(3) |
478 		   RG_LCDDS_PWDB | RG_LCDDS_ISO_EN);
479 
480 	/* Enable MT7530 core and TRGMII Tx clocks */
481 	core_set(priv, CORE_TRGMII_GSW_CLK_CG,
482 		 REG_GSWCK_EN | REG_TRGMIICK_EN);
483 
484 	if (!trgint)
485 		for (i = 0 ; i < NUM_TRGMII_CTRL; i++)
486 			mt7530_rmw(priv, MT7530_TRGMII_RD(i),
487 				   RD_TAP_MASK, RD_TAP(16));
488 	return 0;
489 }
490 
491 static bool mt7531_dual_sgmii_supported(struct mt7530_priv *priv)
492 {
493 	u32 val;
494 
495 	val = mt7530_read(priv, MT7531_TOP_SIG_SR);
496 
497 	return (val & PAD_DUAL_SGMII_EN) != 0;
498 }
499 
500 static int
501 mt7531_pad_setup(struct dsa_switch *ds, phy_interface_t interface)
502 {
503 	struct mt7530_priv *priv = ds->priv;
504 	u32 top_sig;
505 	u32 hwstrap;
506 	u32 xtal;
507 	u32 val;
508 
509 	if (mt7531_dual_sgmii_supported(priv))
510 		return 0;
511 
512 	val = mt7530_read(priv, MT7531_CREV);
513 	top_sig = mt7530_read(priv, MT7531_TOP_SIG_SR);
514 	hwstrap = mt7530_read(priv, MT7531_HWTRAP);
515 	if ((val & CHIP_REV_M) > 0)
516 		xtal = (top_sig & PAD_MCM_SMI_EN) ? HWTRAP_XTAL_FSEL_40MHZ :
517 						    HWTRAP_XTAL_FSEL_25MHZ;
518 	else
519 		xtal = hwstrap & HWTRAP_XTAL_FSEL_MASK;
520 
521 	/* Step 1 : Disable MT7531 COREPLL */
522 	val = mt7530_read(priv, MT7531_PLLGP_EN);
523 	val &= ~EN_COREPLL;
524 	mt7530_write(priv, MT7531_PLLGP_EN, val);
525 
526 	/* Step 2: switch to XTAL output */
527 	val = mt7530_read(priv, MT7531_PLLGP_EN);
528 	val |= SW_CLKSW;
529 	mt7530_write(priv, MT7531_PLLGP_EN, val);
530 
531 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
532 	val &= ~RG_COREPLL_EN;
533 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
534 
535 	/* Step 3: disable PLLGP and enable program PLLGP */
536 	val = mt7530_read(priv, MT7531_PLLGP_EN);
537 	val |= SW_PLLGP;
538 	mt7530_write(priv, MT7531_PLLGP_EN, val);
539 
540 	/* Step 4: program COREPLL output frequency to 500MHz */
541 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
542 	val &= ~RG_COREPLL_POSDIV_M;
543 	val |= 2 << RG_COREPLL_POSDIV_S;
544 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
545 	usleep_range(25, 35);
546 
547 	switch (xtal) {
548 	case HWTRAP_XTAL_FSEL_25MHZ:
549 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
550 		val &= ~RG_COREPLL_SDM_PCW_M;
551 		val |= 0x140000 << RG_COREPLL_SDM_PCW_S;
552 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
553 		break;
554 	case HWTRAP_XTAL_FSEL_40MHZ:
555 		val = mt7530_read(priv, MT7531_PLLGP_CR0);
556 		val &= ~RG_COREPLL_SDM_PCW_M;
557 		val |= 0x190000 << RG_COREPLL_SDM_PCW_S;
558 		mt7530_write(priv, MT7531_PLLGP_CR0, val);
559 		break;
560 	}
561 
562 	/* Set feedback divide ratio update signal to high */
563 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
564 	val |= RG_COREPLL_SDM_PCW_CHG;
565 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
566 	/* Wait for at least 16 XTAL clocks */
567 	usleep_range(10, 20);
568 
569 	/* Step 5: set feedback divide ratio update signal to low */
570 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
571 	val &= ~RG_COREPLL_SDM_PCW_CHG;
572 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
573 
574 	/* Enable 325M clock for SGMII */
575 	mt7530_write(priv, MT7531_ANA_PLLGP_CR5, 0xad0000);
576 
577 	/* Enable 250SSC clock for RGMII */
578 	mt7530_write(priv, MT7531_ANA_PLLGP_CR2, 0x4f40000);
579 
580 	/* Step 6: Enable MT7531 PLL */
581 	val = mt7530_read(priv, MT7531_PLLGP_CR0);
582 	val |= RG_COREPLL_EN;
583 	mt7530_write(priv, MT7531_PLLGP_CR0, val);
584 
585 	val = mt7530_read(priv, MT7531_PLLGP_EN);
586 	val |= EN_COREPLL;
587 	mt7530_write(priv, MT7531_PLLGP_EN, val);
588 	usleep_range(25, 35);
589 
590 	return 0;
591 }
592 
593 static void
594 mt7530_mib_reset(struct dsa_switch *ds)
595 {
596 	struct mt7530_priv *priv = ds->priv;
597 
598 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_FLUSH);
599 	mt7530_write(priv, MT7530_MIB_CCR, CCR_MIB_ACTIVATE);
600 }
601 
602 static int mt7530_phy_read(struct mt7530_priv *priv, int port, int regnum)
603 {
604 	return mdiobus_read_nested(priv->bus, port, regnum);
605 }
606 
607 static int mt7530_phy_write(struct mt7530_priv *priv, int port, int regnum,
608 			    u16 val)
609 {
610 	return mdiobus_write_nested(priv->bus, port, regnum, val);
611 }
612 
613 static int
614 mt7531_ind_c45_phy_read(struct mt7530_priv *priv, int port, int devad,
615 			int regnum)
616 {
617 	struct mii_bus *bus = priv->bus;
618 	struct mt7530_dummy_poll p;
619 	u32 reg, val;
620 	int ret;
621 
622 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
623 
624 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
625 
626 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
627 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
628 	if (ret < 0) {
629 		dev_err(priv->dev, "poll timeout\n");
630 		goto out;
631 	}
632 
633 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
634 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
635 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
636 
637 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
638 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
639 	if (ret < 0) {
640 		dev_err(priv->dev, "poll timeout\n");
641 		goto out;
642 	}
643 
644 	reg = MT7531_MDIO_CL45_READ | MT7531_MDIO_PHY_ADDR(port) |
645 	      MT7531_MDIO_DEV_ADDR(devad);
646 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
647 
648 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
649 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
650 	if (ret < 0) {
651 		dev_err(priv->dev, "poll timeout\n");
652 		goto out;
653 	}
654 
655 	ret = val & MT7531_MDIO_RW_DATA_MASK;
656 out:
657 	mutex_unlock(&bus->mdio_lock);
658 
659 	return ret;
660 }
661 
662 static int
663 mt7531_ind_c45_phy_write(struct mt7530_priv *priv, int port, int devad,
664 			 int regnum, u32 data)
665 {
666 	struct mii_bus *bus = priv->bus;
667 	struct mt7530_dummy_poll p;
668 	u32 val, reg;
669 	int ret;
670 
671 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
672 
673 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
674 
675 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
676 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
677 	if (ret < 0) {
678 		dev_err(priv->dev, "poll timeout\n");
679 		goto out;
680 	}
681 
682 	reg = MT7531_MDIO_CL45_ADDR | MT7531_MDIO_PHY_ADDR(port) |
683 	      MT7531_MDIO_DEV_ADDR(devad) | regnum;
684 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
685 
686 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
687 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
688 	if (ret < 0) {
689 		dev_err(priv->dev, "poll timeout\n");
690 		goto out;
691 	}
692 
693 	reg = MT7531_MDIO_CL45_WRITE | MT7531_MDIO_PHY_ADDR(port) |
694 	      MT7531_MDIO_DEV_ADDR(devad) | data;
695 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
696 
697 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
698 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
699 	if (ret < 0) {
700 		dev_err(priv->dev, "poll timeout\n");
701 		goto out;
702 	}
703 
704 out:
705 	mutex_unlock(&bus->mdio_lock);
706 
707 	return ret;
708 }
709 
710 static int
711 mt7531_ind_c22_phy_read(struct mt7530_priv *priv, int port, int regnum)
712 {
713 	struct mii_bus *bus = priv->bus;
714 	struct mt7530_dummy_poll p;
715 	int ret;
716 	u32 val;
717 
718 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
719 
720 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
721 
722 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
723 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
724 	if (ret < 0) {
725 		dev_err(priv->dev, "poll timeout\n");
726 		goto out;
727 	}
728 
729 	val = MT7531_MDIO_CL22_READ | MT7531_MDIO_PHY_ADDR(port) |
730 	      MT7531_MDIO_REG_ADDR(regnum);
731 
732 	mt7530_mii_write(priv, MT7531_PHY_IAC, val | MT7531_PHY_ACS_ST);
733 
734 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, val,
735 				 !(val & MT7531_PHY_ACS_ST), 20, 100000);
736 	if (ret < 0) {
737 		dev_err(priv->dev, "poll timeout\n");
738 		goto out;
739 	}
740 
741 	ret = val & MT7531_MDIO_RW_DATA_MASK;
742 out:
743 	mutex_unlock(&bus->mdio_lock);
744 
745 	return ret;
746 }
747 
748 static int
749 mt7531_ind_c22_phy_write(struct mt7530_priv *priv, int port, int regnum,
750 			 u16 data)
751 {
752 	struct mii_bus *bus = priv->bus;
753 	struct mt7530_dummy_poll p;
754 	int ret;
755 	u32 reg;
756 
757 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7531_PHY_IAC);
758 
759 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
760 
761 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
762 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
763 	if (ret < 0) {
764 		dev_err(priv->dev, "poll timeout\n");
765 		goto out;
766 	}
767 
768 	reg = MT7531_MDIO_CL22_WRITE | MT7531_MDIO_PHY_ADDR(port) |
769 	      MT7531_MDIO_REG_ADDR(regnum) | data;
770 
771 	mt7530_mii_write(priv, MT7531_PHY_IAC, reg | MT7531_PHY_ACS_ST);
772 
773 	ret = readx_poll_timeout(_mt7530_unlocked_read, &p, reg,
774 				 !(reg & MT7531_PHY_ACS_ST), 20, 100000);
775 	if (ret < 0) {
776 		dev_err(priv->dev, "poll timeout\n");
777 		goto out;
778 	}
779 
780 out:
781 	mutex_unlock(&bus->mdio_lock);
782 
783 	return ret;
784 }
785 
786 static int
787 mt7531_ind_phy_read(struct mt7530_priv *priv, int port, int regnum)
788 {
789 	int devad;
790 	int ret;
791 
792 	if (regnum & MII_ADDR_C45) {
793 		devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f;
794 		ret = mt7531_ind_c45_phy_read(priv, port, devad,
795 					      regnum & MII_REGADDR_C45_MASK);
796 	} else {
797 		ret = mt7531_ind_c22_phy_read(priv, port, regnum);
798 	}
799 
800 	return ret;
801 }
802 
803 static int
804 mt7531_ind_phy_write(struct mt7530_priv *priv, int port, int regnum,
805 		     u16 data)
806 {
807 	int devad;
808 	int ret;
809 
810 	if (regnum & MII_ADDR_C45) {
811 		devad = (regnum >> MII_DEVADDR_C45_SHIFT) & 0x1f;
812 		ret = mt7531_ind_c45_phy_write(priv, port, devad,
813 					       regnum & MII_REGADDR_C45_MASK,
814 					       data);
815 	} else {
816 		ret = mt7531_ind_c22_phy_write(priv, port, regnum, data);
817 	}
818 
819 	return ret;
820 }
821 
822 static int
823 mt753x_phy_read(struct mii_bus *bus, int port, int regnum)
824 {
825 	struct mt7530_priv *priv = bus->priv;
826 
827 	return priv->info->phy_read(priv, port, regnum);
828 }
829 
830 static int
831 mt753x_phy_write(struct mii_bus *bus, int port, int regnum, u16 val)
832 {
833 	struct mt7530_priv *priv = bus->priv;
834 
835 	return priv->info->phy_write(priv, port, regnum, val);
836 }
837 
838 static void
839 mt7530_get_strings(struct dsa_switch *ds, int port, u32 stringset,
840 		   uint8_t *data)
841 {
842 	int i;
843 
844 	if (stringset != ETH_SS_STATS)
845 		return;
846 
847 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++)
848 		strncpy(data + i * ETH_GSTRING_LEN, mt7530_mib[i].name,
849 			ETH_GSTRING_LEN);
850 }
851 
852 static void
853 mt7530_get_ethtool_stats(struct dsa_switch *ds, int port,
854 			 uint64_t *data)
855 {
856 	struct mt7530_priv *priv = ds->priv;
857 	const struct mt7530_mib_desc *mib;
858 	u32 reg, i;
859 	u64 hi;
860 
861 	for (i = 0; i < ARRAY_SIZE(mt7530_mib); i++) {
862 		mib = &mt7530_mib[i];
863 		reg = MT7530_PORT_MIB_COUNTER(port) + mib->offset;
864 
865 		data[i] = mt7530_read(priv, reg);
866 		if (mib->size == 2) {
867 			hi = mt7530_read(priv, reg + 4);
868 			data[i] |= hi << 32;
869 		}
870 	}
871 }
872 
873 static int
874 mt7530_get_sset_count(struct dsa_switch *ds, int port, int sset)
875 {
876 	if (sset != ETH_SS_STATS)
877 		return 0;
878 
879 	return ARRAY_SIZE(mt7530_mib);
880 }
881 
882 static int
883 mt7530_set_ageing_time(struct dsa_switch *ds, unsigned int msecs)
884 {
885 	struct mt7530_priv *priv = ds->priv;
886 	unsigned int secs = msecs / 1000;
887 	unsigned int tmp_age_count;
888 	unsigned int error = -1;
889 	unsigned int age_count;
890 	unsigned int age_unit;
891 
892 	/* Applied timer is (AGE_CNT + 1) * (AGE_UNIT + 1) seconds */
893 	if (secs < 1 || secs > (AGE_CNT_MAX + 1) * (AGE_UNIT_MAX + 1))
894 		return -ERANGE;
895 
896 	/* iterate through all possible age_count to find the closest pair */
897 	for (tmp_age_count = 0; tmp_age_count <= AGE_CNT_MAX; ++tmp_age_count) {
898 		unsigned int tmp_age_unit = secs / (tmp_age_count + 1) - 1;
899 
900 		if (tmp_age_unit <= AGE_UNIT_MAX) {
901 			unsigned int tmp_error = secs -
902 				(tmp_age_count + 1) * (tmp_age_unit + 1);
903 
904 			/* found a closer pair */
905 			if (error > tmp_error) {
906 				error = tmp_error;
907 				age_count = tmp_age_count;
908 				age_unit = tmp_age_unit;
909 			}
910 
911 			/* found the exact match, so break the loop */
912 			if (!error)
913 				break;
914 		}
915 	}
916 
917 	mt7530_write(priv, MT7530_AAC, AGE_CNT(age_count) | AGE_UNIT(age_unit));
918 
919 	return 0;
920 }
921 
922 static void mt7530_setup_port5(struct dsa_switch *ds, phy_interface_t interface)
923 {
924 	struct mt7530_priv *priv = ds->priv;
925 	u8 tx_delay = 0;
926 	int val;
927 
928 	mutex_lock(&priv->reg_mutex);
929 
930 	val = mt7530_read(priv, MT7530_MHWTRAP);
931 
932 	val |= MHWTRAP_MANUAL | MHWTRAP_P5_MAC_SEL | MHWTRAP_P5_DIS;
933 	val &= ~MHWTRAP_P5_RGMII_MODE & ~MHWTRAP_PHY0_SEL;
934 
935 	switch (priv->p5_intf_sel) {
936 	case P5_INTF_SEL_PHY_P0:
937 		/* MT7530_P5_MODE_GPHY_P0: 2nd GMAC -> P5 -> P0 */
938 		val |= MHWTRAP_PHY0_SEL;
939 		fallthrough;
940 	case P5_INTF_SEL_PHY_P4:
941 		/* MT7530_P5_MODE_GPHY_P4: 2nd GMAC -> P5 -> P4 */
942 		val &= ~MHWTRAP_P5_MAC_SEL & ~MHWTRAP_P5_DIS;
943 
944 		/* Setup the MAC by default for the cpu port */
945 		mt7530_write(priv, MT7530_PMCR_P(5), 0x56300);
946 		break;
947 	case P5_INTF_SEL_GMAC5:
948 		/* MT7530_P5_MODE_GMAC: P5 -> External phy or 2nd GMAC */
949 		val &= ~MHWTRAP_P5_DIS;
950 		break;
951 	case P5_DISABLED:
952 		interface = PHY_INTERFACE_MODE_NA;
953 		break;
954 	default:
955 		dev_err(ds->dev, "Unsupported p5_intf_sel %d\n",
956 			priv->p5_intf_sel);
957 		goto unlock_exit;
958 	}
959 
960 	/* Setup RGMII settings */
961 	if (phy_interface_mode_is_rgmii(interface)) {
962 		val |= MHWTRAP_P5_RGMII_MODE;
963 
964 		/* P5 RGMII RX Clock Control: delay setting for 1000M */
965 		mt7530_write(priv, MT7530_P5RGMIIRXCR, CSR_RGMII_EDGE_ALIGN);
966 
967 		/* Don't set delay in DSA mode */
968 		if (!dsa_is_dsa_port(priv->ds, 5) &&
969 		    (interface == PHY_INTERFACE_MODE_RGMII_TXID ||
970 		     interface == PHY_INTERFACE_MODE_RGMII_ID))
971 			tx_delay = 4; /* n * 0.5 ns */
972 
973 		/* P5 RGMII TX Clock Control: delay x */
974 		mt7530_write(priv, MT7530_P5RGMIITXCR,
975 			     CSR_RGMII_TXC_CFG(0x10 + tx_delay));
976 
977 		/* reduce P5 RGMII Tx driving, 8mA */
978 		mt7530_write(priv, MT7530_IO_DRV_CR,
979 			     P5_IO_CLK_DRV(1) | P5_IO_DATA_DRV(1));
980 	}
981 
982 	mt7530_write(priv, MT7530_MHWTRAP, val);
983 
984 	dev_dbg(ds->dev, "Setup P5, HWTRAP=0x%x, intf_sel=%s, phy-mode=%s\n",
985 		val, p5_intf_modes(priv->p5_intf_sel), phy_modes(interface));
986 
987 	priv->p5_interface = interface;
988 
989 unlock_exit:
990 	mutex_unlock(&priv->reg_mutex);
991 }
992 
993 static int
994 mt753x_cpu_port_enable(struct dsa_switch *ds, int port)
995 {
996 	struct mt7530_priv *priv = ds->priv;
997 	int ret;
998 
999 	/* Setup max capability of CPU port at first */
1000 	if (priv->info->cpu_port_config) {
1001 		ret = priv->info->cpu_port_config(ds, port);
1002 		if (ret)
1003 			return ret;
1004 	}
1005 
1006 	/* Enable Mediatek header mode on the cpu port */
1007 	mt7530_write(priv, MT7530_PVC_P(port),
1008 		     PORT_SPEC_TAG);
1009 
1010 	/* Disable flooding by default */
1011 	mt7530_rmw(priv, MT7530_MFC, BC_FFP_MASK | UNM_FFP_MASK | UNU_FFP_MASK,
1012 		   BC_FFP(BIT(port)) | UNM_FFP(BIT(port)) | UNU_FFP(BIT(port)));
1013 
1014 	/* Set CPU port number */
1015 	if (priv->id == ID_MT7621)
1016 		mt7530_rmw(priv, MT7530_MFC, CPU_MASK, CPU_EN | CPU_PORT(port));
1017 
1018 	/* CPU port gets connected to all user ports of
1019 	 * the switch.
1020 	 */
1021 	mt7530_write(priv, MT7530_PCR_P(port),
1022 		     PCR_MATRIX(dsa_user_ports(priv->ds)));
1023 
1024 	return 0;
1025 }
1026 
1027 static int
1028 mt7530_port_enable(struct dsa_switch *ds, int port,
1029 		   struct phy_device *phy)
1030 {
1031 	struct mt7530_priv *priv = ds->priv;
1032 
1033 	if (!dsa_is_user_port(ds, port))
1034 		return 0;
1035 
1036 	mutex_lock(&priv->reg_mutex);
1037 
1038 	/* Allow the user port gets connected to the cpu port and also
1039 	 * restore the port matrix if the port is the member of a certain
1040 	 * bridge.
1041 	 */
1042 	priv->ports[port].pm |= PCR_MATRIX(BIT(MT7530_CPU_PORT));
1043 	priv->ports[port].enable = true;
1044 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1045 		   priv->ports[port].pm);
1046 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1047 
1048 	mutex_unlock(&priv->reg_mutex);
1049 
1050 	return 0;
1051 }
1052 
1053 static void
1054 mt7530_port_disable(struct dsa_switch *ds, int port)
1055 {
1056 	struct mt7530_priv *priv = ds->priv;
1057 
1058 	if (!dsa_is_user_port(ds, port))
1059 		return;
1060 
1061 	mutex_lock(&priv->reg_mutex);
1062 
1063 	/* Clear up all port matrix which could be restored in the next
1064 	 * enablement for the port.
1065 	 */
1066 	priv->ports[port].enable = false;
1067 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1068 		   PCR_MATRIX_CLR);
1069 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
1070 
1071 	mutex_unlock(&priv->reg_mutex);
1072 }
1073 
1074 static int
1075 mt7530_port_change_mtu(struct dsa_switch *ds, int port, int new_mtu)
1076 {
1077 	struct mt7530_priv *priv = ds->priv;
1078 	struct mii_bus *bus = priv->bus;
1079 	int length;
1080 	u32 val;
1081 
1082 	/* When a new MTU is set, DSA always set the CPU port's MTU to the
1083 	 * largest MTU of the slave ports. Because the switch only has a global
1084 	 * RX length register, only allowing CPU port here is enough.
1085 	 */
1086 	if (!dsa_is_cpu_port(ds, port))
1087 		return 0;
1088 
1089 	mutex_lock_nested(&bus->mdio_lock, MDIO_MUTEX_NESTED);
1090 
1091 	val = mt7530_mii_read(priv, MT7530_GMACCR);
1092 	val &= ~MAX_RX_PKT_LEN_MASK;
1093 
1094 	/* RX length also includes Ethernet header, MTK tag, and FCS length */
1095 	length = new_mtu + ETH_HLEN + MTK_HDR_LEN + ETH_FCS_LEN;
1096 	if (length <= 1522) {
1097 		val |= MAX_RX_PKT_LEN_1522;
1098 	} else if (length <= 1536) {
1099 		val |= MAX_RX_PKT_LEN_1536;
1100 	} else if (length <= 1552) {
1101 		val |= MAX_RX_PKT_LEN_1552;
1102 	} else {
1103 		val &= ~MAX_RX_JUMBO_MASK;
1104 		val |= MAX_RX_JUMBO(DIV_ROUND_UP(length, 1024));
1105 		val |= MAX_RX_PKT_LEN_JUMBO;
1106 	}
1107 
1108 	mt7530_mii_write(priv, MT7530_GMACCR, val);
1109 
1110 	mutex_unlock(&bus->mdio_lock);
1111 
1112 	return 0;
1113 }
1114 
1115 static int
1116 mt7530_port_max_mtu(struct dsa_switch *ds, int port)
1117 {
1118 	return MT7530_MAX_MTU;
1119 }
1120 
1121 static void
1122 mt7530_stp_state_set(struct dsa_switch *ds, int port, u8 state)
1123 {
1124 	struct mt7530_priv *priv = ds->priv;
1125 	u32 stp_state;
1126 
1127 	switch (state) {
1128 	case BR_STATE_DISABLED:
1129 		stp_state = MT7530_STP_DISABLED;
1130 		break;
1131 	case BR_STATE_BLOCKING:
1132 		stp_state = MT7530_STP_BLOCKING;
1133 		break;
1134 	case BR_STATE_LISTENING:
1135 		stp_state = MT7530_STP_LISTENING;
1136 		break;
1137 	case BR_STATE_LEARNING:
1138 		stp_state = MT7530_STP_LEARNING;
1139 		break;
1140 	case BR_STATE_FORWARDING:
1141 	default:
1142 		stp_state = MT7530_STP_FORWARDING;
1143 		break;
1144 	}
1145 
1146 	mt7530_rmw(priv, MT7530_SSP_P(port), FID_PST_MASK, stp_state);
1147 }
1148 
1149 static int
1150 mt7530_port_pre_bridge_flags(struct dsa_switch *ds, int port,
1151 			     struct switchdev_brport_flags flags,
1152 			     struct netlink_ext_ack *extack)
1153 {
1154 	if (flags.mask & ~(BR_LEARNING | BR_FLOOD | BR_MCAST_FLOOD |
1155 			   BR_BCAST_FLOOD))
1156 		return -EINVAL;
1157 
1158 	return 0;
1159 }
1160 
1161 static int
1162 mt7530_port_bridge_flags(struct dsa_switch *ds, int port,
1163 			 struct switchdev_brport_flags flags,
1164 			 struct netlink_ext_ack *extack)
1165 {
1166 	struct mt7530_priv *priv = ds->priv;
1167 
1168 	if (flags.mask & BR_LEARNING)
1169 		mt7530_rmw(priv, MT7530_PSC_P(port), SA_DIS,
1170 			   flags.val & BR_LEARNING ? 0 : SA_DIS);
1171 
1172 	if (flags.mask & BR_FLOOD)
1173 		mt7530_rmw(priv, MT7530_MFC, UNU_FFP(BIT(port)),
1174 			   flags.val & BR_FLOOD ? UNU_FFP(BIT(port)) : 0);
1175 
1176 	if (flags.mask & BR_MCAST_FLOOD)
1177 		mt7530_rmw(priv, MT7530_MFC, UNM_FFP(BIT(port)),
1178 			   flags.val & BR_MCAST_FLOOD ? UNM_FFP(BIT(port)) : 0);
1179 
1180 	if (flags.mask & BR_BCAST_FLOOD)
1181 		mt7530_rmw(priv, MT7530_MFC, BC_FFP(BIT(port)),
1182 			   flags.val & BR_BCAST_FLOOD ? BC_FFP(BIT(port)) : 0);
1183 
1184 	return 0;
1185 }
1186 
1187 static int
1188 mt7530_port_set_mrouter(struct dsa_switch *ds, int port, bool mrouter,
1189 			struct netlink_ext_ack *extack)
1190 {
1191 	struct mt7530_priv *priv = ds->priv;
1192 
1193 	mt7530_rmw(priv, MT7530_MFC, UNM_FFP(BIT(port)),
1194 		   mrouter ? UNM_FFP(BIT(port)) : 0);
1195 
1196 	return 0;
1197 }
1198 
1199 static int
1200 mt7530_port_bridge_join(struct dsa_switch *ds, int port,
1201 			struct net_device *bridge)
1202 {
1203 	struct mt7530_priv *priv = ds->priv;
1204 	u32 port_bitmap = BIT(MT7530_CPU_PORT);
1205 	int i;
1206 
1207 	mutex_lock(&priv->reg_mutex);
1208 
1209 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1210 		/* Add this port to the port matrix of the other ports in the
1211 		 * same bridge. If the port is disabled, port matrix is kept
1212 		 * and not being setup until the port becomes enabled.
1213 		 */
1214 		if (dsa_is_user_port(ds, i) && i != port) {
1215 			if (dsa_to_port(ds, i)->bridge_dev != bridge)
1216 				continue;
1217 			if (priv->ports[i].enable)
1218 				mt7530_set(priv, MT7530_PCR_P(i),
1219 					   PCR_MATRIX(BIT(port)));
1220 			priv->ports[i].pm |= PCR_MATRIX(BIT(port));
1221 
1222 			port_bitmap |= BIT(i);
1223 		}
1224 	}
1225 
1226 	/* Add the all other ports to this port matrix. */
1227 	if (priv->ports[port].enable)
1228 		mt7530_rmw(priv, MT7530_PCR_P(port),
1229 			   PCR_MATRIX_MASK, PCR_MATRIX(port_bitmap));
1230 	priv->ports[port].pm |= PCR_MATRIX(port_bitmap);
1231 
1232 	mutex_unlock(&priv->reg_mutex);
1233 
1234 	return 0;
1235 }
1236 
1237 static void
1238 mt7530_port_set_vlan_unaware(struct dsa_switch *ds, int port)
1239 {
1240 	struct mt7530_priv *priv = ds->priv;
1241 	bool all_user_ports_removed = true;
1242 	int i;
1243 
1244 	/* When a port is removed from the bridge, the port would be set up
1245 	 * back to the default as is at initial boot which is a VLAN-unaware
1246 	 * port.
1247 	 */
1248 	mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1249 		   MT7530_PORT_MATRIX_MODE);
1250 	mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
1251 		   VLAN_ATTR(MT7530_VLAN_TRANSPARENT) |
1252 		   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1253 
1254 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1255 		if (dsa_is_user_port(ds, i) &&
1256 		    dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
1257 			all_user_ports_removed = false;
1258 			break;
1259 		}
1260 	}
1261 
1262 	/* CPU port also does the same thing until all user ports belonging to
1263 	 * the CPU port get out of VLAN filtering mode.
1264 	 */
1265 	if (all_user_ports_removed) {
1266 		mt7530_write(priv, MT7530_PCR_P(MT7530_CPU_PORT),
1267 			     PCR_MATRIX(dsa_user_ports(priv->ds)));
1268 		mt7530_write(priv, MT7530_PVC_P(MT7530_CPU_PORT), PORT_SPEC_TAG
1269 			     | PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
1270 	}
1271 }
1272 
1273 static void
1274 mt7530_port_set_vlan_aware(struct dsa_switch *ds, int port)
1275 {
1276 	struct mt7530_priv *priv = ds->priv;
1277 
1278 	/* Trapped into security mode allows packet forwarding through VLAN
1279 	 * table lookup. CPU port is set to fallback mode to let untagged
1280 	 * frames pass through.
1281 	 */
1282 	if (dsa_is_cpu_port(ds, port))
1283 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1284 			   MT7530_PORT_FALLBACK_MODE);
1285 	else
1286 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_PORT_VLAN_MASK,
1287 			   MT7530_PORT_SECURITY_MODE);
1288 
1289 	/* Set the port as a user port which is to be able to recognize VID
1290 	 * from incoming packets before fetching entry within the VLAN table.
1291 	 */
1292 	mt7530_rmw(priv, MT7530_PVC_P(port), VLAN_ATTR_MASK | PVC_EG_TAG_MASK,
1293 		   VLAN_ATTR(MT7530_VLAN_USER) |
1294 		   PVC_EG_TAG(MT7530_VLAN_EG_DISABLED));
1295 }
1296 
1297 static void
1298 mt7530_port_bridge_leave(struct dsa_switch *ds, int port,
1299 			 struct net_device *bridge)
1300 {
1301 	struct mt7530_priv *priv = ds->priv;
1302 	int i;
1303 
1304 	mutex_lock(&priv->reg_mutex);
1305 
1306 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
1307 		/* Remove this port from the port matrix of the other ports
1308 		 * in the same bridge. If the port is disabled, port matrix
1309 		 * is kept and not being setup until the port becomes enabled.
1310 		 * And the other port's port matrix cannot be broken when the
1311 		 * other port is still a VLAN-aware port.
1312 		 */
1313 		if (dsa_is_user_port(ds, i) && i != port &&
1314 		   !dsa_port_is_vlan_filtering(dsa_to_port(ds, i))) {
1315 			if (dsa_to_port(ds, i)->bridge_dev != bridge)
1316 				continue;
1317 			if (priv->ports[i].enable)
1318 				mt7530_clear(priv, MT7530_PCR_P(i),
1319 					     PCR_MATRIX(BIT(port)));
1320 			priv->ports[i].pm &= ~PCR_MATRIX(BIT(port));
1321 		}
1322 	}
1323 
1324 	/* Set the cpu port to be the only one in the port matrix of
1325 	 * this port.
1326 	 */
1327 	if (priv->ports[port].enable)
1328 		mt7530_rmw(priv, MT7530_PCR_P(port), PCR_MATRIX_MASK,
1329 			   PCR_MATRIX(BIT(MT7530_CPU_PORT)));
1330 	priv->ports[port].pm = PCR_MATRIX(BIT(MT7530_CPU_PORT));
1331 
1332 	mutex_unlock(&priv->reg_mutex);
1333 }
1334 
1335 static int
1336 mt7530_port_fdb_add(struct dsa_switch *ds, int port,
1337 		    const unsigned char *addr, u16 vid)
1338 {
1339 	struct mt7530_priv *priv = ds->priv;
1340 	int ret;
1341 	u8 port_mask = BIT(port);
1342 
1343 	mutex_lock(&priv->reg_mutex);
1344 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1345 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1346 	mutex_unlock(&priv->reg_mutex);
1347 
1348 	return ret;
1349 }
1350 
1351 static int
1352 mt7530_port_fdb_del(struct dsa_switch *ds, int port,
1353 		    const unsigned char *addr, u16 vid)
1354 {
1355 	struct mt7530_priv *priv = ds->priv;
1356 	int ret;
1357 	u8 port_mask = BIT(port);
1358 
1359 	mutex_lock(&priv->reg_mutex);
1360 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_EMP);
1361 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1362 	mutex_unlock(&priv->reg_mutex);
1363 
1364 	return ret;
1365 }
1366 
1367 static int
1368 mt7530_port_fdb_dump(struct dsa_switch *ds, int port,
1369 		     dsa_fdb_dump_cb_t *cb, void *data)
1370 {
1371 	struct mt7530_priv *priv = ds->priv;
1372 	struct mt7530_fdb _fdb = { 0 };
1373 	int cnt = MT7530_NUM_FDB_RECORDS;
1374 	int ret = 0;
1375 	u32 rsp = 0;
1376 
1377 	mutex_lock(&priv->reg_mutex);
1378 
1379 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_START, &rsp);
1380 	if (ret < 0)
1381 		goto err;
1382 
1383 	do {
1384 		if (rsp & ATC_SRCH_HIT) {
1385 			mt7530_fdb_read(priv, &_fdb);
1386 			if (_fdb.port_mask & BIT(port)) {
1387 				ret = cb(_fdb.mac, _fdb.vid, _fdb.noarp,
1388 					 data);
1389 				if (ret < 0)
1390 					break;
1391 			}
1392 		}
1393 	} while (--cnt &&
1394 		 !(rsp & ATC_SRCH_END) &&
1395 		 !mt7530_fdb_cmd(priv, MT7530_FDB_NEXT, &rsp));
1396 err:
1397 	mutex_unlock(&priv->reg_mutex);
1398 
1399 	return 0;
1400 }
1401 
1402 static int
1403 mt7530_port_mdb_add(struct dsa_switch *ds, int port,
1404 		    const struct switchdev_obj_port_mdb *mdb)
1405 {
1406 	struct mt7530_priv *priv = ds->priv;
1407 	const u8 *addr = mdb->addr;
1408 	u16 vid = mdb->vid;
1409 	u8 port_mask = 0;
1410 	int ret;
1411 
1412 	mutex_lock(&priv->reg_mutex);
1413 
1414 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1415 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1416 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1417 			    & PORT_MAP_MASK;
1418 
1419 	port_mask |= BIT(port);
1420 	mt7530_fdb_write(priv, vid, port_mask, addr, -1, STATIC_ENT);
1421 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1422 
1423 	mutex_unlock(&priv->reg_mutex);
1424 
1425 	return ret;
1426 }
1427 
1428 static int
1429 mt7530_port_mdb_del(struct dsa_switch *ds, int port,
1430 		    const struct switchdev_obj_port_mdb *mdb)
1431 {
1432 	struct mt7530_priv *priv = ds->priv;
1433 	const u8 *addr = mdb->addr;
1434 	u16 vid = mdb->vid;
1435 	u8 port_mask = 0;
1436 	int ret;
1437 
1438 	mutex_lock(&priv->reg_mutex);
1439 
1440 	mt7530_fdb_write(priv, vid, 0, addr, 0, STATIC_EMP);
1441 	if (!mt7530_fdb_cmd(priv, MT7530_FDB_READ, NULL))
1442 		port_mask = (mt7530_read(priv, MT7530_ATRD) >> PORT_MAP)
1443 			    & PORT_MAP_MASK;
1444 
1445 	port_mask &= ~BIT(port);
1446 	mt7530_fdb_write(priv, vid, port_mask, addr, -1,
1447 			 port_mask ? STATIC_ENT : STATIC_EMP);
1448 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_WRITE, NULL);
1449 
1450 	mutex_unlock(&priv->reg_mutex);
1451 
1452 	return ret;
1453 }
1454 
1455 static int
1456 mt7530_vlan_cmd(struct mt7530_priv *priv, enum mt7530_vlan_cmd cmd, u16 vid)
1457 {
1458 	struct mt7530_dummy_poll p;
1459 	u32 val;
1460 	int ret;
1461 
1462 	val = VTCR_BUSY | VTCR_FUNC(cmd) | vid;
1463 	mt7530_write(priv, MT7530_VTCR, val);
1464 
1465 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_VTCR);
1466 	ret = readx_poll_timeout(_mt7530_read, &p, val,
1467 				 !(val & VTCR_BUSY), 20, 20000);
1468 	if (ret < 0) {
1469 		dev_err(priv->dev, "poll timeout\n");
1470 		return ret;
1471 	}
1472 
1473 	val = mt7530_read(priv, MT7530_VTCR);
1474 	if (val & VTCR_INVALID) {
1475 		dev_err(priv->dev, "read VTCR invalid\n");
1476 		return -EINVAL;
1477 	}
1478 
1479 	return 0;
1480 }
1481 
1482 static int
1483 mt7530_port_vlan_filtering(struct dsa_switch *ds, int port, bool vlan_filtering,
1484 			   struct netlink_ext_ack *extack)
1485 {
1486 	if (vlan_filtering) {
1487 		/* The port is being kept as VLAN-unaware port when bridge is
1488 		 * set up with vlan_filtering not being set, Otherwise, the
1489 		 * port and the corresponding CPU port is required the setup
1490 		 * for becoming a VLAN-aware port.
1491 		 */
1492 		mt7530_port_set_vlan_aware(ds, port);
1493 		mt7530_port_set_vlan_aware(ds, MT7530_CPU_PORT);
1494 	} else {
1495 		mt7530_port_set_vlan_unaware(ds, port);
1496 	}
1497 
1498 	return 0;
1499 }
1500 
1501 static void
1502 mt7530_hw_vlan_add(struct mt7530_priv *priv,
1503 		   struct mt7530_hw_vlan_entry *entry)
1504 {
1505 	u8 new_members;
1506 	u32 val;
1507 
1508 	new_members = entry->old_members | BIT(entry->port) |
1509 		      BIT(MT7530_CPU_PORT);
1510 
1511 	/* Validate the entry with independent learning, create egress tag per
1512 	 * VLAN and joining the port as one of the port members.
1513 	 */
1514 	val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) | VLAN_VALID;
1515 	mt7530_write(priv, MT7530_VAWD1, val);
1516 
1517 	/* Decide whether adding tag or not for those outgoing packets from the
1518 	 * port inside the VLAN.
1519 	 */
1520 	val = entry->untagged ? MT7530_VLAN_EGRESS_UNTAG :
1521 				MT7530_VLAN_EGRESS_TAG;
1522 	mt7530_rmw(priv, MT7530_VAWD2,
1523 		   ETAG_CTRL_P_MASK(entry->port),
1524 		   ETAG_CTRL_P(entry->port, val));
1525 
1526 	/* CPU port is always taken as a tagged port for serving more than one
1527 	 * VLANs across and also being applied with egress type stack mode for
1528 	 * that VLAN tags would be appended after hardware special tag used as
1529 	 * DSA tag.
1530 	 */
1531 	mt7530_rmw(priv, MT7530_VAWD2,
1532 		   ETAG_CTRL_P_MASK(MT7530_CPU_PORT),
1533 		   ETAG_CTRL_P(MT7530_CPU_PORT,
1534 			       MT7530_VLAN_EGRESS_STACK));
1535 }
1536 
1537 static void
1538 mt7530_hw_vlan_del(struct mt7530_priv *priv,
1539 		   struct mt7530_hw_vlan_entry *entry)
1540 {
1541 	u8 new_members;
1542 	u32 val;
1543 
1544 	new_members = entry->old_members & ~BIT(entry->port);
1545 
1546 	val = mt7530_read(priv, MT7530_VAWD1);
1547 	if (!(val & VLAN_VALID)) {
1548 		dev_err(priv->dev,
1549 			"Cannot be deleted due to invalid entry\n");
1550 		return;
1551 	}
1552 
1553 	/* If certain member apart from CPU port is still alive in the VLAN,
1554 	 * the entry would be kept valid. Otherwise, the entry is got to be
1555 	 * disabled.
1556 	 */
1557 	if (new_members && new_members != BIT(MT7530_CPU_PORT)) {
1558 		val = IVL_MAC | VTAG_EN | PORT_MEM(new_members) |
1559 		      VLAN_VALID;
1560 		mt7530_write(priv, MT7530_VAWD1, val);
1561 	} else {
1562 		mt7530_write(priv, MT7530_VAWD1, 0);
1563 		mt7530_write(priv, MT7530_VAWD2, 0);
1564 	}
1565 }
1566 
1567 static void
1568 mt7530_hw_vlan_update(struct mt7530_priv *priv, u16 vid,
1569 		      struct mt7530_hw_vlan_entry *entry,
1570 		      mt7530_vlan_op vlan_op)
1571 {
1572 	u32 val;
1573 
1574 	/* Fetch entry */
1575 	mt7530_vlan_cmd(priv, MT7530_VTCR_RD_VID, vid);
1576 
1577 	val = mt7530_read(priv, MT7530_VAWD1);
1578 
1579 	entry->old_members = (val >> PORT_MEM_SHFT) & PORT_MEM_MASK;
1580 
1581 	/* Manipulate entry */
1582 	vlan_op(priv, entry);
1583 
1584 	/* Flush result to hardware */
1585 	mt7530_vlan_cmd(priv, MT7530_VTCR_WR_VID, vid);
1586 }
1587 
1588 static int
1589 mt7530_port_vlan_add(struct dsa_switch *ds, int port,
1590 		     const struct switchdev_obj_port_vlan *vlan,
1591 		     struct netlink_ext_ack *extack)
1592 {
1593 	bool untagged = vlan->flags & BRIDGE_VLAN_INFO_UNTAGGED;
1594 	bool pvid = vlan->flags & BRIDGE_VLAN_INFO_PVID;
1595 	struct mt7530_hw_vlan_entry new_entry;
1596 	struct mt7530_priv *priv = ds->priv;
1597 
1598 	mutex_lock(&priv->reg_mutex);
1599 
1600 	mt7530_hw_vlan_entry_init(&new_entry, port, untagged);
1601 	mt7530_hw_vlan_update(priv, vlan->vid, &new_entry, mt7530_hw_vlan_add);
1602 
1603 	if (pvid) {
1604 		mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK,
1605 			   G0_PORT_VID(vlan->vid));
1606 		priv->ports[port].pvid = vlan->vid;
1607 	}
1608 
1609 	mutex_unlock(&priv->reg_mutex);
1610 
1611 	return 0;
1612 }
1613 
1614 static int
1615 mt7530_port_vlan_del(struct dsa_switch *ds, int port,
1616 		     const struct switchdev_obj_port_vlan *vlan)
1617 {
1618 	struct mt7530_hw_vlan_entry target_entry;
1619 	struct mt7530_priv *priv = ds->priv;
1620 	u16 pvid;
1621 
1622 	mutex_lock(&priv->reg_mutex);
1623 
1624 	pvid = priv->ports[port].pvid;
1625 	mt7530_hw_vlan_entry_init(&target_entry, port, 0);
1626 	mt7530_hw_vlan_update(priv, vlan->vid, &target_entry,
1627 			      mt7530_hw_vlan_del);
1628 
1629 	/* PVID is being restored to the default whenever the PVID port
1630 	 * is being removed from the VLAN.
1631 	 */
1632 	if (pvid == vlan->vid)
1633 		pvid = G0_PORT_VID_DEF;
1634 
1635 	mt7530_rmw(priv, MT7530_PPBV1_P(port), G0_PORT_VID_MASK, pvid);
1636 	priv->ports[port].pvid = pvid;
1637 
1638 	mutex_unlock(&priv->reg_mutex);
1639 
1640 	return 0;
1641 }
1642 
1643 static int mt753x_mirror_port_get(unsigned int id, u32 val)
1644 {
1645 	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_GET(val) :
1646 				   MIRROR_PORT(val);
1647 }
1648 
1649 static int mt753x_mirror_port_set(unsigned int id, u32 val)
1650 {
1651 	return (id == ID_MT7531) ? MT7531_MIRROR_PORT_SET(val) :
1652 				   MIRROR_PORT(val);
1653 }
1654 
1655 static int mt753x_port_mirror_add(struct dsa_switch *ds, int port,
1656 				  struct dsa_mall_mirror_tc_entry *mirror,
1657 				  bool ingress)
1658 {
1659 	struct mt7530_priv *priv = ds->priv;
1660 	int monitor_port;
1661 	u32 val;
1662 
1663 	/* Check for existent entry */
1664 	if ((ingress ? priv->mirror_rx : priv->mirror_tx) & BIT(port))
1665 		return -EEXIST;
1666 
1667 	val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1668 
1669 	/* MT7530 only supports one monitor port */
1670 	monitor_port = mt753x_mirror_port_get(priv->id, val);
1671 	if (val & MT753X_MIRROR_EN(priv->id) &&
1672 	    monitor_port != mirror->to_local_port)
1673 		return -EEXIST;
1674 
1675 	val |= MT753X_MIRROR_EN(priv->id);
1676 	val &= ~MT753X_MIRROR_MASK(priv->id);
1677 	val |= mt753x_mirror_port_set(priv->id, mirror->to_local_port);
1678 	mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1679 
1680 	val = mt7530_read(priv, MT7530_PCR_P(port));
1681 	if (ingress) {
1682 		val |= PORT_RX_MIR;
1683 		priv->mirror_rx |= BIT(port);
1684 	} else {
1685 		val |= PORT_TX_MIR;
1686 		priv->mirror_tx |= BIT(port);
1687 	}
1688 	mt7530_write(priv, MT7530_PCR_P(port), val);
1689 
1690 	return 0;
1691 }
1692 
1693 static void mt753x_port_mirror_del(struct dsa_switch *ds, int port,
1694 				   struct dsa_mall_mirror_tc_entry *mirror)
1695 {
1696 	struct mt7530_priv *priv = ds->priv;
1697 	u32 val;
1698 
1699 	val = mt7530_read(priv, MT7530_PCR_P(port));
1700 	if (mirror->ingress) {
1701 		val &= ~PORT_RX_MIR;
1702 		priv->mirror_rx &= ~BIT(port);
1703 	} else {
1704 		val &= ~PORT_TX_MIR;
1705 		priv->mirror_tx &= ~BIT(port);
1706 	}
1707 	mt7530_write(priv, MT7530_PCR_P(port), val);
1708 
1709 	if (!priv->mirror_rx && !priv->mirror_tx) {
1710 		val = mt7530_read(priv, MT753X_MIRROR_REG(priv->id));
1711 		val &= ~MT753X_MIRROR_EN(priv->id);
1712 		mt7530_write(priv, MT753X_MIRROR_REG(priv->id), val);
1713 	}
1714 }
1715 
1716 static enum dsa_tag_protocol
1717 mtk_get_tag_protocol(struct dsa_switch *ds, int port,
1718 		     enum dsa_tag_protocol mp)
1719 {
1720 	struct mt7530_priv *priv = ds->priv;
1721 
1722 	if (port != MT7530_CPU_PORT) {
1723 		dev_warn(priv->dev,
1724 			 "port not matched with tagging CPU port\n");
1725 		return DSA_TAG_PROTO_NONE;
1726 	} else {
1727 		return DSA_TAG_PROTO_MTK;
1728 	}
1729 }
1730 
1731 #ifdef CONFIG_GPIOLIB
1732 static inline u32
1733 mt7530_gpio_to_bit(unsigned int offset)
1734 {
1735 	/* Map GPIO offset to register bit
1736 	 * [ 2: 0]  port 0 LED 0..2 as GPIO 0..2
1737 	 * [ 6: 4]  port 1 LED 0..2 as GPIO 3..5
1738 	 * [10: 8]  port 2 LED 0..2 as GPIO 6..8
1739 	 * [14:12]  port 3 LED 0..2 as GPIO 9..11
1740 	 * [18:16]  port 4 LED 0..2 as GPIO 12..14
1741 	 */
1742 	return BIT(offset + offset / 3);
1743 }
1744 
1745 static int
1746 mt7530_gpio_get(struct gpio_chip *gc, unsigned int offset)
1747 {
1748 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1749 	u32 bit = mt7530_gpio_to_bit(offset);
1750 
1751 	return !!(mt7530_read(priv, MT7530_LED_GPIO_DATA) & bit);
1752 }
1753 
1754 static void
1755 mt7530_gpio_set(struct gpio_chip *gc, unsigned int offset, int value)
1756 {
1757 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1758 	u32 bit = mt7530_gpio_to_bit(offset);
1759 
1760 	if (value)
1761 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1762 	else
1763 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1764 }
1765 
1766 static int
1767 mt7530_gpio_get_direction(struct gpio_chip *gc, unsigned int offset)
1768 {
1769 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1770 	u32 bit = mt7530_gpio_to_bit(offset);
1771 
1772 	return (mt7530_read(priv, MT7530_LED_GPIO_DIR) & bit) ?
1773 		GPIO_LINE_DIRECTION_OUT : GPIO_LINE_DIRECTION_IN;
1774 }
1775 
1776 static int
1777 mt7530_gpio_direction_input(struct gpio_chip *gc, unsigned int offset)
1778 {
1779 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1780 	u32 bit = mt7530_gpio_to_bit(offset);
1781 
1782 	mt7530_clear(priv, MT7530_LED_GPIO_OE, bit);
1783 	mt7530_clear(priv, MT7530_LED_GPIO_DIR, bit);
1784 
1785 	return 0;
1786 }
1787 
1788 static int
1789 mt7530_gpio_direction_output(struct gpio_chip *gc, unsigned int offset, int value)
1790 {
1791 	struct mt7530_priv *priv = gpiochip_get_data(gc);
1792 	u32 bit = mt7530_gpio_to_bit(offset);
1793 
1794 	mt7530_set(priv, MT7530_LED_GPIO_DIR, bit);
1795 
1796 	if (value)
1797 		mt7530_set(priv, MT7530_LED_GPIO_DATA, bit);
1798 	else
1799 		mt7530_clear(priv, MT7530_LED_GPIO_DATA, bit);
1800 
1801 	mt7530_set(priv, MT7530_LED_GPIO_OE, bit);
1802 
1803 	return 0;
1804 }
1805 
1806 static int
1807 mt7530_setup_gpio(struct mt7530_priv *priv)
1808 {
1809 	struct device *dev = priv->dev;
1810 	struct gpio_chip *gc;
1811 
1812 	gc = devm_kzalloc(dev, sizeof(*gc), GFP_KERNEL);
1813 	if (!gc)
1814 		return -ENOMEM;
1815 
1816 	mt7530_write(priv, MT7530_LED_GPIO_OE, 0);
1817 	mt7530_write(priv, MT7530_LED_GPIO_DIR, 0);
1818 	mt7530_write(priv, MT7530_LED_IO_MODE, 0);
1819 
1820 	gc->label = "mt7530";
1821 	gc->parent = dev;
1822 	gc->owner = THIS_MODULE;
1823 	gc->get_direction = mt7530_gpio_get_direction;
1824 	gc->direction_input = mt7530_gpio_direction_input;
1825 	gc->direction_output = mt7530_gpio_direction_output;
1826 	gc->get = mt7530_gpio_get;
1827 	gc->set = mt7530_gpio_set;
1828 	gc->base = -1;
1829 	gc->ngpio = 15;
1830 	gc->can_sleep = true;
1831 
1832 	return devm_gpiochip_add_data(dev, gc, priv);
1833 }
1834 #endif /* CONFIG_GPIOLIB */
1835 
1836 static irqreturn_t
1837 mt7530_irq_thread_fn(int irq, void *dev_id)
1838 {
1839 	struct mt7530_priv *priv = dev_id;
1840 	bool handled = false;
1841 	u32 val;
1842 	int p;
1843 
1844 	mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
1845 	val = mt7530_mii_read(priv, MT7530_SYS_INT_STS);
1846 	mt7530_mii_write(priv, MT7530_SYS_INT_STS, val);
1847 	mutex_unlock(&priv->bus->mdio_lock);
1848 
1849 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
1850 		if (BIT(p) & val) {
1851 			unsigned int irq;
1852 
1853 			irq = irq_find_mapping(priv->irq_domain, p);
1854 			handle_nested_irq(irq);
1855 			handled = true;
1856 		}
1857 	}
1858 
1859 	return IRQ_RETVAL(handled);
1860 }
1861 
1862 static void
1863 mt7530_irq_mask(struct irq_data *d)
1864 {
1865 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1866 
1867 	priv->irq_enable &= ~BIT(d->hwirq);
1868 }
1869 
1870 static void
1871 mt7530_irq_unmask(struct irq_data *d)
1872 {
1873 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1874 
1875 	priv->irq_enable |= BIT(d->hwirq);
1876 }
1877 
1878 static void
1879 mt7530_irq_bus_lock(struct irq_data *d)
1880 {
1881 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1882 
1883 	mutex_lock_nested(&priv->bus->mdio_lock, MDIO_MUTEX_NESTED);
1884 }
1885 
1886 static void
1887 mt7530_irq_bus_sync_unlock(struct irq_data *d)
1888 {
1889 	struct mt7530_priv *priv = irq_data_get_irq_chip_data(d);
1890 
1891 	mt7530_mii_write(priv, MT7530_SYS_INT_EN, priv->irq_enable);
1892 	mutex_unlock(&priv->bus->mdio_lock);
1893 }
1894 
1895 static struct irq_chip mt7530_irq_chip = {
1896 	.name = KBUILD_MODNAME,
1897 	.irq_mask = mt7530_irq_mask,
1898 	.irq_unmask = mt7530_irq_unmask,
1899 	.irq_bus_lock = mt7530_irq_bus_lock,
1900 	.irq_bus_sync_unlock = mt7530_irq_bus_sync_unlock,
1901 };
1902 
1903 static int
1904 mt7530_irq_map(struct irq_domain *domain, unsigned int irq,
1905 	       irq_hw_number_t hwirq)
1906 {
1907 	irq_set_chip_data(irq, domain->host_data);
1908 	irq_set_chip_and_handler(irq, &mt7530_irq_chip, handle_simple_irq);
1909 	irq_set_nested_thread(irq, true);
1910 	irq_set_noprobe(irq);
1911 
1912 	return 0;
1913 }
1914 
1915 static const struct irq_domain_ops mt7530_irq_domain_ops = {
1916 	.map = mt7530_irq_map,
1917 	.xlate = irq_domain_xlate_onecell,
1918 };
1919 
1920 static void
1921 mt7530_setup_mdio_irq(struct mt7530_priv *priv)
1922 {
1923 	struct dsa_switch *ds = priv->ds;
1924 	int p;
1925 
1926 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
1927 		if (BIT(p) & ds->phys_mii_mask) {
1928 			unsigned int irq;
1929 
1930 			irq = irq_create_mapping(priv->irq_domain, p);
1931 			ds->slave_mii_bus->irq[p] = irq;
1932 		}
1933 	}
1934 }
1935 
1936 static int
1937 mt7530_setup_irq(struct mt7530_priv *priv)
1938 {
1939 	struct device *dev = priv->dev;
1940 	struct device_node *np = dev->of_node;
1941 	int ret;
1942 
1943 	if (!of_property_read_bool(np, "interrupt-controller")) {
1944 		dev_info(dev, "no interrupt support\n");
1945 		return 0;
1946 	}
1947 
1948 	priv->irq = of_irq_get(np, 0);
1949 	if (priv->irq <= 0) {
1950 		dev_err(dev, "failed to get parent IRQ: %d\n", priv->irq);
1951 		return priv->irq ? : -EINVAL;
1952 	}
1953 
1954 	priv->irq_domain = irq_domain_add_linear(np, MT7530_NUM_PHYS,
1955 						 &mt7530_irq_domain_ops, priv);
1956 	if (!priv->irq_domain) {
1957 		dev_err(dev, "failed to create IRQ domain\n");
1958 		return -ENOMEM;
1959 	}
1960 
1961 	/* This register must be set for MT7530 to properly fire interrupts */
1962 	if (priv->id != ID_MT7531)
1963 		mt7530_set(priv, MT7530_TOP_SIG_CTRL, TOP_SIG_CTRL_NORMAL);
1964 
1965 	ret = request_threaded_irq(priv->irq, NULL, mt7530_irq_thread_fn,
1966 				   IRQF_ONESHOT, KBUILD_MODNAME, priv);
1967 	if (ret) {
1968 		irq_domain_remove(priv->irq_domain);
1969 		dev_err(dev, "failed to request IRQ: %d\n", ret);
1970 		return ret;
1971 	}
1972 
1973 	return 0;
1974 }
1975 
1976 static void
1977 mt7530_free_mdio_irq(struct mt7530_priv *priv)
1978 {
1979 	int p;
1980 
1981 	for (p = 0; p < MT7530_NUM_PHYS; p++) {
1982 		if (BIT(p) & priv->ds->phys_mii_mask) {
1983 			unsigned int irq;
1984 
1985 			irq = irq_find_mapping(priv->irq_domain, p);
1986 			irq_dispose_mapping(irq);
1987 		}
1988 	}
1989 }
1990 
1991 static void
1992 mt7530_free_irq_common(struct mt7530_priv *priv)
1993 {
1994 	free_irq(priv->irq, priv);
1995 	irq_domain_remove(priv->irq_domain);
1996 }
1997 
1998 static void
1999 mt7530_free_irq(struct mt7530_priv *priv)
2000 {
2001 	mt7530_free_mdio_irq(priv);
2002 	mt7530_free_irq_common(priv);
2003 }
2004 
2005 static int
2006 mt7530_setup_mdio(struct mt7530_priv *priv)
2007 {
2008 	struct dsa_switch *ds = priv->ds;
2009 	struct device *dev = priv->dev;
2010 	struct mii_bus *bus;
2011 	static int idx;
2012 	int ret;
2013 
2014 	bus = devm_mdiobus_alloc(dev);
2015 	if (!bus)
2016 		return -ENOMEM;
2017 
2018 	ds->slave_mii_bus = bus;
2019 	bus->priv = priv;
2020 	bus->name = KBUILD_MODNAME "-mii";
2021 	snprintf(bus->id, MII_BUS_ID_SIZE, KBUILD_MODNAME "-%d", idx++);
2022 	bus->read = mt753x_phy_read;
2023 	bus->write = mt753x_phy_write;
2024 	bus->parent = dev;
2025 	bus->phy_mask = ~ds->phys_mii_mask;
2026 
2027 	if (priv->irq)
2028 		mt7530_setup_mdio_irq(priv);
2029 
2030 	ret = mdiobus_register(bus);
2031 	if (ret) {
2032 		dev_err(dev, "failed to register MDIO bus: %d\n", ret);
2033 		if (priv->irq)
2034 			mt7530_free_mdio_irq(priv);
2035 	}
2036 
2037 	return ret;
2038 }
2039 
2040 static int
2041 mt7530_setup(struct dsa_switch *ds)
2042 {
2043 	struct mt7530_priv *priv = ds->priv;
2044 	struct device_node *phy_node;
2045 	struct device_node *mac_np;
2046 	struct mt7530_dummy_poll p;
2047 	phy_interface_t interface;
2048 	struct device_node *dn;
2049 	u32 id, val;
2050 	int ret, i;
2051 
2052 	/* The parent node of master netdev which holds the common system
2053 	 * controller also is the container for two GMACs nodes representing
2054 	 * as two netdev instances.
2055 	 */
2056 	dn = dsa_to_port(ds, MT7530_CPU_PORT)->master->dev.of_node->parent;
2057 	ds->mtu_enforcement_ingress = true;
2058 
2059 	if (priv->id == ID_MT7530) {
2060 		regulator_set_voltage(priv->core_pwr, 1000000, 1000000);
2061 		ret = regulator_enable(priv->core_pwr);
2062 		if (ret < 0) {
2063 			dev_err(priv->dev,
2064 				"Failed to enable core power: %d\n", ret);
2065 			return ret;
2066 		}
2067 
2068 		regulator_set_voltage(priv->io_pwr, 3300000, 3300000);
2069 		ret = regulator_enable(priv->io_pwr);
2070 		if (ret < 0) {
2071 			dev_err(priv->dev, "Failed to enable io pwr: %d\n",
2072 				ret);
2073 			return ret;
2074 		}
2075 	}
2076 
2077 	/* Reset whole chip through gpio pin or memory-mapped registers for
2078 	 * different type of hardware
2079 	 */
2080 	if (priv->mcm) {
2081 		reset_control_assert(priv->rstc);
2082 		usleep_range(1000, 1100);
2083 		reset_control_deassert(priv->rstc);
2084 	} else {
2085 		gpiod_set_value_cansleep(priv->reset, 0);
2086 		usleep_range(1000, 1100);
2087 		gpiod_set_value_cansleep(priv->reset, 1);
2088 	}
2089 
2090 	/* Waiting for MT7530 got to stable */
2091 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2092 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2093 				 20, 1000000);
2094 	if (ret < 0) {
2095 		dev_err(priv->dev, "reset timeout\n");
2096 		return ret;
2097 	}
2098 
2099 	id = mt7530_read(priv, MT7530_CREV);
2100 	id >>= CHIP_NAME_SHIFT;
2101 	if (id != MT7530_ID) {
2102 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2103 		return -ENODEV;
2104 	}
2105 
2106 	/* Reset the switch through internal reset */
2107 	mt7530_write(priv, MT7530_SYS_CTRL,
2108 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2109 		     SYS_CTRL_REG_RST);
2110 
2111 	/* Enable Port 6 only; P5 as GMAC5 which currently is not supported */
2112 	val = mt7530_read(priv, MT7530_MHWTRAP);
2113 	val &= ~MHWTRAP_P6_DIS & ~MHWTRAP_PHY_ACCESS;
2114 	val |= MHWTRAP_MANUAL;
2115 	mt7530_write(priv, MT7530_MHWTRAP, val);
2116 
2117 	priv->p6_interface = PHY_INTERFACE_MODE_NA;
2118 
2119 	/* Enable and reset MIB counters */
2120 	mt7530_mib_reset(ds);
2121 
2122 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2123 		/* Disable forwarding by default on all ports */
2124 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2125 			   PCR_MATRIX_CLR);
2126 
2127 		if (dsa_is_cpu_port(ds, i)) {
2128 			ret = mt753x_cpu_port_enable(ds, i);
2129 			if (ret)
2130 				return ret;
2131 		} else {
2132 			mt7530_port_disable(ds, i);
2133 
2134 			/* Disable learning by default on all user ports */
2135 			mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2136 		}
2137 		/* Enable consistent egress tag */
2138 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2139 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2140 	}
2141 
2142 	/* Setup port 5 */
2143 	priv->p5_intf_sel = P5_DISABLED;
2144 	interface = PHY_INTERFACE_MODE_NA;
2145 
2146 	if (!dsa_is_unused_port(ds, 5)) {
2147 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2148 		ret = of_get_phy_mode(dsa_to_port(ds, 5)->dn, &interface);
2149 		if (ret && ret != -ENODEV)
2150 			return ret;
2151 	} else {
2152 		/* Scan the ethernet nodes. look for GMAC1, lookup used phy */
2153 		for_each_child_of_node(dn, mac_np) {
2154 			if (!of_device_is_compatible(mac_np,
2155 						     "mediatek,eth-mac"))
2156 				continue;
2157 
2158 			ret = of_property_read_u32(mac_np, "reg", &id);
2159 			if (ret < 0 || id != 1)
2160 				continue;
2161 
2162 			phy_node = of_parse_phandle(mac_np, "phy-handle", 0);
2163 			if (!phy_node)
2164 				continue;
2165 
2166 			if (phy_node->parent == priv->dev->of_node->parent) {
2167 				ret = of_get_phy_mode(mac_np, &interface);
2168 				if (ret && ret != -ENODEV) {
2169 					of_node_put(mac_np);
2170 					return ret;
2171 				}
2172 				id = of_mdio_parse_addr(ds->dev, phy_node);
2173 				if (id == 0)
2174 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P0;
2175 				if (id == 4)
2176 					priv->p5_intf_sel = P5_INTF_SEL_PHY_P4;
2177 			}
2178 			of_node_put(mac_np);
2179 			of_node_put(phy_node);
2180 			break;
2181 		}
2182 	}
2183 
2184 #ifdef CONFIG_GPIOLIB
2185 	if (of_property_read_bool(priv->dev->of_node, "gpio-controller")) {
2186 		ret = mt7530_setup_gpio(priv);
2187 		if (ret)
2188 			return ret;
2189 	}
2190 #endif /* CONFIG_GPIOLIB */
2191 
2192 	mt7530_setup_port5(ds, interface);
2193 
2194 	/* Flush the FDB table */
2195 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2196 	if (ret < 0)
2197 		return ret;
2198 
2199 	return 0;
2200 }
2201 
2202 static int
2203 mt7531_setup(struct dsa_switch *ds)
2204 {
2205 	struct mt7530_priv *priv = ds->priv;
2206 	struct mt7530_dummy_poll p;
2207 	u32 val, id;
2208 	int ret, i;
2209 
2210 	/* Reset whole chip through gpio pin or memory-mapped registers for
2211 	 * different type of hardware
2212 	 */
2213 	if (priv->mcm) {
2214 		reset_control_assert(priv->rstc);
2215 		usleep_range(1000, 1100);
2216 		reset_control_deassert(priv->rstc);
2217 	} else {
2218 		gpiod_set_value_cansleep(priv->reset, 0);
2219 		usleep_range(1000, 1100);
2220 		gpiod_set_value_cansleep(priv->reset, 1);
2221 	}
2222 
2223 	/* Waiting for MT7530 got to stable */
2224 	INIT_MT7530_DUMMY_POLL(&p, priv, MT7530_HWTRAP);
2225 	ret = readx_poll_timeout(_mt7530_read, &p, val, val != 0,
2226 				 20, 1000000);
2227 	if (ret < 0) {
2228 		dev_err(priv->dev, "reset timeout\n");
2229 		return ret;
2230 	}
2231 
2232 	id = mt7530_read(priv, MT7531_CREV);
2233 	id >>= CHIP_NAME_SHIFT;
2234 
2235 	if (id != MT7531_ID) {
2236 		dev_err(priv->dev, "chip %x can't be supported\n", id);
2237 		return -ENODEV;
2238 	}
2239 
2240 	/* Reset the switch through internal reset */
2241 	mt7530_write(priv, MT7530_SYS_CTRL,
2242 		     SYS_CTRL_PHY_RST | SYS_CTRL_SW_RST |
2243 		     SYS_CTRL_REG_RST);
2244 
2245 	if (mt7531_dual_sgmii_supported(priv)) {
2246 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5_SGMII;
2247 
2248 		/* Let ds->slave_mii_bus be able to access external phy. */
2249 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO11_RG_RXD2_MASK,
2250 			   MT7531_EXT_P_MDC_11);
2251 		mt7530_rmw(priv, MT7531_GPIO_MODE1, MT7531_GPIO12_RG_RXD3_MASK,
2252 			   MT7531_EXT_P_MDIO_12);
2253 	} else {
2254 		priv->p5_intf_sel = P5_INTF_SEL_GMAC5;
2255 	}
2256 	dev_dbg(ds->dev, "P5 support %s interface\n",
2257 		p5_intf_modes(priv->p5_intf_sel));
2258 
2259 	mt7530_rmw(priv, MT7531_GPIO_MODE0, MT7531_GPIO0_MASK,
2260 		   MT7531_GPIO0_INTERRUPT);
2261 
2262 	/* Let phylink decide the interface later. */
2263 	priv->p5_interface = PHY_INTERFACE_MODE_NA;
2264 	priv->p6_interface = PHY_INTERFACE_MODE_NA;
2265 
2266 	/* Enable PHY core PLL, since phy_device has not yet been created
2267 	 * provided for phy_[read,write]_mmd_indirect is called, we provide
2268 	 * our own mt7531_ind_mmd_phy_[read,write] to complete this
2269 	 * function.
2270 	 */
2271 	val = mt7531_ind_c45_phy_read(priv, MT753X_CTRL_PHY_ADDR,
2272 				      MDIO_MMD_VEND2, CORE_PLL_GROUP4);
2273 	val |= MT7531_PHY_PLL_BYPASS_MODE;
2274 	val &= ~MT7531_PHY_PLL_OFF;
2275 	mt7531_ind_c45_phy_write(priv, MT753X_CTRL_PHY_ADDR, MDIO_MMD_VEND2,
2276 				 CORE_PLL_GROUP4, val);
2277 
2278 	/* BPDU to CPU port */
2279 	mt7530_rmw(priv, MT7531_CFC, MT7531_CPU_PMAP_MASK,
2280 		   BIT(MT7530_CPU_PORT));
2281 	mt7530_rmw(priv, MT753X_BPC, MT753X_BPDU_PORT_FW_MASK,
2282 		   MT753X_BPDU_CPU_ONLY);
2283 
2284 	/* Enable and reset MIB counters */
2285 	mt7530_mib_reset(ds);
2286 
2287 	for (i = 0; i < MT7530_NUM_PORTS; i++) {
2288 		/* Disable forwarding by default on all ports */
2289 		mt7530_rmw(priv, MT7530_PCR_P(i), PCR_MATRIX_MASK,
2290 			   PCR_MATRIX_CLR);
2291 
2292 		mt7530_set(priv, MT7531_DBG_CNT(i), MT7531_DIS_CLR);
2293 
2294 		if (dsa_is_cpu_port(ds, i)) {
2295 			ret = mt753x_cpu_port_enable(ds, i);
2296 			if (ret)
2297 				return ret;
2298 		} else {
2299 			mt7530_port_disable(ds, i);
2300 
2301 			/* Disable learning by default on all user ports */
2302 			mt7530_set(priv, MT7530_PSC_P(i), SA_DIS);
2303 		}
2304 
2305 		/* Enable consistent egress tag */
2306 		mt7530_rmw(priv, MT7530_PVC_P(i), PVC_EG_TAG_MASK,
2307 			   PVC_EG_TAG(MT7530_VLAN_EG_CONSISTENT));
2308 	}
2309 
2310 	ds->mtu_enforcement_ingress = true;
2311 
2312 	/* Flush the FDB table */
2313 	ret = mt7530_fdb_cmd(priv, MT7530_FDB_FLUSH, NULL);
2314 	if (ret < 0)
2315 		return ret;
2316 
2317 	return 0;
2318 }
2319 
2320 static bool
2321 mt7530_phy_mode_supported(struct dsa_switch *ds, int port,
2322 			  const struct phylink_link_state *state)
2323 {
2324 	struct mt7530_priv *priv = ds->priv;
2325 
2326 	switch (port) {
2327 	case 0 ... 4: /* Internal phy */
2328 		if (state->interface != PHY_INTERFACE_MODE_GMII)
2329 			return false;
2330 		break;
2331 	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2332 		if (!phy_interface_mode_is_rgmii(state->interface) &&
2333 		    state->interface != PHY_INTERFACE_MODE_MII &&
2334 		    state->interface != PHY_INTERFACE_MODE_GMII)
2335 			return false;
2336 		break;
2337 	case 6: /* 1st cpu port */
2338 		if (state->interface != PHY_INTERFACE_MODE_RGMII &&
2339 		    state->interface != PHY_INTERFACE_MODE_TRGMII)
2340 			return false;
2341 		break;
2342 	default:
2343 		dev_err(priv->dev, "%s: unsupported port: %i\n", __func__,
2344 			port);
2345 		return false;
2346 	}
2347 
2348 	return true;
2349 }
2350 
2351 static bool mt7531_is_rgmii_port(struct mt7530_priv *priv, u32 port)
2352 {
2353 	return (port == 5) && (priv->p5_intf_sel != P5_INTF_SEL_GMAC5_SGMII);
2354 }
2355 
2356 static bool
2357 mt7531_phy_mode_supported(struct dsa_switch *ds, int port,
2358 			  const struct phylink_link_state *state)
2359 {
2360 	struct mt7530_priv *priv = ds->priv;
2361 
2362 	switch (port) {
2363 	case 0 ... 4: /* Internal phy */
2364 		if (state->interface != PHY_INTERFACE_MODE_GMII)
2365 			return false;
2366 		break;
2367 	case 5: /* 2nd cpu port supports either rgmii or sgmii/8023z */
2368 		if (mt7531_is_rgmii_port(priv, port))
2369 			return phy_interface_mode_is_rgmii(state->interface);
2370 		fallthrough;
2371 	case 6: /* 1st cpu port supports sgmii/8023z only */
2372 		if (state->interface != PHY_INTERFACE_MODE_SGMII &&
2373 		    !phy_interface_mode_is_8023z(state->interface))
2374 			return false;
2375 		break;
2376 	default:
2377 		dev_err(priv->dev, "%s: unsupported port: %i\n", __func__,
2378 			port);
2379 		return false;
2380 	}
2381 
2382 	return true;
2383 }
2384 
2385 static bool
2386 mt753x_phy_mode_supported(struct dsa_switch *ds, int port,
2387 			  const struct phylink_link_state *state)
2388 {
2389 	struct mt7530_priv *priv = ds->priv;
2390 
2391 	return priv->info->phy_mode_supported(ds, port, state);
2392 }
2393 
2394 static int
2395 mt753x_pad_setup(struct dsa_switch *ds, const struct phylink_link_state *state)
2396 {
2397 	struct mt7530_priv *priv = ds->priv;
2398 
2399 	return priv->info->pad_setup(ds, state->interface);
2400 }
2401 
2402 static int
2403 mt7530_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2404 		  phy_interface_t interface)
2405 {
2406 	struct mt7530_priv *priv = ds->priv;
2407 
2408 	/* Only need to setup port5. */
2409 	if (port != 5)
2410 		return 0;
2411 
2412 	mt7530_setup_port5(priv->ds, interface);
2413 
2414 	return 0;
2415 }
2416 
2417 static int mt7531_rgmii_setup(struct mt7530_priv *priv, u32 port,
2418 			      phy_interface_t interface,
2419 			      struct phy_device *phydev)
2420 {
2421 	u32 val;
2422 
2423 	if (!mt7531_is_rgmii_port(priv, port)) {
2424 		dev_err(priv->dev, "RGMII mode is not available for port %d\n",
2425 			port);
2426 		return -EINVAL;
2427 	}
2428 
2429 	val = mt7530_read(priv, MT7531_CLKGEN_CTRL);
2430 	val |= GP_CLK_EN;
2431 	val &= ~GP_MODE_MASK;
2432 	val |= GP_MODE(MT7531_GP_MODE_RGMII);
2433 	val &= ~CLK_SKEW_IN_MASK;
2434 	val |= CLK_SKEW_IN(MT7531_CLK_SKEW_NO_CHG);
2435 	val &= ~CLK_SKEW_OUT_MASK;
2436 	val |= CLK_SKEW_OUT(MT7531_CLK_SKEW_NO_CHG);
2437 	val |= TXCLK_NO_REVERSE | RXCLK_NO_DELAY;
2438 
2439 	/* Do not adjust rgmii delay when vendor phy driver presents. */
2440 	if (!phydev || phy_driver_is_genphy(phydev)) {
2441 		val &= ~(TXCLK_NO_REVERSE | RXCLK_NO_DELAY);
2442 		switch (interface) {
2443 		case PHY_INTERFACE_MODE_RGMII:
2444 			val |= TXCLK_NO_REVERSE;
2445 			val |= RXCLK_NO_DELAY;
2446 			break;
2447 		case PHY_INTERFACE_MODE_RGMII_RXID:
2448 			val |= TXCLK_NO_REVERSE;
2449 			break;
2450 		case PHY_INTERFACE_MODE_RGMII_TXID:
2451 			val |= RXCLK_NO_DELAY;
2452 			break;
2453 		case PHY_INTERFACE_MODE_RGMII_ID:
2454 			break;
2455 		default:
2456 			return -EINVAL;
2457 		}
2458 	}
2459 	mt7530_write(priv, MT7531_CLKGEN_CTRL, val);
2460 
2461 	return 0;
2462 }
2463 
2464 static void mt7531_sgmii_validate(struct mt7530_priv *priv, int port,
2465 				  unsigned long *supported)
2466 {
2467 	/* Port5 supports ethier RGMII or SGMII.
2468 	 * Port6 supports SGMII only.
2469 	 */
2470 	switch (port) {
2471 	case 5:
2472 		if (mt7531_is_rgmii_port(priv, port))
2473 			break;
2474 		fallthrough;
2475 	case 6:
2476 		phylink_set(supported, 1000baseX_Full);
2477 		phylink_set(supported, 2500baseX_Full);
2478 		phylink_set(supported, 2500baseT_Full);
2479 	}
2480 }
2481 
2482 static void
2483 mt7531_sgmii_link_up_force(struct dsa_switch *ds, int port,
2484 			   unsigned int mode, phy_interface_t interface,
2485 			   int speed, int duplex)
2486 {
2487 	struct mt7530_priv *priv = ds->priv;
2488 	unsigned int val;
2489 
2490 	/* For adjusting speed and duplex of SGMII force mode. */
2491 	if (interface != PHY_INTERFACE_MODE_SGMII ||
2492 	    phylink_autoneg_inband(mode))
2493 		return;
2494 
2495 	/* SGMII force mode setting */
2496 	val = mt7530_read(priv, MT7531_SGMII_MODE(port));
2497 	val &= ~MT7531_SGMII_IF_MODE_MASK;
2498 
2499 	switch (speed) {
2500 	case SPEED_10:
2501 		val |= MT7531_SGMII_FORCE_SPEED_10;
2502 		break;
2503 	case SPEED_100:
2504 		val |= MT7531_SGMII_FORCE_SPEED_100;
2505 		break;
2506 	case SPEED_1000:
2507 		val |= MT7531_SGMII_FORCE_SPEED_1000;
2508 		break;
2509 	}
2510 
2511 	/* MT7531 SGMII 1G force mode can only work in full duplex mode,
2512 	 * no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not.
2513 	 */
2514 	if ((speed == SPEED_10 || speed == SPEED_100) &&
2515 	    duplex != DUPLEX_FULL)
2516 		val |= MT7531_SGMII_FORCE_HALF_DUPLEX;
2517 
2518 	mt7530_write(priv, MT7531_SGMII_MODE(port), val);
2519 }
2520 
2521 static bool mt753x_is_mac_port(u32 port)
2522 {
2523 	return (port == 5 || port == 6);
2524 }
2525 
2526 static int mt7531_sgmii_setup_mode_force(struct mt7530_priv *priv, u32 port,
2527 					 phy_interface_t interface)
2528 {
2529 	u32 val;
2530 
2531 	if (!mt753x_is_mac_port(port))
2532 		return -EINVAL;
2533 
2534 	mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port),
2535 		   MT7531_SGMII_PHYA_PWD);
2536 
2537 	val = mt7530_read(priv, MT7531_PHYA_CTRL_SIGNAL3(port));
2538 	val &= ~MT7531_RG_TPHY_SPEED_MASK;
2539 	/* Setup 2.5 times faster clock for 2.5Gbps data speeds with 10B/8B
2540 	 * encoding.
2541 	 */
2542 	val |= (interface == PHY_INTERFACE_MODE_2500BASEX) ?
2543 		MT7531_RG_TPHY_SPEED_3_125G : MT7531_RG_TPHY_SPEED_1_25G;
2544 	mt7530_write(priv, MT7531_PHYA_CTRL_SIGNAL3(port), val);
2545 
2546 	mt7530_clear(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE);
2547 
2548 	/* MT7531 SGMII 1G and 2.5G force mode can only work in full duplex
2549 	 * mode, no matter MT7531_SGMII_FORCE_HALF_DUPLEX is set or not.
2550 	 */
2551 	mt7530_rmw(priv, MT7531_SGMII_MODE(port),
2552 		   MT7531_SGMII_IF_MODE_MASK | MT7531_SGMII_REMOTE_FAULT_DIS,
2553 		   MT7531_SGMII_FORCE_SPEED_1000);
2554 
2555 	mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0);
2556 
2557 	return 0;
2558 }
2559 
2560 static int mt7531_sgmii_setup_mode_an(struct mt7530_priv *priv, int port,
2561 				      phy_interface_t interface)
2562 {
2563 	if (!mt753x_is_mac_port(port))
2564 		return -EINVAL;
2565 
2566 	mt7530_set(priv, MT7531_QPHY_PWR_STATE_CTRL(port),
2567 		   MT7531_SGMII_PHYA_PWD);
2568 
2569 	mt7530_rmw(priv, MT7531_PHYA_CTRL_SIGNAL3(port),
2570 		   MT7531_RG_TPHY_SPEED_MASK, MT7531_RG_TPHY_SPEED_1_25G);
2571 
2572 	mt7530_set(priv, MT7531_SGMII_MODE(port),
2573 		   MT7531_SGMII_REMOTE_FAULT_DIS |
2574 		   MT7531_SGMII_SPEED_DUPLEX_AN);
2575 
2576 	mt7530_rmw(priv, MT7531_PCS_SPEED_ABILITY(port),
2577 		   MT7531_SGMII_TX_CONFIG_MASK, 1);
2578 
2579 	mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_ENABLE);
2580 
2581 	mt7530_set(priv, MT7531_PCS_CONTROL_1(port), MT7531_SGMII_AN_RESTART);
2582 
2583 	mt7530_write(priv, MT7531_QPHY_PWR_STATE_CTRL(port), 0);
2584 
2585 	return 0;
2586 }
2587 
2588 static void mt7531_sgmii_restart_an(struct dsa_switch *ds, int port)
2589 {
2590 	struct mt7530_priv *priv = ds->priv;
2591 	u32 val;
2592 
2593 	/* Only restart AN when AN is enabled */
2594 	val = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
2595 	if (val & MT7531_SGMII_AN_ENABLE) {
2596 		val |= MT7531_SGMII_AN_RESTART;
2597 		mt7530_write(priv, MT7531_PCS_CONTROL_1(port), val);
2598 	}
2599 }
2600 
2601 static int
2602 mt7531_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2603 		  phy_interface_t interface)
2604 {
2605 	struct mt7530_priv *priv = ds->priv;
2606 	struct phy_device *phydev;
2607 	struct dsa_port *dp;
2608 
2609 	if (!mt753x_is_mac_port(port)) {
2610 		dev_err(priv->dev, "port %d is not a MAC port\n", port);
2611 		return -EINVAL;
2612 	}
2613 
2614 	switch (interface) {
2615 	case PHY_INTERFACE_MODE_RGMII:
2616 	case PHY_INTERFACE_MODE_RGMII_ID:
2617 	case PHY_INTERFACE_MODE_RGMII_RXID:
2618 	case PHY_INTERFACE_MODE_RGMII_TXID:
2619 		dp = dsa_to_port(ds, port);
2620 		phydev = dp->slave->phydev;
2621 		return mt7531_rgmii_setup(priv, port, interface, phydev);
2622 	case PHY_INTERFACE_MODE_SGMII:
2623 		return mt7531_sgmii_setup_mode_an(priv, port, interface);
2624 	case PHY_INTERFACE_MODE_NA:
2625 	case PHY_INTERFACE_MODE_1000BASEX:
2626 	case PHY_INTERFACE_MODE_2500BASEX:
2627 		if (phylink_autoneg_inband(mode))
2628 			return -EINVAL;
2629 
2630 		return mt7531_sgmii_setup_mode_force(priv, port, interface);
2631 	default:
2632 		return -EINVAL;
2633 	}
2634 
2635 	return -EINVAL;
2636 }
2637 
2638 static int
2639 mt753x_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2640 		  const struct phylink_link_state *state)
2641 {
2642 	struct mt7530_priv *priv = ds->priv;
2643 
2644 	return priv->info->mac_port_config(ds, port, mode, state->interface);
2645 }
2646 
2647 static void
2648 mt753x_phylink_mac_config(struct dsa_switch *ds, int port, unsigned int mode,
2649 			  const struct phylink_link_state *state)
2650 {
2651 	struct mt7530_priv *priv = ds->priv;
2652 	u32 mcr_cur, mcr_new;
2653 
2654 	if (!mt753x_phy_mode_supported(ds, port, state))
2655 		goto unsupported;
2656 
2657 	switch (port) {
2658 	case 0 ... 4: /* Internal phy */
2659 		if (state->interface != PHY_INTERFACE_MODE_GMII)
2660 			goto unsupported;
2661 		break;
2662 	case 5: /* 2nd cpu port with phy of port 0 or 4 / external phy */
2663 		if (priv->p5_interface == state->interface)
2664 			break;
2665 
2666 		if (mt753x_mac_config(ds, port, mode, state) < 0)
2667 			goto unsupported;
2668 
2669 		if (priv->p5_intf_sel != P5_DISABLED)
2670 			priv->p5_interface = state->interface;
2671 		break;
2672 	case 6: /* 1st cpu port */
2673 		if (priv->p6_interface == state->interface)
2674 			break;
2675 
2676 		mt753x_pad_setup(ds, state);
2677 
2678 		if (mt753x_mac_config(ds, port, mode, state) < 0)
2679 			goto unsupported;
2680 
2681 		priv->p6_interface = state->interface;
2682 		break;
2683 	default:
2684 unsupported:
2685 		dev_err(ds->dev, "%s: unsupported %s port: %i\n",
2686 			__func__, phy_modes(state->interface), port);
2687 		return;
2688 	}
2689 
2690 	if (phylink_autoneg_inband(mode) &&
2691 	    state->interface != PHY_INTERFACE_MODE_SGMII) {
2692 		dev_err(ds->dev, "%s: in-band negotiation unsupported\n",
2693 			__func__);
2694 		return;
2695 	}
2696 
2697 	mcr_cur = mt7530_read(priv, MT7530_PMCR_P(port));
2698 	mcr_new = mcr_cur;
2699 	mcr_new &= ~PMCR_LINK_SETTINGS_MASK;
2700 	mcr_new |= PMCR_IFG_XMIT(1) | PMCR_MAC_MODE | PMCR_BACKOFF_EN |
2701 		   PMCR_BACKPR_EN | PMCR_FORCE_MODE_ID(priv->id);
2702 
2703 	/* Are we connected to external phy */
2704 	if (port == 5 && dsa_is_user_port(ds, 5))
2705 		mcr_new |= PMCR_EXT_PHY;
2706 
2707 	if (mcr_new != mcr_cur)
2708 		mt7530_write(priv, MT7530_PMCR_P(port), mcr_new);
2709 }
2710 
2711 static void
2712 mt753x_phylink_mac_an_restart(struct dsa_switch *ds, int port)
2713 {
2714 	struct mt7530_priv *priv = ds->priv;
2715 
2716 	if (!priv->info->mac_pcs_an_restart)
2717 		return;
2718 
2719 	priv->info->mac_pcs_an_restart(ds, port);
2720 }
2721 
2722 static void mt753x_phylink_mac_link_down(struct dsa_switch *ds, int port,
2723 					 unsigned int mode,
2724 					 phy_interface_t interface)
2725 {
2726 	struct mt7530_priv *priv = ds->priv;
2727 
2728 	mt7530_clear(priv, MT7530_PMCR_P(port), PMCR_LINK_SETTINGS_MASK);
2729 }
2730 
2731 static void mt753x_mac_pcs_link_up(struct dsa_switch *ds, int port,
2732 				   unsigned int mode, phy_interface_t interface,
2733 				   int speed, int duplex)
2734 {
2735 	struct mt7530_priv *priv = ds->priv;
2736 
2737 	if (!priv->info->mac_pcs_link_up)
2738 		return;
2739 
2740 	priv->info->mac_pcs_link_up(ds, port, mode, interface, speed, duplex);
2741 }
2742 
2743 static void mt753x_phylink_mac_link_up(struct dsa_switch *ds, int port,
2744 				       unsigned int mode,
2745 				       phy_interface_t interface,
2746 				       struct phy_device *phydev,
2747 				       int speed, int duplex,
2748 				       bool tx_pause, bool rx_pause)
2749 {
2750 	struct mt7530_priv *priv = ds->priv;
2751 	u32 mcr;
2752 
2753 	mt753x_mac_pcs_link_up(ds, port, mode, interface, speed, duplex);
2754 
2755 	mcr = PMCR_RX_EN | PMCR_TX_EN | PMCR_FORCE_LNK;
2756 
2757 	/* MT753x MAC works in 1G full duplex mode for all up-clocked
2758 	 * variants.
2759 	 */
2760 	if (interface == PHY_INTERFACE_MODE_TRGMII ||
2761 	    (phy_interface_mode_is_8023z(interface))) {
2762 		speed = SPEED_1000;
2763 		duplex = DUPLEX_FULL;
2764 	}
2765 
2766 	switch (speed) {
2767 	case SPEED_1000:
2768 		mcr |= PMCR_FORCE_SPEED_1000;
2769 		break;
2770 	case SPEED_100:
2771 		mcr |= PMCR_FORCE_SPEED_100;
2772 		break;
2773 	}
2774 	if (duplex == DUPLEX_FULL) {
2775 		mcr |= PMCR_FORCE_FDX;
2776 		if (tx_pause)
2777 			mcr |= PMCR_TX_FC_EN;
2778 		if (rx_pause)
2779 			mcr |= PMCR_RX_FC_EN;
2780 	}
2781 
2782 	if (mode == MLO_AN_PHY && phydev && phy_init_eee(phydev, 0) >= 0) {
2783 		switch (speed) {
2784 		case SPEED_1000:
2785 			mcr |= PMCR_FORCE_EEE1G;
2786 			break;
2787 		case SPEED_100:
2788 			mcr |= PMCR_FORCE_EEE100;
2789 			break;
2790 		}
2791 	}
2792 
2793 	mt7530_set(priv, MT7530_PMCR_P(port), mcr);
2794 }
2795 
2796 static int
2797 mt7531_cpu_port_config(struct dsa_switch *ds, int port)
2798 {
2799 	struct mt7530_priv *priv = ds->priv;
2800 	phy_interface_t interface;
2801 	int speed;
2802 	int ret;
2803 
2804 	switch (port) {
2805 	case 5:
2806 		if (mt7531_is_rgmii_port(priv, port))
2807 			interface = PHY_INTERFACE_MODE_RGMII;
2808 		else
2809 			interface = PHY_INTERFACE_MODE_2500BASEX;
2810 
2811 		priv->p5_interface = interface;
2812 		break;
2813 	case 6:
2814 		interface = PHY_INTERFACE_MODE_2500BASEX;
2815 
2816 		mt7531_pad_setup(ds, interface);
2817 
2818 		priv->p6_interface = interface;
2819 		break;
2820 	default:
2821 		return -EINVAL;
2822 	}
2823 
2824 	if (interface == PHY_INTERFACE_MODE_2500BASEX)
2825 		speed = SPEED_2500;
2826 	else
2827 		speed = SPEED_1000;
2828 
2829 	ret = mt7531_mac_config(ds, port, MLO_AN_FIXED, interface);
2830 	if (ret)
2831 		return ret;
2832 	mt7530_write(priv, MT7530_PMCR_P(port),
2833 		     PMCR_CPU_PORT_SETTING(priv->id));
2834 	mt753x_phylink_mac_link_up(ds, port, MLO_AN_FIXED, interface, NULL,
2835 				   speed, DUPLEX_FULL, true, true);
2836 
2837 	return 0;
2838 }
2839 
2840 static void
2841 mt7530_mac_port_validate(struct dsa_switch *ds, int port,
2842 			 unsigned long *supported)
2843 {
2844 	if (port == 5)
2845 		phylink_set(supported, 1000baseX_Full);
2846 }
2847 
2848 static void mt7531_mac_port_validate(struct dsa_switch *ds, int port,
2849 				     unsigned long *supported)
2850 {
2851 	struct mt7530_priv *priv = ds->priv;
2852 
2853 	mt7531_sgmii_validate(priv, port, supported);
2854 }
2855 
2856 static void
2857 mt753x_phylink_validate(struct dsa_switch *ds, int port,
2858 			unsigned long *supported,
2859 			struct phylink_link_state *state)
2860 {
2861 	__ETHTOOL_DECLARE_LINK_MODE_MASK(mask) = { 0, };
2862 	struct mt7530_priv *priv = ds->priv;
2863 
2864 	if (state->interface != PHY_INTERFACE_MODE_NA &&
2865 	    !mt753x_phy_mode_supported(ds, port, state)) {
2866 		linkmode_zero(supported);
2867 		return;
2868 	}
2869 
2870 	phylink_set_port_modes(mask);
2871 
2872 	if (state->interface != PHY_INTERFACE_MODE_TRGMII ||
2873 	    !phy_interface_mode_is_8023z(state->interface)) {
2874 		phylink_set(mask, 10baseT_Half);
2875 		phylink_set(mask, 10baseT_Full);
2876 		phylink_set(mask, 100baseT_Half);
2877 		phylink_set(mask, 100baseT_Full);
2878 		phylink_set(mask, Autoneg);
2879 	}
2880 
2881 	/* This switch only supports 1G full-duplex. */
2882 	if (state->interface != PHY_INTERFACE_MODE_MII)
2883 		phylink_set(mask, 1000baseT_Full);
2884 
2885 	priv->info->mac_port_validate(ds, port, mask);
2886 
2887 	phylink_set(mask, Pause);
2888 	phylink_set(mask, Asym_Pause);
2889 
2890 	linkmode_and(supported, supported, mask);
2891 	linkmode_and(state->advertising, state->advertising, mask);
2892 
2893 	/* We can only operate at 2500BaseX or 1000BaseX.  If requested
2894 	 * to advertise both, only report advertising at 2500BaseX.
2895 	 */
2896 	phylink_helper_basex_speed(state);
2897 }
2898 
2899 static int
2900 mt7530_phylink_mac_link_state(struct dsa_switch *ds, int port,
2901 			      struct phylink_link_state *state)
2902 {
2903 	struct mt7530_priv *priv = ds->priv;
2904 	u32 pmsr;
2905 
2906 	if (port < 0 || port >= MT7530_NUM_PORTS)
2907 		return -EINVAL;
2908 
2909 	pmsr = mt7530_read(priv, MT7530_PMSR_P(port));
2910 
2911 	state->link = (pmsr & PMSR_LINK);
2912 	state->an_complete = state->link;
2913 	state->duplex = !!(pmsr & PMSR_DPX);
2914 
2915 	switch (pmsr & PMSR_SPEED_MASK) {
2916 	case PMSR_SPEED_10:
2917 		state->speed = SPEED_10;
2918 		break;
2919 	case PMSR_SPEED_100:
2920 		state->speed = SPEED_100;
2921 		break;
2922 	case PMSR_SPEED_1000:
2923 		state->speed = SPEED_1000;
2924 		break;
2925 	default:
2926 		state->speed = SPEED_UNKNOWN;
2927 		break;
2928 	}
2929 
2930 	state->pause &= ~(MLO_PAUSE_RX | MLO_PAUSE_TX);
2931 	if (pmsr & PMSR_RX_FC)
2932 		state->pause |= MLO_PAUSE_RX;
2933 	if (pmsr & PMSR_TX_FC)
2934 		state->pause |= MLO_PAUSE_TX;
2935 
2936 	return 1;
2937 }
2938 
2939 static int
2940 mt7531_sgmii_pcs_get_state_an(struct mt7530_priv *priv, int port,
2941 			      struct phylink_link_state *state)
2942 {
2943 	u32 status, val;
2944 	u16 config_reg;
2945 
2946 	status = mt7530_read(priv, MT7531_PCS_CONTROL_1(port));
2947 	state->link = !!(status & MT7531_SGMII_LINK_STATUS);
2948 	if (state->interface == PHY_INTERFACE_MODE_SGMII &&
2949 	    (status & MT7531_SGMII_AN_ENABLE)) {
2950 		val = mt7530_read(priv, MT7531_PCS_SPEED_ABILITY(port));
2951 		config_reg = val >> 16;
2952 
2953 		switch (config_reg & LPA_SGMII_SPD_MASK) {
2954 		case LPA_SGMII_1000:
2955 			state->speed = SPEED_1000;
2956 			break;
2957 		case LPA_SGMII_100:
2958 			state->speed = SPEED_100;
2959 			break;
2960 		case LPA_SGMII_10:
2961 			state->speed = SPEED_10;
2962 			break;
2963 		default:
2964 			dev_err(priv->dev, "invalid sgmii PHY speed\n");
2965 			state->link = false;
2966 			return -EINVAL;
2967 		}
2968 
2969 		if (config_reg & LPA_SGMII_FULL_DUPLEX)
2970 			state->duplex = DUPLEX_FULL;
2971 		else
2972 			state->duplex = DUPLEX_HALF;
2973 	}
2974 
2975 	return 0;
2976 }
2977 
2978 static int
2979 mt7531_phylink_mac_link_state(struct dsa_switch *ds, int port,
2980 			      struct phylink_link_state *state)
2981 {
2982 	struct mt7530_priv *priv = ds->priv;
2983 
2984 	if (state->interface == PHY_INTERFACE_MODE_SGMII)
2985 		return mt7531_sgmii_pcs_get_state_an(priv, port, state);
2986 
2987 	return -EOPNOTSUPP;
2988 }
2989 
2990 static int
2991 mt753x_phylink_mac_link_state(struct dsa_switch *ds, int port,
2992 			      struct phylink_link_state *state)
2993 {
2994 	struct mt7530_priv *priv = ds->priv;
2995 
2996 	return priv->info->mac_port_get_state(ds, port, state);
2997 }
2998 
2999 static int
3000 mt753x_setup(struct dsa_switch *ds)
3001 {
3002 	struct mt7530_priv *priv = ds->priv;
3003 	int ret = priv->info->sw_setup(ds);
3004 
3005 	if (ret)
3006 		return ret;
3007 
3008 	ret = mt7530_setup_irq(priv);
3009 	if (ret)
3010 		return ret;
3011 
3012 	ret = mt7530_setup_mdio(priv);
3013 	if (ret && priv->irq)
3014 		mt7530_free_irq_common(priv);
3015 
3016 	return ret;
3017 }
3018 
3019 static int mt753x_get_mac_eee(struct dsa_switch *ds, int port,
3020 			      struct ethtool_eee *e)
3021 {
3022 	struct mt7530_priv *priv = ds->priv;
3023 	u32 eeecr = mt7530_read(priv, MT7530_PMEEECR_P(port));
3024 
3025 	e->tx_lpi_enabled = !(eeecr & LPI_MODE_EN);
3026 	e->tx_lpi_timer = GET_LPI_THRESH(eeecr);
3027 
3028 	return 0;
3029 }
3030 
3031 static int mt753x_set_mac_eee(struct dsa_switch *ds, int port,
3032 			      struct ethtool_eee *e)
3033 {
3034 	struct mt7530_priv *priv = ds->priv;
3035 	u32 set, mask = LPI_THRESH_MASK | LPI_MODE_EN;
3036 
3037 	if (e->tx_lpi_timer > 0xFFF)
3038 		return -EINVAL;
3039 
3040 	set = SET_LPI_THRESH(e->tx_lpi_timer);
3041 	if (!e->tx_lpi_enabled)
3042 		/* Force LPI Mode without a delay */
3043 		set |= LPI_MODE_EN;
3044 	mt7530_rmw(priv, MT7530_PMEEECR_P(port), mask, set);
3045 
3046 	return 0;
3047 }
3048 
3049 static const struct dsa_switch_ops mt7530_switch_ops = {
3050 	.get_tag_protocol	= mtk_get_tag_protocol,
3051 	.setup			= mt753x_setup,
3052 	.get_strings		= mt7530_get_strings,
3053 	.get_ethtool_stats	= mt7530_get_ethtool_stats,
3054 	.get_sset_count		= mt7530_get_sset_count,
3055 	.set_ageing_time	= mt7530_set_ageing_time,
3056 	.port_enable		= mt7530_port_enable,
3057 	.port_disable		= mt7530_port_disable,
3058 	.port_change_mtu	= mt7530_port_change_mtu,
3059 	.port_max_mtu		= mt7530_port_max_mtu,
3060 	.port_stp_state_set	= mt7530_stp_state_set,
3061 	.port_pre_bridge_flags	= mt7530_port_pre_bridge_flags,
3062 	.port_bridge_flags	= mt7530_port_bridge_flags,
3063 	.port_set_mrouter	= mt7530_port_set_mrouter,
3064 	.port_bridge_join	= mt7530_port_bridge_join,
3065 	.port_bridge_leave	= mt7530_port_bridge_leave,
3066 	.port_fdb_add		= mt7530_port_fdb_add,
3067 	.port_fdb_del		= mt7530_port_fdb_del,
3068 	.port_fdb_dump		= mt7530_port_fdb_dump,
3069 	.port_mdb_add		= mt7530_port_mdb_add,
3070 	.port_mdb_del		= mt7530_port_mdb_del,
3071 	.port_vlan_filtering	= mt7530_port_vlan_filtering,
3072 	.port_vlan_add		= mt7530_port_vlan_add,
3073 	.port_vlan_del		= mt7530_port_vlan_del,
3074 	.port_mirror_add	= mt753x_port_mirror_add,
3075 	.port_mirror_del	= mt753x_port_mirror_del,
3076 	.phylink_validate	= mt753x_phylink_validate,
3077 	.phylink_mac_link_state	= mt753x_phylink_mac_link_state,
3078 	.phylink_mac_config	= mt753x_phylink_mac_config,
3079 	.phylink_mac_an_restart	= mt753x_phylink_mac_an_restart,
3080 	.phylink_mac_link_down	= mt753x_phylink_mac_link_down,
3081 	.phylink_mac_link_up	= mt753x_phylink_mac_link_up,
3082 	.get_mac_eee		= mt753x_get_mac_eee,
3083 	.set_mac_eee		= mt753x_set_mac_eee,
3084 };
3085 
3086 static const struct mt753x_info mt753x_table[] = {
3087 	[ID_MT7621] = {
3088 		.id = ID_MT7621,
3089 		.sw_setup = mt7530_setup,
3090 		.phy_read = mt7530_phy_read,
3091 		.phy_write = mt7530_phy_write,
3092 		.pad_setup = mt7530_pad_clk_setup,
3093 		.phy_mode_supported = mt7530_phy_mode_supported,
3094 		.mac_port_validate = mt7530_mac_port_validate,
3095 		.mac_port_get_state = mt7530_phylink_mac_link_state,
3096 		.mac_port_config = mt7530_mac_config,
3097 	},
3098 	[ID_MT7530] = {
3099 		.id = ID_MT7530,
3100 		.sw_setup = mt7530_setup,
3101 		.phy_read = mt7530_phy_read,
3102 		.phy_write = mt7530_phy_write,
3103 		.pad_setup = mt7530_pad_clk_setup,
3104 		.phy_mode_supported = mt7530_phy_mode_supported,
3105 		.mac_port_validate = mt7530_mac_port_validate,
3106 		.mac_port_get_state = mt7530_phylink_mac_link_state,
3107 		.mac_port_config = mt7530_mac_config,
3108 	},
3109 	[ID_MT7531] = {
3110 		.id = ID_MT7531,
3111 		.sw_setup = mt7531_setup,
3112 		.phy_read = mt7531_ind_phy_read,
3113 		.phy_write = mt7531_ind_phy_write,
3114 		.pad_setup = mt7531_pad_setup,
3115 		.cpu_port_config = mt7531_cpu_port_config,
3116 		.phy_mode_supported = mt7531_phy_mode_supported,
3117 		.mac_port_validate = mt7531_mac_port_validate,
3118 		.mac_port_get_state = mt7531_phylink_mac_link_state,
3119 		.mac_port_config = mt7531_mac_config,
3120 		.mac_pcs_an_restart = mt7531_sgmii_restart_an,
3121 		.mac_pcs_link_up = mt7531_sgmii_link_up_force,
3122 	},
3123 };
3124 
3125 static const struct of_device_id mt7530_of_match[] = {
3126 	{ .compatible = "mediatek,mt7621", .data = &mt753x_table[ID_MT7621], },
3127 	{ .compatible = "mediatek,mt7530", .data = &mt753x_table[ID_MT7530], },
3128 	{ .compatible = "mediatek,mt7531", .data = &mt753x_table[ID_MT7531], },
3129 	{ /* sentinel */ },
3130 };
3131 MODULE_DEVICE_TABLE(of, mt7530_of_match);
3132 
3133 static int
3134 mt7530_probe(struct mdio_device *mdiodev)
3135 {
3136 	struct mt7530_priv *priv;
3137 	struct device_node *dn;
3138 
3139 	dn = mdiodev->dev.of_node;
3140 
3141 	priv = devm_kzalloc(&mdiodev->dev, sizeof(*priv), GFP_KERNEL);
3142 	if (!priv)
3143 		return -ENOMEM;
3144 
3145 	priv->ds = devm_kzalloc(&mdiodev->dev, sizeof(*priv->ds), GFP_KERNEL);
3146 	if (!priv->ds)
3147 		return -ENOMEM;
3148 
3149 	priv->ds->dev = &mdiodev->dev;
3150 	priv->ds->num_ports = DSA_MAX_PORTS;
3151 
3152 	/* Use medatek,mcm property to distinguish hardware type that would
3153 	 * casues a little bit differences on power-on sequence.
3154 	 */
3155 	priv->mcm = of_property_read_bool(dn, "mediatek,mcm");
3156 	if (priv->mcm) {
3157 		dev_info(&mdiodev->dev, "MT7530 adapts as multi-chip module\n");
3158 
3159 		priv->rstc = devm_reset_control_get(&mdiodev->dev, "mcm");
3160 		if (IS_ERR(priv->rstc)) {
3161 			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
3162 			return PTR_ERR(priv->rstc);
3163 		}
3164 	}
3165 
3166 	/* Get the hardware identifier from the devicetree node.
3167 	 * We will need it for some of the clock and regulator setup.
3168 	 */
3169 	priv->info = of_device_get_match_data(&mdiodev->dev);
3170 	if (!priv->info)
3171 		return -EINVAL;
3172 
3173 	/* Sanity check if these required device operations are filled
3174 	 * properly.
3175 	 */
3176 	if (!priv->info->sw_setup || !priv->info->pad_setup ||
3177 	    !priv->info->phy_read || !priv->info->phy_write ||
3178 	    !priv->info->phy_mode_supported ||
3179 	    !priv->info->mac_port_validate ||
3180 	    !priv->info->mac_port_get_state || !priv->info->mac_port_config)
3181 		return -EINVAL;
3182 
3183 	priv->id = priv->info->id;
3184 
3185 	if (priv->id == ID_MT7530) {
3186 		priv->core_pwr = devm_regulator_get(&mdiodev->dev, "core");
3187 		if (IS_ERR(priv->core_pwr))
3188 			return PTR_ERR(priv->core_pwr);
3189 
3190 		priv->io_pwr = devm_regulator_get(&mdiodev->dev, "io");
3191 		if (IS_ERR(priv->io_pwr))
3192 			return PTR_ERR(priv->io_pwr);
3193 	}
3194 
3195 	/* Not MCM that indicates switch works as the remote standalone
3196 	 * integrated circuit so the GPIO pin would be used to complete
3197 	 * the reset, otherwise memory-mapped register accessing used
3198 	 * through syscon provides in the case of MCM.
3199 	 */
3200 	if (!priv->mcm) {
3201 		priv->reset = devm_gpiod_get_optional(&mdiodev->dev, "reset",
3202 						      GPIOD_OUT_LOW);
3203 		if (IS_ERR(priv->reset)) {
3204 			dev_err(&mdiodev->dev, "Couldn't get our reset line\n");
3205 			return PTR_ERR(priv->reset);
3206 		}
3207 	}
3208 
3209 	priv->bus = mdiodev->bus;
3210 	priv->dev = &mdiodev->dev;
3211 	priv->ds->priv = priv;
3212 	priv->ds->ops = &mt7530_switch_ops;
3213 	mutex_init(&priv->reg_mutex);
3214 	dev_set_drvdata(&mdiodev->dev, priv);
3215 
3216 	return dsa_register_switch(priv->ds);
3217 }
3218 
3219 static void
3220 mt7530_remove(struct mdio_device *mdiodev)
3221 {
3222 	struct mt7530_priv *priv = dev_get_drvdata(&mdiodev->dev);
3223 	int ret = 0;
3224 
3225 	ret = regulator_disable(priv->core_pwr);
3226 	if (ret < 0)
3227 		dev_err(priv->dev,
3228 			"Failed to disable core power: %d\n", ret);
3229 
3230 	ret = regulator_disable(priv->io_pwr);
3231 	if (ret < 0)
3232 		dev_err(priv->dev, "Failed to disable io pwr: %d\n",
3233 			ret);
3234 
3235 	if (priv->irq)
3236 		mt7530_free_irq(priv);
3237 
3238 	dsa_unregister_switch(priv->ds);
3239 	mutex_destroy(&priv->reg_mutex);
3240 }
3241 
3242 static struct mdio_driver mt7530_mdio_driver = {
3243 	.probe  = mt7530_probe,
3244 	.remove = mt7530_remove,
3245 	.mdiodrv.driver = {
3246 		.name = "mt7530",
3247 		.of_match_table = mt7530_of_match,
3248 	},
3249 };
3250 
3251 mdio_module_driver(mt7530_mdio_driver);
3252 
3253 MODULE_AUTHOR("Sean Wang <sean.wang@mediatek.com>");
3254 MODULE_DESCRIPTION("Driver for Mediatek MT7530 Switch");
3255 MODULE_LICENSE("GPL");
3256